7. Compute y(0.5) using Milne's method, given that :

$$\frac{dy}{dt} = 2e^t - y$$

and the corresponding values of t and y are given as:

t	0.0	0.1	0.2	0.3
y	2	2.01	2.04	2.09

8. Solve the boundary value problem:

$$\frac{d^2y}{dx^2} = y, \ y(0) = 0, \ y(1) = 1.1752$$

by shooting method together with Runge-Kutta method.

9. Solve the boundary value problem:

MAMT-08/MSCMT-08 / 4 (4)

$$\frac{d^2y}{dx^2} + (1+x^2)y + 1 = 0, x \in [0, 1]$$

by a second order finite difference method with step size $h = \frac{1}{4}$.

MAMT-08/MSCMT-08

December - Examination 2021

M.A./M.Sc. (Final) Examination MATHEMATICS

(Numerical Analysis)

Paper: MAMT-08/MSCMT-08

Time: 1½ Hours] [Maximum Marks: 80

Note: The question paper is divided into two SectionsA and B. Write answers as per the given instructions. Use of non-programmable ScientificCalculator is allowed in this paper.

Section–A $4\times4=16$

(Very Short Answer Type Questions)

Note: Answer any four questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 4 marks.

- 1. (i) Show that the real root of equation $x^3 2x 5 = 0$ is lying between (2, 3).
 - (ii) Find first derivative of $x^4 4x^3 + 8x^2 8x + 4$ at x = 3, using synthetic division.
 - (iii) State principle of least square.
 - (iv) Define Chebyshev polynomial of first kind.
 - (v) Define Lanczos Economization.
 - (vi) Write Picard's formula for solution of differential equation.
 - (vii) Write Adams-Moulten predicator and corrector formula.
 - (viii) Define Eigenvalue problem.

Section-B

 $4 \times 16 = 64$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 16 marks.
- 2. Apply Aitken's Δ^2 -method to find a root of the equation $\sin^2 x = x^2 1$.

- 3. Perform two iterations of Muller's method to find the root of the equation $x^3 x 1 = 0$ by taking $x_0 = -1$, $x_1 = 0.5$ and $x_2 = 1$ as initial approximation.
- 4. Solve the given system of equation using conjugate gradient method :

$$4x + y = 1$$

$$x + 3y = 2$$

5. Using the Rutishauser method, find all the Eigenvalues of the matrix :

$$A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$$

6. Compute y(1.4) using fourth order Runge-Kutta method, given that :

$$\frac{dy}{dt} = \frac{t}{y}, \quad y(1) = 2$$