MT-03

December – Examination 2022 B.A./B.Sc. (Part I) Examination MATHEMATICS

(Co-ordinate Geometry and Mathematical Programming) Paper : MT-03

Time : 3 Hours]

[Maximum Marks : 46

- *Note* :- The question paper is divided into three Sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.
- निर्देश :- यह प्रश्न-पत्र 'अ', 'ब' और 'स' तीन खण्डों में विभाजित है। प्रत्येक खण्ड के निर्देशानुसार प्रश्नों के उत्तर दीजिए। इस प्रश्न-पत्र में नॉन-प्रोग्रामेबल साइंटीफिक कैलकुलेटर के उपयोग की अनुमति है।

(Very Short Answer Type Questions)

Note :- Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to **30** words. Each question carries 1 mark.

MT-03/8 (1) <u>TR-293</u> Turn Over

(अति लघु उत्तरीय प्रश्न)

- निर्देश :- सभी प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को प्रश्नानुसार एक शब्द, एक वाक्य या अधिकतम **30** शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 1 अंक का है।
- (i) Write general equation of a conic section.
 शांकव परिच्छेद का व्यापक समीकरण लिखिए।
 - (ii) Find the equation of cone whose radius is r, centre lie on x-axis and passes through origin.
 उस गोले का समीकरण ज्ञात कीजिए जिसकी त्रिज्या r, केन्द्र x-अक्ष पर हो और मूल-बिन्दु से गुजरता हो।
 - (iii) Define Polar line. ध्रुवीय रेखा को परिभाषित कीजिए।
 - (iv) Write the condition that plane ux + vy + wz= 0 touches the cone $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$. वह प्रतिबन्ध समतल ux + vy + wz = 0 के शंकु $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$ को स्पर्श करने का प्रतिबन्ध लिखिए।

(2)

- (v) Define enveloping cylinder.अन्वालोपी बेलन को परिभाषित कीजिए।
- (vi) Define basic feasible solution.आधारी सुसंगत हल को परिभाषित कीजिए।

MT-03/8

<u>TR–293</u>

Section–B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note :- Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 5 marks.

खण्ड—ब

(लघु उत्तरीय प्रश्न)

- निर्देश:- किन्हीं चार प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 200 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 5 अंक का है।
- Find equation and centre of circle passes through points (-1, 0, 0), (0, 2, 0) and (0, 0, 3).
 बिन्दुओं (-1, 0, 0), (0, 2, 0) तथा (0, 0, 3) से गुजरने वाले वृत्त का समीकरण एवं उसका केन्द्र ज्ञात कीजिए।
- 3. Find equation of polar plane of a point P(α , β , γ) about sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d$ = 0.

किसी बिन्दु $P(\alpha, \beta, \gamma)$ का गोले $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ के सापेक्ष ध्रुवीय समतल का समीकरण ज्ञात कीजिए।

4. Prove that equation $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ represents a cone if $\frac{u^2}{a} = \frac{v^2}{b} = \frac{w^2}{c} = d.$

MT-03/8

(3) <u>**TR-293**</u> Turn Over

सिद्ध कीजिए कि समीकरण $ax^2 + by^2 + cz^2 + 2ux + 2vy$ + 2wz + d = 0 एक शंकु को प्रदर्शित करता है, यदि $\frac{u^2}{a} = \frac{v^2}{b} = \frac{w^2}{c} = d$ ।

5. Find the condition that plane lx + my + nz = p is tangent plane at any point of concentric conicoid $Ax^2 + By^2 + Cz^2 = 1.$

वह प्रतिबंध ज्ञात कीजिए कि समतल lx + my + nz = pसंकेन्द्र शांकवज $Ax^2 + By^2 + Cz^2 = 1$ का उसके किसी बिन्द् पर स्पर्श तल हो।

6. Prove that polar line about conicoid $x^2 - 2y^2 + 3z^2 = 4$ of line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ is $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$. Real about the polar line $x^2 - 2y^2 + 3z^2 = 4$ about the polar line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ about the polar line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{x-6}{3} = \frac{y-2}{3} = \frac{z-2}{1}$ about the polar line $\frac{z-2}{3} = \frac{z-2}{3} = \frac{z-2}{3} = \frac{z-2}{3} = \frac{z-3}{3} = \frac{z-2}{3} = \frac{z-2}{3} = \frac{z-2}{3} = \frac{z-3}{3} = \frac{z-2}{3} = \frac{z-2}{3} = \frac{z-2}{3} = \frac{z-3}{3} = \frac{z$ 7. Find the condition that straight line $\frac{x-\alpha}{l} = \frac{y-\beta}{m}$

 $=\frac{z-\gamma}{n}$ will be generating line of concentric conicoid $Ax^2 + By^2 + Cz^2 = 1$.

