7. Obtain the necessary and sufficient conditions for the optimum solution of the following non-linear programming problem:

Minimize:

$$Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$$

Subject to:

$$x_1 + x_2 + x_3 = 15$$

$$2x_1 - x_2 + 2x_3 = 20$$

$$x_1, x_2, x_3 \ge 0$$

8. Use Kuhn-Tucker conditions to determine x_1 , x_2 , x_3 so as to minimize $f(x_1, x_2, x_3) = x_1^2 + x_2^2$ $+ x_3^2 - 4x_1 - 6x_2$

Subject to:

$$x_1 + x_2 \le 2 2x_1 + 3x_2 \ge 12 x_1, x_2 \ge 0$$

- Determine which of the following equations 9. (i) are quadratic form:
 - (a) $Z = x_1^2 + 2x_2$ (b) $Z = x_1^2 x_2^2$
 - (ii) Determine whether or not the quadratic forms X^TAX are positive definite, where :
 - (a) $A = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

MA/MSCMT-10

December - Examination 2020

M.A./M.Sc. (Final) Examination **MATHEMATICS**

(Mathematical Programming) Paper: MA/MSCMT-10

Time: 2 Hours]

[Maximum Marks : 80

Note: The question paper is divided into two Sections A and B. Write answers as per the given instructions. Use of non-programmable scientific calculator/simple calculator allowed in this paper.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.
- 1. (i) Define Convex Function.
 - (ii) Define Integer Programming Problem.

(iii) Write the objective function in the form:

$$Z = X^{T}AX + q^{T}X$$

where

$$Z = x_1^2 + 2x_1x_2 + 4x_1x_3 + 3x_2^2 + 2x_2x_3$$
$$+ 5x_3^2 + 4x_1 - 2x_2 + 3x_3$$

- (iv) How to determine that the quadratic objective function f(x) is concave or convex by using the quadratic form $X^{T}GX$
- (v) Define optimal solution of a mathematical programming problem.
- (vi) Define Separable Function.
- (vii) Prove that a hyperplane is a convex set.
- (viii) Define Lagrange's Function.

Section-B

 $4 \times 16 = 64$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Answer should not exceed **200** words. Each question carries 16 marks.
- 2. Prove that the optimal hyperplane in a linear programming problem is a supporting hyperplane to the convex set of feasible solutions.
- 3. Solve the following integer programming problem by branch and bound method :

Maximize:

$$Z = x_1 + x_2$$

405

Subject to:

$$3x_1 + 2x_2 \le 12$$
$$x_2 \le 2$$

 $x_1, x_2^2 \ge 0$ and integers.

4. Solve the following programming problem graphically :

Minimize:

$$f(x_1, x_2) = x_1^2 + x_2^2$$

Subject to:

$$x_1 + x_2 \ge 4 2x_1 + x_2 \ge 5 x_1, x_2 \ge 0$$

5. Solve the following quadratic programming problem by Beale's mehtod :

Maximize:

$$f(x_1, x_2) = x_1 + x_2 - x_1^2 + x_1 x_2 - 2x_2^2$$

Subject to:

$$2x_1 + x_2 \le 1 x_1, x_2 \ge 0$$

6. Use of dynamic programming to show that:

$$\sum_{i=1}^{n} p_i \log p_i$$

Subject to $\sum_{i=1}^{n} p_i = 1, p_i > 0$ is minimum when

$$p_1 = p_2 = \dots = p_n = \frac{1}{n}$$