i.e. f_1 , f_2 are r_1 -approximate solution and r_2 -approximate solution of the equation $\frac{dx}{dt} = g(t, x)$ respectively. Then prove that for all s and t in I

$$||f_1(t) - f_2(t)|| \le ||f_1(s) - f_2(s)||e^{c|t-s|} + (r_1 + r_2)\left(\frac{e^{c|t-s|} - 1}{c}\right)$$
Section–C 2×16=32

(Long Answer Type Questions)

- 10. State and prove closed graph theorem.
- 11. If f be a functional defined on a linear subspace M of a normed linear space N, $x_0 \notin M$ and $M_0 = [M \bigcup \{x_0\}] = \{x + \alpha x_0 : x \in M, '\alpha' \text{ is real}\}$ is the linear subspace spanned by M and x_0 , then prove that f can be extended to a functional f_0 defined on M_0 such that $||f_0|| = ||f||$.
- 12. If X be a Banach space over the field K of scalars and if $f:[a, b] \to X$ and $g:[a, b] \to R$ be continuous and differentiable functions such that $\|Df(t)\| \le Dg(t)$ at each point $t \in (a, b)$ then prove that $\|f(b) f(a)\| \le g(b) g(a)$.
- 13. State and prove implicit function theorem.

401

MA/MSCMT-06

June - Examination 2020

M.A./M.Sc. (Final) Examination MATHEMATICS

(Analysis and Advanced Calculus)
Paper: MA/MSCMT-06

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Section A contains 8 Very Short Answer Type Questions. Examinees have to attempt all questions. Each question is of 2 marks and maximum word limit may be 30 words. Section B contains 8 Short Answer Type Questions. Examinees will have to answer any four 4 questions. Each question is of 8 marks. Examinees have to delimit each answer in maximum 200 words. Section C contains 4 Long Answer Type Questions. Examinees will have to answer any 2 questions. Each question is of 16 marks. Examinees have to delimit each answer in maximum 500 words. Use of non-programmable scientific calculator is allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- 1. (i) Define complete normed linear space.
 - (ii) Define closed linear transformation.
 - (iii) If X be a complex inner product space, then prove that :

$$(\alpha x - \beta y, z) = \alpha(x, z) - \beta(y, z)$$

- (iv) Define Orthogonal complement of a set.
- (v) Define self-adjoint operator.
- (vi) Define perpendicular projection.
- (vii) State inverse function theorem.
- (viii) Define regulated function.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- 2. Show that the linear spaces R (real) and C (complex) are normed linear spaces under the norm $||x|| = |x|, x \in C$. Also show that these spaces are Banach spaces.
- 3. If N and N' be normed linear spaces over the same scalar field and let T be a linear transformation of N into N', then prove that T is bounded if and only if it is continuous.
- 4. Prove that closed convex subset K of a Hilbert Space H contains a unique vectors of smallest norm.

- 5. If M and N are closed linear subspaces of Hilbert space H s.t. M \perp N, then prove that the linear subspace M + N is closed.
- 6. If T_1 and T_2 are normal operators on H with the property that either commutes with adjoint of the other, then prove that $T_1 + T_2$ and $T_1 \cdot T_2$ are normal.
- 7. If T is normal operator on a Hilbert space H, then prove that eigenspaces of T are pairwise orthogonal.
- 8. If [a, b] be a compact interval, let g be a regulated function on [a, b] into $\{r \in \mathbb{R} : r \ge 0\}$ and if h be a continuous function on [a, b] into \mathbb{R} such that for all $t \in [a, b]$

$$h(t) \le g(t) + c \int_a^t h(s) ds$$

where c is a positive real number, then prove that for all $t \in [a, b]$

$$h(t) \le g(t) + c \int_a^t g(s) e^{c(t-s)} ds$$

9. Let I be an open interval of R. Let W be an open subset of a real Banach space X and let g be a continuous map of I × W into X such that g is c-lipschitz on W uniformly with respect to I, where c is a positive real number. Let r_1 and r_2 be two positive real numbers such that for all $t \in I$

$$\| Df_1(t) - g(t, f_1(t)) \| \le r_1$$

and

$$\| Df_2(t) - g(t, f_2(t)) \| \le r_2$$