7. Using finite difference method to compute y(0.5) where y satisfies the following boundary value problem:

$$\frac{d^2y}{dx^2} = y$$

y(0) = 0, y(1) = 1.8

with h = 0.25

8. Compute y(0.2) by Taylor's series where y(t) is the solution of the following initial value problem :

$$\frac{dy}{dt} = t + y \qquad \qquad y(0) = 1$$

9. Use Adams-Moulton predictor corrector formula to compute y(0.4). Given that :

$$\frac{dy}{dt} = ty$$

$$y(0) = 1,$$
 $y(0.1) = 1.01,$ $y(0.2) = 1.022,$
 $y(0.3) = 1.023$

MA/MSCMT-08

December - Examination 2020

M.A./M.Sc. (Final) Examination MATHEMATICS

Numerical Analysis

Paper: MA/MSCMT-08

Time: 2 Hours]

[Maximum Marks : 80

Note:— The question paper is divided into two Sections

A and B. Write answers as per the given instructions.

Section-A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

- Note:— Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.
- 1. (i) Write the geometrical interpretation of Newton-Raphson method.

- (ii) Define Direct method to solve the system of linear equations.
- (iii) Express:

$$2T_0(x) + T_1(x) + 2T_2(x)$$

as a polynomial in x.

- (iv) Define Least Squares principle.
- (v) Write minimax property of Chebyshev polynomials.
- (vi) Distinguish between initial value problem and boundary value problem.
- (vii) Write any two properties of the eigen value.
- (viii) Distinguish between single step method and multistep method.

Section-B

 $4 \times 16 = 64$

(Short Answer Type Questions)

- **Note**: Answer any *four* questions. Answer should not exceed **200** words. Each question carries 16 marks.
- 2. Find square root of 13 by using Chebyshev method.

3. Find the root of the following equation:

$$x^3 - 2x - 5 = 0$$

by using Birga-Vieta method correct upto four places of decimal.

4. Fit a straight line to the following data:

X	1	2	3	4	5	6
y	2.6	5.4	8.7	12.1	16	20.2

5. Find the eigen values and eigen vectors of the following matrix :

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

6. Find the root of the equation:

$$x^4 - x - 10 = 0$$

near to x = 2 by using Newton-Raphson method correct to three decimals.