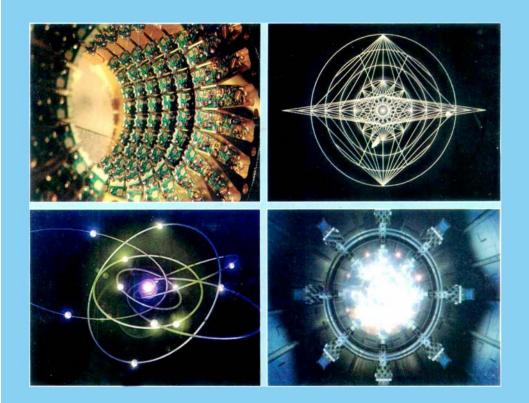
PH - 09

वर्धमान महावीर खुला विश्वविद्यालय, कोटा



क्वांटम यांत्रिकी

PH-09

वर्धमान महावीर खुला विश्वविद्यालय, कोटा

क्वांटम यांत्रिकी

	पाठ्यक्र	म अभिकल्प	समिति	
अध्यक्ष	·			
प्रोफेसर (डॉ.) नरेश दाधीच				
कुलपति				
- वर्धमान महावीर खुला विश्वविद्यालय,				
कोटा (राजस्थान)				
	संयोजक /	समन्वयक ए	खं सदस्य	
विषय समन्वयक		सदस्य सचि	व / समन्वय	क
प्रो. एन. एस. सक्सेना		डॉ. अशोक	शर्मा	
भौतिक विज्ञान विभाग		सह आचार्य, राजनीति विज्ञान		न
राजस्थान विश्वविद्यालय, जयपुर		वर्धमान महाव	ीर खुला विश्वनि	वेद्यालय, कोटा
सदस्य				
1. प्रो. आर. के. पाण्डेय,		5. प्रो.क	ानन बाला श	र्मा
भौतिक विज्ञान विभाग		भौतिक	विज्ञान विभाग	Г
बर्कतुल्ला विश्वविद्यालय, भोपाल		राजस्थ	ान विश्वविद्यात	नय, जयपुर
2. प्रो. एस. आर. धारीवाल		6. डॉ. अ	र. एन. शर्मा	ı
सेवानिवृत्त प्रोफेसर		भौतिक	विज्ञान विभाग	Г
जयनारायण विश्वविद्यालय,		एम. ए	स. जे. कॉलेज,	
जोधपुर		भरतपुर	=	
3. प्रो. एम. हु सैन		7. डॉ. के	. बी. शर्मा	
भौतिक विज्ञान विभाग		भौतिक	विज्ञान विभाग	Г
जामिया मिलिया इस्लामिया, नई दिल्ली	ì	एस.एस	ा. जैन सुबोध (१	पी.जी.) कॉलेज, जयपुर
4. प्रो. डी. सी. जैन		8. श्रीबी	. एस. शर्मा	
भौतिक विज्ञान विभाग		भौतिक	विज्ञान विभाग	ſ
राजस्थान विश्वविद्यालय, जयपुर		राजकी	य महाविद्यालय	ा, कोटा
	सम्पादक ए	वं पाठ लेखव	,	
संपादक	<u></u> ભે	खक		
प्रो. डी. सी. जैन	1. डॉ. आर. एन	. शर्मा,	4.	डॉ. दीपक मेहरोत्रा
भौतिक विज्ञान विभाग	भौतिक विज्ञान	विभाग,		राजकीय महाविद्यालय,
राजस्थान विश्वविद्यालय, जयपुर	एम. एस. जे.	कॉलेज, भरतपुर		अजमेर
	2. डॉ. रवीन्द्र कु	मार शर्मा,	5.	डॉ. एस. एन. डोलिया,
	भौतिक विज्ञान	विभाग,		भौतिक विज्ञान विभाग,
	एम. एस. जे.	कॉलेज, भरतपुर		राजस्थान विश्वविद्यालय, जयपुर
	3. श्री अनिल कु	मार गुप्ता,		
	भौतिक विज्ञान	विभाग,		
	डी. ए. वी. कॉ	न्नेज, अजमेर		
	अकादमिक एवं प्र	।शासनिक ^{ट्र}	ग् वस ्था	
प्रोफेसर (डॉ.) नरेश दाधीच	पो (दॉ)	अनाम जैटली		योगेन्द्र गोयल

	अकादमिक एवं प्रशासनिक व्यवस्था		
प्रोफेसर (डॉ.) नरेश दाधीच	प्रो. (डॉ.) अनाम जैटली	योगेन्द्र गोयल	
कुलपति	निदेशक	प्रभारी	
वर्धमान महावीर खुला विश्वविद्यालय,कोटा (राज.)	संकाय विभाग	पाठ्यक्रम सामग्री उत्पादन एवं वितरण विभाग	
पाठ्यक्रम उत्पादन			

योगेन्द्र गोयल

सहायक उत्पादन अधिकारी वर्धमान महावीर खुला विश्वविद्यालय, कोटा

उत्पादन नबम्वर, 2009

ISBN-13/978-81-8496-141-6

इस सामग्री के किसी भी अंश की वर्धमान महावीर खुला विश्वविद्यालय, कोटा की लिखित अनुमित के बिना किसी भी रूप में अथवा मिमियोग्राफी (चक्रमुद्रण) द्वारा या अन्यत्र पुनः प्रस्तुत करने की अनुमित नहीं है ।

वर्धमान महावीर खुला विश्वविद्यालय, कोटा

क्वांटम यान्त्रिकी

अनुक्रमणिका

इकाई	इकाई का नाम	पृष्ठ संख्या
क्रमांक		
इकाई-1	क्वांटम सिद्धांत का उद्गम	7–29
इकाई-2	तरंग यान्त्रिकी के तत्व	30-47
इकाई-3	श्रोडिंजर समीकरण	48–62
इकाई-4	क्वांटम यान्त्रिकी के संकारक	63–79
इकाई-5	क्वांटम यान्त्रिकी के मूल सिद्धांत	80–93
इकाई-6	श्रोडिंजर समीकरण के हल	94–104
इकाई-7	बाक्स में कण	105–121
इकाई-8	विभव सीढ़ी तथा विभव प्राचीर	122–139
इकाई-9	वर्ग विभव कूप	140–149
इकाई-10	बद्ध अवस्था की समस्याएँ	150–165
इकाई-11	सरल आवर्ती दोलित्र	166–182
इकाई-12	गोलीय सममित विभव	183–189
इकाई-13	हाइड्रोजन परमाणु	190–210
इकाई-14	परमाण्वीय स्पेक्ट्रा	211–228
इकाई-15	आणविक स्पेक्ट्रा	229–244

आमुख

आपकी अध्ययन-सामाग्री भौतिकी के क्षेत्र के विद्वानों की एक टीम द्वारा विकसित की गई है। यह आपको स्वतंत्र अध्ययन में प्रदान करने के लिए दिया गया ढांचा है। निम्नलिखित पर ध्यान देने से अप इस अध्ययन सामाग्री का सर्वोत्तम लाभ ले सकेंगे। इस पुस्तक को बी. एससी. पार्ट-III की भौतिक विज्ञान के पत्र-1 (PH-09), क्वांटम यान्त्रिकी, के पाठ्यक्रमों को ध्यान में रखकर तैयार किया गया है पुस्तक को कुल 15 इकाइयों में विभक्त किया गया है। प्रत्येक इकाई (पाठ) के प्रारम्भ में पाठ का शीर्षक हिन्दी एवं अंग्रेजी में दिया गया है। यह आपको पाठगत सामग्री के विषय में एक समान्य विचार प्रदान करेगा। शीर्षक के पश्चात् प्रत्येक इकाई (पाठ) की रूपरेखा दी गई है जो कि सम्पूर्ण इकाई का दर्पण है तथा पाठ में सम्मिलित सभी अनुच्छेदों का क्रमवार उल्लेख करती है। प्रत्येक इकाई की पाठ्य सामाग्री को सरलतम् भाषा में सुगम एवं सुस्पष्ट रूप से लिखने का प्रयास किया गया है। प्रत्येक पाठ (इकाई) में एक अवधारणा (concept) पूर्ण होने के पश्चात कुछ बोध प्रश्न व हल किए गए उदाहरण दिये गए हैं। इनका उद्देश्य आपके द्वारा सीखी गई अवधारणा को पुष्ट करना और समस्या हल करने की तकनीक सिखाना है जो भौतिकी के अध्ययन का एक अनिवार्य अंग है।

प्रत्येक इकाई के अंत में सारांश, शब्दावली, संदर्भ ग्रंथ तथा अभ्यासार्थ प्रश्न दिये गए हैं। हमें आशा है कि इस पुस्तक कि अध्ययन सामग्री अपने उद्देश्य में सफल होगी तथा विदयार्थियों के लिये उपयोगी सिद्ध होगी।

हम, अपने साथियों एवं विद्यार्थियों से यह अनुरोध करते हैं कि वे इस पुस्तक की छपाई की त्रुटियों एवं अपने बहु मूल्य सुझावों से अवगत कराकर हमें अनुग्रहीत करें जिससे पाठ्य-सामाग्री को आपकी आशा के अनुरूप बनाया जा सके ।

इकाई 1

क्वांटम सिद्धान्त का उद्गम (Origin of Quantum Theory)

इकाई की रूपरेखा

- 1.0 उद्देश्य
- 1.1 प्रस्तावना
- 1.2 कृष्णिका स्पेक्ट्रमी वितरण की विवेचना करने में चिरसम्मत भौतिकी की असफलता
- 1.3 प्लांक विकिरण नियम
- 1.4 प्रकाश वैद्युत प्रभाव
- 1.5 कॉम्पटन प्रभाव
- 1.6 सारांश
- 1.7 शब्दावली
- 1.8 संदर्भ ग्रन्थ
- 1.9 बोध प्रश्नों के उत्तर
- 1.10 अभ्यासार्थ प्रश्न

1.0 उद्देश्य (Objectives)

इस इकाई को पढ़ने के पश्चात आप

- कृष्णिका विकिरणों को समझ सकेंगे;
- कृष्णिका वर्णक्रम में ऊर्जा के वितरण को जान सकेंगे;
- कृष्णिका वर्णक्रम में ऊर्जा वितरण को समझाने के लिये प्रयुक्त चिरसम्मत
 सिद्धान्तों की सीमाओं की जानकारी प्राप्त कर सकेंगे;
- प्लांक विकिरण नियम व क्वान्टम सिद्धान्त को सीख सकेंगे;
- प्रकाश वैद्युत प्रभाव एवं कॉम्पटन प्रभाव तथा इनके महत्व को जान सकेंगे।

1.1 प्रस्तावना (Introduction)

पदार्थ या द्रव्य छोटे-छोटे कणों से मिलकर बने हु ये होते हैं जो सदैव गित करते रहते हैं। इन कणों के गितिकीय गुणों से सम्बन्धित विज्ञान की शाखा को यान्त्रिकी कहा जाता है। इन कणों पर न्यूटन के गितिक नियम लागू किये जाये तो यह अध्ययन चिरसम्मत यान्त्रिकी के अन्तर्गत आता है। चिरसम्मत यान्त्रिकी के आधार पर ग्रहों, उपग्रहों जैसे आकाशीय पिण्डों से लेकर पृथ्वी के छोटे-बड़े कणों की गित की व्याख्या की जा सकती है। चिरसम्मत यान्त्रिकी, परमाणवीय आकार के सूक्ष्म क्षेत्र वाले कणों के स्थायित्व, गितिक व्यवहार एवं उनके विकिरणों से प्राप्त स्पेक्ट्रम आदि की व्याख्या करने में असमर्थ है।

बीसवीं शताब्दी के प्रारम्भ व उन्नीसवीं शताब्दी के अंत में अनेक ऐसे प्रयोगात्मक तथ्य प्राप्त हु ये जिनकी व्याख्या चिरसम्मत भौतिकी के नियमों के द्वारा संभव नहीं हो सकी, जैसे कृष्णिका ऊर्जा वितरण का नियम, प्रकाश विद्युत प्रभाव एवं कॉम्पटन प्रभाव आदि। इस इकाई में आप इन घटनाओं का अध्ययन विस्तृत रूप से करेंगे। इन प्रभावों से सम्बन्धित प्रायोगिक परिणाम को समझने के लिये नवीन सिद्धान्त जिसे क्वान्टम सिद्धान्त कहते हैं, की आवश्यकता होती है। इस इकाई में हम उन प्रायोगिक तथ्यों का वर्णन करेंगे जिनसे क्वान्टम सिद्धान्त का उद्गम हुआ।

कृष्णिका स्पेक्ट्रमी वितरण विवेचना में असफलता के अतिरिक्त चिरसम्मत सिद्धान्त, परमाणु के स्थायित्व, परमाणु व इसके प्रोटॉन व इलेक्ट्रॉन की गति, ठोस पदार्थ की विशिष्ट ऊष्मा का ताप के साथ परिवर्तन, परमाणुओं द्वारा उत्सर्जित विवक्त वर्णक्रम, रमन प्रभाव आदि की व्याख्या में असफल रहा अतः चिरसम्मत भौतिकी की अपूर्णता के कारण ही 1900 में क्वान्टम यान्त्रिकी का उद्गम हुआ।

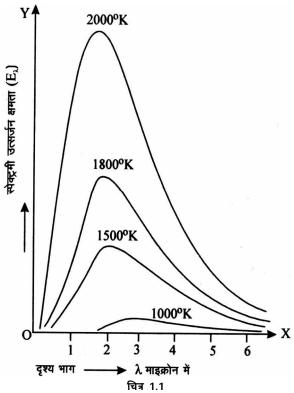
इस इकाई मे सर्वप्रथम अनुच्छेद 1.2 में कृष्णिका स्पेक्ट्रमी वितरण की विवेचना में चिरसम्मत भौतिकी की असफलता की विवेचना की गयी है। प्लांक ने क्वांटम सिद्धान्त प्रतिपादित कर कृष्णिका विकिरण की व्याख्या की, इसे अनुच्छेद 1.3 में बताया गया है। प्रकाश वैद्युत प्रभाव एवं काम्पटन प्रभाव, ये दोनों प्रभाव चिरसम्मत यांत्रिकी से नहीं समझे जा सकते हैं अतः इन्हें क्वांटम यांत्रिकी से समझाया गया है। यह विवेचना क्रमशः अनुच्छेद 1.4 व 1.5 की गयी।

1.2 कृष्णिका स्पेक्ट्रमी वितरण की विवेचना करने में चिरसम्मत भौतिकी की असफलता (Failure of Classical Mechanics in explaining Spectral Distribution of Black Body)

आप जानते हैं कि कृष्णिका ऐसे पिण्ड के रूप में परिभाषित की जाती है जो स्वयं पर आपितत सभी आवृत्तियों (तरंगदेध्यों) के विकिरणों कों पूर्णतया अवशोषित कर लेती है। कृष्णिका के प्रतिरूप के लिये कोटर (cavity) पर विचार करते हैं जिसकी दीवारें एक निश्चित ताप पर है तथा भीतरी दीवारें काली की हुई होती है। कोटर की दीवारी के परमाणु विद्युत चुम्बकीय विकिरण उत्सर्जित करते हैं, जो कोटर के भीतर की दीवारों से परावर्तित एवं अवशोषित हो सकते हैं। कोटर के भीतर का सम्पूर्ण भाग विद्युत चुम्बकीय विकिरणों से भर जाता है तथा साम्यावस्था में होता है। अर्थात परमाणुओं द्वारा प्रति सैकण्ड उत्सर्जित ऊर्जा का मान, उनके द्वारा प्रति सैकण्ड अवशोषित ऊर्जा के मान के बराबर होता है। ऊष्मीय साम्यावस्था में कोटर के भीतर विकिरणों का ऊर्जा घनत्व नियत रहता है। कोटर की दीवार में बने एक छिद्र से विकिरण बाहर उत्सर्जित होता रहता है। कोटर के छिद्र से बाहर निकलने वाले विकिरण को कृष्णिका विकिरण (black body radiation) कहते हैं।

कृष्णिका विकिरणों का विश्लेषण सर्वप्रथम, लूमर (Lummer) तथा प्रिंगशाइम (Pringsheim) द्वारा 1899 में किया गया था। स्तर तथा प्रिंगशाइम ने विभिन्न तापों पर

कृष्णिका की स्पेक्ट्रमी उत्सर्जन क्षमता (E_{λ}) तथा तरंग दैर्ध्य (λ) का मापन किया। कृष्णिका के लिये E_{λ} व λ के मध्य ग्राफ को स्पेक्ट्रमी ऊर्जा वितरण ग्राफ कहते हैं जिसे चित्र 1.1 में दर्शाया गया है।



स्पेक्ट्रमी ऊर्जा वितरण की प्रमुख विशेषतायें निम्न है -

- (i) ताप बढ़ाने पर, प्रत्येक तरंगदैर्ध्य के संगत विकिरणों की मात्रा में वृद्धि होती है।
- (ii) ऊर्जा वितरण वक्र सतत होता है। प्रत्येक ताप पर प्रत्येक तरंगदैध्यं के विकिरण उत्सर्जित होते है।
- (iii) किसी एक नियत ताप पर स्पेक्ट्रमी उत्सर्जन क्षमता (E_λ) का मान, तरंगदैर्ध्य का मान बढ़ाने पर, बढ़ता है। किसी विशिष्ट तरंगदैर्ध्य (λ_m) पर E_λ अधिकतम हो जाता है और बाद में E_λ का मान घटने लगता है।
- (iv) λ_m (विशिष्ट तरंगदैर्ध्य जिस पर λ_m अधिकतम है) का मान ताप वृद्धि करने पर, कम तरंगदैर्ध्य की ओर विस्थापित होता है । λ_m का मान कृष्णिका के परमताप के व्युत्कमानुपाती होता है।

अर्थात्
$$\lambda_{\scriptscriptstyle m} \propto \frac{1}{\mathrm{T}}$$

$$\lambda_{\scriptscriptstyle m} \mathrm{T} = b = \mathsf{fe}$$
 ा...(1.1)

इसे वीन का विस्थापन नियम (Wien's displacement law) कहते हैं । b को वीन नियतांक (Wien's constant) कहते हैं, इसका मान $b=2.898\times10^{-3}mK$ होता है।

(v) किसी ताप पर कृष्णिका के ऊर्जा वितरण वक्र तथा तरंगदैर्ध्य अक्ष के मध्य क्षेत्रफल, उसकी कुल उत्सर्जन क्षमता E के तुल्य होता है तथा यह कृष्णिका के परम ताप के चतुर्थ घात के अनुक्रमानुपाती होता है।

अर्थात्

अथवा

$$E = \sigma T^4 \qquad ...(1.2)$$

जहाँ σ नियतांक है, इसे स्टीफन नियतांक कहते हैं। σ का मान 5.67×10^{-8} वाट/मी. 2 K^4 होता है। इसको स्टीफन बोल्टजमान (Stefan Boltzmann) नियम भी कहते हैं।

(vi) तरंगदैर्ध्य λ_m के विकिरणों के लिये अधिकतम उत्सर्जन क्षमता का मान, परम ताप के पंचम घात के अनुक्रमानुपाती होता है। इसे वीन का पंचम घात नियम (Wien's fifth power law) कहते हैं। अर्थात्

$${
m E}_{\lambda m} \propto {
m T}^5$$
 ${
m E}_{\lambda m} {
m T}^{-5} =$ नियतांक ...(1.3)

लूमर तथा प्रिंगशाइम द्वारा प्राप्त स्पेक्ट्रमी ऊर्जा वितरण वक्रों की विवेचना के लिये सर्वप्रथम वीन (Wien) ने प्रयास किया। इन वक्रों की वीन विकिरण नियम के आधार पर व्याख्या की गई।

वीन ने ऊष्मागितकी के सिद्धांतों के आधार पर ज्ञात किया कि तरंगदैर्ध्य परास λ तथा $\lambda+d\lambda$ के मध्य विकिरणों के लिये कृष्णिका की स्पेक्ट्रमी उत्सर्जन क्षमता E_{λ} निम्न होती है -

$$E_{\lambda}d\lambda = \frac{A}{\lambda^5} f(\lambda T) d\lambda$$
 ਗਟ /ਸੀ.² ...(1.4)

यहीं $f\left(\lambda T\right)$ चर λT का फलन है। $f\left(\lambda T\right)$ का मान ज्ञात करने के लिये वीन ने कृष्णिका के वर्णक्रम में ऊर्जा के वितरण वक्र तथा मैक्सवेल के ऊर्जा वितरण वक्र की तुलना कर $F(\lambda T)$ का निम्न मान प्राप्त किया

$$f(\lambda T) = e^{-\frac{a}{\lambda T}} \qquad \dots (1.5)$$

अतः λ तथा $\lambda+d\lambda$ तरंगदैर्ध्य परास के मध्य कृष्णिका द्वारा उत्सर्जित विकिरणों की मात्रा

$$E_{\lambda}d\lambda = A\lambda^{-5}e^{-a/\lambda t}d\lambda \qquad ...(1.6)$$

यह वीन का विकिरण नियम कहलाता है। यह नियम केवल लघु तरंगदैर्ध्य परास में ही सत्य पाया जाता है। यह नियम दीर्घ तरंगदैर्ध्य परास में विकिरणों की ऊर्जा वितरण की व्याख्या करने में असफल रहता है।

रैले जीन्स का विकिरण नियम (Rayleigh Jeans radiation law)

कोटर (cavity) के अन्दर के विद्युत चुम्बकीय विकिरणों को हार्मीनिक तरंगों का अध्यारोपण माना जा सकता है। इनमें से प्रत्येक तरंग का व्यवहार यांत्रिक हार्मीनिक दोलित्र की भाँति होता है। दोलित्र की ऊर्जा मैक्सवेल-बोल्टजमान के ऊर्जा समविभाजन नियम (law of

equipartition of energy) द्वारा k होती है जहाँ T कोटर का परम ताप तथा k वोल्टजमान नियतांक है। यह ऊर्जा, कोटर में प्रत्येक स्वातन्त्र्य कोटि (degree of freedom) के साथ सहचारित होती है।

v तथा v + dv आवृत्ति परास में प्रति एंकाक आयतन में

कम्पनों की विधाओं की संख्या
$$=$$
 $\frac{8\pi v^2}{c^2} dv$...(1.7)

अतः v तथा v+dv के मध्य कोटर मे प्रति एंकाक आयतन ऊर्जा

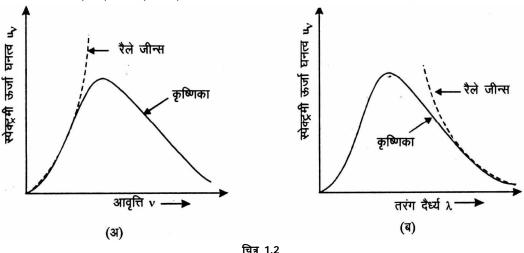
$$u_{v} dv = \frac{8\pi v^{2}}{c^{3}} kT dv$$
 ...(1.8)

 $v=rac{c}{\lambda}$ तथा $dv=-rac{c}{\lambda^2}d\lambda$ का उपयोग कर समी. (1.8) को तरंगदैर्ध्य के रूप में निम्न प्रकार से दर्शाया जा सकता है

$$u_{\lambda}d_{\lambda} = \frac{8\pi}{c^{3}} \left(\frac{c}{\lambda}\right)^{2} kT\left(\frac{c}{\lambda^{2}}\right) d\lambda$$

$$u_{\lambda}d_{\lambda} = \frac{8\pi}{\lambda^{4}} kT d\lambda \qquad ...(1.831)$$

समी. (1.8) एंव (1.83) रैले - जीन्स नियम को प्रदर्शित करता है।



चित्र 1.2 (अ तथा ब) से ज्ञात होता है कि रैले-जीन्स नियम निम्न आवृत्ति अथवा दीर्घ तरंगदैर्ध्य के विकिरणों के लिये कृष्णिका विकिरण प्रायोगिक मानों से अच्छा मेल खाता है किन्तु यह नियम लघु तरंगदैर्ध्य (उच्च आवृत्ति) पर प्रायोगिक मानों से बिल्कुल मेल नहीं खाता है।

कृष्णिका विकिरण के प्रायोगिक वक्र चित्र 1.1 के अनुसार ऊर्जा घनत्व का मान एक सीमा तक बढ़ कर, उच्च आवृत्ति पर पुनः घटने लगता है। रैले जीन्स के नियमानुसार स्पेक्ट्रमी ऊर्जा घनत्व का मान v^2 के समानुपाती होने से यह सतत रूप से बढ़ते जाना चाहिये

अतः यह नियम, उच्च आवृत्ति की विकिरणों के लिये कृष्णिका विकिरण की व्याख्या करने से पूर्ण असफल रहता है।

साथ ही किसी ताप पर v=0 से $v=\infty$ तक विकिरणों का कुल ऊर्जा घनत्व (प्रति एकांक आयतन विकिरणों की कुल ऊर्जा)

$$u = \int_{0}^{\infty} u_{v} dv \qquad \dots (1.9)$$

कुल ऊर्जा घनत्व का मान अनन्त प्राप्त होता है जो असम्भव है। इस नियम में $U_{\nu}\alpha v^2$ के कारण पराबैंगनी विपद् (ultraviolet catastrophe) उत्पन्न हो जाती है क्योंकि उच्च आवृत्ति पर विकिरणों के अत्याधिक ऊर्जा घनत्व की प्रायोगिक पृष्टि नहीं हो पाती है।

स्पष्ट है कि कृष्णिका विकिरण के प्रायोगिक परिणामों की पूर्ण व्याख्या, चिरसम्मत भौतिकी पर आधारित नियम जैसे वीन नियम अथवा रैले-जीन्स नियम के द्वारा संभव नहीं हो सकी थी।

** ** **	· · · · · · · · · · · · · · · · · · ·		
बोध प्रश्न (Self assessment questions) 1. कृष्णिका के अवशोषण गुणांक का मान क्या होता है?			
2.	कोटर की ऊष्मीय साम्यावस्था से क्या तात्पर्य है?		
3.			
4.	कृष्णिका विकिरण स्पेक्ट्रमी वितरण को वीन विकिरण नियम किस तंरगदैर्ध्य परास में व्याख्या करता है?		
5.	रैले - जीन्स नियम द्वारा कृष्णिका विकिरण स्पेक्ट्रमी वितरण की व्याख्या मे असफल रहने का क्या कारण है?		

उदाहरण 1.1 एक कृष्णिका का परम ताप दुगुना कर दिया जाता है। इससे उत्सर्जित ऊर्जा किस अनुपात में बढ़ेगी?

हल: हम जानते हैं कि स्टीफन के नियम से उत्सर्जित विकिरण की दर

$$E = \sigma T^4 \qquad ...(i)$$

अतः नवीन अवस्था में ताप को दुगना करने पर उत्सर्जित ऊर्जा की दर

$$E' = \sigma (2T)^4 \qquad ...(ii)$$

समी. (ii) में (i) का भाग देने पर

$$\frac{E'}{E} = \frac{\sigma(2T)^4}{\sigma T^4} = 2^4 = \left(\frac{16}{1}\right)$$

अतः उत्सर्जित विकिरण ऊर्जा 16 गुणा बढ जायेगी।

1.3 प्लांक विकिरण नियम (Plank's Radiation Law)

1900 में प्लांक ने कोटर विकिरणों के स्पेक्ट्रमी वितरण के लिये एक उपयुक्त व्यंजक व्युत्पन्न किया। प्लांक के अनुसार कोटर के विकिरणों के उसकी दीवारों के परमाणुओं के साथ साम्यावस्था में होने पर, कोटर के भीतर परमाणुओं की ऊर्जाओं और विकिरण की ऊर्जा वितरण में कुछ सम्बन्ध होना चाहिये। प्लांक ने विद्युत चुम्बकीय दोलित्र की प्रकृति के बारे में नवीन विचार व सिद्धान्त प्रस्तुत किया जिससे क्वान्टम सिद्धान्त का जन्म हु आ। उनकी परिकल्पना (hypothesis) के निम्न मुख्य बिन्दु थे -

- (i) विकिरण ऊर्जा का अवशोषण या उत्सर्जन, कृष्णिका में उपस्थित विद्युत चुम्बकीय दोलकों के दवारा होता है।
- (ii) विकिरण ऊर्जा का अवशोषण या उत्सर्जन सतत न होकर विवक्त (discrete) मान में होता है। ऊर्जा का उत्सर्जन या अवशोषण ऊर्जा के न्यूनतम मान hv के पूर्णगुणज के रूप में होता है। अर्थात hv, 2hv, 3hv... अर्थात E=nhv
- (iii) मूलभूत ऊर्जा क्वान्टम hv के बराबर होता है जहाँ h प्लांक नियतांक है, जिसका मान 6.62×10^{-34} जूल सेकण्ड होता है।

ऊर्जा का न्यूनतम विवक्त मान, जिसका विनिमय हो सकता है, को क्वान्टम कहते हैं।
प्लांक ने विकिरणों के ऊर्जा घनत्व के व्यंजक व्युत्पन्न करने में ऊर्जा के समविभाजन
सिद्धान्त का उपयोग नहीं कर यह माना कि प्रत्येक आणविक दोलित्र की ऊर्जा क्वान्टीकृत होती
है।

कृष्णिका से उत्सर्जित विकिरण की ऊर्जा का मान ज्ञात करने के लिये प्लांक ने मैक्सवेल बोल्टजमान सांख्यिकी (M B statistics) का उपयोग किया। प्लांक के अनुसार नियत ताप T पर विवक्त ऊर्जा मान nhv वाले दोलकों की संख्या निम्न होती है -

$$N_n = Ae^{\frac{-n\hbar v}{kT}} \qquad ...(1.10)$$

दोलकों की औसत ऊर्जा $\left\langle E \right\rangle \! = \! - = \frac{\sum nh v \mathbf{N}_{\scriptscriptstyle n}}{\sum \mathbf{N}_{\scriptscriptstyle n}}$

समी. (1.10) से

$$\langle E \rangle = \frac{\sum nhv^{\frac{-nhv}{kT}}}{\sum e^{\frac{-nhv}{kT}}} \qquad \dots (1.11)$$

माना
$$\frac{hv}{kT} = \qquad ...(1.12)$$

$$\therefore \langle E \rangle = kxt \frac{\sum ne^{-nx}}{\sum e^{-nx}} \qquad \dots (1.13)$$

$$= kTx \frac{e^{-x}}{\left(1 - e^{-x}\right)^2} \left(1 - e^x\right) \qquad \dots (1.14)$$

$$= kTx \frac{e^{-x}}{\left(1 - e^{-x}\right)}$$

$$= \frac{kTx}{e^x - 1}$$

x का मान समी. (1.12) से रखने पर

$$\langle E \rangle = \frac{kT \frac{hv}{kT}}{e^{hv/kT} - 1} = \frac{hv}{e^{hv/kT} - 1} \qquad \dots (1.15)$$

समी. (1.15) को प्राप्त करने में बोल्टजमान के गुणांक $e^{-\frac{nnv}{kT}}$ का उपयोग किया गया है जो E_n ऊर्जा वाले दोलित्रों की संख्या प्रकट करता है। समी. (1.15) में ऊर्जा का व्यंजक ऊर्जा समिविभाजन नियम से प्राप्त kT से भिन्न प्राप्त होता है अतः समी. (1.8) में kT का प्रतिस्थापन समी. (1.15) के दवारा करने पर

$$u_{v}dv = \frac{8\pi v^{2}}{c^{3}} \frac{hvdv}{e^{hv/kT} - 1} = \frac{8\pi hv^{3}}{c^{3}} \frac{dv}{e^{hv/kT} - 1}$$
...(1.16)

समी. (1.16) प्लांक का विकिरण नियम कहलाता है। यह नियम कृष्णिका से उत्सर्जित सभी तरंगदैर्ध्य वाले विकिरणों के लिये सही परिणाम देता है। प्लांक की परिकल्पना ने एक नवीन यांत्रिकी का मार्ग प्रशस्त किया जिसे क्वान्टम यांत्रिकी के नाम से जानते हैं।

 $\frac{hv}{kT} = x$ $\sum e^{-nx} = 1 + e^{-x} + e^{-2x} + e^{-3x} + \dots$ $\sum e^{-nx} = \frac{1}{1 - e^{-x}}$...(i)

दोनों पक्षों का अवकलन करने पर

$$\sum -ne^{-nx} = \frac{(-1)}{(1-e^{-x})^2}e^{-x} \qquad ...(ii)$$

$$\sum ne^{-nx} = \frac{e^{-x}}{(1-e^{-x})^2}$$

बोध प्रश्न (Self assessment questions) 6. प्लांक परिकल्पना में ऊर्जा का अवशोषण या विकिरण कौन करता है?

उदाहरण 1.2 प्लांक के विकिरण नियम को, तरंगदैर्ध्य परास λ तथा $\lambda+d\lambda$ में ऊर्जा घनत्व $u_{\lambda}d\lambda$ के रूप में प्रदर्शित कीजिये।

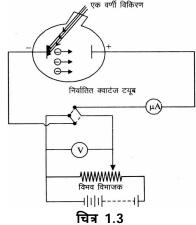
हल: प्लांक का विकिरण नियम

सम्बन्धों का उपयोग समी. (i) में करने पर

$$u_{\lambda}d\lambda = -\frac{8\pi h \left(\frac{c}{\lambda}\right)^{3}}{c^{3}} \frac{1}{e^{hc/\lambda kT} - 1} \left(\frac{-c}{\lambda^{2}}\right) d\lambda$$
$$u_{\lambda}d\lambda = \frac{8\pi hc}{\lambda^{5}} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda$$

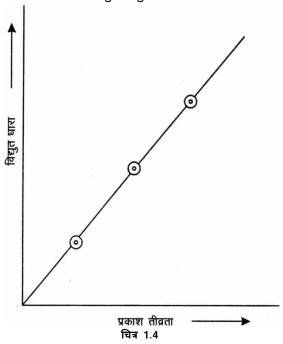
1.4 प्रकाश वैद्युत प्रभाव (Photo Electric Effect)

प्रकाश वैद्युत प्रभाव अध्ययन के लिये परिपथ चित्र 1.3 मे प्रदर्शित किया गया है। जब किसी धातु पृष्ठ पर विशिष्ट आवृति का प्रकाश आपितत होता है तब पृष्ठ से इलेक्ट्रॉन उत्सर्जित होते हैं। यह प्रकाश वैद्युत प्रभाव कहलाता है। इस प्रकार उत्सर्जित इलेक्ट्रॉनों को फोटो इलेक्ट्रॉन तथा इन इलेक्ट्रॉनों के कारण प्रवाहित विद्युत धारा को प्रकाश विद्युत धारा कहते है। इस प्रभाव में प्रयुक्त धातु जिससे इलेक्ट्रॉन उत्सर्जित होते हैं, को फोटो इलेक्ट्रॉन उत्सर्जिक कहते हैं।

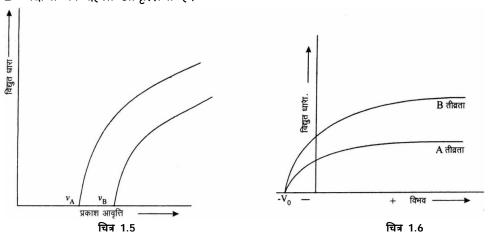


प्रकाश वैद्युत प्रभाव का लिनाई ने अध्ययन कर निम्न निष्कर्ष प्राप्त किये -

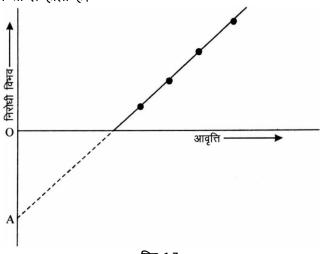
(i) जब प्रकाश की तीव्रता बढाई जाती है तो विद्युत धारा का मान बढ़ता जाता है। अर्थात् विद्युत धारा, प्रकाश तीव्रता के अनुक्रमानुपाती होती है। देखें चित्र 1.4।



(ii) जब प्रकाश की तीव्रता स्थिर रखकर प्रकाश की आवृत्ति में परिवर्तन करते हैं तो हम महत्वपूर्ण घटना देखते हैं कि प्रत्येक कैथोड पदार्थ के लिये एक निश्चित न्यूनतम आवृत्ति होती है जिस पर प्रकाश वैद्युत प्रभाव प्रारम्भ होता है, इस आवृत्ति को देहली आवृत्ति (threshold frequency) कहते हैं। इस आवृत्ति से कम आवृत्ति पर प्रकाश तीव्रता चाहे कितनी भी क्यों न हो, विद्युत धारा नही बहती है। इस आवृत्ति से अधिक आवृत्ति होने पर धारा आवृत्ति के साथ क्रमशः बढती जाती है। चित्र 1.5 मे दो अलग अलग कैथोड पदार्थों के लिये आवृत्ति एवं धारा के मध्य सम्बन्ध के ग्राफ दर्शाये गये हैं। v_A तथा v_B क्रमशः A एवं B पदार्थों की देहली आवृत्तियां है।



- (iii) जब संग्राहक प्लेट A (चित्र 1.3 के अनुसार) पर धन विभव बढ़ाया जाता है तो धारा क्रमशः बढ़ते हू ये एक संतुप्त सीमा तक पहुँ चती है। विभव का मान घटाने पर पाते हैं कि विभव का मान शून्य होने पर भी धारा का मान शून्य नही होता। निश्चित विपरीत विभव लगाने पर धारा का मान शून्य होता है। इस विपरीत विभव को जिस पर धारा का मान शून्य हो जाता है, निरोधी विभव (stopping potential) कहते हैं। निरोधी विभव, का मान इलेक्ट्रोड के पदार्थ एवं आपतित प्रकाश आवृत्ति निश्चित होने पर, प्रकाश की तीव्रता पर निर्भर नहीं करता है। निरोधी विभव का यह व्यवहार चित्र 1.6 में प्रदर्शित किया गया है।
- जब विभिन्न प्रकाश आवृत्तियों के लिये निरोधी विभव ज्ञात करते है तो हमें ज्ञात होता है कि निरोधी विभव का मान अधिक आवृत्ति के लिये अधिक होता है एवं देहली आवृत्ति पर निरोधी विभव का मान शून्य होता है। आवृत्ति एवं निरोधी विभव का लेखाचित्र एक सरल रेखा (चित्र 1.7 के अन्सार) प्राप्त होता है। इस रेखा को पीछे बढाने पर हमें OA के बराबर कार्यफलन प्राप्त होता है।



चित्र 1.7

(v)प्रकाश के आपतन तथा फोटो इलेक्ट्रॉन के उत्सर्जन मे कोई समय पश्चता (time lag) नहीं होती है, अर्थात फोटो इलेक्ट्रॉन बिना कोई समय लगाये ही (समय $10^{-9}\,\mathrm{sec}$ से भी कम) उत्सर्जित हो जाते हैं।

प्रकाश विद्युत प्रभाव की व्याख्या - चिरसम्मत सिद्धान्त की असफलता

- (i) चिरसम्मत तरंग सिद्धांत के अनुसार प्रकाश तरंग की ऊर्जा उसकी तीव्रता पर निर्भर करती है तथा समान्पाती होती है। यदि तीव्रता अधिक हो तो फोटो इलेक्ट्रॉन किसी भी आवृत्ति पर, पृष्ठ से बाहर आ जाना चाहिये। प्रयोग में हम पाते हैं कि देहली आवृत्ति से कम आवृत्ति के प्रकाश के लिये, चाहे जितनी प्रकाश तीव्रता रखी जायें, फोटो इलेक्ट्रॉन का उत्सर्जन नही होता है।
- (ii)चिरसम्मत तरंग सिद्धान्त के अन्सार फोटो इलेक्ट्रॉन की गतिज ऊर्जा, प्रकाश की तीव्रता पर निर्भर होनी चाहिये। प्रयोग के परिणाम इसके प्रतिकूल है। अर्थात फोटो इलेक्ट्रॉन की

गतिज ऊर्जा भी आपतित प्रकाश की आवृत्ति पर निर्भर करती है, प्रकाश तीव्रता पर निर्भर नहीं करती है।

(iii) तरंग सिद्धान्त के अनुसार, तरंग ऊर्जा सम्पूर्ण तरंग्राग मे वितिरत होती है और इलेक्ट्रॉन को इसका कुछ अंश ही प्राप्त होता है अतः प्रकाश तीव्रता कम होने पर, ऊर्जा शोषण में कुछ समय लगना चाहिये परन्तु प्रयोग से हम पाते हैं कि तीव्रता अधिक या कम कुछ भी हो, इलेक्ट्रॉन तुरन्त ही उत्सर्जित हो जाते हैं।

प्रकाश वैद्युत प्रभाव की व्याख्या - आइन्सटीन का क्वान्टम सिद्धान्त

1905 में आइन्सटीन (Einstein) ने प्रकाश वैद्युत प्रभाव की सफलता पूर्वक व्याख्या दी। उन्होंने बताया कि प्रकाश ऊर्जा तरंग्राग में नहीं होकर सूक्ष्म ऊर्जा पैकेट जिन्हें कवान्टा कहते हैं, के रूप में होती है। ये ऊर्जा के पैकेट अर्थात क्वान्टा, फोटॉन के रूप में हैं। फोटॉन की ऊर्जा

$$E = hv$$
 ...(1.17)

जहाँ $h=6.62\times10^{-34}$ जूल सेकण्ड प्लांक नियतांक है। ये फोटॉन प्रकाशीय वेग से गित करते हैं। फोटॉन संख्या अधिक होने पर प्रकाश की तीव्रता बढ़ती है। जब hv ऊर्जा के फोटॉन, धातु पृष्ठ के द्वारा अवशोषित किये जाते हैं तो ये प्रकाश वैद्युत प्रभाव उत्पन्न करते हैं। फोटॉन की ऊर्जा का एक भाग इलेक्ट्रॉन को धातु पृष्ठ से बाहर निकालने के लिये आवश्यक न्यूनतम ऊर्जा (जिसे हम कार्य फलन ϕ (work function) कहते हैं) के रूप मे काम आता है तथा दूसरा भाग $hv-\phi$ इलेक्ट्रॉन को गित देने में काम आता है।

अर्थात
$$hv = \phi + \frac{1}{2}mv_{\text{max}}^2 \qquad ...(1.18)$$

देहली आवृत्ति v_0 के प्रकाश के फोटॉन के लिये

$$\frac{1}{2}mv_{\text{max}}^2 = 0$$

$$\therefore hv_0 = \phi$$

अत: समी. (1.18) से

$$\frac{1}{2}mv_{\text{max}}^2 = hv - hv_0 \qquad ...(1.19)$$

यह समी. (1.19) आइन्सटीन की प्रकाश विद्युत समीकरण कहलाती है।

उपर्युक्त व्याख्या के आधार पर सभी प्रायोगिक तथ्य निम्न तरीके से समझाये जा सकते हैं।

(i) यदि आपितत प्रकाश की आवृत्ति कम करते जाये तब समी. (1.18) के अनुसार उत्सर्जित इलेक्ट्रॉन की गितज ऊर्जा का मान घटता जाता है। यदि आवृत्ति इतनी कम कर दी जाये कि फोटॉन की ऊर्जा, केवल इलेक्ट्रॉन को सतह से बाहर निकाल सके तो यह आवृत्ति देहली आवृत्ति (v_0) कहलाती है।

अर्थात
$$h v_0 = \phi$$

यदि आवृत्ति इससे भी कम हो तो स्पष्ट है कि फोटॉन, इलेक्ट्रॉन को धातु पृष्ठ से बाहर नहीं निकाल पायेगा। प्रकाश की तीव्रता फोटान संख्या पर निर्भर करती है अतः देहली आवृत्ति से कम आवृत्ति वाले प्रकाश की तीव्रता बढाने पर भी प्रकाश वैद्युत प्रभाव उत्पन्न नहीं होगा। जबिक देहली आवृत्ति से आवृत्ति अधिक होने पर प्रकाश तीव्रता बढ़ाने पर, प्रकाश तीव्रता के साथ धारा बढ़ती है।

- (ii) प्रकाश की ऊर्जा फोटॉन के रूप में निहित होती है अत: पर्याप्त ऊर्जा का फोटॉन, धातु पृष्ठ पर आपतित होकर अवशोषित होने से इलेक्ट्रॉन उत्सर्जित हो जाता है अर्थात फोटो इलेक्ट्रॉन के उत्सर्जन में कोई भी समय पश्चता (time lag) नहीं होती है।
- (iii) समी. (1.18) से ज्ञात होता है कि फोटो इलेक्ट्रॉन की अधिकतम गतिज ऊर्जा, प्रकाश तीव्रता पर निर्भर नहीं करती। यह प्रकाश की आवृत्ति पर ही निर्भर करती है।

(iv) यदि निरोधी विभव V_0 है

तब
$$\frac{1}{2}mv_{\text{max}}^2 = eV_0$$
 ...(1.20)

समी. (1.19) में यह प्रतिस्थापित करने पर

$$eV_0 = hv - hv_0$$

$$V_0 = \frac{h}{e} (v - v_0)$$
 ...(1.21)

उपरोक्त समी. (1.21) चित्र 1.7 की स्पष्ट व्याख्या करता है कि निरोधी विभव V_0 तथा प्रकाश आवृत्ति में वक्र एक सरल रेखा, जिसका ढाल (Slope) $\frac{h}{e}$, प्राप्त होना चाहिये। मिलीकन ने 1916 मे प्रकाश वैद्युत समीकरण का सत्यापन किया तथा ढाल (Slope) के प्रयोग से प्लांक नियतांक (h) का यर्थाथ मान ज्ञात किया। वैज्ञानिक आइन्सटीन को प्रकाश विदयुत प्रभाव की सफल व्याख्या पर 1905 मे नोबेल प्रस्कार से सम्मनित किया गया।

बोध प्रश्न (Self assessment questions)

7. आपतित प्रकाश की तीव्रता बदने से इलेक्ट्रॉन की गतिज ऊर्जा प्रभावित क्यों नहीं होती है?

.....

उदाहरण 1.3 एक धातु के लिये कार्य फलन का मान $2.2\,eV$ है, प्रकाश वैद्युत उत्सर्जन के लिये देहली तरंगदैर्ध्य का मान ज्ञात कीजिये।

हल: हम जानते हैं कि कार्यफलन

$$\phi = h v_0 = h \frac{c}{\lambda_0}$$

$$\therefore \quad \lambda_0 = \frac{hc}{\phi}$$

यहां $h = 6.62 \times 10^{-34}$ जूल से., $c = 3 \times 10^8$ मी./से.

$$\phi = 2.2 \times 1.6 \times 10^{-19}$$
 जूल
$$\therefore \quad \lambda_0 = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{2.2 \times 1.6 \times 10^{-19}}$$

$$= 5.625 \times 10^{-7} \text{ मी.} = 5625 \overset{0}{\mathrm{A}}$$

तरंगदैर्ध्य का मान $5625\,{\stackrel{^{0}}{
m A}}\,$ है।

उदाहरण 1.4 सोडियम का कार्यफलन 1.9 eV है। उस पर $5000\,\mathrm{\AA}$ का प्रकाश आपितत है तो

- (i) उत्सर्जित इलेक्ट्रॉन की अधिकतम गतिज ऊर्जा eV में तथा
- (ii) निरोधी विभव ज्ञात कीजिये।

हल: आइन्सटीन प्रकाश समीकरण से अधिकतम गतिज ऊर्जा

$$\begin{split} \frac{1}{2}mv_{\text{max}}^2 &= hv - hv_0 \\ &= h\frac{c}{\lambda} - \phi \\ &= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5000 \times 10^{-10}} - 1.9 \times 1.6 \times 10^{-19} \\ &= 3.96 \times 10^{-19} - 3.02 \times 10^{-19} \\ &= 0.92 \times 10^{-19} \text{ जूल} \\ &= \frac{0.92 \times 10^{-19}}{1.6 \times 10^{-19}} = 0.575 eV \end{split}$$

अतः इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा 0.575eV है।

(ii)हम जानते हैं कि जितनी इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा (eV में) होती है उतने वोल्ट ही निरोधी विभव होता है।

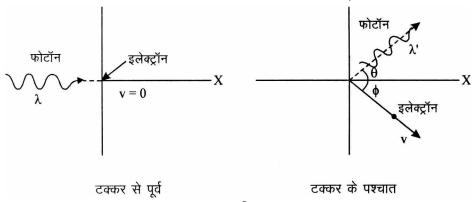
अतः निरोधी विभव $V_0 = 0.575$ वोल्ट

1.5 कॉम्पटन प्रभाव (Compton's Effect)

कॉम्पटन (Compton) ने 1923 में अपने एक प्रयोग में ग्रेफाइट ब्लॉक द्वारा प्रकीर्णित X किरणों के तरंगदैध्य मापन में ज्ञात किया कि प्रकीर्णित X किरणों की तरंगदैध्य दो प्रकार की प्राप्त होती हैं। एक तरंगदैध्य आपाती X किरणों के समान जबिक दूसरी तरंगदैध्य आपाती किरणों की तरंगदैध्य से अधिक होती है। प्रकीर्णित X किरणों की तरंगदैध्य के अन्तर को कॉम्पटन तरंगदैध्य (Compton wave length) या कॉम्पटन विस्थापन कहते हैं। उपर्युक्त, प्रायोगिक प्रेक्षण को कॉम्पटन प्रभाव कहा जाता है।

जब X किरणों को किसी लक्ष्य के द्वारा प्रकीर्णित किया जाता है तब प्रकीर्णित X किरणों में आपाती X किरण से, अधिक तरंगदैर्ध्य (या कम आवृत्ति की) किरणें पाई जाती है। कॉम्पटन ने X किरणों के प्रकीर्णन का अध्ययन यह मानते हुये किया कि X किरण फोटॉन को

परमाणु में बद्ध इलेक्ट्रॉन, शिथिता बद्ध (loose bound) या लगभग मुक्त प्रतीत होते हैं। इस प्रभाव को क्वान्टम सिद्धान्त से समझाया जाता है। आपाती X किरण का फोटॉन, लक्ष्य के एक इलेक्ट्रॉन से प्रत्यास्थ टक्कर करता है इसके फलस्वरूप X किरण फोटॉन प्रकीर्णित होने पर आपाती फोटॉन से कम ऊर्जा का हो जाता है तथा यह ऊर्जा में कमी, इलेक्ट्रॉन द्वारा गतिज ऊर्जा में वृद्धि के रूप मे प्रकट होती हैं। अतः स्पष्ट है कि जब एक वर्णी उच्च ऊर्जा की X किरण फोटॉन को प्रकीर्णित करने वाले लक्ष्य पर आपितत कराते हैं, तब प्रकीर्णित फोटॉन की तरंगदैर्ध्य का मान, आपितत फोटॉन की तरंगदैर्ध्य से अधिक होता है। यह परिवर्तन आपाती X किरण फोटॉन एवं लक्ष्य के इलेक्ट्रॉन के मध्य टक्कर के कारण ही होता है। लक्ष्य के इलेक्ट्रॉन का विराम द्रव्यमान m_0c^2 तथा संवेग शून्य है। लक्ष्य के इलेक्ट्रॉन पर आपाती X किरण फोटॉन की ऊर्जा hv तथा संवेग $\frac{hv}{c}$ हो जाते हैं। प्रत्यास्थ टक्कर से प्रकीर्णित फोटॉन, की ऊर्जा hv' तथा संवेग $\frac{hv}{c}$ हो जाते हैं। प्रकीर्णित फोटॉन की दिशा से ϕ कोण बनाता हुआ, v वेग से प्रतिक्षिप्त हो जाता है तथा इलेक्ट्रॉन की ऊर्जा mc^2 एवं संवेग mv हो जाता है। टक्कर से पूर्व एवं पश्चात में दोनों कणों को चित्र 1.8 मे प्रदर्शित किया गया है।



चित्र 1.8

ऊर्जा के संरक्षण नियमानुसार

$$hv + m_0c^2 = hv' + mc^2$$

 $mc^2 = h(v - v') + m_0c^2$...(1.22)

x-अक्ष के अनुदिश संवेग संरक्षण नियमानुसार

$$\frac{hv}{c} = \frac{hv'}{c}\cos\theta + mv\cos\phi$$

$$cmv\cos\phi = h(v - v'\cos\theta) \qquad ...(1.23)$$

y - अक्ष के अनुदिश संवेग संरक्षण नियमानुसार

$$0 = \frac{hv'}{c}\sin\theta - mv\sin\phi$$

$$cmv\sin\phi = hv'\sin\theta \qquad ...(1.24)$$

समी. (1.23) व (1.24) का वर्ग कर जोड़ने पर

$$m^2v^2c^2 = h^2(v^2 + v' + 2vv'\cos\theta)$$
 ...(1.25)

समी. (1.22) का वर्ग करने पर

$$m^2c^4 = h^2(v^2 + v' + 2vv') + m_0^2c^4 + 2hm_0c^2(v - v')$$
 ...(1.26)

समी. (1.26) से समी. (1.25) को घटाने पर

$$m^2c^4 - m^2v^2c^2 = -2h^2vv'(1-\cos\theta) + m_0^2c^4 + 2hm_0c^2(v-v')$$

$$m^{2}c^{4}\left(1-\frac{v^{2}}{c^{2}}\right) = -2h^{2}vv'(1-\cos\theta) + m_{0}^{2}c^{4} + 2hm_{0}c^{2}(v-v') \quad ...(1.27)$$

सापेक्षिकता के सिद्धान्त से
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 ...(1.28)

या

$$m^2 \left(1 - \frac{v^2}{c^2} \right) = m_0^2 \qquad ...(1.29)$$

समी. (1.29) का मान समी. (1.27) मे प्रतिस्थापित करने पर

$$m_0^2 c^4 = -2h^2 v v' (1 - \cos \theta) + m_0^2 c^4 + 2h m_0 c^2 (v - v')$$

अर्थात

$$\frac{v - v'}{vv'} = \frac{h(1 - \cos \theta)}{m_0 c^2}$$

$$\frac{1}{v'} - \frac{1}{v} = \frac{h}{m_0 c^2} (1 - \cos \theta)$$
 ...(1.30)

$$v = \frac{c}{\lambda}$$
 तथा $v' = \frac{c}{\lambda'}$

अतः
$$\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$
 ...(1.31)

समी. (1.31) में $\frac{h}{m_0c}$ की विमा तरंगदैर्ध्य के तुल्य प्राप्त होती है अत: यह कॉम्पटन

तरंगदैर्ध्य कहलाती है। समी. (1.31) को कॉम्पटन विस्थापन (Compton shift) भी कहते हैं। अधिकतम कॉम्पटन विस्थापन के लिये प्रकीर्णन कोण $\theta = 180^{\circ}$ होना चाहिये अतः समी. (1.31) से

$$d\lambda = \frac{2h}{m_0 c} = \frac{2 \times 6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 3 \times 10^8} = 0.0484 \text{ A}$$

अर्थात अधिकतम कॉम्पटन विस्थापन

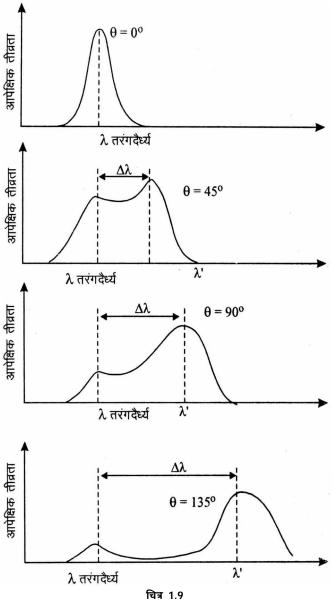
$$d\lambda = 0.0484 \,\mathrm{A}^{0}$$

समी. (1.31) से स्पष्ट है कि

(i) $\lambda' > \lambda$ प्रकीर्णित फोटॉन की तरंगदैर्ध्य का मान आपाती फोटॉन की तरंगदैर्ध्य से अधिक होता है।

- (ii) कॉम्पटन विस्थापन $d\lambda$ प्रकीर्णन कोण θ पर निर्भर करता है यह आपाती विकिरण की आवृत्ति पर निर्भर नहीं करता है।
- (iii) प्रकीर्णन कोण $\theta=0^{\circ}$ पर कॉम्पटन विस्थापन शून्य तथा $\theta=180^{\circ}$ पर कॉम्पटन विस्थापन अधिकतम $(0.048 \stackrel{\circ}{\rm A})$ होता है।

विभिन्न प्रकीर्णन कोणों पर चित्र 1.9 में कॉम्पटन विस्थापन को प्रदर्शित किया गया है। प्रकीर्णित X-िकरण की आपितत तरंगदैर्ध्य λ के साथ, अधिक तरंगदैर्ध्य λ' की X किरणें भी प्रेक्षित होती है।



चिरसम्मत सिद्धान्त, कॉम्पटन प्रभाव की व्याख्या करने मे पूर्ण रूपेण असफल है क्योंकि इस सिद्धान्त के अनुसार प्रकीर्णित X किरणों की तरंगदैर्ध्य आपतित X किरणों की

तरंगदैर्ध्य के समान ही होनी चाहिये। कॉम्पटन प्रभाव द्वारा फोटॉन के कण के रूप में होने की सत्यता सिद्ध होती है जो क्वान्टम सिद्धान्त के अनुरूप है।

बोध प्रश्न (Self assessment questions)				
8.	क्या कॉम्पटन प्रभाव X किरणों के स्थान पर दृश्य प्रकाश द्वारा संभव है?			
9.	प्रकाश वैद्युत प्रभाव एवं कॉम्पटन प्रभाव में क्या भिन्नताएँ है?			
10				
10.	प्रकाश वैद्युत प्रभाव एवं कॉम्पटन प्रभाव, क्रमश: प्रकाश के किस स्वरूप की			
ओर सं	केत करते हैं?			

उदाहरण 1.5 कॉम्पटन प्रभाव में प्रकीर्णित X किरण फोटॉन एवं आपितत X किरण फोटॉन की आवृत्तियों का सम्बंध व्यूत्पन्न कीजिये।

हल: कॉम्पटन विस्थापन का समीकरण

$$\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$
 $\therefore v = \frac{c}{\lambda}$ तथा $v' = \frac{c}{\lambda'}$
 $\therefore \frac{1}{v'} - \frac{1}{v} = \frac{h}{m_0 c^2} (1 - \cos \theta)$
 $\frac{1}{v'} = \frac{m_0 c^2 + hv(1 - \cos \theta)}{m_0 c^2 v}$

$$v' = \frac{m_0 c^2 v}{m_0 c^2 + hv(1 - \cos \theta)}$$
 $v' = \frac{v}{1 + \frac{hv}{m_0 c^2} (1 - \cos \theta)}$

स्पष्ट है कि v' < v अर्थात प्रकीर्णित फोटॉन की आवृत्ति का मान, आपितत फोटॉन की आवृत्ति से कम होता है।

उदाहरण 1.6 एक फोटॉन की उस न्यूनतम ऊर्जा का परिकलन कीजिये जिससे कि वह विराम अवस्था वाले इलेक्ट्रॉन को अपनी आधी ऊर्जा स्थानान्तरित कर सके।

हल : फोटॉन की ऊर्जा
$$=hv=hrac{c}{\lambda}$$

प्रकीर्णित फोटॉन की ऊर्जा $=\frac{1}{2}hv=\frac{hc}{2\lambda}$ अर्थात प्रकीर्णित फोटॉन का तरंगर्दैर्ध्य $\lambda'=2\lambda$

अतः
$$\lambda$$
' = λ = λ_{\max} = 0.0484 Å अतः फोटॉन की न्यूनतम ऊर्जा = $\frac{hc}{\lambda_{\max}}$ = $\frac{6.6\times10^{-34}\times3\times10^8}{0.048\times10^{-10}}$ जूल

$$=\frac{6.6\times10^{-34}\times3\times10^8}{0.048\times10^{-10}\times1.6\times10^{-19}}=2.56\times10^5\,eV$$

उदाहरण 1.7 $1 \overset{\circ}{\mathrm{A}}$ तथा $10 \overset{\circ}{\mathrm{A}}$ तरंगदैध्य वाले आपितत फोटॉन के कॉम्पटन प्रकीर्णन के कारण तरंगदैध्य के अधिकतम प्रतिशत परिवर्तन की गणना कीजिये। इस परिणाम से क्या निष्कर्ष निकलता है?

हल : हम जानते हैं कि प्रकीर्णन कोण 180° पर कॉम्पटन विस्थापन अधिकतम होता है।

$$d\lambda = 0.048 \stackrel{\text{o}}{\text{A}}$$

तरंगदैर्ध्य में अधिकतम प्रतिशत परिवर्तन

$$\lambda = 1 \stackrel{0}{A}$$
 के लिये $= \frac{0.048}{1} \times 100 = 4.8\%$

तथा $\lambda = 10 \stackrel{0}{\mathrm{A}}$ के लिये

$$=\frac{0.048}{10}\times100=0.48\%$$

अधिक तरंगदैर्ध्य के आपाती फोटॉन के लिये प्रकीर्णन द्वारा तरंगदैर्ध्य में प्रतिशत परिवर्तन कम होता है। इसी कारण कॉम्पटन प्रभाव लगभग 1A के कोटि के तरंगदैर्ध्य में ही प्रेक्षित हो पाता है।

उदाहरण 1.8 एक X किरण पुंज एक मुक्त स्थिर इलेक्ट्रॉन द्वारा 45° कोण पर प्रकीर्णित होकर $0.024\,\mathrm{A}^{\circ}$ तरंगदैर्ध्य का किरण पुच्छ हो जाता है। आपाती X किरण का तरंगदैर्ध्य जात कीजिये?

हल :
$$\theta = 45^{\circ}$$
 $\lambda' = 0.024 \overset{\circ}{\mathrm{A}}$ $\lambda = \overline{\pi}$ ात करना है सूत्र $\lambda' - \lambda = 0.024(1 - \cos \theta)$
$$\lambda = \lambda' - 0.024(1 - \cos \theta)$$
$$= 0.024 - 0.024(1 - \cos 45^{\circ})$$
$$= \frac{0.024}{\sqrt{2}}$$
$$\lambda = 0.017 \overset{\circ}{\mathrm{A}}$$

1.6 सारांश (Summary)

- चिरसम्मत भौतिकी द्वारा कृष्णिका ऊर्जा स्पेक्ट्रम, प्रकाश वैद्युत प्रभाव, कॉम्पटन प्रभाव, रमन प्रभाव आदि की व्याख्या संभव नहीं हो सकी।
- कृष्णिका स्पेक्ट्रमी वितरण को वीन विकिरण नियम के द्वारा लघु तरंगदैर्ध्य पर ही सत्य पाया गया है तथा रैले-जीन्स नियम द्वारा उच्च तरंगदैर्ध्य पर ही समझाया जा सकता है।
- कृष्णिका स्पेक्ट्रमी वितरण वक्र को पूर्ण रूपेण प्लांक ने क्वान्टम सिद्धान्त के आधार पर सफलतापूर्वक समझाया। प्लांक के अनुसार विकिरण ऊर्जा का अवशोषण अथवा उत्सर्जन सतत न होकर विवक्त मान में होता है। न्यूनतम विवक्त मान जिसका विनिमय हो सकता है, को क्वान्टम कहते हैं।
- प्लांक का विकिरण नियम $u_v dv = \frac{8\pi h v^3}{c^3} \frac{dv}{e^{hv/kT}-1}$
- जब किसी धातु पृष्ठ पर विशिष्ट आवृत्ति का प्रकाश फोटॉन रूप में आपितत होता है तब पृष्ठ से इलेक्ट्रॉन उत्सर्जित होते हैं। यह प्रकाश विद्युत प्रभाव कहलाता है।
- $\frac{1}{2}mv_{\text{max}}^2 = hv hv_0$ प्रकाश विद्युत समीकरण कहलाती है, v_0 समीकरण में देहली आवृत्ति है।
- जब उच्च आवृत्ति की X किरणों को किसी प्रकीर्णक से प्रकीर्णित किया जाता है तब प्रकीर्णित किरणों में आपाती X किरणों से अधिक तरंगदैर्ध्य की X किरणें प्राप्त होती है। यह घटना कॉम्पटन प्रभाव कहलाती है।
- कॉम्पटन विस्थापन $\lambda' \lambda = d\lambda = \frac{h}{m_0 c} (1 \cos \theta)$, $\theta =$ प्रकींणन कोण

प्रकाश विद्युत प्रभाव तथा कॉम्पटन प्रभाव दोनों ही प्रकाश के कण स्वरूप की पुष्टि करते हैं।

1.7 शब्दावली (Glossary)

आवृत्ति	Frequency
ऊर्जा घनत्व	Energy density
कोटर	Cavity
कॉम्पटन विस्थापन	Compton shift
कार्य फलन	Work function
कृष्णिका	Black body
चिरसम्मत	Classical
तरंगदैध्यं	Wave length
देहली आवृत्ति	Threshold frequency
निरोधी विभव	Stopping potential
परिकल्पना	Hypothesis

विकिरण	Radiation
विपद्	Cata strophe
विवक्त	Discrete
प्रकीर्णित	Scattered

1.8 संदर्भ ग्रन्थ (Reference Books)

एस.एस.रावत एवं	प्रारम्भिक क्वान्टम यांत्रिकी	कॉलेज बुक हाऊस,
सरदार सिंह	एवं स्पेक्ट्रोस्कोपी	जयपुर
S.P. Singh and	Quantum Mechanics	S.Chand&Co.
M.K. Bagde		New Delhi
J.P Agarwal and	Introductory Quantum	Pragati Prakashan
A.K Jain	Mechanics	Meerut
S.L Kakani, C.Hemrajani	Quantum Mechanics and	College Book
and T.C. Bansal	Spectroscopy	Centre, Jaipur

1.9 बोध प्रश्नों के उत्तर (Answers to Self Assesment Questions)

- 1. एक।
- 2. कोटर की उष्मीय साम्यावस्था से यह तात्पर्य है कि इसकी आन्तरिक दीवार के परमाणुओं द्वारा प्रति सैकण्ड उत्सर्जित ऊर्जा का मान, उनके द्वारा प्रति सैकण्ड अवशोषित ऊर्जा के मान के बराबर है।
- 3. कुल उत्सर्जन क्षमता।
- 4. लघु तरंगदैर्ध्य परास में।
- 5. चिरसम्मत भौतिकी के ऊर्जा के समविभाजन सिद्धान्त का उपयोग करना।
- 6. कृष्णिका में उपस्थित विद्युत चुम्बकीय दोलक।
- 7. तीव्रता बढ़ाने से प्रति सैकण्ड प्रति एकांक क्षेत्रफल पर आपितत फोटॉनों की संख्या बढ़ती है, फोटान ऊर्जा नहीं बढ़ती है। अतः गतिज ऊर्जा अप्रभावित रहती है।
- 8. नहीं, दृश्य प्रकाश के उपयोग करने पर अधिकतम तरंगदैर्ध्य में परिवर्तन नगण्य ($(\lambda = 5000\,\mathrm{\AA}^0\,$ पर परिवर्तन $0.001\%\,$ होता है) होने के कारण यह मापन योग्य नहीं रहता अतः दृश्य प्रकाश से कॉम्पटन प्रभाव संभव नहीं है।
- 9. (i) प्रकाश विद्युत प्रभाव में फोटॉन की ऊर्जा अल्प होती है जबकि कॉम्पटन में अधिक
 - (ii) प्रकाश वैद्युत प्रभाव में फोटान अवशोषित हो जाता है जबिक कॉम्पटन प्रभाव में इसका प्रकीर्णन हो जाता है।
- 10. ये दोनों ही प्रभाव प्रकाश के कण स्वरूप या कण प्रकृति की पुष्टि करते हैं।

1.10 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type question)

- 1. कृष्णिका विकिरण का स्पेक्ट्रमी ऊर्जा वितरण वक्र तीन भिन्न तापों पर बनाइये।
- 2. स्पेक्ट्रमी ऊर्जा वितरण की विशेषतायें लिखिये।
- 3. वीन के विकिरण नियम से स्पेक्ट्रमी ऊर्जा वितरण वक्र की व्याख्या कीजिये।
- 4. पराबैगनी विपद् को समझाइये।
- 5. प्लांक का क्वान्टम सिद्धान्त लिखिये।
- प्रकाश विद्युत प्रभाव क्या होता है?
- कॉम्पटन विस्थापन में अधिकतम विस्थापन के लिये फोटॉन का प्रकीर्णन कोण का मान क्या होगा?

निबन्धात्मक प्रश्न (Essay type questions)

- 8. कृष्णिका विकिरण के स्पेक्ट्रमी ऊर्जा वितरण को समझाने में वीन विकिरण नियम और रैले-जीन्स नियम की विफलताओं की विवेचना कीजिये। इसकी सफल व्याख्या के लिये प्लॉक की परिकल्पना क्या है? प्लांक का विकिरण नियम व्युत्पन्न कीजिये।
- प्रकाश वैद्युत प्रभाव के लिये प्रयोगों द्वारा प्राप्त नियमों का उल्लेख कीजिये। आइन्सटीन का प्रकाश विद्युत समीकरण क्या है? इससे उपरोक्त नियमों का स्पष्टीकरण दीजिये।
- 10. कॉम्पटन सिद्धान्त की विवेचना करते हुये समझाइये कि कॉम्पटन प्रकीर्णन में तरंगदैर्ध्य में परिवर्तन प्रकीर्णन कोण पर निर्भर करता है।
- 11. आवृत्ति v का एक फोटॉन m_0 विराम अवस्था द्रव्यमान के इलेक्ट्रॉन से कोण θ पर प्रकीर्णित होता है और इलेक्ट्रॉन आपाती फोटॉन की दिशा से ϕ कोण पर प्रतिक्षिप्त होता है तब सिद्ध करें कि $\tan\phi(1+\alpha)=\cot\frac{\theta}{2}$ जहाँ $\alpha=hv/m_0c^2$ है।

आंकिक प्रश्न (Numerical Questions)

- 12. दो वस्तुओं का ताप क्रमशः $427\,^{\circ}C$ तथा $227\,^{\circ}C$ है। उनसे उत्सर्जित होने वाली विकिरण ऊर्जा की दरों की तुलना कीजिये। (उत्तर : 3.84:1)
- 13. $1600 \, \mathrm{K}$ ताप पर अधिकतम विकिरण $2 \mu m$ तरंगदैर्ध्य पर उत्सर्जित होता है। $2000 \, \mathrm{K}$ ताप पर इसके संगत तरंगदैर्ध्य ज्ञात कीजिये। (उत्तर : $1.6 \mu m$)
- 14. सोडियम धातु के कार्य फलन की गणना इलेक्ट्रॉन वोल्ट में कीजिये जबिक देहली तरंगदैर्ध्य $6800\,\mathrm{\mathring{A}}^{^{0}}$ है। (उत्तर : 1.825eV)
- 15. यदि किसी धातु का कार्य फलन 1.10~eV है तथा उस पर $3300\,\mathrm{\AA}^\circ$ तरंगदैर्ध्य का प्रकाश आपितत होता है तो उसके निरोधी विभव का मान ज्ञात कीजिये। (उत्तर : 2.65V)
- 16. कॉम्पटन प्रकीर्णन में प्रतिक्षिप्त इलेक्ट्रॉन की गतिज ऊर्जा की गणना कीजिये यदि फोटॉन का तरंगदैध्यं $\stackrel{0}{3}$ तथा प्रकीर्णन कोण 90° हो। (उत्तर : 33.28eV)

17. $0.708 \stackrel{0}{\mathrm{A}}$ तरंगदैर्ध्य का फोटॉन विराम अवस्था में इलेक्ट्रॉन द्वारा 90° कोण पर प्रकीर्णित होता है। प्रकीर्णन के पश्चात फोटॉन के तरंगदैर्ध्य की गणना कीजिये। (उत्तर : $0.732 \stackrel{0}{\mathrm{A}}$)

इकाई-2

तरंग यान्त्रिकी के तत्व

(Elements of Wave Mechanics)

इकाई की रूपरेखा

- 2.0 उद्देश्य
- 2.1 प्रस्तावना
- 2.2 दे ब्राग्ली परिकल्पना
- 2.3 डेविसन जरमर प्रयोग
- 2.4 अनिश्चितता का सिद्धान्त
- 2.5 अनिश्चितता सिद्धान्त के अनुप्रयोग
 - 2.5.1 परमाण्वीय नाभिक में इलेक्ट्रॉन की अनुपस्थिति
 - 2.5.2 H- परमाणु की मूल अवस्था की ऊर्जा
 - 2.5.3 आवर्ती दोलक की मूल अवस्था में ऊर्जा
- 2.6 सारांश
- 2.7 शब्दावली
- 2.8 संदर्भ ग्रन्थ
- 2.9 बोध प्रश्नों के उत्तर
- 2.10 अभ्यासार्थ प्रश्न

2.0 उद्देश्य (Objectives)

इस इकाई को पढ़ने के पश्चात् आप

- प्रकाश के स्वरूप (प्रकृति) को दे ब्राग्ली परिकल्पना के द्वारा जान सकेंगे;
- दे ब्राग्ली परिकल्पना के प्रायोगिक सत्यापन विधि से परिचित हो सकेंगे;
- कण की स्थिति एवं संवेग का एक ही समय पर मापन में अनिश्चितता का सिद्धान्त सीख सकेंगे
- अनिश्चितता सिद्धान्त के अनुप्रयोगों को समझ सकेंगे।

2.1 प्रस्तावना (Introduction)

इकाई-1 के अध्ययन से आप क्वांटम सिद्धान्त के उदगम से परिचित हो चुके हैं। इस उदगम के पश्चात अर्थात प्लांक विकिरण नियम के पश्चात, अति सूक्ष्म (आणविक विमा के पिण्ड/कण) कणों के यांत्रिक अध्ययन के लिये कुछ नवीन धारणाओं का समावेश किया जाना आवश्यक हो गया है। इस इकाई में सर्वप्रथम अनुच्छेद 2.2 में आप दे - ब्रोग्ली परिकल्पना को जान सकेंगे। इससे आपको प्रकाश के दवैत प्रकृति की जानकारी प्राप्त होगी।

आप अनुच्छेद 2.3 में इस परिकल्पना का प्रायोगिक सत्यापन, डेवीसन जरमर प्रयोग के रूप में देखेंगे। तरंग यान्त्रिकी में सूक्ष्म कणों के गतिकीय व्यवहार में आप यह ज्ञात अर्जित करेंगे कि इन कणों की स्थिति एवं संवेग का एक ही समय पर पूर्ण यर्थाथता से मापन संभव नहीं है। यह इस इकाई के अनुच्छेद 2.4 में हाइजनबर्ग अनिश्चितता सिद्धान्त में समझाया गया है। अनुच्छेद 2.5 में हमनें अनिश्चितता सिद्धान्त के अनुप्रयोगों की भी विवेचना की है।

2.2 दे ब्राग्ली परिकल्पना (de-Broglie Hypothesis)

आपने प्रथम इकाई में पढ़ा कि प्रकाश की प्रकृति को कण स्वरूप में ही मानकर कुछ प्रयोगों, जैसे प्रकाश वैद्युत प्रभाव एवं कॉम्पटन प्रभाव के परिणामों की व्याख्या की जा सकती है। प्रकाश की व्यतिकरण (interference), विवर्तन (diffraction) एवं धुवण (polarisation) (इनका अध्ययन आप द्वितीय वर्ष प्रकाशिकी विषय मे विस्तार से कर चुके हैं) आदि परिघटनाओं की व्याख्या करने के लिये प्रकाश को तरंग स्वरूप में माना जाता है। प्रथम इकाई में प्लांक के क्वान्टम सिद्धान्त के अध्ययन से आपको जानकारी हैं कि विकिरण ऊर्जा क्वान्टिकृत होती है तथा प्रकाश के कवान्टम को फोटॉन जिसकी ऊर्जा hv होती है, कहते हैं। उपर्युक्त प्रयोगों के आधार पर प्रकाश के कण व तरंग स्वरूप प्राप्त हाते हैं।

प्रकाश के स्वरूप को स्पष्ट करने के लिये 1924 में फ्रांसीसी वैज्ञानिक दे - ब्राग्ली (de-Broglie) ने एक परिकल्पना प्रस्तुत की। उसके अनुसार जिस प्रकार तरंगों के रूप में विकिरण ऊर्जा से कणों के लाक्षणिक गुणों को सम्बद्ध करना आवश्यक होता है, उसी प्रकार गतिशील द्रव्य कणों के साथ तरंगों के लाक्षणिक गुण सम्बद्ध होने चाहिये, अर्थात द्रव्य कणों को भी विशिष्ट परिस्थितियों में तरंगों के रूप में व्यवहार करना चाहिये। इस परिकल्पना का प्रायोगिक सत्यापन 1927 मे डेविसन - जर्मर (Davisson-Germer) के प्रयोग एवं जी.पी. थामसन (J.P. Thomson) के द्वारा किया गया।

द्रव्य तरगों की तरगंदैध्य

आइन्सटीन के द्रव्यमान ऊर्जा सम्बंध से फोटॉन की ऊर्जा

$$E = m_0 c^2$$
 (जहां (m_0) फोटॉन का विराम द्रव्यमान है) ...(2.1)

तरंग के रूप में विकिरण की आवृत्ति ν हो तो फोटॉन की ऊर्जा को लिखा जा सकता है।

तथा फोटॉन का संवेग

$$p = m_0 c \dots (2.3)$$

अतः समी. (2.1) व (2.2) से
$$m_0 = \frac{E}{c^2} = \frac{hv}{c^2}$$

$$\therefore p = \left(\frac{hv}{c^2}\right)c = \frac{hv}{c} \dots (2.4)$$

$$p = \frac{h}{\lambda} \left(\therefore v = \frac{c}{\lambda} \right)$$

$$\exists u \qquad \lambda = \frac{h}{p} \qquad \dots (2.5)$$

समी. (2.5) से स्पष्ट है कि फोटॉन के तरंग रूप से सम्बद्ध गुण तरंगदैर्ध्य, उसके कण स्वरूप से सम्बद्ध गुण संवेग p से सम्बन्धित होता है। समी. (2.5) के आधार पर हम त्विरित इलेक्ट्रॉन एंव गातिशील कण को तंरगदैर्ध्य पर विचार करते हैं।

त्वरित इलेक्ट्रॉन की तरंगदैध्यं

माना इलेक्ट्रॉन का एक पुंज V वोल्ट विभवान्तर के द्वारा त्विरत किया जाता है। इलेक्ट्रॉन द्वारा प्राप्त गतिज ऊर्जा, क्षेत्र द्वारा किये गये कार्य के तुल्य होगी अर्थात

$$\frac{1}{2}mv^2 = ev \qquad ...(2.6)$$

$$\therefore \qquad v = \sqrt{\frac{2ev}{m}}$$

अत: v वेग से गतिशील इलेक्ट्रॉन की दे-ब्राग्ली तरंगदैर्ध्य

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2eVm}}$$

विभिन्न राशियों के मान रखने पर

$$\lambda = \frac{6.62 \times 10^{-34}}{\sqrt{2 \times 1.6 \times 10^{-19} \times 9.1 \times 10^{-31} V}} = \frac{12.27}{\sqrt{V}} \times 10^{-10}$$

$$\lambda = \frac{12.27}{\sqrt{V}} \stackrel{0}{A} \qquad ...(2.7)$$

गतिशील कणों की तरंगदैध्य

यदि किसी कण का द्रव्यमान m , वेग v तथा ऊर्जा E है,

तब
$$E = \frac{1}{2}mv^2$$

या $2mE = m^2v^2$
या $\sqrt{2mE} = mv = p$
 $\therefore \lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$...(2.8)

उपरोक्त समी. अन-आपेक्षिय (non-relativistic) अवस्था के लिये है, अर्थात इस अवस्था में कण का वेग v का मान इस प्रकार है कि pc का मान, कण के विराम द्रव्यमान के संगत ऊर्जा $m_{\rm o}c^2$ से बहुत कम होता है।

किन्तु यदि कण का वेग अत्यधिक है तथा $pc>m_0c^2$ तब हमें सापेक्षिकता के सिद्धान्त (theory of relativity) का उपयोग करना चाहिये। जैसे माना किसी m_0 विराम द्रव्यमान वाले कण की गतिज ऊर्जा k है तब इसकी कुल ऊर्जा होगी

$$E = m_0 c^2 + k ...(2.9)$$

तथा सापेक्षिकता के सिद्धान्त के अनुसार ऊर्जा

$$E^2 = p^2 c^2 + m_0^2 c^4 \qquad ...(2.10)$$

अत:
$$pc = \sqrt{E^2 - m_0^2 c^4}$$

समी. (2.9) से E का मान रखने पर

$$E = \sqrt{(k + m_0 c^2)^2 - m_0^2 c^4}$$

$$pc = \sqrt{k^2 + 2km_0 c^2}$$
 ...(2.11)

अतः दे-ब्राग्ली तरंगदैर्ध्य

$$\lambda = \frac{h}{p} = \frac{hc}{pc}$$

$$\lambda = \frac{hc}{\sqrt{k^2 + 2km_0c^2}} = \frac{hc}{\sqrt{k(k + 2m_0c^2)}}$$
 ...(2.12)

बोध प्रश्न (Self assessment questions)

उदाहरण 2.1 उस फोटॉन का संवेग ज्ञात कीजिये जिसकी तरंगदैर्ध्य $\overset{\circ}{1}\overset{\circ}{A}$ है। दिया है- $h=6.6\times 10^{-34}$ जूल से.।

हल : दे-ब्राग्ली सम्बंध से
$$p=\frac{h}{\lambda}$$

$$h=6.6\times 10^{-34} \ \ \mathrm{जूल} \ \ \mathrm{th}, \ \ \lambda=1 \overset{0}{\mathrm{A}}=10^{-10} \ \mathrm{fh}.$$
 अतः $p=\frac{6.6\times 10^{-34}}{10^{-10}}=6.6\times 10^{-24}$ िकग्रा.मीटर/से.

