खण्ड—अ

MT-08

December - Examination 2022

B.A./B.Sc. (Part III) Examination MATHEMATICS

(Complex Analysis)
Paper: MT-08

Time: 3 Hours

Maximum Marks: 47

Note: The question paper is divided into three Sections 'A', 'B' and 'C'. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

निर्देश: - यह प्रश्न-पत्र 'अ', 'ब' और 'स' तीन खण्डों में विभाजित है। प्रत्येक खण्ड के निर्देशानुसार प्रश्नों के उत्तर दीजिए। इस प्रश्न-पत्र में नॉन-प्रोग्रामेबल साइंटिफिक कैलकुलेटर के उपयोग की अनुमृति है।

Section-A

 $7 \times 1 = 7$

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 mark.

(1)

<u>TR–298</u> Turn Over

(अति लघु उत्तरीय प्रश्न)

निर्देश:- सभी प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को प्रश्नानुसार एक शब्द, एक वाक्य या अधिकतम 30 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 1 अंक का है।

- (i) Define bounded set with example.
 परिबद्ध समुच्चय को उदाहरण देते हुए परिभाषित कीजिए।
 - (ii) Write the polar form of Cauchy-Riemann equation.

कॉशी-रीमान समीकरण का ध्रुवीय रूप लिखिए।

(iii) Find the radius of convergence of power series $\sum \frac{(n+1)}{(n+2)(n+3)} z^n.$

घात श्रेणी $\sum \frac{(n+1)}{(n+2)(n+3)} z^n$ की अभिसरण त्रिज्या ज्ञात कीजिए।

(2)

TR-298

$$\int_{\mathcal{C}} \frac{dz}{z - a} = 2\pi i$$

where $C: |z - a| = \rho$.

सिद्ध कीजिए कि:

$$\int_{C} \frac{dz}{z - a} = 2\pi i$$

जहाँ $C: |z-a| = \rho I$

- (v) State the Cauchy's inequality. कॉशी असमिका का कथन कीजिए।
- (vi) Find the residue of the function $f(z) = \frac{z^3 2z}{(z i)^3} \text{ at } z = i.$

फलन
$$f(z) = \frac{z^3 - 2z}{(z - i)^3}$$
 का $z = i$ पर अवशेष ज्ञात कीजिए।

TR-298 Turn Over

(vii) State the fundamental theorem of algebra. बीजगणित के मूल प्रमेय का कथन कीजिए।

(3)

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 5 marks.

खण्ड—ब

(लघु उत्तरीय प्रश्न)

- निर्देश:- किन्हीं चार प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 200 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 5 अंक का है।
- 2. Prove that function $u = e^x(x \cos y y \sin y)$ satisfy Laplace's equation, and find the corresponding analytic function f(z). सिद्ध कीजिए कि फलन $u = e^x(x \cos y - y \sin y)$ लाप्लास समीकरण को सन्तुष्ट करता है तथा इसके संगत विश्लेषिक फलन f(z) ज्ञात कीजिए।
- 3. Find the invariant point of bilinear transformation $w = \frac{3z-4}{z-1}$, and transform into normal form.

द्विरैखीय रूपान्तरण $w = \frac{3z-4}{z-1}$ के स्थिर बिन्दु ज्ञात कीजिए एवं इसे सामान्य रूप में परिवर्तित कीजिए।

MT-08/7

(4)

TR-298

4. Evaluate $\int_0^{1+i} (x - y + i x^2) dz$ along the line z = 0 to z = 1 + i.

समाकल $\int_0^{1+i} \left(x-y+i\,x^2\right) dz$ का मान सरल रेखा z=0 से z=1+i के अनुदिश ज्ञात कीजिए।

5. Evaluate:

$$\int_{c} \frac{e^{2z}}{(z+1)^4} dz, \ c: \ |z| = 3$$

मान ज्ञात कीजिए:

$$\int_{c} \frac{e^{2z}}{(z+1)^4} dz, \ c: \ |z| = 3$$

6. Discuss the singularities for the function $f(z) = \tan(1/z)$.

फलन $f(z) = \tan(1/z)$ की विचित्रताओं की विवेचना कीजिए।

- 7. State and prove Cauchy's residue theorem. कॉशी अवशेष प्रमेय का कथन कर सिद्ध कीजिए।
- 8. Discuss the integration round unit circle for $\int_0^{2\pi} f(\cos \theta, \sin \theta) d\theta.$

 $\int_0^{2\pi} f(\cos\theta,\sin\theta)d\theta$ के लिए एकांक वृत्त के चारों ओर समाकलन की विवेचना कीजिए।

9. Define analytic continuation and discuss it.

विश्लेषिक सांतत्य को परिभाषित कीजिए तथा इसकी विवेचना
कीजिए।

Section-C

 $2 \times 10 = 20$

(Long Answer Type Questions)

Note: Answer any *two* questions. You have to delimit your each answer maximum up to **500** words. Each question carries 10 marks.

खण्ड-स

(दीर्घ उत्तरीय प्रश्न)

- निर्देश:- किन्हीं दो प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 500 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 10 अंक का है।
- 10. Prove that in argand diagram, equation of a straight line can be written as $z\overline{b}+b\overline{z}=c$, where b is a non-zero complex constant and c is real. सिद्ध कीजिए कि आर्गेण्ड चित्र में एक सरल रेखा का समीकरण निम्न रूप में लिखा जा सकता है: $z\overline{b}+b\overline{z}=c$, जहाँ b एक अशुन्य सम्मिश्र अचर है तथा c वास्तिवक है।

(5) TR-298 Turn Over

MT-08/7 (6)

TR-298

11. State and prove Morera theorem.

मोरेरा प्रमेय को बताइए और सिद्ध कीजिए।

- 12. Expand $f(z) = \frac{z^2 4}{(z+1)(z+4)}$ for :
 - (i) |z| < 1
 - (ii) 1 < |z| < 4
 - (iii) |z| > 4

प्रसार कीजिए:

$$f(z) = \frac{z^2 - 4}{(z+1)(z+4)}$$

- (i) |z| < 1
- (ii) 1 < |z| < 4
- (iii) |z| > 4
- 13. State and prove Rouche's theorem.

रूशे प्रमेय को बताइए और सिद्ध कीजिए।