10. Let $\langle f_n \rangle$ be a sequence of bounded measurable functions defined on a set E of finite measure. If there exists a positive number M such that $|f_n(x)|$ \leq M for all $n \in \mathbb{N}$ and for all $x \in \mathbb{E}$ and if $\langle f_n \rangle$ converges in measure to a bounded measurable function f on E, then prove that :

$$\lim_{n\to\infty}\int_{\mathcal{E}}f_n(x)dx = \int_{\mathcal{E}}f(x)dx$$

11. Prove that a subset of (R, U) is compact if and only if it bounded and closed.

(4)

- 12. Prove that every interval is measurable.
- 13. State and prove Riesz-Fischer theorem.

MAMT-02/MSCMT-02

June - Examination 2024

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Real Analysis and Topology)

Paper: MAMT-02/MSCMT-02

Time : **3** *Hours*]

[Maximum Marks : **80**

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section–A 8×2=16

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

- 1. (i) Define Borel set.
 - (ii) Define measurable function.
 - (iii) State Weierstrass approximation theorem.
 - (iv) State Minkowski's inequality.
 - (v) Write the necessary and sufficient conditions for a bounded function *f* defined on the interval [*a*, *b*], to be L-integrable.
 - (vi) Define Hilbert space.
 - (vii) Define exterior of a set.
 - (viii) What do you mean by filter base?

Section-B

 $4\times8=32$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.

2. Let $\{E_n\}$ be a countable collection of sets of real numbers, then show that :

$$m * \left(\bigcup_{n} \mathbf{E}_{n}\right) \leq \sum_{n} m * (\mathbf{E}_{n})$$

MAMT-02/MSCMT-02/4 (2

TT-77

- 3. Show that every bounded measurable function f defined on a measurable set E is L-integrable.
- 4. If a function is summable on E, then show that it is finite almost everywhere on E.
- 5. Show that an orthonormal system $\{\phi_i\}$ is complete iff it is closed.
- 6. State and prove Holder's inequality.
- 7. Show that regularity is a topological property.
- 8. Show that the property of a space being a Hausdorff space is a hereditary property.
- 9. Prove that every open continuous image of a locally compact space is locally compact.

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words.

Each question carries 16 marks.

MAMT'02/MSCMT'02/4

(3) T'

TT-77 Turn Over