MA/MSCMT-02

June - Examination 2019

M.A. / M.Sc. (Previous) Mathematics Examination

Real Analysis and Topology Paper - MA/MSCMT-02

Time: 3 Hours [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C. Use of non-programmable scientific calculator is allowed in this paper.

Section - A

 $8 \times 2 = 16$

(Very Short Answer Questions)

Note: This Section - A contains 8 (eight) very short answer type questions. All questions are compulsory. Each question carries 2 (two) marks and maximum word limit for each answer will be 30 words.

- 1) (i) Define Borel set.
 - (ii) Define measurable function.
 - (iii) State Holder's inequality.
 - (iv) State Riesz-Fisher theorem.
 - (v) Write the necessary and sufficient conditions for a bounded function f defined on the interval [a, b], to be L-integrable.

- (vi) State Parseval's identity.
- (vii) Define Topological space.

(viii)Define embedding.

Section - B

 $4 \times 8 = 32$

(Short Answer Questions)

Note: This Section - B contains Eight Short Answer Type Questions. Examinees will have to answer any four (04) question. Each question is of 8 marks. Examinees have to delimit each answer in maximum 200 words

- 2) Prove that the union of two measurable sets is a measurable set.
- 3) Let < f_n > is a sequence of measurable functions defined on a measurable set E, then prove that sup < f_n > and inf < f_n > are also measurable set E.
 n
 n
- 4) Show that every bounded measurable function *f* defined on a measurable set *E* is L-integrable.
- 5) State and prove Minkowski's inequality.
- 6) Prove that for a subset A of a topological space (X, τ) , $\overline{A} = A \cup A'$.
- 7) Show that the property of a space being a Haudorff space is a hereditary property.
- 8) Prove that closure of a connected set is connected.
- 9) Prove that every filter F on a non-empty set X is contained in an ultrafilter on X.

Section - C

 $2 \times 16 = 32$

(Long Answer Questions)

Note: This Section - C contains 4 Long answer type questions. Examinees will have to answer any two (02) questions. Each question is of 16 marks. Examinees have to answer in maximum 500 words.

- 10) State and prove Weierstrass approximation theorem.
- 11) Prove that L_2 is a complete space.
- 12) (i) If E is a countable set, then show that $m^*(E) = 0$.
 - (ii) Prove that a subset A of Y is closed in the quotient topology τ_f relative to $f: X \to Y$ iff $f^{-1}(A)$ is closed in X.
- 13) Prove that a series $\sum_{i=1}^{\infty} f_i$ of pair wise orthogonal elements in L_2 is converges iff the series of real numbers $\sum_{i=1}^{\infty} ||f_i||^2$ is convergent.