Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

- **Note**: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.
- 10. Solve the following decision problem using a Turing Machine :

"Given a binary string, determine if the number of 0's is equal to the number of 1's".

- 11. Discuss how automata theory is applied in the field of Artificial Intelligence (AI). Provide examples of specific AI applications where automata theory plays a crucial role.
- 12. Construct a Push Down Automaton (PDA) that accepts the language $\{ww^R | w \in \{0, 1\}^*\}$, where w^R represents the reverse of w.
- 13. Convert the following NFA to equivalent DFA (q0 is the staring state and q2 is final state :

State	0	1
q0	{q0, q1}	{q0}
q1	{q2}	(q0, q2)
q2	{q2}	{q1}

TT-72

(4)

MCA-302/4

MCA-302

June - Examination 2024

MCA (IIIrd Year) Examination FORMAL LANGUAGE AND AUTOMATA

Paper: MCA-302

Time : **3** *Hours*]

[Maximum Marks : 80

Note:— The question paper is divided into three Sections
A, B and C. Write answers as per the given instructions.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) What is the role of the transition function in a finite automaton? Give an example.

(1)

 $TT\!\!-\!72$ Turn Over

- (ii) What is the cardinality of the power set of a set with 3 elements?
- (iii) Consider the regular expression (a + b)*c. Generate strings of length 4 that match this regular expression.
- (iv) Discuss the difference between a predicate and a proposition with suitable examples.
- (v) What is a Directed Cyclic Graph? Give one example.
- (vi) What is Linear Bound Automata (LBA)?
- (vii) Give a formal definition of Finite Automata.
- (viii) State Post Correspondence Problem.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.

(2)

2. Describe the difference between Regular and Context-free languages.

MCA-302/4

TT-72

- 3. Briefly discuss the Chomsky classification of Languages with examples.
- 4. Show that the grammar $S \rightarrow Aa \mid BC; A \rightarrow ab$ |a; B \rightarrow bB |b; C \rightarrow cC|c; is ambiguous.
- 5. Explain the Pumping Lemma for regular sets. Show that $L = \{a^p | p \text{ is a prime}\}\$ is not regular.
- 6. Define the Halting problem for turing machines. Explain why the halting problem is undecidable and provide an informal proof or explanation for its undecidability.
- 7. How to convert the given Mealy machine to an equivalent Moore Machine? Explain with a suitable example.
- 8. What do you mean by Parsing? Distinguish between Top-down Parsing and Bottom-up Parsing.
- 9. Design a finite automata accepting all decimal numbers divisible by 4.

MCA-302/4

(3) TT-72Turn Over