515

# MCA-09 <br> June - Examination 2016 <br> MCA IInd Year Examination <br> Discrete Mathematics <br> Paper - MCA-09 

Time : 3 Hours ]
[ Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Use of non-programmable scientific calculator is allowed in this paper.

Section-A
$8 \times 2=16$
(Very Short Answer Questions)
Note: Section 'A' contain (08) Very Short Answer Type questions each question is of 02 marks. Examinees will have to answer all questions.

1) (i) Express the set $\mathrm{A}=\{x: x$ is letter in word CAT $\}$ in Roster form.
(ii) Define a function from set A to B .
(iii) Define a statement.
(iv) Define Tautology.
(v) Prove that $(\forall x)(\mathrm{P}(x)) \longrightarrow(\exists x)(\mathrm{P}(x))$ is logically valid.
(vi) Explain binary operation.
(vii) State De-Morgen's law for Boolean algebra.
(viii) How many numbers between 1 to 200 are divisible by 4 .

## Section - B

$4 \times 8=32$
(Short Answer Questions)
Note: Section 'B' contain Short Answer Type Questions. Examinees have to answer any four (04) questions. Each question is of 08 marks.
2) Prove that:
(i) $\mathrm{B}-\overline{\mathrm{A}}=\mathrm{A} \cap \mathrm{B}$
(ii) $\mathrm{A} \cup \mathrm{B}=\phi \Rightarrow \mathrm{A}=\phi$ and $\mathrm{B}=\phi$
3) If $X$ be the set of real number excluding 1 . Show that the function $f: x \rightarrow x, f(x)=\frac{x+1}{x-1}$ is one-one and on to.
4) Explain the following logical connection
(i) Negation
(ii) Conjunction
(iii) Disjunction
(iv) Conditional
5) Using truth table prove that
$(\mathrm{P} \wedge \mathrm{Q}) \wedge \sim(\mathrm{P} \vee \mathrm{Q})$ is a contradiction.
6) If $\mathrm{D}_{8}=\{1,2,4,8\}$ be the set of all divisors of 8 and let ' $t$ ' and ' $'$ ' be two operations defined on $\mathrm{D}_{8}$ as follows:
$a+b=\mathrm{LCM}$ of $a$ and $b$
$a-b=$ GCD of $a$ and $b$
also for each $a \in \mathrm{D}_{8} \Rightarrow a^{1}=\frac{8}{a}$ then prove that $\left(\mathrm{D}_{8},+, \cdot\right)$ is not a Boolean algebra.
7) How many 3 letters words can be formed?
(i) With out repetition
(ii) Repetition of letters is allowed
8) In how many ways can 5 gents and 4 ladies dine at a round table if no two ladies are to sit together.
9) Examine If the ring
$\mathrm{R}=\{a+b i ; a, b$ are integers, $i=\sqrt{-1}\}$ is a field also check for integral domain.

> Section - C
> (Long Answer Questions)
$2 \times 16=32$

Note: Section 'C' contain 04 Long Answer Type Questions. Examinees will have to answer any two (02) questions. Each question is of 16 marks.
10) (i) Prove that the number of vertices of odd degree in a graph is always even.
(ii) Show that the simple graphs with following adjacency matrices are isomorphic.

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

11) (i) Prove that in any tree with two or more vertices there are at least two pendant vertices.
(ii) Prove that every non-zero finite integral domain is a field.
12) (i) Prove that every finite group of order less than or equal to five is commucative group.
(ii) Prove that every quotient group of a cyclic group is cyclic.
13) (i) Prove that any two left (right) cosets of a subgroup are either disjoint or identical.
(ii) State pigen hole principle. Use pigen hole principle to find among 100 people. How many people born in same month.
