Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

- Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
- 10. For the curve:

$$x = a(3u - u^3), y = 3au^2, z = a(3u + u^3)$$

show that the curvature and torsion are equal.

- 11. (a) Prove that on a given surface, a family of curves and their orthogonal trajectories can always be chosen as parametric curves.
 - (b) Show that the divergence of Einstein tensor vanishes.
- 12. Prove that an entity whose inner product with an arbitrary tensor is a tensor, is itself a tensor.
- 13. Show that the metric of a Euclidean space, referred to spherical coordinates is given by:

$$ds^2 = (dr)^2 + (rd \theta)^2 + (r \sin \theta d \phi)^2$$

Determine its metric tensor and conjugate metric tensor.

MAMT-04/MSCMT-04/4 (4)

TC-79

MAMT-04/MSCMT-04

December - Examination 2023

M.A./M.Sc. (Previous) Examination **MATHEMATICS**

(Differential Geometry and Tensor) Paper: MAMT-04/MSCMT-04

Time : **3** *Hours*]

[Maximum Marks : 80

Note: The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in maximum up to **30** words. Each question carries 2 marks.

(1)

1. (i) Find the equation to the tangent at the point θ on the circular helix:

$$\overrightarrow{r} = a\cos\theta \, \overrightarrow{i} + a\sin\theta \, \overrightarrow{j} + c\theta \, \overrightarrow{k}$$

- (ii) Define Torsion.
- (iii) Define Ruled Surface.
- (iv) Show that the surface $z-c=\sqrt{xy}$ is developable.
- (v) State Meuniur's theorem.
- (vi) Define Normal angle.
- (vii) Define tensor of zero order.
- (viii) Show that the covariant differentiation of invariants is commutative.

Section–B $4\times8=32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Find the inflexional tangents at (x, y, z) on the surface $y^2z = 4ax$.
- 3. Prove that the indicatrix at a point of the surface z = f(x, y) is a rectangular hyperbola if:

$$(1 + p^2)t + (1 + q^2)r - 2pqs = 0$$

MAMT-04/MSCMT-04/4 (2)

<u>TC-79</u>

- 4. Prove that the generators of a developable surface are tangents to curve.
- 5. Show that the metric of a surface is invariant under parametric transformation.
- 6. Show that to a given direction there is one and only one conjugate direction. Also derive the condition for the two directions (*du*, *dv*) and (*Du*, *Dv*) to be conjugate.
- 7. State and prove Bonnet's theorem for parallel surfaces.
- 8. Prove that:

$$\operatorname{divA}_{i} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{y}} \left\{ \sqrt{g} g^{rk} A_{k} \right\} = \operatorname{div} A^{i}$$

where A^i and A_i are the contravariant and covariant components of the same vector A.

9. Show that on the surface of a sphere, all great circles are geodesics while no other circle is a geodesic.