फोटॉन का संवेग 6.6×10^{-24} किया. मी./से. है।

उदाहरण 2.2 10 ग्राम का एक कण 2 मी./वेग से गतिशील है। दे-ब्राग्ली तरंगदैर्ध्य के मान की गणना कर इस परिणाम से निष्कर्ष निकालइये।

हल :
$$m = 10$$
 ग्रा = 10^{-2} कि ग्रा, $v = 2$ मी/से.

अतः
$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34}}{2 \times 10^{-2}} = 3.31 \times 10^{-32}$$
 मी.

$$\lambda = 3.31 \times 10^{-22} \text{ A}^{0}$$

कण की तरंगदैर्ध्य

$$\lambda = 3.31 \times 10^{-22} \stackrel{0}{A}$$

स्पष्ट है कि इतनी अल्प तरंगदैर्ध्य का मापन सम्भव नहीं हो पाने के कारण हम सामान्य पिण्डों का केवल कण स्वरूप ही देख पाते हैं, तंरगरूप नहीं।

उदाहरण 2.3 10 किलोवोल्ट विभवान्तर से त्वरित इलेक्ट्रॉनों की दे-ब्राग्ली तरंगदैर्ध्य ज्ञात कीजिये।

हल :
$$\lambda = \frac{12.27}{\sqrt{V}} \stackrel{0}{\mathrm{A}}$$

दिया है, $V = 10 \times 10^3$ वोल्ट

$$= \frac{12.27}{\sqrt{10^4}} = \frac{12.27}{10^2} = 0.1227 \stackrel{0}{A}$$

त्वरित इलेक्ट्रोनों की तंरगदैर्ध्य $0.1227 \stackrel{0}{A}$ है।

उदाहरण 2.4 1 MeV ऊर्जा के प्रोटान की दे-ब्राग्ली तरंगदैर्ध्य की गणना कीजिये। (प्रोटान का द्रव्यमान 1.67×10^{-27} किग्रा)

हल :
$$\lambda = \frac{h}{\sqrt{2mE}}$$
 दिया है,
$$E = 1 \quad MeV$$

$$= 1 \times 10^6 \times 1.6 \times 10^{-19} \, \text{जूल}$$

$$= 1.6 \times 10^{-13} \, \text{जूल}$$

$$= \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-13}}} = 2.855 \times 10^{-14} \, \text{मी}.$$

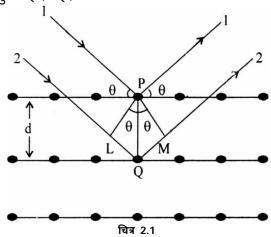
प्रोटोन की तरंगदैर्ध्य 2.855×10^{-14} मी. है।

2.3 डेविसन जरमर प्रयोग (Davisson and Germer

Experiment)

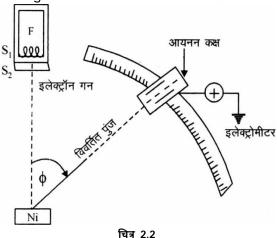
डेविसन जरमर ने दे-ब्राग्ली परिकल्पना का प्रायोगिक सत्यापन किया। इसके लिये उन्होंने ब्रेग के नियम (Bragg's law) का उपयोग किया। इसके अन्तर्गत जब X-िकरणें एक क्रिस्टल पर आपितत होती है तो क्रिस्ट्रल के जालक तलों (lattice planes) में नियमित रूप से व्यवस्थित परमाणुओं के द्वारा उनका प्रकीर्णन होता है। प्रकीर्णन के बाद X-िकरणें निश्चित दिशा में एक दूसरे का प्रबलन करती है और यह दिशा जालक तलों के मध्य दूरी तथा X-िकरणों की तरंगदैर्ध्य पर निर्भर करती है। उपर्युक्त अध्ययन, आप इसी वर्ष ठोस अवस्था भौतिकी की इकाई 5 व 6 में कर रहे हैं। यह व्यवस्था चित्र 2.1 में प्रदर्शित की गई है। त्वरित

इलेक्ट्रॉनों से सम्बन्धित द्रव्य तरंगों की तरंगदैर्ध्य X-िकरणों की तरंगदैर्ध्य की कोटि की होती है। अतः डेविसन जरमर ने विचार किया कि निकल (Ni) क्रिस्टल पर आपितत, त्विरत इलेक्ट्रॉनों के संकीर्ण किरण पुंज का विवर्तन X-िकरणों की भाँति ही होना चाहिये। इस व्यवस्था में इलेक्ट्रॉन प्रकींणन को क्रिस्टल तलों से ब्रेग विवर्तन के रूप में विचार कर तरंगदैर्ध्य के मान की गणना की जाती है। दे-ब्राग्ली परिकल्पना के अनुसार त्विरत इलेक्ट्रॉन की तरंगदैर्ध्य का मान ज्ञात करने पर, प्रायोगिक व सैद्धान्तिक मान लगभग समान प्राप्त होते हैं जिससे दे-ब्राग्ली परिकल्पना की प्रिकल्पना की प्राप्त होती है।



इस प्रयोग में निश्चित विभवान्तर V से त्विरत इलेक्ट्रॉन को निकल किस्टल पर लम्बवत आपितत कराकर, विवर्तित इलेक्ट्रॉन की तीव्रता वितरण का अध्ययन किया जाता है। इस उपकरण के मुख्यतः तीन भाग हैं जिन्हें चित्र 2.2 में प्रदर्शित किया गया है -

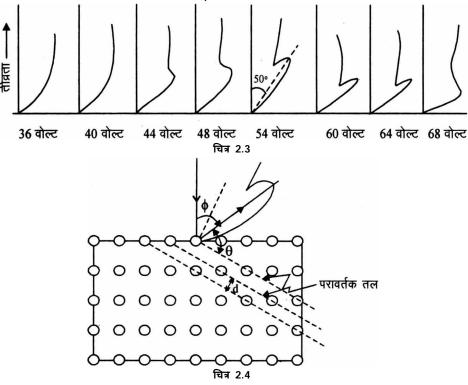
(i) **इलेक्ट्रॉन गन (Electron gun)** - तप्त फिलामेंट से तापायनिक उत्सर्जन के द्वारा प्राप्त इलेक्ट्रॉनों को निश्चित विभवान्तर V द्वारा त्विरत किया जाता है। कई स्लिटों से गुजार कर इन्हें एक संकीर्ण किरण पूंज के रूप में प्राप्त किया जाता है।



(ii) निकल किस्टूल- इलेक्ट्रॉन गन से प्रान्त इलेक्ट्रान पुंज को जब निकल किस्टूल पर आपितत कराते हैं तो निकिल किस्टूल के जालक बिन्दुओं (lattice points) के कारण यह किस्टूल ग्रेटिग (grating) की भाँति व्यवहार दर्शाता है।

(iii) संसूचक (Detector) - यह एक आयनन कक्ष होता है। आयनन कक्ष में विवर्तित इलेक्ट्रॉनों के द्वारा गैस आयनित हो जाती है और उत्पन्न आयनों की संख्या विवर्तित इलेक्ट्रॉन पुंज की तीव्रता पर निर्भर करती हैं। संसूचक को अंशािकत वृत्ताकार स्केल पर घुमाकर आपितत किरण पुंज और विवर्तित पुंज के मध्य कोणीय स्थिति जात करते हैं। पूर्ण उपकरण निर्वातित कक्ष में रखा जाता है।

प्रयोग में विवर्तित इलेक्ट्रॉन की तीव्रता व प्रकीर्णन कोण के मध्य चित्र 2.3 की भाँति धुवीय ग्राफ (polar graph) खींचते हैं। किसी निश्चित प्रकीर्णन कोण के मान के लिये त्रिज्य सिंदश की लम्बाई तीव्रता प्रदर्शित करती है। ग्राफ से स्पष्ट है कि 54 वोल्ट से त्विरत इलेक्ट्रॉनों के लिये 50^0 के कोण पर संसूचक अधिकतम मान प्रदर्शित करता है। धुवीय आलेख में यह उच्चिष्ठ त्वरण वोल्टता बढ़ाने पर लुप्त होने लगता है। क्रिस्टल परमाणुओं की स्थितियों से गुजरने वाले विभिन्न समान्तर तल के समूहों को चित्र 2.4 में दर्शाया गया है।



उच्चिष्ठ के लिये विभवान्तर = 54 वोल्ट प्रकीर्णन कोण $(\phi) = 50^{\circ}$

निकल किस्ट्रल के तलों के मध्य दूरी (d)=0.91 $\overset{0}{A}$ ब्रेग विवर्तन कोण $(\phi)=65^{\circ}$ (चित्र 2.4 से) $=90^{\circ}-\frac{\phi}{2}$

अन्तरापरमाणविक दूरी $=2.15 \stackrel{\circ}{A}$ इलेक्टॉन विवर्तन के लिये ब्रेग का नियम निम्न है।

$$2d\sin\theta = n\lambda \qquad ...(2.13)$$

यहाँ n=1, d=0.91 $\stackrel{\circ}{A}$ तथा $\theta=65^{\circ}$ का उपयोग समी. (2.13) में करने पर इलेक्ट्रान से सम्बद्ध द्रव्य तरंग की तरंग दैर्ध्य λ ज्ञात कर सकते हैं

$$\lambda = 2 \times 0.91 \times \sin 65^{\circ}$$

$$\lambda = 2 \times 0.91 \times 0.9063 = 1.65 \stackrel{\circ}{A}$$
 ...(2.14)

दे ब्राग्ली की परिकल्पना के अनुसार 54 वोल्ट से त्वरित इलेक्ट्रान की तरंगदैर्ध्य

$$\lambda = \frac{12.27}{\sqrt{V}} {\stackrel{\circ}{A}}$$

$$= \frac{12.27}{\sqrt{54}} {\stackrel{\circ}{A}} = 1.67 {\stackrel{\circ}{A}}$$
...(2.15)

इस प्रकार स्पष्ट है कि इलेक्ट्रॉन से सम्बद्ध द्रव्य तरंग की तरंगदैर्ध्य का प्रायोगिक मान और सैद्धान्तिक मान लगभग समान ही प्राप्त होते हैं। इससे दे-ब्राग्ली द्रव्य तरंग परिकल्पना की पुष्टि होती है। यह परिकल्पना इलेक्ट्रॉन, प्रोटॉन, न्यूट्रान, हीलियम परमाणु, हाइड्रोजन परमाणु आदि के लिये भी प्रायोगिक रूप से सत्यापित की जा चुकी है। द्रव्य तरंग परिकल्पना एक व्यापक परिकल्पना है जो सभी द्रव्य कणों पर लागू होती है।

बोध प्रश्न (Self-assessment questions)

_{5.} डेविसन जरमर प्रयोग का क्या महत्व है?

6. इलेक्ट्रॉन का X-किरणों की भाँति, क्रिस्टलों से विवर्तन संभव है। इन दोनों में यह समानता किस कारणवश है?

उदाहरण 2.5 डेवीसन जरमर प्रयोग में प्रथम कोटि का विवर्तन उच्चिष्ठ 54 वोल्ट तथा प्रकीर्णन कोण 50^{0} पर प्राप्त हुआ है। यह मानते हुये कि ब्रेग का नियम इलेक्ट्रॉन तरंगों के लिये लागू होता है, निकल किस्ट्रल के परावर्तन तलों के मध्य लम्बवत दूरी ज्ञात कीजिये।

हल : प्रश्नानुसार त्वरित इलेक्ट्रॉन की दे-ब्राग्ली तरंगदैर्ध्य

$$\lambda = \frac{12.27}{\sqrt{V}} {}^{0}A$$
$$\lambda = \frac{12.27}{\sqrt{54}} = 1.67 {}^{0}A$$

ब्रेग नियम से

 $2d \sin \theta = n\lambda$

$$heta=\left(90^{0}-\frac{50^{0}}{2}\right)=65^{0}$$
 तथा $n=1$ लेने पर $2d\sin 65^{0}=1 imes1.67$
$$d=\frac{1.67}{2\sin 65^{0}}=\frac{1.67}{2 imes0.9063}$$
 $d=0.92\overset{0}{A}$

अतः क्रिस्टल के परावर्तन तलों के मध्य दूरी $0.92 \stackrel{\circ}{A}$ है।

2.4 अनिश्चितता का सिद्धान्त (Uncertainty Principle)

आपने दे-ब्राग्ली अभिकल्पना से जानकारी प्राप्त की है कि पदार्थ द्वैत स्वरूप में होता है। तब क्या किसी क्षण आकाश में किसी गतिशील कण की सही स्थिति जानना संभव है? इस प्रश्न का उत्तर 1927 में हाइजनबर्ग (Heisenberg) प्रतिपादित 'अनिश्चितता सिद्धान्त' के द्वारा दिया गया। इस सिद्धान्त के अनुसार "किसी दिशा में एक कण की स्थिति और संवेग दोनों को पूर्ण रूप से यथार्थ समक्षणिक निर्धारण नहीं किया जा सकता है।" अर्थात एक ही क्षण पर कण की यथार्थ स्थिति और यथार्थ संवेग ज्ञात करना असम्मव होता है।

गणितीय रूप में अनिश्चितता सिद्धान्त को निम्न रूप में व्यक्त किया जाता है।

$$\Delta p \Delta x \ge \frac{h}{2} \tag{2.16}$$

जहां $_{\Delta}p$ संवेग में अनिश्चितता तथा $_{\Delta}x$ स्थिति में अनिश्चितता है। संवेग व स्थिति में अनिश्चितता का गुणनफल $\frac{h}{2}$ के बराबर या अधिक हो सकता है अथवा $\frac{h}{2}$ से कम कभी भी नहीं होगा। इसका मान $\frac{h}{2} = \frac{h}{2\pi} \bigg(\frac{1}{2} \bigg) = 0.527 \times 10^{-34}$ जूल से होता है।

समी. (2.16) से स्पष्ट है कि यदि हम इनमें से किसी एक के सही मापन के लिये अभिकल्पना करें तो दूसरे का निर्धारण पूर्ण रूपेण अनिश्चित हो जायेगा। जैसे, माना संवेग का यथार्थ मान ज्ञात है तब संवेग में अनिश्चितता Δp शून्य होगी। इस कारण स्थिति में अनिश्चितता Δx अनन्त हो जायेगी। कण $-\infty$ से $+\infty$ पर कहीं भी स्थित हो सकता है। अर्थात कण की स्थिति का निर्धारण नहीं हो सकेगा। हाइजनबर्ग का यह सिद्धान्त बोर तथा सोमरफील्ड के सिद्धान्त के प्रतिकूल है क्योंकि बोर मॉडल में इलेक्ट्रॉन की स्थिति व संवेग ज्ञात करना संभव था।

हाइजनबर्ग का अनिश्चितता का सिद्धान्त स्थूल (macro) तथा सूक्ष्म (micro) दोनों कणों पर ही वैध (valid) रहता है। स्थूल कणों पर यह सिद्धान्त प्रेक्षित नहीं हो पाता, इसका कारण है कि इनका आकार, आपेक्षिक रूप में बड़ा होने के कारण स्थिति में अनिश्चितता नगण्य होती है तथा द्रव्यमान अधिक होने के कारण संवेग में भी अनिश्चितता नगण्य होती है।

किसी क्षण पर संवेग व स्थिति में अनिश्चितता प्रायोगिक त्रुटि अथवा उपकरण की सुग्राहिता के कारण नहीं है। हम कण की स्थिति एवं संवेग का एक ही समय पर निर्धारण नहीं कर सकते हैं। क्योंकि स्थिति तथा संवेग संयुग्मी (canonical conjugate) चर राशियां है। हाइजनबर्ग अनिश्चितता सिद्धान्त के अनुसार दो संयुग्मी चर राशियों को एक साथ एक ही समय पर यथार्थ रूप से ज्ञात करना सम्भव नहीं होता। गणितीय रूप में

$$\Delta p_{x} \Delta x \ge \frac{h}{2}$$

$$\Delta p_{y} \Delta y \ge \frac{h}{2}$$

$$\Delta p_{z} \Delta z \ge \frac{h}{2}$$
...(2.17)

स्थिति - संवेग जैसी संयुग्मी चर राशियों के अतिरिक्त कुछ अन्य प्रेक्षण योग्य राशियों जैसे ऊर्जा-समय के लिये भी गणितीय रूप में अनिश्चितता सिद्धान्त निम्न प्रकार व्यक्त किया जाता है।

$$\Delta E \Delta t \ge \frac{h}{2}$$

जहां ΔE ΔT क्रमश: ऊर्जा में तथा समय में अनिश्चितता को व्यक्त करते हैं।

बोध प्रश्न (Self assessment questions)

7. कण के मूल स्तर में ऊर्जा अनिश्चितता शून्य है, का क्या अर्थ है? इस कण की आयु काल क्या होगी?

2.5 अनिश्चितता सिद्धान्त के अनुप्रयोग (Applications of Uncertainty Principle)

2.5.1 परमाण्वीय नाभिक में इलेक्ट्रॉनों की अनुपस्थिति (Non-existance of electrons in nucleus)

हम जानते हैं कि अधिकांश परमाण्वीय नाभिकों की त्रिज्या लगभग 10^{-14} मीटर कोटि की होती है। यदि नाभिक का व्यास 2×10^{-14} मीटर मानकर कल्पना करें कि इलेक्ट्रॉन, नाभिक के इस अल्प क्षेत्र में स्थित है तब निश्चित-ही-निश्चित इलेक्ट्रॉन की स्थित में अनिश्चितता (uncertainty in position) $\Delta x = 1\times 10^{-14}$ मी. होगी।

हाइजनबर्ग के सिद्धान्त के अनुसार इलेक्ट्रॉन के संवेग में न्यूनतम अनिश्चितता

$$\Delta p \Delta x \ge h/2$$

$$\Delta p \ge \frac{h}{2\Delta x} = \frac{1.054 \times 10^{-34}}{2 \times 1 \times 10^{-14}}$$
 (: $h = 1.054 \times 10^{-34}$ जूल से.) $= 0.527 \times 10^{-20}$ किया.मी./से.

अतः इलेक्ट्रॉन का न्यूनतम संवेग P उसके अनिश्चितता के बराबर तो होना ही चाहिये अतः $p=\Delta p=0.527\times 10^{-20}$ किग्रा.मी./से.।

आइन्सटीन के सापेक्षिय संवेग ऊर्जा सम्बंध से

अर्थात यदि कोई इलेक्ट्रॉन नाभिक में उपस्थित मान लिया जाये तो नाभिकीय परास में पाये जाने के लिये उसकी संगत ऊर्जा 9.88MeV के क्रम की होनी चाहिये जब कि नाभिक से उत्सर्जित इलेक्ट्रॉन (β कणों) की अधिकतम प्रायोगिक ऊर्जा 2-3MeV से अधिक नहीं पायी जाती है। अत स्पष्ट है कि नाभिक में इलेक्ट्रॉन अन्पस्थित होते हैं।

2.5.2 हाइड्रोजन परमाणु की मूल स्तर ऊर्जा (Ground state energy of hydrogen atom)

माना यदि बोर के प्रथम कक्ष में इलेक्ट्रॉन की स्थिति एवं संवेग की अनिश्चितायें क्रमशः Δx तथा Δp है। r त्रिज्या के गोले में इलेक्ट्रॉन कहीं भी हो सकता है अतः $\Delta x = r$ होगा।

अनिश्चितता सिद्धान्त से

$$\Delta p \ \Delta x = h$$

$$\Delta p = \frac{h}{\Delta x} = \frac{h}{r} \qquad \dots (2.19)$$

अतः इलेक्ट्रॉन का संवेग उसके अनिश्चितता के बराबर तो होगा ही अर्थात

$$p = \frac{h}{r} \qquad \dots (2.20)$$

इलेक्ट्रॉन की कुल ऊर्जा E=T+V (जहां Tगतिज व V स्थितिज ऊर्जा हैं।)

$$E = \frac{p^2}{2m} + \left(\frac{-Ke^2}{r}\right)$$

समीप. (2.20) से मान रखने पर

$$E = \frac{h^2}{2mr^2} - \frac{Ke^2}{r}$$
 ... (2.21)

परमाणु के मूल ऊर्जा स्तर की ऊर्जा न्यूनतम होती है। इस स्थिति में $\frac{d\mathbf{E}}{dr}$ शून्य होना चाहिये तथा न्यूनतम ऊर्जा के लिये $\frac{d^2\mathbf{E}}{dr^2}$ निश्चित ही धनात्मक प्राप्त होना चाहिये।

$$\therefore \frac{dE}{dr} = \frac{-2h^2}{2mr^3} + \frac{Ke^2}{r^2} = 0$$

$$\Rightarrow r = \frac{h^2}{Kme^2}$$

$$\frac{d^2E}{dr^2} = \frac{3h^2}{mr^4} - \frac{2ke^2}{r^3}$$

$$= \frac{3h^2}{mr^3 \left(\frac{h^2}{Kme^2}\right)} - \frac{2ke^2}{r^3} = \frac{ke^2}{r^3}$$

 $\dfrac{d^2 E}{dr^2}$ का मान धनात्मक है।

समी. (2.22) न्यूनतम ऊर्जा की शर्त व्यक्त करता है अतः r बोर के प्रथम कक्ष की त्रिज्या है

r का न्यूनतम मान a_0 रखने पर

हाइड्रोजन परमाणु के मूल स्तर की ऊर्जा (समी. (2.21) से)

$$E_{\min} = \frac{h^2}{2ma_0^2} - \frac{ke^2}{a_0}$$

 a_0 का मान समी. (2.22) से प्रतिस्थापित करने पर

$$= \frac{h^2}{2m} \left(\frac{Kme^2}{h^2}\right)^2 - \frac{Ke^2 Kme^2}{h^2}$$

$$= \frac{K^2 e^4}{h^2} \left(\frac{m}{2} - m\right) = -\frac{1}{2} \frac{K^2 me^4}{h^2}$$
...(2.23)

$$E_{\min} = -2.174 \times 10^{-18}$$
 जুল
$$= \frac{-2.174 \times 10^{-18}}{1.6 \times 10^{-19}} = -13.6 eV$$
 ... (2.24)

उपरोक्त मान बोर मॉडल की प्रथम कक्षा की ऊर्जा के बराबर है। न्यूनतम ऊर्जा का ऋणात्मक मान, परमाणु के स्थायित्व को प्रकट करता है।

2.5.3 आवर्ती दोलक की मूल अवस्था में ऊर्जा (Ground state energy of harmonic oscillator)

चिरसम्मत यान्त्रिकी के अनुसार दोलित्र की न्यूनतम ऊर्जा स्तर पर ऊर्जा शून्य होती है जहां एक कण की स्थिति x=0 तथा संवेग p=0 होता है। हाइजनबर्ग के अनिश्चितता सिद्धान्त के अनुसार कण की यथार्थ स्थिति और संवेग का एक ही साथ एक ही समय में निर्धारण करना सम्भव नहीं है। क्वान्टम सिद्धान्त से मूल ऊर्जा स्तर में ऊर्जा का मान $\frac{1}{2}\hbar\omega_0$ प्राप्त होता है। दोलित्र की ऊर्जा क्वान्टीकृत होती है। मूल ऊर्जा स्तर की ऊर्जा को शून्य बिन्दु ऊर्जा (zero point energy) कहते हैं। इसका अस्तित्व अनिश्चितता सिद्धान्त का प्रमाण है।

एक विमीय दोलित्र की ऊर्जा का मान

$$E = \frac{p^2}{2m} + \frac{1}{2}kx^2$$
 ...(2.25)

जहां p संवेग, m कण का द्रव्यमान तथा $\frac{1}{2}kx^2$ स्थितिज ऊर्जा है। यदि Δx तथा Δp दोलित्र के न्युनतम ऊर्जा स्तर में स्थिति एवं संवेग की अनिश्चितता है तब

$$E = \frac{1}{2} \left[\frac{\Delta p^2}{m} + k \Delta x^2 \right]$$
 ... (2.26)

हाइजनबर्ग अनिश्चितता सिद्धान्त के अनुसार

$$\Delta p \quad \Delta x \ge \frac{\hbar}{2} \qquad \qquad \dots (2.27)$$

$$\Delta p = \frac{\hbar}{2\Delta r} \qquad ... (2.28)$$

समी. (2.28) का यह मान समी. (2.27) में प्रतिस्थापित करने पर

$$E = \frac{1}{2} \left[\frac{\hbar^2}{4m\Delta x^2} + k\Delta x^2 \right] \qquad \dots (2.29)$$

ऊर्जा के न्यूनतम मान होने के लिये ऊर्जा का चर के सापेक्ष अवकलन का मान शून्य के बराबर होना चाहिये, अर्थात

$$\frac{dE}{d(\Delta x)} = 0$$

$$\therefore \frac{dE}{d(\Delta x)} = \frac{1}{2} \left[\frac{-\hbar^2 x^2}{4m(\Delta x)^3} + 2k\Delta x \right] = 0$$
...(2.30)

$$2k\Delta x = \frac{2\hbar^2}{4m(\Delta x)^3}$$
$$\Delta x^2 = \frac{\hbar}{2\sqrt{mk}}$$
... (2.31)

उपर्युक्त मान को समी. (2.29) में रखने पर

क्वान्टम यांत्रिकी के अनुसार भी एक विमीय सरल दोलित्र के लिये यहीं परिणाम प्राप्त होता है।

उदाहरण 2.6 परमाणु के उत्तेजित ऊर्जा स्तर का आयु काल 0.5×10^{-8} सेकण्ड है। ऊर्जा स्तर में ऊर्जा की अनिश्चितता की कोटि ज्ञात कीजिये।

हल: हाइजनबर्ग सिद्धान्त के अन्सार

△E
$$\Delta t \approx \frac{\hbar}{2}$$

∴ $\Delta E = \frac{h}{2\Delta t}$

$$= \frac{1.054 \times 10^{-34}}{2 \times 0.5 \times 10^{-8}}$$

$$\approx 1.054 \times 10^{-26} \text{ जूल}$$

$$\approx \frac{1.054 \times 10^{-26}}{1.6 \times 10^{-19}} \approx 0.65 \times 10^{-7} = 6.5 \times 10^{-8}$$
 eV

ऊर्जा स्तर की ऊर्जा में अनिश्चितता $\sim 10^{-8}~eV$ की कोटि की होगी।

उदाहरण 2.7 एक कण जिसकी मात्रा 10^{-9} किग्रा है, 1 सेमी/से. के वेग से गतिशील है। यदि कण का वेग 0.01% तक अनिश्चित हो तो उसकी स्थिति में न्यूनतम अनिश्चितता का मान ज्ञात कीजिये।

हल: इलेक्ट्रॉन के वेग में अनिश्चितता

$$\Delta \nu = \frac{0.01}{100} \times 10^{-2} = 10^{-6}$$
 मी. $/$ से.

हाइजनबर्ग के अनिश्चितता सिद्धान्त के अनुसार

$$\Delta x = \frac{\hbar}{2m\Delta v}$$

$$= \frac{1.054 \times 10^{-34}}{2 \times 10^{-9} \times 10^{-6}}$$

$$\Delta x = 5.27 \times 10^{-20} \text{ Aft.}$$

कण की स्थिति में अनिश्चितता का मान 5.27×10⁻²⁰ मी॰ है।

उदाहरण 2.8 एक रेडार स्पन्द का काल $0.50~\mu s$ है। फोटॉन की ऊर्जा में अनिश्चितता की कोटि क्या है ?

हल: हाइजनबर्ग सिद्धान्त से

$$\Delta E \ \Delta t \ge \frac{\hbar}{2}$$

эत: $\Delta E \ge \frac{\hbar}{2\Delta t}$
 $pprox \frac{1.054 \times 10^{-34}}{2 \times 0.50 \times 10^{-6}} = 1.054 \times 10^{-28}$ जूल
 $= \frac{1.054 \times 10^{-28}}{1.6 \times 10^{-19}} = 6.6 \times 10^{-10} \ eV$

फोटॉन को ऊर्जा में अनिश्चितता की कोटि $\sim 10^{10} eV$ है।

2.6 सारांश (Summary)

द्रव्य कणों को भी विशिष्ट परिस्थितियों में तरंगों के रूप में व्यवहार करना चाहिये, यह दे ब्राग्ली की परिकल्पना है। उनके अनुसार प्रकाश की द्वैत प्रकृति होती है। कण एवं तरंग के लाक्षणिक गुण गणितीय रूप में निम्न प्रकार से है।

$$\lambda = \frac{h}{p}$$

त्विरित इलेक्ट्रॉन की तरंगदैर्ध्य
$$\lambda = \frac{12.27}{\sqrt{V}} \stackrel{0}{\rm A}$$
 गितिशील कणों की तरंगदैर्ध्य
$$\lambda = \frac{h}{\sqrt{2m{\rm F}}}$$

त्विरत इलेक्ट्रॉन की दे-ब्राग्ली तरंगदैर्ध्य X-िकरणों की कोटि की होती है। अतः किस्ट्रल से X-िकरणों की भाँति, इलेक्ट्रॉन पुंज का विवर्तन प्रतिरूप प्राप्त होना चाहिये। इस सिद्धान्त के आधार पर डेवीसन जरमर ने प्रयोग द्वारा दे-ब्रोग्ली सिद्धान्त का सत्यापन किया।

इलेक्ट्रॉन जैसे सूक्ष्म कण की यथार्थ स्थिति एवं यथार्थ संवेग का एक ही साथ, एक ही समय पर निर्धारण संभव नहीं है। यह अनिश्चितता सिद्धान्त कहलाता है। यदि संवेग में अनिश्चितता Δ p तथा स्थिति में अनिश्चितता Δx है तब इस हाइजनबर्ग अनिश्चितता सिद्धान्त से

$$\Delta p \ \Delta x \ge \frac{\hbar}{2}$$

जहां $\hbar=\frac{\hbar}{2\pi}$, h प्लांक नियतांक है तथा $\frac{\hbar}{2}=0.527\times 10^{-34}$ जूल-से. होता है।

इस सिद्धान्त के अनुप्रयोग (i) नाभिक में इलेक्ट्रॉनों की अनुपस्थिति (ii) H-परमाणु की मूल अवस्था की ऊर्जा ज्ञात करना तथा (iii) आवर्ती दोलक की मूल अवस्था में ऊर्जा करना है।

2.7 शब्दावली (Glossary)

अनापेक्षिय	Non-relativistic
उच्चिष्ठ	Maxima
गतिशील कण	Moving particle
जालक बिन्दु	Lattice point
त्वरित	Accelerated
द्रव्य तरंग	Matter wave
द्वैत	Dual
धुवण	polarisation
ध्रुवीय ग्राफ है	Polar graph
व्यतिकरण	Interference
वैद्य	Valid
विवर्तन	Diffraction
सापेक्षिय	Relativistic
सूक्ष्मअहि	Micro
संसूचक	Detector
म्थूल	Macro

2.8 संदर्भ ग्रन्थ (Reference Books)

एस.एस. रावत एवं	प्रारम्भिक क्वान्टम यान्त्रिकी	कॉलेज बुक हाऊस, जयपुर		
सरदार सिंह	एवं स्पेक्ट्रोस्कोपी			
S.L.Kakani	Elementry Quantum	College Book Center,		
C.Hem Rajani and	Mechanics and	Jaipur		
T.C.Bansal	Spectroscopy			
S.P Singh and	Quantum Mechanics	S.Chand and Co.		
M.K.Bagde		New Delhi		
J.P.Agrawal and	Int. Quantum Mechanics	Pragati Prakashan,		
A.K.Jain		Meerut		

2.9 बोध प्रश्नों के उत्तर (Answers to Self Assesment Questions)

- 1. तरंग प्रकृति के उदाहरण व्यतिकरण, विवर्तन एवं धुवण है तथा कण प्रकृति के उदाहरण प्रकाश वैद्युत् प्रभाव एवं कॉम्पटन प्रभाव हैं।
- 2. सामान्यतः द्रव्य कणों से सम्बद्ध तरंगों की तरंगदैर्ध्य के बहु त अल्प होने के कारण, मापन क्षमता के बाह है।
- 3. यह तरंगदैर्ध्य X किरणों की कोटि का है।
- 4. प्रकाश की प्रकृति कण व तरंग दोनों ही है।
- 5. यह प्रयोग दे-ब्राग्ली परिकल्पना की पुष्टि करता है।
- 6. यह समानता इस कारण है कि त्वरित इलेक्ट्रॉन एक तंरग की भाँति व्यवहार करता है।
- 7. मूल स्तर में शून्य ऊर्जा अनिश्चितता का अर्थ है कि ऊर्जा पूर्ण यथार्थता से ज्ञात की जा सकती है कण का आयुकाल अनन्त होगा क्योंकि $\Delta t = \frac{\hbar}{2\Delta E}$ तथा $\Delta E = 0$ अतः $\Delta t = \infty$ (अनन्त)।

2.10 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुतरात्मक प्रश्न (Very short answer type questions)

- 1. द्रव्य तरंगें क्या होती है?
- 2. दे-ब्राग्ली संकल्पना क्या है?
- 3. डेविसन जरमर प्रयोग का सिद्धान्त समझाइये।
- 4. हाइजनबर्ग अनिश्चितता सिद्धान्त लिखिये।
- 5. ऊर्जा एवं समय मे अनिश्चिताओं को प्रदर्शित करने वाला सम्बंध लिखिये।

निबन्धात्मक प्रश्न (Essay type questions)

- 6. दे-ब्राग्ली परिकल्पना समझाइये।
- 7. डेविसन जरमर प्रयोग का वर्णन कीजिये। समझाइये कि किस प्रकार यह इलेक्ट्रॉन के सहचारी द्रव्य तरंग की सत्यता को सिद्ध करता है।
- 8. अनिश्चितता सिद्धान्त का वर्णन करते हुये, नाभिक के अंदर इलेक्ट्रॉन की अनुपस्थिति की व्याख्या कीजिये।
- 9. अनिश्चितता सिद्धान्त का प्रयोग कर
 - (i) हाइड्रोजन परमाणु के मूल स्तर की ऊर्जा
 - (ii) आवर्ती दोलक की इसकी मूल अवस्था में ऊर्जा की गणना कीजिये ।

आंकिक प्रश्न (Numerical Questions)

10. तरंगदैर्ध्य $5000\,\mathrm{A}^{^{0}}$ के एक फोटॉन का संवेग ज्ञात कीजिये।

(उत्तर: 1.324×10⁻²⁷ किमी./से.)

11. एक इलेक्ट्रॉन की दे-ब्राग्ली तरंगदैर्ध्य 10^{-10} मी. है, इसकी ऊर्जा एवं वेग का मान ज्ञात कीजिये।

(उत्तर: 2.39×10^{-17} जूल (ii) 7.25×10^6 मी./से.)

- 12. एक प्रोटॉन विरामावस्था से V वोल्ट द्वारा त्विरत किया जाता है। सिद्ध कीजिये कि प्रोटॉन की तरंगदैर्ध्य $\lambda = \frac{0.286}{\sqrt{V}} \stackrel{0}{\mathrm{A}}$ होगी।
- 13. एक 1 KeV ऊर्जा के न्यूट्रान की दे-ब्राग्ली तरंगदैध्य ज्ञात कीजिये।

(उत्तर: $9.03 \times 10^{-3} \text{ A}^0$)

14. $100 {\rm KeV}$ ऊर्जा के इलेक्ट्रॉन की दे ब्राग्ली तरंगदैर्ध्य ज्ञात करें।[संकेत-इलेक्ट्रॉन के लिये $m_0c^2=0.511 {\rm MeV}$ यदि ऊर्जा का मान $211 {\rm KeV}$ से अत्यधिक कम है तब $\lambda=\frac{12.27}{\sqrt{v}} {\stackrel{\circ}{\rm A}}$ सूत्र अन्यथा सापेक्षिकीय स्थिति में $\lambda=\frac{hc}{\sqrt{(K+2m_0c^2)}K}$ का उपयोग करें।

(उत्तर: $\lambda = 0.037 \stackrel{0}{A}$)

15. डेवीसन जरमर प्रयोग में 54 वोल्ट से त्विरत इलेक्ट्रॉनों के लिये किस कोण पर द्वितीय उच्चिष्ठ प्रान्त होगा? क्या यह प्रेक्षित होगा? क्रिस्टल के फलक में परमाणुओं के मध्य दूरी $215 \stackrel{0}{\rm A}$ है।

उत्तर: $\sin \theta = \frac{3.34}{2.15}$, $\sin \theta > 1$ अत: प्रेक्षित नहीं होगा।)

16. एक ऊर्जा स्तर की आयु 10^{-8} से. है। संक्रमण काल मे उत्सर्जित फोटॉन की आवृत्ति में अनिश्चितता की गणना कीजिये। (संकेत $\Delta v = \frac{\Delta E}{h}$)

(उत्तर: 1.6×10⁷ हर्टज)

17. एक इलेक्ट्रॉन का वेग 300 मी./से. है। इसमें 0.001% की परिशुद्धता हो तो इस इलेक्ट्रॉन की स्थिति अनिश्चितता की गणना कीजिये।

(उत्तर: $\Delta x = 0.019$ मी.)

इकाई-3

श्रोडिंजर समीकरण

(Schrodinger's Equation)

इकाई की रूपरेखा

- 3.0 उद्देश्य
- 3.1 प्रस्तावना
- 3.2 श्रीडिंजर समीकरण की उपयोगिता तथा सार्थकता
- 3.3 श्रोडिंजर समीकरण के कालिश्रत तथा कालअनाश्रित स्वरूप
- 3.4 तरंग फलन की भौतिक सार्थकता तथा उसकी व्याख्या
- 3.5 प्रायिकता धारा घनत्व
- 3.6 सारांश
- 3.7 शब्दावली
- 3.8 संदर्भ ग्रन्थ
- 3.9 बोध प्रश्नों के उत्तर
- 3.10 अभ्यासार्थ प्रश्न

3.0 उद्देश्य (Objectives)

इस इकाई को पढ्ने के पश्चात आप

- श्रोडिंजर समीकरण की उपयोगिता तथा सार्थकता से परिचित हो सकेंगे;
- श्रीडिंजर समीकरण के कालाश्रित एवं कालअनाश्रित स्वरूप को जान सकेंगे:
- तरंग फलन की भौतिक सार्थकता, गुण धर्म समझ सकेंगें;
- प्रायिकता धारा घनत्व का तात्पर्य एवं इसका व्यंजक व्यूत्पन्न कर सकेंगे।

3.1 प्रस्तावना (Introduction)

इस इकाई के प्रथम अनुच्छेद 3.2 में आप श्रोडिंजर समीकरण के औचित्य (justification) को जानकर इसकी उपयोगिता एवं सार्थकता से परिचित हो सकेंगे। इकाई के अनुच्छेद 3.3 में हमनें श्रोडिंजर समीकरण का कालाश्रित एवं काल अनाश्रित स्वरूप प्रस्तुत किया है। जिस प्रकार चिरसम्मत यांत्रिकी में $\overrightarrow{F} = m \overrightarrow{a}$ प्रकृति का एक नियम है, उसी प्रकार क्वान्टम यांत्रिकी में श्रोडिंजर समीकरण एक सिद्धान्त को निरूपित करती है। अनुच्छेद 3.4 में तरंग फलन की भौतिक सार्थकता एवं व्याख्या को समझाया गया है। अनुच्छेद 3.5 में प्रायिकता धारा घनत्व का तात्पर्य एवं इसके लिये व्यंजक व्युत्पन्न किया गया है इसी अनुच्छेद में प्रायिकता के संरक्षण को भी समझाया गया है।

3.2 श्रोडिंजर समीकरण की उपयोगिता तथा सार्थकता (Utility and Significance of Schrodinger Equation)

द्रव्य तरंग सिद्धान्त से आप जानते हैं कि सतत प्रगामी आवर्ती तरंग के लिये संवेग और तरंगदेध्ये में निम्न सम्बन्ध होता है

$$p = \frac{h}{\lambda} \qquad \dots (3.1)$$

प्लांक नियम से E = hv

$$=\frac{h}{2\pi}(2\pi v) = \hbar\omega \qquad ...(3.2)$$

तथा संवेग

$$p = \frac{h}{2\pi} \frac{2\pi}{\lambda} = \hbar k \qquad \dots (3.3)$$

जहां $\hbar = \frac{h}{2\pi}$, ω कोणीय आवृत्ति, तथा k संचरण नियतांक है।

संवेग p तथा ऊर्जा E वाले धनात्मक x दिशा में गतिशील कण से सम्बद्ध, द्रव्य तरंग का तरंग फलन $\psi(x,t)$ निम्न में से कोई एक अथवा इनका रेखीय सम्मिश्रण हो सकता है।

$$\sin(kx-\omega t)$$
 या $\cos(kx-\omega t)$ या $e^{i(kx-\omega t)}$ या $e^{-i(kx-\omega t)}$...(3.4)

 ψ के लिये समीकरण में दो मौलिक गुण होने चाहिये

- (i) यह समीकरण रैखिक प्रकृति (linear nature) का होना चाहिये ताकि इससे प्राप्त हल अध्यारोपित किये जा सकें।
- (ii) समीकरण में गुणांकों के रूप में कण गतिकी से सम्बन्धित प्राचल (parameters) जैसे संचरण संख्या k, वेग, संवेग ऊर्जा कोणीय आवृति आदि नहीं होने चाहिये। तरंग समीकरण के गुणाकों में h, कण द्रव्यमान m आवेश q आदि हो सकते हैं।

उपरोक्त दोनों मौलिक गुणों को समाहित करने वाली समीकरण की आवश्यकता है। विदयुत चुम्बकीय तरंगों के समीकरण पर विचार करते हैं।

$$\frac{\partial^2 \psi}{\partial t^2} = v^2 \frac{\partial^2 \psi}{\partial x^2} \qquad \dots (3.5)$$

समी. (3.4) में व्यक्त किसी फलन को समी. (3.5) में प्रतिस्थापित करने पर निम्न सम्बंध प्राप्त होता है-

$$v^2 = \frac{\omega^2}{k^2} = \frac{h^2 \omega^2}{h^2 k^2} = \frac{E^2}{p^2} = \frac{p^2}{4m^2}$$
 ...(3.6)

समी. (3.6) से स्पष्ट है कि गुणांक में कण के संवेग का पद प्राप्त हो रहा है। तरंग फलन के लिये समीकरण में, कण गतिकी से सम्बद्ध चर नहीं होने चाहिये। अत: समी. (3.5) तरंग फलन की समी. नहीं है।

किसी कण के लिये,
$$E = \frac{p^2}{2m}$$

 ω a k के पदों में

$$\hbar\omega = \frac{\hbar^2 k^2}{2m}$$
 अर्थात $\omega = \frac{\hbar k^2}{2m}$

से यह प्रेक्षित होता है कि तरंग फलन की समी में, x के सापेक्ष ψ का अवकलन दो बार तथा समय t के साथ ψ का अवकलन एक बार आना चाहिये। अतः हम निम्न तरंग समीकरण पर विचार करते हैं।

$$\frac{\partial \psi}{\partial t} = \alpha \frac{\partial^2 \psi}{\partial x^2} \dots (3.7)$$

इस समी. में समी. (3.4) में व्यक्त प्रथम दोनों हल स्वीकार्य नहीं है जबिक अंतिम दोनों में से कोई एक समी. (3.7) का हल हो सकता है, यदि α का मान निम्न है।

$$\alpha = \frac{i\omega}{k^2} = \frac{i\hbar\hbar\omega}{h^2k^2} = \frac{i\hbar E}{p^2} = \frac{i\hbar}{2m} \qquad ...(3.8)$$

अत:

$$\frac{\partial \psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$

अथवा

$$ih\frac{\partial}{\partial t}\psi = \frac{-h^2}{2m}\frac{\partial^2\psi}{\partial x^2} \qquad ...(3.9)$$

यह समी. (3.9) श्रोडिंजर समीकरण (एक विमीय) कहलाती है।

यदि

$$\psi = Ae^{i(kx - \omega t)}$$

तब समी. (3.9) से बायां पक्ष

$$i\hbar \frac{\partial}{\partial t} \psi = \hbar \omega \psi$$

$$= E\psi \qquad ...(3.10)$$

तथा दाहिना पक्ष

$$\frac{-h^2}{2m}\frac{\partial^2\psi}{\partial x^2}$$

$$=\frac{\hbar^2 k^2}{2m} \psi = \frac{p^2}{2m} \psi$$
 ...(3.11)

अत:

$$E\psi = \frac{p^2}{2m}\psi \qquad ...(3.12)$$

चिरसम्मत सम्बंध प्राप्त होता है। श्रोडिंजर समीकरण के हल से प्राप्त परिणाम, प्रयोगों से प्राप्त परिणामों से मेल खाते हैं।

श्रोडिंजर समीकरण से एक बाक्स में उपस्थित कण का तरंगफलन और ऊर्जा ज्ञात की जा सकती है। बाक्स में उपस्थित कण के तरंग फलन हाइजेनबर्ग अनिश्चितता सिद्धान्त को प्रमाणित करते हैं तथा कण की ऊर्जा के विविक्त (discrete) मान अर्थात क्वांटीकृत ऊर्जा को प्रदर्शित करते हैं। धातु में मुक्त इलेक्ट्रॉन, धातु की सतह के निकट विभव सीढ़ी (potential

step) जैसे विभव का स्वरूप अनुभव करते हैं अतः इनकी विवेचना श्रोडिंजर समीकरण से की जा सकती है। α कणों का उत्सर्जन, हार्मोनिक दोलित्र के लिये ऊर्जा का व्यंजक, हाइड्रोजन परमाणु की ऊर्जा का व्यंजक तथा इसकी सहायता से स्पेक्ट्रोस्कोपी में स्टार्क एवं जीमन प्रभाव की व्याख्या भी की जाती है।

श्रीडिंजर समीकरण की सार्थकता यह है कि समष्टि में किसी द्रव्य कण के पाये जाने की प्रायिकता को यह तरंग फलन से सम्बन्धित करता है। तरंग फलन जिसे हम तरंग आयाम अथवा द्रव्य का क्षेत्रीय आयाम (matter field amplitude) एवं प्रायिकता आयाम भी कहते हैं। $\psi(x,t)$ का मान उस क्षेत्र में अधिक होता है जहाँ कण के पाये जाने को सम्भावना अधिक होती है। कण की पाये जाने की प्रायिकता का मान $|\psi(x,t)|^2$ के समानुपाती होता है। यह मान हमेशा ही वास्तविक और धनात्मक होता है।

बोध	प्रश्न (Self assessment questions)
1.	श्रोडिंजर समीकरण की उपयोगिता की पुष्टि कैसे होती है?

3.3 श्रोडिंजर समीकरण के कालाश्रित तथा कालअनाश्रित स्वरूप (Time Dependent and Time Independent form of Schrodinger's Equation)

पदार्थ की द्वैतता प्रकृति, एक ऐसे तरंग समीकरण की आवश्यकता का संकेत है जो कण की गित का विवरण दे सके। श्रोडिंजर ने इसी प्रकार का समीकरण दिया। चिरसम्मत यान्त्रिकी में $\overset{
ightarrow}{F}=\overset{
ightarrow}{ma}$ प्रकृति का नियम है, उसी प्रकार क्वांटम यांत्रिकी में भी श्रोडिंजर समीकरण एक सिद्धान्त को निरूपित करती है।

कालाश्रित स्वरूप (Time dependent form)

माना कि धनात्मक x दिशा में गतिशील एक मुक्त कण के तरंग फलन का निम्न मान है-

$$\psi(x,t) = e^{i(kx - \omega t)} \qquad ...(3.13)$$

यहाँ कण का संवेग $p=\hbar k$ तथा ऊर्जा $E=\hbar\omega$ है।

समी. (3.13) को t के सापेक्ष अवकलन करने पर

$$rac{\partial \psi}{\partial t}=i\omega e^{i(kx-\omega t)}$$

अथवा
$$i\hbar rac{\partial}{\partial t}\psi=\hbar\omega\psi$$

या
$$i\hbar rac{\partial}{\partial t}\psi=E\psi \qquad ...(3.14)$$

समी. (3.13) को X के सापेक्ष अवकलन करने पर

$$\frac{\partial \psi}{\partial x} = ike^{i(kx - \omega t)}$$

$$\frac{\partial^2 \psi}{\partial x^2} = -k^2 e^{i(kx - \omega t)}$$

$$\frac{\partial^2 \psi}{\partial x^2} = -k^2 \psi \qquad ...(3.15)$$

एक मुक्त कण की गतिज ऊर्जा का मान निम्न होता है-

$$E=rac{p^2}{2m}$$

ਤਾਰ:
$$E\psi=rac{p^2}{2m}\psi$$

$$E\psi=rac{\hbar^2}{2m}k^2\psi \qquad ...(3.16)$$

समी. (3.14) एवं (3.15) से $E\psi$ तथा $k^2\psi$ के मान समी. (3.16) में प्रतिस्थापित करने पर

$$i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \qquad ...(3.17)$$

यही कालाश्रित एक विमीय श्रोडिंजर समीकरण है।

उपर्युक्त समी (3.17) को त्रिविमीय (three dimension) में भी लिखा जा सकता है तब तरंग फलन का स्वरूप $\psi(r,t)$ लिखते हैं।

$$\psi(r,t) = e^{i(\vec{k}\cdot\vec{r} - \omega t)}$$

तथा समी. (3.17) का त्रिविमिय स्वरूप निम्न प्रकार का होता है।

$$i\hbar \frac{\partial}{\partial t} \psi = \frac{-h^2}{2m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right)$$
$$i\hbar \frac{\partial}{\partial t} \psi = \frac{-h^2}{2m} \nabla^2 \psi \qquad ...(3.18)$$

जहां $\nabla^2 = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ लाप्लासियन संकारक कहलाता है।

यदि कण पर संरक्षी बल (conservative force) \vec{F} जैसे गुरूत्वाकर्षण बल या विद्युत बल कार्यरत है तब बल \vec{F} को स्थितिज ऊर्जा के ग्रेडियेन्ट (gradient) के रूप में निम्न प्रकार से लिखते है-

$$\overrightarrow{F}(r,t) = -\nabla V(\overrightarrow{r},t) \qquad \dots (3.19)$$

तथा किसी कण की कुल ऊर्जा का मान उसकी गतिज तथा स्थितिज ऊर्जा के योग के बराबर होता है-

अर्थात
$$E = \frac{p^2}{2m} + V(\vec{r}, t)$$

$$E = \psi(\vec{r}, t) = \left\{\frac{p^2}{2m} + V(\vec{r}, t)\right\} \psi(r, t)$$

अतः श्रोडिंजर समीकरण का व्यापक स्वरूप निम्न होगा जो यह प्रदर्शित करता है कि कण किसी बल क्षेत्र में गतिशील है।

$$i\hbar \frac{\partial}{\partial t} \psi = \frac{-h^2}{2m} \nabla^2 \psi + V(r, t) \psi \qquad ...(3.20)$$

काल अनाश्रित स्वरूप (Time independent form)

अनेक भौतिक स्थितियों में किसी कण की स्थितिज ऊर्जा का मान समय पर निर्भर नहीं करता अर्थात $V(\vec{r},t)=V(\vec{r})$ । अतः इस कण पर कार्यकारी बल, केवल कण की स्थिति पर निर्भर करते हैं। इस तरह की घटनाओं के लिये तरंगफलन $\psi(\vec{r},t)$ को $\psi(\vec{r})$ तथा $\phi(t)$ के गुणनफल के रूप मे लिखा जाता है जहां $\psi(\vec{r})$ फलन स्थिति \vec{r} पर निर्भर करता है तथा फलन $\phi(t)$ केवल समय t पर निर्भर करता है। अतः

$$\overrightarrow{\psi(r,t)} = \overrightarrow{\psi(r)}\phi(t) \qquad \dots (3.21)$$

कालाश्रित श्रोडिंजर समी. (3.20) में यह मान रखने पर

$$i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = \frac{-h^2}{2m} \nabla^2 \psi(\vec{r}, t) + V(\vec{r}, t) \psi(r, t)$$

$$i\hbar \psi(\vec{r}) \frac{\partial}{\partial t} \phi(t) = \frac{-h^2}{2m} \phi(t) \nabla^2 \psi(\vec{r}) + V(\vec{r}) \phi(t) \psi(\vec{r})$$

स्थितिज ऊर्जा का मान समय पर निर्भर नहीं कर रहा है अतः उपर्युक्त समी में $V\left(\stackrel{
ightarrow}{r},t\right)$ को $V\left(\stackrel{
ightarrow}{r}\right)$ लिखा गया है।

उपरोक्त समी. में को $\psi(\vec{r})\phi(t)$ भाग देने पर

$$\frac{i\hbar}{\phi(t)}\frac{\partial}{\partial t}\phi(t) = \frac{-h^2}{2m}\frac{\nabla^2\psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) \qquad ...(3.22)$$

समी. (3.22) का बायां पक्ष केवल t पर निर्भर करता है जबिक दाहिना पक्ष केवल $\stackrel{\rightarrow}{r}$ पर निर्भर करता है अतः दोनों पक्ष किसी नियतांक (माना E) के बराबर होने चाहिये।

तथा
$$i\hbar\frac{1}{\phi(t)}\frac{\partial\phi(t)}{\partial t}=\mathrm{E} \qquad ...(3.23)$$
 तथा
$$\frac{-\hbar^2}{2m}\frac{\nabla^2\psi\left(\vec{r}\right)}{\psi\left(\vec{r}\right)}+V\left(\vec{r}\right)=E$$
 अतः
$$\mathrm{E}\psi\left(\vec{r}\right)=\frac{-\hbar^2}{2m}\nabla^2\psi\left(\vec{r}\right)+V\left(\vec{r}\right)\psi\left(\vec{r}\right)$$

$$\frac{-\hbar^2}{2m}\nabla^2\psi\left(\vec{r}\right)-(\mathrm{E}-V)\psi\left(\vec{r}\right)=0$$

$$\nabla^2\psi\left(\vec{r}\right)+\frac{2m}{\hbar^2}\left\{E-V\left(\vec{r}\right)\right\}\psi(r)=0 \qquad ...(3.25)$$

समी (3.25) को ही कालअनाश्रित श्रोडिंजर समीकरण कहा जाता है। उपरोक्त समी. (3.25) में प्रयुक्त नियतांक E की विमा, ऊर्जा की विमा ही प्राप्त होती है।

प्न: समी. (3.23) से

$$i\hbar \frac{\partial \phi(t)}{\partial t} = E\phi(t)$$
$$\frac{\partial \phi(t)}{\phi(t)} = -\frac{i}{\hbar}E\partial t$$

समाकलन करने पर तरंग फलन का समय आश्रित अंश निम्न प्रकार प्राप्त होता है -

$$\phi(t) = ce^{\frac{-t}{\hbar}Et}$$
 जहां c नियतांक है।

अतः श्रोडिंजर समीकरण का सम्पूर्ण हल निम्न प्रकार लिखा जा सकता है।

$$\psi\begin{pmatrix} \overrightarrow{r}, t \end{pmatrix} = \psi(\overrightarrow{r})ce^{\frac{-i}{\hbar}Et}$$

$$\psi\begin{pmatrix} \overrightarrow{r}, t \end{pmatrix} = \psi(\overrightarrow{r})e^{-i\omega t} \qquad (माना (c = 1)) \qquad ...(3.26)$$

3.4 तरंग फलन की भौतिक सार्थकता तथा उसकी व्याख्या (Physical Significance of Wave Function and its Interpretation)

किसी बल क्षेत्र में गतिशील कण के सम्पूर्ण व्यवहार को तरंग फलन $\psi \begin{pmatrix} \overrightarrow{r},t \end{pmatrix}$ के द्वारा वर्णित किया जा सकता है। श्रोडिंजर ने स्वयं सर्वप्रथम तरंग फलन की भौतिकीय व्याख्या, आवेश घनत्व (charge density) के पदों में दी। उनके अनुसार परमाणु में इलेक्ट्रॉन की तीव्रता, उसके तरंग फलन के आयाम (ψ) के वर्ग के समानुपाती होती है। इलेक्ट्रॉन तीव्रता का अर्थ इलेक्ट्रॉन घनत्व या कण घनत्व (particle density) से है जो उस बिन्दु पर प्रति इकाई आयतन में उपस्थित कर्णों की संख्या को व्यक्त करता है। तंरग फलन का वर्ग अर्थात

 ψ^2 से कण घनत्व को ज्ञात कर सकते हैं। यदि कण घनत्व को, कण के आवेश से गुणा कर दे तब आवेश घनत्व (charge density) प्राप्त होता है। अतः राशि $|\psi|^2$ आवेश घनत्व का माप होती है।

प्रारम्भिक अवस्था में इस व्याख्या के उपयोग से काम्पटन प्रकीर्णन, बोर परमाणु की व्याख्या की गई। किन्तु बाद में यह व्याख्या संतोषजनक सिद्ध नहीं हो सकी। दूसरी व्याख्या जर्मन भौतिक विद् मैक्स बाँर्न (Max Born) ने 1926 में प्रस्तुत की जिसे सर्वमान्यता प्राप्त हुई।

बाँर्न के अनुसार $\psi\begin{pmatrix} \overrightarrow{r},t \end{pmatrix}$ का सम्बन्ध, किसी समय t पर, एक कण की स्थिति $\overset{
ightharpoonup}{r}$ पर कण के पाये जाने की प्रायिकता से होता है। यह प्रायिकता $\left|\psi\begin{pmatrix} \overrightarrow{r},t \end{pmatrix}\right|^2$ के मान के समानुपाती होती है। इस कारण $\psi\begin{pmatrix} \overrightarrow{r},t \end{pmatrix}$ को प्रायिकता आयाम से भी जाना जाता है। स्पष्ट है, जहां कण के पाये जाने की सम्भावना अधिक होगी वहां $\psi\begin{pmatrix} \overrightarrow{r},t \end{pmatrix}$ का मान अधिक होगा। $\psi\begin{pmatrix} \overrightarrow{r},t \end{pmatrix}$ तरंग फलन से वर्णित कण की प्रायिकता घनत्व निम्न प्रकार व्यक्त किया जाता है।

$$\rho \begin{pmatrix} \overrightarrow{r}, t \end{pmatrix} dV = \left| \begin{pmatrix} \overrightarrow{r}, t \end{pmatrix} \right|^2 dV \qquad \dots (3.27)$$
$$= \psi \begin{pmatrix} \overrightarrow{r}, t \end{pmatrix} \psi^* \begin{pmatrix} \overrightarrow{r}, t \end{pmatrix}$$

जहाँ $\psi^*\begin{pmatrix} \overrightarrow{r},t \end{pmatrix}$ तरंग फलन का सम्मिश्र संयुग्मी (complex conjugate) है। स्थिति \vec{r} पर समय t पर तरंग फलन द्वारा वर्णित कण के आयतन अल्पांश $dV[d^3r=dx]$ dy के दवारा भी लिखते हैं में पाये जाने की प्रायिकता

$$\rho \left(\stackrel{\rightarrow}{r}, t \right) dV = \left| \stackrel{\rightarrow}{r}, t \right|^2 dV \qquad ...(3.28)$$

किसी अभीष्ट क्षेत्र में स्थित कण से सम्बद्ध, तरंग फलन की प्रायिकता आयाम का शून्य अथवा अनन्त होना अर्थहीन है क्योंकि प्रायिकता आयाम के शून्य मान होने का अर्थ है कि उस क्षेत्र में कण का कहीं कोई अस्तित्व ही नहीं है। अतएव किसी क्षेत्र में किसी स्थान पर कण के पाये जाने की अधिकतम प्रायिकता एकांक होनी चाहिये, अर्थात

$$\int \left| \psi \left(\overrightarrow{r}, t \right) \right|^2 dV = 1 \qquad \dots (3.29)$$

जहाँ समाकलन (integration) सम्पूर्ण अकाश के लिये किया गया है। समी. (3.29) को प्रसामान्यीकरण प्रतिबन्ध (normalization condition) कहते हैं। इस प्रतिबन्ध के संतुष्ट हो जाने पर तरंग फलन को प्रसामान्य फलन कहते हैं तथा इस क्रिया की प्रसामान्यीकरण कहा जाता है।

उपर्युक्त व्याख्या से हम निम्न निष्कर्ष प्राप्त करते हैं-

- (i) तरंग फलन का मान कभी भी अनन्त नहीं होगा क्योंकि प्रायिकता अनन्त नहीं हो सकती है।
- (ii) िकसी स्थिति $\overset{
 ightharpoonup}{r}$ पर $\psi \begin{pmatrix} \overset{
 ightharpoonup}{rt} \end{pmatrix}$ का केवल एक, मान (single value) ही होगा क्यों िक इसके एक से ज्यादा मान होने पर प्रायिकता के एक से अधिक मान अर्थहीन व्याख्या देते हैं।
 - (iii) $\psi \left(\stackrel{\rightarrow}{r} t \right)$ के गुणांक जिनका उपयोग करने पर प्रसामान्यीकरण प्रतिबन्ध का पालन

करते है, समय पर निर्भर नहीं करते हैं।

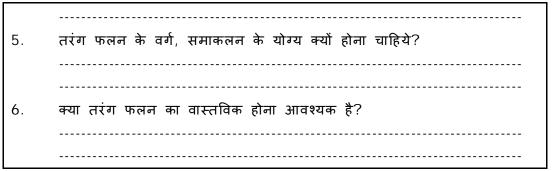
- (iv) जो तरंग फलन प्रसामान्यीकरण प्रतिबन्ध का प्रालन करते हैं उन्हें वर्ग समाकलनीय फलन (square integrable function) कहते हैं।
- (v)जब $r \to \infty$ तब तरंग फलन शून्य हो जाना चाहिये। ऐसा होने पर ही $\int \left|\psi\right|^2 dV$ का मान एक परिमित नियतांक के रूप में प्राप्त होगा। यह सीमान्त प्रतिबन्ध कहलाते हैं, जिनका विस्तृत अध्ययन आप इस पुस्तक की इकाई-6 में करेंगे।

तरंग फलन के ग्णधर्म (Properties of Wave function)

- (i) तरंगफलन वास्तविक अथवा सम्मिश्रण (complex) हो सकता है।
- (ii) तरंगफलन परिमित (finite) होना चाहिये।
- (iii) तरंगफलन एक सतत फलन होना चाहिये।
- (iv) तरंगफलन का एक बिन्दु पर एक ही मान (single value) होना चाहिये।
- (v) तरंगफलन के वर्ग समाकलनीय फलन होने चाहिये।

उपर्युक्त गुणधर्मों की पालना करने वाले तरंग फलन को स्वीकार्य (acceptable) अथवा सुव्यवहारित तरंग फलन (well behaved wave function) कहते हैं।

01-1-1	T 3 - 14 (IIII) I IVIII (Woll Bellaved Wave fallotter) I (VI (I
बोध	प्रश्न (Self assessment questions)
3.	तरंग फलन का मान कभी भी अनन्त नहीं होगा, क्यों?
4.	तरंग फलन का एक ही स्थान पर एक से अधिक मान संभव क्यों नहीं है?



उदाहरण 3.1 किसी कण की एक विमा में परास $0 \le x \le a$ में गित के लिये तरंग फलन $\psi(x) = A \sin\left(\frac{n\pi x}{a}\right)$ है,तब प्रसामान्यीकरण के लिये गुणांक A का मान ज्ञात कीजिये।

हल : प्रसामान्यीकरण प्रतिबंध के लिये $\int_0^a \psi \psi^* dx = 1$ तरंग फलन का मान रखने पर $A^2 \int_0^a \sin^2\left(\frac{n\pi x}{a}\right) dx = 1$ $\frac{A^2}{2} \int_0^a \left\{1 - \cos\left(\frac{2n\pi x}{a}\right)\right\} dx = 1$ $\frac{A^2}{2} \left[x - \frac{a}{2n\pi} \sin\left(\frac{2n\pi x}{a}\right)\right]_0^a = 1$ $\frac{A^2}{2} a = 1$ $A = \sqrt{\frac{2}{a}}$

उदाहरण 3.2 यदि तरंग फलन $\psi = A\sin\left(\frac{\pi x}{a}\right)e^{\frac{-iE_0t}{h}}$ स्थिति परास $0 \le x \le a$ प्रसामान्यकृत तरंग फलन व्यक्त करता है, तो गुणांक A ज्ञात करें।

हल : प्रसामान्यीकरण प्रतिबन्ध
$$\int\limits_0^a \psi \psi \cdot \partial x = 1$$
 यहाँ $\psi = A \sin\left(\frac{\pi x}{a}\right)_{e^{\frac{-iE_0t}{h}}}$ तथा $\psi \cdot = A \sin\left(\frac{\pi x}{a}\right)e^{i\frac{E_0t}{h}}$ \therefore प्रतिबंधानुसार $A^2 \int\limits_0^a \sin^2\left(\frac{\pi x}{a}\right) dx = 1$ $A^2 \left(\frac{a}{2}\right) = 1$

अर्थात
$$A = \sqrt{\frac{2}{a}}$$

उदाहरण 3.3 एक कण का तरंग फलन $\psi = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ के द्वारा वर्णित है जहाँ 0 < x < a है। कण की, स्थिति $0 < x < \frac{a}{2}$ में, होने की प्रायिकता की गणना कीजिये।

हल : कण की प्रायिकता
$$\int_{0}^{a/2} \psi^* \psi dx$$

$$= \frac{2}{a} \int_{0}^{a/2} \sin^2 \left(\frac{\pi x}{2} \right) dx$$

$$= \frac{2}{a} \frac{1}{2} \frac{a}{2} = \frac{1}{2}$$

स्थिति $0 < x < \frac{a}{2}$ में कण के होने का प्रायकिता $\frac{1}{2}$ प्राप्त हु यी।

3.5 प्रायिकता धारा घनत्व (Probability Current Density)

कालाश्रित श्रोडिंजर समीकरण से

$$i\hbar \frac{\partial}{\partial t} \psi = \frac{-h^2}{2m} \nabla^2 \psi + V \psi \qquad ...(3.30)$$

यहाँ हमनें तरंगफलन $\psi(\overset{
ightharpoonup}{r,t})$ को मात्र ψ द्वारा व्यक्त किया है। उपरोक्त समीकरण का सम्मिश्र संय्ग्मी (complex conjugate) लेने पर

$$-i\hbar\frac{\partial}{\partial t}\psi^* = \frac{-h^2}{2m}\nabla^2\psi^* + V\psi^* \qquad ...(3.31)$$

समी. (3.30) को बांयी ओर से ψ^* तथा समी. (3.31) ψ को दांयी ओर से ψ से गुणा करने पर

$$i\hbar\psi^* \frac{\partial}{\partial t}\psi = \frac{-h^2}{2m}\psi^*\nabla^2\psi + V\psi^* \qquad \dots (3.32)$$

$$-i\hbar\psi \frac{\partial}{\partial t}\psi^* = \frac{-h^2}{2m}\psi \nabla^2\psi^* + V\psi\psi^* \qquad ...(3.33)$$

समी. (3.33) को समी. (3.32) से घटाने पर

$$i\hbar\left(\psi^*\frac{\partial}{\partial t}\psi + \psi\frac{\partial}{\partial t}\psi^*\right) = \frac{-h^2}{2m}\left(\psi^*\nabla^2\psi - \psi\nabla^2\psi^*\right)$$
$$\left(\because\psi\psi^* = \psi^*\psi\right)$$

$$\begin{split} & \left(\psi^* \frac{\partial}{\partial t} \psi + \psi \frac{\partial}{\partial t} \psi^* \right) = \frac{-h}{2mi} \left(\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* \right) \\ & \frac{\partial}{\partial t} \left(\psi^* \psi \right) = \frac{-h}{2mi} \overrightarrow{\nabla} \left(\psi^* \overrightarrow{\nabla} \psi - \psi \overrightarrow{\nabla} \psi^* \right) \\ & \frac{\partial P}{\partial t} & = -\nabla \cdot \left\{ \frac{-h}{2mi} \left(\psi^* \overrightarrow{\nabla} \psi - \psi \overrightarrow{\nabla} \psi^* \right) \right\} \end{split}$$

जहां $P = \psi^* \psi$ स्थिति प्रायिकता घनत्व है।

$$\vec{S} = \frac{-h}{2mi} \left(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right)$$
 ਸਾਗ ਕੇ, तब
$$\frac{\partial P}{\partial t} + \vec{\nabla} \cdot \vec{S} = 0 \qquad ...(3.34)$$

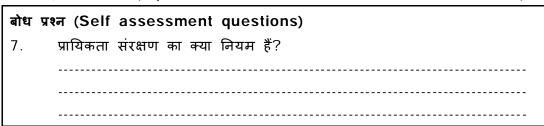
समी. (3.34) में प्रयुक्त \vec{S} , को प्रायिकता धारा घनत्व कहते हैं। समी. (3.34) को प्रायिकता घनत्व की सांतत्य समीकरण (equation of continuity) भी कहते हैं।

हम तरंग फलन की व्याख्या से जानते हैं कि किसी आयतन अल्पांश dV में एक कण को पाये जाने की प्रायिकता, प्रायिकता आयाम के पदों में निम्न-प्रकार व्यक्त की जाती है-

$$P(\overrightarrow{r},t)dV = \left|\psi(\overrightarrow{r},t)\right|^2 dV$$

सांतत्य समी. (3.34) के अनुसार प्रायिकता समय के साथ संरक्षित रहती है। अर्थात यदि आकाश के किसी बद्ध क्षेत्र में कण के पाये जाने की प्रायिकता, समय के परिवर्तन के साथ घटती है तो बद्ध क्षेत्र के बाहर, कण के पाये जाने की प्रायिकता उसी मात्रा में बढ़ जाती है।

समी. (3.34) सांतत्य समीकरण कहलाता है। जिस प्रकार इस सांतत्य समीकरण को वैद्युत गतिकी में आवेश संरक्षण तथा तरल यांत्रिकी में द्रव प्रवाह संरक्षण के लिये प्रयुक्त किया गया था, उसी प्रकार यहाँ इस समीकरण की प्रायिकता संरक्षण के लिये उपयोग किया जाता है।



उदाहरण 3.4 एक विमीय समतल तरंग $\psi = Ae^{ikx}$ से सम्बद्ध प्रायिकता धारा घनत्व की गणना कीजिये।

हल: एक विमिय समतल तरंग की प्रायिकता धारा घनत्व

$$S=rac{\hbar}{2mi}igg(\psi^*\stackrel{
ightarrow}{
abla}\psi-\psi\stackrel{
ightarrow}{
abla}^*igg)$$
यहां $\psi=Ae^{ikx} \qquad \psi^*=A^*e^{-ikx} \
abla\psi=ikAe^{ikx} \quad , \;
abla\psi^*=-ikA^*e^{-ikx}$

सभी मानों को प्रतिस्थापित करने पर

$$S = \frac{\hbar}{2mi} \left\{ A^* e^{-ikx} ikA e^{ikx} - A^* e^{ikx} (-ikA^* e^{-ikx}) \right\}$$

$$= \frac{\hbar}{2mi} |A|^2 \left\{ ik + ik \right\} = \frac{\hbar k}{m} |A|^2$$

$$\therefore p = \hbar k \text{ तथा } p/m = \dot{a}$$
 v

$$\therefore S = v |A|^2$$

3.6 सारांश (Summary)

- तरंग फलन की समीकरण का स्वरूप $\frac{\partial \psi}{\partial t} = \alpha \frac{\partial^2 \psi}{\partial x^2}$ होना चाहिये जहां $\alpha = \frac{i\hbar}{2m}$ संभव है।
- श्रोडिंजर समीकरण की सहायता से भौतिकी के कई प्रयोगों के परिणामों को सत्यापित किया
 जा सकता है। कई सिद्धान्तों को इसके उपयोग से प्रतिपादित किया जा सकता है।
- तरंगफलन $\psi(\overset{
 ightarrow}{r},t)$ को तरंग आयाम, द्रव्य का क्षेत्रीय आयाम एवं प्रायिकता आयाम के नामों से जाना जाता है।
- कालाश्रित श्रोडिंजर समीकरण $i\hbar \frac{\partial}{\partial t} \psi = \frac{-h}{2m} \nabla^2 \psi + V \psi$
- काल अनाश्रित समीकरण $abla^2 \psi(r) \frac{2m}{\hbar} \{E V(r)\} \psi(r) = 0$
- बॉर्न के अनुसार $\psi(\vec{r},t)$ का सम्बन्ध, किसी समय t पर, एक कण की स्थिति \vec{r} पर कण को पाये जाने की प्रायिकता से होता है, यह प्रायिकता $\left|\psi(\vec{r},t)\right|^2$ के मान के समानुपाती होती है।
- $\int \left| \psi(\vec{r},t) \right|^2 dV = 1$ प्रसामान्यीकरण प्रतिबन्ध कहलाता है।
- $\frac{dP}{dt} + \vec{\nabla} \cdot \vec{S} = 0$ को सांतत्य समीकरण कहते हैं।

3.7 शब्दावली (Glossary)

अनिश्चितता	Uncertainty
आवेश घनत्व	Charge density
कण घनत्व	Particle density
कालाश्रित	Time dependent
चिरसम्मत	Classical

प्रसामान्यीकरण Normalization प्राचल Parameter

प्रायिकता आयाम Probability amplitude

प्रायिकता धारा घनत्व Probability current density

प्रवणता Gradient विविक्त Discrete

संरक्षी Conservative

सांतत्य समीकरण Equation of continuity

सार्थकता Significance क्षेत्रीय आयाम Field amplitude

3.8 संदर्भ ग्रन्थ (Reference Books)

एस.एस रावत एवं प्रारम्भिक क्वान्टम यान्त्रिक एवं कॉलेज बुक हाऊस, सरदार सिंह स्पेक्ट्रोस्कोपी जयपुर आर.पी भंडारी सी.एम कछावा प्रारम्भिक क्वान्टम यान्त्रिकी एवं रमेश बुक डिपो, एन.पी.जैन एवं एम.एम.खमेशरा स्पेक्ट्रोस्कोपी जयपुर Agarwal and A.K Jain Introductory Quantum Pragati Prakashan,

Meerut

3.9 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

Mechanics

- 1. जब श्रोडिंजर समीकरण के हल से प्राप्त परिणाम की तुलना प्रयोगों के आधार पर प्राप्त परिणामों से की जाती है।
- 2. $\vec{F}(\vec{r},t) = -\nabla V(\vec{r},t)$
- 3. क्योंकि प्रायिकता कभी भी अनन्त नहीं हो सकती है। साथ ही अनन्त होने से इलेक्ट्रॉन के पाये जाने की निश्चितता हो जाती है जो हाइजेनबर्ग सिद्धान्त के विपरीत है।
- 4. क्योंकि कण के पाये जाने की प्रायिकता के एक से अधिक मान अर्थहीन व्याख्या देते हैं।
- 5. तरंगफलन को, प्रसामान्यीकरण प्रतिबन्ध का पालन करने के लिये यह आवश्यक है।
- 6. बिल्कुल नहीं, तरंगफलन सम्मिश्र (complex) भी हो सकता है।
- 7. सांतत्य समीकरण $\frac{\partial P}{\partial t} + \vec{\nabla} \cdot \vec{S} = 0$ के अनुसार यदि आकाश के किसी बद्ध क्षेत्र में कण के पाये जाने की प्रायिकता, समय के परिवर्तन के साथ घटती है तो बद्ध क्षेत्र के बाहर, कण के पाये जाने की प्रायिकता उसी मात्रा मे बढ़ जाती है। इस प्रकार प्रायिकता संरक्षित रहती है।

3.10 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. सम्मिश्र संयुग्मी से आप क्या समझते हैं?
- 2. श्रीडिंजर कालाश्रित तरंग समीकरण लिखिये।
- 3. श्रोडिंजर कालअनाश्रित तरंग समीकरण लिखिये।
- 4. तरंग फलन में क्या ग्ण धर्म होने चाहिये?
- 5. तरंग फलन के प्रसामान्यीकरण का क्या अर्थ है?
- 6. प्रायिकता का संरक्षण किस समीकरण के दवारा समझाया जाता है?
- 7. सांतत्य समीकरण लिखिये।

निबन्धात्मक प्रश्न (Essay type questions)

- 8. श्रोडिंजर समीकरण की उपयोगिता व सार्थकता की विवेचना कीजिये। श्रोडिंजर समीकरण की आवश्यकता के औचित्य पर टिप्पणी लिखिये।
- 9. द्रव्य तरंगों के लिये कालाश्रित एवं काल अनाश्रित श्रीडिंजर समीकरणे कैसे प्राप्त करोगे।
- 10. तरंग फलन की भौतिक सार्थकता एवं उसकी व्याख्या कीजिये।
- 11. तरंग फलन का भौतिकीय अर्थ क्या है? सांतत्य समीकरण $\frac{\partial P}{\partial t} + \vec{V} \cdot \vec{S} = 0$ को व्युत्पन्न कीजिये जहां ρ प्रायिकता धनत्व तथा \vec{S} प्रायिकता धारा घनत्व है।

आंकिक प्रश्न (Numerical questions)

- 14. एक कण की एक विमीय बाक्स में गित के लिये तरंग फलन $\psi(x) = \frac{1}{\sqrt{2a}} \exp^{\left[\frac{i}{\hbar}(Px-Et)\right]}$ जब 0 < x < 2a हों तथा अन्य स्थानों पर $\psi(x) = 0$, तब कण के $0 < x < \frac{a}{2}$ में पाये जाने की प्रायिकता क्या होगी?
- 15. तरंग फलन $\psi = A \sin \frac{n\pi x}{a}$ का परास -a से +a के मध्य प्रसामान्यीकरण कीजिये और ज्ञात कीजिये कि प्रसामान्यीकरण गुणांक कितना है? (उत्तर : $\sqrt{\frac{1}{a}}$)

क्वांटम यांत्रिकी के संकारक

(Operators of Quantum Mechanics)

इकाई की रूपरेखा

- 4.0 उद्देश्य
- 4.1 प्रस्तावना
- 4.2 संकारक की परिभाषा
- 4.3 रैखिक संकारक
- 4.4 हर्मिटी संकारक
- 4.5 गतिज चरों का प्रत्याशा मान
- 4.6 स्थिति, संवेग और ऊर्जा के प्रत्याशा मान.
- **4.7** सारांश
- 4.8 शब्दावली
- 4.9 संदर्भ ग्रन्थ
- 4.10 बोध प्रश्नों के उत्तर
- 4.11 अभ्यासार्थ प्रश्न

4.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

- क्वांटम यांत्रिकी में "संकारक" की अभिसारा को समझ सकेंगे;
- यह समझ सकेंगे कि क्वांटम यांत्रिकी से सम्बद्ध किसी भौतिक गुणधर्म के संप्रेक्षण मापन योग्य मानों के निर्धारण में क्वांटम संकारक किस प्रकार महत्वपूर्ण है;
- आप समझ सकेंगे कि क्वांटम यांत्रिकी में 'प्रत्याशा मान' का अर्थ किस प्रकार चिरसम्मत मध्यमान से भिन्न है;
- अ-अभिगमन (non-commuting) संकारकों का क्वांटम यांत्रिकी में भौतिक महत्व एवं तात्पर्य समझ सकेंगे।

4.1 प्रस्तावना (Introduction)

विगत इकाई में यह स्पष्ट किया जा चुका है कि क्वांटम यांत्रिकी में किसी तंत्र को प्रदर्शित करने के लिये तरंग फलन $\psi(\vec{r},t)$ का प्रयोग किया जाता है। इस फलन को 'अवस्था फलन (state function) कहते हैं। अवस्था फलन $\psi(\vec{r},t)$ में तंत्र से सम्बन्धित अधिकतम संभाव्य सूचनायें निहित रहती है। $\psi(\vec{r},t)$ का निरपेक्ष वर्ग मान (absolute square), $|\psi(\vec{r},t)|^2$ सदैव एक वास्तविक राशि होती है, तथा यह तंत्र के स्थिति \vec{r} व समय t पर पाये जाने की प्रायिकता को प्रदर्शित करती है।

इस इकाई के अगले अनुच्छेद में हम यह समझेंगे- कि जिस प्रकार चिरसम्मत यांत्रिकी में बल के अनुप्रयोग से स्थिति परिवर्तन (स्थिर से गतिक व गतिक से स्थिर) संभव है ठीक उसी प्रकार क्वांटम यांत्रिक अवस्थायें 'संकारक' की संक्रिया द्वारा परिवर्तित की जा सकती हैं।

इकाई के अनुच्छेद 4.3 व 4.4 में संकारको के प्रकार व इनके गुणधर्मी का विस्तारपूर्वक वर्णन किया जायेगा। अनुच्छेद 4.5 में गतिक चरों के लिये प्रत्याशा मान को परिभाषित किया जायेगा। स्थिति, संवेग और ऊर्जा के प्रत्याशा मान अनुच्छेद 4.6 में निकालना बताया गया है।

4.2 संकारक की परिभाषा (Defination of operator)

क्वांटम यांत्रिकी की अवधारणा के अनुसार प्रत्येक क्वांटम अवस्था बहुत सी उप-अवस्थाओं का रेखिक संयोजन होती है। जैसे कि एक छात्र (अवस्था) में भिन्न-भिन्न गुण अलग-अलग अनुपातों में हो सकते हैं, वह पढ़ने में बहुत होशियार हो सकता है, पढ़ाई के साथ-साथ उसे संगीत की जानकारी भी हो सकती है, वह एक अच्छा खिलाड़ी भी हो सकता है, आदि। छात्र के यह सभी गुण विभिन्न उपअवस्थों को प्रदर्शित करते हैं। अब यदि हम यह जानना चाहें कि छात्र पढ़ने में कितना होशियार है, तो उसकी विभिन्न विषयों की परीक्षा लेनी होगी। इस परीक्षा से प्राप्त अंक ही उसकी कक्षा में होशियारी या कक्षा में स्थान का निर्धारण करेंगे। इस प्रकार छात्र की परीक्षा एक संकराक है, जिसकी संक्रिया के द्वारा छात्र की किसी भी उपअवस्था का जान व उसकी मात्रा का निर्धारण किया जा सकता है।

संकारक के संकेत के लिये अक्षर पर कैरेट (^) अर्थात काकपद या लोप चिन्ह का उपयोग करते हैं।

गणितीय परिभाषा (Mathematical definition)

संकारक एक ऐसी गणितीय संक्रिया है जिसे किसी फलन पर लगाये जाने पर व्यापक रूप में एक दूसरा फलन प्राप्त होता है। संकारक $\stackrel{\wedge}{A}$ को निम्न प्रकार परिभाषित किया जाता है।

$$\hat{A}\psi = \phi \qquad ...(4.1)$$

उपरोक्त समीकरण में संकारक $\stackrel{\wedge}{A}$ की फलन ψ पर संक्रिया से एक अन्य फलन ϕ प्राप्त होता है। अवकलन, समाकलन आदि गणितीय संकारकों के उदाहरण हैं।

भौतिक महत्व (Physical significance)

क्वांटम यांत्रिकी में गणितीय प्रेक्षण योग्य (observables) चर राशियों जैसे स्थिति x , संवेग $\stackrel{
ightarrow}{p}$, ऊर्जा E , कोणीय संवेग $\stackrel{
ightarrow}{L}$ आदि के लिये संकारक परिभाषित किये जाते हैं।

माना किसी फलन विशेष ψ पर जब संकारक $\overset{\frown}{A}$ संक्रिया करता है तब निम्न समीकरण प्राप्त होती है।

$$\hat{\mathbf{A}}\psi = a\psi \qquad ...(4.2)$$

जहाँ a एक स्थिरांक है। अर्थात जब संकारक विशेष फलन ψ पर संक्रिया करता है तब परिणाम स्वरूप वही तरंग फलन ψ िकसी स्थिरांक a से गुणित होकर प्राप्त होता है। ऐसा होने पर इस विशेष फलन ψ को संकारक $\overset{\hat{}}{A}$ का आइगेन फलन (eigen function) या अभिलाक्षणिक फलन कहते हैं, तथा स्थिरांक a को आइगेन मान (eigen value) या अभिलाक्षणिक मान कहते हैं। व्यापक रूप में a एक सम्मिश्र राशि हो सकती है। यदि संकारक $\overset{\hat{}}{A}$, हैमिल्टनी संकारक $\overset{\hat{}}{H}$ है तो इस संकारक की आइगेन फलन ψ पर संक्रिया द्वारा ऊर्जा आइगेन मान प्राप्त किये जा सकते हैं।

इस प्रकार संकारक को (प्रेक्षण योग्य चर राशियों के संगत) की संक्रिया द्वारा क्वांटम यांत्रिक अवस्था के संगत आइगेन मान प्राप्त किये जा सकते हैं।

क्वांटम यांत्रिकी में कतिपय संकारक (Some operators in quantum mechanics)

भौतिक-राशि	संगत संकारक
1. स्थिति फलन f(x)	$\hat{f}(x)$
2. संवेग का x घटक p _x	$-i\hbar \frac{\partial}{\partial x}$
(y व z घटक के लिये भी समान रूप)	∂x
$3.$ संवेग $\overset{ ightarrow}{p}$	$-i\hbar abla$
4. गतिज ऊर्जा $\frac{\stackrel{-}{p}^2}{2m}$	$-rac{\hbar^2}{2m} abla^2$
5 . स्थितिज ऊर्जा $V\left(\overset{ extbf{.}}{r},t ight)$	$\hat{V}ig(ec{r},tig)$
6. কুল ক্রর্জা $\frac{\overrightarrow{p}}{2m}$ + $V(\overrightarrow{r},t)$	$\hat{E} = \frac{-\hbar^2}{2m} \nabla^2 + V(\vec{r}, t)$
7. कुल ऊर्जा E या हैमेल्टोनियन (समय आश्रित)	$\overset{}{H}=i\hbarrac{\partial}{\partial t}$
8. कोणीय संवेग का x घटक L _x = yp _z - zp _y	$\hat{L} = i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$
9. कुल कोणीय संवेग $\vec{L} = \vec{r} imes \vec{p}$	$\hat{\vec{L}} = -i\hbar \vec{r} \times \nabla$

बोध प्रश्न (Self assessment questions)		
1.	क्वांटम यांत्रिकी में संकारक से क्या तात्पर्य हे?	
2.	आइगेन मान समीकरण लिखिये।	
3.	कोणीय संवेग $ec{L}$ का संकारक रूप लिखिये।	

 क्वांटम यांत्रिकी में संकारक किस प्रकार की भौतिक चर राशियों के संगत ही परिभाषित किये जाते है?

