MA/MSCMT-02

June - Examination 2017

M.A. / M.Sc. (Previous) Mathematics Examination Real Analysis and Topology

Paper - MA/MSCMT-02

Time: 3 Hours | [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C.

Section - A

 $8 \times 2 = 16$

(Contain 08 Very Short Answer Type Questions)

Note: Examinees have to attempt all questions. Each question is of 02 marks and maximum word limit may be thirty words.

- 1) (i) Define measurable set.
 - (ii) Define directed set.
 - (iii) Define orthonormal system.
 - (iv) State Riesz-Fisher theorem.
 - (v) State Holder's inequality.
 - (vi) State Parseval's identity
 - (vii) Define Topological space.
 - (viii) Define embedding.

Section - B

 $4 \times 8 = 32$

(Contain 08 Short Answer Type Questions)

Note: Examinees will have to answer any four (4) question. Each question is of 08 marks. Examinees have to delimit each answer in maximum 200 words.

- 2) Prove that the union of two measurable sets is a measurable set.
- 3) Let f be a measurable function define of E = [a, b]. Then prove that for given $\epsilon > 0$, there exists a function φ , continuous on [a, b] such that $m(\{x \in E : f(x) \neq \varphi(x)\}) < \epsilon$.
- 4) Show that every bounded measurable function *f* defined on a measurable set *E* is *L*-integrable.
- 5) State and prove Minkowski's inequality.
- 6) Prove that homeomorphism is an equivalence relation in the family of topological spaces.
- 7) Show that regularity is a topological property.
- 8) Prove that T_{∞} is a topology on X_{∞} .
- 9) Prove that the product space $(X \times Y, W)$ is compact if and only if each of the spaces (X, τ) and (X, V) is compact.

Section - C

 $2 \times 16 = 32$

(Contain 4 Long Answer Type Questions)

Note: Examinees will have to answer any two (02) questions. Each question is of 16 marks. Examinees have to delimit each answer in maximum 500 words. Use of non-programmable scientific calculator is allowed in this paper.

- 10) State and prove Weierstrass approximation theorem.
- 11) Let $< f_n >$ be a sequence of bounded measurable functions defined on a set E of finite measure. If there exists a positive number M such that $|f_n(x)| \le M$ for all $n \in N$ and for all $x \in E$ and if $< f_n >$ converges in measure to a bounded measurable function f on E, then prove that $\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx$.
- 12) (i) If E is a countable set, then show that $m^*(E) = 0$
 - (ii) Prove that a closed subset of a compact space is compact.
- 13) Prove that a series $\sum_{i=1}^{\infty} fi$ of pair wise orthogonal elements in L_2 is converges iff the series of real numbers $\sum_{i=1}^{\infty} \|fi\|^2$ is convergent.

MA/MSCMT-02 / 2900 / 3