Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

- Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words.

 Each question carries 16 marks.
- 10. If H and K are subgroups of G with K normal in G, then show that $H \cap K$ is a normal subgroup of H and $\frac{HK}{K} \cong \frac{H}{(H \cap K)}$.
- 11. If $F \subset K \subset E$ are fields with [E : K] and [K : F] are finite, then show that E/F finite extension and

$$[E : F] = [E : K] [K : F]$$

- 12. Let F be a field and $f(x) \in F[x]$ be a polynomial having n distinct roots in the splitting field K, then show that Galois group G(K/F) is isomorphic to a subgroup of the symmetric group S_n , and so its order is a divisor of n!.
- 13. State and prove Bessel's inequality.

 $MAMT \cdot 01/MSCMT \cdot 01/4$ (4)

<u>TC-76</u>

MAMT-01/MSCMT-01

December - Examination 2023

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Advanced Algebra)

Paper: MAMT-01/MSCMT-01

Time : 3 Hours]

[Maximum Marks : 80

Note: The question paper is divided into three Sections
 A, B and C. Write answers as per the given instructions. Use of non-programmable Scientific Calculator is allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question, delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Define internal direct product.

MAMT¹01/MSCMT¹01/4

(1)

TC-76 Turn Over

- (ii) Define solvable group.
- (iii) Define prime element.
- (iv) Define dual basis.
- (v) Define splitting field.
- (vi) Define Eigen Vector
- (vii) Define orthonormal set.
- (viii) Define self adjoint linear map.

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Show that a group G is abelian if and only if $G' = \{e\}$, e being the identity of G.
- 3. If a gourp G has a solvable homomorphic image whose kernel is solvable, then show that the group is solvable.
- 4. If M_1 and M_2 are submodule of an R-module M, then prove that :

$$M_1 + M_2 = \{m_1 + m_2 | m_1 \in M_1, m_2 \in M_2\}$$
 is a submodule of M.

MAMT-01/MSCMT-01/4 (2)

<u>TC-76</u>

- 5. If V is an finite dimensional vector space over a field F, then prove that for every non-zero vector $v \in V$, there exist a linear functional f in V* such that $f(v) \neq 0$.
- 6. If a square matrix of order n, over a field F, has n distinct eigen values $\lambda_1, \lambda_2, \ldots, \lambda_n$, then prove that there is an invertible matrix P such that P^{-1} A P = drag $(\lambda_1, \lambda_2, \ldots, \lambda_n)$.
- 7. State and prove Schwartz's inequality.
- 8. Let V and V' be inner product spaces. Then show that a linear transformation $t: V \to V'$ is orthogonal if and only if $||t(u)|| = ||u|| \forall u \in V$.
- 9. Let V be an innerproduct space, and $A = \{v_i\}_{i=1}^n$ be an orthonormal set in V. Then show that for any vector $v \in V$, the vector

$$u = v - \sum_{i=1}^{n} v_i < v, v_i > \text{is}$$
 orthogonal to each v_i , $j = 1, 2, \dots, n$.