उदाहरण 4.1 माना फलन $\psi=Ae^{ikx}+Be^{-ikx}$ है तथा $\hat{A}=\frac{\partial}{\partial x}$ एक संकारक है। तब

 $\stackrel{\circ}{A}\psi$ का मान ज्ञात करो।

हल :
$$\hat{A}\psi(x) = \frac{\partial}{\partial x} \Big(A e^{ikx} + B e^{-ikx} \Big)$$

$$= (iKA)e^{ikx} - (iKB)e^{-ikx}$$

$$= A'e^{ikx} - B'e^{-ikx}$$

$$= \phi(x) \quad \text{(एक अन्य फलन)}$$

संकारक $\stackrel{\frown}{A}$ की फलन $\psi(x)$ पर संक्रिया से एक अन्य फलन $\phi(x)$ भी प्राप्त हो सकता है।

उदाहरण 4.2 संकारक $\hat{p} = -i\hbar \frac{\partial}{\partial t}$ तथा $\hat{E} = i\hbar \frac{\partial}{\partial t}$ और $\psi(x,t) = x^2 \exp(-i\omega t)$ हैं, तब $\hat{p}\psi$ व $\hat{E}\psi$ करो। हल : $\hat{p}\psi(x,t) = i\hbar \frac{\partial}{\partial t} \left\{ x^2 \exp(-i\omega t) \right\}$ $= i\hbar 2x \exp(-i\omega t)$ $\therefore \hat{p}\psi(x,t) = \phi$ जहाँ $\phi = -(2i\hbar)xe^{-i\omega t}$ फलन $\psi(x,t)$ से भिन्न है। इसी प्रकार, $\hat{E}\psi = i\hbar \frac{\partial}{\partial t} \left\{ x^2 \exp(-i\omega t) \right\}$ $= i\hbar(-i\omega) \left\{ x^2 \exp(-i\omega t) \right\}$ $= \hbar\omega \left\{ x^2 \exp(-i\omega t) \right\}$

इस प्रकार \hat{E} की ψ पर संक्रिया कराने पर वही फलन ψ आइगेन मान $(\hbar\omega)$ से गुणित होकर प्राप्त होता है। $(\hbar\omega)$ को संकारक \hat{E} का आइगेन मान व ψ को आइगेन फलन कहते हैं।

4.3 रैखिक संकारक (Linear Operator)

 $\hat{E}\psi = (\hbar\omega)\psi$

रैखिक संकारक (Linear Operator) - एक संकारक रैखिक संकारक कहलाता है यदि वह निम्न दो संक्रियाओं का पालन करता है

(i)
$$\hat{A}(\psi_1 + \psi_2) = \hat{A}\psi_1 + \hat{A}\psi_2$$
 ...(4.3 3f)

अर्थात् दो फलनों के योग पर किसी संकारक (\hat{A}) से संक्रिया करने पर वही परिणाम प्राप्त होता है जो कि इन फलनों पर संकारक से अलग-अलग संक्रिया कर प्राप्त फलनों के योग से प्राप्त होता है, तथा

(ii)
$$\hat{A}(a\psi) = a(\hat{A}\psi)$$
 ...(4.3 ब)

अर्थात् किसी फलन को नियतांक a से गुणा करने पर प्राप्त फलन $(a\psi)$ पर संकारक से संक्रिया कराने पर जो परिणाम प्राप्त होता है वही परिणाम फलन पर संकारक से संक्रिया करा प्राप्त मान को उसी नियतांक से गुणा करने पर प्राप्त होता है।

उपरोक्त दोनों प्रतिबन्धों को मिलाकर रैखिक संकारक को निम्न प्रकार लिखा जा सकता है।

$$\hat{A}(C_1\psi_1 + C_2\psi_2) = C_1(\hat{A}\psi_1) + C_2(\hat{A}\psi_2)
= C_1\phi_1 + C_2\phi_2 \qquad ...(4.4)$$

जहाँ C_1 व C_2 स्थिरांक हैं।

रैखिक संकारक की कुछ प्रमुख विशेषताएं निम्न प्रकार से है -

- (अ) योगात्मक संकारक (Additive operators) -
- (i) यदि $\stackrel{\wedge}{A}$ व $\stackrel{\wedge}{B}$ दो रैखिक संकारक हों तो इनका योग $\left(\stackrel{\wedge}{A} + \stackrel{\wedge}{B}\right)$ भी एक नया

रैखिक संकारक होता है।

अर्थात्
$$(\hat{A} + \hat{B})\psi = \hat{A}\psi + \hat{B}\psi$$
 ...(4.5 अ)

ठीक इसी प्रकार $(\widehat{A}-\widehat{B})$ भी एक नया रैखिक संकारक होता है।

अनुच्छेद 4.2 की सारणी में दिये गये सभी संकारक रैखिक संकारक हैं तथा क्वांटम यांत्रिकी में हम केवल रैखिक संकारको का ही उपयोग करते हैं।

(ii) दो रैखिक संकारको का योग क्रम विनिमय नियम का पालन करता है।

$$(\hat{A} + \hat{B})\psi = (\hat{B} + \hat{A})\psi \qquad \dots (4.5 \, \bar{a})$$

(iii) रैखिक संकारको का योग साहचर्य नियम का पालन करता है।

$$(\hat{A} + \hat{B}) + \hat{C} = \hat{A} + (\hat{B} + \hat{C})$$
 ...(4.5 \tau)

(ब) गुणात्मक संकारक (Multiplicative operator) -

जब किसी फलन पर दो या दो से अधिक संकारको की निरन्तर संक्रिया की जाये तब इसे गुणात्मक संकारक कहते हैं। यदि \hat{A} व \hat{B} दो रैखिक संकारक हैं, तब इनके गुणात्मक संकारक

$$\hat{C} = \hat{A} \hat{B}$$

तथा

$$\stackrel{\wedge}{D}=\stackrel{\wedge}{B}\stackrel{\wedge}{A}$$
 होंगे।

यदि $\overset{\circ}{C}$ व $\overset{\circ}{D}$ की किसी फलन ψ पर संक्रिया की जाये तब

$$\overset{\circ}{C}\psi=\overset{\circ}{A}\overset{\circ}{B}\psi=\overset{\circ}{A}(\overset{\circ}{B}\psi)=\overset{\circ}{A}(\phi)=f$$
 (कोई अन्य फलन) (माना $\phi=\overset{\circ}{B}\psi$)

इसी प्रकार, $\hat{D}\psi = \hat{B}\hat{A}\psi = \hat{B}(\hat{A}\psi) = \hat{B}(x) = g$ (कोई अन्य फलन)

 \therefore $\stackrel{\hat{}}{B}\psi$ का $\stackrel{\hat{}}{A}\psi$ के बराबर होना आवश्यक नहीं है।

अतः
$$\stackrel{\stackrel{\wedge}{B}(\stackrel{\wedge}{A}\psi)}{=}\stackrel{\stackrel{\wedge}{A}(\stackrel{\wedge}{B}\psi)}{=} ...(4.6)$$

इस प्रकार गुणात्मक संकारक क्रम विनिमय नियम (commutative law) का पालन नहीं करते हैं।

(स) दो संकारक $\stackrel{\smallfrown}{A}$ व $\stackrel{\rightharpoonup}{B}$ समान (equal) होते हैं जब

$$\hat{A}\psi = \hat{B}\psi \qquad ...(4.7)$$

(द) इकाई संकारक (Unit operator) - इकाई संकारक \hat{I} वह संकारक है जिसकी संक्रिया के पश्चात फलन के मान में कोई परिवर्तन नहीं होता है।

$$\hat{I}\psi = \psi$$
 ...(4.8)

(य) शून्य संकारक (Null operator) - $\stackrel{\hat{O}}{O}$ एक ऐसा संकारक है जिसकी किसी भी फलन ψ पर संक्रिया कराने पर शून्य प्राप्त होता है।

$$\hat{O}\psi = 0 \qquad ...(4.9)$$

(व) किसी संकारक $\stackrel{\frown}{A}$ की n वीं घात उसके फलन ψ पर n बार संक्रिया कराने से प्राप्त होती है जैसे

$$\stackrel{\wedge}{A^2}\psi=\stackrel{\wedge}{A}\stackrel{\wedge}{A}\psi$$

व $\stackrel{\wedge}{A^n}\psi=\stackrel{\wedge}{A}\stackrel{\wedge}{A}.....(n$ बार) ψ ...(4.10)

(र) किसी संकारक का चर घातांकी (exponential) घात श्रेणी (power series) के रूप में निम्न प्रकार लिखा जा सकता है।

$$e^{\hat{A}} = 1 + \hat{A} - \frac{\hat{A}^2}{2!} + \frac{\hat{A}^3}{3!} + \dots$$
 ...(4.11)

बोध	प्रश्न (Self a	ssessn	nent que	estions)					
5.	क्या हैं?	रैखिक	संकारक	गुणात्मक	संकारक	क्रम	विनिमेय	नियम	का	पालन	करते

6. $\hat{I}\psi=\psi$ में \hat{I} किस प्रकार का संकारक है?

उदाहरण 4.3 सिद्ध करो कि तरंग फलन ψ के लिये गुणात्मक संकारक $\overset{\hat{}}{x}\overset{\hat{}}{p_x}$ तथा $\overset{\hat{}}{p_x}\overset{\hat{}}{x}$ की संक्रिया से प्राप्त फलन भिन्न-भिन्न आते हैं। $(\overset{\hat{}}{x}\overset{\hat{}}{p_x}-\overset{\hat{}}{p_x}\overset{\hat{}}{x})$ के तुल्य संकारक प्राप्त करो।

हल :
$$\hat{x} p_x \psi(x) = \hat{x} \left(-i\hbar \frac{\partial \psi(x)}{\partial x} \right)$$

$$= -i\hbar \hat{x} \left(\frac{\partial \psi(x)}{\partial x} \right)$$
तथा $\hat{p}_x \hat{x} \psi(x) = -i\hbar \frac{\partial}{\partial x} \left[\hat{x} \psi(x) \right]$

$$= -i\hbar \left[\hat{x} \frac{\partial \psi(x)}{\partial x} + \psi(x) \right]$$

$$= -i\hbar \hat{x} \left(\frac{\partial \psi(x)}{\partial x} \right) - i\hbar \psi(x)$$

अतः स्पष्ट है कि $\overset{\hat{x}}{x}\overset{\hat{p}_x}{p_x}\psi(x)$ व $\overset{\hat{p}_x}{x}\overset{\hat{x}}{\psi}(x)$ से प्राप्त फलन भिन्न है।

अतः $(\stackrel{\circ}{x}\stackrel{\circ}{p_x}-\stackrel{\circ}{p_x}\stackrel{\circ}{x})=$ का तुल्य संकारक $i\hbar$ है। इसे निम्न प्रकार से लिखते हैं। $\stackrel{\circ}{[x,p_x]}_{=i\hbar}$

 $\hat{x},\hat{p}_x = i\hbar$ का भौतिक महत्व यह है कि \hat{x} व \hat{p}_x ऐसे संकारक हैं जो कि क्रम - विनिमय नियम का पालन नहीं करते तथा इन्हें अ - अभिगमन (non commuting) संकारक कहते हैं। क्वांटम यांत्रिकी में अ - अभिगमन संकारकों का मापन यथेष्ट शुद्धता से एक साथ संभव नहीं होता है। जब कि $\hat{x},\hat{p}_y = \hat{x},\hat{p}_y = \hat{y},\hat{p}_x = \dots = 0$ प्राप्त होता है, इन्हें अभिगमन संकारक (commuting operator) कहते हैं। अभिगमन संकारकों का मापन यथेष्ट शुद्धता से एक साथ

संभव है। अ - अभिगमन संकारकों का क्रम - विनिमेयता का पालन नहीं करना 'अनिश्चितता सिद्धान्त' को प्रदर्शित करता है। यहाँ यह भी स्पष्ट करना आवश्यक है कि विहित संयुग्मी (canonical conjugate) जोडों जैसे $(\hat{x},\hat{p}_x),(\hat{y},\hat{p}_y)$ व (\hat{z},\hat{p}_z) के लिये ही क्रम विनिमयक शून्य नहीं होता है।

4.4 हर्मिटी संकारक (Hermitian Operator)

यदि कोई रैखिक संकारक A दो स्वेच्छ फलनों ψ तथा ϕ के लिये निम्न समाकलनीय प्रतिबन्ध को संतुष्ट करता है, तो वह संकारक हिर्मिटी संकारक कहलाता है।

$$\int (\hat{A}\psi)^* \phi dV = \int \psi^* (\hat{A}\phi) dV \qquad \dots (4.12)$$

हर्मिटी संकारक स्वसंलग्न (self adjoint) संकारक होता है, अर्थात् इनके लिये $\hat{A}^\dagger = \hat{A}$ होता है।

हर्मिटी संकारकों की विशेषतायें -

हर्मिटी संकारकों के आइगेन मान वास्तविक होते हैं।
 व्युत्पत्ति (Proof) -

माना $\overset{\circ}{A}$ एक हिर्मिटी संकारक है, तब

$$\hat{A^\dagger}=\hat{A}$$

अर्थात $\int (\hat{A}\psi)^*\psi dV = \int \psi^*(\hat{A}\psi)dV$...(4.13)

अब माना कि तरंग फलन ψ , संकारक $\overset{\hat{}}{A}$ का आइगेन फलन है, जिसके संगत आइगेन मान a है, तब आइगेन मान समीकरण से

$$\hat{A}\psi = a\psi$$

अतः समीकरण (4.13) का बायां पद,

$$\int (\hat{A}\psi)^* \psi dV = \int (a\psi)^* \psi dV$$
$$= \int a^* \psi^* \psi dV$$
$$= a^* \int \psi^* \psi dV$$

तथा दायाँ पद
$$\int \psi^*(\hat{A}\psi)dV = \int \psi^*a\psi dV = a\int \psi^*\psi dV$$
 अब समीकरण (4.13) से
$$a^*\int \psi^*\psi dv = a\int \psi^*\psi dV$$

$$\Rightarrow (a^*-a)\int \psi^*\psi dV = 0$$

ः आङ्गेन फलन ψ के लिये $\int \!\!\! \psi^* \psi \, dV \neq 0$ तथा प्रसामान्यीकृत तरंग फलन के $\int \!\!\! \psi^* \psi \, dV = 1$ होता है। अतः

$$(a^* - a) = 0 \Rightarrow a^* = a$$
(4.14)

प्रतिबन्ध (4.14) का पालन तब ही संभव है जब कि a वास्तिवक राशि हो। अतः हिमेटी संकारक के लिये आइगेन मान सदैव वास्तिवक होते हैं।

2. एक हर्मिटी संकारक के लिये दो भिन्न-भिन्न आइगेन मानों से सम्बन्धित आइगेन फलन परस्पर लांबिक (orthogonal) होते हैं।

व्युत्पत्ति (Proof) - माना हर्मिटी संकारक के लिए दो भिन्न-भिन्न आइगेन मानों a_n व a_m के संगत आइगेन फलन क्रमशः ψ_n व ψ_m हैं, तब आइगेन मान समीकरण से

$$\hat{A}\psi_n = a_n\psi_n \qquad ...(4.15)$$

$$\vec{A}\psi_m = a_m\psi_m$$

हर्मिटी संकारक की परिभाषा से

$$\int (\hat{A}\psi_n)^* \psi_m dV = \int \psi_n^* (\hat{A}\psi_m) dV$$

समी. (4.15) व (4.16) का उपयोग करने पर

$$\int (a_n \psi_n)^* \psi_m dV = \int \psi_n^* a_m \psi_m dV$$

$$\Rightarrow a_n^* \int \psi_n^* \psi_m dV = a_m \int \psi_n^* \psi_m dV$$

चूंकि हर्मिटी संकारक के आइगेन मान वास्तविक होते हैं अत:

$$a_{\scriptscriptstyle n}^* = a_{\scriptscriptstyle n}$$

ਨਭ $(a_{\scriptscriptstyle n} - a_{\scriptscriptstyle m}) \! \int \! \psi_{\scriptscriptstyle n}^* \! \psi_{\scriptscriptstyle m} dV = 0$

चूंकि हमनें आइगेन मानों a_n व a_m को भिन्न-भिन्न माना है, अत: $a_n \neq a_m$ व उपरोक्त समीकरण का पालन तभी संभव होगा जब $\int \psi_n^* \psi_m dV = 0$ हो।

अतः हर्मिटी संकारक के दो भिन्न-भिन्न आइगेन मानों के संगत आइगेन फलन परस्पर अभिलांबिक होते हैं।

बोध प्रश्न (Self assessment questions)

7. यदि $[\stackrel{\circ}{A},\stackrel{\circ}{B}]
eq 0$ हो तो $\stackrel{\circ}{A}$ व $\stackrel{\circ}{B}$ किस प्रकार के संकारक हैं?

ऊर्जा संकारक $i\hbar \frac{\partial}{\partial t}$, संवेग संकारक $-i\hbar \nabla$, हैमिल्टनी संकारक $\hat{H} = \frac{\hat{p}^2}{2m} + V(\vec{r})$ आदि हर्मिटी संकारक हैं।

8.	यदि $[\hat{A},\hat{B}]=0$ हो तो क्या \hat{A} व \hat{B} का मापन एक साथ यथेष्ट शुद्धता से संभव है?
9.	$[x,p_x^{'}]=i\hbar$ क्वांटम यांत्रिकी के किस सिद्धान्त को प्रदर्शित करता है?
10.	दो तरंग फलनों $\psi_{_n}$ व $\psi_{_m}$ के अभिलांबिक होने की शर्त लिखो।
11.	हर्मिटी संकारकों के आइगेन मान कैसे होते हैं?

4.5 गतिज चरों का प्रत्याशा मान (Expectation Value of Dynamical Variables)

प्रत्याशा मान का अर्थ (Meaning of expertation value) - माना किसी प्रयोग में कोई मापन कई बार दोहराया जाता है तब प्रत्येक मापन के फलस्वरूप प्राप्त परिणाम एक दूसरे से भिन्न प्राप्त होते हैं, जो कि एक निश्चित परास में वितरीत रहते हैं। इन सभी मानों का औसत मान इस मापन का प्रत्याशा मान कहलाता है।

उदाहरण के लिये माना एक समान अवस्था वाले N निकायों के समुदाय में कण की स्थिति का मापन किया जाता है। यदि मापन में परिणामित स्थिति x_1 आने की संभावना 0.25 या 25% है अर्थात 25% प्रेक्षणों से प्राप्त परिणाम x_1 है तथा परिणामित स्थिति x_2 आने की संभावना 0.75 या 75% है, यानि कि 75% प्रेक्षणों से प्राप्त परिणाम x_2 है। तब इन सभी प्रेक्षणों से प्राप्त औसत मान या प्रत्याशा मान

$$\langle x \rangle = \frac{0.25x_1 + 0.75x_2}{0.25 + 0.75}$$
 होगा।

"क्वांटम यांत्रिकी में प्रत्याशा मान, किसी प्रयोग से प्राप्त परिणामों का औसत मान होता है।"

यहां यह ध्यान रखना आवश्यक है कि क्वांटम यांत्रिकी में मापन के फलस्वरूप प्राप्त होने वाले सभी परिणाम 'प्रत्याशा मान' ही होते हैं क्यों कि कवांटम यांत्रिकी में कोई भी मापन 100% शुद्धता से संभव नही है, जब कि चिरसम्मत यांत्रिकी में प्रत्येक मापन को शत -प्रतिशत शुद्धता से ज्ञात किया जा सकता है। इसमें अनिश्चितता निहित नहीं रहती है।

प्रत्याशा मान की परिभाषा (Definition of expectation value) -

यदि किसी निकाय (जैसे विभव क्षेत्र $V(\vec{r})$) में गतिशील कण को तरंग फलन से ट्यक्त किया जाये तथा इसके लिये गतिकीय चर राशि Q जिसका संकारक \hat{Q} है, का प्रत्याशा मान निम्न प्रकार परिभाषित किया जाता है -

$$\langle Q \rangle = \frac{\int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \hat{Q} \psi(\vec{r}, t) dV}{\int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \psi(\vec{r}, t) dV} \qquad ...(4.17)$$

यदि तरंग फलन $\psi(\vec{r},t)$ प्रसामान्यीकृत है, तब

$$\int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \psi(\vec{r}, t) dv V = 1$$

तथा प्रत्याशा मान

$$\langle Q \rangle = \int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \hat{Q} \psi(\vec{r}, t) dV$$
 ...(4.18)

होता है।

4.6 स्थिति, संवेग और ऊर्जा के प्रत्याशा मान (Expectation Value Of Position, Momentum and Energy)

स्थिति का प्रत्याशा मान -

यदि एक कण का अवस्था फलन $\psi(x,t)$ है, तब इस अवस्था में कण की स्थिति का प्रत्याशा मान निम्न होता है।

$$\langle x \rangle = \frac{\int\limits_{-\infty}^{\infty} \psi^*(x,t) x \psi(x,t) dV}{\int\limits_{-\infty}^{\infty} \psi^*(x,t) \psi(x,t) dV} \qquad ...(4.19)$$

यदि कण, काल अनाश्रित विभव क्षेत्र V(x) में गतिशील है तब $\psi(x,t)=\psi(x)\exp\left(-rac{i}{h}Et
ight)$ होता है, ऐसी अवस्था के लिये x का प्रत्याशा मान

$$\left\langle x\right\rangle = \frac{\int\limits_{-\infty}^{\infty} \psi^{*}(x)\psi(x)dx}{\int\limits_{-\infty}^{\infty} \psi^{*}(x)\psi(x)dx} \qquad \dots (4.20 \, \text{sf})$$

प्रसामान्यीकृत तरंग फलन के लिये $\int\limits_{-\infty}^{\infty}\psi^{*}(x)\psi(x)dx=1$

নৰ
$$\langle x \rangle = \int_{-\infty}^{\infty} x \psi^*(x) \psi(x) dx$$
 ...(4.20 ৰ)

यदि कण त्रिविमीय विभव क्षेत्र में गतिशील है, तथा कण का अवस्था फलन $\psi(\vec{r},t)$ है, तब कण की स्थिति \vec{r} के घटकों x,y व z के प्रत्याशा मान (प्रसामान्यीकृत तरंग फलन के लिये)

$$\langle x \rangle = \int_{-\infty}^{\infty} x \psi^*(\vec{r}, t) \psi(\vec{r}, t) dV$$
 $\langle y \rangle = \int_{-\infty}^{\infty} y \psi^*(\vec{r}, t) \psi(\vec{r}, t) dV$ तथा $\langle z \rangle = \int_{-\infty}^{\infty} z \psi^*(\vec{r}, t) \psi(\vec{r}, t) dV$ होंगे।

तरंग फलन ψ निर्देशांक x,y,z तथा t का फलन है अतः प्रत्याशा मान में आकाशीय निर्देशांकों के सापेक्ष इसका समाकलन किया जाता है $(dV=dx\ dy\ dz\)$ । अतः प्रत्याशा मान केवल समय का फलन ही हो सकता है।

व्यापक रूप में प्रत्याशा मान केवल समय का फलन हो सकता है, लेकिन काल अनाश्रित विभव क्षेत्रों के लिये प्रत्याशा मान सदैव एक स्थिर राशि प्राप्त होती है।

संवेग का प्रत्याशा मान -

यदि एक कण का अवस्था फलन $\psi(\vec{r},t)$ है, तब कण के संवेग \vec{p} के घटकों p_x,p_y व p_z के प्रत्याशा मान, तरंग फलन $\psi(\vec{r},t)$ को प्रसामान्यीकृत मानने पर निम्न प्राप्त होते हैं -

$$\langle p_x \rangle = \int \psi^*(\vec{r}, t) \stackrel{\wedge}{p}_x \psi(\vec{r}, t) dV$$

$$= \int \psi^*(\vec{r}, t) \left(-i\hbar \frac{\partial}{\partial x} \right) \psi(\vec{r}, t) dV \qquad ...(4.213f)$$

$$\left\langle p_{y}\right\rangle = \int \psi^{*}(\vec{r},t) \left(-i\hbar \frac{\partial}{\partial y}\right) \psi(\vec{r},t) dV \qquad ...(4.21 \,\text{a})$$

तथा
$$\langle p_z \rangle = \int \psi^*(\vec{r}, t) \left(-i\hbar \frac{\partial}{\partial z} \right) \psi(\vec{r}, t) dV$$
 ...(4.21)

उपरोक्त तीनों समीकरणों को मिलाकर, तुल्य समीकरण निम्न प्रकार लिखी जा सकती है।

$$\langle \vec{p} \rangle = \int \psi^*(\vec{r}, t) \left(-i\hbar \nabla \right) \psi(\vec{r}, t) dV$$
 ...(4.22)

ऊर्जा का प्रत्याशा मान -

कण की कुल ऊर्जा E का संकारक $i\hbar\frac{\partial}{\partial t}$ होता है अतः अवस्था फलन $\psi(\vec{r},t)$ से वर्णित अवस्था में कण की कुल ऊर्जा का प्रत्याशा मान

$$\langle E \rangle = \frac{\int_{-\infty}^{\infty} \psi^{*}(\vec{r}, t) \left(i\hbar \frac{\partial}{\partial t} \right) \psi(\vec{r}, t) dV}{\int_{-\infty}^{\infty} \psi^{*}(\vec{r}, t) \psi(\vec{r}, t) dV} \qquad ...(4.23)$$

होता है।

तथा प्रसामान्यीकृत तरंग फलन के लिये यह मान निम्न होगा।

$$\langle E \rangle = \int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \left(i\hbar \frac{\partial}{\partial t} \right) \psi(\vec{r}, t) dV$$

उदाहरण 4.4 एक कण का तरंग फलन क्षेत्र $0 \le x \le a$ में $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ तथा इस क्षेत्र के बाहर $\psi(x) = 0$ द्वारा व्यक्त किया जाता है। कण की स्थिति व संवेग के प्रत्याशा मान ज्ञात करो।

हल : : कण की स्थिति का प्रत्याशा मान -

$$\langle x \rangle = \frac{\int \psi^* x \psi \, dx}{\int \psi^* \psi \, dx}$$

दिये गये तरंग फलन के लिये

$$\int \psi^* \psi \, dx = \frac{2}{a} \int_0^a \sin^2 \left(\frac{\pi x}{a} \right) dx$$
$$= \frac{2}{2a} \int_0^a \left(1 - \cos \left(\frac{2\pi x}{a} \right) \right) dx$$
$$= \frac{2}{2a} \left[x - \frac{\sin(2\pi x/a)}{(2\pi/a)} \right]_0^a$$

∴ अतः तरंग फलन प्रसामान्यीकृत है।

अतः कण की स्थिति का प्रत्याशा मान $\frac{a}{2}$ है।

कण के संवेग का प्रत्याशा मान -

$$\langle p_x \rangle = \frac{\int \psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \psi \, dx}{\int \psi^* \psi \, dx}$$

$$\therefore \int \psi^* \psi \, dx = 1$$

$$\therefore \langle p_x \rangle = -i\hbar \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right) \frac{\partial}{\partial x} \left\{ \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right) \right\} dx$$

$$= \frac{-i\hbar (2\pi)}{a^2} \int_0^a \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx$$

कण की कुल ऊर्जा का प्रत्याशा मान

$$\left\langle \mathrm{E} \right\rangle = \left\langle \frac{\overrightarrow{p}^2}{2m} \right\rangle + \left\langle V(\overrightarrow{r},t) \right\rangle$$
 से ज्ञात किया जा सकता है।
$$= \frac{-i\hbar\pi}{a^2} \int\limits_0^a \sin\left(\frac{2\pi x}{a}\right) dx = 0$$

$$\therefore \ \left\langle p_x \right\rangle = 0$$

अतः कण के संवेग का प्रत्याशा मान शून्य है।

4.7 सारांश (Summary)

- संकारक एक ऐसी गणितीय संक्रिया है जिसे किसी फलन पर लगाये जाने पर व्यापक रूप में दूसरा फलन प्राप्त होता है।
- क्वांटम यांत्रिकी में संकारक गणितीय प्रेक्षण योग्य चर राशियों के संगत ही निर्धारित किये जाते हैं।
- $\stackrel{\wedge}{\mathrm{A}}\psi=a\psi$ आइगेन मान समीकरण कहलाती है। जहां $\stackrel{\wedge}{\mathrm{A}}$ संकारक, a आइगेन मान व ψ आइगेन फलन है।
- रैखिक संकारक वे संकारक हैं जो

$$\hat{\mathbf{A}}(\psi_1 + \psi_2) = \hat{\mathbf{A}}\psi_1 + \hat{\mathbf{A}}\psi_2$$

व $\stackrel{\wedge}{\mathrm{A}}(a\psi) = (\stackrel{\wedge}{\mathrm{A}}\psi)$ संक्रियाओं को पालन करते हैं।

- अभिगमन संकारकों जैसे $[x,p_x]=[y,p_y]=[z,p_z]=0$ का मापन यथेष्ट शुद्धता से एक साथ संभव है जब, कि अ अभिगन संकारको जैसे $[x,p_x]=[y,p_y]=[z,p_z]=i\hbar$ का मान यथेष्ट शुद्धता से संभव नहीं है।
- प्रतिबंध $\int (\hat{A}\psi)^* \phi dV = \int \psi^* (\hat{A}\phi) dV$ को संतुष्ट करने वाले संकारक हिर्मिटी संकारक कहलाते हैं। यह स्वसलग्न होते हैं तथा इनके आइगेन मान वास्तिवक होते हैं।

- हर्मिटी संकारक के लिये दो भिन्न-भिन्न आइगेन मानों से सम्बन्धित आइगेन फलन परस्पर अभिलांबिक होते हैं।
- क्वांटम यांत्रिकी में प्रत्याशा मान, किसी प्रयोग से प्राप्त परिणामों को औसत मान होता है।
 इसे निम्न प्रकार परिभाषित किया जाता है-

$$\langle Q \rangle = \frac{\int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \hat{Q} \psi(\vec{r}, t) dV}{\int_{-\infty}^{\infty} \psi^*(\vec{r}, t) \psi(\vec{r}, t) dV}$$

• काल अनाश्रित विभव क्षेत्रों के लिये प्रत्याशा मान सदैव एक स्थिर राशि प्राप्त होती है।

4.8 शब्दावली (Glossary)

संकारक	Operator
अभिगमन	Commuting
अ - अभिगमन	Non-commuting
रैखिक संकारक	Linear operator
हर्मिटी संकारक	Hermitian operator
प्रत्याशा मान	Expectation value

4.9 संदर्भ ग्रन्थ (Reference Books)

एस.एस.रावत एवं	प्रारम्भिक क्वांटम यांत्रिकी एवं	कॉलेज बुक हाऊस, जयपुर		
सरदार सिंह	स्पैक्ट्रोस्कोपी			
S.L.Kakani	Elementary Quantum	College	Book	Centre,
C.Hemrajani and	Mechanics and	Jaipur		
T.C.Bansal	Spectroscopy			
Ashok Das	Quantum Mechanics:	Gordon	and	Breach
	A Modern Introduction	Science	Pı	ublishers,
		Switzerlar	nd.	

4.10 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

- 1. क्वान्टम यांत्रिकी में संकारक एक ऐसी गणितीय संक्रिया है, जिसके द्वारा एक अवस्था को दूसरी अवस्था में परिवर्तित किया जा सकता है।
- 2. $\hat{A}\psi = a\psi$
- 3. $\overrightarrow{L} = -i\hbar \overrightarrow{r} \times \overrightarrow{\nabla}$
- 4. प्रेक्षण योग्य भौतिक चर राशियाँ

- 5. नहीं
- 6. इकाई संकारक
- 7. अ अभिगमन संकारक
- 8. हॉ
- 9. अनिश्चितता सिद्धान्त को
- $10. \int \psi_n^* \psi_m dV = 1$
- 11. वास्तविक

4.11 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. संकारक का क्या महत्व है?
- 2. आइगेन मान समीकरण की भौतिक सार्थकता समझाइये।
- 3. रैखिक संकारकों को परिभाषित कीजिये।
- 4. हर्मिटी संकारक से आप क्या समझते हैं?
- 5. प्रत्याशा मान का भौतिक अर्थ क्या है
- क्वांटम यांत्रिकी में प्रत्याशा मान चिरसम्मत यांत्रिकी में औसत मान से किस प्रकार भिन्न है?

निबन्धात्मक प्रश्न (Essay type questions)

- 7. क्वांटम यांत्रिकी में प्रयोग किये जाने वाले विभिन्न संकारकों को परिभाषित कीजिये। हर्मिटी संकारक की क्या विशेषतायें हैं?
- 8. हर्मिटी संकारक से आप क्या समझते हैं? सिद्ध करो कि संवेग संकारक $\left(-i\hbar\frac{\partial}{\partial x}\right)$ एक हर्मिटी संकारक है।
- 9. सिद्ध कीजिये कि हर्मिटी संकारक के आइगेन मान वास्तविक होते हैं।
- 10. सिद्ध करो कि एक हर्मिटी संकारक के विभिन्न आइगेन मानों के संगत आइगेन फलन अभिलांबिक होते हैं।
- 11. प्रत्याशा मान का भौतिक अर्थ क्या है? प्रसामान्यीकृत तरंग फलन $\psi(\vec{r},t)$ के लिये स्थिति, संवेग व ऊर्जा के प्रत्याशा मान लिखिये।

आंकिक प्रश्न (Numerical questions)

- 12. सिद्ध करो कि संकारक $\left(\frac{\partial^2}{\partial x^2} x^2\right)$ आइगेन फलन $\exp\left(-\frac{x^2}{2}\right)$ होता है।
- 13. एक कण का तरंग फलन क्षेत्र $0 \le x \le a$ में $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ तथा इसके बाहर $\psi(x) = 0$ द्वारा व्यक्त किया जाता है। x^2 व p^2 के प्रत्याशा मानों की गणना करो।

[उत्तर :
$$\langle x^2 \rangle = a^2 \left(\frac{1}{3} - \frac{1}{2\pi^2} \right)$$
तथा $\langle p^2 \rangle = \frac{h^2 \pi^2}{a^2}$]

14. एक कण का तरंग फलन

$$\psi(x) = C \exp(-\alpha^2 x^2) - \infty < x < \infty$$
 है।

जहाँ C व α नियतांक हैं। कण के क्षेत्र $(0 < x < \infty)$ में होने की प्रायिकता ज्ञात करो।

[उत्तर :50%]

- 15. संकारकों $\stackrel{\wedge}{x}$ तथा $\stackrel{\wedge}{p_{_{x}}}$ के लिये, सिद्ध करो -
 - (i) $\hat{x^2} \stackrel{\wedge}{p_x} \neq \hat{p_x} \stackrel{\wedge}{x^2}$
 - (ii) $\hat{x^2} \hat{p_x} \hat{p_x} \hat{x^2} = 2i\hbar \hat{x}$

_____ क्वांटम यांत्रिकी के मूल सिद्धांत

(Fundamental Principal of Quantum Mechanics)

इकाई की रूपरेखा

- 5.0 उद्देश्य
- 5.1 प्रस्तावना
- 5.2 क्वांटम यांत्रिकी के मौलिक अभिग्रहीत
- 5.3 आइगेन फलन और आइगेन मान
- 5.4 अपभ्रष्टता
- 5.5 आइगेन फलनों की लांबिकता
- 5.6 क्रम विनिमेय सम्बन्ध
- 5.7 सारांश
- 5.8 शब्दावली
- 5.9 संदर्भ ग्रन्थ
- 5.10 बोध प्रश्नों के उत्तर
- 5.11 अभ्यासार्थ प्रश्न

5.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

- क्वांटम यांत्रिकी की उन मूलभूत अवधारणाओं को समझ सकेंगे जिनके आधार पर क्वांटम यांत्रिकी के महत्वपूर्ण सिद्धान्त प्रतिपादित किये जाते हैं,
- आप अपभ्रष्टता का अर्थ समझ सकेंगे, जिनके आधार पर स्पेक्ट्रमी रेखाओं की सूक्ष्म व अतिसूक्ष्म संरचना प्राप्त होती है;
- आप तरंग फलनों की लांबिकता का अभिप्राय समझ सकेंगे;
- आप क्रम विनियम सम्बन्धों का क्वांटम यांत्रिकी में महत्व समझ सकेंगे।

5.1 प्रस्तावना (Introduction)

चिरसम्मत यांत्रिकी में न्यूटन की गति के नियम अत्यन्त महत्वपूर्ण हैं जो कि मूल रूप से किसी भी बिन्दुवत तंत्र (point system) पर लागू किये जाते हैं। हालांकि इन नियमों को स्थूल तंत्रों (macroscopic objects) जैसे अन्तरिक्षीय पिण्डों (astronomical objects), ग्रहों, उपग्रहों आदि पर भी लागू किया जा सकता है, परन्तु इन पिण्डों की गति का वर्णन न्यूटन नियमों के आधार पर तब ही किया जा सकता है, जब कि इन पिण्डों के द्वारा तय किया गया पथ इनके आकार की तुलना में बहुत बड़ा हो। इस स्थिति में स्थूल पिण्ड भी बिन्दुवत कण के समान व्यवहार कर सकते हैं।

न्यूटन की गित के नियम चिरसम्मत यांत्रिकी के एक प्रकार से अभिग्रहित ही हैं, जिन्हें आधार मानकर अन्य नियम प्रतिपादित किये गये हैं, जैसे कैपलर के नियम। ठीक इसी प्रकार क्वांटम यांत्रिकी में भी कुछ मौलिक नियमों का निर्धारण किया जाना आवश्यक है, जिन्हें आधार मानकर ही क्वांटम यांत्रिकी के अन्य निष्कर्ष प्रतिपादित किये जा सकते हैं। इन्हें क्वान्टम यांत्रिकी के मूल अभिग्रहीत कहा जाता है। इन मूल अभिग्रहितों का वर्णन हम इस इकाई के अनुच्छेद 5.2 में करेंगे। इन मूल अभिग्रहितों के आधार पर ही अनुच्छेद 5.3 के अन्तर्गत आइगेन मान व आइगेन फलनों को समझाया जायेगा। अनुच्छेद 5.4 में अपभ्रष्टता को समझाया गया है। आइगेन फलनों की लांबिकता व इसका महत्व इकाई के अनुच्छेद 5.5 में वर्णित किया जायेगा। क्रम- विनिमेय सम्बन्धों के आधार पर एक बार पुन: क्वांटम यांत्रिकी के अनिश्चितता सिद्धान्त को अनुच्छेद 5.6 में पढ़ेंगे।

5.2 क्वांटम यांत्रिकी के मौलिक अभिग्रहीत (Fundamental Postulates of Quantum Mechanics)

क्वांटम यांत्रिकी के प्रतिपादन के लिये निम्न मौलिक या मूलभूत अभिग्रहीत माने जाते हैं, जिनके आधार पर अन्य निष्कर्ष ज्ञात किये जा सकते हैं।

अभिग्रहीत 1 - प्रत्येक क्वांटम यांत्रिक निकाय या गतिकीय अवस्था (dynamical state) को व्यक्त करने के लिये एक अवस्था फलन (state function) या तरंग फलन (ware function) $\psi(\vec{r},t)$ का उपयोग किया जाता है। इस अवस्था फलन में निकाय से सम्बन्धित समस्त संभाव्य सूचनायें निहित रहती हैं। अवस्था फलन एकल मानी (single valued), परिमित (finite), सम्मिश्र (complex) तथा सतत (continuous) तरंग फलन होता है। इसके मापांक (modulus) का वर्ग किसी स्थिति \vec{r} व समय t पर निकाय के पाये जाने की प्रायिकता को प्रदर्शित करता है।

$$P = \left| \psi(\vec{r}, t) \right|^2 \qquad \dots (5.1)$$

अभिग्रहीत 2 - यदि किसी भौतिक निकाय समूह की एक अवस्था के संगत अवस्था फलन ψ_1 व दूसरी अवस्था के संगत अवस्था फलन ψ_2 है तब इनके रैखिक संयोजन से प्राप्त अवस्था फलन

$$\psi = c_1 \psi_1 + c_2 \psi_2$$
 (c_1 व c_2 स्थिरांक हैं।) ...(5.2)

भी भौतिक निकाय समूह की एक संभव अवस्था को प्रदर्शित करता है। इसे अध्यारोपण का सिद्धान्त (principal of superposition) भी कहते हैं।

अभिग्रहीत 3 - प्रत्येक गतिकीय चर (प्रेक्षणीय राशि जैसे- स्थिति, संवेग, ऊर्जा आदि) के संगत क्वांटम यांत्रिकी में एक गणितीय संकारक परिभाषित किया जाता है। चूंकि प्रत्येक प्रेक्षणीय राशि वास्तविक होती है, इसलिये संकारक का रैखिक व हर्मिटी होना आवश्यक है।

अभिग्रहीत 4 - अवस्था फलन ($\psi(\vec{r},t)$ का समय के साथ परिवर्तन (evolution) कालाश्रित श्रोडिंजर समीकरण दवारा निर्धारित किया जाता है।

$$i\hbar \frac{\partial \psi(r,t)}{\partial t} = \hat{H} \psi(r,t) \qquad ...(5.3)$$

जहाँ $\overset{\wedge}{\mathrm{H}}$ कुल ऊर्जा या हैमिल्टनी संकारक (Hamiltonian operator) है।

अभिग्रहीत 5 - एक भौतिक निकाय के लिये गतिकीय चर राशि A , (जिसके संगत संकारक $\stackrel{\hat{}}{A}$ है) के परिशुद्ध मापन (precise measurement) में केवल संकारक $\stackrel{\hat{}}{A}$ के आइगेन मान a_n ही प्राप्त होते हैं।

$$\hat{\mathbf{A}} \psi (\vec{r}, t) = a_n \psi (\vec{r}, t) \qquad \dots (5.4)$$

अर्थात संकारक $\overset{\hat{\Lambda}}{A}$ की अवस्था फलन $\psi(\overset{\hat{r}}{r},t)$ पर संक्रिया से उस संकारक $\overset{\hat{\Lambda}}{(A)}$ के संगत आइगेन मान a_n प्राप्त होते हैं।

अभिग्रहीत 6- अवस्था फलन $\psi(\vec{r},t)$ से वर्णित किसी भौतिक निकाय के एक समूह के लिये गतिकीय चर A (जिसके संगत संकारक $\stackrel{\hat{}}{A}$ है।) का मापन करने से प्राप्त औसत या प्रत्याशा मान निम्न प्रकार से प्राप्त होता है।

$$\langle A \rangle = \frac{\int \psi^*(\vec{r},t) \hat{A} \psi(\vec{r},t) dV}{\int \psi^*(\vec{r},t) \psi(\vec{r},t) dV} \qquad ...(5.5 \, \mathfrak{F})$$

 $\psi(\vec{r},t)$ के प्रसामान्यीकृत होने पर $\int\!\psi^*(\vec{r},t)\!\psi(\vec{r},t)dV=1$, तथा

$$\langle \mathbf{A} \rangle = \int \psi^*(\vec{r}, t) \, \hat{\mathbf{A}} \psi(\vec{r}, t) dV \qquad \dots (5.5 \, \mathbf{a})$$

अभिग्रहीत 7 - एक भौतिक निकाय की किसी गतिकीय अवस्था को प्रदर्शित करने वाला तरंग फलन $\psi(\vec{r},t)$, किसी गतिकीय चर (dynamical variable) से सम्बन्धित संकारक के आइगेन फलनों ψ_n के रैखिक संयोजन के रूप में लिखा जा सकता है।

$$\psi = \sum c_n \psi_n \qquad \dots (5.6)$$

जहाँ c_n एक सम्मिश्र नियतांक है।

उपरोक्त समी. (5.6) का आशय यह है कि किसी भी गतिकीय अवस्था $\psi(\vec{r},t)$ को अन्य भौतिक उपअवस्थाओं (substates) (जिनसे मिलकर वह बनी है) के रैखिक संयोजन के रूप में लिखा जा सकता है।

बोध प्रश्न (Self assessment questions)

1 किसी क्वांटम अवस्था को प्रदर्शित करने वाले तरंग फलन के क्या गुण होने चाहिये?

.2	$\psi\left(\overset{ ightharpoonup}{r},t ight)$ के मापांक का वर्ग क्या प्रदर्शित करता है।		
.3	$\psi = c_1 \psi_1 + c_2 \psi_2$ किस भौतिक सिद्धान्त को प्रदर्शित करता है?		
4.	किसी गतिकीय चर के संगत संकारक किस प्रकार का होना चाहिये?		
5.	अवस्था फलन $\psi(r,t)$ का समय के साथ परिवर्तन को प्रदर्शित करने वाली समीकरण लिखिए।		
.6	$\stackrel{}{A}\psi=a_{_{n}}\psi$ में $a_{_{n}}$ व ψ क्या कहलाते हैं?		
7.	किसी गतिकीय चर A (जिसके संगत संकारक $\begin{pmatrix} \hat{A} \end{pmatrix}$ है (के मापन से प्राप्त		
	प्रत्याशा मान क्या होगा? यदि निकाय अवस्था फलन $\psi \left(r,t ight)$ से वर्णित हो।		

5.3 आइगेन फलन और आइगेन मान (Eigen Function and Eigen Values)

यदि कोई संकारक \hat{A} है किसी विशेष फलन ψ पर संक्रिया करता है, तो निम्न समीकरण प्राप्त होती है -

$$\hat{A}\psi = a\psi \qquad ...(5.7)$$

उपरोक्त समीकरण में संकारक \hat{A} की ψ पर संक्रिया के फलस्वरूप वही तरंग फलन ψ स्थिरांक a से गुणित होकर प्राप्त होता है। ऐसा होने पर फलन ψ को संकारक \hat{A} का आइगेन फलन या अभिलाक्षणिक फलन कहते हैं तथा a को आइगेन मान का अभिलाक्षणिक मान कहते हैं। समी (5.7) आइगेन मान समीकरण कहलाती हैं। व्यापक रूप में स्थिरांक a एक सम्मिश्र राशि हो सकती है, परन्तु हर्मिटी संकारकों के संगत आइगेन मान सदैव वास्तविक होते हैं।

काल अनाश्रित (time independent) श्रोडिंजर समीकरण एक आइगेन मान समीकरण है।

$$\hat{\mathbf{H}}\psi(\vec{r}) = \mathbf{E}\psi(\vec{r}) \qquad \dots (5.8)$$

उपरोक्त समीकरण में तरंग फलन $\psi(\vec{r})$, हैमिल्टनी संकारक H का आइगेन फलन है तथा E इस आइगेन फलन के संगत आइगेन मान है। यह आइगेन मान कण की कुल ऊर्जा का प्रत्याशा मान है।

5.4 अपभ्रष्टता (Degeneracy)

संकारक $\stackrel{\wedge}{A}$ के लिये निम्न आइगेन मान समीकरण होती है -

$$\hat{\mathbf{A}}\boldsymbol{\psi}_{n} = a_{n}\boldsymbol{\psi}_{n} \qquad \dots (5.9)$$

जहाँ संकारक $\overset{\wedge}{\mathrm{A}}$ के आइगेन फलन $\psi_{\scriptscriptstyle n}$ व संगत आइगेन मान $a_{\scriptscriptstyle n}$ हैं।

यदि किसी एक आइगेन मान a_n के संगत एक से अधिक आइगेन फलन $(\psi_{n1},\psi_{n2},\psi_{n3},...)$ हों, जो कि एक दूसरे के सापेक्ष रैखिक स्वतंत्र (Linearly independent) हों, अर्थात्

$$\hat{A}\psi_{n1} = a_n\psi_{n1}$$

$$\hat{A}\psi_{n2} = a_n\psi_{n2}$$
....
$$\hat{A}\psi_{nn} = a_n\psi_{nn}$$

इस प्रकार यदि एक आइगेन मान के संगत एक से अधिक रैखिक स्वतन्त्र आइगेन फलन विद्यमान हों, तब आइगेन मान अपभ्रष्टता (degenerate) कहलाता है, तथा आइगेन मान के इस गुण को अपभ्रष्टता (degeneracy) कहते हैं। किसी एक आइगेन मान a_n के संगत जितने रैखिक स्वतंत्र आइगेन फलन विद्यमान होते हैं, उस संख्या को अपभ्रष्टता की कोटि (degree of degeneracy) कहा जाता है।

यदि $\hat{H}\psi=E\psi$ में एक ऊर्जा स्तर E के संगत n रैखिक स्वतन्त्र आइगेन फलन, विद्यमान हों, तो वह ऊर्जा स्तर n गुना अपभ्रष्ट कहलाता है, यानि कि एक ऊर्जा स्तर n ऊर्जा स्तरों में विभक्त हो जाता है। स्पैक्ट्रमी रेखाओं की सूक्ष्म (fine) व अतिसूक्ष्म (hyperfine) संरचना अपभ्रष्ट ऊर्जा स्तरों के कारण होती है।

बोध प्रश्न (Self assessment questions)

8. आइगेन मान समीकरण $\hat{H}\psi(\vec{r}) = E\psi(r)$ में आइगेन मान E कण की कुल ऊर्जा का किस प्रकार का मान है?

9. अपभ्रष्टता की कोटि से क्या तात्पर्य है?

10. स्पैक्ट्रमी रेखाओं की सूक्ष्म व अतिसूक्ष्म संरचना किन ऊर्जा स्तरों के कारण प्राप्त होती है?

उदाहरण 5.1 यदि ψ_1,ψ_2,ψ_3 किसी अपभ्रष्ट आइगेन मान a के संगत आइगेन फलन हों, तब सिद्ध करो कि इनके रैखिक संयोजन से प्राप्त फलन ψ भी एक आइगेन फलन होता है, जब कि ψ , आइगेन फलनों ψ_1,ψ_2,ψ_3 से रैखिक स्वतंत्र नहीं है।

हल: चूंकि ψ_1,ψ_2,ψ_3 अपभ्रष्ट आङ्गेन मान a के आङ्गेन फलन हैं, अतः

$$\hat{A}\psi_1 = a\psi_1$$

$$\hat{A}\psi_2 = a\psi_2$$

$$\hat{A}\psi_3 = a\psi_3$$

$$\psi = c_1\psi_1 + c_2\psi_2 + c_3\psi_3$$

$$\therefore \hat{A}(c_1\psi_1 + c_2\psi_2 + c_3\psi_3) = \hat{A}(c_1\psi_1) + \hat{A}(c_2\psi_2) + \hat{A}(c_3\psi_3)$$

$$= c_1(\hat{A}\psi_1) + c_2(\hat{A}\psi_2) + c_3(\hat{A}\psi_3)$$

$$= c_1a\psi_1 + c_2a\psi_2 + c_3a\psi_3$$

$$\hat{A}(c_1\psi_1 + c_2\psi_2 + c_3\psi_3) = a(c_1\psi_1 + c_2\psi_2 + c_3\psi_3)$$

$$\Rightarrow \hat{A}\psi = a\psi$$

अतः $\psi = c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3$ आङ्गेन मान a का आङ्गेन फलन है। विद्यार्थी ध्यान दें कि रैखिक संयोजन से प्राप्त तरंग फलन ψ कोई स्वतंत्र फलन नहीं है, इसलिये इसे अपभ्रष्टता की कोटि में शामिल नहीं किया जाता है।

उदाहरण 5.2 यदि निकाय की किसी अवस्था के संगत अवस्था फलन ψ किसी गतिकीय चर के संगत संकारक $\stackrel{\hat{}}{A}$ का आइगेन फलन है, तो सिद्ध करो कि उस अवस्था में A का प्रत्याशा मान, आइगेन मान के बराबर होगा।

हल: यदि अवस्था फलन ψ के संगत आइगेन मान a है तो

$$\hat{A}\psi = a\psi$$

तथा प्रत्याशा मान
$$\langle \mathbf{A} \rangle = \frac{\int \psi^* \hat{\mathbf{A}} \psi dV}{\int \psi^* \psi dV} = \frac{\int \psi^* a \psi dV}{\int \psi^* \psi dV}$$

$$=\frac{a\int \psi^* \psi dV}{\int \psi^* \psi dV} = a$$

अतः A का प्रत्याशा मान, आइगेन मान a के बराबर है।

उदाहरण 5.3 यदि संकारक $\left(\frac{\partial^2}{\partial x^2} - x^2\right)$ का आइगेन फलन $e^{-\frac{x^2}{2}}$ है, तो इसके संगत

आइगेन मान ज्ञात करो।

हल: आइगेन मान समी. के अनुसार ${\hat {
m A}}\psi=a\psi$

अतः संकारक $\left(\frac{\partial^2}{\partial x^2} - x^2\right)$ का आइगेन फलन $e^{-\frac{x^2}{2}}$ व आइगेन मान -1 है।

आइगेन फलनों की लांबिकता (Orthogonality of Eigen 5.5 Functions)

दो अवस्था फलन (तरंग फलन) $\psi_{\scriptscriptstyle m}$ व $\psi_{\scriptscriptstyle n}$ लाम्बिक कहलाते हैं, यदि वह निम्न प्रतिबंध का पालन करते है-

$$\int \psi_m^* \psi_n dV = 0$$
 ; $m \neq n$ तथा $m, n = 1, 2, 3$...(5.10)

जहाँ आयतन समाकल सम्पूर्ण आकाश के लिये है।

और यदि
$$\int \psi_n^* \psi_n dV = 1$$
 ; $m = n$ तथा $m, n = 1, 2, 3$...(5.11)

तब ψ_m व ψ_n प्रसामान्यीकृत (normalised) अवस्था फलन कहलाते हैं।

यदि उपरोक्त प्रतिबंध को लंबकोणीयता प्रतिबन्ध के साथ मिलाकर लिखा जाये तब

$$\int \psi_n^* \psi_n dV = 1$$
 यदि $m \neq n$ तथा $\int \psi_n^* \psi_n dV = 0$ यदि $m = n$ आर्थात, $\int \psi_n^* \psi_n dV = \delta_{mn}$...(5.12)

 δ_{mn} , क्रोनिकर डेल्टा (Kronecker delta) कहलाता है, जिसके लिये

$$\delta_{mn} = 1$$
 यदि $m = n$

व

$$\delta_{mn} = 0$$
 यदि $m \neq n$

प्रतिबन्ध (5.12) प्रसामान्य लाम्बिक प्रतिबंध (orthonormality condition) कहलाता है। वे तरंग फलन जो प्रतिबन्ध समीकरण (5.12) का पालन करते हैं, उन्हें प्रसामान्य लांबिक (orthonormal) फलन कहते हैं।

बोध प्रश्न (Self assessment question)

दो आइगेन फलनों $\psi_{\scriptscriptstyle m}$ व $\psi_{\scriptscriptstyle n}$ के लिए प्रतिबंध $\int \psi_{\scriptscriptstyle m}^* \psi_{\scriptscriptstyle n} dV = \delta_{\scriptscriptstyle mn}$ क्या कहलाता

उदाहरण 5.4 सिद्ध करो कि भिन्न-भिन्न आइगेन मानों के संगत आइगेन फलन लांबिक (orthogonal) होते हैं।

हल: माना संकारक Aके भिन्न-भिन्न आइगेन फलनों के संगत आइगेन मान समीकरण निम्न है -

$$\hat{\mathbf{A}}\boldsymbol{\psi}_{n} = a_{n}\boldsymbol{\psi}_{n} \qquad \dots(\mathbf{A})$$

$$\hat{\mathbf{A}}\boldsymbol{\psi}_{m} = a_{m}\boldsymbol{\psi}_{m} \qquad ...(\mathbf{B})$$

समी. (A) को बॉयी ओर से ψ_m^* से गुणा कर, आयतन समाकलन करने पर

$$\int \psi_m^* \hat{A} \psi_n dV = a_n \int \psi_m^* \psi_n dV \qquad \dots(C)$$

समी. (B) का सम्मिश्र संयुग्मी (complex conjugate) लेने पर

$$(\mathbf{A}\psi_m)^* = (a_m\psi_m)^*$$

यदि संकारक $\overset{\wedge}{\mathrm{A}}$ एक हर्मिटी संकारक हो तो उसके आइगेन मान वास्तविक होंगे अर्थात्

$$(\mathbf{\hat{A}}\psi_m)^* = a_m \psi_m^* \qquad \dots(D)$$

समीकरण (D) को दॉयी ओर से $\psi_{\scriptscriptstyle n}$ से गुणा कर, आयतन समाकलन करने पर

$$\int (\hat{\mathbf{A}}\psi_m)^* \psi_n dV = a_m \int \psi_m^* \psi_n dV$$

चूंकि $\stackrel{\wedge}{\mathrm{A}}$ एक हिर्मिटी संकारक है अतः $\int (\stackrel{\wedge}{\mathrm{A}}\psi_{\scriptscriptstyle m})^*\psi_{\scriptscriptstyle n}dV = \int \psi_{\scriptscriptstyle m}^*(\stackrel{\wedge}{\mathrm{A}}\psi_{\scriptscriptstyle n})dV$

$$\therefore \int \psi_m^* \hat{A} \psi_n dV = a_m \int \psi_m^* \hat{A} \psi_n dV \qquad \dots (E)$$

समीकरण (E) से समी. (C) घटाने पर

$$0 = (a_m - a_n) \int \psi_m^* \psi_n dV$$

परन्तु

$$a_m \neq a_n$$

अत

$$\int \psi_m^* \psi_n dV = 0$$

अतः ψ_m व ψ_n एक दूसरे के लांबिक आइगेन फलन है।

5.6 क्रम विनिमेय सम्बन्ध (Commutation Relations)

दो संकारकों $\stackrel{\hat{A}}{A}$ व $\stackrel{\hat{B}}{B}$ के लिये क्रम विनिमयक सम्बन्ध $\stackrel{\hat{A}}{[A,B]}$ निम्न प्रकार परिभाषित किया जाता है-

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \qquad \dots (5.13)$$

यदि दो संकारकों के लिये क्रमविनिमयक संबंध से शून्य प्राप्त हो, अर्थात्

$$[\hat{A},\hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} = 0$$
 या
$$\hat{A}\hat{B} = \hat{B}\hat{A} \qquad ...(5.14)$$

तो इस प्रकार के संकारक अभिगमन संकारक (commuting operator) कहलाते हैं। तथा यदि दो संकारकों के लिये क्रम विनिमयक शून्य नहीं हो, अर्थात्

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \neq 0$$

$$\Rightarrow \hat{A}\hat{B} \neq \hat{B}\hat{A} \qquad ...(5.15)$$

ऐसे संकारक जो क्रम विनिमय नियम का पालन नहीं करते हैं अ- अभिगमन संकारक (non-commuting) कहलाते हैं।

जैसा कि इकाई 4 में स्पष्ट किया जा चुका है, अभिगमन संकारकों का एक साथ मापन (simultaneous measurement) यथार्थ शुद्धता (Precise accurracy) के साथ संभव है, जब कि अ - अभिगमन संकारकों का एक साथ यथार्थ शुद्धता से मापन संभव नहीं है। अ - अभिगमन संकारक अनिश्चितता सिद्धान्त (uncertainty principle) का पालन करते हैं।

कुछ महत्वपूर्ण क्रम विनिमय सम्बन्ध -

(1) एक कण की स्थिति व संवेग के संगत संकारकों में विहित संयुग्मी (canonically conjugate) स्थिति व संवेग संकारकों के क्रम - विनिमय सम्बन्ध

$$[\hat{x}, \hat{p}_x] = [\hat{y}, \hat{p}_y] = [\hat{z}, \hat{p}_z] = i\hbar$$
 ...(5.16)

व अन्य संकारकों के लिये

$$[\hat{x}, \hat{p}_y] = [x, \hat{p}_z] = [\hat{y}, \hat{p}_x] = [\hat{y}, \hat{p}_z] = [\hat{z}, \hat{p}_x] = [z, \hat{p}_y] = 0 \dots (5.17)$$

(2) एक कण के कोणीय संवेग के घटकों Lx, Ly व Lz के लिये क्रम - विनिमय सम्बन्ध

्रि
$$[\hat{L}_x,\hat{L}_y]=i\hbar\,\hat{L}_z$$
 तथा $[\hat{L}_y,\hat{L}_z]=i\hbar\,\hat{L}_x$...(5.18) $[\hat{L}_z,\hat{L}_x]=i\hbar\,\hat{L}_y$

उपरोक्त तीनों सम्बन्धों को एक साथ निम्न प्रकार लिखा जा सकता है

$$\stackrel{\widehat{\rightarrow}}{L} \times \stackrel{\widehat{\rightarrow}}{L} = \stackrel{\widehat{\rightarrow}}{i} \stackrel{\widehat{\rightarrow}}{L} \qquad \dots (5.19)$$

यदि संकारक $\overrightarrow{L^2}= \hat{L_x^2}+\hat{L_y^2}+\hat{L_z^2}$ है, तो इसके तथा \overrightarrow{L} के घटकों के मध्य क्रम विनिमय सम्बन्ध -

$$\hat{\vec{L}}^{2}, \hat{\vec{L}}_{x}] = \hat{\vec{L}}^{2}, \hat{\vec{L}}_{y}] = \hat{\vec{L}}^{2}, \hat{\vec{L}}_{z}] = 0 \qquad ...(5.20)$$

क्रम विनिमयक बीजक्रियायें (commutator algebra)

क्रम विनिमयक निम्न सम्बन्धों का पालन करते हैं -

$$\begin{split} & [\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}] \\ & [\hat{A}, \hat{B} + \hat{C}] = [\hat{A}, \hat{B}] + [\hat{A}, \hat{C}] \\ & [\hat{A}, \hat{B} \hat{C}] = [\hat{A}, \hat{B}] \hat{C} + \hat{B}[\hat{A}, \hat{C}] \\ & [\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [C, [\hat{A}, \hat{B}]] = 0 \end{split}$$

तथा

बोध प्रश्न (Self assessment questions)

12. यदि संकारक \hat{A},\hat{B} के लिये क्रम विनिमयक $[\hat{A},\hat{B}] \neq 0$ है तो \hat{A} व \hat{B} किस प्रकार के संकारक हैं?

