MT-08
December — Examination 2022

B.A./B.Sc. (Part III) Examination

MATHEMATICS
(Complex Analysis)
Paper : MT-08

Time : 3 Hours | [ Maximum Marks : 47

Note .— The question paper is divided into three Sections
‘A, ‘B’ and ‘C’. Write answers as per the given
instructions. Use of non-programmable scientific
calculator is allowed in this paper.
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Section-A 7x1=7
(Very Short Answer Type Questions)

Note .— Answer all questions. As per the nature of the
question delimit your answer in one word, one
sentence or maximum up to 30 words. Each
question carries 1 mark.
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1. (1) Define bounded set with example.
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(i1)) Write the polar form of Cauchy-Riemann

equation.
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(ii1) Find the radius of convergence of power series
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(iv) Prove that :

J dz =2mi

Cz-a
where C : [z —a| = p.
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(v) State the Cauchy’s inequality.
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(vi) Find the residue of the function
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(vi1) State the fundamental theorem of algebra.
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Section-B 4x5=20

(Short Answer Type Questions)

Note .— Answer any four questions. Each answer should not

exceed 200 words. Each question carries 5 marks.
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. Prove that function # = ¢“(x cos y — y sin y) satisfy

Laplace’s equation, and find the corresponding
analytic function f(z).
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. Find the invariant point of bilinear transformation

3z-4
w= Zz_l » and transform into normal form.
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4. Evaluate Jo (x—y+zx )dz along the line z = 0 to

z=1+1i
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5. Evaluate :
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6. Discuss the singularities for the function
f(z) =tan (1/2).
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7. State and prove Cauchy’s residue theorem.
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8. Discuss the integration round unit circle for
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9. Define analytic continuation and discuss it.
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Section—-C 2x10=20

(Long Answer Type Questions)

Note .— Answer any two questions. You have to delimit

your each answer maximum up to 500 words.

Each question carries 10 marks.
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10. Prove that in argand diagram, equation of a

straight line can be written as zb + bz = ¢, where b

is a non-zero complex constant and c is real.
g wIfSY fof swive faa & @ W@ Y@ &1 FHEo
71 w9 H fomen 1 ¥wa@ §: zb + bz =c, &I b TH
ST Ay 3R § A ¢ Tt §

MT-08/7 (6) TR-298



11. State and prove Morera theorem.
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12.Expand f(Z):m for :

@® |zl <1

(1) 1< |zl <4

(i) |z| > 4
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i) 1<zl <4
(i) |z| > 4
13. State and prove Rouche’s theorem.
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