MA/MSCMT-07

December - Examination 2020

M.A./M.Sc. (Final) Examination MATHEMATICS

(Viscous Fluid Dynamics)
Paper: MA/MSCMT-07

Time : 2 Hours]

[Maximum Marks : 80

Note: The question paper is divided into two SectionsA and B. Write answers as per the given instructions.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Define Ideal Fluid.

402 Turn Over

- Define Thermal Diffusivity.
- (iii) State Kelvin's circulation theorem.
- (iv) Define Reynold's number.
- Define Boundary layer.
- (vi) Define Rayleigh problem.
- (vii) Write the Stokes' equation for slow motion.
- (viii) Define displacement thickness ' δ_1 '.

Section-B

 $4 \times 16 = 64$

(Short Answer Type Questions)

- Note: Answer any four questions. Answer should not exceed 200 words. Each question carries 16 marks.
- 2. Write a short note on 'Stress in a fluid in motion'.
- 3. Write short notes on the following:
 - Specific heat
 - Generalised law of heat conduction
- 4. Discuss plane Couette flow.
- 5. Formulate the Stokes' first problem along with the equation of motion and boundary conditions.

(2)

- 6. Discuss the flow of viscous incompressible fluid between two porous plates.
- 7. Write a short note on Stokes' stream function and its physical significance.
- 8. Discuss physical significance as well as applications of boundary layer theory.
- 9. Write a short note on thermal boundary layer.