उदाहरण 5.5 सिद्ध करो कि मुक्त कण का हेमल्टोनियन तथा संवेग संकारक क्रम विनिमय नियम का पालन करते है।

हल: मुक्त कण का हेमेल्टोनियन $H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$ व संवेग संकारक $\stackrel{\hat{}}{p} = -i\hbar \frac{\partial}{\partial x}$ $\therefore [H, \stackrel{\hat{}}{p}] = (\stackrel{\hat{}}{H} \stackrel{\hat{}}{p} - \stackrel{\hat{}}{p} \stackrel{\hat{}}{H})$ $= \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\right) \left(-i\hbar \frac{\partial}{\partial x}\right) - \left(-i\hbar \frac{\partial}{\partial x}\right) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\right)$ $= \frac{i\hbar^3}{2m} \left(\frac{\partial^3}{\partial x^3} - \frac{\partial^3}{\partial x^3}\right)$

अतः $[\stackrel{\wedge}{\mathrm{H}},\stackrel{\wedge}{P}]$ क्रम विनिमय नियम का पालन करते हैं।

उदाहरण $\mathbf{5.6}$ यदि कण के कोणीय संवेग \overrightarrow{L} के घटक L_{x},L_{y} व L_{z} हों तो सिद्ध करो

$$\overrightarrow{L} \times \overrightarrow{L} = i\hbar \overrightarrow{L}$$

हल:- कण का कोणीय संवेग संकारक
$$\stackrel{\hat{}}{L} = \stackrel{\hat{}}{r} \times \stackrel{\hat{}}{p} = -i\hbar(\stackrel{}{r} \times \stackrel{}{p})$$

तो
$$\hat{L}_x = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$$

$$\hat{L}_y = -i\hbar \left(z \frac{\partial}{\partial z} - x \frac{\partial}{\partial y} \right)$$
तथा
$$\hat{L}_z = -i\hbar \left(x \frac{\partial}{\partial z} - y \frac{\partial}{\partial y} \right)$$

$$\hat{L}_x \hat{L}_y = -\hbar^2 \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \left(z \frac{\partial}{\partial z} - x \frac{\partial}{\partial y} \right)$$

$$= -\hbar^2 \left[y \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial x} \right) - y \frac{\partial}{\partial z} \left(x \frac{\partial}{\partial z} \right) - z \frac{\partial}{\partial y} \left(z \frac{\partial}{\partial x} \right) + z \frac{\partial}{\partial y} \left(x \frac{\partial}{\partial z} \right) \right]$$

$$= -\hbar^2 \left[y \frac{\partial}{\partial z} + yz \frac{\partial^2}{\partial z \partial x} - yx \frac{\partial^2}{\partial z^2} - z^2 \frac{\partial^2}{\partial y \partial x} + zx \frac{\partial^2}{\partial y \partial z} \right]$$

इसी प्रकार

$$\hat{L_y}\,\hat{L_x} = -\hbar^2 \left(z\,\frac{\partial}{\partial x} - x\,\frac{\partial}{\partial z}\right) \left(y\,\frac{\partial}{\partial z} - z\,\frac{\partial}{\partial y}\right)$$

$$= -\hbar^2 \left[z\,\frac{\partial}{\partial x}\left(y\,\frac{\partial}{\partial z}\right) - z\,\frac{\partial}{\partial x}\left(z\,\frac{\partial}{\partial y}\right) - x\,\frac{\partial}{\partial z}\left(y\,\frac{\partial}{\partial z}\right) + x\,\frac{\partial}{\partial z}\left(z\,\frac{\partial}{\partial y}\right)\right]$$

$$= -\hbar^2 \left[zy\,\frac{\partial}{\partial x\partial z} - z^2\,\frac{\partial^2}{\partial x\partial y} - xy\,\frac{\partial^2}{\partial z^2} + x\,\frac{\partial^2}{\partial y} + xz\,\frac{\partial^2}{\partial z\partial y}\right]$$

$$\Rightarrow \hat{L_x}\,\hat{L_y} - \hat{L_y}\,\hat{L_x} = -\hbar^2 \left[y\,\frac{\partial}{\partial x} - x\,\frac{\partial}{\partial y}\right]$$

$$= \hbar^2 \left[x\,\frac{\partial}{\partial y} - y\,\frac{\partial}{\partial x}\right]$$

$$\therefore \hat{L_x}\,\hat{L_y} - \hat{L_y}\,\hat{L_x} = i\hbar\,\hat{L_z}$$

$$\Rightarrow \hat{L_x}\,\hat{L_y} = i\hbar\,\hat{L_z}$$

$$\Rightarrow \hat{L_x}\,\hat{L_y} = i\hbar\,\hat{L_z}$$

$$\hat{L_x}\,\hat{L_y} = i\hbar\,\hat{L_y}$$

$$\therefore \hat{L} \times \vec{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ L_x & L_y & L_z \\ L_x & L_y & L_z \end{vmatrix}$$

$$= \hat{i}(L_yL_z - L_zL_y) + \hat{j}(L_zL_x - L_xL_z) + \hat{k}(L_xL_y - L_yL_x)$$

$$= i\hbar(\hat{i}\,\hat{L_x} + \hat{j}\,\hat{L_y} + \hat{k}\,\hat{L_z})$$

$$= i\hbar\,\hat{L}$$

$$\therefore \hat{L} \times \hat{L} = i\hbar\,\hat{L}$$

5.7 सारांश (Summary)

- प्रत्येक क्वान्टम निकाय को अवस्था फलन या तरंग फलन $\psi(\vec{r},t)$ द्वारा व्यक्त किया जाता है। यह तरंग फलन एक मानी, परिमित, सम्मिश्र व सतत होना चाहिये। $\psi(\vec{r},t)$ प्रायिकता आयाम को व $P = \left|\psi(\vec{r},t)\right|^2$ कण की स्थिति \vec{r} व समय t पर पाये जान का प्रायिकता को प्रदर्शित करता है।
- दो अवस्था फलनों के रैखिक संयोजन से प्राप्त अवस्था फलन भौतिक निकाय समूह की एक संभव अवस्था को प्रदर्शित करता है।

- क्वांटम यांत्रिकी में प्रत्येक प्रेक्षणीय राशि के संगत एक गणितीय संकारक निर्धारित किया जाता है।
- आइगेन मान समीकरण में आइगेन मान संकारक के संगत गतिकीय चर के मापन के प्रत्याशा मान को प्रदर्शित करता है।
- एक आइगेन मान के संगत यदि एक से अधिक रैखिक स्वतन्त्र आइगेन फलन विद्यमान हों तो आइगेन मान अपभ्रष्ट कहलाता है, तथा आइगेन मान के संगत रैखिक स्वतन्त्र आइगेन फलनों की संख्या अपभ्रष्टता की कोटि कहलाती है।

5.8 शब्दावली (Glossary)

अपभष्टता	Degeneracy
अभिधारणा	Postulate
एकल मानी	Single valued
काल अनाश्रित	Time independent
प्रत्याशा मान	Expectation value
परिशुद्ध	Precise
मापांक	Modulus

5.9 संदर्भ ग्रन्थ (Reference Books)

डॉ. एस.एस. रावत एवं	प्रारम्भिक क्वान्टम	कॉलेज बुक हाउस,
डॉ. सरदार सिंह	यांत्रिकी एवं स्पेक्ट्रोस्कोपी	जयपुर
S.L.Kakani,	Elementary Quantum	College Book Centre,
C.Hemrajani and	Mechanics and	Jaipur
T.C.Bansal	Spectroseopy	
A.Das and	Quantum Mechanics	Gordon and Breach
A.C.Melissions	A Modern Introduction	Science
		Publishers, Switzerland

5.10 बोध प्रश्नों के उत्तर (Answers to self Assessment Questions)

- 1. यह एक मानी, परिमित, सम्मिश्र व सतत होना चाहिये।
- 2. स्थिति \vec{r} समय t पर निकाय के पाये जाने की प्रायिकता को प्रदर्शित करता है।
- 3. अध्यारोपण के सिद्धान्त को।
- 4. रैखिक व हर्मिटी

5.
$$i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = H \psi(\vec{r},t)$$

6. क्रमश: आइगेन मान व आइगेन फलन

7.
$$\langle A \rangle = \frac{\int \psi^*(\vec{r},t) \hat{A} \psi(\vec{r},t) dV}{\int \psi^*(\vec{r},t) \psi(\vec{r},t) dV}$$

- प्रत्याशा
- 9. एक आइगेन मान के संगत रैखिक स्वतन्त्र आइगेन फलनों की संख्या
- 10. अपभ्रष्ट
- 11. प्रसामान्य लांबिक प्रतिबन्ध
- 12. अ अभिगमन

5.11 अभ्यासार्थ प्रश्न (Exersices)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. आइगेन फलन का क्या महत्त्व है?
- 2. आइगेन मान समीकरण की भौतिक सार्थकता क्या है?
- 3. प्रत्याशा मान का भौतिक अर्थ लिखिये।
- 4. आइगेन फलनों की लाम्बिकता के लिये प्रतिबंध लिखिये।

निबंधात्मक प्रश्न (Eassay type questions)

- 5. क्वान्टम यांत्रिकी के मूलभूत अभिग्रहीतों को समझाइये।
- 6. आङ्गेन फलनों की लांबिकता से आप क्या समझते हो? सिद्ध करो कि सरल आवर्ती दोलित्र के आङ्गेन फलन लांबिक होते हैं।
- 7. अपभ्रष्टता से आप क्या समझते हैं? अपभ्रष्टता की कोटि व इसके महत्व को स्पष्ट करो। आंकिक प्रश्न (Numerical questions)
- 8. यदि कण का कोणीय संवेग संकारक $\overset{
 ightarrow}{L}$ है तो सिद्ध करो कि -

$$[\hat{L^2}, \hat{L}_x] = [\hat{L^2}, \hat{L}_y] = [\hat{L^2}, \hat{L}_z] = 0$$

जहाँ $\hat{L^2} = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$ है।

9. यदि $\stackrel{\wedge}{A}$ तथा $\stackrel{\circ}{B}$ क्रम विनिमय हर्मिटी संकारक हों तो सिद्ध करो कि $\stackrel{\wedge}{AB}$ भी हर्मिटी संकारक होगा।

श्रोडिंजर समीकरण के हल

(Solutions of Schrodinger Equation)

इकाई की रूपरेखा

- 6.0 उद्देश्य
- 6.1 प्रस्तावना
- 6.2 काल अनाश्रित श्रोडिंजर समीकरण और स्थाई अवस्था हल
- 6.3 तरंग फलन पर सीमान्त और सांतत्य प्रतिबन्ध
- 6.4 सारांश
- 6.5 शब्दावली
- 6.6 संदर्भ ग्रन्थ
- 6.7 बोध प्रश्नों के उत्तर
- 6.8 अभ्यासार्थ प्रश्न

6.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

- श्रोडिंजर समीकरण का महत्व व इसकी विशेषताओं को समझ सकेंगे;
- काल अनाश्रित श्रोडिंजर समीकरण प्राप्त कर सकेगें तथा इसके स्थाई अवस्था हलों का आशय समझ, इन्हें प्राप्त कर सकेंगे;
- तरंग फलन $\psi(\vec{r},t)$ पर लगाये जाने वाले सीमान्त व सांतत्य प्रतिबन्धों की आवश्यकता को समझ सकेंगे।

6.1 प्रस्तावना (Introductions)

आप इकाई 3 में कण की गतिक अवस्था से सम्बन्धित तरंग फलन $\psi(\vec{r},t)$ के लिये श्रीडिंजर समीकरण प्राप्त कर चुके हैं। हम जानते हैं कि एक निश्चित संवेग \vec{p} वाले कण (जिसके लिये संवेग अनिश्चितता $\Delta p=0$ है) के लिये तरंग फलन $\psi(\vec{r},t)$ एक ऐसे कण को निरूपित करता है, जिसकी स्थिति का निर्धारण नहीं किया जा सकता (ऐसे कण की स्थिति की अनिश्चितता $\Delta x=\infty$ होती है)। ऐसे कण का तरंग फलन $\psi(\vec{r},t)$ एक प्रगामी हार्मोनिक तरंग द्वारा व्यक्त किया जाता है। अतः धनात्मक - दिशा में गितशील कण के लिये तरंग का तरंग फलन $\psi(\vec{r},t)$, \cos या \sin या चरघातांकी या इनका कोई रेखिक सम्मिश्र फलन होना चाहिये। इस प्रकार हमें $\psi(\vec{r},t)$ के लिये एक ऐसे समीकरण की आवश्यकता होती है, जिससे कणों द्वारा उत्पन्न विवर्तन, व्यतिकरण आदि घटनाओं की व्याख्या की जा सके। इस समीकरण में \hbar , कण का द्रव्यमान m, आवेश q आदि नियतांक हों, तथा साथ ही कण से सम्बद्ध चर

जैसे संवेग p, ऊर्जा E, कोणीय आवृत्ति ω , संचरण नियतांक \vec{k} आदि गुणांक न हों। इन सभी शर्तों का पालन करने वाली अवकलज समीकरण को श्रोडिंजर समीकरण कहा जाता है। इस इकाई के अनुच्छेद 6.2 में काल - अनाश्रित श्रोडिंजर समीकरण का आशय, इसकी विशेषतायें व स्थायी अवस्था हलों का विस्तृत अध्ययन करेंगे तथा अनुच्छेद 6.3 में तरंग फलन $\psi(\vec{r},t)$ के लिये सीमान्त व सांतत्य प्रतिबन्धों का निर्धारण करेंगें।

6.2 काल-अनाश्रित श्रोडिंजर समीकरण और स्थाई अवस्था हल (Time Independent Schrodinger Equation and Stationary State Soloutions)

काल - अनाश्रित श्रोडिंजर समीकरण (Time Independent Schrodinger Equation)

क्वांटम यांत्रिकी में श्रोडिंजर समीकरण एक ऐसी समीकरण है, जो कि समय के साथ अवस्था फलन $\psi(\vec{r},t)$ का उद्भव (evolution) प्रदर्शित करती है। इस समीकरण का रूप (form) भौतिक अवस्थाओं के अनुरूप निर्धारित किया जाता है। इस समीकरण के लिये निम्न मानक निर्धारित किये जाते हैं।

- (i) कण की कुल ऊर्जा चिरसम्मत ऊर्जा के समान ही स्थितिज व गतिज ऊर्जा के योग के बराबर होनी चाहिये।
- (ii) आइन्सटीन की प्रकाश क्वांटा अभिधारणा के अनुसार कण की ऊर्जा, आवृति ν के समान्पाती हो,

अर्थात्
$$E = hv = \frac{h}{2\pi}(2\pi v) = \frac{h}{2\pi}(\omega) = \hbar\omega$$

जहाँ 🛭 कोणीय आवृत्ति है

(iii) दी - ब्रागली संकल्पना के अनुसार प्रत्येक कण से एक तरंग सम्बद्ध (associate) रहती है, जिसे तरंग फलन ψ से प्रदर्शित किया जाता है, तथा कण का संवेग तरंग के तरंगदैर्ध्य λ से निम्न प्रकार संबन्धित रहना चाहिये।

$$p = \frac{h}{\lambda} = \frac{h}{2\pi} \cdot \frac{2\pi}{\lambda} = \hbar k$$

यदि कण से सम्बद्ध तरंग को तरंग फलन $\psi\left(\vec{r},t\right) = \mathrm{A}e^{i(\vec{k}\vec{r}-\omega t)}$ से प्रदर्शित करें तो

$$\frac{\partial \psi(\vec{r},t)}{\partial t} = -i\omega\psi(\vec{r},t)$$
$$i\hbar\frac{\partial \psi(\vec{r},t)}{\partial t} = -i^{2}(\hbar\omega)\psi(\vec{r},t)$$

तथा

 $E = \hbar \omega$ लिखने पर

$$i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = E \psi(\vec{r},t) \quad ...(6.1)$$

यदि
$$\vec{k}.\vec{r} = k_x x + k_y y + k_z z$$
 है तो
$$\frac{\partial \psi(\vec{r},t)}{\partial x} = i k_x \psi(\vec{r},t)$$

$$\frac{\partial^2 \psi(\vec{r},t)}{\partial r} = -k_x^2 \psi(\vec{r},t)$$

 $-\hbar^2$ से दोनों तरफ गुणा करने पर

$$-\hbar^2 \frac{\partial^2 \psi(\vec{r},t)}{\partial x} = \hbar^2 k_x^2 \psi(\vec{r},t)$$
 या
$$-\hbar^2 \frac{\partial^2 \psi(\vec{r},t)}{\partial x} = p_x^2 \psi(\vec{r},t) \qquad \{p_x = \hbar k_x\}$$
 इसी प्रकार,
$$P_y^2 \psi(\vec{r},t) = -\hbar^2 \frac{\partial^2 \psi(\vec{r},t)}{\partial y^2}$$

$$P_z^2 \psi(\vec{r},t) = -\hbar^2 \frac{\partial^2 \psi(\vec{r},t)}{\partial z^2}$$

अतः
$$P^{2}\psi(\vec{r},t) = -\hbar^{2}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)\psi(\vec{r},t)$$
$$P^{2}\psi(\vec{r},t) = -\hbar^{2}\nabla^{2}\psi(\vec{r},t) \qquad ...(6.2)$$

यदि समीकरण (6.1) में कण की कुल ऊर्जा को चिरसम्मत ऊर्जा

$$E = \frac{p^2}{2m} + V(\vec{r}, t)$$

के समान रख दिया जाये तब समी (6.1) से

$$i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = \left(\frac{p^2}{2m} + V(\vec{r},t)\right)\psi(\vec{r},t)$$

इस समीकरण में (6.2) का उपयोग करने पर

$$i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r},t) + V(\vec{r},t) \psi(\vec{r},t)$$
या
$$-\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r},t) + V(\vec{r},t) \psi(\vec{r},t) = i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} \qquad ...(6.3)$$

समीकरण (6.3) समयाश्रित श्रोडिंजर समीकरण कहलाती है। इस समीकरण में यह माना गया है कि कण पर कार्यरत बल, समय के साथ परिवर्तित हो सकता है जिसके कारण कण की स्थितिज ऊर्जा V भी समय के फलन $V(\vec{r},t)$ के रूप में हो सकती है।

परन्तु भौतिकी की अनेक घटनाओं में गतिशील कण की स्थितिज ऊर्जा समय पर निर्भर नहीं करती अपितु केवल कण की स्थिति पर निर्भर करती है, अर्थात् $\vec{V(r,t)} = \vec{V(r)}$ । इस प्रकार की घटनाओं के लिये तरंग फलन $\vec{\psi(r,t)}$ को दो फलनों, $\vec{\psi(r)}$ जो कि केवल

स्थिति \vec{r} पर निर्भर करता है, तथा $\phi(t)$ जो केवल समय t पर निर्भर करता है, के गुणनफल के रूप में ट्यक्त किया जा सकता है,

अर्थात्
$$\psi(\vec{r},t) = \psi(\vec{r})\phi(t)$$
 ...(6.4)

यह मान समीकरण (6.3) में रखने पर

$$-\frac{\hbar^2}{2m}\phi(t)\nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t) = i\hbar\psi(\vec{r})\frac{\partial\phi(t)}{\partial t}$$

उपरोक्त समीकरण में $\psi(\vec{r})\phi(t)$ का भाग देने पर

$$-\frac{\hbar^2}{2m}\frac{1}{\psi(\vec{r})}\nabla^2\psi(\vec{r}) + V(\vec{r}) = \frac{i\hbar}{\phi(t)}\frac{\partial\phi(t)}{\partial t} \qquad ...(6.5)$$

समीकरण (6.5) का बॉया भाग (LHS) केवल \vec{r} पर निर्भर करता है, जब कि दाँया भाग (RHS) केवल समय t पर निर्भर करता है। अतः चर t में किसी भी प्रकार के परिवर्तन से इस समीकरण का बॉया भाग व स्थिति निर्देशांक \vec{r} में किसी भी प्रकार के परिवर्तन से समीकरण का दाँया भाग अपरिवर्तित रहेगा। यह तभी संभव है, जबिक समीकरण (6.5) के दोनों पक्ष किसी ऐसे नियतांक के बराबर हो जो कि \vec{r} व t पर निर्भर नहीं करें। माना यह नियतांक Eहै, तब

$$\frac{i\hbar}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = E \qquad ...(6.6)$$

या
$$\frac{\partial \phi(t)}{\phi(t)} = -\frac{i}{\hbar} E.dt$$

या
$$\phi(t) = Ce^{-\frac{i}{h}Et} \qquad ...(6.7)$$

$$\frac{1}{\psi(\vec{r})} \left[-\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r}) \right] + V(\vec{r}) = E$$

या
$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi(\vec{r}) = E\psi(\vec{r}) \qquad ...(6.8)$$

समीकरण (6.8) काल अनाश्रित श्रोडिंजर समीकरण कहलाती है। इस समी. में $\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]$ हैमिल्टनी संकारक \hat{H} कहलाता है। अतः

$$\hat{\mathbf{H}}\psi(\vec{r}) = \mathbf{E}\psi(\vec{r}) \qquad \dots (6.9)$$

एक आइगेन मान समीकरण हैं जिसके अनुसार हैमिल्टनी संकारक H के संगत आइगेन मान E व आइगेन फलन $\psi(\vec{r})$ है। चूंकि हैमिल्टनी संकारक एक हर्मिटी संकारक होता है, अतः इसके संगत आइगेन मान E वास्तविक होगा। E कण की कुल ऊर्जा को व्यक्त करता है।

श्रीडिंजर समीकरण के कुछ व्यापक गुण होते हैं जो निम्न हैं -

- 1. प्रथम कोटि (First order) यह समय में प्रथम कोटि की अवकल समीकरण है, इस समीकरण से यदि किसी क्षण t=0 पर तरंग फलन $\psi(\vec{r},0)$ ज्ञात हो तो भविष्य की गतिक अवस्था में तरंग फलन $\psi(\vec{r},t)$ को ज्ञात किया जा सकता है। यानि कि इस समीकरण से यह ज्ञात किया जा सकता है, कि क्वांटम यांत्रिक अवस्था या तरंग फलन का समय के साथ उद्भव (evolution) किसी प्रकार हो रहा है?
- 2. **रैकिक (Linear)** यह समीकरण तरंग फलन ψ में रैखिक समीकरण है क्योंकि इसमें ψ^2 या ψ के अवकलन के वर्ग या कोई नियतांक पद उपस्थित नहीं हैं। इस कारण इस समीकरण से प्राप्त विभिन्न हलों के लिये अध्यारोपण सिद्धान्त वैद्य रहता है। अर्थात, यदि ψ_1 व ψ_2 इस समीकरण के दो संभावित स्वतंत्र हल हों, तो इनके रैखिक सिम्मिश्रण (linear combination) से प्राप्त तरंग फलन $\psi=(a_1\psi_1+a_2\psi_2)$ भी श्रोडिंजर समीकरण का एक संभावित हल होगा।
- 3. **समांगी (Homogenous)** यह एक समांगी समीकरण है। इस कारण समाकलन $\int \left| \psi(\vec{r},t) \right|^2 dV$ का मान सभी समयों पर नियत बना रहता है।
- 4. तरंग पैकेट (Wave packet) समतल तरंग फलन (plane wave function) भी श्रीडिंजर समीकरण का एक संभव हल है। समतल तरंग फलनों के अध्यारोपण से तरंग पैकेट का निर्माण किया जा सकता है। इस प्रकार श्रीडिंजर समीकरण तरंग पैकेट की व्याख्या करने में सक्षम है।
- 5. अनापेक्षिकीय (Non-relativistic) श्रोडिंजर समीकरण एक अनापेक्षिकीय तरंग समीकरण है, क्योंकि इसमें c (प्रकाश वेग) का कोई भी पद निहित नहीं है।

काल अनाश्रित श्रोडिंजर समीकरण का स्थाई अवस्था हल (Stationary state solutions of time independent Schrodinger equation)

समीकरण (6.7) से हम जानते हैं कि

$$\phi(t) = Ce^{-\frac{i}{\hbar}Et}$$

अतः कण का पूर्ण तरंग फलन

$$\psi(\vec{r},t) = Ce^{-\frac{i}{\hbar}Et}\psi(\vec{r}) \qquad ...(6.10 \,\Im)$$

यदि C को प्रसामान्यीकरण (normalization) के लिये आवश्यक नियतांक में सम्मिलित कर लें तब

$$\psi(\vec{r},t) = e^{-\frac{i}{\hbar}Et}\psi(\vec{r}) \qquad ...(6.10\,\mathrm{a})$$

उपरोक्त तरंग फलन के संगत अवस्थाओं के लिये प्रायिकता घनत्व

$$P(\vec{r},t) = |\psi(\vec{r},t)|^2 = \psi^*(\vec{r},t)\psi(\vec{r},t) = |\psi(\vec{r})|^2$$
 ...(6.11)

अतः स्थिति प्रायिकता घनत्व समय पर निर्भर नहीं करता है। इस प्रकार की अवस्थायें जिनके स्थिति प्रायिकता घनत्व $P(\vec{r},t)$ समय अनाश्रित हो, स्थायी अवस्थायें (stationary

states) कहलाती हैं। इस प्रकार $\psi(\vec{r},t) = \psi(\vec{r})e^{-\frac{i}{\hbar}Et}$ श्रीडिंजर समीकरण का एक स्थाई अवस्था हल है। $\psi(\vec{r})$ का मान उपयुक्त सीमा प्रतिबंधों का निर्धारण कर ज्ञात किया जाता है, जिसे आप इकाई 7 में पढ़ेगें। स्थाई अवस्थाओं के लिये प्रेक्षणीय चरों (observables) के संगत संकारक का प्रत्याशा मान समय पर निर्भर नहीं करता है।

बोध प्रश्न (Self assessment questions)

- 1. श्रोडिंजर समीकरण तरंग फलन किसके साथ उद्भव प्रदर्शित करता है?
- 2. श्रीडिंजर समीकरण में उपस्थित पद $\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]$ किस क्वांटम यांत्रिकी संकारक को प्रदर्शित करता है?

क्या श्रोडिंजर समीकरण एक अनापेक्षिकीय तरंग समीकरण है?

4. श्रीडिंजर समीकरण समय में किस कोटि की अवकल समीकरण है?

5. यदि ψ_1 व ψ_2 श्रोडिंजर समीकरण के दो संभावित हल हों तो इनके रैखिक संयोजन से प्राप्त तरंग फलन ψ , भी क्या इस समीकरण का एक संभावित हल होगा?

6. समाकलन $\int \left| \psi(\vec{r},t) \right|^2 dV$ का नियत मान श्रोडिंजर समीकरण के किस गुण को प्रदर्शित करता है?

6.3 तरंग फलन पर सीमान्त और सांतत्य प्रतिबन्ध (Boundary And Continuity Conditions on the Wave Functions)

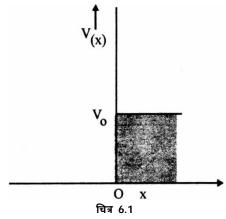
श्रीडिंजर समीकरण के अभीष्ट हल (general solutions) प्राप्त करने के लिये समीकरण (6.10) में प्राप्त फलन $\psi(\vec{r})$ का मान प्राप्त करना आवश्यक है। इस तरंग फलन का मान प्राप्त करने के लिये $\psi(\vec{r})$ व इसके अवकलजों का, कुछ निर्धारित प्रतिबन्धों का पालन करना आवश्यक है। $\psi(\vec{r})$ व इसके अवकलजों के लिये निर्धारित प्रतिबन्ध सीमान्त और सांतत्य प्रतिबन्ध कहलाते हैं।

तरंग फलन $\psi(\vec{r})$ पर दो प्रतिबन्ध लगाये जाते हैं । प्रथम - $\psi(\vec{r})$ का समिष्टि या आकाश (space) के किसी स्थान पर केवल एक ही मान होना चाहिये। यानि कि $\psi(\vec{r})$ आकाश के किसी स्थान पर एकमापी फलन (single valued functions) होना चाहिये ताकि

तरंग फलन से वर्णित कण के उस स्थान पर पाये जाने की प्रायिकता का केवल एक ही मान प्राप्त हो। द्वितीय - समष्टि या आकाश के प्रत्येक स्थान पर $\psi(\vec{r})$ का मान परिमित (finite) होना चाहिये ताकि किसी आयतन अल्पांश dV में कण के पाये जाने की प्रायिकता $|\psi|^2 dV$ का परिमित मान प्राप्त हो सके। अतः $\psi(\vec{r})$ आकाश या समष्टि के प्रत्येक स्थान पर एक मानी (single valued) व परिमित (finite) होना चाहिये।

चूंकि श्रोडिंजर समीकरण x में (सामान्यतः \vec{r} में) द्वितीय कोटि की अवकल समीकरण है। अतः किसी परिमित विभव क्षेत्र $V(\vec{r})$ में गितशील कण के लिये $\frac{\partial^2 \psi}{\partial x^2}$ या $\nabla^2 \psi$ भी परिमित होना चाहिये। यह तभी संभव है जबिक तरंग फलन ψ व इसकी प्रवणतायें, $\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial z}$ तथा $\nabla \psi$ सतत हों। अर्थात् ψ तथा $\frac{\partial \psi}{\partial x}$ आदि x, y, z के सतत (continuous) फलन होने चाहिये।

यदि $V(\vec{r})$, x,y तथा z के रूप में किसी परिसीमा (boundary) पर परिमित असांतत्य (discontinuous) का प्रदर्शन करता है, (देखें चित्र 6.1) तब $\nabla \psi$ सांतत्य होगा तथा उस स्थान पर $\nabla^2 \psi$ का मान अनन्त हो जायेगा।



श्रोडिंजर समीकरण के द्वितीय कोटि की अवकल समीकरण होने के कारण, इसके हल इस प्रकार होने चाहिये कि ψ तथा $\nabla \psi$ दोनों ही x,y,z के सतत फलन हों। यह प्रतिबन्ध $V(\vec{r})$ के परिमित होने का परिणाम है। यदि विभव क्षेत्र की परिसीमा पर $V(x)=\infty$ हो तब $\psi(x)$ का मान शून्य होगा।

चूंकि श्रोडिंजर समीकरण, समय t के सापेक्ष एक कोटि की अवकल समीकरण है।

$$i\hbar \frac{\partial \psi}{\partial t} = \mathbf{H}\psi$$

अतः $\dfrac{\partial \psi}{\partial t}$ के परिमित होने का अर्थ है कि ψ समय t का भी एक सतत फलन होना चाहिये।

अतः तरंग फलन ψ पर परिसीमा व सांतत्य प्रतिबन्ध निम्न हैं -

- (i) ψ परिमित होना चाहिये।
- (ii) ₩ एक मानी होना चाहिये।
- (iii) ψ एक सतत फलन होना चाहिये, तथा
- (iv) $\frac{\partial \psi}{\partial x}$, $\frac{\partial \psi}{\partial y}$ व $\frac{\partial \psi}{\partial z}$ सतत होने चाहिये।

इस प्रकार गणितीय रूप में श्रोडिंजर समीकरण के अनेक हल प्राप्त हो सकते हैं लेकिन उनमें से केवल वे ही हल मान्य होते हैं जो कि परिसीमा व सांतत्य प्रतिबन्धों का पालन करते हैं।

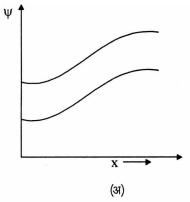
बोध प्रश्न (Self assessment questions)

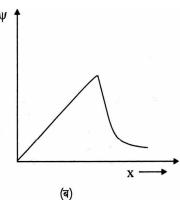
7. तरंग फलन ψ स्थिति व समय के साथ किस प्रकार का फलन होना चाहिये?

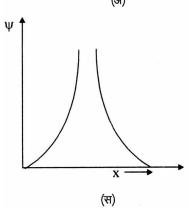
8. यदि आकाश के किसी बिन्दु पर ψ की प्रवणता असांतत्य हो तो उस स्थान पर $\nabla^2 \psi$ का मान क्या होगा?

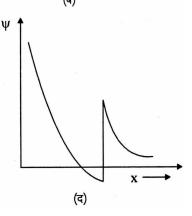
9. किसी विभव क्षेत्र की परिसीमा पर $V(x) = \infty$ है, तो $\psi(x)$ का मान परिसीमा पर क्या होगा?

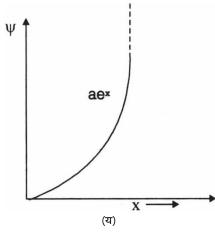
उदाहरण 6.1 निम्न चित्र में दिखाये गये तरंग फलन, किसी भौतिक निकाय के तरंग फलन नहीं हो सकते, क्यों? स्पष्ट कीजिये।











हल:- चित्र में प्रदर्शित तरंग फलन, भौतिक अवस्था के तरंग फलन नहीं हो सकते क्योंकि यह निम्न परिसीमा तथा सांतत्य प्रतिबन्धों का पालन नहीं करते।

चित्र (अ) के तरंग फलन में प्रत्येक x पर ψ के दो मान है, अतः यह एक मानी नहीं है।

चित्र (ब) के तरंग फलन में $\frac{\partial y}{\partial x}$ असांतत्य है।

चित्र (स) के तरंग फलन ψ का मान x के एक स्थान पर अनन्त हो रहा है यानि कि यह परिमित नहीं है।

चित्र (द) के तरंग फलन ψ एक स्थान पर द्विमानी है।

चित्र (य) के तरंग फलन ψ का मान परिमित नहीं है।

6.4 सारांश (Summary)

- श्रोडिंजर समीकरण एक ऐसी अनापेक्षिकीय तरंग समीकरण है जो कि समय के साथ अवस्था फलन $\psi(\vec{r},t)$ का उद्भव प्रदर्शित करती है। यह समीकरण समय t में प्रथम कोटि व स्थिति \vec{r} में द्वितीय कोटि की अवकल समीकरण है। यदि ψ_1 व ψ_2 श्रोडिंजर समीकरण के दो स्वतंत्र हल हों तो इनके रैखिक संयोजन से प्राप्त तरंग फलन ψ भी इसका एक हल होगा। इस समीकरण के द्वारा तरंग पैकेट के निर्माण को समझाया जा सकता है।
- यदि कण एक ऐसे विभव क्षेत्र में विद्यमान हो, जहाँ कि कण की स्थितिज ऊर्जा केवल कण की स्थिति पर निर्भर करे न कि समय पर $\left[V(\vec{r},t)=V(\vec{r})\right]$ तो इस कण की गित को प्रदर्शित करने वाली समीकरण काल अनाश्रित श्रोडिंजर समीकरण कहलाती है।
- यदि तरंग फलन $\psi(\vec{r},t)$ के संगत स्थिति प्रायिकता घनत्व $P(\vec{r},t)$ समय पर निर्भर नहीं करे तो $\psi(\vec{r},t)$ श्रोडिंजर समीकरण के हल स्थाई अवस्था हल कहलाते हैं।
- गणितीय रूप में श्रोडिंजर समीकरण के अनेक हल प्राप्त हो सकते हैं, लेकिन इनमें से केवल वहीं हल मान्य होते हैं, जो कि परिसीमा व सातत्य प्रतिबन्धों का पालन करते हैं।

6.5 शब्दावली (Glossary)

अनापेक्षिकीय Non-relativistic एकमानी फलन Single valued function काल अनाश्रित Time independent सतत फलन Continuous function स्थायी अवस्था Stationary state सांतत्य प्रतिबन्ध Continuity condition समष्टि या आकाश Space समांगी Homogenous सम्बद्ध Associate

सीमान्त प्रतिबन्ध Boundary condition

6.6 संदर्भ ग्रन्थ (Reference Books)

प्रारम्भिक क्वान्टम यांत्रिकी कॉलेज बुक हाउस, एस.एस. रावत एवं एवं स्पेक्ट्रोस्कोपी सरदार सिंह जयप्र S.L.Kakani, **Elementary Quantum** College Book Centre, C.Hemrajani and Mechanics and Jaipur T.C.Bansal Spectroscopy A.Das and Quantum Mechanics: Gordon and Breach Science Publishers, Switzerland A.C.Melissions A Modern Introduction

6.7 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

- 1. समय के साथ
- 2. हैमिल्टनी संकारक
- 3. हां, है।
- 4. प्रथम
- 5. **हां**
- 6. समांगी
- 7. **सतत**
- 8. अनन्त
- 9. शून्य

6.8 अभ्यासार्थ प्रश्न (Exerices)

अतिलघुत्तरात्मक प्रश्न (short answer type questions)

- 1. श्रीडिंजर समीकरण का स्थायी अवस्था हल लिखिये।
- 2. समय अनाश्रित श्रोडिंजर समीकरण में स्थितिज ऊर्जा V किस चर का फलन होती है?
- 3. तरंग फलन $\psi(\vec{r},t)$ के परिसीमा बन्धनों को लिखिये।

निबन्धात्मक प्रश्न (Essay type questions)

- 4. श्रोडिंजर समीकरण की आवश्यकता व इसके गुणों का वर्णन कीजिये।
- 5. समय अनाश्रित श्रोडिंजर समीकरण के हलों पर व्यापक शर्तें क्या हैं?
- 6. स्थायी अवस्था से क्या तात्पर्य है? सीमा व सांतत्य शर्तें जो तरंग फलन द्वारा संतुष्ट की जानी चाहिये का वर्णन कीजिये।

इकाई-7

बॉक्स में कण

(Particle in a Box)

इकाई की रूपरेखा

- 7.0 उद्देश्य
- 7.1 प्रस्तावना
- 7.2 एक विमीय बॉक्स में कण
 - 7.2.1 आइगेन फलन और आइगेन मान
 - 7.2.2 विविक्त ऊर्जा स्तर
- 7.3 त्रिविमीय आयतफलकी बॉक्स में कण
 - 7.3.1 त्रिविमीय स्थिति में सूत्रों का विस्तार
 - 7.3.2 ऊर्जा स्तरों की अपभ्रष्टता
 - 7.3.3 तरंग फलन का भौतिक प्रदर्शन
- 7.4 सारांश
- 7.5 शब्दावली
- 7.6 संदर्भ ग्रन्थ
- 7.7 बोध प्रश्नों के उत्तर
- 7.8 अभ्यासार्थ प्रश्न

7.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात् आप

- यह समझ सकेंगे कि क्षेत्रमुक्त अंतिरिक्ष एवं मुक्त कण का क्या अर्थ है;
- क्वाण्टम यांत्रिकी में 'बॉक्स' की अभिधारणा को समझ सकेंगे;
- एक विमीय बॉक्स का भौतिक अर्थ एवं इसमें बद्ध मुक्त कण के व्यवहार और इसके विविक्त ऊर्जा स्तर की संकल्पना को बोधगम्य कर सकेंगे;
- त्रिविमीय बॉक्स में मुक्त कण के विविक्त ऊर्जा स्तर एवं अपभ्रष्टता का भौतिक अर्थ जान सकेंगे।

7.1 प्रस्तावना (Introduction)

विगत इकाईयों में आपने तरंग फलन की संकल्पना के साथ-साथ इसके औचित्य और इसकी भौतिक सार्थकता के बारे में विस्तार से पढ़ा है । इकाई 6 में आप यह भी पढ़ चुके हैं कि अनापेक्षीय क्वान्टम कण (जिनकी ऊर्जा कालान्श्रित नहीं होती है) के लाक्षणिक व्यवहार के अध्ययन के लिए श्रोडिन्जर समीकरण $H\psi=E\psi$ का गणितीय विश्लेषण किया जाता है जिसमें अभीष्ट कण से सम्बन्धित तरंग फलन एवं उसके विविक्त ऊर्जा मान निर्धारित किये जाते हैं।

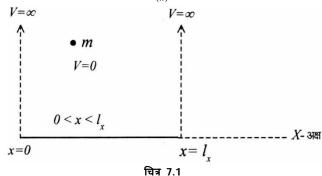
यदि किसी अन्तरिक्ष (space) में अध्ययन के चयनित कण की स्थितिज ऊर्जा का मान नियत और कण की स्थिति पर आश्रित नहीं होता हो तो उस अन्तरिक्ष (space) को क्षेत्र मुक्त अन्तरिक्ष (field free space) कहते हैं और उस विचाराधीन कण को मुक्त कण (free particle) कहा जाता है। इसके विपरीत जब विचाराधीन कण को किसी सुपरिभाषित क्षेत्र (region) में ही आगे- पीछे गति करने के लिए सीमित कर दिया जाये तो इस कण को बद्ध अवस्था (bound state) में कहा जाता है। कण की यह बद्ध अवस्था; एक बॉक्स की भाँति व्यवहार करती है जिसमें अभीष्ट कण सुपरिभाषित क्षेत्र में आगे-पीछे गति करता है और क्षेत्रों के सीमान्त सिरों पर पहुँचते पहुँचते एक प्रतिकर्षी बल अनुभव करने लगता है फलतः विपरीत दिशा में लौटने लगता है। इस इकाई के अनुच्छेद 7.3 में एक विमीय बॉक्स में कण के लाक्षणिक व्यवहार एवं अनुच्छेद 7.4 में त्रिविमीय बॉक्स में कण के व्यवहार का अध्ययन कर ऊर्जा स्तरों की अपभ्रष्टता का अर्थ समझेंगे।

7.2 एक-विमीय बॉक्स में कण (Particle in a One Dimensional Box)

यदि कण की एक विमीय गित को एक परिमित दूरी तक इस प्रकार बद्ध कर दिया जाये कि नियत परिमित दूरी की सीमान्तर्गत कण की स्थितिज ऊर्जा का मान शून्य और सीमान्त सिरों पर स्थितिज ऊर्जा का मान अनन्त हो जाये तो कण को एक विमीय बॉक्स में बद्ध कहा जाता है।

गणितीय रूप में X-3क्ष के अनुदिश एक विमीय गति कर सकने वाले कण के लिए l_x लम्बाई के एक विमीय बॉक्स को निम्नानुसार परिभाषित किया जाता है-

 $0 < x < l_x$ सीमा में स्थितिज ऊर्जा $V_{(x)} = 0$;



x=0 तथा $x=l_{x}$ (अर्थात् सीमान्त सिरों) पर स्थितिज ऊर्जा $V_{(x)}$ का मान बहु त अधिक (अनन्त) है।

इस एक विमीय बॉक्स में m द्रव्यमान और E (नियत मान) ऊर्जा का कण जैसे ही एक $V_{(x)}=0$ वाले परिमित क्षेत्र $(0< x < l_x)$ से किसी भी ओर सीमान्त सिरे की ओर अग्रसर होता है तो स्थितिज ऊर्जा में यकायक परिवर्तन होने के कारण अभीष्ट कण एक प्रतिकर्षी बल

 $F = -\frac{\Delta V}{\Delta x} = -$ विभव प्रवणता) अनुभव करने लगता है; फलतः कण सीमान्त सिरे तक पहुँचने से पहले ही वापिस लौट जाता है । इस प्रकार एक विमीय बद्ध क्षेत्र (बॉक्स) में कण आगे-पीछे गित करता रहता है।

7.2.1 आइगेन फलन एवं ऊर्जा आइगेन मान (Eigen function and energy eigen Values)

एक विमीय बॉक्स में स्थित m द्रव्यमान व E ऊर्जा वाले कण के लक्षिणिक व्यवहार के अध्ययन के लिए श्रोडिन्जर समीकरण निम्नलिखित होगा -

$$\frac{d^2X_{(x)}}{dx^2} + \frac{2mE}{\hbar^2}X_{(x)} = 0 \qquad ...(7.1)$$

जहाँ $X_{(x)}$; एक विमीय गति करने वाले कण का तरंग-फलन है जिसकी सहायता से कण से सम्बन्धित सभी गुण धर्मों को समझा जा सकता है।

बोर्न के अनुसार; $\left|X_{(x)}\right|^2$ द्वारा अभीष्ट कण के X- दिशा के अनुदिश पाये जाने की प्रायिकता (सम्भावना) प्रदर्शित होती है। चूँिक एकविमीय बॉक्स की दीवार (सीमान्त सिरों) पर कण द्वारा प्रतिकर्षी बल अनुभव किये जाने के कारण सीमान्त सिरों (x=0 तथा $x=l_x$) पर कण के पाये जाने की सम्भावना शून्य है; अतः

$$x = 0$$
 या $x = l_x$ पर $\left| X_{(x)} \right|^2 = 0$...(7.2)

अर्थात्
$$x = 0$$
 या $x = l_x$ पर तरंग फलन $X_{(n)} = 0$...(7.3)

प्राप्त होना चाहिए।

अब समीकरण (7.1) में $\frac{2mE}{\hbar^2} = k_x^2$ मान लें तो समीकरण (7.1) निम्न प्रकार होगा -

$$\frac{d^2X_{(x)}}{dx^2} + k_x^2X_{(x)} = 0 ...(7.4)$$

इसका सामान्य हल निम्नानुसार होगा-

$$X_{(x)} = A \sin k_x x + B \cos k_x x$$
 ...(7.5)

पुनः; सीमान्त प्रतिबन्ध x=0 पर $X_{(x)}=0$ का मान समी. (7.5) में रखने पर

$$0 = A\sin k_x x(0) + B\cos k_x x(0)$$

या
$$0 = 0 + B$$
 : $B = 0$...(7.6)

अतः $X_{(x)} = A \sin k_x x$

अब बॉक्स की दूसरी सीमा $x=l_x$ पर $X_{(x)}=0$ से

$$0 = A \sin k_x l_x$$
 यहाँ $A \neq 0$

अतः $0 = \sin k_x l_x$ से

$$0 = \sin k_x l_x = \sin n_x \pi$$

अतः
$$k_x l_x = n_x \pi$$
 या
$$k_x = \frac{n_x \pi}{l_x} \qquad ...(7.7)$$

अतः समीकरण (7.4) के अन्सार एक विमीय बॉक्स में कण का तरंग फलन होगा -

$$X_{(x)} = A \sin\left(\frac{n_x \pi}{l_x}\right) x \qquad \dots (7.8)$$

अब इस समीकरण के स्थिरांक A का मान ज्ञात करने के लिए हम जानते हैं कि अभीष्ट कण, बॉक्स की सीमा x=0 से $x=l_x$ के मध्य कहीं न कहीं अवश्य होगा अतः x=0 से $x=l_x$ सीमा में कण के पाये जाने की प्रायिकता

$$\int_{0}^{l_{x}} \left| X_{(x)} \right|^{2} dx = 1$$
 $\frac{E'}{E} = \frac{\sigma \left(2T\right)^{4}}{\sigma \Gamma^{4}} = 2^{4} = \left(\frac{16}{1}\right)$ या $A^{2} \int_{0}^{l_{x}} \sin^{2} \frac{n_{x} \pi}{l_{x}} dx = 1$ या $16 \ \Re \ A^{2} = \frac{2}{l_{x}}$...(7.9)

अतः एक विमीय बॉक्स में E ऊर्जा व m द्रव्यमान वाले कण का तरंग फलन

$$X_{(x)} = \sqrt{\frac{2}{l_x}} \sin\left(\frac{n_x \pi}{l_x}\right) x \qquad \dots (7.10)$$

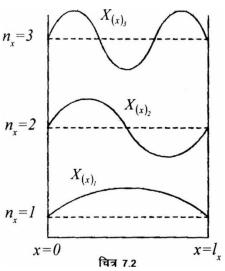
जहाँ $n_x=1,2,\ldots$ मान संगत आइगेन तरंग फलन निर्धारित करते हैं। अर्थात् एक विमीय बॉक्स में कण से सम्बद्ध आइगेन तरंग फलन

$$X_{(x)^{1}} = \sqrt{\frac{2}{l_{x}}} \sin\left(\frac{\pi}{l_{x}}\right) x$$

$$X_{(x)_{2}} = \sqrt{\frac{2}{l_{x}}} \sin\frac{2\pi}{l_{x}} x$$

$$X_{(x)_{3}} = \sqrt{\frac{2}{l_{x}}} \sin\frac{3\pi}{l_{x}} x \qquad ...(7.11)$$

इन प्रसामान्यीकृत फलनों को चित्र (7.2) में प्रदर्शित किया गया है।



उर्जा आइगेन मान निर्धारित करने के लिए समीकरण (7.7) तथा समीकरण (7.4) से

स्पष्ट है कि ऊर्जा E का मान n_x^2 के समानुपाती है, जहाँ $n_x=1,2,3....$ परिभाषित है। $n^2\pi^2h^2$

अर्थात्
$$E = \frac{n_x^2 \pi^2 h^2}{2ml_x^2}$$

इस प्रकार,

$$n_x=1$$
 के लिए ऊर्जा मान $E_1=\frac{\pi^2h^2}{2ml_x^2}$ पर आइगेन तरंग फलन $X_{(x)_1}=\sqrt{\frac{2}{l_x}}\sin\left(\frac{\pi x}{l_x}\right)$ (7.15) $n_x=2$ के लिए ऊर्जा मान $E_2=\frac{(2)^2\pi^2h^2}{2ml_x^2}=\frac{4\pi^2h^2}{2ml_x^2}=4E_1$ पर आइगेन तरंग फलन $X_{(x)_2}=\sqrt{\frac{2}{l_x}}\sin\left(\frac{2\pi x}{l_x}\right)$ (7.16) $n_x=3$ के लिए ऊर्जा मान $E_3=\frac{(3)^2\pi^2h^2}{2ml^2}=9E_1$ पर

आइमेन तरंग फलन
$$X_{(x)_3} = \sqrt{\frac{2}{l_x}} \sin\left(\frac{3\pi x}{l_x}\right)$$
 ...(7.17)

प्राप्त होते हैं।

स्पष्ट है कि एकविमीय बॉक्स में ऊर्जा के सुपिरभाषित ऊर्जा मान $E_1, 4E_1, 9E_1, 16E_1, \ldots$ पर ही m द्रव्यमान के कण के लाक्षणिक व्यवहार के अध्ययन के लिए समीकरण (7.15), (7.16), (7.17) द्वारा प्रदर्शित तरंग फलन क्रमशः $X_{(x)_1}, X_{(x)_2}, X_{(x)_3}, \ldots$ प्राप्त होते हैं। एकविमीय बॉक्स में कण के लिए प्राप्त इन फलनों को आइगेन तरंग फलन एवं अनुमत ऊर्जा मानों को ऊर्जा आइगेन मान कहते हैं।

7.2.2 विविक्त ऊर्जा स्तर (Discrete energy levels)

एक विमीय बॉक्स $(0 < x < l_x)$ में स्थितिज ऊर्जा शून्य तथा x = 0

तथा $x=l_x$ पर स्थितिज ऊर्जा अत्यधिक) में अवस्थित m द्रव्यमान और नियत ऊर्जा E वाले कण के लिए तरंग यांत्रिकी विवेचन के आधार पर प्राप्त ऊर्जा सूत्र

$$E_{n(x)} = \frac{n_x^2 \pi^2 \hbar^2}{2ml_x^2} \qquad ...(7.18)$$

से स्पष्ट है कि ऊर्जा का मान पूर्णांक n_x के वर्ग के समानुपाती है। अर्थात् क्वाण्टम कण का द्वैत व्यवहार कण के ऊर्जा मानों $E_1=\frac{\pi^2\hbar^2}{2ml_x^2}$, $E_2=\frac{4\pi^2\hbar^2}{2ml_x^2}$, $E_3=\frac{9\pi^2\hbar^2}{2ml_x^2}$ पर ही प्रदर्शित होता है। दूसरे शब्दों में ऊर्जा के सभी सतत मान सम्भव नहीं हैं बल्कि एकविमीय बॉक्स में कण ऊर्जा के सुपरिभाषित विविक्त ऊर्जा मान $(E_1,E_2,E_3,...)$ अनुमत होते हैं। इन्हीं ऊर्जा मानों पर बॉक्स में अभीष्ट कण के पाये जाने की सम्भावना प्रेक्षित की जाती है। इन अनुमत ऊर्जा मानों के क्रमिक आनुपातिक प्रदर्शन को विविक्त ऊर्जा स्तर तथा सम्पूर्ण चित्रण को एकविमीय बॉक्स में कण का ऊर्जा स्पेक्ट्रम कहते हैं।

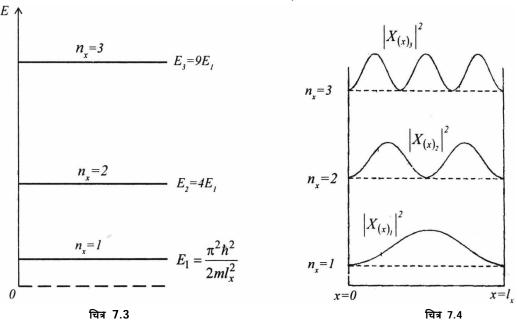
एकविमीय बॉक्स में कण के विविक्त ऊर्जा स्तर एवं बॉक्स में कण के पाये जाने की प्रायिकता के भौतिक अर्थ को समझने के लिए:

$$n_x=1$$
 पर ऊर्जा $E_1=rac{\pi^2\hbar^2}{2ml_x^2},$ प्रायिकता फलन $\left|X_{(x)_1}
ight|^2=\left(rac{2}{l_x}
ight)\sin^2\left(rac{\pi x}{l_x}
ight)$...(7.19) जिसमें $x=0$ तथा $x=l_x$ पर $\left|X_{(x)}
ight|^2$ का मान शून्य तथा $x=rac{l_x}{2}$ पर $\left|X_{(x)}
ight|^2=rac{2}{l_x}$ (अधिकतम) $4\pi^2\hbar^2$

$$n_{(x)} = 2$$
 पर ऊर्जा $E_2 = \frac{4\pi^2 \hbar^2}{2ml_x^2} = 4E_1$

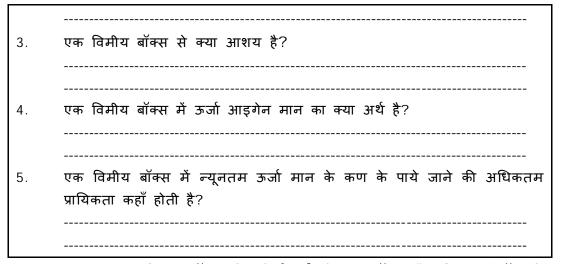
प्रायिकता फलन
$$\left|X_{(x)_2}\right|^2 = \frac{2}{l_x}\sin^2\left(\frac{2\pi x}{l_x}\right)$$
 ...(7.20) जिसमें $x=0$, $x=\frac{l_x}{2}$, $x=l$ पर $\left|X_{(x)_2}\right|^2 = 0$ तथा $x=\frac{l_x}{4}$ तथा $x=\frac{3l_x}{4}$ पर $\left|X_{(x)_2}\right|^2 = \frac{2}{l_x}$ (अधिकतम) $n_{(x)}=3$ पर ऊर्जा $E_3=\frac{9\pi^2h^2}{2ml_x^2}=9E_1$ प्रायिकता फलन $\left|X_{(x)_3}\right|^2 = \left(\frac{2}{l_x}\right)\sin^2\left(\frac{3\pi x}{l_x}\right)$ (7.21) जिसमें $x=0$, $x=\frac{l_x}{3}$, $x=1$, पर $\left|X_{(x)_3}\right|^2 = 0$ तथा $x=\frac{l_x}{6}$, $x=\frac{3l_x}{6}=\frac{l_x}{2}$; $x=\frac{5l_x}{6}$ पर $\left|X_{(x)_3}\right|^2 = \frac{2}{l_x}$ (अधिकतम)

इस प्रकार एकविमीय बॉक्स में कण के विविक्त ऊर्जा स्तर को चित्र 7.3 एवं संगत प्रायिकता फलन को चित्र 7.4 में प्रदर्शित किया गया है।



बोध प्रश्न (Self assessment questions) 1. क्षेत्र मुक्त अन्तरिक्ष से आप क्या समझते हैं?

2. मुक्त कण किसे कहा जाता है? ------



उदाहरण 7.1 विमीय बॉक्स की चौड़ाई 1Å है। इस बॉक्स में गतिशील प्रोटॉन की न्यूनतम ऊर्जा $1.93 \times 10^{-2} \; \text{eV}$ अन्य ऊर्जा आइगेन मान ज्ञात कीजिए।

हल: एक विमीय बॉक्स में ऊर्जा आइगेन मान

$$E_{n_x} = \frac{n_x^2 \pi^2 h^2}{2m l_x^2}$$

यहाँ न्यूनतम ऊर्जा स्तर $E_1 = \frac{\pi^2 h^2}{2m l_x^2} = 1.93 \times 10^{-2} eV$

तथा n_x=1,2,3......

अतः अन्य ऊर्जा आङ्गेन मान
$$E_2=2^2\times 1.93\times 10^{-2}eV=7.72\times 10^{-2}eV$$

$$E_3=3^2\times 1.93\times 10^{-2}eV=17.37\times 10^{-2}eV$$

$$E_4=4^2\times 1.93\times 10^{-2}eV=30.88\times 10^{-2}eV$$

उदाहरण 7.2 एक विमीय बॉक्स (चौड़ाई _{0.1nm}) में न्यूनतम ऊर्जा वाले कण के लिए स्थिति के प्रत्याशा मान की गणना कीजिये।

हल: एक विमीय $(0 < x < I_x)$ में न्यूनतम ऊर्जा वाले कण का तरंग फलन

$$X_{(x)_1} = \sqrt{\frac{2}{l_x}} \sin \frac{\pi x}{l_x}$$

इसलिए कण के लिए स्थिति x का प्रत्याशा मान

$$<\mathsf{X}> = \int_{0}^{lx} X_{(x)_{1}} x \, X_{(x)_{1}} \, dx$$

$$= \int_{0}^{lx} \sqrt{\frac{2}{l_{x}}} \sin \frac{\pi x}{l_{x}} . x . \sqrt{\frac{2}{l_{x}}} \sin \frac{\pi x}{l_{x}} \, dx$$

$$= \left(\frac{2}{l_{x}}\right) \int_{0}^{lx} x \sin^{2} \frac{\pi x}{l_{x}} \, dx$$

$$=\left(\frac{2}{l_x}\right)\left(\frac{l_x^2}{4}\right) = \frac{l_x}{2} = \frac{1}{2} \times 10^{-10}$$
 मीटर =0.5 Å

7.3 त्रिविम आयतफलकी बॉक्स में कण (Particle in

Rectangular Three-Dimensional Box)

माना कि किसी काल्पनिक आयत फलकी त्रिविम बॉक्स की भुजाएँ क्रमश: I_x , I_y , तथा I_z इस प्रकार हैं कि इसमें स्थित m द्रव्यमान के कण के लिए

X=0 तथा x=1;

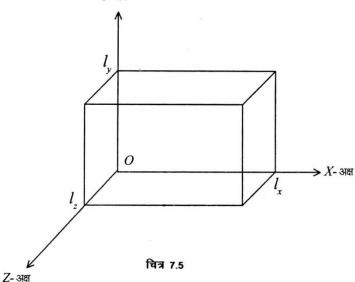
y=0 तथा y=1;

z=0 तथा z=l_z

पर कण की स्थितिज ऊर्जा अत्यधिक (अनन्त) है तथा

 $0 < x < I_x$; $0 < y < I_y$; $0 < z < I_z$

पर कण की स्थितिज ऊर्जा शून्य है तो m द्रव्यमान तथा E ऊर्जा वाले अभीष्ट कण को त्रिविम बॉक्स में निहित कहा जाता है। देखिए चित्र (7.5)।



इस बॉक्स में अभीष्ट कण मुक्त रूप से गतिमान है। बॉक्स के अन्दर कण की स्थितिज ऊर्जा शून्य है परन्तु जैसे ही कण, बॉक्स की किसी भी दीवार (फलक) के निकट पहुँ चता है तो विभव प्रवणता (बल विभव प्रवणता) के कारण एक प्रतिकर्षी बल अनुभव करता है; फलत: कण वापिस लौट जाता है।

इस कण के लिए श्रोडिन्जर समीकरण निम्न होगा -

$$\nabla^2 \psi_{(x,y,z)} + \frac{2mE}{h^2} \psi_{(x,y,z)} = 0 \qquad(7.22)$$
 जहाँ $\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$

अतः श्रोडिन्जर समीकरण होगा -

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \psi_{(x,y,z)} + \frac{2mE}{h^2} \psi_{(x,y,z)} = 0 \qquad \dots (7.23)$$

यदि ऊर्जा $E = E_x + E_y + E_z$ मान लें तो

$$\frac{2mE}{h^2} = \frac{2mE_x}{h^2} + \frac{2mE_y}{h^2} + \frac{2mE_z}{h^2}$$

 $=\left(k_x^2+k_y^2+k_z^2\right)$ मान लें तो समीकरण (7.23) को निम्न प्रकार व्यक्त कर सकते हैं -

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \psi_{(x,y,z)} + (k_x^2 + k_y^2 + k_z^2) \psi_{(x,y,z)} = 0 \qquad \dots (7.24)$$

अब यदि संयुक्त फलन $\psi_{(x,y,z)}=X_{(x)}Y_{(y)}Z_{(z)}$ मान लें जहाँ फलन $X_{(x)}$ केवल चर x पर; फलन $Y_{(y)}$ केवल चर y पर और फलन $Z_{(z)}$ केवल चर z पर निर्भर करता है तो समीकरण (7.24) से

$$\left(\frac{1}{X_{(x)}}\frac{\partial^{2}}{\partial x^{2}}X_{(x)} + k_{x}^{2}\right) + \left(\frac{1}{Y_{(y)}}\frac{\partial^{2}}{\partial y^{2}}Y_{(y)} + k_{y}^{2}\right) + \left(\frac{1}{Z_{(z)}}\frac{\partial^{2}}{\partial z^{2}}Z_{(z)} + k_{z}^{2}\right) = 0 \quad ...(7.25)$$

जिसका अर्थ है कि समीकरण (7.25) तभी सत्य होगा जबकि प्रत्येक कोष्ठक में अंकित राशि शून्य हो।

अत:

या,
$$\frac{1}{X_{(x)}} \frac{\partial^2}{\partial x^2} X_{(x)} + k_x^2 = 0$$

$$\frac{\partial^2}{\partial x^2} X_{(x)} + k_x^2 X_{(x)} = 0 \qquad ...(7.26)$$

$$\frac{1}{Y_{(y)}} \frac{\partial^2}{\partial y^2} Y_{(y)} + k_y^2 = 0$$

$$\frac{\partial^2}{\partial y^2} Y_{(y)} + k_y^2 Y_{(y)} = 0 \qquad ...(7.27)$$

$$\frac{1}{Z_{(z)}} \frac{\partial^2}{\partial z^2} Z_{(z)} + k_z^2 = 0$$

$$\frac{\partial^2}{\partial z^2} Z_{(z)} + k_z^2 Z_{(z)} = 0 \qquad ...(7.28)$$

इस प्रकार सभी (7.26), (7.27) तथा (7.28) को एकविमीय बॉक्स की भाँति हल करके संगत फलन $X_{(x)},Y_{(y)}$ तथा $Z_{(z)}$ के मान निर्धारित कर संगत ऊर्जा आइगेन मान $E_{(x)},E_{(y)}$ तथा $E_{(z)}$ जात कर सकते हैं।

7.3.1 त्रिविम स्थिति में सूत्रों का विस्तार (Extension of formulate in 3dimensional case)

एकविमीय बॉक्स की भाँति समीकरण (7.26), (7.27) तथा (7.28) के सामान्य हल निम्नान्सार प्राप्त होंगे -

$$X_{(x)}=\sqrt{rac{2}{l_x}}\sin\left(rac{n_x\pi}{l_x}
ight)x$$
 जबिक ऊर्जा मान $E_{(x)}=rac{\hbar^2k_x^2}{2m}$ $Y_{(y)}=\sqrt{rac{2}{l_y}}\sin\left(rac{n_y\pi}{l_y}
ight)y$ जबिक ऊर्जा मान $E_{(y)}=rac{\hbar^2k_y^2}{2m}$ तथा $Z_{(z)}=\sqrt{rac{2}{l_z}}\sin\left(rac{n_z\pi}{l_z}
ight)z$ जबिक ऊर्जा मान $E_{(z)}=rac{\hbar^2k_z^2}{2m}$

जहाँ n_x , n_x तथा n_z के सम्भव मान 1,2,3... हो सकते हैं। इस प्रकार त्रिविमीय बॉक्स में कण का तरंग फलन निम्न होगा -

$$\psi = X_{(x)} Y_{(y)} Z_{(z)}$$
या
$$\psi = \sqrt{\frac{2}{l_x}} \sqrt{\frac{2}{l_y}} \sqrt{\frac{2}{l_z}} \sin\left(\frac{n_x \pi x}{l_x}\right) \sin\left(\frac{n_y \pi y}{l_y}\right) \sin\left(\frac{n_z \pi z}{l_z}\right)$$
या
$$\psi = \sqrt{\frac{8}{l_x l_y l_z}} \sin\left(\frac{n_x \pi x}{l_x}\right) \sin\left(\frac{n_y \pi y}{l_y}\right) \sin\left(\frac{n_z \pi z}{l_z}\right) \qquad \dots (7.29)$$

तथा ऊर्जा $E = E_x + E_y + E_z$

$$= \frac{\hbar^2}{2m} (k_x^2) + \frac{\hbar^2}{2m} (k_y^2) + \frac{\hbar^2}{2m} (k_z^2)$$

$$= \frac{\hbar^2}{2m} \left[k_x^2 + k_y^2 + k_z^2 \right]$$

$$= \frac{\hbar^2}{2m} \left[\frac{\pi^2 n_x^2}{l_x^2} + \frac{\pi^2 n_y^2}{l_y^2} + \frac{\pi^2 n_z^2}{l_z^2} \right]$$

$$= \frac{\hbar^2}{2m} \pi^2 \left[\frac{n_x^2}{l_x^2} + \frac{n_y^2}{l_y^2} + \frac{n_z^2}{l_z^2} \right]$$

अर्थात त्रिविम बॉक्स में कण की ऊर्जा

$$E_{n_x,n_y,n_z} = \frac{\hbar^2 \pi^2}{2m} \left[\frac{n_x^2}{l_x^2} + \frac{n_y^2}{l_y^2} + \frac{n_z^2}{l_z^2} \right] \qquad ...(7.30)$$

जहाँ $n_x=1,2,3,\ldots$, $n_y=1,2,3,\ldots$, $n_z=1,2,3,\ldots$ क्वाण्टम संख्यायें तथा l_x,l_y व l_z सुपरिभाषित बॉक्स की भुजाएँ हैं।

7.3.2 ऊर्जा स्तरों की अपभ्रष्टता (Degenracy of energy levels)

त्रिविम बॉक्स में स्थित कण के लिये ऊर्जा सूत्र

$$E_{n_x,n_y,n_z} = \frac{\hbar^2 \pi^2}{2m} \left[\frac{n_x^2}{l_x^2} + \frac{n_y^2}{l_y^2} + \frac{n_z^2}{l_z^2} \right]$$

में यदि $n_x = n_y = n_z = 1$ है तो ऊर्जा मान

$$E_{1,1,1} = \frac{\hbar^2 \pi^2}{2m} \left[\frac{1}{l_x^2} + \frac{1}{l_y^2} + \frac{1}{l_z^2} \right] \qquad \dots (7.31)$$

यह कण का न्यूनतम मान का ऊर्जा स्तर है जिसका मान बॉक्स की भुजाओं की लम्बाई पर आश्रित होता है।

यदि विचाराधीन बॉक्स एक घन (cube) (माना $l_x = l_y = l_z = L$) है तो कण के मूल ऊर्जा स्तर (ground state of energy) का मान

$$E_{111} = \frac{3\pi^2 \hbar^2}{2mL^2} \qquad ...(7.32)$$

इस ऊर्जा मान के संगत केवल निम्न एक फलन $\psi_{\scriptscriptstyle
m III}$ सम्भव है

$$\psi_{111} = \sqrt{\frac{8}{L^3}} \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{\pi y}{L}\right) \sin\left(\frac{\pi z}{L}\right) \qquad \dots (7.33)$$

तब कण का मूल ऊर्जा स्तर को अनपभ्रष्ट (non degenerate) कहा जाता है।

चूँकि घनाकार बॉक्स में कण की ऊर्जा का मान सम्बन्धित क्वाण्टम संख्याक (n_x,n_y) तथा n_z) के वर्गों के योग पर निर्भर करता है; इसिलए अभीष्ट कण की उत्तेजित अवस्था (n_x,n_y तथा n_z में किसी एक या दो या सभी क्वाण्टम संख्याओं के मान 1 से भिन्न) में ऊर्जा किसी सुपरिभाषित मान के संगत एक से अधिक तरंग फलन सम्बद्ध हो सकते हैं। इस प्रकार की विशेष ऊर्जा स्तर को अपभ्रष्ट ऊर्जा स्तर (degenerate energy level) कहा जाता है।

ऊर्जा स्तर की अपभ्रष्टता को समझने के लिए कण की उस उत्तेजित अवस्था पर विचार करते हैं जिसमें कोई भी एक क्वाण्टम संख्यांक 2 तथा शेष दोनों क्वाण्टम संख्यांक के मान 1 हैं तो कण के विभिन्न क्वाण्टम संख्यांक समूह निम्न प्रकार हो सकते हैं -

$$\begin{array}{ccccc}
n_x & n_y & n_z \\
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}$$

इस प्रकार कण का ऊर्जा मान एवं संगत तरंग फलन निम्नानुसार होंगे -

$$E_{211} = \frac{\pi^2 \hbar^2}{2mL^2} \left[2^2 + 1^2 + 1^2 \right] = \frac{6\pi^2 \hbar^2}{2mL^2}$$

$$\begin{split} \psi_{211} &= \sqrt{\frac{8}{L^3}} \sin \frac{2\pi x}{L} \sin \frac{\pi y}{L} \sin \frac{\pi z}{L} \\ E_{121} &= \frac{\pi^2 \hbar^2}{2mL^2} \Big[1^2 + 2^2 + 1^2 \Big] = \frac{6\pi^2 \hbar^2}{2mL^2} \\ \psi_{121} &= \sqrt{\frac{8}{L^3}} \sin \frac{\pi x}{L} \sin \frac{2\pi y}{L} \sin \frac{\pi z}{L} \\ E_{112} &= \frac{\pi^2 \hbar^2}{2mL^2} \Big[1^2 + 1^2 + 2^2 \Big] = \frac{6\pi^2 \hbar^2}{2mL^2} \\ \psi_{112} &= \sqrt{\frac{8}{L^3}} \sin \frac{\pi x}{L} \sin \frac{\pi y}{L} \sin \frac{2\pi z}{L} \\ E_{222} &= \frac{12\pi^2 \hbar^2}{2mL^2} \\ &= E_{222} = \frac{12\pi^2 \hbar^2}{2mL^2} \\ E_{221} &= E_{122} = E_{122} = \frac{9\pi^2 \hbar^2}{2mL^2} \\ E_{211} &= E_{121} = E_{112} = \frac{6\pi^2 \hbar^2}{2mL^2} \\ &= \frac{\psi_{221}}{2mL^2} \qquad \frac{\psi_{212}}{2mL^2} \qquad \frac{\psi_{122}}{2mL^2} \qquad \frac{\chi_{122}}{2mL^2} \qquad \frac{\chi_{122}$$

उपरोक्त से स्पष्ट है कि $E_{211}=E_{121}=E_{112}=\frac{6\pi^2\hbar^2}{2mL^2}$ के संगत कण के तीन भिन्न भिन्न अवस्था फलन $\psi_{211},\psi_{121},\psi_{112}$ सम्भव है। यानि कि घनाकार बॉक्स में $\frac{6\pi^2\hbar^2}{2mL^2}$ ऊर्जा मान अपभ्रष्ट ऊर्जा स्तर है जिसमें **बिस्तरीय अपभ्रष्टता** पाई जाती है।

घनाकार बॉक्स में स्थित कण की उत्तेजित तीन ऊर्जास्तरों की अपभ्रष्टता को चित्र (7.6) में दर्शाया गया है।

अपभ्रष्टता की कोटि (Degree of degeneracy)

किसी ऊर्जा स्तर के संगत सम्भव स्वतंत्र तरंग फलनों की संख्या को अपभ्रष्टता की कोटि कहते हैं। अपभ्रष्टता की कोटि का निर्धारण क्वान्टम संख्यांक n_x , n_y तथा n_z के मान

पर निर्भर करता है। उदाहरणार्थ यदि n_x , n_y तथा n_z में किसी के भी मान 1, 2, 3 हो सकते हैं तो घनाकार बॉक्स में स्थित कण की ऊर्जा का मान

$$E_{123} = E_{132} = E_{312} = E_{231} = E_{321} = E_{213}$$

$$= \frac{\pi^2 h^2}{2mL^2} (1^2 + 2^2 + 3^2)$$

$$= \frac{14\pi^2 h^2}{2mL^2}$$

इस प्रकार ऊर्जा मान $\frac{14\pi^2h^2}{2mL^2}$ के संगत $\psi_{123},\psi_{132},\psi_{312},\psi_{231},\psi_{321},\psi_{213}$ (कुल 6) स्वतंत्र तरंग-फलन सम्भव हो सकते हैं।

अतः ऊर्जास्तर $\frac{14\pi^2h^2}{2mL^2}$ की अपभ्रष्टता की कोटि 6 है।

7.3.3 तरंग फलन का भौतिक प्रदर्शन (Physical presentation of wave function)

त्रिविमीय घनाकार बॉक्स में अवस्थित कण के तरंग फलन

$$\psi_{(x,y,z)} = \sqrt{\frac{8}{L^3}} \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_x \pi y}{L}\right) \sin\left(\frac{n_x \pi z}{L}\right)$$

में एक साथ तथा निर्देशांक मौजूद हैं; इसलिए इसे समतलीय ग्राफ के रूप में प्रदर्शित नहीं किया जा सकता। फलन के उक्त समीकरण से इसके **परिमाणात्मक स्वरूप** को समझने के लिए इसकी मूल ऊर्जा स्तर ($n_x = n_y = n_z = 1$) पर विचार करें तो यह फलन $x=y=z=\frac{L}{2}$ (घन के केन्द्र) पर अधिकतम एवं धनात्मक मान प्रदर्शित करेगा। इसी प्रकार कण की प्रथम उत्तेजित अवस्था ($n_x=2$, $n_y=1$, z=1) में फलन ψ_{211} स्थिति $x=\frac{L}{2}$ पर शून्य हो जाता है चाहे y तथा z के मान कुछ भी क्यों न हों।

वस्तुतः तरंग फलन के पाये जाने की प्रायिकता का निर्धारण $\left|\psi_{(x,y,z)}\right|^2$ द्वारा समझा जा सकता है। उदाहरणार्थ बॉक्स में कण की अवस्था ψ_{111} की प्रायिकता का सर्वाधिक मान घन के केन्द्र पर होता है और घन की दीवारों की ओर बढ़ने पर बॉक्स में कण के पाये जाने की प्रायिकता का मान घटने लगता है।

इसी प्रकार अनपभ्रष्ट अवस्था ψ_{222} पर विचार करें तो कण की इस उत्तेजित अवस्था में कण के पाये जाने की प्रायिकता का वितरण सम्पूर्ण बॉक्स में फैल (spread out) जाता है तथा और अधिक ऊर्जा मान वाले कण के लिए प्रायिकता वितरण लगभग वैसा ही प्राप्त होता है जैसा कि चिरसम्मत सिद्धान्त के अनुसार प्राप्त होता है।

बोध प्रश्न (Self assessment questions)

त्रिविमीय बॉक्स का क्या आशय है?

7.	अपभ्रष्ट एवं अनपभ्रष्ट ऊर्जा स्तर में क्या अन्तर है?

7.4 सारांश (Summary)

- वह अन्तरिक्ष जिसमें कण की स्थितिज ऊर्जा नियत और कण की स्थिति पर आश्रित नहीं होती, उसे क्षेत्र मुक्त अन्तरिक्ष कहते हैं और अभीष्ट कण को मुक्त कण कहते हैं।
- ऐसा सुपरिभाषित क्षेत्र जिसमें कण आगे-पीछे गति के लिए बद्ध किया गया हो, उसे बद्ध क्षेत्र और इसे कण की बद्ध अवस्था कहते हैं।
- एक विमीय बद्ध क्षेत्र, जिसमें कण केवल एक विमीय गित कर सकने के लिए बद्ध किया
 हु आ हो, को एक विमीय बॉक्स कहते हैं।
- एक विमीय बॉक्स में अभीष्ट कण के लिए अनुमत ऊर्जा मानों को आइगेन मान एवं संगत तरंग व्यवहार व्यक्त करने वाले फलन को आइगेन फलन कहते हैं।
- एक विमीय बॉक्स में ऊर्जा आइगेन मान $E_{n_x} = \frac{n_x^2 \pi^2 h^2}{2m l_x^2}$ अर्थात् $E_{n_x} \alpha \, n_x^2$; जहाँ n_x =1,2,3.....तथा आइगेन फलन $X_{n_{(x)}} = \sqrt{\frac{2}{l_x}} \sin \left(\frac{n_x \pi \, x}{l_x} \right)$
- त्रिविमीय आयतफलकी बॉक्स में कण तीनों विमाओं में गति के लिए बद्ध रहता है।
- त्रिविमीय बॉक्स में ऊर्जा $X_{n_x,n_y,n_z} = \frac{\pi^2 h^2}{2m} \left[\frac{n_x^2}{l_x^2} + \frac{n_y^2}{l_y^2} + \frac{n_z^2}{l_z^2} \right]$ तथा
- तरंग फलन $\psi = \sqrt{\frac{8}{l_x l_y l_z}} \sin\left(\frac{n_x \pi x}{l_x}\right) \sin\left(\frac{n_y \pi y}{l_y}\right) \sin\left(\frac{n_z \pi z}{l_z}\right)$
- िकसी सुपिरभाषित ऊर्जा मान के संगत एक से अधिक तरंग फलन सम्बद्ध होते हों, तो उस
 विशेष ऊर्जा स्तर को अपभ्रष्ट ऊर्जा स्तर कहते हैं।
- िकसी विशिष्ट ऊर्जा स्तर से सम्बद्ध तरंग-फलनों की संख्या को अपभ्रष्टता की कोटि कहते है।
- िकसी ऊर्जा स्तर से यदि केवल एक ऊर्जा स्तर ही सम्बद्ध हो तो उस ऊर्जा स्तर को अनपभ्रष्ट ऊर्जा स्तर कहते हैं।

7.5 शब्दावली (Glossary)

अन्तरिक्ष Space अनपभ्रष्टता ऊर्जा स्तर Non-degenerate energy level अपभ्रष्टता Degeneracy

अपभ्रष्टता कोटि	Degree of Degeneracy
आइगेन फलन	Eigen function
एक विमीय बॉक्स	One dimensional box
ऊर्जा आइगेन मान	Energy eigen value
बद्ध अवस्था	Bound state
मुक्त कण	Free particle
विविक्त ऊर्जा स्तर	Descrete energy level
क्षेत्र मुक्त अन्तरिक्ष	Field free space
त्रिविमीय बॉक्स	Three dimensional box

7.6 संदर्भ ग्रन्थ (Reference Books)

सरदार सिंह के. के. सरकार एवं तृतीय वर्ष भौतिक विज्ञान साहित्य भवन, आर. एन. शर्मा H. Clark A First Course in Quantum ELBS & VNR (UK) Mechanics Co. Ltd. P.M. Mathews and A text book of Quantum TMH Pub. Co., K. Venkatesan Mechanics New Delhi Satyprakash Advanced Quantum Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur T.C.Bansal	एस. एस. रावत एवं	प्रारम्भिक क्वाण्टम	कॉलेज बुक हाउस,
आर. एन. शर्मा H. Clark A First Course in Quantum ELBS & VNR (UK) Mechanics Co. Ltd. P.M. Mathews and A text book of Quantum TMH Pub. Co., K. Venkatesan Mechanics New Delhi Satyprakash Advanced Quantum Kedar Nath Ram Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	सरदार सिंह	भौतिकी एवं स्पेक्ट्रोस्कोपी	जयपुर
H. Clark A First Course in Quantum Mechanics Co. Ltd. P.M. Mathews and K. Venkatesan Mechanics Mechanics Mechanics New Delhi Satyprakash Advanced Quantum Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	के. के. सरकार एवं	तृतीय वर्ष भौतिक विज्ञान	साहित्य भवन,
Mechanics Co. Ltd. P.M. Mathews and A text book of Quantum TMH Pub. Co., K. Venkatesan Mechanics New Delhi Satyprakash Advanced Quantum Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	आर. एन. शर्मा		आगरा
Ltd. P.M. Mathews and A text book of Quantum TMH Pub. Co., K. Venkatesan Mechanics New Delhi Satyprakash Advanced Quantum Kedar Nath Ram Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	H. Clark	A First Course in Quantum	ELBS & VNR (UK)
P.M. Mathews and A text book of Quantum TMH Pub. Co., K. Venkatesan Mechanics New Delhi Satyprakash Advanced Quantum Kedar Nath Ram Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur		Mechanics	Co.
K. Venkatesan Mechanics New Delhi Satyprakash Advanced Quantum Kedar Nath Ram Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur			Ltd.
Satyprakash Advanced Quantum Kedar Nath Ram Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	P.M. Mathews and	A text book of Quantum	TMH Pub. Co.,
Mechanics Nath, Meerut S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	K. Venkatesan	Mechanics	New Delhi
S.L.Kakani Elementary Quantum College Book C.Hemrajani and Mechanics and Centre, Jaipur	Satyprakash	Advanced Quantum	Kedar Nath Ram
C.Hemrajani and Mechanics and Centre, Jaipur		Mechanics	Nath, Meerut
	S.L.Kakani	Elementary Quantum	College Book
T.C.Bansal Spectroscopy	C.Hemrajani and	Mechanics and	Centre, Jaipur
	T.C.Bansal	Spectroscopy	

7.7 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

- 1. क्षेत्र मुक्त अन्तरिक्ष में कण की ऊर्जा नियत और कण की स्थिति पर निर्भर नहीं होती है।
- 2. नियत एवं स्थिति पर अनाश्रित स्थितिज ऊर्जा वाला कण मुक्त कण कहा जाता है।
- 3. एक विमीय बॉक्स, एक-विमीय स्थितिज ऊर्जा क्षेत्र होता है जिसकी सुपरिभाषित सीमा के अन्तर्गत ही कण गति कर सकता है।
- 4. कुछ चयनित सुपरिभाषित ऊर्जा मान वाला कण ही एकविमीय बॉक्स में सम्भव हो सकता है; इन ऊर्जा मानों को ऊर्जा आइगेन मान कह सकते हैं।
- 5. बॉक्स के ठीक मध्य में कण की अधिकतम प्रायिकता होती है।

- 6. त्रिविमीय बॉक्स में कण तीनों विमाओं में बद्ध रहता है।
- 7. त्रिविमीय या द्विविमिय बॉक्स में किसी ऊर्जा मान के संगत कई तरंगफलन सम्बद्ध होते हों तो उसे अपश्रष्ट ऊर्जा स्तर कहते हैं और यदि प्रत्येक ऊर्जा स्तर पर केवल एक ही तरंग फलन सम्बद्ध रहता है तो उसे अनपश्रष्ट ऊर्जा स्तर कहा जाता है।

7.8 अभ्यासार्थ प्रश्न (Exercises)

लघुत्तरात्मक प्रश्न (Short answer type questions)

- 1. "एक कण एक विमीय बॉक्स में गति के लिए बद्ध है।" इस कथन का अर्थ समझाइए।
- 2. एक विमीय बॉक्स में कण की न्यूनतम ऊर्जा E_0 है। इसका भौतिक अर्थ समझाइए।
- 3. एक विमीय बॉक्स की चौड़ाई a है। इस कण के लिए सीमा प्रतिबन्ध लिखिए।
- 4. ऊर्जा स्तर की अपभ्रष्टता की कोटि का क्या अर्थ है?

