MT-08

June - Examination 2024

B.A./B.Sc. (Part III) Examination MATHEMATICS

(Complex Analysis)
Paper: MT-08

Time: 3 Hours

MT-08/8

[Maximum Marks : 47

Note: The question paper is divided into three Sections 'A', 'B' and 'C'. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

निर्देश:- यह प्रश्न-पत्र 'अ', 'ब' और 'स' तीन खण्डों में विभाजित है। प्रत्येक खण्ड के निर्देशानुसार प्रश्नों के उत्तर दीजिए। इस प्रश्न-पत्र में नॉन-प्रोग्रामेबल साइंटिफिक कैलकुलेटर के उपयोग की अनुमित है।

Section-A

 $7 \times 1 = 7$

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 mark.

(1) TT-298 Turn Over

(अति लघु उत्तरीय प्रश्न)

निर्देश:- सभी प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को प्रश्नानुसार एक शब्द, एक वाक्य या अधिकतम 30 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 1 अंक का है।

- 1. (i) Represent number -5 + 5i in polar form. समिश्र संख्या -5 + 5i को ध्रुवीय रूप में निरूपित कीजिए।
 - (ii) Define Convergent Sequence. अभिसारी अनुक्रम को परिभाषित कीजिए।
 - (iii) Prove that function $u = \cos x$. $\cosh y$ is harmonic.

सिद्ध कीजिए कि फलन $u = \cos x$. $\cosh y$ प्रसंवादी है।

MT-08/8 (2) $\underline{TT-298}$

- (iv) Find value of z for which mapping $w=\left(z+\frac{1}{z}\right)$ is not conformal mapping. z का वह मान ज्ञात कीजिए जिसके लिए प्रतिचित्रण $w=\left(z+\frac{1}{z}\right)$ अनुकोण प्रतिचित्रण नहीं है।
- (v) State Cauchy's Inequality.

 कोशी असमिका का कथन लिखिए।
- (vi) State Liouville's Theorem. ल्यूवेल प्रमेय का कथन कीजिए।

MT-08/8

(vii) Define Removable Singularity. अपनेय विचित्रता को परिभाषित कीजिए।

Section-B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 5 marks.

(3) TT-298 Turn Over

खण्ड—ब

(लघु उत्तरीय प्रश्न)

निर्देश:- किन्हीं चार प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 200 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 5 अंक का है।

2. Show that the function:

$$f(z) = u + iv$$

where:

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} \ (z \neq 0),$$

$$f(0) = 0$$

is continuous and that the Cauchy-Riemann equations are satisfied at the origin. Yet f'(0) does not exist.

दर्शाइए कि फलन

$$f(z) = u + iv$$

जहाँ :

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} \ (z \neq 0),$$

$$f(0) = 0$$

संतत है तथा मूल बिन्दु पर कोशी-रीमान समीकरण संतुष्ट होती है। यद्यपि f'(0) का अस्तित्व मूल बिन्दु पर नहीं है।

MT–08/8 (4) TT–298

- 3. Find bilinear transformation that maps the points $z=0,\ i,\ \infty$ into $w=\infty,\ i,\ 0$ respectively. aह द्विरैखिक रूपान्तरण ज्ञात कीजिए, जो बिन्दुओं $z=0,\ i,\ \infty$ को $w=\infty,\ i,\ 0$ में प्रतिचित्रित करे।
- 4. Find corresponding area of infinite strip $\frac{1}{4} < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$. रूपान्तरण $w = \frac{1}{z}$ के अन्तर्गत अनन्त पट्टी $\frac{1}{4} < y < \frac{1}{2}$ का w समतल में समवर्ती क्षेत्र ज्ञात कीजिए।
- 5. State and prove Cauchy's Integral Formula. कोशी समाकल सूत्र को कथन कर सिद्ध कीजिए।
- 6. State and prove Liouville's Theorem. ल्यूवेल प्रमेय का कथन कर सिद्ध कीजिए।
- 7. Describe various types of Singularities.
 विचित्रताओं के विभिन्न प्रकारों की विवेचना कीजिए।

(5)

TT–298 Turn Over

- 8. Prove that polynomial z^5+z^3+2z+3 has only one zero in first quadrant of complex plane. सिद्ध कीजिए कि बहुपद z^5+z^3+2z+3 का सम्मिश्र तल के प्रथम चतुर्थांश में केवल एक ही शुन्य है।
- 9. Prove by line integral:

$$\int_{-\pi}^{\pi} \frac{a\cos\theta}{a+\cos\theta} d\theta = 2\pi a \left\{ 1 - \frac{a}{\sqrt{a^2 - 1}} \right\}, a > 1$$

परिरेखा समाकलन से सिद्ध कीजिए कि:

$$\int_{-\pi}^{\pi} \frac{a\cos\theta}{a+\cos\theta} d\theta = 2\pi a \left\{ 1 - \frac{a}{\sqrt{a^2 - 1}} \right\}, a > 1$$

Section-C

 $2 \times 10 = 20$

(Long Answer Type Questions)

Note:— Answer any two questions. You have to delimit your each answer maximum up to 500 words.

Each question carries 10 marks.

MT-08/8

(6)

TT-298

MT-08/8

खण्ड-स

(दीर्घ उत्तरीय प्रश्न)

- निर्देश:- किन्हीं दो प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 500 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 10 अंक का है।
- 10. State and prove necessary and sufficient condition for f(z) to be analytic.

विश्लेषिक फलन के लिए आवश्यक व पर्याप्त प्रतिबन्ध का कथन कर सिद्ध कीजिए।

- 11. State and prove Laurant's theorem for power series expansions of analytic function.
 - विश्लेषिक फलनों का घात श्रेणी के रूप में प्रसार के लिए लौराँ प्रमेय का कथन कर सिद्ध कीजिए।
- 12. Obtain expansion for function $f(z) = \frac{1}{(z-1)(z-3)}$, which are valid for the regions :
 - (a) |z| < 1
 - (b) 1 < |z| < 3 and
 - (c) |z| > 3

निम्न क्षेत्र में फलन $f(z) = \frac{1}{(z-1)(z-3)}$ का प्रसार ज्ञात कीजिए :

- (3) |z| < 1
- (ब) 1 < |z| < 3 और
- (स) |z| > 3
- 13. Explain the following:
 - (a) Analytic continuation along a chain of domains
 - (b) Analytic continuation by a power series
 - (c) Direct analytic continuation

निम्नलिखित को समझाइए:

- (अ) प्रान्तों की शृंखला के अनुदिश विश्लेषिक सांतत्य
- (ब) घात श्रेणी द्वारा विश्लेषिक सांतत्य
- (स) सीधा विश्लेषिक सांतत्य

(8) <u>TT-298</u>