Section–C $2 \times 16 = 32$

(Long Answer Type Questions)

- Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words.

 Each question carries 16 marks.
- 10. State and prove Risez representation theorem in Hilbert space.
- 11. If B and B' be Banach spaces and T is a continuous linear transformation of B onto B', then prove that the image of every open sphere centred at origin in B contains an open sphere centred at origin in B'.
- 12. State and prove spectral theorem for finite dimensional Hilbert space.
- 13. State prove inverse function theorem.

MAMT-06/MSCMT-06

June - Examination 2024

M.A./M.Sc. (Final) Examination MATHEMATICS

(Analysis and Advanced Calculus)
Paper: MAMT-06/MSCMT-06

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section–A 8×2=16

(Very Short Answer Type Questions)

Note:— Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

- 1. (i) Explain convergence in normed linear space.
 - (ii) What do you mean by Conjugate space?
 - (iii) State Parseval's identity for a Hilbert space.
 - (iv) Write Taylor's formula with Lagrange's remainder.
 - (v) Define Self Adjoint Operator.
 - (vi) Define Inner Product space.
 - (vii) Describe the Quotient space.
 - (viii) Define integral solution of the differential equation.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.

- 2. State and prove Minkowaski's inequality for C^n .
- 3. If *x*, *y* are any *two* vectors in a Hilbert space H, then prove that :

$$4(x, y) = ||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2$$

MAMT-06/MSCMT-06/4 (2)

TT-81

- 4. Prove that every Hilbert space is reflexive.
- 5. If P is a projection on a Hilbert space H with range M and null space N then prove that $M \perp N$ if and only if P is selp adjoint and in this case :

$$N = M^{\perp}$$

- 6. State and prove Schwarz inequality for an inner product space.
- 7. State and prove Global uniqueness theorem.
- 8. Let f be a regulated function on a compact interval [a, b] or R into R such that a < b and for all t in [a, b], $f(t) \ge 0$. Then prove that :

$$\int_{a}^{b} f(t) dt \ge 0$$

Further prove that if f be a continuous function at a point c of [a, b] and f(c) > 0, then:

$$\int_{a}^{b} f(t) dt > 0$$

9. Show that every compact subset of a normed linear space is bounded but its converse need not be true.