10. Solve:

$$\frac{d^4y}{dx^4} - y = 1$$

Subject to the conditions y(0) = y'(0) = y''(0)= v'''(0) = 0.

11. Solve the following partial differential equation with Fourier transform:

$$\frac{\partial \mathbf{V}}{\partial t} = \frac{\partial^2 \mathbf{V}}{\partial x^2}, x > 0, t > 0$$

Subject to conditions:

(i) V = 0 when x = 0, t > 0

(ii)
$$V = f(x) = \begin{cases} 1, & 0 < x < 1 \text{ when } t = 0 \\ 0, & x \ge 1 \end{cases}$$

V (x, t) is bounded x > 0, t > 0.

12. Solve by method of successive approximations :

$$g(x) = \left(\frac{3}{2}e^x - \frac{1}{2}xe^x - \frac{1}{2}\right) + \frac{1}{2}\int_0^1 tg(t)dt$$

13. Find the Eigne values and Eigen functions of the homogeneous integral equation:

$$g(x) = \lambda \int_0^1 K(x, t)g(t)dt,$$

where:

$$K(x,t) = \begin{cases} x(t-1), 0 \le x \le t \\ t(x-1), t \le x \le 1 \end{cases}$$

MAMT-09/MSCMT-09/4 (4)

TT-84

MAMT-09/MSCMT-09

June – Examination 2024

M.A./M.Sc. (Final) Examination **MATHEMATICS**

(Integral Transforms and Integral Equations) Paper: MAMT-09/MSCMT-09

Time: 3 Hours

[Maximum Marks : **80**

Note: The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Write Dirichlet's conditions.
 - (ii) Write the Laplace transform of the function $f(t) = e^{4t} \cos 4t.$

MAMT-09/MSCMT-09/4 (1) TT-84 Turn Over

- (iii) Define Fourier sine transform.
- (iv) Write relationship between Fourier transform and Laplace transform.
- (v) Define Fredholm integral equation of second kind.
- (vi) Define resolvent kernel.
- (vii) Define Norm of a complex function.
- (viii) What is Neumann series?

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
- 2. Find the Inverse Laplace transform of :

$$\frac{4}{s-3} - \frac{4}{s^2+4} + \frac{s-4}{(s-4)^2-4}$$

3. Solve $(D^2 + 9) y = \cos 2t$.

Given that:

$$y(0)=1, y\left(\frac{\pi}{2}\right)=-1$$

- 4. Find the Fourier cosine transform of e^{-t^2} .
- 5. State and prove convolution theorem for Mellin Transform.

MAMT-09/MSCMT-09/4 (2)

<u>TT-84</u>

6. Show that the function $g(x) = xe^x$ is a solution of the Volterra integral equation :

$$g(x) = \sin x + 2\int_0^x \cos(x - t) g(t) dt$$

7. Find the resolvent kernels of the following kernel:

$$K(x, t) = (1 + x) (1 - t); a = -1, b = 0$$

8. Prove that, if a kernel is symmetric, then all its iterated kernels are also symmetric. For the integral equation :

$$g(x) = f(x) + \lambda \int_{a}^{b} K(x, t)g(t)dt,$$

find $D(\lambda)$ and $D(x, t; \lambda)$ for the kernel:

$$K(x, t) = \sin x : a = 0, b = \pi.$$

9. Find the resolvent kernel and solution of :

$$g(x) = f(x) + \lambda \int_0^1 (x+t)g(t)dt$$

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.

MAMT-09/MSCMT-09/4

(3)

TT-84 Turn Over