- 10. What is graph colouring problem? What is the bounding condition for graph colouring problem?
- 11. State and proof Cook's theorem.
- 12. What sub-problems are for compute 39 using divide and conquer method? Also find out how the sub-problems are combined.
- 13. What is Minimum Spanning Tree (MST)? Find the minimum spanning tree for the following graph using Prim's algorithm:

(4)

MCA-12/4

TR-602

MCA-12

December – Examination 2022 MCA Examination

Design and Analysis of Algorithms
Paper: MCA-12

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section-A $8\times2=16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Define Time complexity.
 - (ii) Give examples of internal and external sorting.

MCA-12/4 (1) TR-602 Turn Over

- (iii) What is Greedy Strategy?
- (iv) What is backtracking method?
- (v) Name the approach used for combinational and discrete global optimizations of problems.
- (vi) What is decision and optimization problem?
- (vii) What is the size of a clique?
- (viii) What is average case time complexity of insertion sort ?

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.

- 2. Write an algorithm to sort elements by bubble sort algorithm. What are the time and space complexities?
- 3. Prove $3n^5 7n + 4 = 0(n^5)$.
- 4. Sort the following elements by using counting sort algorithm:

(2)

<u>TR-602</u>

- 5. How does merge sort follow the divide and conquer strategy? Give one example.
- 6. In the following elements, search the key element 12 using binary search, using divide and conquer method.

- 7. "A globally optimal solution can be arrived at by making a locally optimal choice." Explain briefly.
- 8. Consider the following job sequencing problem. Find the feasible solution set.

Job <1, 2, 3, 4>

Profit <10, 20, 15, 5>

Deadline <2, 3, 3, 2>

9. Describe the method of solving travelling salesman problem using dynamic programming.

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note:— Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.

MCA-12/4

(3) TR-602 Turn Over