Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

- **Note**: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.
- 10. Find all the roots of the equation $x^4 3x + 1 = 0$ using Graeffe's root squaring method. Use four squaring to estimate roots.
- 11. Solve the system of equations by LU factorization method :

$$2x + 3y + z = 9$$

$$x + 2y + 3z = 6$$

$$3x + y + 2z = 8$$

12. Using the Given's method reduce the following matrix to tridiagonal form and use sturm sequence to find eigen values :

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$$

13. Solve the following initial value problem:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0 \quad t \in [0, 0.1]$$

$$y(0) = 0,$$
 $y'(0) = 1$

MAMT-08/MSCMT-08/4 (4)

TC-83

MAMT-08/MSCMT-08

December - Examination 2023

M.A./M.Sc. (Final) Examination MATHEMATICS

(Numerical Analysis)

Paper: III

Paper: MAMT-08/MSCMT-08

Time: 3 Hours

[Maximum Marks : 80

Note:— The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in maximum up to30 words. Each question carries 2 marks.
- 1. (i) Write the order of convergence of Newton-Raphson extended formula.

- (ii) Write Newton-Raphson formula to find the multiple root of the equation f(x) = 0 with multiplicity m.
- (iii) Define spectrum and spectral radius of a matrix.
- (iv) If 2, -3, 3 are eigen values of matrix A then write eigen values of matrix A^4 .
- (v) Define Unitary matrix.
- (vi) State principle of least square.
- (vii) Define orthogonal polynomial.
- (viii) Write Adams-Moultan predictor-corrector formulae.

Section–B $4\times 8=32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Find a real solution of the given equations using initial approximation as (0.5, 0.5):

$$x^2 - 5x + 4 = 0$$
$$3xy^2 - 10y + 7 = 0$$

3. Find double root of the equation $x^3 - 0.75x + 0.25$ = 0 by using Newton-Raphson method taking initial approximation as $x_0 = 0.3$.

(2)

MAMT-08/MSCMT-08/4

TC-83

4. Compute largest eigen value in magnitude and corresponding eigen vector of the matrix :

$$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$

5. Fit a second degree parabola from given data:

x	-4	-3	-2	-1	0	1	2	3	4
у	-5	-1	0	1	3	4	4	3	2

- 6. Determine the best minimax approximation to the function $f(x) = x^2$ on [0, 1] with a straight line.
- 7. Compute y(0.5) by Milne's method, given that :

$$\frac{dy}{dt} = t + y, \qquad t \in [0, 0.4]$$

$$t_0 = 0, y_0 = 1.$$

- 8. Explain shooting method to find the solution of the boundary value problem.
- 9. Solve the boundary value problem :

$$\frac{d^2y}{dx^2} + (1+x^2)y + 1 = 0, \qquad x \in [0,1]$$

by a second order finite difference method with step size $h=\frac{1}{4}$.