- 13. Perform following conversions:
- )  $(39.625)_{10} = (?)_2$
- b)  $(100.01)_2 = (?)_2$
- c)  $(101101.01)_8 = (?)_{10}$
- d)  $(347.12)_{16} = (?)_{10}$
- (567)<sub>10</sub> = (?)
- $(110010)_2 = (?)_8$
- g)  $(43215)_g = (?)_2$
- (7)  $(111011)_{16} = (?)_2$
- i)  $(1110111)_2 = (?)_{16}$

\ \ |

91

# **BCA-02**

# B.C.A. Examination, June-2015

# Discrete Mathematics

## BCA-02

Time: Three Hours]

[Max. Marks: 100

**Note:** The question paper is divided into three sections A, B and C. Write answers as per given instructions.

### Section-A

(Very Short Answer Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

- (i) Convert  $(ABCD)_{16} = (?)_2$
- (ii) Prove that A B= A ∩ B=Q
- (iii) Define Poset.
- (iv) Which logic gate is also called inverter?
- (v) Name the universal gates.

BCA-02/200/4

- (vi) Explain UNICODE.
- (vii) What is Ring?
- (viii) Specify the condition, when a group G is said to be Simple group.
- (ix) If a' + b = 1 then, what is value of ab'?
- (x) Prove that in a ring, an invertible element cannot be a divisor of zero.

#### Section-B

(Short Answer Questions)

Note: Answer <u>any four</u> questions. Each answer should not exceed 200 words. Each question carries 10 marks.

10×4=40

- Consider the set of ordered pair of natural 3 numbers
   N x N defined by :
- (a, b) R (c, d)  $\leftrightarrow$  a + d = b + c. Prove that R is an equivalence relation.
- 3. Show that  $(p \land q) = (p \lor q)$  is a tautology.
- Explain duality principle with the help of example
- Verify that the proposition p ^ (q ^ ~p) is a contradiction.
- Differentiate between reflexive and non-reflexive relation, with suitable example.
- What is a function in Discrete Mathematics? Explain its types with example.

- 8. Minimize the given function f(a,b,c) = abc + ab'c + abc' and draw the logic circuit of the minimized Boolean expression
- Discuss the meaning of the existential quantifier (∃) and universal quantifier (∀).

#### Section-C

(Long Answer Questions)

Note: Answer <u>any two</u> questions. You have to delimit your answer maximum upto 500 words. Each question carries 20 marks.

- 10. Define a group. Describe the properties of a group. Show that the set {1, 2, 3, 4, S} is not a group under addition modulo 6.
- Explain in brief about POS and SOP forms to represent Boolean expressions, with suitable example.
- 12. Prove the following:
- (a) If f(x) = 3x + 1 and g(x) = 7x then show that (fog)  $f(x) \neq f(x)$ .
- (b) Let R be the relation on Integers defined by 6x is related to y under R if and only if 12 divides x - y, where x and y are integers', then R is an equivalence relation.

(2)

(3)