- 7. If $t: V \to V$ be a linear transformation from a finite dimensional vector space V to itself. Assume that v_i ; i = 1, 2, ..., n are distinct eigen vectors of t corresponding to distinct eigen values λ_i ; i = 1, 2, ..., n. Then show that set $\{v_1, v_2, ..., v_n\}$ is a linearly independent set.
- 8. State and prove Schwartz inequality.
- 9. Show that every finite dimensional vector space V with an inner product has an orthonormal basis.

MA/MSCMT-01

December - Examination 2021

M.A./M.Sc. (Previous) Examination MATHEMATICS

(Advanced Algebra)

Paper: MA/MSCMT-01

Time : 1½ Hours] [Maximum Marks : 80

Note:— The question paper is divided into two Sections

A and B. Write answers as per the given instructions. Use of non-programmable Scientific Calculator is allowed in this paper.

Section-A

 $4 \times 4 = 16$

(Very Short Answer Type Questions)

Note: Answer any four questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 4 marks.

(1)

96 MA/MSCMT-01 / 4

96 Turn Over

- 1. (i) Define Internal direct product of groups.
 - (ii) Define subnormal series.
 - (iii) Define quotient module.
 - (iv) Define nullity of linear map.
 - (v) Define algebraic extension of a field.
 - (vi) Define eigen values of a matrix.
 - (vii) Define inner product space.
 - (viii) Define self-adjoint linear map.

Section-B

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Each answer should not exceed **200** words. Each question carries 16 marks.
- 2. If G is a finite group, then show that the number of elements conjugate to \underline{a} in G is the index of the normalizer of a in G, i.e. |C[a]| = |G: N(a)|.

- 3. If G be a group with subgrops H and K such that:
 - (i) H and K are normal in G and
 - (ii) $H \cap K = \{e\}$

then show that HK is the informal direct product of H and K and HK \cong H \times K.

- 4. Prove that every Euclidean ring R is a principal ideal domain.
- 5. If F be a field and $p(x) \in F[x]$ such that deg p(x) = n, where $n \ge 1$. Then show that there exists a finite extension K of F in which p(x) gets a full set of n roots such that $[K : F] \le n!$
- 6. If V and V' be finite dimensional vector spaces over a field F and $t: V \to V'$ be a linear transformation, t^* is dual of t. Then show that the maps t and t^* have same rank.

(3)

 $4 \times 16 = 64$