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8. B



Section- B

Section ‘B’ contain 08 Short Answer Type
Questions. Examinees will have to answer any four
(04) questions. Each question is of 08 marks.
Examinees have to delimit each answer in maximum
200 words.
If T be a linear transformation from a normed linear
space into normed space N, then show that T is
continuous either at every point or at no point of N.
Prove that every compact subset of a normal space is
bounded but the converse is not true.

Show that the space l," consisting of all n types
x = (Xg, vee oor s Xp) Of complex numbers and the inner
product on ," is defined as (x,¥) = ™, X;¥;, where
Y = (¥4, e eer - Y) is an inner product space.

Show that an orthonormal set S in a Hilbert space H is
complete iff for x LS = x=0Vx€H.

Show that a closed linear subspace M of a Hilbert space
H reduces an operator T <> M is invariant under both T
and T*

If X and Y be Banach spaces over the same field K of
scalars and V be an open subset of X. Let f : V' — Yis
differentiable at x € V, then show that all the
directional derivatives of f exists at x and D,f(x) =
D f(x).v,wherev € Visa unit vector.

Let f be a regulated function on a compact interval [a,
b] of R into a Banach space X, then show that for each
t € (a,b), the function F: [a,b] » X,F(t) =
[{f . t €[a,b]is continuous.

State and prove the Schwarz inequality.

Section- C

Section ‘C’ contain 04 Long Answer Type
Questions. Examinees will have to answer any two
(02) questions. Each question is of 16 marks.
Examinees have to delimit each answer in maximum
500 words.

10. (i). Let M be a closed linear subspace of a Hilbert
space H and x be a vector not in M. If d = d (x, M)

then show that 3 a unique vector y, in M s.t. [lx —
Yo|| = d.
(ii). State and Prove the Bessel’s inequality.

11. (i). Show that every Hilbert space is reflexive.

(ii). If T is an operator on a Hilbert space H, then prove
that (T, x) =0 Yx eH i T=0.

12. (i). Let X be a Banach space over the field K of scalars
and let f : [a,b] = X and g:[a, b] = R be continuous
and differentiable functions s.t. [|Df(t)|l < Dg(t) at
each point t € (a, b) then prove:

If(b) — f@Il < g) —g(a)

(ii). Let f be a function defined on the interval [a, b] of
R into R s.t. fis m times differentiable in {a. b] and
{m+1} times differentiable in interval (a, b), then prove

(b—a)™

f) = f(a) + (b —a)Df (@) + -+ +=——D*f(a) +
@...nu_5+u .U.H+H :
(m+1)! w. ﬁnv
Where ¢ € (a,b).
13. (i). State and prove the uniform boundedness theorem.
(ii). State and prove Reisz Lemma.
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