निबंधात्मक प्रश्न (Essay type questions)

- 5. एक विमीय बॉक्स में E ऊर्जा मान वाले कण की गति के लिए श्रोडिन्जर समीकरण लिखिए। काल-अनाश्रित श्रोडिन्जर समीकरण को हल कीजिये और ऊर्जा आइगेन मान व आइगेन फलन निर्धारित कीजिए।
- 6. त्रिविमीय बोक्स में E ऊर्जा मान वाले कण के लिए ऊर्जा आइगेन मान एवं आइगेन फलन के व्यंजक लिखिए। ऊर्जा E की निर्भरता की विवेचना कीजिए।
- 7. एक ऊर्जा स्तर की अपभ्रष्टता से क्या अभिप्राय है? उदाहरण सहित समझाइए।

आंकिक प्रश्न (Numerical questions)

8. 10 फर्मी चौड़ाई के विभव क्षेत्र में बद्ध एक इलेक्ट्रॉन की शून्य बिन्दु ऊर्जा ज्ञात कीजिए।

(उत्तर: 3.83 GeV)

विभव सीढ़ी तथा विभव प्राचीर

(Potential step and Potential Barrier)

इकाई की रूपरेखा

- 8.0 **उद्देश्**य
- 8.1 प्रस्तावना
- 8.2 विभव सीढी
 - 8.2.1 3 5 = 10 मान E विभव सीढ़ी की 3 5 = 10 से अधिक होने पर
 - 8.2.2 ऊर्जा मान F विभव सीढ़ी की ऊँचाई V_0 से कम होने पर
- 8.3 एक विमीय आयताकार विभव प्राचीर
- 8.4 परावर्तन एवं पारगमन गुणांकों की गणना
- $8.5 \qquad \alpha$ -क्षय की गुणात्मक विवेचना
- 8.6 सारांश
- 8.7 शब्दावली
- 8.8 संदर्भ ग्रन्थ
- 8.9 बोध प्रश्नों के उत्तर
- 8.10 अभ्यासार्थ प्रश्न

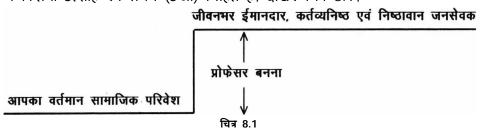
8.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

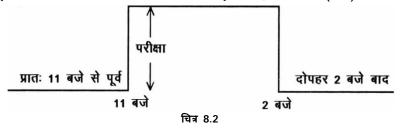
- विभव सीढ़ी-संकल्पना का भौतिक अर्थ समझ सकेंगे;
- विभव सीढ़ी से परावर्तन गुणांक एवं पारगमन गुणांकों के बारे में ज्ञान अर्जित कर, इनके
 व्यावहारिक औचित्य को जान सकेंगे;
- विभव प्राचीर की संकल्पना का भौतिक अर्थ समझ सकेंगे;
- विभव प्राचीर की सरलतम स्थित (एकविमीय प्राचीर) के गणितीय प्रारूप से परिचित हो सकेंगे और इसके परावर्तन एवं पारगमन गुणांकों की गणना कर सकेंगे;
- विभव प्राचीर में सुरंगन प्रभाव के अर्थ से परिचित होकर रेडियोधर्मी पदार्थ से क्षय की व्याख्या समझ सकेंगे।

8.1 प्रस्तावना (Introduction)

इकाई 7.0 में आप बॉक्स की अभिधारणा को समझ चुके हैं। इस इकाई में आप विभव सीढ़ी (potential step) तथा विभव प्राचीर (potential barrier) की संकल्पना को समझेंगे। भौतिक दृष्टि से, विभव सीढ़ी एवं विभव प्राचीर; कोई सीढ़ी या दीवार जैसी कोई वास्तविक भौतिक संरचना नहीं होती। विभव सीढ़ी और विभव प्राचीर को समझने के लिए अपने दैनिक जीवन के निम्न उदाहरणों पर विचार कीजिये - आप जहाँ भी हैं, आप अपना मस्त जीवन जी रहे हैं। अब, आपने अपने मन में एक प्रोफेसर बनकर जीवनभर एक ईमानदार, निष्ठावान एवं कर्त्तव्य परायण जनसेवक बनने का लक्ष्य निर्धारित किया हु आ है। यानी कि आपकी वर्तमान सामाजिक स्थिति की तुलना में आपके प्रोफेसर बनने का लक्ष्य, तुलनात्मक रूप से बड़ा है। यह आपके सामाजिक परिवेष में परिवर्तन की एक सीढ़ी (step) है। इस लक्ष्य में आपकी सफलता (पारगमन क्षमता) और अंशतः असफलता (परावर्तन गुणांक) इस तथ्य पर निर्भर करेगी कि वर्तमान सामाजिक स्थिति से प्रारम्भ करके अपेक्षाकृत कठिन लक्ष्य को प्राप्त करने के लिए आप में कितना उत्साह एवं लगन (उर्जा) निहित है। देखिए चित्र 8.1।



अब एक उदाहरण और देखिए- आप अपनी परीक्षा की तैयारी में पूरे उत्साह-लगन एवं मेहनत से लगे हुए हैं (यह आपकी ऊर्जा होगी)। परीक्षा का समय 11 बजे से 2 बजे तक है। घड़ी में 11 बजने से पूर्व का पूरा समय और 2 बजे बाद का समय आपके लिए सामान्य रहेगा जिसमें आप चिन्ता मुक्त (बल मुक्त) रहेंगे; लेकिन 11 बजे से 2 बजे तक की परीक्षा-अविध में आप विशेष स्थिति से युक्त (लिप्त) होकर विशेष प्रकार का व्यवहार अनुभव करेंगे। परीक्षा अविध में आपका होने वाला अपेक्षित व्यवहार आपके उत्साह-लगन-मेहनत के परिमाण (ऊर्जा मान) पर निर्भर करेगा। इस प्रकार "परीक्षा-अविध और इसके आसपास (सन्निकट) का समय' आपके व्यवहार के लिए 'शैक्षणिक प्राचीर' की भाँति होगा। देखिए चित्र (8.2)।



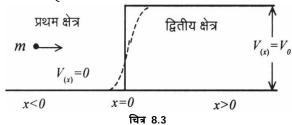
इस इकाई के अनुच्छेद 8.2 में विभव सीढ़ी पर नियत ऊर्जा वाले कण का व्यवहार एवं सम्बन्धित परावर्तन तथा पारगमन गुणांकों का अध्ययन करेंगे। अनुच्छेद 8.3 में विभव प्राचीर और अनुच्छेद 8.4 में इसके परावर्तन और पारगमन गुणांकों की गणना तथा अनुच्छेद 8.5 में सुरंगन प्रभाव के रूप में क्षय की गुणात्मक विवेचना का अध्ययन करेंगे।

8.2 विभव सीढ़ी (Step Potential)

चित्र 8.3 में दर्शायी गई एकविमीय विभव-सीढ़ी में x=0 पर विभव V_0 में असान्तत्य (discontinuity) है। बिन्दु x=0 के बायीं ओर विभव शून्य और दाहिनी ओर विभव V_0 है अर्थात्

V_(x)=0 जबकि x<0 प्रथम क्षेत्र में

 $V_{(x)} = V_0$ जबिक x>0 द्वितीय क्षेत्र में



वस्तुतः विभव मान $V_{(x)}=0$ से $V_{(x)}=V_0$ का परिवर्तन x=0 से कुछ पहले से प्रारम्म होकर के कुछ बाद तक बिन्दुदार लाइन द्वारा दर्शाये अनुसार होता है।

माना कि m द्रव्यमान एवं E नियत ऊर्जा मान वाला कण प्रथम क्षेत्र $(V_{(x)}=0;x<0)$ से द्वितीय क्षेत्र $(x>0,V_{(x)}=V_0)$ की ओर अग्रसर हो रहा है। चिरसम्मत यांत्रिकी के अनुसार दोनों क्षेत्रों की पृथक्करण सीमा पर अभीष्ट कण एक प्रतिकर्षी बल $(F=-grad\ V)$ अनुभव करेगा और तब कण का संवेग, कण की ऊर्जा E तथा विभव सीढ़ी की ऊँचाई V_0 के सापेक्षिक मान पर निर्भर करेगा। इस प्रकार $E>V_0$ की स्थिति में अभीष्ट कण आसानी से द्वितीय क्षेत्र को पार कर सकेगा जबिक $E< V_0$ की स्थिति में कण किसी भी हालत में द्वितीय क्षेत्र को नहीं भेद पायेगा क्योंकि $E< V_0$ होने पर $(E-V_0)$ का मान ऋणात्मक आयेगा; जो सम्भव नहीं है।

यहाँ हम दोनों स्थितियों $(E>V_0$ तथा $E< V_0$) में कण के व्यवहार की क्वाण्टम यांत्रिकीय विवेचना करेंगे -

8.2.1 ऊर्जा का मान विभव सीढ़ी की ऊँचाई से अधिक होने पर (When energy value E larger than height V_0 of potential state) ($E > V_0$)

यदि एकविमीय सीढ़ी के (चित्र 8.4) प्रथम क्षेत्र $V_{(x)}=0(x<0)$ से द्वितीय क्षेत्र $V_{(x)}=V_0(x>0)$ की ओर अग्रसर होने वाले कण की ऊर्जा $E>V_0$ है तो दोनों क्षेत्रों में श्रीडिन्जर समीकरण अग्रांकित होंगे -

$$\frac{d^2\psi_1}{dx^2} + \frac{2m(E-0)}{\hbar^2}\psi_1 = 0 \quad (प्रथम क्षेत्र) \qquad ...(8.1)$$

$$\frac{d^2\psi_{11}}{dx^2} + \frac{2m(E - V_0)}{\hbar^2}\psi_{11} = 0 \quad (द्वितीय क्षेत्र) \qquad ...(8.2)$$

जहाँ विभव सीढ़ी के प्रथम व द्वितीय क्षेत्र के प्रसामान्यीकृत तरंग फलन क्रमशः ψ_1 तथा ψ_{11} हैं।

प्रथम क्षेत्र के लिए समीकरण (8.1) का सामान्य हल दिया जा सकता है -

$$\psi_1 = Ae^{ik_1x} + Be^{-ik_1x} \qquad ...(8.3)$$

यहाँ, $k_1 = \sqrt{\frac{2mE}{\hbar^2}} = \frac{p_1}{\hbar}$; प्रथम क्षेत्र के तरंग फलन का संचरण नियतांक तथा A व B स्थिरांक हैं। ध्यान रहे कि समीकरण (8.3) का प्रथम पद Ae^{ik_1x} धनात्मक X-दिशा की ओर अग्रसर तरंग (विभव सीढ़ी की ओर आपितत) और द्वितीय पद Be^{-ik_1x} ऋणात्मक X-दिशा में लौटने वाली (विभव सीढ़ी से परावर्तित) तरंग को प्रदर्शित करते है।

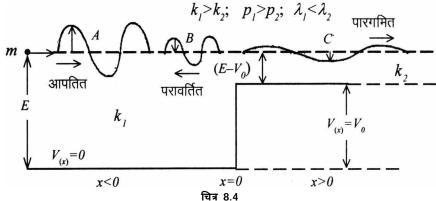
इसी प्रकार द्वितीय क्षेत्र के श्रोडिन्जर समीकरण (समीकरण 8.2) का सामान्य हल निम्नवत् होगा-

$$\psi_{11} = Ce^{ik_2x} + De^{-ik_2x} \qquad ...(8.4)$$
 जहाँ, $k_2 = \sqrt{\frac{2m\left|(E-V_0)\right|}{\hbar^2}} = \frac{p_2}{\hbar}$; द्वितीय क्षेत्र में संचरण नियतांक है।

यही समीकरण (8.4) का प्रथम पद Ce^{ik_2x} धनात्मक X-दिशा की ओर अग्रसर होने वाली तरंग को प्रदर्शित करता है और द्वितीय पद De^{-ik_2x} द्वितीय क्षेत्र में ऋणात्मक X-दिशा की ओर लौटने वाली तरंग को व्यक्त करता है। लेकिन द्वितीय क्षेत्र $(0 < x < \infty)$ में स्थितिज ऊर्जा $V_{(x)} = V_0$ का मान अपरिवर्तित रहने के कारण कोई परावर्तक बल नहीं होता है; अतएव इस क्षेत्र में ऋणात्मक X-दिशा में लौटने वाली तरंग De^{-ik_2x} औचित्य हीन हो जाती है। अतः समीकरण (8.4) का निम्न रूप होगा-

$$\psi_{11} = Ce^{ik_2x} \qquad ...(8.5)$$

जहाँ गुणांक A,B तथा C के मान भिन्न भिन्न हो सकते हैं।



परावर्तन एवं पारगमन गुणांक (Reflection and transmission coefficient)

विभव सीढ़ी में परावर्तन गुणांक R मे तथा पारगमन गुणांक T को निम्न प्रकार परिभाषित किया जाता है-

परावर्तन गुणांक R =
$$\frac{\text{परावर्तित धारा आयाम}}{\text{आपितत धारा आयाम}}$$
= $\frac{\text{परावर्तित धारा आयाम}}{\text{आपितत कणों की संख्या \times परावर्तित (प्रथम) क्षेत्र में वेग
$$= \frac{\left(BB^*\right)_{\nu_1}}{\left(AA^*\right)} = \frac{\left|B\right|^2}{\left|A\right|^2} \qquad ...(8.6)$$$

क्योंकि प्रथम क्षेत्र में (समीकरण 8.3) परावर्तित एवं आपितत तरंग के आयाम क्रमशः B तथा A हैं।

इसी प्रकार, पारगमन गुणांक T = पारगमित धारा आयाम आपितत धारा आयाम

$$T = \frac{\left(CC^{*}\right)_{v_{2}}}{\left(CC^{*}\right)_{v_{1}}} \tag{8.7}$$

अब हमें गुणांक A,B,C तथा वेग v_1 तथा v_2 के मान निर्धारित करने हैं। तरंग फलन की सांतत्यता प्रतिबन्ध के आधार पर दोनों क्षेत्रों की सीमा (x=0) पर **सम्बन्धित फलनों और उनकी प्रवणताओं के मान समान होना** अपेक्षित है; अतः

$$X=0$$
 पर $\psi_1=\psi_{11}$
$$X=0$$
 पर $\frac{\partial \psi_1}{\partial x}=\frac{\partial \psi_{11}}{\partial x}$ (8.8)

इन प्रतिबन्धों का उपयोग समीकरण (8.3) तथा (8.5) में करने पर

$$(Ae^{ik_1(0)} + Be^{-ik_1(0)}) = Ce^{ik_2(0)}$$

নখা
$$\frac{\partial \psi_1}{\partial x} = (ik_1)Ae^{ik_1x} - (ik_1)Be^{-ik_1x} \qquad \dots (8.9)$$

ਕ
$$\frac{\partial \psi_{11}}{\partial x} = (ik_2)Ce^{ik_2x}$$

$$\therefore \frac{\partial \psi_1}{\partial x} \bigg]_{x=0} = \frac{\partial \psi_{11}}{\partial x} \bigg]_{x=0} \, \dot{\mathbf{H}}$$

या
$$k_1(A-B) = k_2 c$$

$$(A-B) = \frac{k_2}{k_1}C \qquad(8.10)$$

अब समीकरण (8.9) तथा (8.10) को हल करने पर

$$A = \left(1 + \frac{k_2}{k_1}\right) \frac{C}{2}$$
 ...(8.11)

$$B = \left(1 - \frac{k_2}{k_1}\right) \frac{C}{2}$$
(8.12)

यहीं समीकरण (8.6) तथा (8.7) की परिभाषानुसार, गुणांकों C तथा B के मान गुणांक A के रूप में प्राप्त करने हैं अतः समीकरण (8.11) से

$$C = \left(\frac{2k_1}{k_1 + k_2}\right) A \qquad(8.13)$$

तथा समीकरण (8.12) तथा (8.13) से

$$B = \left(\frac{k_1 - k_2}{k_1}\right) \frac{C}{2} = \frac{(k_1 - k_2)}{k_1} \times \frac{k_1 A}{(k_1 + k_2)}$$
 या $B = \left(\frac{k_1 - k_2}{k_1 + k_2}\right) A$ (8.14)

पुन: प्रथम व द्वितीय क्षेत्र में कणों के वेग V_1 तथा वेग V_2 के लिए

$$V_1 = \sqrt{\frac{2(E-0)$$
্যানিজ}{m}} নেখা $V_2 = \sqrt{\frac{2|(E-0)|$ ্যানিজ}{m}}(8.15)

इसलिए एकविमीय विभव सीढ़ी के लिए परावर्तन गुणांक (समी. 8.6 तथा समी 8.14 से)

$$R = \frac{|B|^2}{|A|^2} = \left| \frac{(k_1 - k_2)}{(k_1 + k_2)} \right|^2 \qquad \dots (8.16)$$

और पारगमन गुणांक (समी. 8.7, 8.13 तथा 8.15 से)

$$T = \frac{|C|^2}{|A|^2} \frac{v_2}{v_1} = \left| \frac{C}{A} \right|^2 \left(\frac{V_2}{V_1} \right)$$

या पारगमन गुणांक

$$T = \left| \frac{2k_1}{k_1 + k_2} \right|^2 \frac{k_2}{k_1} = \frac{4k_1 k_2}{\left(k_1 + k_2\right)^2} \qquad \dots (8.17)$$

विवेचना (Discussion)

उपरोक्त वर्णन में हम यह पाते हैं कि विभव सीढ़ी में $E>V_0$ की स्थिति में x=0 पर तरंग का परावर्तन गुणांक (समी 8.16) शून्य नहीं है और पारगमन गुणांक (समी. 8.17) का मान एक नहीं **(एक से कम)** है अर्थात् कण की ऊर्जा $E>V_0$ होने पर विभव सीढ़ी से **परावर्तन व पारगमन**, दोनों क्रियाएँ होती हैं जिनके मान k_1 तथा k_2 (ऊर्जा E तथा सीढ़ी की ऊँचाई V_0 के सापेक्षिक मानों) पर निर्भर करते हैं। चिरसम्मत यांत्रिकी के अनुसार $E>V_0$ की स्थिति में विभव सीढ़ी में केवल **पारगमन प्रायिकता** (गुणांक) का मान एक और परावर्तन प्रायिकता (गुणांक) का मान शून्य होना अपेक्षित है।

विभव सीढ़ी पर $E>V_0$ वाले कण का तरंग व्यवहार चित्र 8.4 में प्रदर्शित किया गया है।

8.2.2 ऊर्जा E का मान विभव सीढ़ी ऊँचाई V_0 से कम होने पर (When energy value E smaller than height V_0 of potential state) (E<V₀)

यदि एकविमीय सीढ़ी (चित्र 8.5) में आपितत कण की ऊर्जा E का मान विभव सीढ़ी V_0 से कम है तो दोनों क्षेत्रों में श्रोडिन्जर समीकरण क्रमशः होंगे-

तथा
$$\frac{d^2 \psi_I}{dx^2} + \frac{2m(E-0)}{h^2} \psi_I = 0 \qquad \qquad \text{प्रथम क्षेत्र}$$
 तथा
$$\frac{d^2 \psi_{II}}{dx^2} + \frac{2m(E-V_0)}{h^2} \psi_{II} = 0 \qquad \qquad \text{द्वितीय क्षेत्र}$$

$$\frac{A}{\text{प्रापित}} \xrightarrow{\text{प्रथम क्षेत्र}} \frac{B}{\text{प्रावर्तित}} \xrightarrow{\text{Urtufha}} \frac{V_{(x)} = V_0}{\text{ganda at } x > 0}$$
 चित्र 8.5

तब प्रथम क्षेत्र में श्रोडिन्जर समीकरण होगा -

$$\frac{d^2\psi_I}{dx^2} + k_1^2\psi_I = 0; \quad k_1 = \sqrt{\frac{2mE}{h^2}}$$
 ...(8.18)

जिसका सामान्य हल $\psi_1=Ae^{ik_1x}+Be^{-ik_1x}$ होता है जो $E>V_0$ स्थिति जैसा ही है। तथा दिवतीय क्षेत्र में श्रोडिन्जर समीकरण

$$\frac{d^2\psi_{_{II}}}{dx^2} - \frac{2m\left|(V_0 - E\right|}{h^2}\psi_{_{II}} = 0$$
 या
$$\frac{d^2\psi_{_{II}}}{dx^2} + \left(ik_2\right)^2\psi_{_{II}} = 0 \quad \text{होगा}$$

जिसका सामान्य हल

$$\psi_{II} = Ce^{i(ik_2)x} + De^{-i(ik_2x)}$$

या $\psi_{II} = Ce^{-k_2x} + De^{k_2x}$

चूँिक द्वितीय क्षेत्र (x>0) में तरंग फलन **परिमित** प्रकृति का होना चाहिए जबिक $x \to \infty$ पर De^{k_2x} अर्थहीन हो जाता है (क्योंकि इसका मान अनन्त हो जाता है)। अतः द्वितीय क्षेत्र में प्रभावी तरंग फलन

$$\psi_{II} = Ce^{-k_2 x}$$
 जहाँ $k_2 = \sqrt{\frac{2m \left| \left(V_0 - E \right) \right|}{\hbar^2}}$ (8.19)

अब अनुच्छेद 8.2.1 की भाँति सीमा प्रतिबन्धों

X=0 पर
$$\psi_I = \psi_{II}$$
 और $\frac{\partial \psi_I}{\partial x}\Big|_{x=0} = \frac{\partial \psi_{II}}{\partial x}\Big|_{x=0}$

से हल करने पर गुणाकों A, B तथा C के A के रूप में मान निम्नवत् प्राप्त होते हैं-

$$B = \frac{k_1 - ik_2}{k_1 + ik_2} A$$
 तथा $C = \frac{2k_1}{k_1 + ik_2} A$ (8.20)

इस प्रकार स्थिति $E < V_0$ में एकविमीय विभव सीढ़ी के लिए परावर्तन गुणांक होगा-

परावर्तन गुणांक
$$R = \frac{BB^*}{AA^*} = \left(\frac{B}{A}\right) \left(\frac{B}{A}\right)^*$$

$$= \left(\frac{k_1 - ik_2}{k_1 + ik_2}\right) \left(\frac{k_1 + ik_2}{k_1 - ik_2}\right)$$

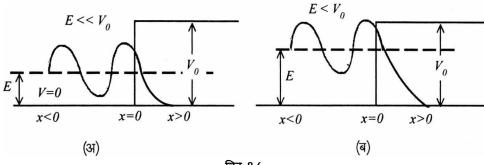
$$= \frac{k_1^2 + k_2^2}{k_1^2 + k_2^2} = 1 \qquad ...(8.22)$$

अर्थात् समस्त आपितत कण परावर्तित हो जायेंगे। यह परिणाम चिरसम्मत यांत्रिकी के समान ही है। साथ ही प्रायिकता संरक्षण से R+T=1

अर्थात् कोई भी कण दवितीय क्षेत्र में पारगमित नहीं होगा।

विवेचना (Discussion):

एकविमीय विभव सीढ़ी पर $E < V_0$ वाले कण के लिए प्रथम क्षेत्र में तरंग फलन आवर्ती प्रकृति का है जबिक द्वितीय क्षेत्र में तरंग फलन चरघातांकीय (exponentially) रूप में अवमन्दित (damped) होता जायेगा और सम्पूर्ण आपितत तरंग x=0 पर स्थित विभव सीढ़ी से परावर्तित हो जायेगा। ऊर्जा $E(< V_0)$ मान वाले कण का तरंग फलन चित्र 8.6 में दर्शाया गया है।



चित्र 8.6

बोध प्रश्न (Self assessment questions) 1. विभव सीढ़ी का क्या अर्थ है?

ए 	क विमीय समकोणिक विभव सीढ़ी की परिभाषा दीजिए।
	नण की ऊर्जा E का मान विभव सीढ़ी की ऊँचाई V_0 से अधिक होने पर रावर्तन गुणांक और पारगमन गुणांक का योग कितना होता है?
	नण की ऊर्जा E का मान विभव सीढ़ी की ऊँचाई $V_{\scriptscriptstyle 0}$ से कम होने पर होते प्रावर्तन गुणांक कितना होता है?

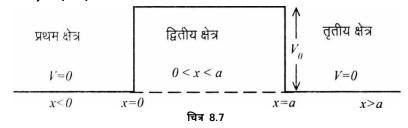
8.3 एक विमीय आयताकार विभव प्राचीर (One Dimensional Potential Barrier)

स्थितिज ऊर्जा (विभव) फलन के रूप में एकविमीय विभव प्राचीर निम्नानुसार परिभाषित किया जाता है-

अर्थात् विभव प्राचीर x=0 और x=a के मध्य स्थित है।

चित्र 8.7 में एक आदर्श एकविमीय विभव प्राचीर दर्शाया गया है जिसकी चौड़ाई a तथा $\ddot{5}$ चाई V_0 है।

चिरसम्मत यांत्रिकी के अनुसार $E < V_0$ ऊर्जा वाला कण V_0 ऊँचाई के विभव प्राचीर को वेधित नहीं कर सकता लेकिन क्वाण्टम यांत्रिकीय विश्लेषण के आधार पर यह पाया गया कि $E < V_0$ ऊर्जा मान का कण भी इस प्राचीर को वेधित कर सकता है। विश्लेषण में यह भी पाया जाता है कि $(V_0 - E)$ तथा प्राचीर मोटाई कम होने पर वेधन क्षमता का मान अधिक होता है। इस प्रकार विभव प्राचीर $E < V_0$ वाले कण द्वारा प्राचीर वेधन की घटना को **सुरंग प्रभाव** (tunnel effect) कहते हैं।



विभव प्राचीर के तीनों क्षेत्रों के लिए श्रोडिन्जर समीकरण होंगे-

$$\frac{d^2\psi_I}{dx^2} + \frac{2mE}{\hbar^2}\psi_I = 0$$
 प्रथम क्षेत्र x<0 में

$$rac{d^2 \psi_{II}}{dx^2} + rac{2m \left(E - V_0
ight)}{\hbar^2} \psi_{II} = 0$$
 द्वितीय क्षेत्र $0 < x < a$ में $rac{d^2 \psi_{III}}{dx^2} + rac{2m E}{\hbar^2} \psi_{III} = 0$ त्तीय क्षेत्र $x > a$ में

इनके सामान्य हल निम्न होंगे-

$$\psi_I = Ae^{ik_Ix} + Be^{-ik_Ix} \qquad ...(8.23)$$

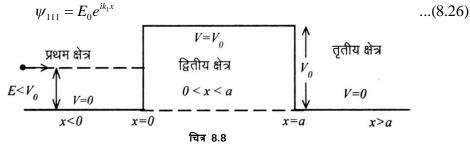
$$\psi_{II} = Ce^{ik'x} + De^{-ik'x} \qquad(8.24)$$

নথা
$$\psi_{111} = E_0 e^{ik_1 x} + F_0 e^{-ik_1 x}$$
 ...(8.25)

यहाँ $k_1 = \frac{\sqrt{2mE}}{\hbar}$ और $k' = \frac{\sqrt{2m(E-V_0)}}{\hbar}$

तथा A,B,C,D,E_0 तथा F_0 स्थिरांक हैं जिनके मान सीमान्त प्रतिबन्धों द्वारा निर्धारित किये जाते हैं ।

समीकरणों (8.23), (8.24) और (8.25) में प्रथम पद क्रमशः प्रथम, द्वितीय तथा तृतीय क्षेत्रों में धनात्मक X- अक्ष की ओर आपितत तरंग और द्वितीय पद ऋणात्मक X- अक्ष की ओर लौटने वाली तरंग अर्थात् असान्तत्य पर परावर्तित तरंग प्रदर्शित करते हैं। परन्तु तृतीय क्षेत्र में असान्तत्य नहीं होने से परावर्तित तरंग इस क्षेत्र में नहीं हो सकती। अतएव गुणांक $F_0=0$ होगा और तृतीय क्षेत्र में समीकरण का हल निम्न प्रकार दिया जा सकता है-



स्थिरांकों का मान ज्ञात करने हेत् सीमान्त प्रतिबन्ध निम्न हैं -

 ψ और $\frac{\partial \psi}{\partial x}$ दोनों सीमाओं पर सतत होना चाहिए, अर्थात्

जब
$$x=0$$
 हो तो $\psi_1=\psi_{11}$ (8.27अ)

$$\frac{\partial \psi_1}{\partial x} = \frac{\partial \psi_{11}}{\partial x} \qquad ...(8.27 \, \mathbf{g})$$

और जब x=a हो तो $\psi_{11}=\psi_{111}$...(8.27स)

$$\frac{\partial \psi_{11}}{\partial x} = \frac{\partial \psi_{111}}{\partial x} \qquad \dots (8.27 \, \mathsf{c})$$

यहाँ यह तथ्य ध्यान रखते हुए कि हमारी समस्या प्राचीर वेधन हेतु (चित्र 8.8) तरंग यान्त्रिकी द्वारा कण की प्रायिकता का मान प्राप्त करना है, अतः कण की ऊर्जा E को विभव V_0 से कम मान सकते हैं । इस प्रकार,

$$k' = \frac{\sqrt{2m(E - V_0)}}{\hbar}$$
 $= \frac{i\sqrt{2m(V_0 - E)}}{\hbar}$
 $= ik_2$ (माना)

अतः समीकरण (8.24) को निम्न प्रकार लिख सकते हैं:

$$\psi_{11} = Ce^{-k_2x} + De^{k_2x} \qquad ...(8.28)$$

समीकरण (8.27) के प्रतिबन्ध समीकरण (8.23) (8.28) और (8.25) में प्रयुक्त करने पर निम्न समीकरणें प्राप्त होंगी। प्रतिबन्ध (8.273) दवारा,

$$A + B = C + D$$
 ...(8.28 3f)

समीकरण (8.23) और (8.28) के अवकलन क्रमशः निम्न प्रकार दिये जायेंगे-

$$\frac{\partial \psi_1}{\partial x} = ik_1 A e^{ik_1 x} - ik_1 B e^{-ik_1 x}$$

$$\frac{\partial \psi_{11}}{\partial x} = -k_2 C e^{-k_2 x} + k_2 D e^{k_2 x}$$

प्रतिबन्ध (8.27ब) द्वारा-

$$ik_1A - ik_1B = -k_2C + k_2D$$

या $(A - B) = \frac{k_2}{ik_1}(-C + D)$...(8.28 ब)

प्रतिबन्ध (8.27स) द्वारा-

$$Ce^{-k_2a} + De^{k_2a} = E_0e^{ik_1a}$$
 ...(8.28 स)

समीकरण (8.26) का अवकलन करने पर

$$\frac{\partial \psi_{111}}{\partial x} = ik_1 E_0 e^{ik_1 x}$$

समीकरण (8.27द) के प्रतिबन्ध को ψ_{11} और ψ_{111} के अवकलनों में प्रयुक्त करने पर-

$$-k_2Ce^{-k_2a}+k_2De^{k_2a}=ik_1E_0e^{ik_1a}$$

या $Ce^{-k_2a}-De^{k_2a}=-rac{ik_1}{k_2}E_0e^{ik_1a}$...(8.28 द)

समीकरण (8.28अ) और (8.28ब) को हल करने पर-

$$A = \frac{1}{2} \left\{ C \left(1 - \frac{k_2}{ik_1} \right) + D \left(1 + \frac{k_2}{ik_1} \right) \right\} \qquad \dots (8.29 \text{ 3f})$$

$$B = \frac{1}{2} \left\{ C \left(1 + \frac{k_2}{ik_1} \right) + D \left(1 - \frac{k_2}{ik_1} \right) \right\} \qquad \dots (8.29 \, \text{a})$$

इसी प्रकार समीकरण (8.28स) और (8.28द) को हल करने पर-

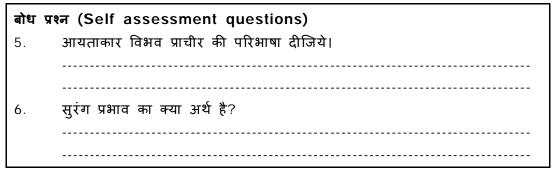
$$C = \frac{1}{2}E_0e(k_2 + ik_1)a\left(1 - \frac{ik_1}{k_2}\right)$$
 ...(8.29 स)

$$D = \frac{1}{2}E_0e(ik_1 - k_2)a\left(1 + \frac{ik_1}{k_2}\right) \qquad ...(8.29\,\text{g})$$

समीकरण (8.29स) और (8.29द) द्वारा प्राप्त C और D के मान समीकरण (8.29अ) और (8.29ब) में स्थापित करने पर-

$$A = \frac{E_0}{4} \frac{e^{ik_1 a}}{ik_1 k_2} \left\{ \left(k_1 + ik_2\right)^2 e^{k_2 a} + \left(k_2 + ik_1\right)^2 e^{-k_2 a} \right\} \qquad \dots (8.30 \text{ 3f})$$

$$B = \frac{E_0}{4} \frac{e^{ik_1 a}}{ik_1 k_2} \left\{ \left(k_1^2 + k_1^2 \right)^2 \left(e^{k_2 a} - e^{-k_2 a} \right) \right\} \qquad \dots (8.30 \, \overline{\mathsf{q}})$$



8.4 परावर्तन एवं पारगमन गुणांकों की गणना (Calculation of Reflection and Transmission Cofficients)

अब, समीकरण (8.30अ) द्वारा पारगमन गुणांक (transmission coefficient) निम्नानुसार दिया जा सकता है (क्योंकि प्रथम व तृतीय क्षेत्र में संचरण वेग समान है)-

$$T = \frac{E_0 E_0}{AA^*}$$
जहाँ $\frac{E_0}{A} = \frac{4ik_1k_2e^{-ik_1a}}{(-k_2^2 + k_1^2 + 2ik_1k_2)e^{k_2a} + (k_2^2 - k_1^2 + 2ik_1k_2)e^{-k_2a}}$

$$= \frac{4ik_1k_2e^{-ik_1a}}{(k_1^2 - k_2^2)(e^{k_2a} - e^{-k_2a}) + 2ik_1k_2(e^{k_2a} + e^{-k_2a})}$$

$$= \frac{2ik_1k_2e^{-ik_1a}}{(k_1^2 - k_2^2)\left(\frac{e^{k_2a} - e^{-k_2a}}{2}\right) + 2ik_1k_2\left(\frac{e^{k_2a} + e^{-k_2a}}{2}\right)}$$

$$\frac{E_0}{A} = \frac{2ik_1k_2e^{-ik_1a}}{(k_1^2 - k_2^2)sinh(k_2a) + 2ik_1k_2cosh(k_2a)} \qquad \dots(8.31)$$

इसी प्रकार E_0/A का सम्मिश्र संयुग्मी (complex conjugate) निम्न होगा-

$$\frac{E_0^*}{A^*} = \frac{-2ik_1k_2e^{ik_1a}}{(k_1^2 - k_2^2)\sinh(k_2a) - 2ik_1k_2\cosh(k_2a)} \qquad \dots (8.32)$$

अतः पारगमन गुणांक (transmission coefficient) T का मान होगा-

$$T = \frac{E_0}{A} \cdot \frac{E_0^*}{A^*} = \frac{4k_1^2 k_2^2}{(k_1^2 - k_2^2)^2 \sinh^2(k_2 a) + 4k_1^2 k_2^2 \cosh^2(k_2 a)}$$

$$= \frac{1}{1 + \left\{ \frac{(k_1^2 - k_2^2)^2}{4k_1^2 k_2^2} + 1 \right\} \sinh^2(k_2 a)}$$

$$= \frac{1}{1 + \left\{ (k_1^2 - k_2^2)^2 / 4k_1^2 k_2^2 \right\} \sinh^2(k_2 a)}$$

 k_1 और k_2 के मान रखने पर,

$$T = \frac{1}{1 + \frac{V_0^2}{4E(V_0 - E)} \sinh^2\left(\frac{\sqrt{2m(V_0 - E)}}{\hbar}.a\right)} \dots (8.33)$$

समीकरण (8.33) से यह निष्कर्ष निकलता है कि विभव प्राचीर में पारगमन की प्रायिकता परिमित (अशून्य) है, यद्यपि वेधन प्रायिकता प्राचीर मोटाई a के साथ घटती जाती है। क्योंकि अतिपरवलियक ज्या (hyperbolic sine) उसके कोणांक (argument) के साथ शीघ्रता से बढ़ता है अर्थात् जब $E < V_0$ हो तब भी क्षेत्र x > a में कणों के पहुँचने की कुछ न कुछ प्रायिकता बनी रहती है। जब कि चिरसम्मत यान्त्रिकी के अनुसार इस स्थिति (x > a, क्षेत्र) में कण पहुँच ही नहीं सकता है। क्वाण्टम यांत्रिकी की इस परिघटना को सुरंगन प्रभाव कहते हैं।

प्राचीर से परावर्तन गुणांक R (coefficient of reflection) ज्ञात करने के लिए समीकरण (8.30अ) और (8.30ब) को प्रयुक्त कर सकते हैं। अतः

$$R = \frac{BB^*}{AA^*}$$

$$\frac{B}{A} = \frac{\left(k_1^2 + k_2^2\right) \left(e^{k_2 a} - e^{-k_2 a}\right)}{\left(k_1^2 - k_2^2\right) \left(e^{k_2 a} - e^{-k_2 a}\right) + 2ik_1 k_2 \left(e^{k_2 a} + e^{-k_2 a}\right)}$$

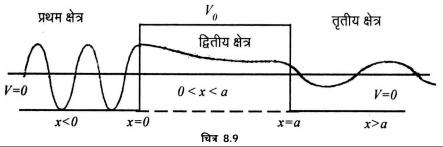
$$= \frac{2\left(k_1^2 + k_2^2\right) \sinh\left(k_2 a\right)}{2\left(k_1^2 - k_2^2\right) \sinh\left(k_2 a\right) + 4ik_1 k_2 \cosh\left(k_2 a\right)}$$

$$= \frac{k_1^2 + k_2^2}{\left(k_1^2 - k_2^2\right) + 2ik_1 k_2 \coth\left(k_2 a\right)}$$

$$\frac{B^*}{A^*} = \frac{\left(k_1^2 + k_2^2\right)}{\left(k_1^2 - k_2^2\right) - 2ik_1k_2coth\left(k_2a\right)}$$

$$\therefore \qquad R = \frac{B}{A} \cdot \frac{B^*}{A^*} = \frac{\left(k_1^2 + k_2^2\right)^2}{\left(k_1^2 - k_2^2\right)^2 + 4ik_1^2k_2^2coth^2\left(k_2a\right)} \qquad ...(8.34)$$

प्राचीर वेधन का गुण द्रव्य के तरंगीय प्रकृति के कारण ही प्रदर्शित होता है और इसमें (प्राचीर में) आयाम चरघातांकीय न्यून होता है। विभव प्राचीर वेधन का यह गुण जिसमें कण प्राचीर में वेधन करके पारगमित होते हैं, सुरंग प्रभाव (tunnel effect) कहलाता है। चित्र 8.9 में संगत तरंग फलन दर्शाये गये हैं।



8.5 α – क्षय की गुणात्मक विवेचना (Qualitative discussion of α – Decay)

नाभिक से α कण उत्सर्जित होने की घटना में यह माना जा सकता है कि α कण, नाभिक से उत्सर्जित होने से कुछ क्षण पहले नाभिक के अन्दर अस्तित्व में होता है। नाभिक के अन्दर α कण पर प्रबल नाभिकीय आकर्षण बल लगता है, अतः इन नाभिकीय बलों के कारण स्थितिज ऊर्जा वर्गाकार विभव कूप की भाँति मानी जाती है जिसकी गहराई V_0 है। ध्यान रहे कि नाभिक के बाहर नाभिकीय बल नगण्य है और α कण तथा बचे नाभिक के मध्य कूलाम्ब प्रतिकर्षण बल लगता है। उस स्थितिज ऊर्जा वक्र को चित्र 8.10 में दर्शाया गया है। α कण की कुल ऊर्जा E है। यह चित्र एक प्रकार से विभव प्राचीर है।

सुरंगन प्रभाव में पारगमन गुणांक (समी. 8.33 से)

$$T=rac{1}{1+rac{V_0^2}{4E\left(V_0-E
ight)}{\left[rac{e^{k_2a}}{2}
ight]^2}}$$
 जब $k_2a>>1$ है
$$T=rac{16E\left(V_0-E
ight)}{V_0^2}e^{-2k_2a} \qquad ...(8.35)$$

$$ka=\sqrt{rac{2m}{\hbar^2}(V-E)} \quad a$$

चित्र 8.10 में क्योंकि विभव प्राचीर (रोधिका) आयताकार नहीं होकर सतत रूप से कम हो रही है, अतः इसके लिये पारगमन की प्रायिकता

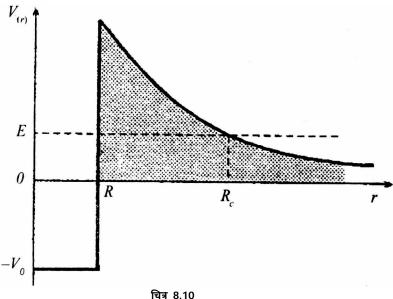
$$T \alpha e^{-2ka}$$

ली जाती है, जहाँ

$$ka = \sqrt{\frac{2m}{\hbar^2}} \int_{R}^{R_c} \sqrt{V - E} \ dr$$

है। विभव प्राचीर की अधिक चौडाई होने के कारण T का मान अल्प होता है।

T के मान का निर्धारण ऐक्सपोनेन्टी फलन से होता है। यह मान विभव वक्र के वास्तविक आकार पर निर्भर करता है। इस कारण α —क्षय में औसत आयुकाल की परास अत्यधिक प्राप्त होती है। $[r\sim3\times10^{-7}\,s,Po^{2/2}]$ के लिये, तथा $r\sim4.5\times10^9\,years,U^{238}$ के लिये।] इसे समझने के लिये नाभिक के पृष्ठ को एक विभव दीवार की भांति मान लें तब α —कण नाभिक की विभव दीवार से बारम्बार टक्कर करता रहता है। नाभिकीय विभव दीवार से एक टक्कर में α —कण के बाहर निकलने की प्रायिकता, पारगमन गुणांक T के बराबर होती है। इस प्रकार नाभिक से बाहर निकलने के लिये। α —कण को 1/T की कोटि की टक्करें करनी होगी। Po-204 के लिये α —कण की ऊर्जा E=5.4 MeV के संगत वेग $v=1.6\times10^7\,H$ /से प्राप्त होता है। अतः $R\sim6.5\,fm$ के लिये नाभिक को पार कर क्रमागत टक्कर करने में लगा समय $\Delta t\sim8\times10^{-22}\,$ सेकण्ड प्राप्त होता है। इनके अनुसार लगभग $10^{21}\,$ टक्करें प्रति सेकण्ड होनी चाहिये। अतः α —क्षय की प्रायिकता का मान $P=10^{21}T$ (प्रति सेकण्ड) प्राप्त होता है। इसके अनुसार T का मान अल्प होने पर भी P का मान अधिक प्राप्त हो सकता है।



चित्र 8.10 के अनुसार α — कण की ऊर्जा यदि अधिक होगी तब उसके लिये विभव रोधिका की चौड़ाई कम होगी और पारगमन की प्रायिकता बढ़ जायेगी (अर्थात् औसत आयु काल का मान कम आयेगा)। प्रायोगिक तथ्य α — क्षय के इन गुणों की पुष्टि करते हैं। इस प्रकार

 α – क्षय को सुरंग प्रभाव (tunnel effect) के द्वारा समझा जा सकता है। (α – क्षय की सुरंग प्रभाव का उपयोग कर पूर्ण व्याख्या सर्वप्रथम जार्ज गेमो (G. Gamow) ने की थी।)

8.6 सारांश (Summary)

- िकसी कण के लिए; उसकी स्थिति के फलन के रूप में; विभव ऊर्जा के मान में तुलनात्मक वृद्धि को विभव सीढ़ी कहा जाता है। व्यावहारिक रूप में कण की किसी विशेष स्थिति पर विभव ऊर्जा के मान में तुलनात्मक वृद्धि यकायक नहीं होती है।
- गणितीय रूप में एकविमीय विभव सीढ़ी

$$V_{\scriptscriptstyle (x)} = 0$$
 जबिक $x < 0$
$$V_{\scriptscriptstyle (x)} = V_{\scriptscriptstyle 0} \; \text{जबिक} \; x > 0$$

- एक विमीय विभव सीढ़ी के लिए
 - (i) जबिक $E > V_0$

परावर्तन गुणांक
$$R = \left| \frac{(k_1 - k_2)}{(k_1 + k_2)} \right|^2$$
 पारगमन गुणांक $T = \frac{4k_1k_2}{(k_1 + k_2)^2}$

- एक विमीय आयताकार विभव प्राचीर $V_{\scriptscriptstyle (x)}=0$ जबिक x<0 और x>a है। $V_{\scriptscriptstyle (x)}=V_{\scriptscriptstyle 0}$ जबिक 0< x< a है।
- एक विमीय आयताकार विभव प्राचीर पर कण की ऊर्जा E का मान प्राचीर ऊँचाई V_o से कम होने पर पारगमन प्रायिकता T का मान विभव प्राचीर की चौड़ाई के साथ चार घांताकी रूप में घटता जाता है।
- भारी नाभिकों की α -क्षय की घटना विभव प्राचीर से सुरंग-प्रभाव के आधार पर समझी जाती है।

8.7 शब्दावली (Glossary)

परावर्तन गुणांक	Reflection coefficient
पारगमन गुणांक	Transmission coefficient
विभव प्राचीर	Potential barrier
विभव सीढ़ी	Potential step
सुरंग-प्रभाव	Tunnel effect

8.8 संदर्भ ग्रंथ (Reference Books)

एस. एस. रावत एवं	प्रारम्भिक क्वाण्टम	कॉलेज बुक हाउस,
सरदार सिंह	भौतिकी एवं स्पेक्ट्रोस्कोपी	जयपुर
के. के. सरकार एवं	तृतीय वर्ष भौतिक विज्ञान	साहित्य भवन,
आर. एन. शर्मा		आगरा
H. Clark	A First Course in	ELBS & VNR (UK)
	Quantum Mechanics	Co. Ltd.
P.M Mathews and	A text book of	TMH Pub. Co., New
K. Venkatesan	Quantum Mechanics	Delhi
Satyprakash	Advanced Quantum	Kedar Nath Ram
	Mechanics	Nath, Meerut
S.L. Kakani	Elementary Quantum	College Book Centre,
C.Hemrajani and	Mechanics and	Jaipur
T.C Bansal	Spectroscopy	

8.9 बोध प्रश्नों के उत्तर (Answers to self Assessment Questions)

- 1. किसी कण के लिए उसकी विभव ऊर्जा के मान में तुलनात्मक वृद्धि होना विभव सीढ़ी कहलाता है।
- 2. एक विमीय समकोणिक विभव सीढ़ी की परिभाषा

$$V_{(x)} = 0$$
 जबिक $x < 0$

$$V_{(x)} = V_0$$
 जबिक $x > 0$

- 3. कण की ऊर्जा $E > V_0$ पर परावर्तन एवं पारगमन गुणांकों का योग एक होता है।
- 4. कण की ऊर्जा $E < V_o$ पर परावर्तन गुणांक एक होता है।
- 5. आयताकार विभव प्राचीर के लिए

$$V_{(x)} = 0$$
 जबिक $x < 0$ तथा $x > a$

$$V_{(x)} = V_0$$
 जबिक $0 < x < a$

6. क्वान्टम यांत्रिकी के अनुसार $E < V_0$ वाले कण के लिए V_0 ऊँचाई को रोधिका की पारगमन प्रायिकता का परिमित मान पाया जाना सुरंग प्रभाव कहलाता है।

8.10 अभ्यासार्थ प्रश्न (Exercises)

लघुतरात्मक प्रश्न (Short answer type questions)

- 1. विभव सीढ़ी की परिभाषा दीजिये।
- 2. एक विमीय आयताकार विभव प्राचीर की गणितीय परिभाषा दीजिए।

- 3. एक विमीय आयताकार विभव प्राचीर के लिए सीमा प्रतिबन्ध लिखिये।
- 4. सुरंग प्रभाव क्या है?

निबंधात्मक प्रश्न (Essay type questions)

- 5. एक विमीय विभव सीढ़ी पर $E < V_0$ वाले कण के क्वाण्टम यांत्रिकीय व्यवहार को समझाइए। इसके परावर्तन गुणांक का मान ज्ञात कीजिये।
- 6. विभव प्राचीर पर ऊर्जा मान $E < V_{\theta}$ वाले कण के लिए भेदन प्रायिकता का व्यंजक प्राप्त कीजिए। परिणाम की विवेचना कीजिये।
- 7. सुरंग प्रभाव का क्या अर्थ है? नाभिक से होने वाली α –क्षय को गुणात्मक रूप से समझाइए।

आंकिक प्रश्न (Numerical questions)

8. एक विभव सीढ़ी की ऊँचाई 0.03~eV है जिस पर 0.025~eV ऊर्जा का इलेक्ट्रॉन पुन्ज आपितत कराया गया है। इसका परिवर्तन व पारगमन गुणांक ज्ञात कीजिये। (संकेत: यहाँ $E=0.025eV,\ V_0=0.03eV$ तथा $E< V_0$)

(उत्तर: परावर्तन गुणांक R=1, पारगमन गुणांक T=0)

9. उपरोक्त प्रश्न में आपितत इलेक्ट्रॉन का रेखीय संवेग ज्ञात कीजिए। $(\vec{\textbf{संकेत:}} \ \ \vec{\textbf{र}} \ \vec{\textbf{ख}} \ \vec{\textbf{v}} = \sqrt{2mE} = \sqrt{2\times9.1\times10^{-31}\times0.025\times1.6\times10^{-19}} \ \ \vec{\textbf{(h}} \ \vec{\textbf{m}} \ \vec{\textbf{J}} .) \ \ \vec{\textbf{(h}} \ \vec{\textbf{J}} \ \vec{\textbf{J}} = \sqrt{2\times9.1\times10^{-31}\times0.025\times1.6\times10^{-19}} \ \ \vec{\textbf{J}} \ \vec{\textbf{J}} .)$

इकाई-9

वर्ग विभव कूप

(Square Well Potential)

इकाई की रूपरेखा

- 9.0 उद्देश्य
- 9.1 प्रस्तावना
- 9.2 वर्ग विभव कूप समस्या
- 9.3 परावर्तन और पारगमन गुणांकों की गणना
- 9.4 अन्नादी प्रकीर्णन
- 9.5 सारांश
- 9.6 शब्दावली
- 9.7 संदर्भ ग्रन्थ
- 9.8 बोध प्रश्नों के उत्तर
- 9.9 अभ्यासार्थ प्रश्न

9.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

- आकर्षी वर्ग विभव के बारे में समझ सकेंगे;
- वर्ग विभव कूप समस्या की विभिन्न अवस्थाओं को जान सकेंगे;
- विभव कूप में परावर्तन व पारगमन संकल्पना को जान जायेंगे;
- अनुनादी प्रकीर्णन की संकल्पना को समझ सकेंगे;
- अन्नादी प्रकीर्णन के प्रायोगिक एवं व्यावहारिक पक्ष को जान सकेंगे।

9.1 प्रस्तावना (Introduction)

इकाई 8 में आप विभव सीढ़ी व विभव रोधिका और इनकी प्रतिकर्षी प्रकृति के बारे में समझ चुके हैं। विभव सीढ़ी और विभव रोधिका की संकल्पना के अनुसार किसी सुपरिभाषित परिमित क्षेत्र-सीमा में विभव ऊर्जा में तुलनात्मक रूप से धनात्मक परिवर्तन (वृद्धि) होती है जिसके कारण कण पर प्रतिकर्षी बल लगने लगता है। इसके विपरीत यदि सुपरिभाषित परिमित क्षेत्र-सीमा में विभव ऊर्जा में तुलनात्मक रूप में ऋणात्मक परिवर्तन (कमी) होती है तो उस क्षेत्र में अभीष्ट कण आकर्षण बल अनुभव करने लगता है फलतः ऐसे क्षेत्र में कण की गतिज ऊर्जा का मानः कुल ऊर्जा से भी अधिक हो जाता है। ऐसे विशेष क्षेत्र को आकर्षी विभव कूप (attractive potential well) कहते हैं।

इस इकाई के अनुच्छेद 9.2 में वर्ग विभव कूप के बारे में अध्ययन करेंगे और अनुच्छेद 9.3 में परावर्तन व पारगमन गुणांकों की गणना करेंगे। और अन्त में अनुच्छेद 9.4 में अनुनादी प्रकीर्णन के बारे में पढ़ेंगे।

9.2 वर्ग विभव कूप समस्या (The Square Well Potential Problem)

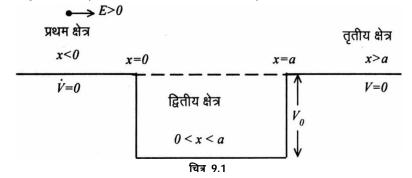
एक एकविमीय वर्ग विभव कूप (चित्र 9.1) को निम्नानुसार परिभाषित किया जाता है-

$$V_{(x)}=0$$
, जब $x<0$ प्रथम क्षेत्र

$$V_{(x)} = -V_{0}$$
, जब $0 < x < a$ द्वितीय क्षेत्र

$$V_{(x)}=0$$
, जब $x>0$ तृतीय क्षेत्र

यहाँ V_o विभव कूप की गहराई तथा a विभव कूप की चौड़ाई का माप है।



जब m द्रव्यमान और E ऊर्जा वाला कोई कण विभव कूप के प्रथम क्षेत्र से गित करता हु आ वर्ग विभव कूप के क्षेत्र (0 < x < a) से गुजरता है तो इस क्षेत्र में कण की गितज ऊर्जा का मान $\left\{E-(-V_0)\right\}=(E+V_0)$; उसकी कुल ऊर्जा E से अधिक हो जाता है; इस कारण इस क्षेत्र को आकर्षी विभव कूप (attractive potential well) कहते हैं। इस विभव कूप में बायीं ओर से आने वाला कण सीमा x=0 तथा x=a पर विभव के असांतत्य से प्रभावित होता है।

इस आकर्षी एकविमीय विभव कूप क्षेत्र में कण के व्यवहार का अध्ययन करने के लिए एकविमीय काल-अनाश्रित श्रोडिन्जर समीकरण

$$\left[\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + V_{(x)} \right] \psi = E \psi \qquad ... (9.1)$$

का उपयोग किया जाता है। इस प्रकार एक विमीय वर्ग विभव कूप के प्रथम, द्वितीय तथा तृतीय क्षेत्र में m द्रव्यमान तथा E>0 ऊर्जा वाले कण के श्रोडिन्जर समीकरण होंगे-

$$\frac{d^2 \psi_I}{dx^2} + \frac{2m(E - 0)}{\hbar^2} \psi_I = 0 \quad \text{प्रथम क्षेत्र} \quad \left(x < 0; V_{(x)} = 0 \right) \quad \tilde{\mathbf{H}} \qquad \qquad \dots (9.2)$$

$$\frac{d^2 \psi_{II}}{dx^2} + \frac{2m(E + V_0)}{\hbar^2} \psi_{II} = 0 \quad \text{द्वितीय क्षेत्र} \quad \left(0 < x < a; V_{(x)} = -V_0\right) \quad \dot{\mathbf{H}} \qquad \dots \tag{9.3}$$

$$\frac{d^2 \psi_{III}}{dx^2} + \frac{2m(E-0)}{\hbar^2} \psi_{III} = 0 \quad \text{तृतीय क्षेत्र} \quad \left(x > a; V_{(x)} = 0 \right) \dot{\mathcal{H}} \qquad \dots \tag{9.4}$$

उपरोक्त समीकरणों में $k_1=\sqrt{\frac{2mE}{\hbar^2}}$ तथा $k_2=\sqrt{\frac{2m(E+V_0)}{\hbar^2}}$ रख कर हल करने

पर, इनके व्यापक हल निम्न प्राप्त होते हैं-

$$\psi_{I(x)} = Ae^{ik_Jx} + Be^{-ik_Jx}; \quad (x < 0)$$
 वाले क्षेत्र में) (9.5)

$$\psi_{II(x)} = Ce^{ik_2x} + De^{-ik_2x}; \quad (0 < x < a)$$
 क्षेत्र में) (9.6)

इन व्यापक हल के समीकरणों में प्रथम पद दाहिनी ओर संचिरत होने वाले आपितत तरंग फलन को तथा द्वितीय पद **विभव सांतत्य** से परावर्तित तरंग फलन को प्रदर्शित करता है। चूँिक तृतीय क्षेत्र (x>a) में कोई **विभव परिवर्तन** नहीं है, अतः परावर्तक बल शून्य होने के कारण परावर्तित तरंग फलन $F_0e^{-ik_Ix}$ औचित्यहीन हो जाता है। फलतः समीकरण (9.7) का स्वरूप निम्नानुसार होगा-

$$\psi_{III(x)} = E_0 e^{ik_I x}$$
 ... (9.8)

इस प्रकार एकविमीय आकर्षी विभव कूप में

A आकर्षी विभव कूप की सीमा x=0 पर आपितत तरंग फलन का आयाम गुणांक;

B आकर्षी विभव कूप की सीमा x=0 से परावर्तित तरंग फलन का आयाम गुणांक;

 E_0 आकर्षी विभव कूप की सीमा x=a से पारगमित तरंग फलन का आयाम गुणांक है जिनके मान निर्धारित किये जा सकते हैं।

बोध प्र	श्न (Self assessment questions)
1.	वर्ग विभव कूप में कण की गतिज ऊर्जा का मान ऋणात्मक नहीं होता है।
	क्यों?
2.	आकर्षी विभव कूप का क्या अर्थ है?

9.3 परावर्तन और पारगमन गुणांकों की गणना (Calculation of Reflection Coefficient and Transmission Coefficient)

एकविमीय आकर्षी विभव कूप $(V_{(x)}=0 \text{ for } x<0; V_{(x)}=-V_0 \text{ for } 0< x< a$ तथा $V_{(x)}=0 \text{ for } x>0$) में E>0 ऊर्जा वाले कण के तीनों क्षेत्रों में श्रोडिन्जर समीकरण एवं संगत तरंग फलन निम्न हैं-

$$\frac{d^2\psi_I}{dx^2} + \frac{2mE}{\hbar^2}\psi_I = 0;$$
 ਯहाँ $\psi_{I(x)} = Ae^{ik_Ix} + Be^{-ik_Ix}$ (9.9)

$$\frac{d^2\psi_{II}}{dx^2} + \frac{2m(E+V_0)}{\hbar^2}\psi_{II} = 0;$$
 जहाँ $\psi_{II(x)} = Ce^{ik_2x} + De^{-ik_2x}$ (9.10)

तथा
$$\frac{d^2 \psi_{III}}{dx^2} + \frac{2mE}{\hbar^2} \psi_{III} = 0; \quad \text{जहाँ} \quad \psi_{III(x)} = E_0 e^{ik_I x} \qquad \qquad \dots \quad (9.11)$$

जहाँ
$$k_1=\sqrt{\frac{2mE}{\hbar^2}}$$
 , $k_2=\sqrt{\frac{2m\left(E+V_0\right)}{\hbar^2}}$

इस एकविमीय आकर्षी विभव कूप के लिए सीमा प्रतिबन्ध

$$x=0$$
 पर $\psi_1 = \psi_{11}$ तथा $\frac{d\psi_1}{dx} = \frac{d\psi_{11}}{dx}$

समीकरण (9.9) तथा 9.10) में लगाने पर

$$A+B=C+D$$
 ਰथਾ $k_1(A-B)=k_2(C-D)$ (9.12)

इन्हें हल करने पर

$$A = \left(1 + \frac{k_2}{k_1}\right) \frac{C}{2} + \left(1 - \frac{k_2}{k_1}\right) \frac{D}{2} \qquad \dots (9.13)$$

तथा
$$B = \left(1 - \frac{k_2}{k_1}\right) \frac{C}{2} + \left(1 + \frac{k_2}{k_1}\right) \frac{D}{2}$$
 (9.14)

पुन: x = a पर सीमा प्रतिबन्ध

$$\psi_{11} = \psi_{111}$$
 ਰथा $\frac{d\psi_{11}}{dx} = \frac{d\psi_{111}}{dx}$

का उपयोग करने पर

$$Ce^{ik_2a} + De^{-ik_2a} = E_0e^{ik_1a}$$
 (9.15)

$$k_2 \left(C e^{ik_2 a} - D e^{-ik_2 a} \right) = E_0 k_1 e^{ik_1 a}$$
 (9.16)

इन्हें हल करने पर

तथा

अतः

$$Ce^{ik_{2}a} = \frac{E_{0}}{2}e^{ik_{1}a}\left(1 + \frac{k_{1}}{k_{2}}\right)$$

$$C = \frac{E_{0}}{2}e^{i(k_{1}-k_{2})a}\left(1 + \frac{k_{1}}{k_{2}}\right) \qquad (9.17)$$

तथा
$$D = \frac{E_0}{2} \left(1 - \frac{k_1}{k_2} \right) e^{i(k_1 + k_2)a} \qquad \dots \tag{9.18}$$

गुणांक C तथा D के इन मानों को समी. (9.13) में प्रतिस्थापित कर हल करने पर

$$A = \left(1 + \frac{k_2}{k_1}\right) \frac{E_0}{4} \left(1 + \frac{k_1}{k_2}\right) e^{i(k_1 - k_2)a} + \left(1 - \frac{k_2}{k_1}\right) \frac{E_0}{4} \left(1 - \frac{k_1}{k_2}\right) e^{i(k_1 + k_2)a}$$

या
$$A = \frac{E_0 e^{ik_1 a}}{4} \left[\left(1 + \frac{k_2}{k_1} \right) \left(1 + \frac{k_1}{k_2} \right) e^{-ik_2 a} + \left(1 - \frac{k_2}{k_1} \right) \left(1 - \frac{k_1}{k_2} \right) e^{ik_2 a} \right]$$

$$= \frac{E_0 e^{ik_1 a}}{4k_1 k_2} \left\{ \left(k_1^2 + k_2^2 + 2k_1 k_2 \right) e^{-ik_2 a} + \left(-k_1^2 - k_2^2 + 2k_1 k_2 \right) e^{ik_2 a} \right\}$$

$$= \frac{E_0 e^{ik_1 a}}{4k_1 k_2} \left\{ 2k_1 k_2 \left(e^{ik_2 a} + e^{-ik_2 a} \right) - \left(k_1^2 + k_2^2 \right) \left(e^{ik_2 a} - e^{-ik_2 a} \right) \right\}$$

$$= \frac{E_0 e^{ik_1 a}}{4k_1 k_2} \left\{ 4k_1 k_2 cosk_2 a - 2i \left(k_1^2 + k_2^2 \right) sink_2 a \right\}$$

$$\frac{E_0}{A} = \frac{4k_1 k_2 e^{-ik_2 a}}{4k_1 k_2 cosk_2 a - 2i \left(k_1^2 + k_2^2 \right) sink_2 a} \qquad \dots (9.19)$$

इस प्रकार एकविमीय आकर्षी विभव कूप के लिए पारगमन गुणांक

$$T = \frac{\left|E_{0}\right|^{2}}{\left|A\right|^{2}} \times \frac{?????}{?????} = \left|\frac{E_{0}}{A}\right|^{2} \frac{\binom{k_{1}}{m}}{\binom{k_{1}}{m}}$$

$$= \left|\frac{E_{0}}{A}\right|^{2} = \left(\frac{E_{0}}{A}\right) \left(\frac{E_{0}}{A}\right)^{*} \qquad (9.20)$$

$$= \left(\frac{2k_{1}k_{2}e^{-ik_{1}a}}{2k_{1}k_{2}cosk_{2}a - i\left(k_{1}^{2} + k_{2}^{2}\right)sink_{2}a}\right) \times \left(\frac{2k_{1}k_{2}e^{ik_{1}a}}{2k_{1}k_{2}cosk_{2}a + i\left(k_{1}^{2} + k_{2}^{2}\right)sink_{2}a}\right)$$

$$= \frac{4k_{1}^{2}k_{2}^{2}}{4k_{1}^{2}k_{2}^{2}cos^{2}k_{2}a + \left(k_{1}^{2} + k_{2}^{2}\right)^{2}sin^{2}k_{2}a}$$

$$= \frac{1}{1 + \frac{\left(k_{1}^{2} - k_{2}^{2}\right)^{2}}{4k_{1}^{2}k_{2}^{2}}sin^{2}k_{2}a}$$

या पारगमन गुणांक

$$T = \left[1 + \frac{\left(k_1^2 - k_2^2\right)^2}{4k_1^2 k_2^2} \sin^2 k_2 a \right]^{-1}$$
 (9.20)

स्पष्ट है कि पारगमन गुणांक का मान एक से कम है जिसका अर्थ है यहाँ अंशतः परावर्तन क्रिया भी होगी। यह परिणाम द्रव्य की तरंग प्रकृति के कारण प्राप्त होता है। समी. (9.20) में $k_{_{\rm J}}^{^2}$ तथा $k_{_{\rm Z}}^{^2}$ के मान स्थापित करने पर पारगमन गुणांक

$$T = \left[1 + \frac{V_0^2 \sin^2 k_2 a}{4E(E + V_0)}\right]^{-1}$$
 (9.21)

इसी प्रकार एकविमीय आकर्षी विभव कूप में परावर्तन गुणांक,

$$R = \frac{|B|}{|A|} \times = \left| \frac{B}{A} \right|^2 \qquad \dots (9.22)$$

समीकरण (9.17), (9.18) के मान समी. (9.13) तथा (9.14) में मान प्रतिस्थापित कर हल करने पर

$$\left(\frac{B}{A}\right) = \frac{-\left(\frac{k_1}{k_2} - \frac{k_2}{k_1}\right) 2 i sink_2 a}{-\left(\frac{k_1}{k_2} + \frac{k_2}{k_1}\right) 2 i sink_2 a + 4 cosk_2 a}$$

$$= \frac{-i\left(\frac{k_1}{k_2} - \frac{k_2}{k_1}\right) sink_2 a}{-i\left(\frac{k_1}{k_2} + \frac{k_2}{k_1}\right) sink_2 a + 2 cosk_2 a}$$

 \therefore परावर्तन गुणांक, $R = \left(\frac{B}{A}\right) \left(\frac{B}{A}\right)^2$

$$R = \frac{-i\left(\frac{k_{1}}{k_{2}} - \frac{k_{2}}{k_{1}}\right) sink_{2}a}{-i\left(\frac{k_{1}}{k_{2}} + \frac{k_{2}}{k_{1}}\right) sink_{2}a + 2cosk_{2}a} \times \frac{i\left(\frac{k_{1}}{k_{2}} - \frac{k_{2}}{k_{1}}\right) sink_{2}a}{i\left(\frac{k_{1}}{k_{2}} + \frac{k_{2}}{k_{1}}\right) sink_{2}a + 2cosk_{2}a}$$

$$= \frac{\left(\frac{k_{1}}{k_{2}} - \frac{k_{2}}{k_{1}}\right)^{2} sin^{2}k_{2}a}{\left(\frac{k_{1}}{k_{2}} + \frac{k_{2}}{k_{1}}\right)^{2} sin^{2}k_{2}a + 4cos^{2}k_{2}a}$$

$$= \frac{\left(k_{1}^{2} - k_{2}^{2}\right)^{2} sin^{2}k_{2}a}{\left(k_{1}^{2} + k_{2}^{2}\right)^{2} sin^{2}k_{2}a + 4k_{1}^{2}k_{2}^{2}cos^{2}k_{2}a}$$

$$= \frac{\left(k_{1}^{2} - k_{2}^{2}\right)^{2} sin^{2}k_{2}a}{4k_{1}^{2}k_{2}^{2} + \left(k_{1}^{2} - k_{2}^{2}\right)^{2} sin^{2}k_{2}a} = \frac{1}{1 + \frac{4k_{1}^{2}k_{2}^{2}}{\left(k_{1}^{2} - k_{2}^{2}\right)^{2}} sin^{2}k_{2}a}$$

यहाँ $k_{\scriptscriptstyle I}^{\;2}$ तथा $k_{\scriptscriptstyle 2}^{\;2}$ के मान रखने पर

परावर्तन गुणांक
$$R = \left[I + \frac{4E(V_0 + E)}{V_0^2 \sin^2 k_2 a} \right]^{-1}$$
(9.23)

इस प्रकार एकविमीय आकर्षी विभव कूप के लिए (समी. 9.21 तथा 9.23 से)

$$R + T = 1$$
 (9.24)

जो प्रायिकता संरक्षण को प्रदर्शित करता है।

9.4 अनुनादी प्रकीर्णन (Resonant Scattering)

एकविमीय आकर्षी विभव कूप के पारगमन गुणांक (समी. 9.21) तथा परावर्तन गुणांक (समी. 9.23) के व्यंजक में

$$k_2 a = (2n+1)\pi/2$$
 (9.25)

होने पर $sink_2a=\pm 1$ होगा तब परावर्तन गुणांक **अधिकतम** तथा पारगमन गुणांक न्यूनतम होगा। अर्थात्

$$R_{max} = \left[I + \frac{4E(E + V_0)}{V_0^2} \right]^{-1}$$

$$T_{min} = \left[I + \frac{V_0^2}{4E(E + V_0)} \right]^{-1} \qquad \dots (9.26)$$

तथा

इसी प्रकार जब $k_2 a = n\pi$ है तब $\sin k_2 a = 0$; इस स्थिति में परावर्तन गुणांक न्यूनतम (शून्य) और पारगमन गुणांक अधिकतम (एक) प्राप्त हो जाता है।

पुन: समी. (9.25) (जिसके संगत R_{max} तथा T_{min} प्राप्त होता है) से

या
$$k_{2}a = (2n+1)\frac{\pi}{2}$$

$$\frac{2m(E+V_{0})}{\hbar^{2}}a^{2} = (2n+1)^{2}\frac{\pi^{2}}{4}$$

$$(E+V_{0}) = (2n+1)^{2}\frac{\pi^{2}\hbar^{2}}{8ma^{2}}$$

$$E_{n} = \frac{(2n+1)^{2}\pi^{2}\hbar^{2}}{8ma^{2}} - V_{0} \qquad (9.27)$$

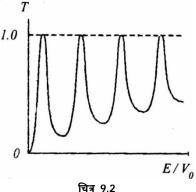
यह ऊर्जा का वह मान होगा जिसके संगत विभवकूप में पारगमन क्रिया न्यूनतम होगी। इसी प्रकार समी (9.26) से (जिसके संगत परावर्तन शून्य होता है)

$$k_2 a = n\pi$$

$$\frac{2m(E+V_0)}{\hbar^2}a^2 = n^2\pi^2$$
 या
$$E_n = \frac{n^2\pi^2\hbar^2}{2ma^2} - V_0 \qquad (9.28)$$

एक महत्वपूर्ण विभव कूप के लिए पारगमन गुणांक T और $\frac{E}{V_0}$ मान को चित्र 9.2 में दिखाया गया है। इस चित्र से यह पाया जाता है कि पारगमन गुणांक T का मान $\frac{E}{V_0}$ के कुछ विशिष्ट मानों के लिए सर्वाधिक (T=1) तथा अन्य मानों के लिए T का मान बहुत कम रह जाता है। मान $k_2a=n\pi$ पर पारगमन गुणांक T=1 होने की स्थिति को अनुनाद की स्थिति कहते हैं। वस्तुतः यह अनुनादी स्थिति तभी प्राप्त होती है जबिक x=0 तथा x=a से

परावर्तित तरंगें परस्पर विनाशी व्यतिकरण प्रदर्शित करती हैं और इस स्थिति में सम्पूर्ण तरंग पारगमित हो जाती है। इसे अनुनादी प्रकीर्णन भी कहते हैं।



अनुनादी प्रकीर्णन की प्रयोगिक घटना का सर्वप्रथम रामसौर-टाउनसेण्ड नामक वैज्ञानिकों ने प्रेक्षित किया था। रामसौर टाउनसेण्ड ने इस अनुनादी पारगमन निष्क्रिय गैसों (जैसे नियोन और आर्गन) के परमाणुओं से अल्प ऊर्जा के इलेक्ट्रॉनों के प्रकीर्णन के रूप में प्रेक्षित किया। इन गैसों के परमाणुओं में स्थितिज ऊर्जा 10^{-10} मीटर चौड़ाई के वर्ग विभव के समान होती है। वस्तुतः इस वर्ग विभव कूप में आपितत इलेक्ट्रॉनों की ऊर्जा E तथा विभव कूप की गहराई V_0 इतने परिमाण की होती है कि विभव कूप से इलेक्ट्रॉनों का अनुनादी प्रकीर्णन प्रेक्षित होने लगता है।

बोध प्रश्न (Self assessment question)	
3. एक कण ($E>0$) एक आकर्षी विभव कूप की ओर आपतित	होता है तो कण
तरंग के संचरण नियतांक पर क्या प्रभाव पड़ेगा?	

9.5 सारांश (Summary)

- वर्ग विभव कूप के अन्तर्गत सुपरिभाषित परिमित सीमाक्षेत्र में विभव ऊर्जा का मान तुलनात्मक रूप से कम हो जाता है।
- वर्ग विभव कूप में कण की गतिज ऊर्जा, कण की कुल ऊर्जा से अधिक हो जाती है । इसे आकर्षी विभव कूप कहते हैं।
- वर्ग विभव कूप की आकर्षी सीमा में कण-तरंग का संचरण नियतांक तुलनात्मक रूप से बढ़ जाता है और तरंगदैर्ध्य घट जाता है।
- आकर्षी विभव कूप में परावर्तन गुणांक और पारगमन गुणांक का योग एक होता है।
- अनुनादी प्रकीर्णन की स्थिति में पारगमन गुणांक अधिकतम (एक) होता है।
- रामसौर टाउनसेण्ड प्रभाव में अनुनादी प्रकीर्णन होता है।

9.6 शब्दावली (Glossary)

अनुनादी प्रकीर्णन Resonant scattering
आकर्षी विभव कूप Attractive potential well
परावर्तक बल Reflecting force
विभव कूप Potential well

9.7 संदर्भ ग्रंथ (Reference Books)

एस. एस. रावत एवं	प्रारम्भिक क्वाण्टम	कॉलेज बुक हाउस,
सरदार सिंह	भौतिकी एवं स्पेक्ट्रोस्कोपी	जयपुर
के. के. सरकार एवं	तृतीय वर्ष भौतिक विज्ञान	साहित्य भवन,
आर. एन. शर्मा		आगरा
H. Clark	A First Course in	ELBS & VNR (UK)
	Quantum Mechanics	Co. Ltd.
P.M Mathews and	A text book of	TMH Pub. Co.,
K. Venkatesan	Quantum Mechanics	New Delhi
Satyprakash	Advanced Quantum	Kedar Nath Ram
	Mechanics	Nath, Meerut
S.L. Kakani	Elementary Quantum	College Book
C.Hemrajani and	Mechanics and	Centre Jaipur
T.C Bansal	Spectroscopy	

9.8 बोध प्रश्नों के उत्तर (Answers to self Assessment Question)

- 1. वर्ग विभव में कण की विभव ऊर्जा V_0 ऋणात्मक होती है इसिलये अभीष्ट कण की गतिज ऊर्जा-कुल ऊर्जा E विभव ऊर्जा $=E-(-V_0)=E+V_0$ सदैव धनात्मक होती है।
- 2. विभव कूप के सीमा क्षेत्र में गतिज ऊर्जा धनात्मक होने के कारण आकर्षी बल अनुभव करता है।
- 3. आकर्षी विभव कूप में गतिज ऊर्जा; कण की कुल ऊर्जा से भी अधिक हो जाती है अत: उस क्षेत्र में संचरण नियतांक बढ़ जाता है।

9.9 अभ्यासार्थ प्रश्न (Exercise)

लघुतरात्मक प्रश्न (Short answer type questions)

- 1. आकर्षी विभव कूप का क्या अर्थ है?
- 2. अनुनादी प्रकीर्णन से क्या आशय है?

निबंधात्मक प्रश्न (Essay type questions)

- 3. एक विमीय आकर्षी विभव कूप के लिए श्रोडिन्जर समीकरण लिखिये। इसके सीमा प्रतिबन्धों का उल्लेख कीजिए।
- 4. आकर्षी विभव कूप में परावर्तन और पारगमन गुणांकों के व्यंजक प्राप्त कीजिए। अनुनादी प्रकीर्णन को समझाइए।
- 5. रामसोर-टाउनसेण्ड प्रभाव क्या है? संक्षिप्त में समझाइए।

इकाई -10

बद्ध अवस्था की समस्याएं (Bound State Problem)

इकाई की रूपरेखा

- 10.0 उद्देश्य
- 10.1 प्रस्तावना
- 10.2 एक विमीय अनन्त गहराई का विभव कूप आइगेन ऊर्जा मान एवं आइगेन फलन
- 10.3 एक विमीय परिमित गहराई का विभव कूप आइगेन ऊर्जा मान एवं आइगेन फलन
- 10.4 सारांश
- 10.5 शब्दावली
- 10.6 संदर्भ ग्रन्थ
- 10.7 बोध प्रश्नों के उत्तर
- 10.8 अभ्यासार्थ प्रश्न

10.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

- बद्ध अवस्था की समस्याओं से अवगत होंगे;
- एक विमीय अनन्त गहराई के विभव कूप एवं एक विमीय परिमित गहराई के विभव कूप के बारे में जानकारी प्राप्त कर सकेंगे;
- उपरोक्त दोनों बद्ध अवस्थाओं के लिये श्रोडिंजर समीकरण हल करना सीख इनसे संबिधत आइगेन ऊर्जा मान एवं आइगेन फलन ज्ञात करने में समर्थ हो सकेंगे

10.1 प्रस्तावना (Introduction)

पिछली इकाई में आपने वर्ग विभव कूप समस्या के लिये श्रोडिंजर समीकरण को हल करना सीखा एवं परावर्तन और पारगमन गुणांकों के व्यंजक प्राप्त किये थे। इसके अतिरिक्त आपने अनुनादी प्रकीर्णन से संबधित जानकारी भी प्राप्त की। इस इकाई में आप बद्ध अवस्था की समस्याओं हेतु श्रोडिंजर समीकरण को हल करना सीखेंगे साथ ही इनके संगत ऊर्जा आइगेन मानों एवं आइगेन फलन ज्ञात करना भी सीख सकेंगे। अनुच्छेद 10.2 में एक विमीय अनन्त गहराई के विभव कूप के लिये ऊर्जा आइगेन मान एवं आइगेन फलन ज्ञात किये है। आगामी अनुच्छेद 10.3 में इसी तरह की विवेचना परिमित गहराई के विभव कूप के लिये की गयी है।

10.2 एक विमीय अनन्त गहराई का विभव कूप-आइगेन ऊर्जा मान एवं आइगेन फलन (One Dimensional Infinite Potential Well-Energy Eigen Values and Eigen Functions)

चित्र 10.1 में एक विमीय अनन्त विभव कूप को प्रदर्शित किया गया है। गणितीय रूप में इसे निम्न प्रकार लिखा जाता है —

$$V_{(x)}=0$$
 जब $-a < x < a$ (10.1)

इस विभव कूप की चौडाई L=2a है तथा यह मूल बिंदु x=0 के सापेक्ष सममित है अर्थात् $V_{(x)}=V\left(V-x\right)$ । िकसी ऐसे कण जिसे इस विभव कूप में रहते हुए एक विमीय गित करने हेतु प्रतिबंधित िकया गया है, के लिये $x=\pm a$ पर कण की स्थितिज ऊर्जा अनन्त होने के कारण कण के विभव कूप से बाहर मिलने की प्रायिकता शून्य होती है। इस कारण कण परिबद्ध अवस्था में हैं। अतः ऐसे कण के लिये ऊर्जा आइगेन मान और ऊर्जा आइगेन फलन (तरंग फलन) ज्ञात करने के लिये श्रीडिंजर समीकरण को केवल विभव कूप के अन्दर $\{-a < x < a\}$ के लिये ही हल करना वांछित है।

चित्र 10.1 एक विमीय अनन्त विभव कूप

ऊर्जा आइगेन फलन (Energy eigen function)

क्षेत्र -a < x < a में V=0 होने के कारण यहाँ काल अनाश्रित श्रीडिंजर समीकरण का स्वरूप निम्नानुसार होगा-

$$\frac{d^2\psi}{dx^2} + \frac{2mE}{\hbar^2}\psi = 0$$
 या
$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad ...(10.2)$$
 जहाँ
$$k = \sqrt{\frac{2mE}{\hbar^2}} \qquad ...(10.3)$$

समीकरण (10.2) का व्यापक हल निम्न होगा-

$$\psi(x) = A \sin kx + B \cos kx \qquad \dots (10.4)$$

यहाँ A व B नियतांक है जिनका निर्धारण सीमान्त प्रतिबंधों (तरंग फलन सर्वत्र परिमित, सतत और एक मानी होना चाहिये) द्वारा किया जा सकता है। क्योंकि विभव कूप से बाहर $\left(\left|x\right|>a\right)$ पर $\psi(x)=0$ है अतः सातत्य से विभव कूप की दीवारों पर भी $\psi(x)=0$ होना चाहिये, अर्थात्

$$\psi(x) = 0$$
 $x = \pm a$...(10.5)

समीकरण (10.5) का उपयोग समीकरण (10.4) में करने पर

$$0 = A \sin ka + B \cos ka \qquad \dots [10.6(a)]$$

तथा
$$0 = -A \sin ka + B \cos ka \qquad \dots [10.6(b)]$$

उपरोक्त समीकरणों से प्राप्त परिणाम निम्न है-

$$A\sin k \ a = 0 \qquad \qquad \dots (10.7)$$

$$B\cos k \ a = 0 \qquad \qquad \dots (10.8)$$

उपरोक्त समीकरणों में A व B दोनों को एक साथ शून्य नहीं माना जा सकता। क्योंकि इसका आशय $\psi(x)=0$ होगा (देखे समीकरण (10.4) जिसका भौतिकीय अर्थ कण का विभव कूप में अनुपस्थिति से होगा जो कि संभव नहीं है। ऐसा इस कारण है कि हमनें पूर्व में ही माना है कि कण विभव कूप में गित करने हेतु उपस्थित है। अतः समीकरणों (10.7) एवं (10.8) को एक साथ संतुष्ट करने हेतु हमारे पास दो विकल्प उपलब्ध हैं।

(31)
$$A = 0$$
 ਰथा $\cos k \ a = 0$ (10.9)

विकल्प (अ) के अनुसार $\cos k \ a = 0$

$$\therefore ka = \frac{n\pi}{2}$$

या $k = \frac{n\pi}{2a}$...(10.11)

जहाँ *n* = 1, 3, 5....

