- 10. Write short notes on the following:
 - (i) Mach Number
 - (ii) Grashoff Number
 - (iii) Nusselt Number
 - (iv) Brinkman Number
- 11. Derive equation of energy for the motion of viscous compressible fluid.
- 12. Discuss Oseen's flow past a sphere.
- 13. Describe flow between two concentric rotating cylinders.

MAMT-07/MSCMT-07

December - Examination 2023

M.A./M.Sc. (Final) Examination MATHEMATICS

(Viscous Fluid Dynamics)

Paper: MAMT-07/MSCMT-07

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section–A 8×2=16

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

TC-82

- 1. (i) Define Shearing strain.
 - (ii) What do you understand by dynamic similarity?
 - (iii) Define Prandtl number.
 - (iv) What do you mean by incompressible fluid motion?
 - (v) Define Couette flow.
 - (vi) Write down equation of energy of a viscous incompressible fluid in spherical polar coordinates.
 - (vii) Define Plane Poiseuille flow.
 - (viii) Define separation of boundary layer flow.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Prove that the stress at a point is completely known if the nine components of stress tensor at that point are known.

TC-82

- 3. State and prove Buckingham π -theorem.
- 4. Derive equations for Karman flow (Flow due to rotating disc).
- 5. Discuss flow between two parallel porous plates.
- 6. Show that velocity distribution is linear in flow between two parallel plates, when one plate is at rest and the other moving with a uniform velocity U in the own plane.
- 7. Discuss the temperature distribution in Hagen-Poiseuille flow in a circular pipe, when the wall of the pipe is kept at a constant temperature gradient.
- 8. Write a short note on Thermal Boundary layer.
- 9. Derive two-dimensional thermal boundary layer equation for the viscous in compressible fluid flow past a thin plate.

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 16 marks.