सरल रेखा $\frac{x-\alpha}{1} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ को संकेन्द्र शांकवज $Ax^2 + By^2 + Cz^2 = 1$ की जनक रेखा होने के प्रतिबन्ध ज्ञात कीजिए।

8. Find the dual problem of the following linear programming problem :

Min. : $Z_{\rm P} = x_1 + 2x_2 - x_3$ S.T.: $2x_1 - 3x_2 + 4x_3 \ge 5$ $2x_1 - 2x_2 \le 6$ $3x_1 - x_3 \le 4$ $x_1, x_2, x_3 \ge 0$ and निम्न रैखिक प्रोग्रामन समस्या के संगत द्वैती समस्या ज्ञात कीजिए : निम्नतम : $Z_{\rm P} = x_1 + 2x_2 - x_3$

प्रतिबन्ध : $2x_1 - 3x_2 + 4x_3 \ge 5$ $2x_1 - 2x_2 \le 6$ $3x_1 - x_3 \le 4$ तथा $x_1, x_2, x_3 \ge 0$ (5) **TR-293** Turn Over *MT-03/8*

9. Solve the following transportation problem :

Plant		Destination Availability				
	C ₁	C ₂	C ₃	C ₄ 4	C ₅	
P ₁	4	1	3	4	4	60
P_2	2	3	2	2	3	35
P ₃	3	5	2	4	4	40
Demand	22	45	20	18	20	135
निम्न परिवहन	1 समस्	या को	हल को	जिए :		

प्लाण्ट			उपलब्धता			
	C ₁	C ₂	C ₃	C ₄	C ₅	
P_1	4	1	3	4	4	60
P_2	2	3	2	2	3	35
P ₃	3	5	2	4	4	40
माँग	22	45	20	18	20	135
Section–C						2×10

Section-C

(Long Answer Type Questions)

Note :- Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 10 marks.

खण्ड—स

(दीर्घ उत्तरीय प्रश्न)

- निर्देश :- किन्हीं दो प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 500 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 10 अंक का है।
- TR-293(6) MT-03/8

10. (a) Find equation of enveloping cone of sphere $x^{2} + y^{2} = z^{2} + 2x - 2y = 2$ whose vertex is (1, 1, 1).गोले $x^2 + y^2 = z^2 + 2x - 2y = 2$ के उस अन्वालोपी

शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष (1, 1, 1) है।

(b) Find the equation of right circular cylinder radius is whose 2 and axis is $\frac{x-1}{1} = \frac{y}{3} = \frac{z-3}{1}$.

एक लम्बवत्तीय बेलन की त्रिज्या 2 तथा अक्ष का समीकरण $\frac{x-1}{1} = \frac{y}{3} = \frac{z-3}{1}$ है। लम्बवृत्तीय बेलन का समीकरण ज्ञात कीजिए।

11. By transforming equation $2x^2 + 2y^2 + z^2 + 2yz - 2yz$ 2zx - 4xy + x + y = 0 into standard form prove that it represents a elliptical paraboloid. Find coordinates of its centre and equation of its axes. समीकरण $2x^2 + 2y^2 + z^2 + 2yz - 2zx - 4xy + x + y =$ 0 का मानक रूप में समानयन करते हुए सिद्ध कीजिए कि यह एक दीर्घवत्तीय परवलयज को प्रदर्शित करता है। इसके शीर्ष के निर्देशांक और अक्ष का समीकरण भी ज्ञात कीजिए।

MT-03/8

- 12. Prove that every marginal point of convex set of all feasible solutions of system AX = b is a basic feasible solution and its converse is also true. सिद्ध कीजिए कि निकाय AX = b के सभी ससंगत हलों के अवमुख समुच्चय का प्रत्येक सीमान्त बिन्दु एक आधारी सुसंगत हल होता है तथा इसका विलोम भी सत्य है।
- 13. Solve the following linear programming problem by simplex method : Min. :

S.T. :

and

न्यूनतम :

एव

MT-03/8

$$Z = 2x_1 + 9x_2 + x_3$$
S.T. :
$$x_1 + 4x_2 + 2x_3 \ge 5$$
$$3x_1 + x_2 + 2x_3 \ge 4$$
and
$$x_1, x_2, x_3 \ge 0$$
निम्नलिखित रैखिक प्रोग्रामन समस्या को सिम्पलेक्स विधि द्वारा
हल कीजिए :
$$z = 2x_1 + 9x_2 + x_3$$
प्रतिबन्ध :

 $x_1 + 4x_2 + 2x_3 \ge 5$ $3x_1 + x_2 + 2x_3 \ge 4$ $x_1, x_2, x_3 \ge 0$ (8)

TR-293