10. Solve the following system of equations by Newton-Raphson method by taking initial approximation $x_0 = 1$, $y_0 = 1$.

$$y - \sin(x + y) = 0$$
$$x - \cos(y - x) = 0$$

11. Write necessary condition for applying Cholesky's method. Using Cholesky (square root) method solve the system of equations:

$$4x - y = 1$$

$$-x + 4y - z = 0$$

$$-y + 4z = 0$$

12. Solve the following initial value problem:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0$$

$$t \in [0, 0.1]$$

$$y(0) - 0, y'(0) - 1$$

13. (a) Find the value of y at t = 0.2 by using seven terms Taylor's series, where y(t) is the solution of the second order initial value problem :

$$\frac{d^2y}{dt^2} = 4 - t + y^2, \ y(0) = 1, \ y'(0) = -1$$

(b) Solve the boundary value problem by Numerov method with step size $h = \frac{1}{4}$.

$$\frac{d^2y}{dx^2} = x + y, \ y(0) = 0, \ y(1) = 0$$

MAMT-08/MSCMT-08/4 (4)

T-83

MAMT-08/MSCMT-08

June - Examination 2023

M.A./M.Sc. (Final) Examination MATHEMATICS

(Numerical Analysis)

Paper: III

Paper: MAMT-08/MSCMT-08

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section–A 8×2=16

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Write the difference between Secant method and Regula-Falsi method.
 - (ii) Write Newton-Raphson formula to find p^{th} root of a number.

MAMT-08/MSCMT-08/4 (1) T-83 Turn Over

- (iii) Show that x = 1 is a multiple root of equation $x^3 3x^2 + 3x 1 = 0$ with multiplicity three.
- (iv) Define Spectrum and spectral radius of a matrix.
- (v) Define Trace of a matrix.
- (vi) Define tridiagonal matrix and give an example.
- (vii) Write normal equations for fitting a parabola $y = a + bx + cx^2$.
- (viii) State minimax property of Chebyshev's polynomial.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.

- 2. Find complex root of the equation $x^3 x^2 x 1 = 0$ by using Chebyshev method.
- 3. Using synthetic division and Chebyshev method find a root of the equation $x^3 + x^2 + 3x + 4 = 0$ Perform two iterations.
- 4. Use of two iterations of Jacobi method to compute eigenvalues of given matrix :

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

T-83

5. Using the Rutishauser method, find all the eigenvalues of the matrix :

$$A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$$

- 6. Explain least-squares principle for continuous functions.
- 7. Find a uniform polynomial approximation of degree or less to the function $f(x) = e^x$ on the interval [-1, 1] using Lanczos economization with error tolerance 0.02.
- 8. Compute y(0.5) by Milne's method, given that :

 $\frac{dy}{dt} = 2e^t - y$ and the corresponding values of t and y are given as:

t	0	0.1	0.2	0.3
у	2	2.01	2.04	2.09

9. Solve the boundary value problem $\frac{d^2y}{dx^2} = y$, y(0) = 0,

y(1) = 1.2 by employing shooting method, take y'(0) = 0.85, 0.95 as initial approximations.

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.