MA/MSCMT-06

December - Examination 2019

M.A./ M.Sc. (Final) Mathematics Examination

Analysis and Advanced Calculus

Paper - MA/MSCMT-06

Time : 3 Hours]

[Max. Marks :- 80

Note: The question paper is divided into three sections A, B and C. Write answers as per given instructions.

Section - A 8

 $8 \times 2 = 16$

(Very Short Answer Questions)

- **Note:** Answer **all** questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.
- 1. i. Explain convergence in normed linear space.
 - ii. Define conjugate space.
 - iii. Define natural embedding
 - iv. State spectral theorem.
 - v. State Risez representation theorem.
 - vi. Define inner product space.
 - vii. Define integral solution of the differential equation.
 - viii. Define regulated function.

Section - B

(Short Answer Questions)

- **Note:** Answer **any four** questions. Each answer should not exceed 200 words. Each question carries 8 marks.
- 2. Prove that every normed linear space is a metric space.
- 3. If *M* be a closed linear subspace of a normed linear space *N* and x_0 is a vector not ln *M*, then prove that \exists a functional *F* in conjugate space *N*^{*} s.t. *F*(*M*) = {0} and *F*(x_0) \neq 0.
- 4. Prove that a closed convex subset *K* of a Hilbert Space *H* contains a unique vectors of smallest norm.
- 5. Prove that if *S* is a non empty subset of a Hilbert space *H*, then S^{\perp} is a closed linear subspace of *H*.
- 6. If *T* is an operator on a Hilbert space *H*, then prove that (Tx, x) = 0 (Tx, x) = 0 if and only if T = 0.
- 7. If T is a normal operator on a Hibert space H then prove that
 - i. each eigenspace of T reduces T and
 - ii. eigenspaces of T are pairwise orthogonal.
- 8. State and prove inverse function theorem.
- 9. Let I be a closed interval in R, W be a closed set in a Banach space X and $g: I \times W \to X$ be a continuous function which is c-Lipschitz in $x \in X$ Let $(s, x_0) \in I \times W$ for given r > 0,

Let $f: I \to X$ be an r-approximate solution of the differential equation $\frac{dx}{dt} = g(t, x)$ such that $f(s) = x_0$ then prove that there exists in I an exact solution of $\phi: I \to X$ the differential equation such that $\phi(s) = x_0$

$2 \times 16 = 32$

(Long Answer Questions)

- **Note:** Answer **any two** questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.
- 10. If *N* and *N*' be normed linear spaces and B(N, N') is the set of all bounded linear transformation from N into N' then prove that B(N, N') is a normed linear space under the norm $||T|| = \sup \{|T(x)|: ||x|| \le 1\} \forall x \in N$ with respect to pointwise linear operations (T+S)(x) = T(x) + S(x) and $(\alpha T)(x) = \alpha T(x)$, for real α . Also prove that B(N, N') is complete if *N*' is complete.
- 11. If *B* and *B*' be Banach spaces and *T* a continuous linear transformation of *B* on to *B*', then prove that the image of every open sphere centred at origin in *B* contains an open sphere centred at origin in *B*'.
- 12. State mean value theorem for a mapping defined on a Banach space. If X be a Banach space over the field K of scalars and let $f: [a,b] \to X$ and $g: [a, b] \to R$ be continuous and differentiable functions such that $||Df(t)|| \le Dg(t)$ at each point $t \in (a, b)$ then prove that $||f(b) - f(a)|| \le g(b) - g(a)$
- 13. Let X and Y be Banach spaces over the same field K of scalars and *V* be an open subset of *X*. Let $f: V \rightarrow Y$ is twice differentiable at a point $v \in V$ then prove that $D^2 f(v) \in L(X^2, Y)$ is a bilinear symmetric mapping i.e. for all $(x, y) \in X \times X$, $D^2 f(v).(x, y) = D^2 f(v).(y, x)$