8. Find the streamlines and pathlines of the particles of the velocity field :

$$u = \frac{x}{1+t}$$
, $v = y$ and $w = 0$

9. Show that:

MA/MSCMT-05 / 4

$$u = \frac{-2xyz}{(x^2 + y^2)^2}$$
, $v = \frac{(x^2 - y^2)z}{(x^2 + y^2)^2}$ and $w = \frac{y}{(x^2 + y^2)}$

are the velocity components of a possible fluid motion.

(4)

MA/MSCMT-05

December - Examination 2021

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Mechanics)

Paper: MA/MSCMT-05

Time: 1½ Hours] [Maximum Marks: 80

Note: The question paper is divided into two SectionsA and B. Write answers as per the given instructions.

Section-A $4\times4=16$

(Very Short Answer Type Questions)

Note:— Answer any four questions. As per the nature of the questions delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 4 marks.

- 1. (i) Write vector form of Euler's equation.
 - (ii) Define simple equivalent pendulum.
 - (iii) Define Centre of Percussion.
 - (iv) What do you mean by holonomous system?
 - (v) State the Bernoulli's theorem.
 - (vi) What do you mean by Conservation forces?
 - (vii) Write the equations of motion of a top.
 - (viii) Define stream function.

Section-B

 $4 \times 16 = 64$

(Short Answer Type Questions)

Note: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 16 marks.

- 2. State and prove D'Alembert's Principle.
- 3. A uniform solid cylinder is placed with its axis horizontal on a plane, whose inclination to the horizon is α , show that the least coefficient of friction between it and the plane, so that is may roll and not slide, is $\frac{1}{3}\tan\alpha$.

- 4. A small insect moves along a uniform bar of mass equal to itself and of length 2a, the ends of which are constrained to remain on the circumference of a fixed circle whose radius is $\frac{2a}{\sqrt{3}}$. If the insect starts from the middle point of the bar and move along the bar with relative velocity V, show that the bar in time t will turn through an angle $\frac{1}{\sqrt{3}} \tan^{-1} \frac{\nabla t}{a}$.
- 5. Derive the equation of motion of a simple pendulum by using Lagrange's equations.
- 6. Derive Euler's geometrical equations of motion.
- 7. A body moves under no forces about a point O, the principal moments of inertia at O being 6A, 3A and A. Initially the angular velocity of the body has components $w_1 = n$, $w_2 = 0$, $w_3 = 3n$ about the principal axes. Show that at any later time $w_2 = -\sqrt{5}n \tanh \sqrt{5}nt$ and ultimately the body rotates about the mean axis.