Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

- Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
- 10. Compute the eigenvalues and eigenfunctions for boundary value problem:

$$y'' + 2y' + (1 - \lambda)y = 0$$
; $y(0) = 0$ and $y(1) = 0$

Also prove that the set of eigenfunctions for the given problem is an orthogonal set.

- 11. Determine the curve of prescribed length 21 which joins the points (-a, b) and (a, b) and has its center of gravity as low as possible.
- 12. Prove that:
 - (i) If a + b + c > 0, then:

$$\lim_{x \to 1} \{ (1-x)^{a+b-c} {}_{2}F_{1}(a, b; c; x) \} = \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}$$

(ii)
$$_{2}F_{1}(a, b; 1 - a + b; -1) = \frac{\Gamma(1 - a + b)\Gamma\left(1 + \frac{b}{2}\right)}{\Gamma(1 + b)\Gamma\left(1 + \frac{b}{2} - a\right)}$$

13. Prove that:

(i)
$$\int_0^\infty e^{-st} L_n(t) dt = \frac{1}{s} \left(1 - \frac{1}{s} \right)^n$$

(ii)
$$\frac{1}{(1-t)^{k+1}} \exp\left\{-\frac{xt}{1-t}\right\} = \sum_{n=0}^{\infty} L_n^k(x)t^n$$

MAMT-03/MSCMT-03/4 (4)

T-78

MAMT-03/MSCMT-03

June – Examination 2023

M.A./M.Sc. (Previous) Examination **MATHEMATICS**

(Differential Equations, Calculus of Variations and Special Functions)

Paper: MAMT-03/MSCMT-03

Time: 3 Hours

[Maximum Marks : 80

Note: The question paper is divided into three Sections A, B and C. Write answers as per the given instructions.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

(1)

1. (i) What is the dimension of the following differential equation?

$$x\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} = 4$$

- (ii) Write down the necessary and sufficient condition for the integrability of the total differential equation Pdx + Qdy + Rdz = 0.
- (iii) Classify the following PDE as Hyperbolic, Parabolic or Elliptic :

$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$$

- (iv) Define Functional.
- (v) Write Euler Lagrange's equation for the stationary value of the integral :

$$I = \int_{x_1}^{x_2} f(x, y, y', y'', y''') dx$$

- (vi) Check whether the boundary value problem : $y'' + \lambda y = 0$; $y'(-\pi) = 0$; $y'(\pi) = 0$ is a Strum-Liouville problem for $\lambda < 0$.
- (vii) Write Orthogonal property for Legendre polynomial.
- (viii) Vandermonde's theorem $_2F_1(-n, b; c; 1) = ...$ where n is a positive integer.

(Fill in the blank)

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.

2. Solve:

$$z^2 dx + (z^2 - 2yz)dy + (2y^2 - yz - zx)dz = 0$$

3. Find the general solution of the Riccati's equation :

$$\frac{dy}{dx} = 2 - 2y + y^2$$

- 4. A tightly stretched string which has fixed end points x = 0 and x = l is initially in a position given by $y = k \sin^3 \left(\frac{\pi x}{e}\right)$. It is released from rest from its position. Find the displacement y(x, t).
- 5. Define Gauss's Hypergeometric series and discuss its convergence.
- 6. Prove that the eigenvalues of Sturm-Liouville system are real.
- 7. Show that:

$$(1-2xh+h^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x)h^n. \mid x \mid \le 1, \mid h \mid \le 1$$

8. Solve the Legendre's equation :

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

9. Expand x^n in a series of Hermite polynomials.