MAMT-10/MSCMT-10

December - Examination 2022

M.A./M.Sc. (Final) Examination MATHEMATICS

(Mathematical Programming)

Paper: MAMT-10/MSCMT-10

Time: 3 Hours] [Maximum Marks: 80

Note: The question paper is divided into three SectionsA, B and C. Write answers as per the given instructions.

Section–A $8\times2=16$

(Very Short Answer Type Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

MAMT-10/MSCMT-10/7 (1) TR-85 Turn Over

- 1. (i) What is a Hyperplane?
 - (ii) What will the outcome of the intersection of two convex sets ?
 - (iii) Write down the formula for initial basic feasible solution.
 - (iv) Write the introducing surplus variables in the following LPP:

Min.:

$$Z = x_1 + 2x_2$$

S.t. :

$$2x_1 + 5x_2 \ge 6$$
$$x_1 + x_2 \ge 2$$
$$x_1, x_2 \ge 0$$

- (v) Define Lagrange's function.
- (vi) Define Saddle Point.

MAMT-10/MSCMT-10/7 (2)

TR-85

(vii) Write Kuhn-Tucker conditions for the following non-linear programming problem :

Max.:

$$f(x) = 8x - x^2$$

S.t. :

$$x \leq 3$$

$$x \ge 0$$

(viii) What do you mean by Bellman's principle of optimality ?

Section-B

 $4 \times 8 = 32$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 8 marks.
- 2. Show that $f(x) = 2x_1^2 + x_2^2$ is a convex function over \mathbb{R}^2 .
- 3. Explain Gomory's Mixed L.P.P. method or Fractional Cut method.
- 4. Explain the difference between continuous and integer programming.

MAMT-10/MSCMT-10/7 (3) TR-85 Turn Over

5. Solve the following quadratic programming problem using Wolfe's method :

Min.:

$$f(x_1, x_2) = 4x_1 + x_1^2 - 2x_1x_2 + 2x_2^2$$

S.t. :

$$2x_1 + x_2 \le 6$$

$$x_1 - 4x_2 \le 0$$

$$x_1, x_2 \ge 0$$

- 6. Prove that the set of all optimal solution (global maximum) of the general convex programming problem is a convex set.
- 7. Test the definiteness of the quadratic form :

$$\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} = (x_1, x_2, x_3) \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

8. Use Bellman's optimality principle to divide a positive quantity 'b' into n parts in such a way that their product is maximum.

MAMT-10/MSCMT-10/7 (4)

TR-85

9. Solve by dynamic programming:

$$Z = x_1 + 9x_2$$

$$2x_1 + x_2 \le 25$$

$$x_2 \le 11$$

and

$$x_1, x_2 \ge 0$$

Section-C

 $2 \times 16 = 32$

(Long Answer Type Questions)

- Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
- 10. Use bounded variable technique to solve the following LPP:

Max. :
$$Z = 2x_1 + x_2$$

S.t.:
$$x_1 + 2x_2 \le 10$$

$$x_1 + x_3 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1 - 2x_2 \le 1$$

$$0 \le x_1 \le 3$$

$$0 \le x_2 \le 2$$

MAMT-10/MSCMT-10/7 (5)

TR-85 Turn Over

11. Solve the following integer programming problem using branch and bound technique:

Max.:

$$Z = x_1 + x_2$$

S.t. :

$$3x_1 + 2x_2 \le 12$$

$$x_2 \leq 2$$

$$x_1, x_2 \ge 0$$

12. Solve the following quadratic programming problem using Beale's method:

Max.:

$$f(x_1, x_2) = 2x_1 + 3x_2 - 2x_1^2$$

S.t. :

$$x_1 + 4x_2 \le 4$$

$$x_1 + 2x_2 \le 2$$

$$x_1, x_2 \ge 0$$

MAMT-10/MSCMT-10/7 (6)

TR-85

13. Find the optimal solution of the following convex separable programming problem :

Max.:

$$Z = 3x_1 + 2x_2$$

S.t. :

$$4x_1^2 + x_2^2 \le 16$$

and $x_1, x_2 \ge 0$