- 10. Derive the equation of Energy.
- 11. Derive the expression for flow in tube of uniform cross-section.
- 12. Derive the expression for Karman flow.
- 13. Derive the expression for Stoke's first problem.

# MAMT-07/MSCMT-07

June - Examination 2023

# M.A./M.Sc. (Final) Examination MATHEMATICS

(Viscous Fluid Dynamics)

Paper: MAMT-07/MSCMT-07

Time: 3 Hours ] [ Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

# Section–A 8×2=16

## (Very Short Answer Type Questions)

- Note:— Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Define the stress in a fluid at rest.

T-82

- (ii) Define Circulation.
- (iii) Define stagnation point and boundary layer.
- (iv) Define Stoke's stream function.
- (v) Define boundary layer thickness  $\delta$ .
- (vi) Define No-slip condition.
- (vii) Write the name of two approaches to derive boundary layer equations in 2-D form.
- (viii) Write the Stoke's expression for the drag.

#### Section-B

 $4 \times 8 = 32$ 

# (Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. The stress tensor at a point P is:

$$\sigma_{ij} = \begin{bmatrix} 7 & 0 & -2 \\ 0 & 5 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

Determine the stress vector on the plane at P whose

unit normal is  $\hat{n} = \frac{2}{3}i - \frac{2}{3}j + \frac{1}{3}k$ .

MAMT - 07/MSCMT - 07/4 (2)

T–82

- 3. Derive the expression for vorticity.
- 4. Explain the physical importance of the following:
  - (i) Mach number
  - (ii) Grashoff number
- 5. Derive the expression for starting flow in plane Couette motion.
- 6. Derive the expression for temperature distribution of plane-couette flow with transpiration cooling.
- 7. Explain the applications of boundary layer theory.
- 8. Derive the expression for boundary layer flow over a flat plate for Pr = 1.
- 9. Explain the order of magnitude approach to solve velocity boundary layer equations in two dimensional form.

#### Section-C

 $2 \times 16 = 32$ 

### (Long Answer Type Questions)

**Note**: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.

MAMT-07/MSCMT-07/4

(3)

T-82 Turn Over