खण्ड—अ

(अति लघु उत्तरीय प्रश्न)

निर्देश:- सभी प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को प्रश्नानुसार एक शब्द, एक वाक्य या अधिकतम 30 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 1 अंक का है।

- 1. (i) Define the Supremum (Least upper band). उच्चक को परिभाषित कीजिए।
 - (ii) Define a convergent sequence. अभिसारी अनुक्रम को परिभाषित कीजिए।
 - (iii) Define Derivative. अवकलज को परिभाषित कीजिए।
 - (iv) Define Simultaneous limit. युगपत सीमा को परिभाषित कीजिए।
 - (v) Define Riemann integral. रीमान समाकल को परिभाषित कीजिए।
 - (vi) Define pointwise convergence of sequence of functions.
 फलनों के अनुक्रम का बिन्दुश: अभिसरण को परिभाषित कीजिए।
 - (vii) Define Open sphere.
 विवृत गोलक को परिभाषित कीजिए।

MT-04

June - Examination 2023

B.A./B.Sc. (Part II) Examination MATHEMATICS

(Real Analysis and Metric Space)
Paper: MT-04

Time: 3 Hours] [Maximum Marks: 47

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

निर्देश:- यह प्रश्न-पत्र 'अ', 'ब' और 'स' तीन खण्डों में विभाजित है। प्रत्येक खण्ड के निर्देशानुसार प्रश्नों के उत्तर दीजिए।

Section-A

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 mark.

(1) T-294 Turn Over

Section-B

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 5 marks.

खण्ड—ब

(लघु उत्तरीय प्रश्न)

- निर्देश:- किन्हीं चार प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 200 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 5 अंक का है।
- 2. Prove that $\sqrt{2}$ is an irrational number. सिद्ध कीजिए कि $\sqrt{2}$ एक अपरिमेय संख्या है।
- Prove that every Cauchy sequence is bounded.
 सिद्ध कीजिए कि प्रत्येक कोशी अनुक्रम परिबद्ध है।
- 4. Examine for continuity the following function at x = 0:

निम्न फलन की x = 0 पर सांतत्यता की जाँच कीजिए :

$$f(x) = \begin{cases} \frac{x - |x|}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

MT-04/7

(3)

T–294 Turn Over

5. Prove that every continuous function is R-integrable.

सिद्ध कीजिए कि प्रत्येक संतत फलन R-समाकलनीय होता है।

6. Test the uniform convergence of the following: निम्न श्रेणी के एकसमान अभिसरण के लिए परीक्षण कीजिए:

$$\left\{\frac{nx}{1+n^2 \ x^2}\right\}, \ 0 \le x \le 1$$

7. Let the mapping $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by : माना कि प्रतिचित्रण $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ निम्न प्रकार परिभाषित है :

$$d(x, y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases} \forall x, y \in \mathbb{R}$$

Prove that (R, d) is a metric space. सिद्ध कीजिए कि (R, d) एक दूरीक समिष्ट है।

8. Let A be a subset of metric space (X, d), then prove that:

माना कि A दूरीक समिष्ट (X, d) का एक उपसमुच्चय है, तब सिद्ध कीजिए कि :

- (i) $A^{\circ} \subseteq A$
- (ii) A° is an open set (A° एक विवृत समुच्चय है)

MT-04/7 (4) T-294

9. Prove that if a function f is differentiable at a point $c \in [a, b]$ then f is continuous at c but converse is not necessarily true.

सिद्ध कीजिए कि यदि एक फलन f, [a, b] के किसी बिन्दु c पर अवकलनीय है तो वह c पर सतत होगा, किन्तु विलोम सदैव सत्य नहीं है।

Section-C

(Long Answer Type Questions)

Note: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 10 marks.

खण्ड-स

(दीर्घ उत्तरीय प्रश्न)

निर्देश:- किन्हीं दो प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 500 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 10 अंक का है।

10. Let:

माना :

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

MT-04/7 (5) T-294 Turn Over

show that f(x, y) is continuous but not differentiable at (0, 0).

दर्शाइये कि (x, y), (0, 0) पर संतत किन्तु अवकलनीय नहीं है।

11. If f is a function defined on [0, 1] as follows : यदि फलन f, [0, 1] पर निम्न प्रकार परिभाषित है :

$$f(x) = \begin{cases} 1 & \text{if } x \neq \frac{1}{2} \\ 0 & \text{if } x = \frac{1}{2} \end{cases}$$

then, show that $f \in \mathbb{R}[0, 1]$ and $\int_0^1 f(x) dx = 1$.

तब दर्शाइये कि
$$f \in \mathbb{R}[0, 1]$$
 और $\int_0^1 f(x) \ dx = 1$ ।

12. By Cauchy's general principle of convergence for sequence, prove that the sequence $< x_n >$ where, कोशी के अभिसरण के सामान्य सिद्धान्त से सिद्ध कीजिए कि अनुक्रम $< x_n >$, जहाँ

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

is no convergent.

अभिसारी नहीं है।

$$MT$$
-04/7 (6) T -294

13. Test for uniform convergence in [0, 1] the series :

निम्न श्रेणी की [0, 1] में एकसमान अभिसरण के लिए जाँच कीजिए :

$$\sum \left[\frac{n}{1 + n^2 x^2} - \frac{n+1}{1 + (n+1)^2 x^2} \right] x$$