MA/MSCMT-07

December - Examination 2021

M.A./M.Sc. (Final) Examination MATHEMATICS

(Viscous Fluid Dynamics)

Paper: MA/MSCMT-07

Time : 1½ Hours] [Maximum Marks : 80

Note: The question paper is divided into two Sections
A and B. Write answers as per the given instructions. Use of non-programmable Scientific
Calculator is allowed in this paper.

Section-A

 $4 \times 4 = 16$

(Very Short Answer Type Questions)

Note: Answer any four questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 4 marks.

(1)

402 Turn Over

- 1. (i) Define Normal Strain.
 - (ii) State Stoke's law of friction.
 - (iii) Write component of viscous stress tensor.
 - (iv) Write equation of continuity in spherical polar co-ordinates.
 - (v) Define boundary layer.
 - (vi) Define starting flow.
 - (vii) Define Stoke's stream function.
 - (viii) Define displacement thickness and explain its physical interpretation.

Section-B

 $4 \times 16 = 64$

402

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 16 marks.
- 2. State and prove Buckingham π -theorem.
- 3. Discuss the flow between *two* parallel plates which are kept at a finite distance apart.

- 4. Describe Hiemenz Flow.
- 5. Explain distribution of temperature in a pipe when the wall of pipe is kept at a constant temperature.
- 6. Explain Oseen' flow past a sphere.
- 7. Describe boundary layer theory and its applications.
- 8. Derive boundary layer equations for the flow past a solid plane wall by asymptotic approach.
- 9. Explain Blasius series solution to the steady boundary layer flow on a flat plate.

MA/MSCMT-07/3 (3) **402**