अतः इस विकल्प कं अन्तर्गत श्रोडिंजर समीकरण का हल [समीकरण (10.4) से A=0 के लिए]

$$\psi(x) = B\cos kx \qquad \dots (10.12)$$

В का मान प्रसामान्यीकरण प्रतिबंध से प्राप्त होगा, जिसके अनुसार

$$\int_{-\infty}^{\infty} \psi^*(x) \psi(x) dx = 1$$

$$\int_{-a}^{a} \psi^*(x) \psi(x) dx = 1 \quad \{\text{क्यों क} \quad \psi(x) = 0 \quad |x| > a \}$$

$$B^2 \int_{-a}^{a} \cos^2 kx dx = 1$$

या

या

$$B^2a=1$$

अत:

$$B = \frac{1}{\sqrt{a}}$$

इस कारण

$$\psi(x) = \frac{1}{\sqrt{a}}\cos kx = \frac{1}{\sqrt{a}}\cos\left(\frac{n\pi}{2a}x\right) \qquad \dots (10.13)$$

जहाँ n = 1, 3, 5... विषम पूर्णांक है।

विकल्प (ब) के अनुसार

 $\sin ka = 0$

अर्थात

$$ka = m\pi \qquad \qquad \dots (10.14)$$

जहाँ m = 1, 2, 3.....

समीकरण (10.11) से समानता के लिये उपरोक्त प्रतिबंध को निम्नान्सार लिखा जाता है

$$ka = \frac{n\pi}{2}$$

या

$$k = \frac{n\pi}{2a} \qquad \dots (10.15)$$

जहाँ n=2m=2,4,6... सम पूर्णांक है। समीकरण (10.4) में B=0 रखने पर इस विकल्प के संगत तरंग फलन निम्नानुसार प्राप्त होता है-

$$\psi(x) = A \sin k x \qquad \dots (10.16)$$

अब प्रसामान्यीकरण प्रतिबंध $\int\limits_{-\infty}^{\infty}\psi^*\left(x\right)\psi(x)dx=1$ से

$$A^2 \int_{-a}^{a} \sin^2 k \ x \ dx = 1$$

जिससे

$$A = \frac{1}{\sqrt{a}}$$
 ...(10.17)

इस प्रकार विकल्प (ब) के संगत तरंग फलन [समीकरण (10.15), (10.16), (10.17) की सहायता से] निम्नान्सार प्राप्त होगा-

$$\psi(x) = \frac{1}{\sqrt{a}} \sin\left(\frac{n\pi}{2a}x\right) \qquad \dots (10.18)$$

जहाँ n सम पूर्णांक है।

ऊर्जा आइगेन मान (Energy eigen values)

अनन्त गहराई के विभव कूप के लिये कण के तरंग फलनों को ज्ञात करने संबंधित उपरोक्त विवेचना में हमनें पाया है कि विभव कूप में तरंग फलन के अशून्य होने के लिये आवश्यक है कि

$$k = \frac{n\pi}{2a}$$
 जहाँ $n = 1, 3, 5 ...$

$$k = \frac{n\pi}{2a}$$
 जहाँ $n = 2, 4, 6 \dots$

उपरोक्त परिणामों को व्यापक रूप में निम्न तरह से लिखा जाता है।

$$k = \frac{n\pi}{2a}$$
 (जहाँ $n = 1, 2, 3, 4...$) ...(10.19)

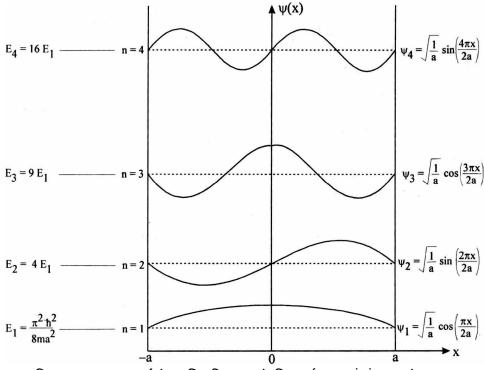
अब समीकरण (10.3) से कण की ऊर्जा का मान

$$E = \frac{\hbar^2 k^2}{2m} \qquad ...(10.20)$$

अतः समीकरणों (10.19) व (10.20) से

$$E = \frac{n^2 \hbar^2 \pi^2}{8ma^2} \qquad ...(10.21)$$

n के केवल पूर्णांक मान ही संभव है, निष्कर्षत अनन्त विभव कूप में परिबद्ध कण की उर्जा क्वांटीकृत होती है। चित्र 10.2 में इस कण के लिये उर्जा स्तर तथा संगत तरंग फलन दर्शाये गये हैं। कण के उर्जा स्पेक्ट्रम में अनन्त किन्तु विविक्त उर्जा स्तर $E_1, E_2 \dots$ है जो कण की बद्ध अवस्था को व्यक्त करते हैं।



चित्र 10.2 : अनन्त गहराई के सममित विभव कूप के लिए ऊर्जा स्तर एवं संगत आइगेन फलन यहाँ निम्नांकित तथ्य ध्यान देने योग्य है-

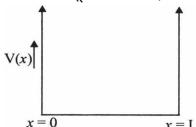
- (i) प्रत्येक ऊर्जा स्तर अनपभ्रष्ट (non-degenerate) है। क्योंकि प्रत्येक के संगत केवल एक ही आइगेन फलन उपस्थित है।
- (ii) n वें आङ्गेन फलन में विभव कूप के अन्दर (n-1) निस्पंद (nodes) होते हैं।

(iii) भिन्न भिन्न ऊर्जा स्तरों $E_{\scriptscriptstyle n}, E_{\scriptscriptstyle m}$ के संगत आइगेन फलन परस्पर लाम्बिक (orthogonal) है, अर्थात

$$\int_{-a}^{a} \psi_{n}^{*}(x) \psi_{m}(n) dx = 0 \quad \text{यद} \quad (m \neq n)$$

बोध प्रश्न (Self assessment questions)

सलंग्न चित्र में प्रदर्शित विभव कूप सममित है या असममित?



तरंग फलनों 2.

$$\psi_n(x) = \frac{1}{\sqrt{a}} \cos\left(\frac{n\pi x}{2a}\right) \qquad n=1,3,5....$$

$$\psi_n(x) = \frac{1}{\sqrt{a}} \sin\left(\frac{n\pi x}{2a}\right) \qquad n=2,4,6$$

में कौन सा समफलन है तथा कौन सा विषम फलन?

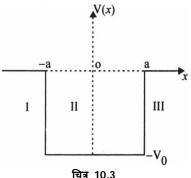
अनन्त गहराई के समनित विभव कूप में ऊर्जा स्तर n=3 के लिये ऊर्जा 3. आइगेन मान n=1 ऊर्जा के संगत ऊर्जा आइगेन मान से कितना गुना है?

बोध प्रश्न संख्या 3 में n=3 के संगत तंरग फलन में विभव कूप के अन्दर 4. कितने निस्पंद है?

10.3 एक विमीय परिमित गहराई का विभव कूप-ऊर्जा आइगेन मान एवं आइगेन फलन (One-Dimensional Finite Depth Potential Well-Energy Eigen Values and Eigen Function)

अब हम परिमित गहराई के विभव कूप में एक कण की गति पर विचार करेंगे। ऐसा विभव कूप चित्र 10.3 में प्रदर्शित है तथा इसके लिये गणितीय रूप निम्नानुसार दिया जाता है।

जहाँ V_0 धनात्मक नियतांक है।



कण के परिबद्ध होने के लिये आवश्यक है कि उसकी कुल ऊर्जा E<0 हो। यदि क्षेत्रों I, II व III में कण के लिय तरंग फलन क्रमशः ψ_I, ψ_{II} व ψ_{III} से व्यक्त किये जाये तथा $E=-\left|E\right|$ लिखा जाये तो उपरोक्त तीन क्षेत्रों के लिये श्रोडिंजर समीकरणें निम्नानुसार होंगी-

$$\frac{d^2\psi_I}{dx^2} - \frac{2m|E|}{\hbar^2}\psi_I = 0 \qquad(10.22)$$

$$\frac{d^2\psi_{II}}{dx^2} - \frac{2m(V_0 - |E|)}{\hbar^2}\psi_{II} = 0 \qquad(10.23)$$

$$\frac{d^2\psi_{III}}{dx^2} - \frac{2m|E|}{\hbar^2}\psi_{III} = 0 \qquad(10.24)$$

अब यदि मान लिया जाये कि

$$lpha = \sqrt{\frac{2m|E|}{\hbar^2}}$$
 एवं $\beta = \sqrt{\frac{2m(V_0 - |E|)}{\hbar^2}}$ (10.25)

जहाँ α व β दोनों धनात्मक एवं वास्तविक नियतांक है। उपरोक्त प्रतिस्थापनों के कारण (10.22) से (10.24) तक की समीकरणें निम्नांकित स्वरूप प्राप्त करेंगी।

$$\frac{d^2\psi_1}{dx^2} - \alpha^2\psi_1 = 0 ...(10.26)$$

$$\frac{d^2\psi_{II}}{dx^2} + \beta^2\psi_{II} = 0 \qquad ...(10.27)$$

$$\frac{d^2\psi_{III}}{dx^2} - \alpha^2\psi_{III} = 0 ...(10.28)$$

तथा इनके हल क्रमश: होंगे-

$$\psi_{I}(x) = Ae^{\alpha x} + Be^{-\alpha x}$$
 ...(10.29)

$$\psi_{11}(x) = C \sin \beta x + D \cos \beta x$$
 ...(10.30)

$$\psi_{III}(x) = Fe^{\alpha x} + Ge^{-\alpha x}$$
 ...(10.31)

स्वैच्छिक नियतांकों A,B,C,D,F व G का निर्धारण तरंग फलन पर परिसीमा तथा सांतत्य प्रतिबंधों से किया जाता है। क्षेत्र I में $x \to -\infty$ पर $\psi_1(x) \to 0$ होना चाहिये जिसके लिये आवश्यक है कि B=0 हों (अन्यथा $x \to -\infty$ पर $\psi_1(x) \to \infty$ होगा)। इसी तरह क्षेत्र III में $x \to \infty$ पर $\psi_{III}(x) \to 0$ होने के लिये आवश्यक है कि F=0 हों। अतः क्षेत्रों I,II व III में तरंग फलन निम्नानुसार होंगे।

$$\psi_{I}(x) = A e^{\alpha x}$$
 ...(10.32)

$$\psi_{\Pi}(x) = C\sin\beta x + D\cos\beta x \qquad ...(10.33)$$

$$\psi_{III}(x) = Ge^{-\alpha x}$$
 ...(10.34)

इन तरंग फलनों पर सांतत्य प्रतिबन्ध है, अत:

$$\psi_1(\mathbf{x})\big|_{\mathbf{x}=-a} = \psi_{11}(\mathbf{x})\big|_{\mathbf{x}=-a}$$
 तथा $\frac{d\psi_1(\mathbf{x})}{d\mathbf{x}}\bigg|_{\mathbf{x}=-a} = \frac{d\psi_{11}(\mathbf{x})}{d\mathbf{x}}\bigg|_{\mathbf{x}=-a}$.

$$|\psi_{11}(\mathbf{x})|_{x=a} = |\psi_{111}(\mathbf{x})|_{x=a}$$
 तथा $\frac{d\psi_{11}(\mathbf{x})}{dx}\Big|_{x=a} = \frac{d\psi_{111}(\mathbf{x})}{dx}\Big|_{x=a}$...(10.36)

इन प्रतिबंधों का उपयोग समीकरणों (10.32) (10.33) व (10.34) में करने पर प्राप्त परिणाम निम्न है।

$$Ae^{-\alpha a} = -C\sin\beta a + D\cos\beta a \qquad ...(10.37)$$

$$\alpha A e^{-\alpha a} = \beta C \cos \beta a + \beta D \sin \beta a \qquad \dots (10.38)$$

$$Ge^{-\alpha a} = C\sin\beta a + D\cos\beta a \qquad ...(10.39)$$

$$-\alpha G e^{-\alpha a} = \beta C \cos \beta a + \beta D \sin \beta a \qquad \dots (10.40)$$

समीकरणों (10.37) व (10.39) का योग करने पर

$$(A+G)e^{-\alpha a} = 2D\cos\beta a \qquad ...(10.41)$$

समीकरण (10.38) व (10.40) का योग करने पर

$$\alpha (A-G)e^{-\alpha a} = 2\beta C \cos \beta a \qquad \dots (10.42)$$

समीकरण (10.37) में से (10.39) घटाने पर

$$(A-G)e^{-\alpha a} = -2C\sin\beta a \qquad \dots (10.43)$$

समीकरण (10.38) में से (10.40) घटाने पर

$$\alpha (A+G)e^{-\alpha a} = 2\beta D \sin \beta a \qquad \dots (10.44)$$

अब यदि $D \neq 0$ तथा $A + G \neq 0$ हों तो समीकरणों (10.41) व (10.44) से

$$\alpha = \beta \tan \beta a \qquad \dots (10.45)$$

इसी प्रकार, $C \neq 0$ यदि $A - G \neq 0$ तथा तब समीकरणों (10.42) व (10.43) से

$$-\alpha = \beta \cot \beta a \qquad ...(1046)$$

समीकरण (10.45) व (10.46) अबीजीय समीकरणें (transcendental equations) है, इनके हल ऊर्जा के आइगेन मान देते हैं। ये दोनों समीकरणों एक साथ वैद्य नहीं होती अतः इनका युगपत समाधान संभव नहीं है। अतः इनका हल ग्राफीय विधि या संख्यात्मक विधि से किया जाता है। यहाँ हम ग्राफीय विधि काम लेंगे। यहाँ यह भी ध्यान देने योग्य है कि नियतांक A, C, Da G एक साथ शून्य नहीं हो सकते। अतः हमें दो वर्ग के हल करने होंगे।

(i) C=0 तथा $\alpha = \beta \tan \beta a$ तब समीकरण (10.42) या (10.43) से, इस स्थिति में तरंग फलन का मान विभिन्न क्षेत्रों के लिये निम्न होगा।

$$\psi_{I}(x) = Ae^{\alpha x}$$

$$\psi_{II}(x) = D\cos\beta x$$

$$\psi_{III}(x) = Ae^{-\alpha x}$$
...(10.47)

यहाँ क्योंकि $\cos \beta x$ समफलन है अत, $\psi_{II}(x)$ एक समफलन होगा व संगत अवस्था को हम समअवस्था कहेंगे।

(ii) D=0 ਰਥਾ $-\alpha = \beta \cot \beta a$

तब समीकरण (10.41) या (10.44) से A=-G होगा, तदानुसार विभिन्न क्षेत्रों के लिये तरंग फलन निम्न होंगे।

$$\psi_{I}(x) = Ae^{\alpha x}$$

$$\psi_{II}(x) = C\sin\beta x$$

$$\psi_{III}(x) = -Ae^{-\alpha x}$$
...(10.48)

यहाँ $\psi_{II}(x)$ विषम फलन है व संगत अवस्था विषम अवस्था कहलाएगी।

ऊर्जा आइगेन मान (Energy eigen values)

यदि दो विमाहीन नियतांकों

$$X = \alpha a$$
 तथा $Y = \beta a$...(10.49)

का उपयोग अबीजीय समीकरणों (10.45) व (10.46) में किया जाये तो निम्नांकित समीकरणें प्राप्त होंगी

$$X = Y \tan Y$$
 (सम अवस्थाओं हेतु) ...(10.50)

$$-X = Y \cot Y$$
 (विषम अवस्थों हेतु) ...(10.51)

साथ ही

$$X^2 + Y^2 = \left(\alpha^2 + \beta^2\right)a^2$$

अत: समीकरण (10.25) से \propto , β के मान रखने पर

$$X^2 + Y^2 = \frac{2mV_0a^2}{\hbar^2}$$

जिसे पुन: निम्न प्रकार लिखा जाता है-

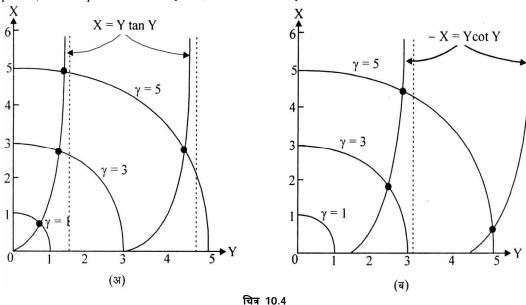
जहाँ

$$X^2 + Y^2 = \gamma^2$$
 ...(10.52)

$$\gamma = \sqrt{\frac{2mV_0a^2}{\hbar^2}}$$
 ...[10.52 (37)]

समीकरण (10.52) एक वृत की समीकरण है जिसका केन्द्र X-Y क्षेत्र के मूल बिन्दु पर तथा त्रिज्या γ है।

समअवस्थाओं के लिये कण की ऊर्जा के आइगेन मान समीकरण (10.50) से निरूपित वक्र एवं समीकरण (10.52) से निरूपित वृत्त के प्रतिच्छेद बिन्दुओं से प्राप्त किये जाते हैं। इसी प्रकार विषम अवस्थाओं के लिये इनकी प्राप्ति समीकरण (10.51) से निरूपित वक्र तथा समीकरण (10.52) से निरूपित वृत्त के प्रतिच्छेद बिन्दुओं से होगी। यह प्रक्रिया क्रमशः चित्र 10.4 (अ) व 10.4 (ब) में दर्शाये गयी है। जहाँ हल का प्रथम चतुर्थांश लिया गया है। यहाँ $\gamma = 1,3$ तथा $\gamma = 5$ के वक्र ही प्रदर्शित किये गये हैं।



 γ के किसी मान के लिये माना वक्रों के प्रतिच्छेद बिन्दुओं के संगत $X(=\alpha a)$ के प्राप्त मान $X_1,~X_2,~X_n$ तब परिबद्ध कण की ऊर्जा

$$\left|E\right|=rac{\hbar^{2}}{2m}lpha^{2}$$
 या
$$\left|E_{n}\right|=rac{\hbar^{2}}{2ma} imes X_{n}^{2}$$

या
$$E_n = \frac{-\hbar^2}{2ma^2} \times X_n^2 \qquad ...(10.53)$$

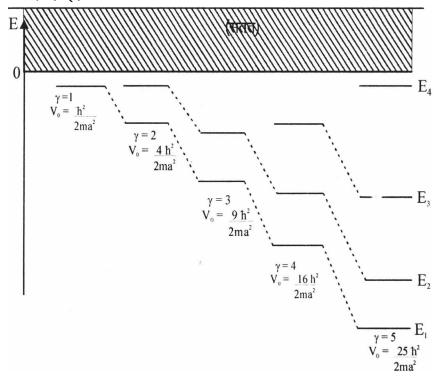
चित्र की ग्राफी रचना से स्पष्ट है कि

- (i) परिबद्ध अवस्था में ऊर्जा स्तर अनपभ्रष्ट्र होते हैं।
- (ii) कूप प्राचल $V_0 a^2$ के परिमित होने पर ऊर्जा स्तरों की संख्या परिमित होती है, गुणनफल $V_0 a^2$ में जैसे जैसे वृद्धि होती है प्रतिच्छेद बिन्दुओं की संख्या बढ़ती है, अर्थात बद्ध स्तरों की संख्या में वृद्धि होती है।
- (iii) यदि $0<\gamma\leq\pi$ तब केवल एक सम परिबद्ध अवस्था होती है। $0<\gamma\leq2\pi$ तब दो सम परिबद्ध अवस्थाएँ होती है। व्यापक रूप में यदि $\left(N_{_{\!\it e}}-1\right)\pi<\gamma\leq N_{_{\!\it e}}\pi$ तब $N_{_{\it e}}$ सम परिबद्ध अवस्थाएँ होती है।
- (iv) $0 < \gamma < \pi / 2$ होने पर एक भी विषम परिबद्ध अवस्था नहीं होती।

यदि
$$\left(N_{_{0}}-\frac{1}{2}\right)\!\pi<\gamma\leq\!\left(N_{_{0}}+\frac{1}{2}\right)\!\pi$$

तब N_0 विषम परिबद्ध अवस्थायें होंगी।

इस प्रकार यह देखा जा सकता है कि विभव कूप के प्रबलता प्राचल V_0a^2 में वृद्धि होने पर क्रमशः सम तथा विषम अवस्थाओं के ऊर्जा स्तर प्रकट होते रहते हैं। मूल अवस्था सदैव समअवस्था होती है। इसके उपरान्त क्रमशः विषम, सम अवस्थाएं होती है। $\gamma=1,2,...$ के लिये ऊर्जा स्तर चित्र 10.5 मे प्रदर्शित है। इनमें E_1,E_3 समअवस्थाओं E_2,E_4 विषम अवस्थाओं के संगत है।



चित्र 10.5 : परिमित गहराई के विभव कूप की भिन्न भिन्न गहराईयों की संगत परिबद्ध कण के लिये ऊर्जा स्तर ऊर्जा आइगेन फलन (Energy eigen function)

परिमित विभव कूप में परिबद्ध कण की समअवस्थाओं के लिये तरंग फलन समीकरण (10.47) के अनुसार दिए जाते हैं अर्थात्

$$\psi_{I}(x) = Ae^{\alpha x}$$

$$\psi_{II}(x) = D\cos\beta x \qquad ...(10.54)$$

$$\psi_{III}(x) = Ae^{-\alpha x}$$

इसी प्रकार विषम अवस्थाओं के लिए समीकरण (10.48) से

$$\psi_{I}(x) = Ae^{\alpha x}$$

$$\psi_{II}(x) = C\sin\beta x \qquad ...(10.55)$$

$$\psi_{III}(x) = -Ae^{-\alpha x}$$

सांतत्य प्रतिबंधों के अनुसार

$$x = -a$$
 पर $\psi_{I} = \psi_{II}$

तथा
$$x = +a$$
 पर $\psi_{II} = \psi_{III}$

अतः समीकरण (10.54) के लिये

$$A = De^{\alpha a} \cos \beta a$$

तथा समीकरण (10.55) के लिये

$$A = -Ce^{\alpha a} \sin \beta a$$

अतः समअवस्था के लिये तरंग फलन होंगे।

$$\psi_{\rm I}(x) = (De^{\alpha a}\cos\beta a)e^{\alpha x}$$

$$\psi_{\rm II}(x) = D\cos\beta x$$

$$\psi_{\text{III}}(x) = (De^{\alpha a}\cos\beta a)e^{-\alpha x}$$

उपरोक्त तरंग फलन x=0 के सापेक्ष सममित है। विषम अवस्थाओं के लिये निम्न तरंग फलन होंगे।

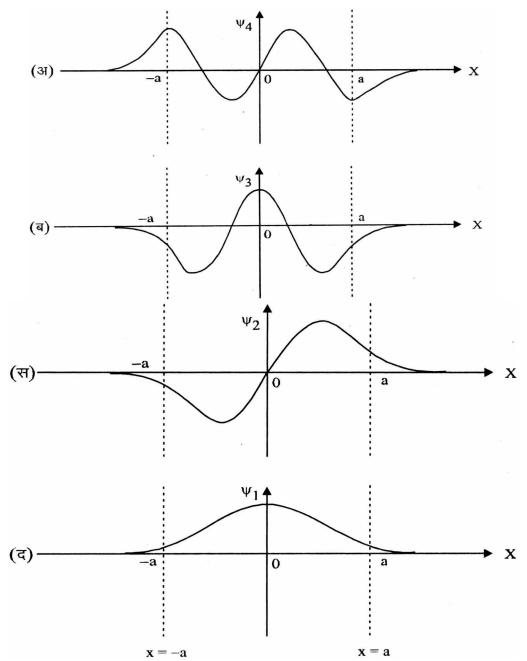
$$\psi_{I}(x) = -(Ce^{\alpha a}\sin\beta a)e^{\alpha x}$$

$$\psi_{II}(x) = C\sin\beta x$$

$$\psi_{III}(x) = (Ce^{\alpha a}\sin\beta a)e^{-\alpha x}$$

उपरोक्त तरंग फलन x=0 के सापेक्ष प्रतिसममित है।

चित्र 10.6 (अ,ब,स,द) में प्रथम चार ऊर्जा स्तरों के संगत, कण के तरंग फलन प्रदर्शित किये गये हैं। यहाँ ψ_1 और ψ_3 सममित तथा ψ_2 व ψ_4 प्रति सममित है। यह देखा जा सकता है कि तरंग फलन का भेदन विभव कूप के बाहर भी है तथा ऊर्जा स्तर के मान (n) में वृद्धि के साथ बढता जाता है। यह व्यवहार अनन्त गहराई के विभव कूप के लिये तरंग फलनों के व्यवहार से भिन्न है।



चित्र 10.6 परिमित गहराई के विभव कूप में परिबद्ध कण के संगत तरंग फलन

बोध प्रश्न (Self assessment questions) 5. परिमित गहराई के विभव कूप के तरंग फलन एवं अपरिमित गहराई के विभव कूप के संगत तरंग फलन में क्या मुख्य अन्तर है?

10.4 सारांश (Summary)

अनन्त गहराई के विभव कूप

$$V(x) = 0 -a < x < a$$
$$V(x) = \infty |x| > a$$

के लिये श्रोडिंजर समीकरण का व्यापक हल

$$\psi(x) = A \sin kx + B \cos kx$$

होता है जहाँ
$$k = \sqrt{\frac{2mE}{\hbar^2}}$$

A या B एक साथ शून्य नहीं हो सकते है, अत:

मात्र A = 0 होने पर $k = \frac{n\pi}{2a}$ n = 1, 3, 5.....

$$k = \frac{n\pi}{2a}$$

$$n = 1, 3, 5....$$

तथा

$$\psi = B\cos kx = \frac{1}{\sqrt{a}}\cos kx = \frac{1}{\sqrt{a}}\cos\left(\frac{n\pi}{2a}x\right)$$

तथा मात्र B = 0 होने पर $k = \frac{m\pi}{a}$ m = 1, 2, 3.....

$$m = 1, 2, 3.....$$

$$=\frac{n\pi}{a}$$

$$=\frac{n\pi}{a}$$
 $n=2m=2,4,6.....$

तथा

$$\psi = A\cos kx = \frac{1}{\sqrt{a}}\sin\left(\frac{n\pi}{2a}x\right)$$

जहाँ *n* समपूर्णांक है।

अनन्त गहराई के विभव कूप के लिए

$$E = \frac{n^2 \hbar^2 n^2}{8ma^2}$$

अतः ऊर्जा स्तर कवांटीकृत होते हैं। साथ ही प्रत्येक ऊर्जा स्तर अनपभ्रष्ट होता है। *n* वें आइगन फलन में विभव कूप के अन्दर (n-1) निस्पंद होते हैं।

परिमित गहराई के विभव कूप

$$V(x) = 0$$
 $x < -a$

तथा
$$x > a$$

$$V(x) = -V_0 \quad -a < x > a$$

में कण के परिबद्ध होने के लिये इसकी ऊर्जा $E\!>\!0$ होगी। ऐसी स्थिति में श्रोडिंजर समीकरण का हल प्राप्त कर तरंग फलनों पर सांतत्य प्रतिबंधों के प्रयोग से अबीजीय समीकरणें

$$\alpha = \beta \tan \alpha \ a$$

तथा

$$-\alpha = \beta \cot \beta \ a$$

प्राप्त होती है जो विमाहीन नियतांकों $X = \alpha a$, $Y = \beta a$ के प्रयोग से

$$X = Y tan Y$$

(सम अवस्थाओं हेत्)

$-X = Y \cot Y$ (विषम अवस्थाओं हेत्)

के रूप में प्राप्त होती है। उपरोक्त समीकरणों को ग्राफीय विधि से हल कर ऊर्जा आइगेन मान प्राप्त किये जाते हैं।

परिमित गहराई के विभव कूप के लिये प्राप्त तरंग फलन इस प्रकार के होते हैं कि इनका कुछ भाग विभव कूप के बाहर भी होता है, अर्थात तरंग फलन विभव कूप के बाहर भी भेदन करते हैं।

10.5 शब्दावली (Glossary)

अबी	जीय समीकरण	Transcendental equation
अनप	१भ ष्ट	Non Degenerate
<u>কর্</u> जা	आइगेन फलन	Energy eigen function
<u>কর্</u> जা	आइगेन मान	Energy eigen value
बद्ध3	ग्वस्था ऐं	Bound states
लामि	न्बक	Orthogonal
विभ	व कूप	Potential well

10.6 संदर्भ ग्रन्थ (Reference Books)

एस एस रावत एवं	प्रारम्भिक क्वान्टम	यांत्रिकी ए	रवं कॉलेज बुक हाऊस, जयपुर
सरदार सिंह	स्पेक्ट्रोस्कोपी		

10.7 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

- 1. असममित
- 2. तरंग फलन $\psi_n(x) = \frac{1}{\sqrt{a}} cos\left(\frac{n\pi x}{2a}\right)$ के लिये $\psi_n(x) = \psi_n(-x)$

अतः यह समफलन है। इसके विपरीत फलन $\psi_n(x) = \frac{1}{\sqrt{a}} sin \left(\frac{n\pi x}{2a} \right)$ में $\psi_n(x) = -\psi_n(x)$ अतः यह विषम फलन है।

3. अनन्त गहराई के सममित विभव कूप हेतु ऊर्जा स्तर सूत्र

$$E = \frac{n^2 \hbar^2 n^2}{8ma^2}$$
 से दिया जाता है अतः

$$n=1$$
 के लिये
$$E_1 = \frac{\hbar^2 n^2}{8ma^2}$$
 तथा $n=3$ के लिये
$$E_3 = 9\frac{\hbar^2 n^2}{8ma^2} = 9E_1$$

- अतः ऊर्जा का मान 9 ग्ना अधिक है।
- 4. n=3 के संगत तरंग फलन में विभव कूप के अन्दर n-1=3-1=2 निस्पंद होंगे।
- 5. परिमित गहराई के विभव कूप के तरंग फलन विभव कूप के बाहर भी कुछ दूरी तक अस्त नहीं होते हैं।

10.8 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. अनन्त गहराई के सममित विभव कूप के लिये प्रथम दो ऊर्जा स्तरों के संगत आइगेन फलनों के चित्र बनाइये।
- 2. अनन्त गहराई के सममित विभव कूप के लिये ऊर्जा स्तर व्यक्त करने वाली समीकरण लिखिये।
- 3. परिमित गहराई के विभव कूप के लिये कूप प्राचल V_0a^2 में वृद्धि का बद्ध ऊर्जा स्तरों की संख्या पर क्या प्रभाव होता है?

निबन्धात्मक प्रश्न (Essay type questions)

- 1. एक अनन्त गहराई के सममित विभव कूप में स्थित कण के लिये श्रोडिंजर समीकरण हल किरये तथा आइगेन ऊर्जा मान व आइगेन फलन के व्यंजक प्राप्त कीजिये।
- 2. V_0 गहराई एवं 2a चौड़ाई वाले एक विमीय वर्ग विभव कूप में बन्द एक कण पर विचार कीजिए। कूप के अंदर कण के ऊर्जा स्तरों को व्यक्त करने वाले अबीजीय समीकरणों को व्युत्पन्न कीजिये एवं इन्हें हल करने की ग्राफीय विधि का संक्षिप्त विवरण दीजिये।

इकाई-11

सरल आवर्ती दोलित्र

(Simple Harmonic Oscillator)

इकाई की रूपरेखा

- 11.0 उद्देश्य
- 11.1 प्रस्तावना
- 11.2 एक विमीय सरल आवर्ती दोलक के लिए श्रोडिंजर समीकरण तथा उसका हल
- 11.3 आइगेन फलन
- 11.4 ऊर्जा आइगेन मान
- 11.5 शून्य बिन्दु ऊर्जा
- 11.6 समता-सममित तथा प्रति सममित तरंग फलन एंव ग्राफीय निरूपण
- 11.7 सारांश
- 11.8 शब्दावली
- 11.9 संदर्भ ग्रन्थ
- 11.10 बोध प्रश्नों के उत्तर
- 11.11 अभ्यासार्थ प्रश्न

11.0 उद्देश्य (Objectives)

इस अध्याय के अध्ययन के बाद आप

- सरल आवर्ती दोलित्र के लिए श्रोडिंजर समीकरण को स्थापित कर इसे हल करना समझ सकेंगे:
- सरल आवर्ती दोलित्र के तरंग फलनों के व्यवहार की जानकारी प्राप्त कर सकेंगे;
- सरल आवर्ती दोलित्र के ऊर्जा स्तरों के क्वांटम व्यवहार एवं शून्य बिंदु ऊर्जा को समझ सकेंगे:
- तरंग फलनों की समता एवं सममित तथा असमित तरंग फलनों के बारे में जानकारी प्राप्त कर सकेंगे।

11.1 प्रस्तावना (Introduction)

सरल आवर्ती दोलक के बारे में चिरसम्मत यात्रिंकी के आधार पर आपने बहुत कुछ पढ़ा है, समझा है। इस इकाई में क्वांटम यांत्रिकी के आधार पर एक विमीय सरल आवर्ती दोलक का विश्लेषण करेंगे। सरल आवर्ती दोलक को सरल आवर्ती दोलित्र भी कहते हैं। सर्वप्रथम अनुच्छेद 11.2 में इसके लिये श्रोडिंजर समीकरण लिखना समझेंगे तथा इसे हल करेंगे। आगामी अनुच्छेदों 11.3 व 11.4 में क्रमशः इसके आइगेन फलन तथा आइगेन ऊर्जा फलन के बारे में जानकारी प्राप्त करेंगे। यह भी देखेंगे कि इस विश्लेषण में न्यूनतम ऊर्जा का मान शून्य नहीं

होता है अपितु होता है, इसे दोलक की शून्य बिन्दु ऊर्जा कहते हैं। यह आप अनुच्छेद 11.5 में पढेंगे। आगामी अनुच्छेद 11.6 में समता संकारक के बारे में समझेंगे और इसके आधार पर तरंग फलनों को सममित व प्रतिसममित वर्गों में विभाजित कर सकेंगे।

11.2 एक विमीय सरल आवर्ती दोलक के लिये श्रोडिंजर समीकरण तथा उसका हल (Schrodinger Equation and its Solution for One Dimensional Simple Harmonic Oscillator)

हम जानते हैं कि m द्रव्यमान के किसी कण की सरल आवर्ती गति में इस पर कार्यकारी प्रत्यानयन बल F कण की साम्य स्थिति से दूरी x के समानुपाती होता है, तथा सदैव साम्य स्थिति की ओर लगता है, अर्थात

$$F = kx$$
 ...(11.1)

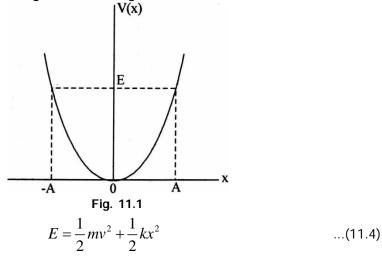
जहाँ k बल नियतांक है। चिरसम्मत यांत्रिकी के अनुसार इसकी कोणीय आवृत्ति

$$\omega = \sqrt{\frac{k}{m}} \qquad \dots (11.2)$$

द्वारा दी जाती है। विस्थापन के साथ स्थितिज ऊर्जा में परिवर्तन को चित्र 11.1 में दर्शाया गया है, गणितीय रूप में

$$V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$$
 ...(11.3)

सरल आवर्ती दोलित्र की गतिज ऊर्जा इसकी साम्य स्थिति x=0 पर अधिकतम होती है तथा वर्तन बिंदुओं $x=\pm A$ पर इसका मान शून्य होता है जहाँ A दोलित्र का आयाम है। वर्तन बिंदुओं पर दोलित्र क्षणिक रूप में विरामावस्था में आकर अपनी गति की दिशा बदलता है। कुल ऊर्जा के किसी मान E के लिये कण का गति क्षेत्र $-A \le x \le A$ के मध्य सीमित रहता है। चिर प्रतिष्ठित यांत्रिकी के अनुसार दोलित्र की कुल ऊर्जा का मान



द्वारा दिया जाता है, जो (शून्य के अतिरिक्त) कुछ भी हो सकता है।

एक विमीय विभव क्षेत्र में गतिशील कण के लिये कालअनाश्रित श्रीडिंजर समीकरण

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

में समीकरण (11.3) से V(x) का मान रखने पर

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} \left[E - \frac{1}{2} m\omega^2 x^2 \right] \psi = 0 \qquad ...(11.5)$$

प्राप्त होती है जो एक विमीय दोलित्र के लिये श्रोडिंजर समीकरण है।

इस समीकरण को हल करने के लिये हम निम्नानुसार विमाहीन चर राशियों का उपयोग करते हैं।

$$lpha = \sqrt{rac{m\omega}{\hbar}}$$
 , $\lambda = rac{2E}{\hbar\omega}$ तथा $y = x\alpha = x \left\{rac{m\omega}{\hbar}
ight\}^{1/2}$ (11.6) क्योंकि $rac{d\psi}{dx} = rac{d\psi}{dy} rac{dy}{dx} = lpha rac{d\psi}{dy}$ तथा $rac{d^2\psi}{dx^2} = lpha^2 rac{d^2\psi}{dy^2}$

अतः समीकरण (11.5) को परिवर्तित स्वरूप में निम्नान्सार लिखा जा सकता है।

$$\frac{d^2\psi}{dy^2} + (\lambda - y^2)\psi = 0$$
 ...(11.7)

तरंग फलन ψ की भौतिक सार्थकता के अनुरूप समीकरण (11.7) के स्वीकार्य हल इस प्रकार के होने चाहिये कि प्राप्त तरंग फलन फलन ψ

(i) सदैव एकमापी, सतत तथा परिमित हों ताकि

$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1$$

(ii) $x \to \infty$ पर $\psi(x) \to 0$ होना चाहिये

अन्यथा तरंग फलन किसी क्षण पर वास्तविक कणीय दोलित्र का निरूपण नहीं कर सकता।

यह आसानी से देखा जा सकता है कि $\lambda = 1$ के लिये समीकरण (11.7) का हल होगा।

$$\psi(y) = \exp\left(-\frac{y^2}{2}\right)$$

अतः जब $y\to\infty$ तब $y>>\lambda$ होने के कारण λ का वास्तविक मान महत्वपूर्ण नहीं रहता, इस कारण इस सीमा के लिये समीकरण (11.7) का हल भी $\psi(y)=\exp\left(-\frac{y^2}{2}\right)$ द्वारा व्यक्त किया जा सकता है। इस प्रकार y के किसी भी मान के लिये समीकरण (11.7) का हल

$$\psi(y) = H(y) \exp\left(-\frac{y^2}{2}\right) \qquad \dots (11.8)$$

द्वारा दिया जायेगा। यहाँ H(y) ऐसे फलन होने चाहिये जो सीमा $y \to \infty$ में तरंग फलन के भौतिकीय व्यवहार को प्रभावित नहीं करें। समीकरण (11.8) का उपयोग समीकरण (11.7) में करने पर हम पाते हैं कि फलन H(y) निम्न अवकलन समीकरण को संतुष्ट करता है-

$$\frac{d^2H}{dy^2} - 2y\frac{dH}{dy} + (\lambda - 1)H = 0 \qquad ...(11.9)$$

उपरोक्त समीकरण को हर्मिट समीकरण तथा फलन H(y) को हर्मिट फलन कहा जाता है। सीमा $y \to \pm \infty$ में फलन H(y) परिमित रहें इसके लिये आवश्यक है कि

हों। ऐसी स्थिति में

$$H(y)=H_n(y)$$
 ...(11.18)

हर्मिटी बहु पद कहलाते हैं। कुछ हर्मिटी बहु पदों के निम्न मान हैं-

$$H_0(y) = 1$$
 $H_1(y) = 2y$ $H_2(y) = 4y^2 - 2$
 $H_3(y) = 8y^3 - 12y$ $H_4(y) = 16y^4 - 48y^2 + 12$ (11.12)

समीकरण (11.12) का प्रयोग समीकरण (11.8) में करने पर एक विमीय सरल आवर्ती दोलित्र के लिये श्रोडिंजर समीकरण का हल निम्नानुसार लिखा जाता है।

$$\psi_n(y) = \frac{N_n}{\sqrt{\alpha}} \exp\left(\frac{-y^2}{2}\right) H_n(y)$$
 ...(11.13(3f))

या

$$\psi_n(x) = N_n \exp\left(-\frac{\alpha^2 x^2}{2}\right) H_n(\alpha x) \qquad \dots (11.13(\vec{a}))$$

जहाँ $N_{\scriptscriptstyle n}$ प्रसामान्यीकरण नियतांक है।

बोध	प्रश्न (Self assessment questions)
1.	एक विमीय सरल आवर्ती दोलित्र की कुल ऊर्जा का व्यंजक लिखिये।
2.	समीकरण $\frac{d^2H}{dy^2} - 2y\frac{dH}{dy} + (\lambda - 1)H = 0$
	(H हर्मिटी फलन है) का सीमा $y o \pm \infty$ में हल ज्ञात करने के लिये पर
	क्या प्रतिबंध है?

11.3 आइगेन फलन (Eigen Functions)

एक विमीय सरल आवर्ती दोलक के लिये श्रोडिंजर समीकरण के हल

$$\psi_n(x) = N_n \exp\left(-\frac{\alpha^2 x^2}{2}\right) H_n(\alpha x)$$

से स्पष्ट है कि n = 0,1,2,.... होने के अनुसार प्राप्त तरंग फलन भिन्न होंगे जो सरल आवर्ती दोलक ,के लिये आइगेन फलन कहलाते हैं। (आगे हम देखेंगे कि इन आइगेन फलनों के संगत ऊर्जायें भी भिन्न भिन्न होंगी।)

 N_n का मान प्रसामान्यीकरण प्रतिबंध $\int\limits_{-\infty}^{\infty}\left|\psi_n(x)^2\right|dx=1$ का उपयोग करने पर निम्नानुसार प्राप्त होता है।

$$N_{n} = \left[\frac{\alpha}{\sqrt{\pi} \, 2_{n} |n|} \right]^{1/2} \qquad \dots (11.14)$$

अतः सरल आवर्ती दोलित्र के तरंग फलनों हेतु सामान्य सूत्र निम्नांकित समीकरण दवारा दिया जाता है।

$$\psi_n(x) = \left[\frac{\alpha}{\sqrt{\pi} \, 2^n |n|}\right]^{1/2} \exp\left(-\frac{\alpha^2 \, x^2}{2}\right) H_n(\alpha \, x)$$

अनुच्छेद 11.2 में दिये अनुसार हर्मिटी बहु पदों के प्रथम चार मानों के संगत आइगेन फलन निम्नान्सार होंगे।

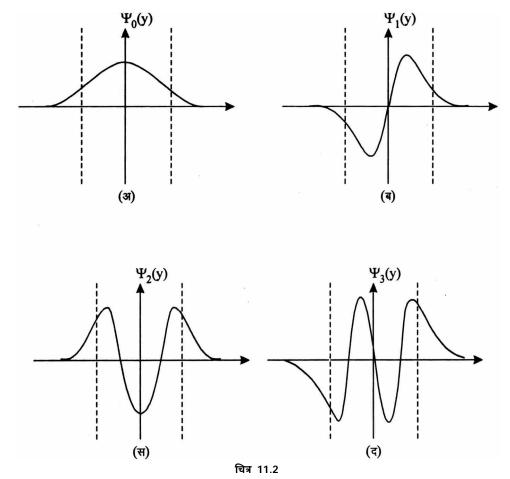
$$\psi_0(x) = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2} \exp\left(-\frac{\alpha^2 x^2}{2}\right)$$

$$\psi_1(x) = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2} \sqrt{2}(\alpha x) \exp\left(\frac{-\alpha^2 x^2}{2}\right)$$

$$\psi_2(x) = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2} \frac{1}{\sqrt{2}} \left[2(\alpha^2 x^2) - 1\right] e\left(\frac{-\alpha^2 x^2}{2}\right)$$

$$\psi_3(x) = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2} \frac{1}{\sqrt{3}} \left[2\alpha^2 x^2 - 3\alpha x\right] e\left(\frac{-\alpha^2 x^2}{2}\right)$$

(उपरोक्त समीकरणों में αx के स्थान पर बहुधा y भी प्रयोग किया जाता है।) उपरोक्त तरंग फलनों के ग्राफीय प्रतिरूप चित्र 11.2 (अ, ब, स, द) में प्रदर्शित किये गये हैं।

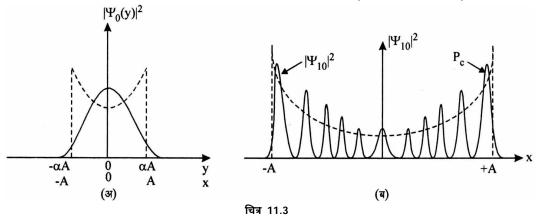


क्वांटम यांत्रिक सरल आवर्ती दोलित्र का व्यवहार कुछ अर्थी में चिरसम्मत यांत्रिक दोलित्र के व्यवहार से भिन्न है। चिरसम्मत दोलित्र के लिये इसकी किसी क्षण साम्य स्थिति से दूरी, $x = A\sin\omega t$ से व्यक्त की जा सकती है किन्तु क्वांटम दोलित्र के लिये ऐसा संबंध लिखना संभव नहीं है। क्वांटम दोलित्र के लिये केवल इसकी स्थिति x पर अन्तराल dx में पाये जाने की प्रायिकता P(x) dx ही ज्ञात की जा सकती है जहाँ P(x) dx = $|\psi(x)|^2 dx$ द्वारा दी जाती है।

एक चिरसम्मत दोलित्र के लिये |x|>A के लिये कण के पाये जाने की कोई संभावना नहीं है अतः $x=\pm A$ कण के लिये वर्तन बिंदु कहलाते हैं। दूसरी ओर क्वांटम यांत्रिक दोलित्र के लिये P(x) dx का मान x>A पर भी परिमित एवं अशून्य होता है। इस कारण इसकी ऐसे क्षेत्र में भी उपस्थित संभव है जो चिरसम्मत यांत्रिकी के अनुसार वर्जित है।

चित्र 11.3 (अ) में n=0 के संगत क्वांटम यांत्रिक दोलित्र का प्रायिकता घनत्व प्रदेशित है। इसके संगत चिरसम्मत दोलित्र के लिये प्रायिकता घनत्व को बिन्दुिकत वक्र से दर्शाया गया है। चिरसम्मत गित के लिये प्रायिकता घनत्व का मान वर्तन बिंदुओं के लिये अधिकतम है क्योंकि वहां इसकी गित मंदित होती है ओर साम्य स्थिति पर न्यूनतम है जहाँ इसकी गित तीव्र होती है। इसके विपरीत क्वांटम यांत्रिक (n=0) दोलित्र में प्रायिकता घनत्व

 $\left|\psi_{0}(x)\right|^{2}dx, x=0$ पर अधिकतम है तथा इसके दोनों ओर तेजी से घट रहा है तथा $x=\pm A$ पर भी शून्य नहीं है। यह एक विशिष्ट क्वांटम यांत्रिक परिणाम है। चित्र 11.3 (ब) में n=10 के लिये $\left|\psi_{10}(x)\right|^{2}dx$ को प्रदर्शित किया गया है जो तीव्रता से घट बढ रहा है किन्तु इसका औसत मान सिन्निकट रूप से चिरसम्मत प्रायिकता के समान है। इससे स्पष्ट है कि n के वृहत् मानों के लिये क्वांटम यांत्रिक दोलित्र व चिरसम्मत दोलित्र के व्यवहार में असामनता कम होती जाती है। यह परिणाम बोर के संगति नियम के अनुरूप है जिसके अनुसार वृहत् क्वांटम संख्याओं के लिये क्वांटम निकाय चिरसम्मत निकायों जैसा व्यवहार प्रदर्शित करते हैं।



चित्र 11.3 (अ,ब) में क्वांटम यांत्रिक दोलित्र के n=0 तथा n=10 के संगत प्रायिकता घनत्व को दर्शाया गया है। तुलना हेतु उसी आयाम व ऊर्जा के चिरसम्मत प्रायिकता घनत्व को बिन्दुकित रेखाओं से दर्शाया गया है।

उदाहरण 11.1 किसी एक विमीय क्वांटम आवर्ती दोलक के लिये अवस्था n=1 के संगत तरंग फलन के लिये प्रसामान्यीकरण नियतांक ज्ञात कीजिये। दिया है $\int\limits_{-\infty}^{\infty}x^2\exp(-\alpha^2x^2)=\frac{1}{2}\frac{\sqrt{\pi}}{\alpha^3}$

हल : क्वांटम दोलित्र के लिये आइगेन फलन के सामान्य सूत्र

$$\psi_n(x) = N_n \exp\left(-\frac{\alpha^2 x^2}{2}\right) H_n(\alpha x) \quad \forall$$

n=1 के लिये

$$\psi_1(x) = N_1 \exp\left(-\frac{\alpha^2 x^2}{2}\right) H_1(\alpha x)$$

िकन्तु $H_1(\alpha x) = 2\alpha x$

$$\therefore \qquad \psi_1(x) = N_1 \exp\left(-\frac{\alpha^2 x^2}{2}\right) 2\alpha x$$

ਤਾਰ:
$$\int_{-\infty}^{\infty} |\psi_1(x)|^2 dx = 4\alpha^2 |N_1|^2 \int_{-\infty}^{\infty} x^2 \exp(\alpha^2 x^2) dx$$

$$\therefore$$
 $1=\left|N_1\right|^24lpha^2rac{1}{2}rac{\sqrt{\pi}}{lpha^3}$ ਤਾਰ: $N_1\left\{rac{lpha}{2\sqrt{\pi}}
ight\}^{1/2}$

उदाहरण 11.2 एक विमीय सरल आवर्त दोलित्र के लिये n=0 क्वांटम संख्या के संगत x का प्रत्याशा मान ज्ञात कीजिये।

हल: किसी चर राशि का प्रत्याशा मान

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx$$

जहाँ $\psi(x)$ प्रसामान्यीकरण आइगेन फलन है। एक विमीय सरल आवर्ती दोलित्र के लिये क्वांटम संख्या n=0 के लिये

$$\psi(x) = \psi_0(x) = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2} \exp\left(-\frac{\alpha^2 x^2}{2}\right)$$

$$\therefore \qquad \langle x \rangle = \frac{\alpha}{\sqrt{\pi}} \cdot \int_{-\infty}^{\infty} \exp(-\alpha^2 x^2) dx$$

=0 [∴उपरोक्त समाकल सममित सीमाओं के मध्य समविषम फलनों के गुणनफल का समाकल होने से शून्य होता है।]

अतः x का प्रत्याशा मान शून्य है।

बोध प्रश्न (Self assessment questions)

3. एक विमीय क्वांटम सरल आवर्ती दोलित्र के लिए क्वांटम संख्या n=0 के संगत प्रायिकता घनत्व चिरसम्मत प्रायिकता घनत्व से किस प्रकार भिन्न होता \rat{k} ?

11.4 ऊर्जा आइगेन मान (Energy Eigen Values)

अनुच्छेद 11.2 की सहायता से आप जानते हैं कि एक विमीय सरल आवर्ती दोलित्र के लिये श्रीडिंजर समीकरण को हल कर स्वीकार्य तरंग फलन प्राप्त करने के लिये λ पर आवश्यक प्रतिबंध निम्न है (समीकरण (11.9) व (11.10) का पुनरावलोकन करें)।

$$\lambda=2n+1$$
 जहाँ $n=0,1,2,....$ चूंकि $\lambda=\frac{2E}{\hbar\omega}$ [देखे समीकरण 11.6]

अतः n वीं क्वांटम संख्या के संगत एक विमीय सरल आवर्ती दोलक की ऊर्जा E_n के लिये

$$rac{2E_n}{\hbar\omega}=\lambda=2n+1$$

या
$$E_n=\left(n+rac{1}{2}
ight)\!\hbar\omega=\!\left(n+rac{1}{2}
ight)\!hv \qquad ...(11.15)$$

जहाँ $v=\frac{\omega}{2\pi}$ दोलित्र की आवृत्ति है। समीकरण (11.15) चिरसम्मत कोणीय आवृत्ति ω (आवृत्ति v) वाले सरल आवर्ती दोलित्र के ऊर्जा आइगेन मान व्यक्त करती है।

उपरोक्त समीकरण से स्पष्ट है कि (i) क्वांटम यांत्रिकी के अनुसार एक वि

(i) क्वांटम यांत्रिकी के अनुसार एक विमीय दोलित्र की ऊर्जा क्वांटीकृत होती है। क्रमागत ऊर्जा स्तरों में अन्तराल समान तथा $\hbar\omega(hv)$ के बराबर होता है। इन ऊर्जा स्तरों को चित्र 11.4 में प्रदर्शित किया गया है यहाँ ध्यात्वय है कि चिरसम्मत दोलित्र के लिये ऊर्जा E का मान सतत् रूप से परिवर्तित होता है।

(ii) n=0 के लिये

$$E_0 = \frac{1}{2} \hbar \omega = \frac{1}{2} h \nu$$

$$n = 3$$

$$h\omega$$

$$n = 2$$

$$h\omega$$

$$n = 1$$

$$h\omega$$

$$n = 1$$

$$E_1 = 3/2h\omega$$

$$n = 0$$

$$E_0 = 1/2h\omega$$

क्वांटम दोलित्र के लिये ऊर्जा का यह न्यूनतम संभव मान है। यह मान शून्य बिन्दु ऊर्जा कहलाती है। यह पूर्णतः क्वांटम यांत्रिकीय प्रभाव है। यहाँ यह महत्वपूर्ण है कि चिरसम्मत दोलित्र के लिये न्यूनतम ऊर्जा E=0 होती है। (ऐसा ही परिणाम एक विमीय बाक्स में स्थित कण के लिये प्राप्त किया जा चुका है।)

इस अध्याय में हमनें अध्ययन को एक विमीय सरल आवर्ती दोलक तक ही सीमित रखा है। किसी त्रिविमीय सरल आवर्ती दोलक के लिये ऊर्जा आइगेन मान व्यंजक

$$E_n = \left(n + \frac{3}{2}\right)\hbar\omega \qquad \dots (11.16)$$

द्वारा दिये जाते हैं।

बोध प्रश्न (Self assessment questions)

4.	एक विमीय सरल आवर्ती दोलित्र के लिए क्वांटम संख्या $n=6$ व 8 के संगत
	ऊर्जा आइगेन मान लिखिये।
5.	एक विमीय सरल आवर्ती दोलित्र के लिए ऊर्जा का क्वांटम कितना होता है?

11.5 शून्य बिन्दु ऊर्जा (Zero Point Energy)

पिछले अनुच्छेद के अध्ययन से आप यह समझ गये होंगे कि क्वांटम यांत्रिक दोलित्र की ऊर्जा विविक्त होती है। यह एक न्यूनतम ऊर्जा $E_0=\frac{1}{2}\hbar\omega$ सिहत समान ऊर्जा अन्तराल $\hbar\omega$ वाले ऊर्जा स्तरों का अनन्त समुच्चय होती है। एक विमीय सरल आवर्ती दोलक की न्यूनतम ऊर्जा स्तर (n=0) पर ऊर्जा $\frac{1}{2}\hbar\omega$ शून्य बिन्दु ऊर्जा कहलाती है। जैसा पूर्व में भी उल्लेखित किया जा चुका है कि चिरसम्मत यांत्रिकी के अनुसार दोलित्र की न्यूनतम ऊर्जा शून्य होती है, इस प्रकार शून्य बिन्दु ऊर्जा विशुद्ध क्वांटम यांत्रिकीय प्रभाव है। शून्य बिन्दु ऊर्जा संबंधी यह परिणाम अनिश्चितता सिद्धांत के अनुरूप है। इसे निम्नानुसार समझा जा सकता है।

चिरसम्मत दोलित्र के लिये न्यूनतम ऊर्जा E=0 साम्य स्थिति x=0 पर प्राप्त होती है जहाँ इसका रेखीय संवेग भी $p_x=0$ होता है। चिरसम्मत यांत्रिकी में जहाँ किसी कण की स्थिति x तथा संवेग p_x का एक ही समय में यथीथ मापन संभव है वही क्वांटम यांत्रिकी के अनुसार इन दोनों राशियों का एक साथ यथीथ मापन संभव नहीं हैं। अनिश्चितता सिद्धांत के अनुसार $\Delta p_x \Delta x \geq \frac{\hbar}{2}$ होता है। इसकी सहायता से अब हम एक विमीय दोलित्र की न्यूनतम ऊर्जा का अनुमान लगाते हैं।

एक विमीय सरल आवर्ती दोलक की कुल ऊर्जा

$$E = \frac{p_x^2}{2m} + \frac{1}{2}kx^2 \qquad \dots (11.17(3f))$$

द्वारा दी जाती है [देखें समीकरण (11.4), तथा $\frac{1}{2}mv_x^2 = \frac{p_x^2}{2m}$ रखने पर]। यदि दोलित्र के न्यूनतम ऊर्जा स्तर में स्थिति एवं संवेग में अनिश्चितताओं Δx व Δp_x को क्रमशः x व p_x की कोटि का माना जाये तो [11.17(अ)] से

$$E = \frac{\Delta p_x^2}{2m} + \frac{1}{2}k\,\Delta x^2 \qquad ...(11.17(\vec{s}))$$

किन्तु अनिश्चितता सिद्धांत से

$$\Delta p_x \Delta x = \frac{\hbar}{2} \qquad \dots (11.18(3f))$$

समीकरण (11.18(अ)) से का मान समीकरण (11.17(ब)) में रखने पर

$$E = \frac{1}{2} \left[\frac{\hbar^2}{4m(\Delta x)^2} + k(\Delta x)^2 \right]$$
 ...(11.18(ब))

जिसके न्यूनतम होने के लिये आवश्यक है कि

$$\displaystyle \frac{dE}{d\Delta x} = 0$$

अर्थात
$$\frac{1}{2} \left[\frac{-\hbar^2(2)}{(\Delta x)^3} + 2k \, \Delta x \right] = 0$$

या
$$(\Delta x)^2 = \frac{\hbar}{2\sqrt{mk}} \qquad ...(11.19)$$

उपरोक्त समीकरण का प्रयोग समीकरण (11.18(ब)) में करने पर

$$E_{\min} = \frac{1}{2} \left[\frac{\hbar^2}{4m} \frac{2\sqrt{mk}}{\hbar} + k \frac{\hbar}{2\sqrt{mk}} \right]$$

$$= \frac{1}{2} \left[\frac{\hbar}{2} \sqrt{\frac{k}{m}} + \frac{\hbar}{2} \sqrt{\frac{k}{m}} \right] = \frac{1}{2} \hbar \sqrt{\frac{k}{m}}$$

$$E_{\min} = \frac{1}{2} \hbar \omega \quad \left\{ \because \omega = \sqrt{k/m} \right\}$$

या

स्पष्टतः शून्य बिन्द् ऊर्जा संबंधी अवधारणा हाइजेनबर्ग अनिश्चितता सिद्धांत के अन्रूप है। यदि दोलित्र की न्यूनतम ऊर्जा शून्य होती तो यह आवश्यक था कि समीकरण (11.17) में x व p दोनों का मान तात्क्षणिक रूप से एक साथ शून्य होता जो कि अनिश्चितता के सिद्धांत के अनुसार संभव नहीं है।

उदाहरण 11.3 बल नियताँक 10 न्यूटन/मी॰ की एक स्प्रिंग से 1 ग्राम के कण को लटकाने पर बनने वाले दोलन तंत्र की शून्य बिन्द् ऊर्जा की गणना कीजिये।

हल: निकाय की शून्य बिन्द् ऊर्जा

$$E_0 = \frac{1}{2}\hbar\omega = \frac{1}{2}\hbar\left(\frac{k}{m}\right)^{1/2}$$

k=10 न्यूटन/मी॰ तथा m=10⁻³ किग्रा दिया है -

$$E_0 = \frac{1}{2} \times 1.05 \times 10^{-34} \times \sqrt{\frac{10}{10^{-3}}}$$

= 5.25×10⁻³³ ਯੂਲ

अतः दोलन तंत्र की शून्य बिन्दु ऊर्जा 5.25×10^{-33} जूल है।

बोध प्रश्न (Self assessment questions)

क्वांटम दोलित्र के लिए न्यूनतम ऊर्जा का शून्य मान क्यों संभव नहीं है?

11.6 समता-सममित तथा प्रतिसममित तरंग फलन एवं ग्राफीय निरूपण (Symmetric and Antisymmetric Wave Functions and Graphical Represent ation)

एक विमीय स्थितियों के लिये समता संकारक P एक ऐसा संकारक है जो x के किसी फलन $\psi(x)$ पर संक्रिया कर x को -x में परिवर्तित कर देता है। इसे P से निरूपित करते हैं।

$$P\psi(x) = \psi(-x)$$
 ...(11.20)

एक विमीय श्रोडिंजर समीकरण

$$H\psi(x) = E\psi(-x)$$

मे हैमिल्टनी संकारक H निम्नानुसार होता है।

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

यदि कण से संबद्घ विभव क्षेत्र V(x), x के सापेक्ष सममित हो अर्थात

$$V(x)=V(-x)$$

हो तो

$$H(-x) = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(-x)$$

अतः सममित विभव क्षेत्रों के लिये H(x) भी x का समफलन होता है। एक विमीय सरल आवर्ती दोलित्र के लिये चूंकि $V(x)=\frac{1}{2}kx^2,x$ का समफलन है, अतः एक विमीय सरल आवर्ती दोलित्र में भी H(x)=H(-x) सत्य है। अतः

$$PH(x)\psi(x) = H(-x)\psi(-x)$$

$$= H(x)\psi(-x)$$

$$PH(x)\psi(x) = H(x)P\psi(x) \qquad ...(11.21)$$

अतः एक सममित विभव क्षेत्र में गित कर रहे कण के लिये हैमिल्टनी संकारक तथा समता संकारक में क्रम विनिमय होता है।

जब H(x), x का एक समफलन है तो $\psi(x)$ व $\psi(-x)$ दोनों ही H संकारक के लिये ऊर्जा मान E के लिये आइगेन फलन होते हैं क्योंकि

स्था
$$H(x)\psi(x) = E\psi(x)$$

तथा $H(-x)\psi(-x) = E\psi(-x)$
परन्तु $H(-x) = H(x)$
 $\therefore H(x)\psi(-x) = E\psi(-x)$

अतः $\psi(x)$ व $\psi(-x)$ दोनों ही संकारक H(x) के लिये ऊर्जा E के संगत आइगेन फलन हैं।

यदि ऊर्जा स्तर अनपभ्रष्ट हैं तो आइगेन मान E के लिये एक ही स्वतंत्र आइगेन फलन संभव है। ऐसी स्थिति में $\psi(x)$ व $\psi(-x)$ स्वतंत्र नहीं होंगे एवं इनमें रेखीय संबंध होगा जिसे निम्न प्रकार लिखा जाता है।

$$\psi(-x) = \lambda \psi(x) \qquad \dots (11.22)$$

यहाँ λ एक नियतांक है। अब x को -x से प्रतिस्थापित करने पर

$$\psi(x) = \lambda \psi(-x) \qquad \dots (11.23)$$
$$= \lambda \lambda \psi(x)$$

अत:
$$\psi(x) = \lambda^2 \psi(x)$$
(11.24)

इस कारण $\lambda^2 = 1$

या $\lambda = \pm 1$

तथा
$$\psi(x) = \pm \psi(-x)$$
 ...(11.25)

(i) यदि
$$\lambda = 1$$
 है तो $\psi(x) = \psi(-x)$...(11.26(a))

(ii) यदि
$$\lambda = -1$$
 है तो $\psi(x) = -\psi(-x)$...(11.26(b))

ऐसे तरंग फलन जिनके लिये $\psi(x) = \psi(-x)$ होता है सममित तरंग फलन कहलाते हैं। ऐसे तरंग फलनों पर समता संकारक से संक्रिया करने पर

$$P\psi(x) = \psi(-x) = \psi(x)$$

होने से यह कहा जाता है कि इनकी समता सम होती है अर्थात सममित तरंग फलनों के लिये समता संकारक का आइगेन मान +1 होता है।

ऐसे तरंग फलन जिनके लिये $\psi(x) = -\psi(-x)$ होता है, प्रतिसममित तरंग फलन कहलाते हैं। इन तरंग फलनों के लिये

$$P\psi(x)=\psi(-x)=-1\psi(x)$$

होने से इनकी समता विषम होती है, अर्थात समता संकारक का आइगेन मान -1 होता है।

सरल आवर्ती दोलित्र के लिये जैसा पूर्व में उल्लेखित किया जा चुका है कि विभव क्षेत्र सम होने के कारण H व P में क्रम विनिमय होता है। इस कारण H के आइगेन फलन P के भी आइगेन फलन होते हैं। सरल आवर्ती दोलित्र के लिये तरंग फलन $\psi_n(x)$ अनुच्छेद 11.2 में वर्णित किये जा चुके हैं। इनके अवलोकन से स्पष्ट है कि, n=0, तथा n=2 से संबंधित तरंग फलन सममित हैं तथा इनकी समता सम है। n=1 व n=3 से संबंधित तरंग फलन प्रतिसममित है तथा इनकी समता विषम है। इन तरंग फलनों का ग्राफीय निरूपण चित्र 11.2 में किया जा चुका है।

(i) $\psi = A \sin x$ (ii) $\psi = B \cos x$

उदाहरण 11.4 सिद्ध कीजिये कि समता संकारक के आइगेन मान ± 1 होते हैं। **हल**: माना कि $\psi(x)$, समता संकारक P का आइगेन फलन है तथा आइगेन मान λ

अतः
$$P\psi(x) = \lambda \psi(x)$$

एक बार प्न: P से संक्रिया करने पर

है।

समता संकारक की परिभाषा से

$$P\psi(x) = \psi(-x)$$

एक बार प्न P से संक्रिया करने पर

$$P^2\psi(x) = P\psi(-x)$$

या $P^2\psi(x) = \psi(x)$ (ii)

समीकरणों (i) व (ii) की तुलना करने पर

$$\lambda^2 = 1$$
$$\lambda = \pm 1$$

या

 $\lambda = \pm 1$

जो कि अभीष्ट परिणाम है।

11.7 सारांश (Summary)

• एक विमीय सरल आवर्ती दोलक के लिये स्थितिज ऊर्जा $V(x) = \frac{1}{2}m\omega^2 x^2$ होती है जिससे इसके लिये श्रोडिंजर समीकरण

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} \left(E - \frac{1}{2} m\omega^2 x^2 \right) \psi = 0$$

• चर राशियों $\alpha = \sqrt{\frac{m\omega}{\hbar}}, \ \lambda = \frac{2E}{\hbar\omega}$

के प्रयोग से y=xlpha लेने पर सरल आवर्ती दोलित्र की श्रोडिंजर समीकरण का परिवर्तित स्वरूप

$$\frac{d^2\psi}{dx^2} + \left(\lambda - y^2\right)\psi = 0$$

प्राप्त होता है। जिसको हल करने पर तरंग फलन

$$\psi_n(y) = H_n(y) \exp\left(-\frac{y^2}{2}\right)$$

(जहाँ $H_n(y)$ हर्मिटी बहु पद है) प्राप्त होते हैं। श्रोडिंजर समीकरण का सामान्य हल

$$\psi_n(x) = N_n \exp\left(\frac{-\alpha^2 x^2}{2}\right) H_n(\alpha x)$$

होता है।

सरल आवर्ती दोलित्र के ऊर्जा स्तर विविक्त होता है जिन्हें सामान्य सूत्र

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega \qquad n = 0, 1, 2, \dots$$

से व्यक्त किया जाता है।

तरंग फलन $\psi(x) = \psi(-x)$ सममित तथा $\psi(x) = -\psi(-x)$ प्रतिसममित तरंग फलन कहलाते हैं। सममित तरंग फलनों की समता सम एवं प्रतिसममित तरंग फलनों की समता विषम होती हैं।

11.8 शब्दावली (Glossary)

अनिश्चितता सिद्धांत	Uncertainty principle
आइगेन ऊर्जा	Eigen energy
आइगेन फलन	Eigen function
प्रायिकता	Probability
वर्तन बिन्दु	Turning points
शून्य बिन्दु ऊर्जा	Zero point energy
समता	Parity
हर्मिटी बहु पद	Hermite polynomial

11.9 संदर्भ ग्रन्थ (Reference Books)

एस एस रावत एवं	प्रारम्भिक क्वान्टम यांत्रिकी	कॉलेज बुक हाऊस, जयपुर
सरदार सिंह	एवं स्पेक्ट्रोस्कोपी	

11.10 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

1. कुल ਤਗੀ E= गतिज ਤਗੀ (K)+ स्थितिज ਤਗੀ V

$$= \frac{1}{2}mv^{2} + \frac{1}{2}m\omega^{2}x^{2} = \frac{px^{2}}{2m} + \frac{1}{2}m\omega^{2}x^{2}$$

- λ का मान (2n + 1) होना चाहिये।
 (यहाँ n=0,1,2,...)
- 3. चिरसम्मत प्रायिकता घनत्व वर्तन बिंदुओ पर अधिकतम होता है जबिक क्वांटम संख्या n=1 के लिये क्वांटम यांत्रिक प्रायिकता घनत्व स्थिति x=0 पर अधिकतम होता है। साथ

ही कण के |x|>A के बाहर पाये जाने के लिये भी क्वांटम प्रायिकता घनत्व शून्य नहीं होता है जबकि चिरसम्मत प्रायिकता शून्य होती है।

4.
$$E_{n} = \left(n + \frac{1}{2}\right)\hbar\omega$$

$$\therefore E_{6} = \left(6 + \frac{1}{2}\right)\hbar\omega = \frac{13}{2}\hbar\omega$$

$$E_{8} = \left(8 + \frac{1}{2}\right)\hbar\omega = \frac{17}{2}\hbar\omega$$

- 5. क्रमागत ऊर्जा स्तर समअन्तराल $\hbar\omega$ से पृथक होते हैं इस कारण ऊर्जा का क्वांटम $\hbar\omega$ होगा।
- 6. कुल ऊर्जा $E = \frac{px^2}{2m} + \frac{1}{2}m\omega^2x^2$ के शून्य होने के लिये आवश्यक है कि जिस क्षण, $p_x = 0$ हों उसी क्षण x = 0 हों जो कि अनिश्चतता सिद्धांत के दवारा अनुमत नहीं है।
- 7. समता संकारक P किसी तरंग फलन $\psi(x)$ पर संक्रिया कर x को -x में परिवर्तित करता है, अर्थात

$$P\psi(x) = \psi(-x)$$

8. चूंकि $\sin x = -\sin(-x)$ व $\cos x = \cos(-x)$ अतः तरंग फलन $\psi(x) = A\sin x$ प्रतिसममित तथा तरंग फलन $\psi(x) = B\cos x$ सममित होगा।

11.11 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. एक विमीय रेखिक दोलित्र के लिये हैम्लिटनी संकारक लिखो।
- 2. एक विमीय सरल आवर्ती दोलित्र के लिये क्वांटम संख्या n=1 के संगत तरंग फलन का ग्राफीय निरूपण दीजिये।
- 3. सममित और प्रतिसममित तरंग फलन क्या होते हैं?
- 4. एक विमीय आवर्ती दोलक की प्रथम चार अवस्थाओं की समता क्या है?

निबन्धात्मक प्रश्न (Essay type questions)

- 5. एक विमीय आवर्ती दोलित्र के लिये श्रोडिंजर समीकरण को हल कीजिए एवं दोलित्र के ऊर्जा स्तर ज्ञात कीजिए। शून्य बिन्दु ऊर्जा के महत्व को समझाइए।
- 6. समता की अवधारणा की विवेचना कीजिए।
- 7. सरल आवर्त दोलित्र की शून्य बिन्दु ऊर्जा का क्या तात्पर्य है? अनिश्चितता का सिद्धांत शून्य बिन्दु ऊर्जा की व्याख्या करने में किस प्रकार सहायक है?

