MA/MSCMT - 10
 June - Examination 2016

M.A./M.Sc. (Final) Mathematics Examination

 Mathematical Programming
Paper - MA/MSCMT - 10

Time : 3 Hours]
[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answer as per the given instructions. Use of nonprogrammable scientific calculator is allowed in this paper.

Section - A
$8 \times 2=16$

(Very Short Answer Questions)

Note: Section 'A' contain 08 Very Short Answer Type Questions. Examinees have to attempt all questions. Each question is of 02 marks and maximum word limit may be thirty words.

1) (i) Define supporting Hyper plane.
(ii) Given a problem $\min f(x, y, z)=d y z$ subject to $x+y+z=15 ; 2 x-y+2 z=20 ; x, y, z \geq 0$; how many Lagrange multiplier are required to solve this problem.
(iii) Write necessary condition for the function $f(x, \lambda)$ have a saddle point on $\left(x_{\mathrm{o}}, \lambda_{\mathrm{o}}\right)$.
(iv) Write Hessian matrix for $f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}$.
(v) Test the definiteness of the quadratic form

$$
\mathrm{X}^{\mathrm{T}} \mathrm{AX}=\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

(vi) Define feasible point for the Dual.
(vii) Write Dual of Max $f(\mathrm{X})=\mathrm{C}^{\mathrm{T}} \mathrm{X}+\frac{1}{2} \mathrm{X}^{\mathrm{T}} \mathrm{GX}$ subject to $\mathrm{AX}=b ; \mathrm{X} \geq 0$
(viii)Define 'stage' and 'state' in Dynamic Programming.

Section - B

$4 \times 8=32$
(Short Answer Questions)
Note: Section 'B' contain 08 Short Answer Type Questions. Examinees will have to answer any four (04) questions. Each question is of 08 marks. Examinees have to delimit each answer in maximum 200 words.
2) Show that if $f(x)$ is continuous, $f(x) \geq 0-\infty<x<\infty$ then the function $\phi(x)=\int_{x}^{\infty}(y-x) f(y) d y$ is a convex function provided the integral converges.
3) Obtain a set of necessary condition for the non-linear programming problem: maximize $z=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}$
s.t. $5 x_{1}+2 x_{2}+x_{3}=5$
$x_{1}, x_{2}, x_{3} \geq 0$
4) A positive quantity b is divided into n parts in such a way that the product of the n parts is to be maximum. Use Lagrange multiplier technique, obtain the optimal sub division.
5) Determine the optimal solution of the following non-linear programming problem; using the Kuhn - Tucker conditions: minimize $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}-x_{1} x_{2}$
subject to $x_{1}+x_{2} \geq 8$

$$
x_{1}, x_{2} \geq 0
$$

6) Solve the following quadratic programming problem by Beale's Method:
maximize $f\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2}-2 x_{1}^{2}$
s.t. $x_{1}+4 x_{2} \leq 4$

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

7) Make use of Dynamic Programming, show that $\sum_{i=1}^{n} p i \log p i \quad$ subject to $\sum_{i=1}^{n} p i=1, p i>0$ is minimum when $p_{1}=p_{2}=\ldots \ldots . .=p_{n}=\frac{1}{n}$
8) Solve by Dynamic Programming $\max \mathrm{Z}=x_{1}+9 x_{2}$
s.t. $2 x_{1}+x_{2} \leq 25 ; \quad x_{2} \leq 11$
and $x_{1} \geq 0, x_{2} \leq 0$
9) Derive the Dual Function of non-linear programming problem: maximize $f(x)$
s.t. $\quad g i(x) \geq 0 \quad i=1,2, \ldots \ldots ., m$

$$
h j(x)=0 \quad j=1,2, \ldots \ldots \ldots, p
$$

(Long Answer Questions)
Note: Section 'C' contain (04) Long Answer Type Questions. Examinees will have to answer any Two (02) questions. Each question is of 16 marks. Examinees have to delimit each answer in maximum 500 words.
10) Solve the following LPP
$\max \mathrm{Z}=3 x_{1}+5 x_{2}+2 x_{3}$
s.t. $x_{1}+2 x_{2}+2 x_{3} \leq 14$

$$
2 x_{1}+4 x_{2}+3 x_{3} \leq 23
$$

and $0 \leq x_{1} \leq 4 ; 0 \leq x_{2} \leq 5 ; 0 \leq x_{3} \leq 3$

$$
x_{2} \geq 2
$$

11) Use Branch and Bound Method, Solve the following LPP: minimize $\mathrm{Z}=4 x_{1}+3 x_{2}$
s.t. $5 x_{1}+3 x_{2} \geq 30$

$$
\begin{aligned}
& x_{1} \leq 4 \\
& x_{2} \leq 6
\end{aligned}
$$

$x_{1}, x_{2} \geq 0$ are integers.
12) Solve the following quadratic programming problem using Walfe's method.
$\min f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+2 x_{2}^{2}-x_{1}-x_{2}$
s.t. $2 x_{1}+x_{2} \leq 1$

$$
x_{1}, x_{2} \geq 0
$$

13) Solve the following convex seperable programming problem: $\min \mathrm{Z}=x_{1}^{2}-2 x_{1}-x_{2}$

Such that $2 x_{1}^{2}+3 x_{2}^{2} \leq 6$
and $x_{1}, x_{2} \geq 0$

