
Post Graduate Diploma in Computer Application

(PGDCA)

VB and DOT NET Technology

VARDHAMAN MAHAVEER OPEN UNIVERSITY, KOTA

PDCA - 04

Course Development Committee

Chaiman

Prof. (Dr.) Naresh Dadhich

Vice-Chancellor

Vardhaman Mahaveer Open University Kota

Convener / Coordinator

Prof. (Dr.) D.S. Chauhan

Department of Mathematics

University of Rajasthan Jaipur

Member Secretary / Coordinator

Sh. Rakesh Sharma

Assistant Professor (Computer Application)

V.M. Open University Kota

Members

1. Prof. (Dr.) S.C. Jain

Engineering College Ajmer

2. Prof. (Dr.) M.C. Govil

M.N.I.T. Jaipur

3. Dr. (Mrs.) Madhavi Sinha

A.I.M. & A.C.T. Jaipur

Editing and Course Writing

Editor

Ms. Swati V. Chande

Professor & Principal(Computer Science)

International School of Informatics and Management, Jaipur

Writers

1. Dr. (Mrs.) Madhavi Sinha 4. Ms. Manisha Sharma

Reader, Computer Science Lecturer (Computer Science)

A.I.M. & A.C.T. Jaipur A.I.M. & A.C.T. Jaipur

2. Ms. Sudha Morwal 5. Ms. Rekha Jain

Sr. Lecturer (Computer Science Department of Computer Science

A.I.M. & A.C.T. Jaipur A.I.M. & A.C.T. Jaipur

3. Ms. Sunita Chaudhary

Sr. Lecturer (Computer Science)

A.I.M. & A.C.T. Jaipur

Course Supervision and Production

Director (Academic) Director (Material Production & Distribution)

Prof. (Dr.) Anam Jaitly Prof. (Dr.) P.K. Sharma

Vardhaman Mahaveer Open University, Vardhaman Mahaveer Open University,

Kota Kota

Production July 2007

All rights reserved. No, part of this book may be reproduced in any form by mimeograph or any

other means, without permission in writing from the V.M. Open University, Kota.

Printed and published on behalf of V.M. Open University, Kota by Director (Academic).

INDEX

Unit Number Unit Name Page Number

UNIT - I BUSINESS DATA PROCESSING 1 - 13

UNIT II CREATING AN APPLICATION IN VISUAL BASIC 14 - 29

UNIT- III WRITING CODE IN VISUAL BASIC 30 - 48

UNIT - IV IDE, FORMS AND CONTROLS 49 - 63

UNIT - V WORKING WITH FILES 64 - 85

UNIT - VI INTRODUCTION TO DATABASE 86 - 99

UNIT - VII GRAPHICS IN VISUAL BASIC 100 - 121

UNIT - VIII VB.NET 122 - 145

UNIT - IX CREATING APPLICATIONS IN VB.NET 146 - 173

UNIT - X OBJECT ORIENTED PROGRAMMING IN VB.NET 174 - 205

UNIT - XI DATA CONTROL FEATURES OF VB.NET 206 - 234

UNIT - XII WEB AND VB.NET 235 - 261

UNIT - XIII CONTROLS IN VB.NET 262 - 287

UNIT - XIV FILE HANDLING IN VB.NET 288 - 315

UNIT - 1 BUSINESS DATA PROCESSING 1

Unit - 1: Business Data Processing

Structure of the Unit

1.0 Objectives

1.1 Introduction

1.2 File Organization

1.3 Records and Fields

1.4 Master and Transaction Data

1.4.1 Master Data

1.4.2 Transaction Data

1.5 Sequential and Random Access Files

1.5.1 Sequential Files

1.5.2 Random Access Files

1.6 Concept of Organization

1.6.1 Features of Organization

1.6.2 Organization as a System

1.7 Different Management Levels

1.7.1 Top Level Management

1.7.2 Middle Level Management

1.7.3 Low Level Management

1.8 Introduction to Visual Basic

1.9 Features of Visual Basic

1.10 Need of Visual Basic

1.11 Visual Basic Editions

1.12 Summary

1.13 Glossary

1.14 Further Readings

1.15 Answers to Self Learning Exercises

1.16 Unit End Questions

UNIT - 1 BUSINESS DATA PROCESSING 2

1.0 Objectives

At the end of this unit, you will be able to,

l Understand file organization, concept of records and fields

l Distinguish Sequential and Random files

l Understand concept of an organization

l Appreciate the need for Visual programming

l Explain the Visual Basic and its features

1.1 Introduction

In a modern computer based information system files play an important role. A file is a collection

of records. Each record is made up of fields. Groups of fields are combined to form a logical

record. This logical record contains all the data of interest about some entity.

