MCA-302

December - Examination 2018

MCA III Year Examination

Formal Language and Automata Paper - MCA-302

Time : 3 Hours]

[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per given instructions.

Section-A
$8 \times 2=16$
(Very Short Answer Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

1) (i) What is the Power Set of set $X=\{1,2,3\}$?
(ii) What do you mean by Hypothesis?
(iii) Define Kleene Star.
(iv) What is Class P ?
(v) List the properties of an Algorithm.
(vi) Which languages are accepted by Push down Automata?
(vii) Give two examples of Regular Expression.
(viii) What do you mean by Lemma?
(Short Answer Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) If Set $A=\{1,2,3\}$ and Relation defined on A as
(i) $\mathrm{R} 1=\{(1,1)(2,2)(3,3),(1,2)(1,3)(2,3)\}$
(ii) $\mathrm{R} 2=\{(1,1)(2,2)(3,3)\}$
(iii) $\mathrm{R} 3=\{(1,1)(2,3)(3,1),(3,2)(1,3)(3,3)\}$

Check whether the following Relation are (a) Reflexive (b) symmetric (c) transitive.
3) Explain the basic model of finite automata with suitable example.
4) Write a CFG which generates strings having equal number of a's and b's. Also explain with example.
5) Discuss some NP-Complete Problems.
6) Discuss the difference between Top-Down Parser and Bottom-Up Parser with example.
7) Write short note on multiple tracks Turing Machine.
8) Discuss the application of automata in NLSP? Explain with example.
9) Construct a finite automaton for the regular expression $(a+b)^{*} a b b$.

Section - C
 $2 \times 16=32$
 (Long Answer Questions)

Note: Answer any two questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.
10) Explain the Closure Properties of Languages with suitable example. Also discuss the relationship between Languages and Automata.
11) Optimize the CFG given below by reducing the grammar, S is start symbol.
$S \rightarrow A \mid 0 C 1$
$\mathrm{A} \rightarrow \mathrm{B}|01| 10$
$C \rightarrow \in \mid C D$
12) Design a Pushdown Automata that accepts the language generated by the grammar with production (S is the starting symbol):
$\mathrm{S} \rightarrow \mathrm{aSa}$
$\mathrm{S} \rightarrow \mathrm{bSb}$
$S \rightarrow \epsilon$
13) Explain the Model of Turing Machine with suitable examples.

