10. Let $\langle f_n \rangle$ be a sequence of bounded measurable functions defined on a set E of finite measure. If there exists a positive number M such that $|f_n(x)| \leq M$ for all $n \in N$ and for all $x \in E$ and if $\langle f_n \rangle$ converges in measure to a bounded measurable function f on E, then prove that :

$$\lim_{n\to\infty}\int_{\mathcal{E}}f_n(x)dx = \int_{\mathcal{E}}f(x)dx$$

- 11. (i) Show that intersection of two measurable sets is also a measurable set.
 - (ii) Prove that two closed subsets of a topological space are separated iff they are disjoint.
- 12. Prove that every interval is measurable.
- 13. Prove that a series $\sum_{i=1}^{\infty} f_i$ of pairwise orthogonal elements in L₂ is converges iff the series of real numbers $\sum_{i=1}^{\infty} ||f_i||^2$ is convergent.

MAMT-02/MSCMT-02

June - Examination 2023

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Real Analysis and Topology)

Paper: MAMT-02/MSCMT-02

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section–A 8×2=16

(Very Short Answer Type Questions)

Note:— Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

- 1. (i) Define σ ring.
 - (ii) Define measurable function.
 - (iii) State Riesz-Fisher theorem.
 - (iv) State Minkowski's inequality.
 - (v) Write the necessary and sufficient conditions for a bounded function *f* defineed on the interval [*a*, *b*], to be L-integrable.
 - (vi) Define Hilbert space.
 - (vii) Define exterior of a set.
 - (viii) What do you mean by filter base?

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Let $\{E_n\}$ be a countable collection of sets of real numbers, then show that :

$$m * \left(\bigcup_{n} \mathbf{E}_{n}\right) \leq \sum_{n} m * (\mathbf{E}_{n})$$

MAMT - 02/MSCMT - 02/4 (2)

<u>T-77</u>

3. If f is a bounded measurable function defined on a measurable set E, then prove that |f| is L-integrable over E and :

$$\left| \int_{\mathcal{E}} f(x) dx \right| \le \int_{\mathcal{E}} \left| f(x) \right| dx$$

- 4. Show that every bounded measurable function *f* defined on a measurable set E is L-integrable.
- 5. Show that the L^p -space is a linear space.
- 6. State and prove Holder's inequality.
- 7. Prove that in a T₂-space, a convergent sequence has a nunique limit.
- 8. Prove that subset of real numbers R is connected if and only if it is an interval.
- 9. Prove that the product space $(X \times Y, W)$ is compact if and only if each of the spaces (X, τ) and (X, V) is compact.

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.

MAMT'02/MSCMT'02/4

(3)

T-77 Turn Over