आंकिक प्रश्न (Numerical questions)

8. 10000 डायन प्रति मीटर बल नियतांक वाले एक स्प्रिंग में एक ग्राम द्रव्यमान का एक कण लटकाकर दोलन कराया जाता है। इसके शून्य बिन्दु ऊर्जा की गणना करो।

(उत्तर - 5.275 X10⁻³⁴ जूल)

9. एक दोलक में एक ग्राम पिण्ड 20 सेमी. लम्बी द्रव्यमान रहित डोरी से लटका हुआ है। दोलक का आवर्त काल एक सेकण्ड है। शून्य बिन्दु ऊर्जा की गणना कीजिए।

इकाई-12

गोलीय सममित विभव

(Spherically Symmetric Potential)

इकाई की रूपरेखा

- 12.0 उद्देश्य
- 12.1 प्रस्तावना
- 12.2 गोलीय सममित विभव
- 12.3 गोलीय सममित विभव के लिये श्रोडिंजर समीकरण
- 12.4 चर राशियों का पृथक्करण
- 12.5 सारांश
- 12.6 शब्दावली
- 12.7 संदर्भ ग्रन्थ
- 12.8 बोध प्रश्नों के उत्तर
- 12.9 अभ्यासार्थ प्रश्न

12.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के पश्चात आप

- गोलीय सममित विभव क्या है? समझ सकेंगे;
- गोलीय सममित विभव के लिये श्रोडिंजर समीकरण लिखना सीख सकेंगें:
- चर राशियों के पृथक्करण की विधि से गोलीय सममित विभव हेतु श्रोडिंजर समीकरण का तीन स्वतंत्र चरों पर आधारित अवकल समीकरणों में सरलीकरण करने में सक्षम हों सकेंगे।

12.1 प्रस्तावना (Introduction)

पिछली इकाई में आपने सरल आवर्ती दोलित्र के लिये श्रोडिंजर समीकरण तथा उसके हल का अध्ययन किया। इसके अतिरिक्त आपने सरल आवर्ती दोलित्र के लिये ऊर्जा आइगेन मान, तरंग फलन, शून्य ऊर्जा इत्यादि महत्वपूर्ण तथ्यों की जानकारी भी प्राप्त की।

अब हम इस बात का अध्ययन करेंगे कि गोलीय समित विभव क्षेत्र में गित कर रहे कण के लिये श्रोडिंजर समीकरण को गोलीय धुवीय निर्देशांकों में किस प्रकार लिखा जाता है। इसके उपरान्त हम चर राशियों के पृथक्करण की विधि को समझेंगे जिस की सहायता से हम इस श्रोडिंजर समीकरण को तीन अवकल समीकरणों में परिवर्तित करेंगे जो क्रमशः धुवीय निर्देशांकों r,θ व ϕ पर आश्रित होंगी। ये समीकरणें अगली इकाई (हाइड्रोजन परमाणु) के अध्ययन का आधार होगी।

इसके लिये सबसे पहले अनुच्छेद 12.2 में गोलीय सममित विभव के बारे में जानकारी दी गयी है। इस तरह के विभव के लिये श्रोडिंजर समीकरण को x,y,z चरों के रूप में तथा r, θ , ϕ के रूप में परिवर्तित करना अनुच्छेद 12.3 में बताया गया है। अनुच्छेद 12.4 में r, θ , ϕ चर राशियों का पृथक्करण कर तीन समीकरणें व्युत्पन्न की है।

12.2 गोलीय सममित विभव (Spherically Symmetric Potential)

गोलीय सममित विभव एक ऐसे विभव को कहते है जो केवल स्थिति सदिश r के परिमाण r पर निर्भर करे। दूसरे शब्दों में, यह भी यह भी कहा जा सकता है कि ऐसा विभव केवल मूल बिन्दु से दूरी पर ही निर्भर करता है, अर्थात

$$V(\vec{r}) = V(r)$$

गोलीय सममित विभव कोणीय निर्देशांकों θ व \emptyset पर निर्भर नहीं करता है। उदाहरण के लिये, किसी बिन्दु आवेश q से r पर दूरी पर स्थित किसी बिन्दु पर विद्युत विभव

$$V(r) = \frac{q}{4\pi \in_{0} r}$$

केवल इस बिन्दु आवेश एवं अभीष्ट बिंदु के मध्य दूरी पर निर्भर करता है, इस कारण यह गोलीय सममित विभव है। गोलीय सममित विभव को केन्द्रीय विभव (central potential) भी कहते हैं।

12.3 गोलीय सममित विभव के लिए श्रोडिंजर समीकरण

(Schrodinger Equation for a Spherically Symmetric Potential)

m द्रव्यमान के एक कण जो किसी गोलीय सममित विभव क्षेत्र $V\left(\vec{r}\right) = V(r)$ के अन्तर्गत गतिशील है, के लिये श्रोडिंजर समीकरण निम्नान्सार दी जाती है-

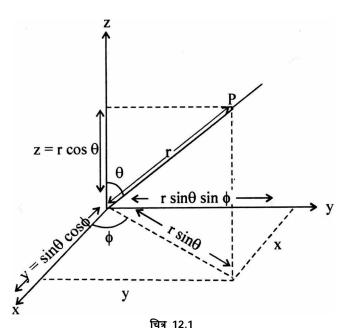
$$\left[\frac{-\hbar^2}{2m}\nabla^2 + V(r)\right]\psi(\vec{r}) = E\psi(\vec{r}) \qquad \dots (12.1(3f))$$

या
$$\nabla^2 \psi\left(\vec{r}\right) + \frac{2m}{\hbar^2} \left[E - V(r)\right] \psi\left(\vec{r}\right) = 0 \qquad ...(12.1(\vec{a}))$$

जहाँ E कण की कुल गतिज ऊर्जा है तथा $\psi\left(\overrightarrow{r}\right)$ कण की अवस्था का तरंग फलन है। गोलीय समित विभव की स्थिति में श्रोडिंजर समीकरण को गोलीय निर्देशांकों (r,θ,ϕ) में हल करना अधिक सुगम होता है अतः पहले हम समीकरण (12.1) को गोलीय निर्देशांकों में व्यक्त करेंगे।

चित्र 12.1 में दर्शाये अनुसार किसी बिन्दु P के गोलीय निर्देशांकों (r,θ,ϕ) व कार्तीय निर्देशांकों (x,y,z) में निम्नांकित सबंध होते है-

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$



उपरोक्त समीकरणों का उपयोग, लाप्लासियन संकारक ∇^2 के लिये कार्तीय निर्देशांकों में ज्ञात व्यंजक

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

के लिये करने पर इस संकारक के लिये गोलीय निर्देशांकों में निम्नांकित व्यंजक प्राप्त किया जा सकता है-

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \left(\frac{\partial^{2}}{\partial \phi^{2}} \right) \dots (12.2)$$

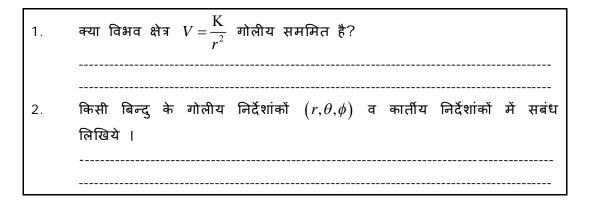
समीकरण (12.2) का प्रयोग समीकरण (12.1(ब)) में करने पर, गोलीय निर्देशांकों पद्धित में काल अनाश्रित श्रीडिंजर समीकरण निम्नांकित स्वरूप में प्राप्त होती है।

$$\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\left(\frac{\partial^{2}}{\partial\phi^{2}}\right)\right]\psi(r,\theta,\phi) + \frac{2m}{\hbar^{2}}\left[E - V(r)\right]\psi(r,\theta,\phi) = 0 \dots$$
(12.3)

उपरोक्त समीकरण में तरंग फलन $\psi\left(\vec{r}\right)=\psi(r,\theta,\phi)$ लिखा गया है तथा V(r) गोलीय सममित विभव है।

तरंग फलन $\psi(r,\theta,\phi)$ सर्वत्र परिमित और सतत होकर सीमान्त प्रतिबंधों का पालन करता है तथा प्रत्येक बिन्दु (r,θ,ϕ) पर एकमानी होता है । V(r) का गणितीय स्वरूप ज्ञात होने पर इस समीकरण को हल किया जा सकता है।

बोध प्रश्न (Self assessment questions)



12.4 चर राशियों का पृथक्करण (Separation of Variables)

गोलीय सममित विभव V(r) केवल एक चर r पर निर्भर करता है इस कारण गोलीय निर्देशांकों में व्यक्त श्रोडिंजर समीकरण (12.3) को त्रिज्य चर r तथा कोणीय चर (θ,ϕ) पर आश्रित दो स्वतंत्र अवकल समीकरणों में परिवर्तित किया जा सकता है। ऐसा करने के लिये हम तरंग फलन $\psi(r,\theta,\phi)$ को केवल त्रिज्या चर r पर निर्भर फलन R(r) तथा केवल कोणीय चरों (θ,ϕ) पर निर्भर फलन $Y(\theta,\phi)$ के गुणनफल के रूप में व्यक्त करते हैं- अर्थात

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi) \qquad \dots (12.4)$$

समीकरण (12.4) का उपयोग समीकरण (12.3) में करने पर

$$\frac{Y(\theta,\phi)}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial Rr}{\partial r} \right) + \frac{R(r)}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y(\theta,\phi)}{\partial \theta} \right)$$

$$\frac{R(r)}{r^{2} \sin^{2} \theta} \frac{\partial^{2} Y(\theta,\phi)}{\partial \phi^{2}} + \frac{2m}{\hbar^{2}} \left[E - V(r) \right] R(r) Y(\theta,\phi) = 0 \qquad ... (12.5)$$

उपरोक्त समीकरण को बांई ओर से $\frac{r^2}{R(r)Y(\theta,\phi)}$ से गुणन कर पुनः व्यवस्थित करने पर निम्न समीकरण प्राप्त होता है-

$$\frac{1}{R(r)} \left[\frac{\partial}{\partial r} \left(\frac{r^2 \partial R(r)}{\partial r} \right) + \frac{2mr^2}{\hbar^2} \left(E - V(r) \right) R(r) \right]$$

$$= -\frac{1}{Y(\theta, \phi)} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y(\theta, \phi)}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y(\theta, \phi)}{\partial \phi^2} \right] \dots (12.6)$$

समीकरण (12.6) में वाम पक्ष केवल चर r पर आश्रित है तथा दक्षिण पक्ष केवल कोणीय चर (θ,ϕ) पर आश्रित है। इस प्रकार यदि चर r में परिवर्तन करने पर दक्षिण पक्ष अपरिवर्तित रहता है तो समीकरण (12.6) की सत्यता के लिये वाम पक्ष भी अपरिवर्तित रहना चाहिये इसी तरह (θ,ϕ) में परिवर्तन करने पर वाम पक्ष भी अपरिवर्तित रहना चाहिये अतः दक्षिण पक्ष भी अपरिवर्तित रहना चाहिये। इस विवेचन से हम पाते हैं कि समीकरण (12.6) के

दोनों पक्ष एक ही नियतांक के तुल्य होने चाहिये। मान लीजिए यह नियतांक I(I+1) है (ऐसा लिखने का कारण अगले अध्याय में ज्ञात होगा)। अतः समीकरण (12.6) का निम्न दो समीकरणों में पृथक्करण हो जाता है।

या
$$\frac{1}{R(r)} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial R(r)}{\partial r} \right) + \frac{2mr^2}{\hbar^2} (E - V(r)) R(r) \right] = l(l+1)$$
या
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R(r)}{\partial r} \right) + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{\hbar^2 l(l+1)}{2mr^2} \right] R(r) = 0 \quad \dots 12.7)$$

$$-\frac{1}{Y(\theta, \phi)} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} (\theta, \phi) \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} (\theta, \phi) \right] = l(l+1)$$
या
$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} (\theta, \phi) \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} (\theta, \phi) = -l(l+1) Y(\theta, \phi) \quad \dots (12.8)$$

समीकरण (12.7) त्रिज्य अवकल समीकरण कहलाती है। यह केवल निर्देशांक r पर निर्भर है। यह समीकरण त्रिज्य तरंग फलन (radial wave function) R(r) के लिये है जो कण की कुल ऊर्जा E तथा स्थितिज ऊर्जा V(r) पर निर्भर करती है। इसके हल से कण के संभावित ऊर्जा मान ज्ञात किये जाते हैं।

समीकरण (12.8) निर्देशांकों θ एवं \emptyset पर आधारित अवकल समीकरण है। यह समीकरण कण की कुल ऊर्जा E एवं स्थितिज ऊर्जा पर अनाश्रित है, अर्थात तरंग फलन की कोणीय निर्भरता गोलीय सममिति दवारा निर्धारित होती है।

चर राशियों के पृथक्करण की विधि समीकरण (12.8) को भी दो अलग अलग अवकल समीकरणों में विभक्त करने हेत् काम ली जा सकती है। यदि मान लिया जाये कि

$$Y(\theta, \phi) = \Theta(\theta)\Phi(\phi) \qquad ... (12.9)$$

जहाँ $\Theta(\theta)$ व $\Phi(\phi)$ क्रमशः केवल θ व ϕ के फलन है। तब समीकरण (12.9) का प्रयोग समीकरण (12.8) में करने पर

$$\frac{\Theta(\phi)}{\sin \theta} \left(\frac{\partial}{\partial \theta} \sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + \frac{\Theta(\theta)}{\sin^2 \theta} \frac{\partial^2 \Theta(\phi)}{\partial \phi^2} = -l(l+1)\Theta(\theta)\Phi(\phi)$$

उपरोक्त समीकरण को बांयी ओर से $\dfrac{Sin^2 heta}{\Theta(heta) \; \Phi(\phi)}$ से गुणा करने पर प्राप्त परिणाम निम्न है।

$$\frac{Sin\theta}{\Theta(\theta)} \left(\frac{\partial}{\partial \theta} \sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + l(l+1)\sin^2 \theta = -\frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} \qquad \dots (12.10)$$

समीकरण (12.14) में वाम पक्ष केवल चर θ का फलन है तथा दक्षिण पक्ष केवल चर \emptyset का फलन है। अत दोनों पक्ष एक ही नियतांक, माना m^2 के बराबर होने चाहिये। अर्थात

$$\frac{1}{\sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + \left(l(l+1) - \frac{m^2}{\sin^2 \theta} \right) \Theta(\theta) = 0 \quad \dots \quad (12.11)$$

तथा
$$\frac{\partial^2 \Phi(\phi)}{\partial \phi^2} + m^2 \Phi(\phi) = 0 \qquad ...(12.12)$$

इस प्रकार हम पाते हैं कि गोलीय समित विभव के लिये चर राशियों के पृथक्करण की विधि से गोलीय निर्देशांकों द्वारा व्यक्त की गई श्रोडिंजर समीकरण, एक-एक स्वतंत्र चर राशियों r,θ व ϕ पर आश्रित तीन पृथक अवकल समीकरणों क्रमशः समीकरण (12.7), (12.11) एवं (12.12) में विभक्त की जाती है। इन समीकरणों के हल से क्रमशः R(r), $(\Theta)(\theta)$ व $\Phi(\phi)$ प्राप्त किये जाकर सम्पूर्ण तरंग फलन $\psi(r,\theta,\phi)=R(r)$ (Θ)(θ) प्राप्त किया जाता है।

12.5 सारांश (Summary)

- गोलीय सममित विभव केवल कण की स्थिति का फलन होते हैं।
- गोलीय सममित विभव के लिये श्रोडिंजर समीकरण को गोलीय निर्देशांकों में लिखा जाकर हल करना स्गम होता है।
- गोलीय निर्देशांकों में काल अनाश्रित श्रोडिंजर समीकरण का निम्न स्वरूप है।

$$\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right]\psi(r,\theta,\phi) + \frac{2m}{\hbar^{2}}\left[E - V(r)\right]\psi(r,\theta,\phi) = 0$$

• V(r) गोलीय सममित होने पर तरंग फलन $\psi(r,\theta,\phi)=R(r)\;Y(\theta,\phi)$

लिखा जाता है जहाँ R(r) केवल r तथा $Y(\theta,\phi)$ केवल θ व Ø पर आश्रित होते है। चर राशियों के पृथक्करण की विधि से श्रोडिंजर समीकरण को तीन अलग-अलग अवकलन समीकरणों जो तीन स्वंतत्र राशियों व में होती है, में विभाजित किया जाता है, फिर समीकरणों के हल से सम्पूर्ण तरंग फलन ज्ञात किया जाता है।

12.6 शब्दावली (Glossary)

गोलीय सममित विभव	Spherically symmetric potential
गोलीय निर्देशांक	Spherical coordnates
त्रिज्य तरंग फलन	Radial wave function

12.7 संदर्भ ग्रन्थ (Reference Books)

डा.एस.एस. रावत एंव प्रारम्भिक क्वान्टम यांत्रिकी एवं कॉलेज बुक हाउस, जयपुर डा. सरदार सिंह स्पेक्ट्रोस्कोपी

12.8 बोध प्रश्न (Answers to Self Assessment Questions)

- 1. हाँ, क्योंकि यह केवल r का फलन है।
- 2. $x = r \sin \theta \cos \phi$

$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta.$$

12.9 अभ्यासार्थ प्रश्न (Exercises)

अत्तिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. विभव क्षेत्र $U(r) = r^2 \sin \theta$ क्या गोलीय सममित है?
- 2. विभव क्षेत्र $U(r) = \frac{1}{r^3}$ क्या गोलीय सममित है?
- 3. विभव क्षेत्र $U(r) = \frac{1}{r^3}$ क्या गोलीय सममित है?
- 4. गोलीय निर्देशांक पद्धति में लाप्लासियन संकारक का व्यंजक लिखिए।
- 5. गोलीय सममित विभव से क्या आशय है?

निबन्धात्मक प्रश्न (Essay type question)

1. गोलीय सममित विभव क्षेत्र के लिये गोलीय ध्रुव निर्देशांकों मे श्रोडिंजर का समय अनाश्रित समीकरण लिखिये और समूर्ण तरंग फलन के तीन भागों के लिये इसको तीन अवकलन समीकरणों में विभक्त कीजिये।

इकाई-13

हाइड्रोजन परमाणु

(Hydrogen Atom)

इकाई की रूपरेखा

- 13.0 उद्देश्य
- 13.1 प्रस्तावना
- 13.2 कक्षीय कोणीय संवेग
 - $\hat{L_z}$ के आइगेन मान तथा आइगेन फलन
 - $13.2.2 \; \stackrel{\frown}{L^2}$ तथा $\stackrel{\frown}{L_z}$ ठंड के समकालिक आइगेन फलन
- 13.3 कोणीय संवेग का क्वान्टीकरण
- 13.4 गोलीय प्रसंवादी विश्लेषण
 - 13.4.1 कोणीय फलन अवकल समीकरण का हल
 - 13.4.2 गोलीय हार्मोनिक
- 13.5 हाइड्रोजन परमाण् के ऊर्जा स्तर
- 13.6 n=1 तथा n=2 के तरंगफलनों की आकृतियां
- 13.7 सारांश
- 13.8 शब्दावली
- 13.9 संदर्भ ग्रन्थ
- 13.10 बोध प्रश्नों के उत्तर
- 13.11 अभ्यासार्थ प्रश्न

13.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के बाद आप

- कक्षीय कोणीय संवेग के घटकों के मध्य क्रमविनिमय संबंध समझ सकेंगे;
- कक्षीय कोणीय संवेग के घटकों को गोलीय निर्देशांकों में ज्ञात कर सकने में समर्थ हो सकेंगे:
- С के आइगेन मान तथा आइगेन फलन ज्ञात कर सकेंगे;
- कोणीय संवेग के आकाशी या दिक् क्वांटीकरण की जानकारी प्राप्त कर सकेंगे;
- s,p,d अवस्थाओं के संगत गोलीय हार्मोनिक क्या होते हैं, जान सकेंगे;
- हाइड्रोजन परमाणु के ऊर्जा स्तरों तथा अनुमत संक्रमणों को समझने में समर्थ हो सकेंगें;
- ऊर्जा स्तर n=1 तथा n=2 के तरंग फलनों तथा प्रायिकता घनत्व की आकृतियाँ जात करने में सक्षम हो सकेंगे।

13.1 प्रस्तावना (Introduction)

पिछली इकाई 12 में आपने एकल इलेक्ट्रॉनी परमाणु के लिए गोलीय निर्देशांकों में श्रोडिन्जर समीकरण प्राप्त की तथा चार राशियों के पृथक्करण विधि द्वारा इस समीकरण से एक-एक स्वतंत्र चर राशियों r,θ,ϕ पर निर्भर तीन पृथक अवकलन समीकरणें प्राप्त की। इस इकाई के अनुच्छेद 13.2 में कक्षीय कोणीय संवेग संकारकों के लिए क्रम विनिमेय संबंधों का उपयोग करके, इसके घटकों को गोलीय निर्देशांकों के रूप में लिखेगें। संकारक \hat{L}_z तथा \hat{L}^2 के आइगन फलन तथा आइगेन मान ज्ञात करेंगे तथा क्वांटम संख्या । व m को परिभाषित करेंगे। अनुच्छेद 13.3 में आप कोणीय संवेग के सभी संभव अभिविन्यासों के बारे में ज्ञानकारी लेंगे। अनुच्छेद 13.4 में आप कोणीय फलन अवकल समीकरण के हल ज्ञात करेंगे तथा विभिन्न अवस्थाओं के गोलीय हार्मोनिक के मान ज्ञात करेंगे। अनुच्छेद 13.5 में आप हाइड्रोजन परमाणु के विभिन्न ऊर्जा स्तरों की ऊर्जा का मान ज्ञात करेंगे तथा वरण नियमों (selection rules) का अध्ययन करेंगे। अनुच्छेद 13.6 में आप n=1 तथा n=2 के लिए त्रिज्य तरंग फलन तथा त्रिज्य प्रायिकता घनत्व ज्ञात करेंगे। साथ ही कोणीय तरंग फलन, तथा कोणीय प्रायिकता घनत्व भी ज्ञात करेंगे।

13.2 कक्षीय कोणीय संवेग (Orbital Angular Momentum)

किसी मूल बिन्दु (origin) के सापेक्ष कण का कोणीय संवेग
$$\vec{L} = \vec{r} \times \vec{p} \qquad ...(13.1)$$

होता है, जहां \vec{r} कण का स्थिति सदिश तथा \vec{p} कण का संवेग है। एकल इलेक्ट्रॉन परमाणु में यदि \vec{r} तथा \vec{p} क्रमशः इलेक्ट्रॉन की स्थिति सदिश तथा संवेग सदिश है, तब \vec{L} , इलेक्ट्रॉन का कक्षीय कोणीय संवेग (orbital angular momentum) होता है। कोणीय संवेग एक प्रेक्षण योग्य (observable) राशि है। इकाई 4 में आप संवेग संकारक पढ़ चुके हैं जिसका उपयोग हम यहां पर करेंगे। कक्षीय कोणीय संवेग $\hat{\vec{L}}$ तथा इसके घटक संकारकों \hat{L}_x, \hat{L}_y व \hat{L}_z के मान निम्न होते हैं -

$$\vec{L}_{z} = i\hbar \vec{r} \times \nabla \qquad ... (13.2)$$

$$\vec{L}_{x} = y \hat{p}_{z} - z \hat{p}_{z} = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right),$$

$$\hat{L}_{y} = z \hat{p}_{x} - x \hat{p}_{z} = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right),$$

$$\hat{L}_{z} = x \hat{p}_{y} - y \hat{p}_{x} = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right), \qquad ... (13.3)$$

इकाई 5 में आप कोणीय संवेग के घटकों L_x , L_y , L_z के संगत संकारकों के लिए क्रम विनिमेय सम्बन्ध (commutative relations) भी पढ़ चुके हैं जो निम्न प्रकार से लिखे जाते हैं।

$$\begin{bmatrix} \hat{L}_x, \hat{L}_y \end{bmatrix} = i\hbar \hat{L}_z; \begin{bmatrix} \hat{L}_y, \hat{L}_z \end{bmatrix} = i\hbar \hat{L}_x; \begin{bmatrix} \hat{L}_z, \hat{L}_x \end{bmatrix} = i\hbar \hat{L}_y$$

$$\hat{\vec{L}} \times \hat{\vec{L}} = i\hbar \hat{\vec{L}}; \begin{bmatrix} \hat{L}^2, \hat{L}_x \end{bmatrix} = \begin{bmatrix} \hat{L}^2, \hat{L}_y \end{bmatrix} = \begin{bmatrix} \hat{L}^2, \hat{L}_z \end{bmatrix} = 0$$

उपरोक्त क्रम विनिमेय सम्बन्ध $\left[\stackrel{\hat{L}}{L^2}, \stackrel{\hat{L}}{L}\right] = 0$ से यह निष्कर्ष निकलता है कि $\stackrel{\hat{L}^2}{L^2}$ तथा $\stackrel{\hat{L}}{L}$ के किसी एक घटक के प्रत्याशा मान (expectation value), एक साथ सुनिश्चितता

तथा L के किसी एक घटक के प्रत्याशा मान (expectation value), एक साथ सुनिश्चितता के साथ जात किये जा सकते हैं अर्थात $\hat{L^2}$ तथा \hat{L} के उस घटक के समकालिक आइगेन फलन (simultaneous eigen function) जात किये जा सकते हैं। ये आइगेन फलन कोणीय संवेग की सभी अवस्थाओं की पूर्ण व्याख्या करते हैं। यहां पर हम \hat{L} के z घटक L_z का उपयोग कर रहे हैं।

इन आइगेन फलनों को ज्ञात करने के लिए कोणीय संवेग के घटकों को गोलीय निर्देशांकों (r,θ,ϕ) में ज्ञात करना अधिक सुविधाजनक होता है। अतः कार्तीय निर्देशांकों (x,y,z) तथा गोलीय निर्देशांकों (r,θ,ϕ) में निम्न सम्बन्धों का उपयोग करके $\hat{L}_x,\hat{L}_y,\hat{L}_z$ ज्ञात किये जाते हैं। इकाई 12 में आप निम्न सम्बन्ध पढ़ चुके हैं।

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$
 ... (13.5)

जहाँ $0 \le r \le \infty, 0 \le \theta \le \pi$ तथा $0 \le \phi \le 2\pi$

हल करने पर

$$\hat{L}_{x} = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{y} = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi} \qquad ... (13.6)$$

तथा

$$\hat{L}^{2} = \hat{L}^{2}_{x} + \hat{L}^{2}_{y} + \hat{L}^{2}_{z}$$

$$= -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right] \quad ... \quad (13.7)$$

13.2.1 $\overset{\circ}{L_z}$ के आइगेन मान तथा आइगेन फलन (Eigen value and Eigen function of $\overset{\circ}{L_z}$)

माना कि संकारक \hat{L}_z के आइगेन मान $m\hbar$ तथा इसके संगत आइगेन फलन $\Phi_{_m}(\phi)$ हैं, तब

$$\hat{L}_z \Phi_m(\phi) = m\hbar \Phi_m(\phi) \qquad ... (13.8)$$

इसमें $\hat{L}_z=-i\hbarrac{\partial}{\partial\phi}$ का उपयोग करने पर

$$-i\hbar \frac{\partial}{\partial \phi} \left[\Phi_m(\phi) \right] = m\hbar \Phi_m(\phi) \qquad ...(13.9)$$

या

$$\frac{\partial \Phi_m(\phi)}{\Phi_m(\phi)} = im\partial \phi$$

इसका समाकलन करने पर

$$\Phi_m(\phi) = Ae^{im\phi} \qquad ... \tag{13.10}$$

जहाँ नियतांक A प्रसामान्यीकृत (normalized) नियतांक है $\left(A=\frac{1}{\sqrt{2\pi}}\right)$ यद्यपि समीकरण (13.10) में m के सभी मानों के लिए समीकरण (13.8) संतुष्ट होती है लेकिन तरंग फलन Φ_m एकमानी (single valued) होना चाहिये, अर्थात्

$$\Phi_m(2\pi) = \Phi(0)$$

$$e^{i2\pi m} = 1 \qquad ...(13.11)$$

 $e^{-r}=1$ (13.11) होना चाहिये। इस प्रतिबन्ध के कारण m, शून्य या धनात्मक या ऋणात्मक पूर्णांक ही

हो सकता है। अतः संकारक $\stackrel{^{\wedge}}{L_{z}}$ के आइगेन मान $m\hbar$ होते हैं, जहाँ

$$m = 0, \pm 1, \pm 2, \dots$$
 ...(13.12)

होता है, तथा इनके संगत आइगेन फलन

$$\Phi_m(\phi) \frac{1}{\sqrt{2\pi}} e^{im\phi} \qquad \dots (13.13)$$

होता है।

13.2.2 $\hat{L^2}$ तथा $\hat{L_z}$ के समकालिक आइगेन फलन (Simultaneous eigen function of $\hat{L^2}$ and $\hat{L_z}$)

माना कि $\hat{L^2}$ और $\hat{L_z}$ संकारकों के समकालिक (simultaneous) आइगेन फलन $\psi_{\ell m}(\theta,\phi)$ हैं तथा $\hat{L^2}$ तथा $\hat{L_z}$ के आइगेन मान क्रमशः $l(l+1)\hbar^2$ तथा $m\hbar$ हैं तब इन संकारकों की अभिलक्षिणिक समीकरणें निम्न होंगी,

$$\hat{L}^{2} \psi_{lm}(\theta, \phi) = l(l+1) \ \hbar^{2} \psi_{lm}(\theta, \phi) \qquad(13.14)$$

$$\hat{L}_{z} \psi_{lm}(\theta, \phi) = m\hbar \psi_{lm}(\theta, \phi) \qquad \dots (13.15)$$

अब चूंकि $\hat{L_z}=-i\hbarrac{\partial}{\partial\phi}$ है अतः इसका आइगेन फलन

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

होता है, अतः $\psi_{\scriptscriptstyle lm}(heta,\phi)$ का रूप निम्न प्रकार का होना चाहिये

$$\psi_{lm}(\theta,\phi) = \Theta_{lm}(\theta)\Phi_{m}(\phi) \qquad ... (13.16)$$

जहां $\Theta(heta)$ केवल heta का फलन है जिस पर $\overset{\circ}{L_z} = -i\hbar \frac{\partial}{\partial \phi}$ का कोई प्रभाव नहीं होता

है।

$$\hat{L}_{z} \psi_{\ell m}(\theta, \phi) = -i\hbar \frac{\partial}{\partial \phi} \left(\Theta_{\ell m}(\theta) \Phi_{m}(\phi) \right)$$

$$= \Theta_{\ell m}(\theta) \left[-i\hbar \frac{\partial}{\partial \phi} \Phi_{m}(\phi) \right]$$

$$= m\hbar \Theta_{\ell m}(\theta) \Phi_{m}(\phi) \qquad ... (13.17)$$

संकारक L^2 के लिए गोलीय निर्देशांकों $(r, heta,\phi)$ में निम्न व्यंजक

$$\hat{L^2} = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

का उपयोग समीकरण (13.14) में करने पर

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\psi_{\ell_m}}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2\psi_{\ell_m}}{\partial\phi^2} = -\ell(\ell+1)\psi_{\ell_m} \dots (13.18)$$

इस समीकरण को हल करके आइगेन फलन $\psi_{lm}(\theta,\phi)$ ज्ञात किये जा सकते हैं। $\psi_{lm}(\theta,\phi)$ को गोलीय हार्मोनिक (spherical harmonics) कहते हैं। इस समीकरण को हल करने पर l के संभव मान प्राप्त होते हैं।

$$l = 0, 1, 2, \dots$$

तथा m के संभव मान

$$m = -l, -l + 1, \dots -1, 0, 1, \dots l - 1, l$$

प्राप्त होते हैं।

इस प्रकार $\psi_{lm}(\theta,\phi)$, संकारक $\hat{L^2}$ तथा $\hat{L_z}$ के आइगेन फलन है जिसके संगत आइगेन मान क्रमशः $l(l+1)\hbar^2$ तथा $m\hbar$ प्राप्त होते हैं। क्योंकि $\ell(\ell+1)\hbar^2$ एकल इलेक्ट्रॉन परमाणु में गितशील इलेक्ट्रॉन के सम्भावित कोणीय संवेग के वर्ग को व्यक्त करता है अतः कोणीय संवेग L का निरपेक्ष मान $\hbar\sqrt{\ell(\ell+1)}$ द्वारा निर्धारित किया जाता है। इसमें पूर्ण

संख्या l कक्षीय क्वांटम संख्या या दिगंशी क्वांटम संख्या (azimuthal quantum number) तथा m चुम्बकीय क्वांटम संख्या (magnetic quantum number) कहलाती है।

13.3 कोणीय संवेग का क्वांटीकरण (Quantization of Angular Momentum)

किसी कण के कोणीय संवेग से सम्बन्धित संकारक $\hat{L^2}$ तथा $\hat{L_z}$ के केवल विवक्त (discrete) मान ही संभव होते हैं, अर्थात $\hat{L^2}$ तथा $\hat{L_z}$ के आइगेन मान, खण्ड 13.2.2 के अनुसार हैं -

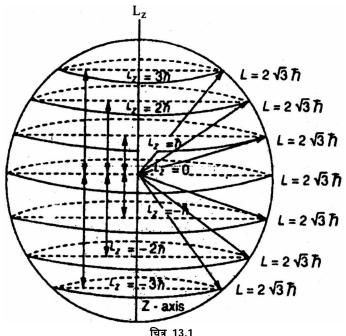
$$\hat{L}^{2} \psi_{lm} = l(l+1)\hbar^{2} \psi_{lm}$$

$$\hat{L}_{z} \psi_{lm} = m\hbar \psi_{lm}$$

जहां l=0,1,2... तथा m=-l,....-2,-1,0,1,2,....l हैं। इस प्रकार कोणीय संवेग (L) तथा इसका Z घटक L_z क्वांटीकृत होते हैं। l को कक्षीय या दिगंशी क्वाण्टम संख्या तथा m को चुम्बकीय क्वांटम संख्या कहते हैं। उदाहरण के लिए l=3 है तब m के सम्भव मान -3, -2, -1, 0, 1, 2, 3 होंगे। इस क्वाण्टम अवस्था के लिए, कोणीय संवेग का मान

$$L = \sqrt{l(l+1)} \ \hbar = \sqrt{12} \ \hbar = 2\sqrt{3} \ \hbar$$

होगा तथा L_z के संभव मान $-3\hbar, -2\hbar, -1\hbar, 0, 1\hbar, 2\hbar, 3\hbar$ होंगे देखें चित्र (13.1)।

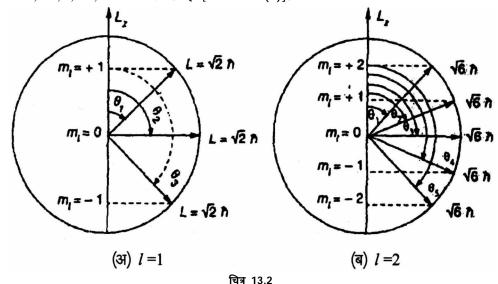


चित्र 13.1 के अनुसार कोणीय संवेग L के, आकाश (space) में कुछ निश्चित दिक्विन्यास (orientational) ही संभव है। अर्थात् \vec{L} सिंदश की दिशाएं चित्र में दर्शायी गई

दिशाओं के अलावा और कुछ नहीं हो सकती है। अर्थात् कोणीय संवेग \overrightarrow{L} द्वारा L_z के सापेक्ष बनने वाले कोण θ के कुछ निश्चित मान ही संभव हैं।

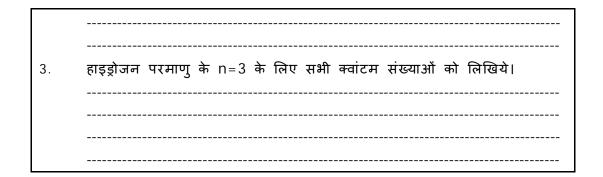
यहाँ
$$\cos\theta = \frac{L_z}{L} = \frac{m\hbar}{\sqrt{\ell(\ell+1)}\hbar} = \frac{m}{\sqrt{\ell(\ell+1)}}$$
 या
$$\theta = \cos^{-1}(L_z/L)$$

चित्र 13.2 (अ) व (ब) में क्रमशः l=1 व l=2 के संगत कोणीय संवेग सिंदश \overrightarrow{L} के संभव अभिविन्यासों को दर्शाया गया है। l=1 के लिए θ के संभव मान 45° , 90° और 135° होते हैं जो क्रमशः $m=\hbar,0,-\hbar$ के संगत हैं [(चित्र 13.2(अ)]। इसी प्रकार l=2 के लिए θ के संभव मान 35.26° , 65.9° , 114.1° और 144.74° होते हैं जो क्रमशः $m=2\hbar,-\hbar,0,-\hbar,-2\hbar$ के संगत हैं [चित्र 13.2(ब)]।



इस प्रकार क्वान्टम यांत्रिकी में कोणीय संवेग सदिश की अक्ष के सापेक्ष केवल कुछ निश्चित दिशाएं ही संभव है। इस परिणाम को आकाशी या दिक क्वांटीकरण (space quantization) कहते है।

बोध	प्रश्न (Self assessment questions)
1.	किसी इलेक्ट्रॉन के कोणीय संवेग सदिश $ec{L}$ तथा इसके z- अक्ष के बीच सभी
	संभव कोणों के मान $l=1$ के लिए ज्ञात कीजिये।
2.	m को चुम्बकीय क्वांटम संख्या क्यों कहा जाता है?



13.4 गोलीय प्रसंवादी विश्लेषण (Analysis of Spherical Harmonics)

13.4.1 कोणीय फलन अवकल समीकरण का हल (Solution of Angular function equation)

इकाई 12 में अपने चर राशियों के पृथक्करण (separation of variables) विधि द्वारा एकल इलेक्ट्रॉन परमाणु के लिये गोलीय निर्देशांकों में प्राप्त श्रोडिन्जर समीकरण से एक-एक स्वतन्त्र चर राशियों r,θ,ϕ पर निर्भर तीन पृथक अवकल समीकरणें प्राप्त की थी। कोणीय चरों θ,ϕ में पृथक्करण करने पर निम्न दो अवकलन समीकरणें प्राप्त होती हैं-

$$\frac{\partial^2 \Phi(\phi)}{\partial \phi^2} + m^2 \Phi(\phi) = 0 \qquad \dots (13.19)$$

तथा

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + \left[l(l+1) - \frac{m^2}{\sin^2 \theta} \right] \Theta(\theta) = 0 \dots (13.20)$$

जहां m एक नियतांक है। समीकरण (13.19), अर्थात $\phi-$ समीकरण का हल निम्न है-

$$\Phi(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi} \qquad \dots (13.21)$$

परिसीमा प्रतिबन्धों का उपयोग करने पर m के सम्भावित मान निम्न प्राप्त होते हैं-

$$m = 1, \pm 1, \pm 2, \dots$$
 ...(13.22)

समीकरण (13.20), अर्थात $\phi-$ समीकरण को हल करने के लिये माना $\cos\theta=y$ तथा $1-y^2=\sin^2\theta$ तथा

$$\frac{\partial \Theta}{\partial \theta} = \frac{\partial \Theta}{\partial y} \frac{\partial y}{\partial \theta} = -\sin \theta \frac{\partial \Theta}{\partial y}$$
$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} = -\frac{\partial}{\partial y}$$

या

और
$$\sin\theta \frac{\partial\Theta}{\partial\theta} = -\sin^2\theta \frac{\partial\Theta}{\partial y} = -(1-y^2)\frac{\partial\Theta}{\partial y}$$

इनका उपयोग समीकरण (13.20) में करने पर

$$\frac{\partial}{\partial y} \left[(1 - y^2) \frac{\partial \Theta}{\partial y} \right] + \left[\ell(\ell + 1) - \frac{m^2}{1 - y^2} \right] \Theta = 0$$

जहां y के मान -1 से +1 तक परिवर्तित हो सकते हैं (क्योंकि $0 \le \theta \le \pi$, इसलिए $y = \cos \theta$ की परास -1 से +1 है)।

उपरोक्त समीकरण निम्न प्रकार से लिखी जा सकती है,

$$\left[\left(1 - y^2 \right) \frac{\partial^2}{\partial y^2} - 2y \frac{\partial}{\partial y} + \left\{ \ell(\ell+1) - \frac{m^2}{1 - y^2} \right\} \right] \Theta = 0 \dots (13.23)$$

यह समीकरण मानक सहचरी लेजेन्ड्रे अवकल समीकरण (standard Legendre differential equation) है, जिसके हल सहचरी लेजेन्ड्रे फलन (बहु पद) [associated legendre functions (polynomials)]कहलाते हैं। अतः समीकरण (13.23) के हल निम्न होते हैं।

$$\Theta = N_{\ell m} P_{\ell}^{m}(y)$$

या चर θ के फलन के रूप में,

$$\Theta(\theta) = N_{\ell m} P_{\ell}^{m} (\cos \theta)$$

जहां $N_{\ell m}$ प्रसामान्यीकरण नियतांक (normalization constant) है तथा $P_\ell^m(\cos\theta)$, सहचरी लेजेन्ड्रे बहु पद है। इसका मान प्रसामान्यीकरण प्रतिबन्ध

$$\int_{0}^{\pi} \Theta^{*}(\theta) \Theta(\theta) \sin \theta d\theta = 1$$

तथा लेजेन्ड्रे के लाम्बिकता गुणधर्म (orthogonality properties) से ज्ञात किया जाता है। $N_{\rm lm}$ के निम्न मान प्राप्त होते हैं।

$$N_{lm} = (-1)^m \left\lceil \frac{(2\ell+1)(\ell-m)!}{2(\ell+m)!} \right\rceil^{1/2}$$
 जब $m \ge 0$...(13.24)

$$N_{lm} = \left[\frac{(2\ell+1)(\ell-|m|)!}{2(\ell+|m|)!} \right]^{1/2}$$
 जब $m < 0$...(13.25)
$$= (-1)^m N_{l|m|}$$

उपरोक्त में $l \ge |m|$ तथा m के (2l+1) सम्भावित मान -l, -l+1,....0,....l-1, l होते हैं।

कोणीय फलन अवकल समीकरण (13.20) के सम्पूर्ण हल

$$\psi(\theta,\phi) = \psi_{\ell m}(\theta,\phi)$$

$$=\frac{1}{\sqrt{2\pi}}N_{\ell m}P_{\ell}^{m}(\cos\theta)e^{im\phi} \qquad ... (13.26)$$

होते हैं जिन्हें गोलीय हार्मीनिक्स कहते हैं।

13.4.2 गोलीय हार्मोनिक (Spherical harmonics)

कोणीय संवेग संकारक $\hat{L^2}$ तथा $\hat{L_z}$ के प्रसामान्यीकृत समकालिक आइगेन फलन $\psi_{\ell m}(\theta,\phi)$ गोलीय हार्मोनिक कहलाते हैं। m के शून्य से धनात्मक मान के लिये $(m \ge 0)$

$$\psi_{\ell m}(\theta, \phi) = (-1)^m \left[\frac{(2\ell + 1)(\ell - m)!}{4\pi(\ell + m)!} \right]^{1/2} P_{\ell}^m(\cos \theta) e^{im\phi} \qquad \dots (13.27)$$

होते हैं, तथा m के ऋणात्मक मान के लिये (m<0),

$$\psi_{\ell m}(\theta, \phi) = (-1)^m \psi_{l,-m}^*(\theta, \phi)$$

होते हैं। क्वान्टम संख्या l=0,1,2... हो सकती है तथा l के एक निश्चित मान के लिये m=-l,-l+1,...l-1,l हो सकते हैं।

गोलीय हार्मोनिक निम्न प्रसामान्य लाम्बिक प्रतिबन्ध (normalized orthogonality criterian) का पालन करते है-

$$\int \psi_{l'm'}^*(\theta,\phi)\psi_{lm}(\theta,\phi)d\Omega = \delta_{ll'}\delta_{mm'} \qquad ... (13.28)$$

जहां $d\Omega = \sin\theta \, d\theta \, d\phi$ है।

गोलीय हार्मोनिक एक पूर्ण समुच्चय का निर्माण करते हैं, अर्थात θ,ϕ का कोई अन्य फलन $f(\theta,\phi)$ सदैव $\psi_{lm}(\theta,\phi)$ के पदों में विस्तारित किया जा सकता है।

$$f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \alpha_{lm} \psi_{lm}(\theta, \phi) \qquad ...(13.29)$$

प्रचलित मान्यता के अनुसार l=0,1,2,3,4 आदि कक्षीय कोणीय संवेग क्वांटम संख्याओं वाली अवस्थाओं (states) के संगत क्रमशः s, p, d, f, g संकेतों का उपयोग किया जाता है। क्वांटम संख्याओं s, p, d के संगत गोलीय हार्मोनिकों के स्पष्ट व्यंजक सारणी 13.1 में दिये गये हैं।

सारणी 13.1, s, p, d अवस्था के संगत गोलीय हार्मोनिक

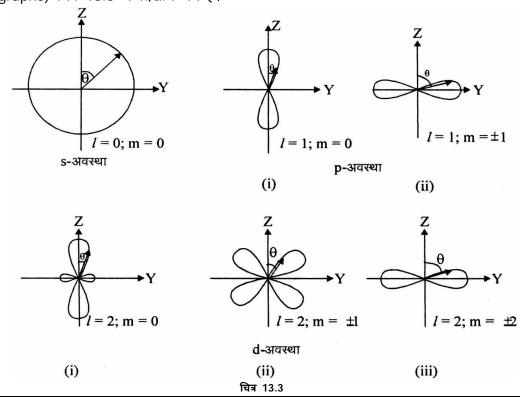
l	अवस्था	m	गोलीय हार्मोनिक $\left.\psi_{\scriptscriptstyle lm}(heta,\phi) ight.$
0	S	0	$\psi_{00} = \frac{1}{\sqrt{4\pi}}$
1	Р	0	$\psi_{1,0} = \left(\frac{3}{4\pi}\right)^{1/2} \cos \phi$
		±1	$\psi_{1,\pm 1} = \pm \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{\pm i\phi}$

2 d
$$\psi_{2,0} = \left(\frac{5}{16\pi}\right)^{1/2} \left(3\cos^2\theta - 1\right)$$

$$\pm 1 \qquad \psi_{2,\pm 1} = \pm \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta\cos\theta e^{\pm i\phi}$$

$$\pm 2 \qquad \psi_{2,\pm 2} = \pm \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta e^{\pm 2i\theta}$$

प्रायिकता वितरण (probability distribution) $\left|\psi_{lm}(\theta,\phi)\right|^2$ के धुवीय ग्राफ (polar graphs) चित्र 13.3 में दिखाये गये हैं।



13.5 हाइड्रोजन परमाणु के ऊर्जा स्तर (Energy Levels of Hydrogen Atom)

एकल इलेक्ट्रान परमाणु के लिए, n वें मुख्य क्वांटम संख्या (principal quantum number) के संगत ऊर्जा आइगेन मान है।

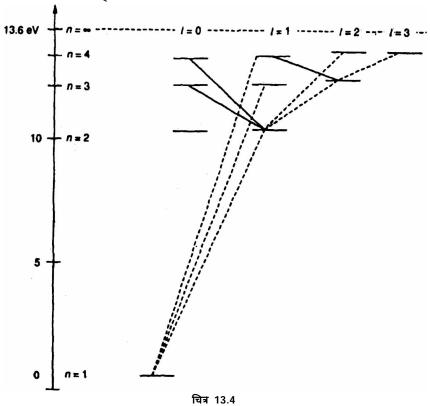
$$E_n = -\frac{mk^2e^4Z^2}{2\hbar^2n^2}$$

हाइड्रोजन परमाणु के लिए Z=1 है, अतः ऊर्जा आइगेन मान

$$E_n = -\frac{mk^2e^4}{2\hbar^2n^2} = -\frac{13.6}{n^2}eV \qquad ... (13.30)$$

जहां n=1,2,3... हैं। हाइड्रोजन परमाणु के लिए आयनन ऊर्जा का मान 13.6eV होता है। हाइड्रोजन परमाणु के ऊर्जा स्तरों को चित्र 13.4 में दर्शाया गया है। इस प्रकार इलेक्ट्रॉन की ऊर्जा का कोई भी स्वैच्छिक मान संभव नहीं होकर केवल विवक्त (discreate) मान ही संभव होते हैं। H- परमाणु के ऊर्जा आइगन मान E,=-13.6eV , $E_2=-3.4eV$, $E_3=-1.51eV$, $E_4=-0.85eV$,.... हैं। ऊर्जा आइगेन मान केवल मुख्य क्वांटम संख्या पर ही निर्भर करते हैं, कक्षीय कोणीय क्वांटम संख्या l तथा चुम्बकीय क्वांटम m पर निर्भर नहीं करते हैं।

n=1 वाले ऊर्जा स्तर में इलेक्ट्रॉन की ऊर्जा न्यूनतम होती है, इसे मूल ऊर्जा स्तर तथा इलेक्ट्रॉन की इस अवस्था को मूल अवस्था (ground state) कहते हैं। n=2, प्रथम उत्तेजित अवस्था, n=3 दिवतीय उत्तेजित अवस्था आदि कहलाती है।



n=1,2,3,4... आदि ऊर्जा के संगत इलेक्ट्रॉन की अवस्थाओं को K,L,M,N,... कोश (shell) कहते हैं। एक ही कोश के लिए l के भिन्न मान प्राप्त हो सकते हैं, जैसे n=2 के लिए l=0,1 और n=3 के लिए l=0,1,2 होते हैं। l=0,1,2,... आदि मानों वाली अवस्थाओं को s,p,d,... उपकोश (subshell) कहते हैं। एक ही उपकोश के लिए m=1,2,2,... के मान. भिन्न हो सकते हैं, जैसे l=2 के लिए m=2,-1,0,+1,+2 होते हैं। इस प्रकार एक उपकोश में कई कक्षक (orbital) हो सकते हैं।

बोर (Bohr) मॉडल में n के एक मान के संगत एक ही ऊर्जा स्तर उपलब्ध होता है, जबिक क्वांटम यांत्रिकी के उपरोक्त विवेचना से प्राप्त पिरणाम के अनुसार, n=1 के मानों के लिए एक से अधिक लेकिन अपभ्रष्ट (degenerate) ऊर्जा स्तर होते हैं। जैसे n=2 के लिए l=0 तथा 1 के संगत ऊर्जा स्तर हैं। n मुख्य क्वांटम संख्या वाले कोश के संगत n^2 स्वतन्त्र इलेक्ट्रॉन अवस्था फलन $\psi_{n/m}$ हो सकते हैं। अतः n क्वांटम संख्या वाली ऊर्जा स्तर की अपभ्रष्टता (degeneracy) n^2 होती है।

हाइड्रोजन परमाणु के लिए वरण नियम (selection rule) $\Delta m=0,\pm 1$ तथा $\Delta l=\pm 1$ के आधार पर अनुमत संक्रमणों (allowed transitions) को चित्र 13.4 में दर्शाया गया है। वरण नियम $\Delta l=\pm 1$ के कारण अनुमत संक्रमणों $l=1 \rightarrow l=0; \ l=2 \rightarrow l=1$ तथा $l=3 \rightarrow l=2$ को डॉट वाली रेखाओं (dotted lines) से दर्शाया गया है। वरण नियम $\Delta l=-1$ के कारण अनुमत संक्रमणों $l=0 \rightarrow l=1$ तथा $l=1 \rightarrow l=2$ को पूर्ण रेखाओं (full lines) से दर्शाया गया है। n के लिए कोई वरण नियम लागू नहीं होता है।

बोध प्रश्न (Self assessment questions)		
4.	संक्रमण $\psi_{\scriptscriptstyle 210}$ $ ightarrow \psi_{\scriptscriptstyle 100}$ अनुमत है या वर्जित, समझाइए?	
_		
5.	संक्रमण $\psi_{200} ightarrow \psi_{100}$ अनुमत है या वर्जित, समझाइये?	

उदाहरण 13.1 हाइड्रोजन परमाणु के लिए बोर मॉडल तथा क्वांटम मॉडल की तुलना कीजिये।

हल : बोर मॉडल तथा क्वांटम मॉडल दोनों में हाइड्रोजन परमाणु के इलेक्ट्रॉन की ऊर्जाओं के मान समान हैं लेकिन कोणीय संवेगों के मान भिन्न हैं। बोर मॉडल में इलेक्ट्रान की n वीं अवस्था के लिए कोणीय संवेग का मान $L=n\hbar$ एक ही होता है। जबिक क्वांटम यांत्रिकी में कोणीय संवेग के n भिन्न-भिन्न l=(n-1),(n-2),....2,1,0 के संगत होते हैं। क्वांटम मॉडल में कोणीय संवेग $L=\sqrt{l(l+1)}\hbar$ द्वारा व्यक्त किया जाता है। उदाहरण के लिए n=2 अवस्था के लिए बोर मॉडल के अनुसार L=2 होता है जबिक क्वांटम मॉडल के अनुसार l=0 या 1 के संगत L=0 या $\sqrt{2}\hbar$ होते हैं। बोर मॉडल में L का मान n पर निर्भर करता है जबिक क्वांटम मॉडल में L का मान L=0 या L=0

उदाहरण 13.2 कक्षीय कोणीय संवेग संकारक L के घटकों के मध्य निम्न क्रम विनिमेय सम्बन्ध स्थापित कीजिये।

$$\begin{bmatrix} L_x, L_y \end{bmatrix} = i\hbar L_z$$

$$\begin{bmatrix} L_x, L_y \end{bmatrix} = \begin{bmatrix} \left(yp_z - zp_y\right), \left(zp_x - xp_z\right) \end{bmatrix}$$

$$= \begin{bmatrix} yp_z, zp_x \end{bmatrix} + \begin{bmatrix} zp_y, xp_z \end{bmatrix} - \begin{bmatrix} yp_z, xp_z \end{bmatrix}$$
 ...(i)

उपरोक्त में प्रथम क्रम विनिमेय सम्बन्ध

$$[yp_z, zp_x] = yp_z zp_x - zp_x yp_z$$

अब क्योंकि y का px, z तथा pz से क्रम विनिमेय होता है अत: उपरोक्त से

$$[yp_z, zp_x] = yp_x[p_z, z] = -i\hbar yp_x \qquad \dots$$
 (ii)

इसी प्रकार समीकरण (i) के दांयी ओर का दवितीय पद

तथा समीकरण (i) के दांयी ओर का तृतीय पद, चतुर्थ पद

$$\begin{bmatrix} yp_z, xp_z \end{bmatrix} = 0$$
 (क्योंकि y, x, p_z आपस में क्रम विनिमय करते हैं)
$$\begin{bmatrix} zp_y, zp_x \end{bmatrix} = 0$$
 (क्योंकि z, p_x, p_y क्रम विनिमय करते हैं)

अतः समीकरण (i), (ii), (iii) और उपरोक्त तथ्य से

$$\left[L_{x}, L_{y}\right] = i\hbar \left(xp_{y} - yp_{x}\right) = -i\hbar L_{z}$$

उदाहरण 13.3 कोणीय संवेग संकारक \vec{L} के लिये सिद्ध कीजिये कि $\left[L^2,L_{_{\! x}}\right]=0$ होता है।

हल : क्योंकि $L^2 = L_y^2 + L_y^2 + L_z^2$ अत:

$$\begin{split} \left[L^{2},L_{x}\right] &= \left[L_{x}^{2},L_{x}\right] + \left[L_{y}^{2},L_{x}\right] + \left[L_{z}^{2},L_{x}\right] \\ &= 0 + L_{y}\left[L_{y},L_{x}\right] + \left[L_{y},L_{x}\right]L_{y} + L_{z}\left[L_{z},L_{x}\right] + \left[L_{z},L_{x}\right]L_{z} \end{split}$$

क्योंकि
$$\left[L_{x},L_{y}\right]$$
 $=i\hbar L_{z},\left[L_{y},L_{z}\right]$ $=i\hbar L_{x},\left[L_{z},L_{x}\right]$ $=i\hbar L_{y}$

अतः इनका उपयोग करने पर

$$[L^{2}, L_{x}] = L_{y}(-i\hbar L_{z}) + (-i\hbar L_{z})L_{z} + L_{z}(i\hbar L_{y}) + (i\hbar L_{y})L_{z}$$

$$= -i\hbar (L_{y}L_{z} + L_{z}L_{y}) + i\hbar (L_{z}L_{y} + L_{y}L_{z})$$

$$= 0$$

अत:
$$\left[L^2, L_x\right] = 0$$

13.6 n=1 तथा n=2 के तरंग फलनों की आकृति (Shapes of n=1 and n=2 Wave Functions)

तरंग फलन की व्याख्या के अनुसार, जब एक इलेक्ट्रॉन किसी स्थायी अवस्था, जिसकी क्वांटम संख्याओं n,l,m हैं, में स्थित है, तब उसके r,θ,ϕ निर्देशांकों पर किसी अल्पांश आयतन $dV=r^2\,dr\sin\theta\,d\theta\,d\phi$ में पाये जाने की प्रायिकता (probability) होती है।

$$dP = P dV = \left| \psi_{nlm}(r, \theta, \phi) \right|^2 dV$$

= $\left| \psi_{nlm}(r, \theta, \phi) \right|^2 r^2 dr \sin \theta d\theta d\phi$...(13.31)

इलेक्ट्रॉन के नाभिक से r तथा r + dr के मध्य गोलीय कोश में कहीं भी पाये जाने की प्रायिकता, उपरोक्त को गोलीय निर्देशांकों में समाकलन कर प्राप्त की जाती है।

$$P_{nl} = r^{2}R_{nl}(r)dr \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} \left| \psi_{nlm}(r,\theta,\phi) \right|^{2} d\phi$$

$$= r^{2} \left| R_{nl}(r) \right|^{2} dr \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} \left| \psi_{lm}(\theta,\phi) \right|^{2} d\phi$$

$$= r^{2} \left| R_{nl}(r) \right|^{2} dr \int \left| \psi_{lm}(\theta,\phi) \right|^{2} d\Omega$$

$$P_{nl} = r^{2} \left| R_{nl}(r) \right|^{2} dr$$

 P_{nl} इलेक्ट्रॉन के नाभिक से दूरी r तथा r+dr के मध्य पाये जाने की प्रायिकता है। $r^2\left|R_{nl}(r)
ight|^2$ को प्रायिकता घनत्व या प्रायिकता वितरण फलन भी कहते हैं।

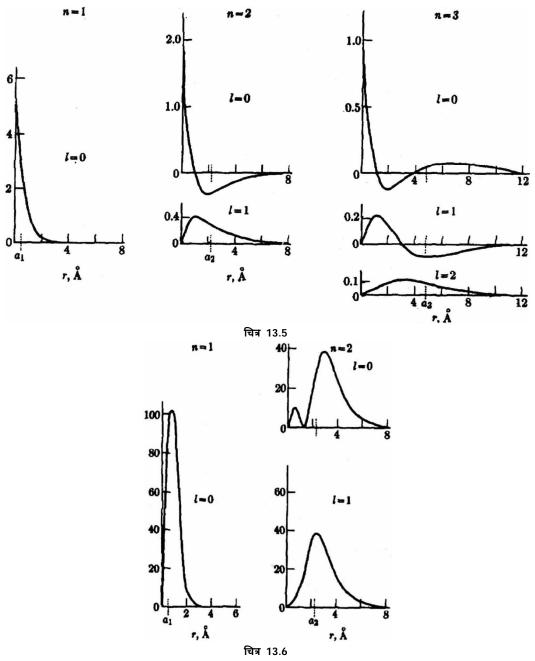
n=1 और n=2 के लिए त्रिज्य तरंग फलनों

$$n = 1, l = 0 R_{10}(r) = \frac{2}{\sqrt{a^3}} e^{-r/a}$$

$$n = 1, l = 0 R_{20}(r) = \frac{1}{\sqrt{8a^3}} \left(2 - \frac{r}{a}\right) e^{-r/2a}$$

$$n = 2, l = 1 R_{21}(r) = \frac{1}{\sqrt{24a^3}} \left(\frac{r}{a}\right) e^{-r/2a}$$

जहां $a=h^2/mke^2$ है, को चित्र 13.5 में दर्शाया गया है। n=1 और n=2 के लिए त्रिज्य प्रायिकता घनत्व (radial probably density) $r^2\left|R_{nl}(r)\right|^2$ को चित्र 13.6 में दर्शाया गया है।



इन वक्रों से निम्न निष्कर्ष निकलते हैं-

- (i) केवल s अवस्थाओं (l=0) के लिये त्रिज्य तरंग फलन $R_{\rm no}$ का मान r=0 पर शून्य नहीं होता है।
- (ii) n=1 के लिए त्रिज्य प्रायिकता घनत्व $P_{10}=r^2\left|R_{10}\right|^2$ का l=0 के संगत मान r=a पर अधिकतम प्राप्त होता है। अर्थात् r=1 तथा l=0 अवस्था में इलेक्ट्रॉन के r=a पर पाये जाने की प्रायिकता अधिकतम है। यह परिणाम बोर

मॉडल द्वारा प्राप्त r=1 कक्षा r=0 अवस्था (2s कक्षक) में त्रिज्या के अनुरूप है।

- (iii) n=2 के लिए l=0 अवस्था (2s कक्षक) में R_{20} का मान, r<2a पर धनात्मक, r=0 पर शून्य तथा r>2a पर ऋणात्मक होता है।
- (iv) n=2, l=2 (p उपकोश) के लिए, r=0 तथा $r=\infty$ पर R_{21} का मान शून्य होता है। P_{21} अर्थात् प्रायिकता का मान r=4a पर अधिकतम होता है।

n=1 तथा n=2 के लिए कोणीय तरंग फलन $\psi_{lm}(\theta\phi)$ के मान निम्न हैं जो कि n पर निर्भर नहीं करते हैं।

$$n = 1, l = 0$$

$$\psi_{00} = \frac{1}{\sqrt{4\pi}} = 1s$$

$$n = 2, l = 0$$

$$\psi_{00} = \frac{1}{\sqrt{4\pi}} = 2s$$

$$n = 2, l = 1, m = 0$$

$$\psi_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta = 2p_z$$

$$n = 2, l = 1, m = \pm 1$$

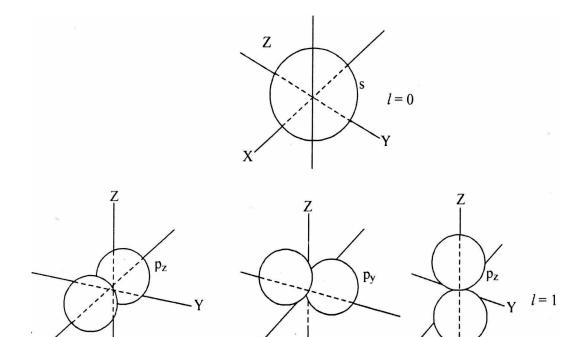
$$\psi_{1,\pm 1} = \pm \sqrt{\frac{3}{8\pi}} \sin e^{\pm i\phi}$$

इनके प्रायिकता घनत्व $\left|\psi_{lm}(heta,\phi)\right|^2$ के धुवीय ग्राफ चित्र 13.7 में दर्शाये गये हैं।

1s तथा 2s कक्षाओं के लिए $\left|\psi_{00}\right|^2=1/4\pi$, कोण θ व ϕ पर निर्भर नहीं करता है अतः s अवस्थाएं गोलीय सममित (spherically symmetric) होती है। 2p कक्षक के लिए $\left|\psi_{10}\right|^2$ तथा $\left|\psi_{1,\pm 1}\right|^2$, θ पर निर्भर करते हैं अतः p अवस्थाएँ घूर्णीय सममित (rotational symmetric) होती हैं।

$$p_x=-rac{1}{\sqrt{2}}(\psi_{11}-\psi_{1,-1})=\sqrt{rac{3}{4\pi}}\sin\theta\cos\phi$$

$$p_y=-rac{1}{\sqrt{2}}(\psi_{11}-\psi_{1,-1})=\sqrt{rac{3}{4\pi}}\sin\theta\cos\phi$$
 तथा
$$p_z=\psi_{10}=\sqrt{rac{3}{4\pi}}\cos\theta$$



चित्र 13.7

13.7 सारांश (Summary)

- $\left[\hat{L^2}, L_z\right] = 0$, सम्बन्ध से स्पष्ट है कि $\hat{L^2}$ तथा L_z के समकालिक आइगेन फलन ज्ञात किये जा सकते हैं।
- कोणीय संवेग संकारक गोलीय निर्देशांकों के रूप में निम्न प्राप्त होते हैं-

$$\hat{L}_{x} = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{y} = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi}$$

- संकारक $\overset{\circ}{L^2}$ तथा $\overset{\circ}{L_z}$ का आङ्गेन फलन $\psi_{lm}(\theta,\phi)$ है तथा इनके आङ्गेन मान क्रमशः $l(l+1)\hbar^2$ तथा $m\hbar$ हैं। अतः $\mathsf L$ का निरपेक्ष मान $\sqrt{l(l+1)}\hbar$ होता है।
- ullet कोणीय संवेग \overrightarrow{L} द्वारा L_z के सापेक्ष बनने वाले कोण heta के कुछ निश्चित मान ही संभव हैं। जहां पर

$$\cos\theta = \frac{L_z}{L} = \frac{m}{\sqrt{l(l+1)}}$$

 क्वांटम मॉडल तथा बोर मॉडल से प्राप्त हाइड्रोजन परमाणु में इलेक्ट्रान की ऊर्जा का मान है-

$$E_n = -\frac{mk^2e^4}{2\hbar^2n^2}$$

- बोर मॉडल में n के एक मान के संगत एक ही ऊर्जा स्तर उपलब्ध होता है जबिक क्वांटम
 यांत्रिकी में एक से अधिक अपभ्रष्ट (degenerate) ऊर्जा स्तर होते हैं।
- s- अवस्थाएँ गोलीय सममित होती है जबिक p- अवस्थाएँ घूर्णन सममित होती है।

13.8 शब्दावली (Glossary)

अपभ्रष्ट Degenerate क्रम विनिमेय सम्बन्ध Commulative relations कोणीय संवेग Angular momentum गोलीय प्रसंवादी Spherical harmonics चर राशियाँ Variables दिकविन्यास Orientation दिगंशी क्वांटम संख्या Azimuthal quantum number ध्रवीय Polar पृथक्करण Seperation प्रत्याशा मान Expectation value प्रसामान्यीकृत Normalized प्रायिकता वितरण Probability distribution बहू पद Polynomials लाम्बिकता Orthoganality

13.9 संदर्भ ग्रन्थ (Reference Books)

सहचरी

समकालिक

एस.एस. रावत एवं	प्रारम्भिक क्वांटम	कॉलेज बुक हाउस,
सरदार सिंह	यांत्रिकी एवं स्पेक्ट्रोस्कोपी	जयपुर
M.Alonso and	Fundamental	Addison- Wesley
E.J.Finn	University Physics	Publishing Company
	Vol. III	

Associated

Simultaneous

13.10 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

1. सूत्र
$$\cos\theta=\frac{L_z}{L}=\frac{m\hbar}{\sqrt{\ell(\ell+1)\hbar}}$$
 का प्रयोग करने पर $\cos\theta=\frac{1}{\sqrt{2}}$ अतः $\theta_1=45^0$ $\cos\theta_2=0$ अतः $\theta_2=0^0$ $\cos\theta_3=-\frac{1}{\sqrt{2}}$ अतः $\theta_3=135^0$

2. एक परमाणु, चुम्बकीय द्विधुव के समान व्यवहार करता है जहां $m_{_{\! e}}$ इलेक्ट्रॉन का द्रव्यमान है।

इसका
$$z$$
 घटक $\mu_z=-rac{e}{2m_e}L_z=-igg(rac{e}{2m_e}igg)m\hbar$

अतः $\mu_{_{\! z}}$ भी क्वांटीकृत है जिसके मान $\left(rac{e\hbar}{2m_{_{\! e}}}
ight)$ के पूर्ण गुणज के रूप में हो सकते हैं।

बाह्य चुम्बकीय क्षेत्र को z अक्ष दिशा में आरोपित करके m के विभिन्न मान वाली अवस्थाएँ प्राप्त की जा सकती है। इस कारण m को चुम्बकीय क्वांटम संख्या कहते हैं।

3. n=3 के संगत विभिन्न क्वांटम संख्याएँ निम्न हैं-

$$l = 2, 1, 0$$

l=2 के संगत m=-2,-1,0,+1,+2 तथा

l=1 के संगत m=-1,0,+1, तथा

l=0 के संगत m=0

अतः n=3 के संगत कुल 9 क्वांटम संख्याएं होती है।

- 4. यह संक्रमण अवस्था $n=2, l=1, m_l=0$ से अवस्था $n=1, l=0, m_l=0$ में होता है। यहाँ पर $\Delta\partial=1$ तथा $\Delta m=0$ है जो वरण नियम का पालन करते हैं अतः यह संक्रमण अनुमत है। $_{\bf n}$ के लिए कोई वरण नियम नहीं होता है।
- 5. यह संक्रमण, अवस्था n=2, l=0, m=0 से अवस्था n=1, l=0, m=0 में होता है। यहाँ पर $\Delta l=0$ तथा $\Delta m=0$ है जो कि वरण नियम $\Delta \ell=\pm 1$ व $\Delta m=0,\pm 1$ का पालन नहीं करता है अतः यह संक्रमण वर्जित (forbidden) है।

13.11 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

1. कक्षीय कोणीय संवेग संकारक \vec{L} तथा इसके घटकों L_x, L_y, L_z के लिए क्रम विनिमेय सम्बन्ध लिखिये।

- 2. कक्षीय कोणीय संवेग को दिगंशी क्वांटम संख्या l के रूप में लिखिये।
- s, p, d अवस्थाओं के लिए गोलीय हार्मीनिक के मान लिखिये।

निबन्धात्मक प्रश्न (Essay type questions)

- 4. हाइड्रोजन परमाणु के विविक्त ऊर्जा वर्णक्रम का व्यंजक लिखिये और उसे आरेखित कीजिये। इस व्यंजक से मूल अवस्था की ऊर्जा $E_{\scriptscriptstyle \parallel}$ के मान की गणना कीजिये।
- 5. n=1 तथा n=2 के लिए हाइड्रोजन परमाणु के तरंग फलन लिखिये तथा n=1, l=0, m=0 एवं n=2, l=0, m=0 के लिए प्रायिकता घनत्व को आलेखित कीजिये।
- 6. सिद्ध कीजिये कि L^2 तथा L_z संकारक का समकालिक आइगेन फलन $\psi_{\ell m}(\theta,\phi)$ द्वारा व्यक्त किया जाता है।
- 7. एकल इलेक्ट्रॉनी परमाणु तन्त्र के कोणीय अवकल समीकरण की सहायता से सिद्ध कीजिये कि कक्षीय कोणीय संवेग क्वांटीकृत होता है।

इकाई-14

परमाण्वीय स्पेक्ट्रा

(Atomic Spectra)

इकाई की रूपरेखा

- 14.0 उद्देश्य
- 14.1 प्रस्तावना
- 14.2 फ्रेन्क हर्ट्ज प्रयोग
- 14.3 हाइड्रोजन परमाणु का स्पेक्ट्रा
- 14.4 क्षारीय परमाण्
- 14.5 सूक्ष्म संरचना
 - 14.5.1 स्पिन कक्षा य्गमन
 - 14.5.2 द्विक संरचना
- 14.6 सारांश
- 14.7 शब्दावली
- 14.8 संदर्भ ग्रन्थ
- 14.9 बोध प्रश्नों के उत्तर
- 14.10 अभ्यासार्थ प्रश्न

14.0 उद्देश्य (Objectives)

इस इकाई के अध्ययन के बाद आप

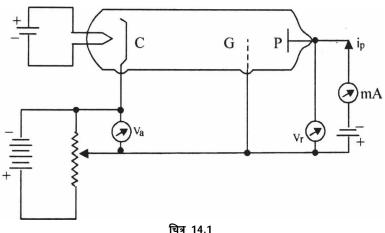
- फ्रेन्क हर्ट्ज प्रयोग द्वारा परमाणु में विविक्त ऊर्जा स्तरों की प्रायोगिक पुष्टि कैसे हुई, यह समझ सकेंगे;
- हाइड्रोजन स्पेक्ट्रा के लक्षणों से परिचित हो सकेंगे;
- डयुट्रॉन कण की विशेषताएँ जान सकेंगे;
- क्षारीय परमाणुओं के स्पेक्ट्रा के लक्षण जान सकेंगे तथा हाइड्रोजन स्पेक्ट्रा से इनकी तुलना कर सकेंगे;
- स्पिन कक्षा युग्मन के कारण विभिन्न ऊर्जा अवस्थाओं की ऊर्जा में परिवर्तन ज्ञात कर सकेंगे;
- स्पिन कक्षा युग्मन से उत्पन्न द्विक संरचना की जानकारी ले सकेंगे;
- अनुमत संक्रमण के लिए वरण नियम का उपयोग समझ संकेंगे;
- क्षारीय परमाणुओं में सूक्ष्म संरचना ज्ञात कर सकेंगे।

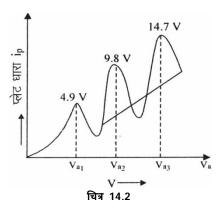
14.1 प्रस्तावना (Introduction)

पिछली इकाई 13 में आपने कक्षीय कोणीय संवेग के क्वान्टीकरण का अध्ययन किया तथा हाइड्रोजन परमाणु के विभिन्न ऊर्जा स्तरों के त्रिज्य एवं कोणीय तरंग फलन व प्रायिकता घनत्व ट्युत्पन्न करके विभिन्न तरंग फलनों की आकृतियों प्राप्त की। इस इकाई के अनुच्छेद 14.2 में फ्रेन्क - हर्ट्ज प्रयोग का वर्णन करके परमाणु में विविक्त ऊर्जा स्तरों की प्रायोगिक पुष्टि कर इनका मान ज्ञात करेंगे। अनुच्छेद 14.3 में हाइड्रोजन परमाणु के स्पेक्ट्रा में प्राप्त विभिन्न श्रेणियों के लक्षणों का अध्ययन करेंगे। अनुच्छेद 14.4 में क्षारीय परमाणुओं के ऊर्जा स्तरों की परिरक्षण प्रभाव द्वारा व्याख्या करके हाइड्रोजन से तुलना करेंगे। इसी अनुच्छेद में सोडियम के स्पेक्ट्रम में उपस्थित विभिन्न श्रेणियों के लक्षणों का भी अध्ययन करेंगे। अनुच्छेद 14.5 में स्पिन कक्षा युग्मन के कारण क्षारीय परमाणुओं में स्पेक्ट्रमी रेखाओं की सूक्ष्म संरचना का अध्ययन करेंगे।

14.2 फ्रेन्क - हर्ट्ज प्रयोग (Frank - Hertz Experiment)

फ्रेन्क - हर्ट्ज प्रयोग द्वारा किसी परमाणु में उपस्थित विविक्त ऊर्जा अवस्थाओं (discrete energy states) की प्रायोगिक पुष्टि होती है तथा इस प्रयोग द्वारा विविक्त ऊर्जाओं के मान भी ज्ञात किये जा सकते है। फ्रेन्क-हर्ट्ज प्रयोग का उपकरण, चित्र - 14.1 में दर्शाया गया है। एक कैथोड C से तापायनिक उत्सर्जन विधि द्वारा इलेक्ट्रॉन उत्सर्जित किये जाते हैं। ये इलेक्ट्रॉन, एक ग्रिड तार G, जिसे कैथोड C के सापेक्ष किसी धनात्मक विभव V_a पर रखा गया है, की ओर त्विरत (accelerate) होते हैं। ग्रिड पर पहुंचने वाले इलेक्ट्रॉनों की गितज ऊर्जा eV_a हो जाती है। धारा नियंत्रक द्वारा V_a के मान को परिवर्तित किया जा सकता है।





प्लेट P पर विभव, ग्रिड G की तुलना में अल्प ऋणात्मक रखा जाता है, जिसका मान लगभग वोल्ट रखते हैं। यह अल्प मंदक विभव (retarding voltage) V_r प्लेट P पर पहुं चने वाले इलेक्ट्रॉनों की गतिज ऊर्जा को अल्प रूप से कम कर देता है जिससे प्लेट पर वही इलेक्ट्रॉन पहुं चते हैं जिसकी ऊर्जा eV_r से अधिक है। प्लेट P पर पहुं चने वाले इलेक्ट्रॉनों के कारण, ग्रिड-प्लेट परिपथ में धारा i_p प्रवाहित होती है जिसे मिली अमीटर द्वारा नापा जा सकता है।

फ्रेन्क - हर्ट्ज प्रयोग में पारे के वाष्प (mercury vapour) का उपयोग किया गया था। कैथोड C से उत्सर्जित इलेक्ट्रॉन ग्रिड G की ओर त्विरत होते हैं और रास्ते में उपस्थित Hg-परमाणुओं से टकराते हैं। क्योंकि Hg परमाणु का द्रव्यमान इलेक्ट्रॉन के द्रव्यमान से अत्यिधक बड़ा है अतः यिद यह टक्कर पूर्णतः प्रत्यास्थ हो तब इलेक्ट्रॉन की टक्कर के पश्चात् ऊर्जा, टक्कर से पूर्व ऊर्जा के बराबर ही रहती है और ग्रिड G पर पहुंचने वाले इलेक्ट्रॉनों की गितज ऊर्जा eV_a होती है। लेकिन यिद टक्कर अप्रत्यास्थ हो, अर्थात टक्कर के कारण Hg परमाणु मूल ऊर्जा स्तर से उच्च ऊर्जा स्तर (अन्तराल E) में चला जाता है, तब इलेक्ट्रॉनों की ऊर्जा में E की कमी आ जायेगी। तब ग्रिड G पर पहुंचने वाले इलेक्ट्रॉनों की गितज ऊर्जा

$$\frac{1}{2}mv_1^2 = eV_a - E$$

यदि eV_a-E या E से थोड़ा अधिक है तब ग्रिड G को पार करने वाले इलेक्ट्रॉन मंदक विभव V_r के कारण संग्राहक प्लेट P पर नहीं पहुंच पायेंगे और इस कारण परिपथ में धारा i_p में कमी आ जायेगी।

इस प्रयोग में कैथोड - ग्रिड विभवान्तर V_a को शून्य से धीरे-धीरे बढ़ाया जाता है, और अमीटर द्वारा परिपथ में धारा i_p का मान ज्ञात किया जाता है। इस प्रयोग में प्राप्त परिणामों को चित्र 14.2 में दिखाया गया है। V_a बढ़ाने के साथ-साथ धारा i_p में वृद्धि होती है और जब $V_a=4.9$ वोल्ट होता है तब अचानक गिरावट होती है। इसका कारण यह है कि Hg परमाणु के मूल स्तर तथा प्रथम उत्तेजन अवस्था के ऊर्जा स्तर में अन्तर E=4.9eV है, अतः जब तक इलेक्ट्रॉनों की ऊर्जा 4.9eV से कम रहती है तब तक इलेक्ट्रॉन की टक्कर से Hg

परमाणु उत्तेजित नहीं हो सकता है और e^-Hg परमाणु टक्कर पूर्णतः प्रत्यास्थ टक्कर रहती है। लेकिन जब $eV_a=4.9eV$ होता है तब अधिकांश इलेक्ट्रॉन टक्कर द्वारा Hg परमाणुओं को मूल स्तर से प्रथम उत्तेजित स्तर में पहुँचा देते हैं। यह सब ग्रिड G के पास होता है। इस प्रकार इन अप्रत्यास्थ टक्कर करने वाले इलेक्ट्रॉनों की गतिज ऊर्जा में कमी आती है और ये इलेक्ट्रॉन मंदक विभव V_r को पार कर संग्राहक P तक पहुंचने में असमर्थ रहते है। इस कारण धारा i_p में तेजी से गिरावट आती है।

यदि V_a में और वृद्धि की जाती है तब पुन: i_p में वृद्धि होने लगती है तथा $V_a=9.8V$ तथा 14.7V पर धारा i_p में तेजी से कमी प्राप्त होती है। अतः 9.8eV तथा 14.7eV Hg परमाणु की क्रमशः द्वितीय तथा तृतीय उत्तेजन ऊर्जाएँ हैं।

फ्रेन्क - हर्ट्ज ने Hg वाष्प से प्राप्त प्रकाश के स्पेक्ट्रम का अध्ययन किया और पाया कि $2536\overset{0}{A}$ तरंगदैध्र्य के संगत स्पेक्ट्रमी रेखा प्राप्त होती है जो कि 4.9 वोल्ट के संगत तरंगदैध्र्य देध्र्य के लगभग तुल्य है।

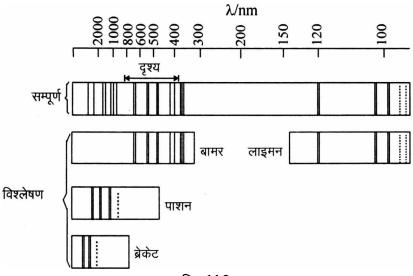
$$\lambda = \frac{c}{v} = \frac{hc}{hv} = \frac{hc}{E} = \frac{hc}{4.9}$$
$$= \frac{12.4 \times 10^3}{4.9} A = 2540 A$$

फ्रेन्क - हर्ट्ज का प्रयोग अन्य गैसों तथा वाष्प पर दोहराया गया और प्रत्येक बार परमाणुओं की विविक्त ऊर्जा स्तरों की पृष्टि होती है।

बोध	प्रश्न (Self assessment question)
1.	हाइड्रोजन परमाणु के लिए प्रथम, द्वितीय तथा तृतीय उत्तेजन ऊर्जा स्तरों की
	ऊर्जा के मान क्या??

