MAMT-10/MSCMT-10

June - Examination 2024

M.A./M.Sc. (Final) Examination MATHEMATICS

(Mathematical Programming)

Paper: MAMT-10/MSCMT-10

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section–A 8×2=16

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

MAMT-10/MSCMT-10/8 (1) TT-85 Turn Over

1. (i) Show that :

$$f(x) = 2x_1^2 + x_2^2$$

is a convex function over R².

- (ii) Define bounded variable linear programming problem.
- (iii) Write the condition when a point will be Saddle point in Lagrangian function.
- (iv) Define unconstrained optimization problem.
- (v) Write the following quadratic form in matrix vector notation:

$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 6 & -2 \\ 4 & -1 & 14 \end{pmatrix}$$

- (vi) State Bellmen's principle of optimality.
- (vii) Define feasible point for the Dual.
- (viii) Write Dual of Max:

$$f(X) = C^{T}X + \frac{1}{2}X^{T} GX$$

subject to AX = b; $C \ge 0$.

MAMT-10/MSCMT-10/8 (2)

TT-85

Section-B

 $4\times8=32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Prove that a hyperplane is a closed set.
- 3. Solve the following L.P.P. with the help of revised simplex method but without use of artificial variables:

Max.:

$$Z = 2x_1 - 6x_2$$

Subject to:

MAMT-10/MSCMT-10/8

$$x_1 - 3x_2 \le 6$$

$$2x_1 + 4x_2 \ge 8$$

$$-x_1 + 3x_2 \le 6$$

$$x_1, x_2 \ge 0$$

(3)

<u>TT-85</u> Turn Over

4. Use branch and bound method to solve the following L.P.P.:

Maximize: $Z = 7x_1 + 9x_2$

Subject to:

$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

$$x_2 \geq 7$$

5. Obtain the necessary and sufficient conditions for the optimum solution of the following N.L.P.P.:

Minimize : $Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$

Subject to:

$$x_1 + x_2 + x_3 = 15$$

$$2x_1 - x_2 + 2x_3 = 20$$

$$x_1, x_2, 2x_3 \ge 0$$

MAMT-10/MSCMT-10/8 (4)

6. Solve the following non-linear programming problem graphically :

Max.:

$$f(x_1, x_2) = 8x_1 + 8x_2 - x_1^2 - x_1^2$$

Subject to:

$$x_1 + x_2 \le 12$$

$$x_1 - x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

7. Test the definiteness of the quadratic form:

$$\mathbf{X}^{\mathrm{T}} \ \mathbf{A} \mathbf{X} = (x_1, \ x_2, \ x_3) \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

8. Solve the following quadratic programming problem by Wolfe's method :

Min.:

$$f(x_1, x_2) = -10x_1 - 25x_2 + 10x_1^2 + x_2^2 + 4x_1x_2$$

MAMT-10/MSCMT-10/8 (5) TT-85 Turn Over

Subject to:

$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 9$$

$$x_1, x_2 \ge 0$$

9. Use dynamic programming to solve the following

L.P.P. :

Max.:

$$Z = 2x_1 + 5x_2$$

Such that:

$$2x_1 + x_2 \le 43$$

$$2x_2 \le 46$$

and $x_1, x_2 \ge 0$

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note:— Answer any two questions. You have to delimit your each answer maximum up to 500 words.

Each question carries 16 marks.

MAMT-10/MSCMT-10/8 (6)

TT-85

10. Solve the following linear programming problem by revised simplex method:

Max.:

$$Z = 2x_1 + x_2$$

Subject to:

$$3x_1 + 4x_2 \le 6$$

$$6x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

11. Use Beale's method to solve the following quadratic programming problem:

Minimize:

$$f(x_1, x_2) = 6 - 6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$

Subject to:

$$x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

TT-85 Turn Over MAMT-10/MSCMT-10/8 (7)

12. Find the optimum integer solution to the following

L.P.P. :

Max. :
$$Z = 3x_1 + 4x_2$$

Subject to:

$$3x_1 + 2x_2 \le 8$$

$$x_1 + 4x_2 \le 10$$

 $x_1, x_2 \ge 0$, and are integers.

13. Solve the following convex separable programming problem:

Min.:
$$Z = x_1^2 - 2x_1 - x_2$$

Such that:

$$2x_1^2 + 3x_2^2 \le 6$$

 $x_1, x_2 \ge 0$ and