Section–C $2\times16=32$

(Long Answer Type Questions)

- **Note**: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.
- 10. (a) Prove that the necessary and sufficient condition for the curve to be a straight line is that curvature is zero at all points of the curve.
 - (b) Prove that the curve given by $x = a \sin u$, y = 0, $z = a \cos u$ lies on a sphere.
- 11. State and prove existence and uniqueness theorems for space curves.
- 12. (a) Prove that in general three lines of curvature pass through an umbilic.
 - (b) A covariant tensor of first order has components xy, $2y z^2$, xz in rectangular coordinates. Determine its covariant components in spherical polar coordinates.
- 13. Show that it is always possible to choose a coordinate system so that all the Christoffel symbols vanish at a particular point.

MAMT-04/MSCMT-04

June - Examination 2023

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Differential Geometry and Tensor)

Paper: IV

Paper: MAMT-04/MSCMT-04

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three Sections
 A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section–A 8×2=16

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in maximum up to30 words. Each question carries 2 marks.

MAMT-04/MSCMT-04/4

- 1. (i) Define Inflexional tangent.
 - (ii) Define principal normal and binormal.
 - (iii) Define conoid.
 - (iv) Define trajectory.
 - (v) Define surface of centres.
 - (vi) Write normal property of a geodesic.
 - (vii) Write Mainardi-Codazzi equation.
 - (viii) Define reciprocal tensor.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.

2. Find the envelope of the family of planes:

$$F(x, y, z, \theta, \phi) = \frac{x}{a} \cos \theta \sin \phi + \frac{y}{b} \sin \theta \sin \phi + \frac{z}{c} \cos \phi - 1 = 0$$

3. Show that on a right helicoid, the family of curves orthogonal to the curves $u \cos v = \text{constant}$ is the family $(u^2 + a^2) \sin^2 v = \text{constant}$.

MAMT-04/MSCMT-04/4 (2)

<u>T-79</u>

- 4. State and prove Meunier's theorem.
- 5. Show that conjugate direction at a point P on a surface are parallel to conjugate diameters of the indicatrix at P.
- 6. Derive canonical equations of a geodesic on the surface $\frac{1}{r} = \frac{1}{r}(u, v)$.
- 7. If surface of sphere is a two dimensional Riemannian space, compute the Christoffel symbols.
- 8. Prove that:

$$\mathbf{A}_{j}^{ij} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}} \left(\sqrt{g} \mathbf{A}^{ij} \right) + \mathbf{A}^{jk} \begin{Bmatrix} i \\ jk \end{Bmatrix}$$

Show that last term vanishes if A^{ij} is skew symmetric.

9. Prove that the necessary and sufficient condition for a space VN to be flat is that the Riemann-Christoffel tensor be identically zero.

MAMT-04/MSCMT-04/4

(3) <u>T-79</u> Turn Over