14.3 हाइड्रोजन परमाणु का स्पेक्ट्रा (Spectra of Hydrogen Atoms)

हाइड्रोजन परमाणु एक एकल (single) इलेक्ट्रॉन परमाणु है जिसका परमाणु क्रमांक z=1 होता है। जब गैसीय हाइड्रोजन में से विद्युत विसर्जन किया जाता है तब H_2 अणु वियोजित हो जाता है और उत्तेजित H- परमाणुओं द्वारा विकिरण उत्सर्जित किया जाता है। इस विकिरण का स्पेक्ट्रोग्राफ दवारा प्राप्त स्पेक्ट्रम (spectrum) चित्र 14.3 में दर्शाया जाता है।



चित्र 14.3

चित्र 14.3 के H- परमाणु के स्पेक्ट्रम को देखने से ज्ञात होता है कि इसमें बामर श्रेणी दृश्य क्षेत्र में, लाइमन श्रेणी पराबैंगनी क्षेत्र में और अन्य श्रेणियाँ अवरक्त क्षेत्र में है।

इस चित्र में प्राप्त विभिन्न स्पेक्ट्रमी रेखाओं को विभिन्न श्रेणियों में विभक्त किया गया है। विद्युत चुम्बकीय स्पेक्ट्रम के दृश्य भाग में प्राप्त रेखाओं के लिये, सर्वप्रथम बामर ने सन् 1885 में यह पाया कि इन रेखाओं की तरंग संख्या निम्न प्रकार के सूत्र से प्राप्त की जा सकती है-

$$\overline{v} \propto \frac{1}{2^2} - \frac{1}{n^2}$$
, n=3,4,5,....

उपरोक्त तरंग संख्या वाली रेखाएं एक श्रेणी का निर्माण करती है जिसे बामर श्रेणी कहा जाता है। इसी प्रकार पराबैंगनी तथा अवरक्त क्षेत्र में पायी जाने वाली स्पेक्ट्रमी रेखाओं को भी विभिक्त किया गया है। इन श्रेणियों के नाम उसके आविष्कारकों के नाम पर रखे गये हैं। इन श्रेणियों में प्राप्त स्पेक्ट्रमी रेखाओं की तरंग संख्या तथा बोर के परमाणु मॉडल के आधार पर इनकी व्युत्पत्ति के कारण निम्न प्रकार हैं-

(i) **लाइमन श्रेणी (Lyman series)** - यह श्रेणी वर्णक्रम के चरम पराबैंगनी (extreme ultraviolet) भाग में प्राप्त होती है। इस श्रेणी की विभिन्न वर्णक्रम रेखाओं के तरंगदैर्ध्य को निम्न सूत्र से ज्ञात किया जा सकता है।

$$\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$$
 जहां $n = 2, 3, 4, \dots, \infty$

लाइमन श्रेणी हाइड्रोजन परमाणु में इलेक्ट्रॉन के दूसरी, तीसरी... आदि कक्षाओं से प्रथम कक्षा में स्थानान्तरण होने पर उत्सर्जित विकिरण से प्राप्त होती है।

(ii) **बामर श्रेणी (Balmer series) -** यह श्रेणी दृश्य वर्णक्रम (visible spectrum) क्षेत्र में होती है तथा इस श्रेणी का उद्गम इलेक्ट्रॉन के तीसरी, चौथी, पांचवी ... आदि कक्षाओं से

दूसरी कक्षा में संक्रमण से होता है। इस श्रेणी की विभिन्न वर्णक्रम रेखाओं के तरंगदैर्ध्य को निम्न सूत्र दवारा प्राप्त किया जा सकता है-

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$
 जहां $n = 3, 4, 5, \infty$

(iii) पाशन श्रेणी (Paschen series) - यह श्रेणी अवरक्त वर्णक्रम (infrared spectrum) क्षेत्र में स्थित होती है। हाइड्रोजन परमाणु की चौथी, पांचवी, छठी आदि कक्षाओं से जब इलेक्ट्रॉन तीसरी कक्षा में जाता है तो यह श्रेणी प्राप्त होती है। अतः इस श्रेणी के लिए-

$$\frac{1}{\lambda} = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right)$$
 जहां $n = 4, 5, 6, \dots, \infty$

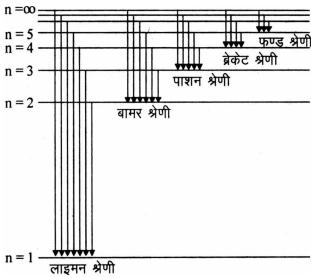
(iv) ब्रेकेट श्रेणी (Bracket series) - यह श्रेणी चरम अवरक्त (extreme infrared) क्षेत्र में होती है इस श्रेणी के तरंग-दैर्ध्य को निम्न सूत्र से प्राप्त किया जा सकता है-

$$\frac{1}{\lambda} = R\left(\frac{1}{4^2} - \frac{1}{n^2}\right)$$
 जहां $n = 5, 6, 7, \dots, \infty$

(v) फण्ड श्रेणी (Pfund series) - यह श्रेणी भी चरम अवरक्त क्षेत्र में होती है तथा इस श्रेणी की रेखाओं के लिए -

$$\frac{1}{\lambda} = R\left(\frac{1}{5^2} - \frac{1}{n^2}\right) \qquad \text{जहां} \quad n = 6, 7, 8, \dots \infty$$

इन विभिन्न श्रेणियों को ऊर्जा स्तर आरेख (energy level diagram) में चित्र 14.4 में दर्शाया गया।



चित्र 14.4 H - परमाणु के स्पेक्ट्रम में प्राप्त विभिन्न श्रेणियों को प्राप्त करने के लिये ऊर्जा स्तर आरेख इय्ट्रॉन (Deutron)

ड्यूटीरियम परमाणु जो कि हाइड्रोजन का आइसोटोप (isotope) है, के आयन को ड्यूट्रॉन कहते है। ड्यूटीरियम नाभिक में एक प्रोटोन तथा एक न्यूट्रोन होता है इसे भारी (heavy) हाइड्रोजन भी कहते हैं। रासायनिक दृष्टि से यह हाइड्रोजन के समान ही यौगिक (compounds) बनाता है। हालांकि इसकी रासायनिक क्रिया, हाइड्रोजन की तुलना में धीमी होती है। इनसे ऊर्जा स्तर हाइड्रोजन के समान होते है अतः विभिन्न श्रेणियां भी इसके समान होती हैं।

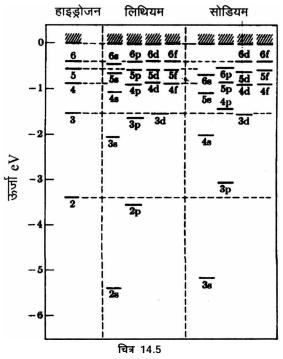
बोध	प्रश्न (Self assessment question)
2.	एकधा आयनित (singly ionised) हीलियम $\left(\mathrm{H} e^{\scriptscriptstyle +} ight)$ की मूल अवस्था तथा
	प्रथम उत्तेजित अवस्था में ऊर्जा का मान लिखिये।

14.4 क्षारीय परमाणु (Alkali Atom)

ऐसे परमाणु जिनके बाह्य कक्षा में केवल एक इलेक्ट्रॉन होता है, एक संयोजी परमाणु कहलाते हैं। सभी क्षारीय परमाणुओं (alkali atoms) Li(z=3), Na(z=11), k(z=19), Rb(z=37) तथा Cs(z=55) की बाह्य कक्षाओं में भी केवल एक इलेक्ट्रॉन ही होता है। इन सभी क्षारीय परमाणुओं के स्पेक्ट्रम समान होते हैं तथा इन्हें क्षारीय स्पेक्ट्रम (alkali spectrum) कहते हैं। क्षारीय परमाणुओं के परिणामी कोणीय संवेग सिर्फ संयोजी इलेक्ट्रॉन के कारण प्राप्त होते हैं, क्योंकि पूर्णतः भरे कक्षों के कारण कक्षीय या स्पिन कोणीय संवेग में कोई योगदान नहीं होता है।

क्षारीय परमाणुओं में संयोजी s- इलेक्ट्रान को n>1 वाले हाइड्रोजन समान परमाणु के क्लाम क्षेत्र (Coulomb field) में गित करता हुआ माना जा सकता है। उदाहरण के लिए सोडियम परमाणु को मूल अवस्था में इलेक्ट्रॉनिक अभिविन्यास $1s^22s^22p^63s^1$ होता है। इसमें संयोजी इलेक्ट्रॉन 3s अवस्था में होता है तथा $1s^22s^22p^6$ अवस्थाओं वाले इलेक्ट्रॉन, सोडियम परमाणु के कोणीय संवेग में योगदान नहीं करते हैं। क्षारीय परमाणुओं में संयोजी इलेक्ट्रॉन, नाभिक जिसका आवेश +Ze होता है तथा पूर्णतः भरे कक्षकों जिनका कुल आवेश -(Z-1)e होता है के परिणामी क्लाम क्षेत्र में गित करता है। पूर्णतः भरे कक्षकों के इलेक्ट्रॉन, नाभिक व संयोजी इलेक्ट्रॉन के बीच परिररक्षण (shield) का कार्य करते हैं। जबिक हाइड्रोजन परमाणु में संयोजी इलेक्ट्रॉन व नाभिक के बीच कोई परिरक्षण नहीं होता है। क्षारीय परमाणुओं में परिरक्षण प्रभाव (shield effect) के कारण ही ऊर्जा स्तर कोणीय संवेग अर्थात कक्षीय क्वांटम संख्या ℓ पर भी निर्भर करते हैं। हाइड्रोजन परमाणु के ऊर्जा स्तर कोणीय संवेग या ℓ पर निर्भर नहीं करते हैं अर्थात समान n वाली अवस्थाओं लेकिन भिन्न कोणीय संवेगों या भिन्न ℓ वाली अवस्थाओं के संगत ऊर्जा समान होती है। चित्र 14.5 में हाइड्रोजन, लिथियम तथा सोडियम क्षारीय परमाणुओं के विभिन्न ऊर्जा स्तरों को दर्शाया गया है। चित्र से स्पष्ट है कि हाइड्रोजन के लिए 3s,3p तथा 3d स्तरों के लिए एक ही ऊर्जा है, इसी प्रकार 4s,4p,4d,4f स्तरों के

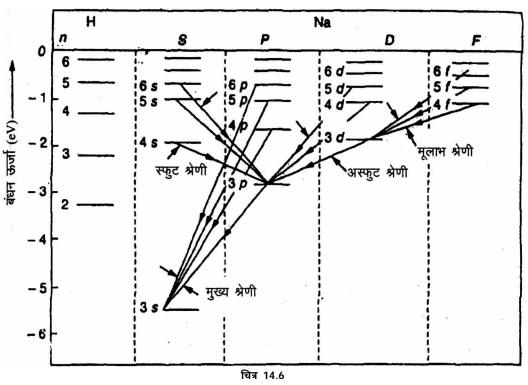
लिए भी एक ही ऊर्जा है। लेकिन Li तथा Na के लिए सभी स्तरों 3s,3p,3d तथा 4s,4p,4d,4f के संगत भिन्न ऊर्जाएँ हैं।



स्पेक्ट्रमी पद (Spectral series)

यहाँ हम सोडियम क्षारीय परमाणु के अनुमत संक्रमण (allowed transitions) तथा स्पेक्ट्रमी पदों की व्याख्या कर रहे हैं। जब सोडियम का 3s इलेक्ट्रॉन उत्तेजित होता है तो यह उच्च ऊर्जा स्तरों जैसे 3p,3d,4s,4p,4d,4f... में पहुँच जाता है। अल्प समय ($\sim 10^{-8}$ सैकण्ड) पश्चात यह उत्तेजित इलेक्ट्रॉन निम्न ऊर्जा स्तर में लौटता है तथा विकिरण उत्सर्जित करता है जो कि स्पेक्ट्रोग्राफ द्वारा स्पेक्ट्रमी रेखा के रूप में दिखाई देते हैं। उत्तेजित अवस्था में संक्रमण, वरण नियम (selection rule) द्वारा ही हो सकता है। केवल वो ही संक्रमण (transitions) संभव या अनुमत (allowed) हैं जिनमें कक्षीय क्वांटम संख्या में परिवर्तन ± 1 हो अर्थात $\Delta \ell = \pm 1$ । सोडियम परमाणु के लिए अनुमत संक्रमणों को चित्र 14.6 में दर्शाया गया है।

नोट: परमाण्वीय स्पेक्ट्रोस्कोपी में किसी ऊर्जा स्तर को $(n)^{(2s+1)}l_j$ पद द्वारा व्यक्त किया जाता है। जहाँ n,s,l व j क्रमशः मुख्य, स्पिन, कक्षीय तथा कुल कोणीय संवेग क्वांटम संख्याएँ हैं। यहाँ ℓ को s,p या d क्रमशः $\ell=0,\ell=1$ या $\ell=2$ के संगत लिखते हैं।



क्षारीय धातुओं से उत्सर्जित स्पेक्ट्रम को मुख्य चार वर्गो में विभाजित किया जा सकता है। प्रत्येक श्रेणी में विशेष स्तर के संक्रमण होते हैं जैसा कि आप हाइड्रोजन स्पेक्ट्रम की श्रेणियों के बारे में जानते हैं।

- (i) **मुख्य श्रेणी (Principal series) -** जब इलेक्ट्रॉन विभिन्न P ऊर्जा स्तरों से न्यूनतम S स्तर में संक्रमण करते हैं तब इन संक्रमणों से प्राप्त स्पेक्ट्रमी रेखाओं की श्रेणी को मुख्य श्रेणी कहते हैं। सोडियम के लिये न्यूनतम S स्तर 3S है।
- (ii) स्फुट श्रेणी (Sharp series) जब इलेक्ट्रॉन विभिन्न s ऊर्जा स्तरों (न्यूनतम s ऊर्जा स्तर के अतिरिक्त) से न्यूनतम p ऊर्जा स्तर में संक्रमण करते है तब इन संक्रमणों से प्राप्त स्पेक्ट्रमी रेखाओं की श्रेणी को स्फुट श्रेणी कहते हैं। सोडियम के लिए न्यूनतम p स्तर 3p है।
- (iii) अस्फुट श्रेणी (Diffuse series) जब इलेक्ट्रॉन विभिन्न d ऊर्जा स्तरों से न्यूनतम p ऊर्जा स्तर में संक्रमण करता है, इनसे प्राप्त स्पेक्ट्रमी रेखाओं की श्रेणी अस्फुट श्रेणी कहलाती है।

म्लाभ श्रेणी (Fundamental series) या बर्जमान श्रेणी (Bergmann series) - जब इलेक्ट्रॉन विभिन्न ि ऊर्जा स्तरों से न्यूनतम d ऊर्जा स्तर में संक्रमण करता है तो इनसे प्राप्त स्पेक्ट्रमी रेखाओं की श्रेणी मूलाभ श्रेणी कहलाती है। सोडियम के लिए न्यूनतम d स्तर 3d है।

सोडियम धातु के लिए सभी स्पेक्ट्रमी श्रेणियों को चित्र 14.6 में दर्शाया गया है।

14.5 सूक्ष्म संरचना (Fine Structure)

जब हम सोडियम स्पेक्ट्रम को किसी उच्च विभेदन क्षमता वाले स्पेक्ट्रोमीटर द्वारा देखते हैं तो मुख्य श्रेणी (principle series) तथा स्फुट श्रेणी (sharp series) की प्रत्येक रेखा दो रेखाओं में विभाजित प्रतीत होती है जिन्हें द्विक (doublet) कहते हैं। द्विक रेखाएँ बहुत पास-पास होती है तथा इसे स्पेक्ट्रमी रेखाओं की सूक्ष्म संरचना (fine structure) कहते है।

14.5.1 स्पिन - कक्षा युग्मन (Spin - orbit coupling)

क्षारीय परमाणु की सूक्ष्म संरचना (fine structure) को स्पिन - कक्षा युग्मन के आधार पर समझा जा सकता है। किसी परमाणु के इलेक्ट्रॉन की कक्षीय गित के कारण उत्पन्न चुम्बकीय आधूर्ण $\overrightarrow{\mu_L}$ तथा इलेक्ट्रॉन के स्पिन गित के कारण उत्पन्न चुम्बकीय आधूर्ण $\overrightarrow{\mu_s}$ में अन्योन्य क्रिया होती है। इस अन्योन्य क्रिया को स्पिन - कक्षा युग्मन (spin - orbit interaction) कहते हैं।

एक परमाणु के नाभिक पर यदि कोई प्रेक्षक स्थित माना जाये तो उसके सापेक्ष इलेक्ट्रॉन एक वृताकार पथ में परिक्रमा करता हुआ प्रतीत होता है जिसका कोणीय संवेग \vec{L} है। चित्र 14.7 (अ) के अनुसार की दिशा पृष्ठ से बाहर, ऊपर की ओर होगी। अब यदि एक अन्य प्रेक्षक को इलेक्ट्रॉन पर स्थित मान लें तब उसे नाभिक एक वृताकार पथ में गित करता हुआ प्रतीत होगा। (चित्र 14.7 (ब))। अतः इलेक्ट्रॉन पर स्थित प्रेक्षक के लिए धनावेशित नाभिक की इस आभासी गित के कारण एक चुम्बकीय क्षेत्र \vec{B} उत्पन्न हो जायेगा जिसकी दिशा \vec{L} के समान्तर होगी। यह चुम्बकीय क्षेत्र \vec{B},\vec{L} के समान्पाती होगा।

(अ) नाभिक की स्थिति पर प्रेक्षक के लिये इलेक्ट्रॉन की गति।

(ब) इलेक्ट्रॉन पर स्थित प्रेक्षक के लिये नाभिक की गति।

चित्र 14.7

इलेक्ट्रॉन की स्थिति पर अनुभव किये गये इस चुम्बकीय क्षेत्र तथा इलेक्ट्रॉन के स्पिन चुम्बकीय आघूर्ण $\stackrel{\longrightarrow}{\mu_{i}}$ की अन्योन्य क्रिया से इलेक्ट्रॉन की अतिरिक्त स्थितिज ऊर्जा होगी

$$E_{\text{SI}} = -\overrightarrow{\mu}_{\text{s}} \cdot \overrightarrow{B} \qquad \dots (14.1)$$

चूंकि इलेक्ट्रॉन द्वारा अनुभव किया गया चुम्बकीय क्षेत्र स्वयं के कक्षीय कोणीय संवेग L के समानुपाती होता है।

$$\overrightarrow{B}=\left(rac{Ze}{8\pi\in_{\circ}mc^2r^3}
ight)\overrightarrow{L}$$
तथा $\mu_s=-rac{e\overrightarrow{S}}{m}$ अतः
$$E_{SL}=\left(rac{Ze^2}{8\pi\in_{\circ}m^2c^2r^3}
ight)\overrightarrow{S}.\overrightarrow{L} \qquad ... \ (14.2)$$
या $E_{SL}=A\left(\overrightarrow{S}.\overrightarrow{L}
ight) \qquad ... \ (14.3)$
जहां $A=rac{Ze^2}{8\pi\in_{\circ}m^2c^2r^3}$

उपरोक्त स्पिन - कक्षा युग्मन के कारण इलेक्ट्रॉन के ऊर्जा स्तरों में अल्प परिवर्तन हो जाता है। इस परार्वतन के कारण $\ell \neq 0$ वाले ऊर्जा स्तर विभक्त (spilt) होकर द्विगुणित (double) हो जाते हैं जिसके कारण, इन ऊर्जा स्तरों से संक्रमण से प्राप्त स्पेक्ट्रमी रेखाओं में सिन्निकट द्विक संरचना (doublet) प्राप्त होती है।

14.5.2 दविक संरचना (Doublet)

स्पिन - कक्षा युग्मन के कारण इलेक्ट्रॉन की अतिरिक्त स्थितिज ऊर्जा

$$E_{SL} = A(\vec{S}.\vec{L})$$

इलेक्ट्रॉन का कुल कोणीय संवेग $\left(\overrightarrow{J}\right)$ इलेक्ट्रान के कक्षीय कोणीय संवेग $\left(\overrightarrow{L}\right)$ तथा स्पिन कोणीय संवेग $\left(\overrightarrow{S}\right)$ के योग के बराबर होता है।

$$\vec{J} = \vec{L} + \vec{S}$$
 ... (14.4)
 $\therefore \qquad J^2 = \vec{J}.\vec{J} = (\vec{L} + \vec{S}) = L^2 + S^2 + 2\vec{L}.\vec{S}$
ਤਾਰ: $\vec{S}.\vec{L} = \frac{1}{2}(J^2 - L^2 - S^2)$...(14.5)
ਚੰਗਿ $J = \sqrt{j(j+1)}\hbar; \ L = \sqrt{\ell(\ell+1)}\hbar; \ S = \sqrt{s(s+1)}\hbar$

जहां ℓ कक्षीय कोणीय संवेग क्वांटम संख्या, S स्पिन कोणीय संवेग क्वांटम संख्या तथा j कुल कोणीय संवेग क्वांटम संख्या है।

$$\vec{S}.\vec{L} = \frac{\hbar^2}{2} [j(j+1) - \ell(\ell+1) - s(s+1)] \qquad \dots (14.6)$$

अत: समी (14.3) से

$$E_{SL} = \frac{\hbar^2}{2} A [j(j+1) - \ell(\ell+1) - s(s+1)] \qquad ...(14.7)$$

यदि n वीं अवस्था में परमाणु की ऊर्जा E_n है तब परमाणु की कुल ऊर्जा $E=E_n+E_{SL}$ होगी। अतः E_{SL} स्पिन कक्षा युग्मन के कारण कुल ऊर्जा में परिवर्तन है।

कुल कोणीय संवेग क्वांटम संख्या j के मान निम्न होते हैं - $j=\ell+s$ (जब \overrightarrow{L} तथा \overrightarrow{S} समान्तर हों)

तथा $j=\ell-s$ (जब \overrightarrow{L} तथा \overrightarrow{S} विपरीत हों)

(i) s-3 वस्था के लिए, $\ell=0$ $s=\frac{1}{2}$ तथा $j=\frac{1}{2}s$

समी (14.7) से स्पिन - कक्षा युग्मन ऊर्जा

$$E_{SL} = \frac{\hbar^2}{2} A[s(s+1) - s(s+1)] = 0$$

अतः स्पिन - कक्षा युग्मन का प्रभाव s अवस्था की ऊर्जा पर कोई प्रभाव नहीं होता है तथा s अवस्थाएँ एकल (single) ही रहती हैं।

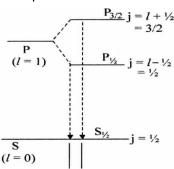
(ii)
$$p-3$$
वस्था के लिए, $\ell=1$, $s=\frac{1}{2}$, $j=\frac{1}{2}$ या $\frac{3}{2}$

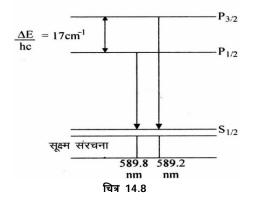
(iii)
$$d-3$$
 वस्था के लिए, $\ell=1, s=\frac{1}{2}, j=\frac{3}{2}$ या $\frac{5}{2}$

अतः p-या d-अवस्थाओं के लिए $\ell \# 0$ तथा

$$j = \left(\ell + \frac{1}{2}\right)$$

या
$$\left(\ell - \frac{1}{2}\right)$$
 व $s(s+1) = \frac{3}{4}$ होगा।





इनका उपयोग समी (14.7) में करने पर स्पिन - कक्षा युग्मन के कारण $\ell \# 0$ ऊर्जा स्तर की ऊर्जाओं में निम्न पद जुड़ जायेगा।

$${
m E}_{SL}=rac{\hbar^2}{2}{
m A}\ell$$
 जब $j=\ell+rac{1}{2}$ तथा ${
m E}_{SL}=rac{\hbar^2}{2}{
m A}(-\ell-1)$ जब $j=\ell-rac{1}{2}$

इस प्रकार इलेक्ट्रॉन के उन ऊर्जा स्तरों में अन्तर आयेगा, जिनके लिये n,1 समान होते हुए भी j में अन्तर हो। n,ℓ क्वान्टम संख्याओं वाला प्रत्येक ऊर्जा स्तर, दो ऊर्जा स्तरों $j=\left(\ell+\frac{1}{2}\right)$ और $j=\left(\ell-\frac{1}{2}\right)$ में विभक्त (spilt) हो जायेगा, जैसा कि चित्र 14.7 में दिखाया गया है। इन ऊर्जा स्तरों से इलेक्ट्रॉन के निम्न ऊर्जा स्तर (lower energy level) पर संक्रमण से, स्पेक्ट्रमी रेखा में द्विरेखी संरचना प्राप्त होती है जिसे सूक्ष्म संरचना कहते हैं। अवस्था के इन विपाटित (splitted) ऊर्जा स्तरों के बीच ऊर्जा अन्तराल है-

$$\Delta E = \hbar^2 A \left(\ell + \frac{1}{2} \right) = \frac{3}{2} \hbar^2 A$$

स्पिन कक्षा युग्मन के कारण स्पेक्ट्रमी रेखाओं में सूक्ष्म संरचना का एक उदाहरण सोडियम D रेखायें है। सोडियम वाष्प लेम्प से प्राप्त पीले प्रकाश क्षेत्र में तरंगदैर्ध्य $\lambda=5890\,\mathrm{\mathring{A}}^0$ पर पायी जाने वाली स्पेक्ट्रमी रेखा वास्तव में द्विक संरचना (doublet) युक्त होती है। इसमें $\lambda=5897.6\,\mathrm{\mathring{A}}^0$ तथा $\lambda=5891.6\,\mathrm{\mathring{A}}^0$ वाली दो स्पेक्ट्रमी रेखायें होती है, इनमें अन्तर $\Delta\lambda=\lambda_1-\lambda_2=6\,\mathrm{\mathring{A}}^0$ होता है। ये रेखायें, इलेक्ट्रॉन के सोडियम परमाणु में 3s में संक्रमण से प्राप्त होती हैं। स्पिन कक्षा युग्मन से प्रभावित ऊर्जा स्तर चित्र 14.8 में दिखाये गये हैं।

बोध	बोध प्रश्न (Self assessment questions)							
3.	स्पिन कक्षा युग्मन से सभी क्वांटम अवस्थाएं दो में विपाटित (spilt) हो जाती							
	है लेकिन $s-3$ वस्था विपाटित नहीं होती है, क्यों?							
4.	एकल इलेक्ट्रॉन परमाणुओं में द्विक संरचना (doublet) प्राप्त होने के लिए							
वरण नियम (selection rules) लिखिये।								

उदाहरण 14.1 सोडियम परमाणु के दो p- ऊर्जा स्तरों में ऊर्जा अन्तराल यदि 0.00214eV है तो दोनों द्विक D- रेखाओं के बीच तरंगदैर्ध्य अन्तराल ज्ञात कीजिये। $(\lambda_0=5893 \overset{0}{\mathrm{A}})$

हल : ऊर्जा अन्तराल $\Delta E = 0.00214 eV$ = $2.14 \times 10^{-3} \times 1.6 \times 10^{-19}$

 $\triangle v = \frac{\Delta E}{h} = \frac{2.14 \times 1.6 \times 10^{-22}}{6.62 \times 10^{-34}}$

लेकिन $v = \frac{c}{\lambda}$: $dv = \frac{-c^2}{\lambda^2} d\lambda$

या $d\lambda = \frac{-dv\lambda^2}{c}$

उदाहरण 14.2 सोडियम के पीले प्रकाश की स्पेक्ट्रमी रेखाएं 3P से 3S में संक्रमण से प्राप्त होती हैं। इन संक्रमणों के प्रत्येक ऊर्जा स्तर के पदों को लिखिये।

हल : (i) 3S अवस्था के लिए $s = \frac{1}{2}$ तथा $\ell = 0$ $\therefore j = \ell + s = \frac{1}{2}$

अतः 3S अवस्था के लिए पद $3^2S_{1/2}$ है। साधारणतया पद को $(n)^{(2s+1)}L_j$ द्वारा व्यक्त किया जाता है।

(ii) ^{3}P अवस्था के लिए $s = \frac{1}{2}, \ \ell = 1$ तथा

$$j = \ell \pm s = \frac{3}{2} \quad \text{या} \quad \frac{1}{2}$$

अतः दोनों अवस्थाओं के संगत पद क्रमशः $3^2 P_{_{3/2}}$ तथा $3^2 P_{_{1/2}}$ हैं। अनुमत संक्रमण के लिए वरण नियम $\Delta j=0,~\pm 1$ है।

- (i) j=0 से हम D_1 रेखा प्राप्त करते हैं जिसमें संक्रमण $3^2 P_{1/2} \to 3^2 S_{1/2}$ होता है।
- (ii) $j=\pm 1$ से हम D_2 रेखा प्राप्त करते हैं जिसमें संक्रमण $3^2 {\rm P}_{\scriptscriptstyle 3/2} o 3^2 S_{\scriptscriptstyle 1/2}$ होता है।

14.6 सारांश (Summary)

- फ्रेन्क-हर्ट्ज प्रयोग द्वारा परमाणुओं में विविक्त ऊर्जा स्तरों की प्रायोगिक पुष्टि होती है।
- हाइड्रोजन परमाणु के स्पेक्ट्रम में लाइमन श्रेणी, n=2 से ∞ द्वारा n=1 में संक्रमण से प्राप्त होती है।
- क्षारीय परमाणुओं में पूर्णतः भरे कक्षकों के इलेक्ट्रान, नाभिक व संयोजी इलेक्ट्रॉन के बीच परिरक्षण का कार्य करते हैं जिससे इनके ऊर्जा स्तर n के साथ साथ ℓ पर भी निर्भर करते हैं।
- क्षारीय परमाणु में अनुमत संक्रमण के लिए वरण नियम $\ell=\pm 1$ तथा $j=0,\pm 1$ है।
- j=0 से j=0 अवस्था में संक्रमण वर्जित होता है।
- क्षारीय धातुओं के स्पेक्ट्रम को चार श्रेणियों मुख्य श्रेणी, स्फुट श्रेणी, अस्फुट श्रेणी तथा मूलाभ श्रेणी में वर्गीकृत किया गया है।
- स्पिन-कक्षा युग्मन के कारण इलेक्ट्रॉन की ऊर्जा में परिवर्तन

$$E_{SL} = \frac{\hbar^2}{2} A [j(j+1) - \ell(\ell+1) - s(s+1)]$$

 स्पिन-कक्षा युग्मन के कारण ऊर्जा स्तरों में विपाटन हो जाता है जिससे स्पेक्ट्रमी रेखाओं में सूक्ष्म संरचना प्राप्त होती है।

14.7 **शब्दावली** (Glossary)

परमाण्वीय स्पेक्ट्रा	Atomic spectra
विविक्त ऊर्जा	Discrete energy
त्वरित	Accelerate
मंदक विभव	Retarding potential
पारे की वाष्प	Mercury vapour
एकल	Single
वर्णक्रम	Spectrum
चरम पराबैंगनी	Extreme ultraviolet
अवरक्त	Infrared
दृश्य	Visible
एकधा आयनित	Singly ionised
क्षारीय परमाणु	Alkali atoms

परिरक्षण प्रभाव	Shield effect
अनुमत संक्रमण	Allowed transitions
वरण नियम	Selection rules
मुख्य श्रेणी	Principle series
स्फुट श्रेणी	Sharp series
अस्फुट श्रेणी	Diffuse series
मूलाभ श्रेणी	Fundamental series
सूक्ष्म सरंचना	Fine structure
स्पिन-कक्षा युग्मन	Spin-orbit coupling
विपाटन	Spiltting
द्विक	Doublet
द्विगुणित	Double

14.8 संदर्भ ग्रन्थ (Reference Books)

एस.एस रावत एवं	प्रारम्भिक क्वांटम	कॉलेज बुक हाउस,
सरदार सिंह	यांत्रिकी एवं स्पेक्ट्रोस्कोपी	जयपुर
M.Alonso and	Fundamental	Addison- Wesley
E.J.Finn	University Physics	Publishing Company
	Vol. III	
C.L. Arora	Atomic and	S. Chand and
	Molecular Physics	Company Ltd. New
		Delhi

14.9 बोध प्रश्नों के उत्तर (Answers to Self-Assessment Questions)

1. एकल इलेक्ट्रान परमाणुओं के ऊर्जा स्तरों की ऊर्जा का मान

$$E_n = -\frac{mz^2 e^4}{32\pi^2 \varepsilon_0^2 n^2 \hbar^2} = -\frac{z^2}{n^2} \times 13.6eV$$

अतः हाइड्रोजन (z=1) के प्रथम, द्वितीय तथा ऊर्जा स्तरों की ऊर्जाएँ क्रमशः

$${\rm E_1} = -13.6 eV$$
 , ${\rm E_2} = -3.4 eV$ तथा ${\rm E_3} = -1.51 eV$

2. एकधा आयनित हीलियम He^+ आयन के ऊर्जा स्तर की ऊर्जा का मान $E_n = -\frac{Z^2}{n^2} \times 13.6 eV$ द्वारा ज्ञात किया जाता है। हीलियम के लिए z=2 होता है। अतः He^+ आयन की मूल अवस्था की ऊर्जा

$$E_0 = -\frac{2^2}{1^2} \times 13.6 eV = -54.4 eV$$
 तथा

प्रथम उत्तेजित अवस्था में ऊर्जा $E_1 = -\frac{2^2}{2^2} \times 13.6 eVz = -13.6 eV$ होती है।

3. स्पिन - कक्षा युग्मन के कारण ऊर्जा परिवर्तन है

$$E_{SL} = \frac{\hbar^2}{2} A [j(j+1) - s(s+1) - \ell(\ell+1)]$$

s- अवस्था के लिए $s=\frac{1}{2},\;\ell=0,\;j=\frac{1}{2}$

$$\therefore E_{SL} = \frac{\hbar^2}{2} A \left[\frac{1}{2} \left(\frac{1}{2} + 1 \right) - 0 - \frac{1}{2} \left(\frac{1}{2} + 1 \right) \right] = 0$$

अतः स्पिन कक्षा युग्मन के प्रभाव में परमाणु की s- अवस्था की कुल ऊर्जा में कोई परिवर्तन नहीं होता है।

- 4. जिन परमाणुओं में एक संयोजी इलेक्ट्रॉन होते हैं, उनके स्पेक्ट्रम में पाये जाने वाले द्विक संरचना (Doublet) के लिए कुल कोणीय संवेग j के वरण नियम हैं अनुमत संक्रमण (allowed transition) तभी होगा जबिक संक्रमण के कारण j में
 - परिवर्तन 0, +1 या -1 हो। अर्थात् $\Delta j = 0, \pm 1$ लेकिन j = 0 से j = 0 वाली अवस्था में संक्रमण संभव नहीं है।
- 5. सोडियम स्पेक्ट्रम में पीले प्रकाश की दो D-रेखाएँ मुख्य श्रेणी (principle series) के संगत होती है।

14.10 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. स्पिन कक्षा युग्मन के प्रभाव से s-35र्जा स्तर क्यों नहीं विपाटित (spilt) होते हैं।
- 2. सोडियम स्पेक्ट्रम में पीले प्रकाश की D-रेखाओं की ऊर्जाएँ लिखिये।
- 3. परिरक्षण प्रभाव क्या होता है?

निबन्धात्मक प्रश्न (Essay type questions)

- स्पेक्ट्रमी रेखा की सूक्ष्म संरचना से आप क्या समझते हैं? क्षारीय परमाणुओं में सूक्ष्म संरचना की व्याख्या स्पिन-कक्षा युग्मन के आधार पर किस प्रकार होती है, लिखिये।
- 5. क्षारीय परमाणुओं के स्पेक्ट्रम लक्षण समझाइये। सोडियम के ऊर्जा स्तरों का चित्र बनाइये तथा इसके स्पेक्ट्रम के लक्षणों की व्याख्या कीजिये। सोडियम स्पेक्ट्रम में प्राप्त विभिन्न श्रेणियों के बारे में लिखिये।
- 6. स्पिन-कक्षा युग्मन से क्या अभिप्राय है? स्पिन-कक्षा युग्मन के कारण परमाणु की कुल ऊर्जा में परिवर्तन की गणना कीजिये।
- 7. फ्रेंक-हर्ट्ज प्रयोग का वर्णन करते हुए सिद्ध कीजिये कि एकल इलेक्ट्रॉनी परमाणु के ऊर्जा स्तर विवक्त होते हैं।

आंकिक प्रश्न (Numerical questions)

8. सोडियम के p-ऊर्जा स्तरों में ऊर्जा अन्तर -2.14meV है तो इसकी D-रेखाओं के अन्तराल ज्ञात कीजिए यदि $\lambda_0=589.3nm$ है। $[5.987\stackrel{0}{A}]$

इकाई-15

आणविक स्पेक्ट्रा

(Molecular Spectra)

इकाई की रूपरेखा

- 15.0 उद्देश्य
- 15.1 प्रस्तावना
- 15.2 अण्ओं के लिए इलेक्ट्रॉनिक ऊर्जा का विविक्त सम्च्यय
- 15.3 घूर्णी स्पेक्ट्रा
 - 15.3.1 द्विपरमाणुक अणु के घूर्णन ऊर्जा स्तर
 - 15.3.2 वरण नियम
 - 15.3.3 घूणीं स्पेक्ट्रा विवेचना
- 15.4 कम्पनिक स्पेक्ट्रा
 - 15.4.1 द्विपरमाण्क अण् के कम्पनिक ऊर्जा स्तर
 - 15.4.2 वरण नियम
 - 15.4.3 कम्पनिक स्पेक्ट्रा विवेचना
- 15.5 स्टर्न गरलेक प्रयोग तथा इलेक्ट्रॉन चक्रण
- 15.6 सारांश
- 15.7 शब्दावली
- 15.8 संदर्भ ग्रन्थ
- 15.9 बोध प्रश्नों के उत्तर
- 15.10 अभ्यासार्थ प्रश्न

15.0 उद्देश्य (Objectives)

इस इकाई को पढ्ने के बाद आप

- रेखिल एवं बैण्ड स्पेक्ट्रम में विभेद समझ सकेंगे;
- आण्विक बैण्ड की संरचना से परिचित हो सकेंगे;
- आण्विक स्पेक्ट्रा के क्वांटम सिद्धान्त से परिचित हो सकेंगे;
- दृढ़ घूणीं व अणु के परमाणुओं की कम्पनिक गति को समझ सकेंगे
- आणविक स्पेक्ट्रा को विस्तृत रूप से समझ सकेंगे।

15.1 प्रस्तावना (Introduction)

अणुओं द्वारा उत्सर्जित स्पेक्ट्रम को आणविक स्पेक्ट्रा कहते हैं। सामान्य स्पेक्ट्रोस्कोप में आणविक स्पेक्ट्रा एक सतत बैण्ड की भाँति दिखाई देता है इसलिए इसे बैण्ड स्पेक्ट्रम कहते हैं। इस बैण्ड में दीर्घ तरंगदैर्ध्य वाला किनारा अधिक तीव्रता का और लघुतरंगदैर्ध्य वाले सिरे की ओर इसकी तीव्रता निरन्तर कम होती जाती है। उच्च विभेदन क्षमता वाले स्पेक्ट्रोस्कोप से प्रेक्षित करने पर आणविक बैण्ड स्पेक्ट्रा में निम्न लाक्षणिक गुणधर्म प्रेक्षित होते है-

- (अ) प्रत्येक बैण्ड में बहुत अधिक संख्या में स्पेक्ट्रमी रेखायें होती है; जिनमें दीर्घ तरंगदैर्ध्य वाले सिरे पर ये रेखायें अति संकुलित (closely packed) होती है। इस किनारे को बैण्ड शीर्ष कहा जाता है। बैण्ड के दूसरे किनारे की ओर जाने पर रेखायें कम संकुलित और हल्की तीव्रता की होती जाती है। इस प्रकार एक नियमित अनुक्रम में एक के बाद एक बैण्ड प्राप्त होते है। इस बैण्ड समूह को ही आणविक स्पेक्ट्रा कहते हैं।
- (ब) विभिन्न बैण्ड समूहों की व्यवस्था नियमित होती है और इनकी स्थिति बहुत पास पास हो सकती है। देखिए चित्र 15.1।

इस इकाई के अन्तर्गत घूर्णी स्पेक्ट्रा, कम्पनिक स्पेक्ट्रा के परिणामों की विवेचना करते हुए इलेक्ट्रॉन चक्रण की संकल्पना को समझेंगे।

आणविक स्पेक्ट्रा को समझने के लिये इसके विभिन्न ऊर्जा स्तरों की विवेचना अनुच्छेद 15.2 में की गयी है। तत्पश्चात द्विपरमाणुक अणु के घूर्णन ऊर्जा स्तर, वरण नियम एवं विवेचना अनुच्छेद 15.3 में लिखी गयी है। कम्पनिक स्पेक्ट्रा के बारे में अनुच्छेद 15.4 में इन्हीं उपरोक्त बिन्दुओं पर विस्तार से जानकारी दी गयी है। अन्त में अनुच्छेद 15.5 में स्टिन गरलेक प्रयोग तथा इलेक्ट्रॉन चक्रण को समझाया गया है।

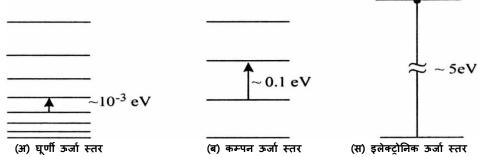
15.2 अणुओं के लिए इलेक्ट्रॉनिक ऊर्जा का विविक्त समुच्चय

(Descret set of Electronics Energy for Molecules)

परमाणु की भाँति अणु में भी ऊर्जा स्तर क्वाण्टीकृत होते हैं। अणुओं की आन्तरिक ऊर्जा में अणु की स्थानान्तरण ऊर्जा के अतिरिक्त इसकी घूर्णन ऊर्जा, कम्पनिक ऊर्जा तथा इलेक्ट्रॉनिक ऊर्जा भी होती है। फलत: प्रणुओं में तीन प्रकार के विविक्त ऊर्जा स्तर होते हैं-

- (अ) **पूर्णी ऊर्जा स्तर (rotational energy states)** अणुओं के एक स्वतंत्र अक्ष के सापेक्ष घूर्णन करने के कारण अणुओं में घूर्णी ऊर्जा होती हैं। घूर्णी ऊर्जा में विविक्त ऊर्जा स्तर होते हैं । जिनके मध्य ऊर्जा अन्तराल $0^{-3}eV$ की कोटि का होता है।
- (ब) कम्पन ऊर्जा स्तर (Vibrational energy states) अणुओं के परमाणुओं के मध्य बन्धन बल के संकुचन तथा तनन के कारण उत्पन्न ऊर्जा से सम्बन्धित क्वाण्टीकृत ऊर्जा स्तरों को कम्पन ऊर्जा स्तर कहते हैं। इसमें ऊर्जा स्तरों के मध्य ऊर्जा अन्तराल $10^{-1}eV$ कोटि का होता है।

(स) **इलेक्ट्रॉनिक ऊर्जा स्तर (Electronic energy states)** अणु में इलेक्ट्रॉनों की ऊर्जा भी विविक्त ऊर्जा स्तरों में होती हैं। आणविक इलेक्ट्रोनिक ऊर्जा स्तरों में ऊर्जा अन्तराल लगभग 5eV की कोटि का होता है। देखिये चित्र (15.2)।



यहाँ हमें यह समझ लेना चाहिए कि घूणीं ऊर्जा स्तरों के मध्य संक्रमण से अवशोषित या उत्सर्जित फोटॉन की ऊर्जा $10^{-3}eV$ की होती है जिसके संगत तरंगदैध्यें 1 सेमी से 0.1 मिमी. तक होती है (यह तरंगदैध्यें चरम अवरक्त क्षेत्र में होती है) जबिक कम्पनिक ऊर्जा स्तरों के संक्रमण से 0.1eV ऊर्जा का फोटॉन मिलता है जो अवरक्त क्षेत्र में मिलता है। इसी प्रकार इलेक्ट्रॉनिक ऊर्जा स्तरों के मध्य संक्रमण से स्पेक्ट्रम पराबैंगनी तथा दृश्य क्षेत्र में दिखाई देता है। इसके साथ साथ जब 0.1eV के लगभग ऊर्जा का फोटॉन अणु के साथ अन्योन्य किया करता है तो संक्रमण घूणीं ऊर्जा स्तरों के मध्य भी हो जाता है। फलतः आणविक स्पेक्ट्रा में कम्पन - घूणीं स्पेक्ट्रम प्राप्त होता है।

15.3 घूर्णी स्पेक्ट्रा (Rotational Spectra)

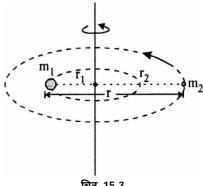
हढ़ घूणीं अणुओं में घूर्णन ऊर्जा स्तरों के मध्य होने वाले संक्रमणों से घूर्णी स्पेक्ट्रा प्राप्त होता है। घूर्णी स्पेक्ट्रा सूक्ष्म तरंग क्षेत्र में $(\lambda \sim 0.1\,\mathrm{Hr})$ पाया जाता है। वस्तुतः अणुक-पदार्थ में स्थाई द्विधुव आघूर्ण वाले अणु विद्युत-चुम्बकीय विकिरणों से अन्योन्य क्रिया कर स्वयं की घूर्णन गित को उत्तेजित कर देते हैं जिससे अणु घूर्णन ऊर्जा स्तरों के मध्य संक्रमण कर फोटॉन का उत्सर्जन या अवशोषण करता है। इस प्रकार द्विधुव आघूर्ण युक्त अणु के विभिन्न घूर्णन ऊर्जा स्तरों के मध्य संक्रमण से प्राप्त स्पेक्ट्रम को घूर्णी स्पेक्ट्रा कहते हैं। यानि कि अधुवी अणु (जिनका परिणामी द्विधुव आघूर्ण शून्य होता है, उदाहरणार्थ, H_2, CO_2, CH_4 अणु) घूर्णी स्पेक्ट्रा नहीं देते हैं।

15.3.1 द्विपरमाणुक अणु के घूर्णन ऊर्जा स्तर (Rotational energy levels of a diatomic molecule)

द्विपरमाणुक अणु, दोनों परमाणुओं को मिलाने वाली रेखा के लम्बवत इनके द्रव्यमान केन्द्र से गुजरने वाली अक्ष के प्रति घूर्णन करता है। यदि m_1 तथा m_2 द्रव्यमान वाले परमाणुओं से बने अणु की अन्तर - परमाणविक दूरी r हो तो द्रव्यमान केन्द्र से गुजरने वाली परमाणुओं को मिलाने वाली रेखा के लम्बवत् गुजरने वाली अक्ष के प्रति अणु का जड़त्व आधूर्ण

$$I = \frac{m_1 m_2}{m_1 + m_2} r^2 = \mu r^2 \qquad ... (15.1)$$

होता है जहाँ $\mu = \frac{m_1 m_2}{m_1 + m_2}$, अणु का समानीत द्रव्यमान है। देखिए चित्र (15.3)।



यहाँ समीकरण (15.1) यह व्यक्त करता है कि दिवपरमाण्क अण् एक μ द्रव्यमान वाले एकल दृढ़ घूर्णी कण की भाँति है जो एक परमाणु से गुजरने वाली अक्ष से r दूरी पर स्थित है। निसंदेह दविपरमाण्क-अण् का व्यवहार एक दृढ़ घूर्णक जैसा होता है। स्वतंत्र अक्ष के प्रति घूर्णन करने वाले दृढ़ घूर्णी (rigid rotator) की घूर्णन गतिज ऊर्जा

$$E_r = \frac{1}{2}I\omega^2 = \frac{\vec{J}.\vec{J}}{2I}$$
 ...(15.2)

जहाँ $\vec{J} = I \vec{\omega}$ दृढ़-घूर्णी का कोणीय संवेग है।

विगत इकाईयों में क्वाण्टम यांत्रिकीय विवेचन के अन्तर्गत हम देख चुके हैं कि कोणीय संवेग एक क्वाण्टीकृत राशि है, अत: यदि दृढ़-घूर्णक के कोणीय संवेग संकारक के आइगेन मान को घूर्णन - क्वाण्टम संख्या (rotational quantum number) J द्वारा प्रदर्शित करें तो

$$\left(\overrightarrow{J}\right) = \hbar\sqrt{J(J+1)} \qquad \dots (15.3)$$

जहाँ घूर्णन-क्वाण्टम संख्या J के मान 0, 1, 2, 3, ... हो सकते हैं। इस प्रकार समी (15.2) से घूर्णन कर रहे द्विपरमाणुक अणु की घूर्णन ऊर्जा (क्वाण्टीकृत ऊर्जा स्तर समुच्चय)

$$E_r = Ej = \frac{\left[\hbar\sqrt{J(J+1)}\,\right]^2}{2I} = \frac{\hbar^2 J(J+1)}{2I} \qquad \dots (15.4)$$

अर्थात $J=0,\,1,\,2,\,3,\,\ldots$ के आधार पर घूर्णन ऊर्जा स्तर विविक्त प्रकृति के (क्वाण्टीकृत) प्राप्त होते हैं। इन ऊर्जा स्तरों के सम्च्चय को घूर्णन ऊर्जा स्पेक्ट्रम कहते हैं। अर्थात् द्विपरमाणुक-अणु के लिए घूर्णन ऊर्जा स्तर क्रमशः

$$J=0$$
 पर $E_0=0$
$$J=1 \ \mbox{ पर } E_1=rac{\hbar^2}{2J} {\bf 1} ({\bf 1}+{\bf 1}) = rac{\hbar^2}{J}$$

$$J = 2 \text{ पर } E_2 = \frac{\hbar^2}{2I} 2(2+1) = \frac{3\hbar^2}{I}$$

$$J = 3 \text{ पर } E_3 = \frac{\hbar^2}{2I} 3(3+1) = \frac{6\hbar^2}{I}$$

$$J = 4 \text{ पर } E_4 = \frac{\hbar^2}{2I} 4(4+1) = \frac{10\hbar^2}{I}$$

अतः घूर्णी ऊर्जा का न्यूनतम ऊर्जा स्तर J=1 पर प्राप्त होता है। इसी प्रकार दो क्रमागत ऊर्जा स्तरों के मध्य ऊर्जा अन्तराल

$$\begin{split} \Delta E^J &= E_{J+1} - E_J \\ &= \frac{\hbar^2}{2I} \Big(\overline{J+1} \Big) \Big(\overline{J+1} + 1 \Big) - \frac{\hbar^2}{2I} J \left(J+1 \right) \\ &= \frac{\hbar^2}{2I} \Big\{ \big(J+1 \big) \big(J+2 \big) - J \left(J+1 \big) \Big\} \\ &= \frac{\hbar^2}{2I} \Big(J+1 \big) \Big\{ J+2 - J \Big\} = \frac{\hbar^2}{I} \Big(J+1 \Big) \\ \mathrm{STAIR} & \Delta E^J = \frac{\hbar^2}{I} \Big(J+1 \Big) & \dots (15.4) \end{split}$$

अर्थात् ऊर्जा स्तरों के मध्य अन्तराल J के बढ़ने के साथ बढ़ता जाता है। इसके अतिरिक्त कम जड़त्व आधूर्ण वाले अणु में ऊर्जा स्तर-अन्तराल अधिक और अधिक जड़त्व अधूर्ण वाले अणुओं के लिए यह कम पाया जाता है। देखिए चित्र (15.4)

5 —
$$E_5 = 15h^2/1$$

4 — $E_4 = 10h^2/1$

3 — $E_3 = 6h^2/1$

2 — $E_2 = 3h^2/1$

1 — $E_1 = h^2/1$

0 — $E_0 = 0$

चित्र 15.4 द्विपरमाणुक अणु की घूर्णी ऊर्जा स्तर

15.3.2 वरण नियम (Selection rule)

घूणीं -अणु के सभी घूर्णन ऊर्जा स्तरों के मध्य संक्रमण सम्भव नहीं होता है। क्वाण्टम यांत्रिकी के अनुसार केवल वे आणविक संक्रमण ही अनुमत (allowed) है जिनके लिए घूर्णन क्वाण्टम संख्याओं का अन्तर ± 1 होता है। यह अनुमत संक्रमणों का वरण नियम कहा जाता है अर्थात् वरण नियम के अनुसार अनुमत सक्रमण के लिए

$$\Delta J = \pm 1 \qquad \qquad \dots \tag{15.5}$$

यहाँ $\Delta J=-1$ संक्रमण फोटॉन का उत्सर्जन और $\Delta J=+1$ संक्रमण फोटॉन का अवशोषण प्रदर्शित करता है। व्यवहार में घूर्णी स्पेक्ट्रा अवशोषण वर्णक्रम प्रकृति का होता है जिसमें अणु क्वाण्टम संख्या J वाले ऊर्जा स्तर से फोटॉन का अवशोषण करने के बाद (J+1) क्वाण्टम संख्या वाले ऊर्जा स्तर पर संक्रमित होता है।

15.3.3 घूर्णी स्पेक्ट्रा-विवेचना (Rotational spectra-discussion)

घूणीं अवशोषण स्पेक्ट्रा में अणु को J क्वाण्टम संख्या वाले घूर्णन ऊर्जा स्तर से (J+1)वें ऊर्जा स्तर पर संक्रमण करने के लिए अवशोषित फोटॉन की ऊर्जा

$$\Delta E = \left(E_{J+1} - E_J\right) \qquad \dots \tag{15.6}$$

क्रमिक दो घूर्णन ऊर्जा स्तरों के मध्य ऊर्जा अन्तराल (समी. (15.4) की भाँति)

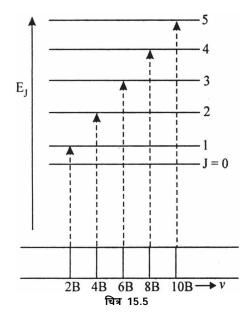
$$\Delta E = \frac{\hbar^2}{I} (J + 1)$$

इस संक्रमण (J o J + 1) में अवशोषित फोटॉन की

आवृत्ति
$$v=\frac{\Delta E}{h}=\frac{\hbar}{2\pi I}\big(J+1\big)$$
 या
$$v=2B\big(J+1\big) \dots (15.7)$$

जहाँ $B=\frac{\hbar}{4\pi\,I}$ घूर्णन नियतांक (rotational constant) कहलाता है। घूर्णन नियतांक B का मात्रक हर्ट्ज है जिसे सामान्यतः MH_Z या GH_Z में व्यक्त किया जाता है। इस घूर्णी स्पेक्ट्रा की रेखा की तरंग संख्या (wave number)

$$\overline{v} = \frac{v}{c} = \frac{2B(J+1)}{c} = \frac{\hbar}{2\pi Ic} (J+1)$$
 ... (15.8) ਯहाँ $B = \frac{\hbar}{4\pi I}$ है।



अवशोषण घूर्णी स्पेक्ट्रा को चित्र (15.5) में दर्शाया गया है। घूर्णी स्पेक्ट्रा में समान अन्तराल से स्पेक्ट्रमी रेखाएँ प्राप्त होती है जिनकी आवृत्तियाँ 2B, 4B, 6B ... होती है। इनमें समान अन्तराल 2B रहता है। प्रायोगिक दृष्टि से घूर्णन स्पेक्ट्रा की रेखाओं के मध्य अन्तराल को माप कर घूर्णन नियंताक B ज्ञात किया जाता है। नियतांक B के ज्ञात होने पर बन्ध लम्बाई का निर्धारण किया जा सकता है।

 बोध प्रश्न (Self assessment questions)

 1. बैण्ड शीर्ष पर अति संकुलित रेखाओं की तीव्रता कैसी होती है?

 2. घूणीं ऊर्जा स्तरों के मध्य ऊर्जा अन्तराल किस कोटि का होता है?

 3. अधुवी अणु घूणीं स्पेक्ट्रा क्यों नहीं देते?

उदाहरण 15.1 एक द्विपरमाणुक-अणु का जड़त्व आघूर्ण 1.65×10^{-46} किग्रा मी 2 है। इसके प्रथम दो घूर्णन-ऊर्जा स्तरों का निर्धारण कीजिए।

हल : घूर्णन ऊर्जा मान

$$E_r=rac{\hbar^2}{2I}J\left(J+1
ight)$$
 यहाँ
$$\hbar=1.054 imes10^{-34} \quad imes \pi \quad - \quad ext{से मण्ड}$$

$$I=1.65 imes10^{-46} \quad imes imes \Pi^2$$

$$\therefore \quad E_r=J\left(J+1\right)\frac{\left(1.054 imes10^{-34}\right)}{2 imes1.65 imes10^{-46}}=3.37 imes10^{-23}J\left(J+1\right) \quad imes \pi$$

$$=\frac{3.37 imes10^{-23}}{1.6 imes10^{-19}}J\left(J+1\right)=2.1 imes10^{-4}J\left(J+1\right)eV$$

यहाँ
$$J=1$$
 पर $E_1=2.1\times 10^{-4}1\left(1+1\right)=4.2\times 10^{-4}eV$
$$J=2 \ \ \text{पर} \ \ E_2=2.1\times 10^{-4}2\left(2+1\right)=12.6\times 10^{-4}eV$$

उदाहरण 15.2 कार्बन परमाणु के दो अणु $C^{^{12}}\mathrm{O}^{^{16}}$ तथा $C^{^{\times}}\mathrm{O}^{^{16}}$ के लिए J=0 से J=1 से प्राप्त अवशोषण रेखा की आवृतियाँ क्रमशः $1.153\times10^{^{11}}\mathrm{H}_Z$ तथा $1.102\times10^{^{11}}\mathrm{H}_Z$ हैं। कार्बन समस्थानिक $C^{^{\times}}$ ज्ञात कीजिए।

हल: घूणीं स्पेक्ट्रा में रेखा की न्यूनतम आवृत्ति

$$v = \frac{\hbar}{2\pi I}$$

 $\mathrm{O}^{16},\,C^{12},$ तथा $C^{ imes}$ का परमाण्वीय द्रव्यमान क्रमशः $m,\,m_1^{},$ व $m_2^{}$ मानने पर तथा घुर्णी स्पेक्ट्रा में किसी एक रेखा की आवृत्ति का अनुपात $C^{12}\,\mathrm{O}^{16}C^{ imes}\,\mathrm{O}^{16}$ अणुओं के लिये-

$$\therefore \frac{v_1}{v_2} = \frac{\hbar / 2\pi I_1}{\hbar / 2\pi I_2} = \frac{I_1}{I_2} = \frac{m_2 m}{m_2 + m} \times \frac{(m_1 + m)}{m_1 m}$$

$$\frac{1.153 \times 10^{11}}{1.102 \times 10^{11}} = \frac{m_2 (12 + 16)}{12 (m_2 + 16)}$$

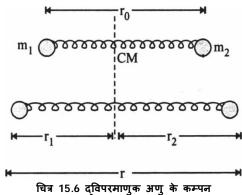
$$\frac{m_2 + 16}{m_2} = \frac{1.102 \times 28}{1.153 \times 23} = 2.23$$

या $m_2 = 13amu$

अतः प्रश्नानुसार x का मान $m_2 = 13amu$ है।

15.4 कम्पनिक स्पेक्ट्रा (Vibrational Spectra)

द्विपरमाणुक अणु को ऊर्जा देने पर अणु बन्ध लम्बाई (bond length) के लम्बवत् अक्ष के प्रति घूर्णन करने लगता है परन्तु यदि ताप में अत्यधिक वृद्धि की जाये तो अणु के परमाणुओं के मध्य बन्धन बल ढीले हो जाते हैं और अणु घूर्णन के साथ साथ कम्पन गित भी करने लगता है। वस्तुतः द्विपरमाणुक अणु को चित्र 15.6 में दर्शाये अनुसार k बल नियतांक की स्प्रिंग के सिरों पर जुडे m_1 तथा m_2 द्रव्यमान के परमाणुओं से मिलकर बना हुआ मान सकते हैं।



15.4.1 द्विपरमाणुक अणु के कम्पन ऊर्जा स्तर (Vabrational energy state of diatomic molecule)

यदि r_0 पारस्परिक दूरी पर स्थित द्विकण निकाय की किसी क्षण कम्पन गित के कारण पारस्परिक दूरी r हो जाती है तो सापेक्षिक विस्थापन $x=(r-r_0)$ के लिए कम्पनिक गित का समीकरण चिरसम्मत सरल आवृित्त गित (simple harmonic motion) के समीकरण के तुल्य प्राप्त होता है। अर्थात् द्विपरमाणुक अण् की कम्पनिक गित का समीकरण

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \qquad ...(15.9)$$
 जहाँ $\omega_0 = \sqrt{\frac{k}{\mu}}$ तथा $\mu = \frac{m_1 m_2}{m_1 + m_2} =$ समानीत द्रव्यमान है।

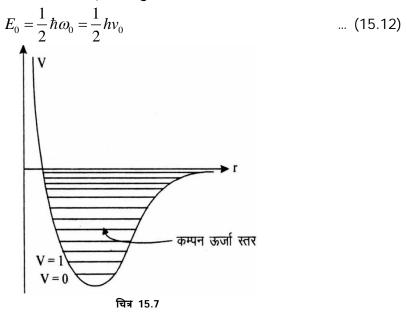
इस निकाय की स्थितिज ऊर्जा $V(x) = \frac{1}{2}kx^2 = \frac{1}{2}\mu\omega_0^2x^2$ होगी, अतः कम्पनिक गति करने वाले एक विमीय दोलित्र का श्रोडिंजर समीकरण निम्न होगा -

$$\frac{d^2\psi}{dx^2} + \frac{2\mu}{\hbar^2} \left(E - \frac{1}{2} \mu \omega_0^2 x^2 \right) \psi = 0 \qquad ...(15.10)$$

जिसकी ऊर्जा

$$E_{v} = \left(V + \frac{1}{2}\right)\hbar\omega_{0}$$
 ... (15.11)

जहाँ $V=0,\,1,\,2,\,3\dots$ कम्पिनक क्वाण्टम क्रमांक हैं। अणु की कम्पन ऊर्जा का न्यूनतम मान V=0 पर होगा जिसे शून्य बिन्दु ऊर्जा कहते हैं अतः



क्रमिक क्वाण्टम क्रमांकों के संगत विभिन्न कम्पनिक ऊर्जा मान चित्र (15.7) में दर्शाये गये हैं। कम्पनिक ऊर्जा के क्रमागत क्वाण्टम क्रमांक वाले कम्पन ऊर्जा स्तरों के मध्य अन्तराल

$$\begin{split} E_{V+1} - E_V &= \left(V + 1 + \frac{1}{2}\right) \hbar \omega_0 - \left(V - + \frac{1}{2}\right) \hbar \omega_0 \\ &= \hbar \omega_0 & \dots \text{ (15.13)} \end{split}$$

एक समान रहता है। यह अन्तराल अणु के समानीत द्रव्यमान μ तथा बन्धन बल नियतांक k पर निर्भर करता है।

15.4.2 वरण नियम (Selection rule)

घूर्णी स्पेक्ट्रा की भाँति कम्पनिक स्पेक्ट्रा में भी कम्पनिक ऊर्जा स्तरों में केवल वे संक्रमण ही अनुमत होते हैं जिनमें कम्पनिक क्वाण्टम क्रमाकों में अन्तर $\Delta V=\pm 1$ होता है। इसे कम्पनिक ऊर्जा स्तरों का वरण नियम कहते हैं। इस नियम के अनुसार जब $\Delta V=\pm 1$ होता है तब अवशोषण कम्पनिक स्पेक्ट्रा प्राप्त होता है और जब $\Delta V=-1$ होता है तब उत्सर्जन कम्पनिक स्पेक्ट्रा मिलता है।

15.4.3 कम्पनिक स्पेक्ट्रा विवेचना (Discussion of vibrational spectra)

कम्पनिक ऊर्जा स्तरों के मध्य संक्रमण के लिए अवशोषित या उत्सर्जित फोटॉन की ऊर्जा

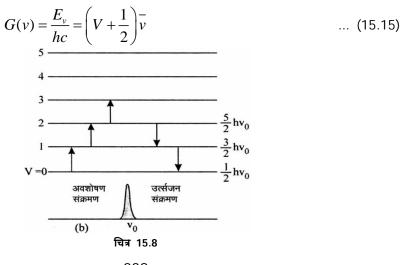
$$\Delta E^{\nu} = \left(E_{\nu+1} \sim E_{\nu}\right) = \left\{ \left(V + 1 + \frac{1}{2}\right) - \left(V + \frac{1}{2}\right) \right\} \hbar \omega_0$$

$$= \hbar \omega_0 \qquad \dots (15.14)$$

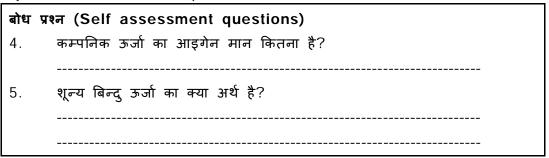
तथा फोटॉन की आवृत्ति

$$v = \frac{\Delta E^{v}}{h}$$

तथा कम्पनिक पद (कम्पनिक ऊर्जा को तरंग संख्या के रूप में लिखने पर प्राप्त पद)



कम्पनिक स्पेक्ट्रा चित्र 15.8 में दर्शाया गया है। शुद्ध कम्पनिक स्पेक्ट्रम केवल द्रवों द्वारा ही प्राप्त होता है जिनमें घूर्णन सम्भव नहीं हो पाता है



उदाहरण 15.3 $\mathrm{H}^{1}Cl^{35}$ अणु का बल नियतांक 520न्यूटन/मीटर है। इसके प्रथम दो कम्पन ऊर्जा स्तरों के ऊर्जा मान ज्ञात कीजिये।

हल: अणु के कम्पन ऊर्जा स्तर

जहाँ
$$E_{v} = \left(V + \frac{1}{2}\right)\hbar\sqrt{\frac{k}{\mu}}$$
 जहाँ
$$\mu = \frac{m_{1}m_{2}}{m_{1} + m_{2}} = \frac{1 \times 35}{1 + 35} = \frac{35}{36} amu$$

$$k = 520N/m$$

$$\therefore E_{v} = \left(V + \frac{1}{2}\right) \times 1.054 \times 10^{-34} \sqrt{\frac{520}{\frac{35}{36} \times 1.67 \times 10^{-27}}}$$

$$= 5.96 \times 10^{-20} \left(V + \frac{1}{2}\right)$$

$$= \frac{5.9 \times 10^{-20}}{1.6 \times 10^{-19}} \left(V + \frac{1}{2}\right) eV$$

$$= 0.372 \left(V + \frac{1}{2}\right) eV$$
 अतः प्रथम ऊर्जा स्तर का ऊर्जा मान
$$E_{1} = 0.372 \left(0 + \frac{1}{2}\right) = 0.186 eV$$

$$(V = 0 \quad \text{पर})$$
 द्वितीय ऊर्जा स्तर का ऊर्जा मान
$$E_{2} = 0.372 \left(1 + \frac{1}{2}\right) = 0.558 eV$$

$$(V = 1 \quad \text{पर})$$

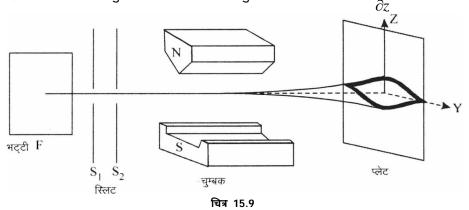
15.5 स्टर्न गरलेक प्रयोग तथा इलेक्ट्रॉन प्रचक्रण (Stern-Gerlach Experiment and Electron Spin)

सन् 1922 में स्टर्न (Stern) और गरलेक (Gerlach) नामक वैज्ञानिकों ने परमाणु के चुम्बकीय द्विधुव आधूर्ण को निर्धारित करने के लिए एक प्रयोग किया था जिसे स्टर्न-गरलेक प्रयोग कहते हैं। इस प्रयोग के परिणामों को समझने के लिए इलेक्टॉन के प्रचक्रण अवधारणा का उपयोग किया गया।

सिद्धान्त (Theory) - जब परमाणु को असमान अनुप्रस्थ चुम्बकीय क्षेत्र से गुजारा जाता है तो परमाणु अपने पथ ले विचलित हो जाता है। परमाणु के पथ का विचलन चुम्बकीय द्विधुव आघूर्ण के z —घटक तथा चुम्बकीय क्षेत्र की प्रवणता $\frac{\partial \mathbf{B}_z}{\partial z}$ पर निर्भर करता है। इस प्रक्रिया में परमाणु पुन्ज के विचलन को मापकर चुम्बकीय द्विधुव आधूर्ण का निर्धारण किया जाता है।

प्रायोगिक व्यवस्था (Experimental arrangement) -

स्टर्न-गरलेक प्रयोग के उपकरण का आरेखीय रूप चित्र 15.9 में दर्शाया गया है। इस प्रयोग में चाँदी के परमाणुओं का उपयोग किया जाता है। एक भट्टी F में चाँदी धातु को गर्म कर उच्चदाब पर उदासीन परमाणुओं को वाष्प रूप में प्राप्त करते हैं जिन्हें स्लिट S_1 तथा S_2 से गुजार कर परमाणु-पुन्ज प्राप्त करते हैं। नियत वेग वाले इस परमाणु पुन्ज को दो चुम्बकीय धुवों N,S के मध्य से गुजारा जाता है जिससे चुम्बकीय क्षेत्र प्रवणता $\frac{\partial B_2}{\partial S_1}$ प्राप्त होती है।



इस असमान चुम्बकीय क्षेत्र से गुजरने के बाद, इस परमाणु पुच्छ को एक ठण्डी प्लेट पर आपतित कराया जाता है जहाँ ये उदासीन परमाणु जमा हो जाते हैं। जमा हुए ये परमाणु प्लेट पर मोटी रेखा के रूप में दिखाई देते हैं। सम्पूर्ण उपकरण को उच्च कोटि के निर्वातित कक्ष में रखा जाता है।

विवेचना (Discussion) -

भट्टी से निकले धातु वाष्प में से प्राप्त आपितत परमाणु पुंज में परमाणुओं का चुम्बकीय आधूर्ण किसी स्वेच्छ Z- अक्ष के सापेक्ष याद्दिछक रूप से अभिविन्यासित होते हैं

अतः चिरसम्मत सिद्धान्त के अनुसार प्लेट पर परमाणुओं के जमा होने की प्रक्रिया आपतित दिशा के ऊपर और नीचे दोनों ओर समान रूप से वितरित होना चाहिए। देखिए चित्र 15.10 (अ)। लेकिन प्रयोग में प्राप्त परिणाम चित्र 15.10 (ब) जैसे प्राप्त होते है। अर्थात् परमाणुओं का प्लेट पर जमाव अलग-अलग रेखाओं के रूप में मिलता है।

स्पष्ट है कि प्रायोगिक परिणाम, चिरसम्मत परिणामों से भिन्न है। स्टर्न गरलेक प्रयोग के इस परिणाम से यह निष्कर्ष निकलता है कि चुम्बकीय क्षेत्र द्वारा परिभाषित अक्ष (Z- दिशा)के प्रति परमाणुक चुम्बकीय आधूर्ण के घटक क्वाण्टीकृत होते हैं। अर्थात् चुम्बकीय आधूर्ण

$$M_z = \frac{eL_z}{2m}$$
 से

कक्षीय कोणीय संवेग

$$L_z = m_l \hbar \qquad ... \tag{15.16}$$

जहा m_1 चुम्बकीय क्वाण्टम संख्या कहलाती है जिसका मान -1 से शून्य सिहत +1 तक कुल (2l+1) मान हो सकते हैं। अतः प्लेट पर (2l+1) लाइनें होनी चाहिए। अर्थात् $\ell=0$ पर प्लेट पर एक लाइन होनी चाहिए ओर l=1 पर प्लेट पर तीन रेखाएँ होनी चाहिए। लेकिन प्लेट पर केवल दो रेखाएँ प्राप्त होती हैं जिसके लिए (2l+1)=2 तभी सम्भव है जबकि

$$l = \frac{1}{2}$$

यह अपूर्णांश मान क्वाण्टम यांत्रिकी के कोणीय संवेग के क्वाण्टीकरण प्रतिबन्ध से मेल नहीं खाता है। इसे समझने के लिए इलेक्ट्रॉन स्पिन की कल्पना की जाती है।

इलेक्ट्रॉन प्रचक्रण (Electron Spin)

गाउडिस्मिथ और उहलेनबेक नामक वैज्ञानिकों के अनुसार इलेक्ट्रॉन में कक्षीय गित के साथ साथ इलेक्ट्रॉन के प्रचक्रण गित भी होती है। इलेक्ट्रॉन का प्रचक्रण एक नैज गुणधर्म है। इलेक्ट्रॉन प्रचक्रण के कारण भी सम्बद्ध होता है। इलेक्ट्रॉन का नैज चुम्बकीय आधूर्ण

$$\overrightarrow{M}_s \propto \frac{\overrightarrow{S}}{\hbar}$$
 ... (15.17)

कक्षीय चुम्बकीय क्वाण्टम संख्या m_1 की भाँति चुम्बकीय स्पिन क्वाण्टम संख्या हो तो m_s के सम्भव मान -s से शून्य सहित +s तक (कुल 2s+1 मान) हो सकते हैं।

अब स्टर्न-गरलेक प्रयोग में प्राप्त दो लाइनों का अर्थ है कि

$$(2s+1)=2$$

या
$$s = \frac{1}{2}$$

होने पर $m_s = +\frac{1}{2}$ तथा $-\frac{1}{2}$ हो सकता है

 $m_s = +\frac{1}{2}$ पर स्पिन अप तथा $m_s = -\frac{1}{2}$ वाले इलेक्ट्रॉन को स्पिन डाउन इलेक्ट्रॉन कहते हैं। निष्कर्षतः इलेक्ट्रॉन के लिए स्पिन क्वांटम संख्या $\frac{1}{2}$ तथा चुम्बकीय स्पिन क्वाण्टम संख्या $m_s = \pm \frac{1}{2}$ होता है। इसी कारण स्टर्न गरलेक प्रयोग में दो रेखायें प्राप्त होती है।

15.6 सारांश (Summary)

- अणुओं द्वारा उत्सर्जित स्पेक्ट्रम को आणविक स्पेक्ट्रा कहते हैं।
- आणविक बैण्ड स्पेक्ट्रा में अधिक तीव्रता वाले सिरे पर स्पेक्ट्रल रेखाएँ अति संकुलित होती है।
- आणविक बैण्ड स्पेक्ट्रा में अधिक तीव्रता वाला सिरा बैण्ड शीर्ष कहलाता है।
- सामान्य स्पेक्ट्रोमीटर में बैण्ड स्पेक्ट्रा, सतत प्रकृति का प्रतीत होता है अत: उच्च विभेदन वाले स्पेक्ट्रोमीटर द्वारा ही इसे देखा जा सकता है।
- घूणीं ऊर्जा स्तरों में ऊर्जा स्तरों का अन्तराल $10^{-3}\,eV$ होता है।
- कम्पन ऊर्जा स्तरों में ऊर्जा स्तरों का अन्तराल 0.1eV होता है जबिक इलेक्ट्रॉनिक ऊर्जा स्तरों का अन्तराल लगभग 5eV होता है।
- घूणीं स्पेक्ट्रा, धुवी अणुओं से मिलता है।
- कम्पनिक स्पेक्ट्रा, उच्च ताप पर बन्धन बलों के कमजोर होने के कारण अणु के सरल आवृति दोलित्र व्यवहार के कारण मिलता है।
- स्टर्न गरलेक प्रयोग से इलेक्ट्रॉन प्रचक्रण संकल्पना की पुष्टि होती है।

15.7 **शब्दावली** (Glossary)

इलेक्ट्रॉन प्रचक्रण Electron spin

कम संकुलित Less crowded

कम्पनिक पद Vibrational term

सरल आवृत्ति दोलित्र Simple harmonic oscillator

वरण नियम Selection rule सूक्ष्म तरंग Micro wave दृढ़ घूर्णी Rigid rotator बैण्ड शीर्ष Band head

हल्की Faint

समानीत द्रव्यमान Reduced mass

15.8 संदर्भ ग्रन्थ (Reference Books)

एस.एस.रावत एंव	प्रारम्भिक क्वाण्टम यांत्रिकी	कॉलेज बुक हाऊस,
सरदार सिंह	एवं स्पेक्ट्रोस्कोपी	जयपुर
S.L. Kakani,	Elementary Quantum	College Book
C. Hemarajani and	Mechanics and	Centre,
T.C. Bansal	Spectroscopy	Jaipur
Satya Prakash	Advanced Quantum	Kedar nath
	Mechanics	Ramnath, Meerut

15.9 बोध प्रश्नों के उत्तर (Answers to Self Assessment Questions)

- 1. बैण्ड शीर्ष पर अति संकुलित रेखाओं की तीव्रता अधिक की होती हैं।
- 2. $10^{-3} eV$ के लगभग।
- 3. क्योंकि अधुवी अणुओं का द्विधुव आघूर्ण शून्य होता है।
- 4. कम्पनिक ऊर्जा का आइगेन मान $E_{_{V}}=\left(V+rac{1}{2}
 ight)\hbar\omega_{_{0}}$ होता है जहाँ $V=0,\,1,\,2,\,3\dots$
- 5. कम्पनिक क्वाण्टम क्रमांक V=0 के संगत कम्पनिक ऊर्जा ${\rm E}_0=rac{1}{2}\hbar\omega_0$ को शून्य बिन्दु ऊर्जा मान कहते है

15.10 अभ्यासार्थ प्रश्न (Exercises)

अतिलघुत्तरात्मक प्रश्न (Very short answer type questions)

- 1. आणविक स्पेक्ट्रा के लक्षण बताइए।
- 2. किस प्रकार के अणु घूणीं स्पेक्ट्रा दर्शाते हैं?
- 3. अधुवी अणु कौन से है। दो उदाहरण दीजिए।

निबन्धात्मक प्रश्न (Essay type questions)

- 4. स्थाई द्विधुव आघूर्ण वाले अणु से घूर्णी ऊर्जा स्तर किस प्रकार प्राप्त होते हैं? दढ़-घूर्णी निकाय के लिए घूर्णन ऊर्जा आइगेन मान का व्यंजक प्राप्त कीजिए।
- 5. द्रव पदार्थों के द्विपरमाणुक-अणु को अत्यधिक ताप देने पर सरल आवर्त दोलित्र की भाँति व्यवहार करते है। समझाइए। इनके लिए आइगेन ऊर्जा का व्यंजक बताइए। शून्य बिन्दु ऊर्जा का अर्थ समझाइए।
- 6. स्टर्न गरलेक प्रयोग का वर्णन कर इलेक्ट्रॉन के प्रचक्रण गुण की विवेचना कीजिए।

आंकिक प्रश्न (Numerical questions)

7. अणु H^1Cl^{35} तथा H^2Cl^{35} अणुओं के बल नियतांक एक समान है तो न्यूनतम कम्पन ऊर्जा स्तर के संगत कम्पन आवृत्तियों का अनुपात संगणित कीजिए।

(उत्तर: 1.4:1)

8. अणु H^1F^{19} के लिए न्यूनतम कम्पन ऊर्जा स्तर 0.256eV है। अणु का बन्धन बल नियतांक ज्ञात कीजिए।

(उत्तर: 966 न्यूटन/मी)

ISBN-13/978-81-8496-141-6