- 12. Let $\frac{K}{F}$ be a field extension. Then show that an element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F, *i.e.* [F(a) : F] is finite.
- 13. Let V be a finite dimensional inner product space. Let $t: V \to V$ be a linear transformation. Then show that their exists a unique linear transformation $t^*: V \to V$ such that :

$$< t(u), \ v> = < u, \ t^*(v)>$$

for all $u, v \in V$.

MAMT-01/MSCMT-01

June - Examination 2023

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Advanced Algebra)

Paper: MAMT-01/MSCMT-01

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Use of non-programmable Scientific Calculator is allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question, delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Define Conjugate Class.
 - (ii) Define Euclidean Ring.

T-76

- (iii) Define Kernel of linear transformation.
- (iv) Define normal field extension.
- (v) Define Galois field.
- (vi) Define rank of matrix.
- (vii) Define inner product space.
- (viii) Define normal operator.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. State and prove class equation of a group.
- 3. If G is a solvable group, then show that every subgroup of G is also solvable.
- 4. Let R be a ring with unity and M be an R-module. Let N be finitely generated submodule of M generated by a subset $A = \{a_1, a_2, \dots, a_n\}$ of M. Then show that :

$$N = RA = Ra_1 + Ra_2 + + Ra_n$$

- 5. Show that a polynomial of degree n over a field F can have at most n roots in any extension field.
- 6. Let $t: V \to V'$ be a linear transformation and V is finite dimensional, then show that :

$$\dim V = Rank(t) + Nullity(t)$$

T-76

7. If a square matrix A of order n, over a field F has n distinct eigen values λ_i ; i = 1, 2, ..., n, then show that there is an invertible matrix P such that :

$$P^{-1}AP = diag(\lambda_1 \ \lambda_2, \, \ \lambda_n)$$

- 8. Show that every orthonormal set of vectors is a linearly independent set in an inner product space.
- 9. Let V be an inner product space. Then show that for any arbitrary vectors $u, v \in V$, we have :

$$|< u, v>| \le ||u|| ||v||$$

Section-C

2×16=32

(Long Answer Type Questions)

- **Note**: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.
- 10. Show that a group G is an internal direct product of its subgroups H_1 , H_2 , ..., H_n if and only if:
 - (i) $G = H_1 H_2 \dots H_n$
 - (ii) H_1 , H_2 , ..., H_n are all normal subgroups of G
 - (iii) $H_i \cap (H_1H_2 \dots H_{i-1} H_{i+1} \dots H_n) = \{e\}$
- 11. State and prove unique factorization theorem.