There are various kinds of file structures. The simplest kind of file is the one in which all the

records are in sequence. Many computer applications rely on sequential files. Another kind of

organization is direct or random access file organization. In this case, records are stored without

regard to the sequence of record keys. The location of a record is determined by transferring

record key into a physical address.

1.2 File Organization

A file is a collection of data that the system maintains in persistent storage. Persistent means that

the storage is non-volatile - that is, the system maintains the data even after the program termi-

nates; indeed, even if you shut off system power. For this reason, plus the fact that different

programs can access the data in a file, applications typically use files to maintain data across

executions of the application and to share data with other applications.

Files generally take one of two different forms: sequential files or random access files. Se-

quential files are great for data you read or write all at once; random access files work best for

data you read and write in pieces (or rewrite, as the case may be). For example, a typical text file

is usually a sequential file. Usually your text editor will read or write the entire file at once.

Similarly, the HLA compiler will read the data from the file in a sequential fashion without skip-

ping around in the file. A database file, on the other hand, requires random access since the

application can read data from anywhere in the file in response to a query.

1.3 RECORDS AND FIELDS

Records the building blocks of databases, records describe information sources.

Field1 Field2 Field3

RecordsDatabase

Figure 1: Database, records and fields

UNIT - 1 BUSINESS DATA PROCESSING 3

A good view of a file is as a list of records. That is, the file is a sequential string of records that

share a common structure. A list is simply an open-ended single dimensional array of items, so

we can view a file as an array of records. As such, we can index into the file and select record

number zero, record number one, record number two, etc. Using common file access opera-

tions, it is possible to skip to different records in a file.

Fields are the building blocks of records; these are the sections of a record where information is

stored.

For example, your driver’s license or ID card is a record about you with fields describing your

name, eye color, height, address, and so on.

Depending on the database designer’s choice, field can vary. In a library database, for example,

author, title, subject, publisher, and publication date are the common fields.

1.4 Master and Transaction DATA

When data processing takes place, generally two types of data are used, transaction data and

master data. Transaction data are used to update the master data. The master data is the more

permanent data, which is kept updated by the transaction data.

1.4.1 Master Data

Master data is the data without which you cannot do any transactions and is mandatory for

every organization. It describes the things that interact when a transaction occurs. For instance,

master data that represents product and customer must be present before the transaction is fired

to sell a product to a customer.

Characteristics of Master Data:

l First, the need for a master copy indicates that there may be copies of the same or similar

data objects used in contexts where a lack of synchrony between copies leads to incon-

sistency across applications dependent on those copies.

l Second, the desire to subject the data to management indicates a willingness of the

stakeholders to collaborate on centralized governance over the master copies.

l Third, master data objects are both the subject of transactions (as part of operational

systems) and analysis (as part of analytical systems).

l Fourth, the concept of “master” implies that all application uses are subsidiary to a single

core repository.

l Fifth, a master object can be assigned a unique identifier within the enterprise.

Master objects are considered to be subjects of transactions or analysis. However, transactions

themselves are subject to transactions and analysis; transactions may be composed into workflows,

which, in turn, are also subject to transactions and analysis. Therefore, transactions could be

represented as master objects, allocated a unique system identifier, and then be subjected to

various productivity and performance analyses.

Examples of transaction data are, employee details, customer details, product details, student

details etc.

1.4.2 Transaction data

These are the business documents that are created using the master data, like purchase orders,

sales orders etc. Transactional Data can change very often and are not constant. And this data is

created/modified out of an application transaction.

UNIT - 1 BUSINESS DATA PROCESSING 4

Examples of transaction data are, customers’ orders for product, details of price changes for

product, details of cash posting in customer account, records of items sold to customer etc.

1.5 Sequential and Random File Access

Sequential access refers to reading or writing data records in sequential order, that is, one record

after the other. To read record 100, for example, you would first need to read records 1 through

99. In random access, you can read and write records in any order. To read record 100, in

random access, you can jump directly to record 100. The terms random access and sequential

access are often used to describe data files.

1.5.1 Sequential Files

In a Sequential file the records are arranged serially, one after another. The only way to access

records in a Sequential file, is serially. A program must start at the first record and read all the

succeeding records until the required record is found or until the end of the file is reached.

Figure 2: Sequential Access File

Sequential files may be Ordered or Unordered (these should be called Serial files). The ordering

of the records in a file has a significant impact on the way in which it is processed and the

processing that can be done on it.

In an ordered file, the records are sequenced on some field in the record (like StudentId or

StudentName etc). In an unordered file, the records are not in any particular order.

Ordered File Unordered File

RecordA

RecordB

RecordG

RecordH

RecordK

RecordM

RecordN

RecordM

RecordH

RecordB

RecordN

RecordA

RecordK

RecordG

Advantages of Sequential Files

1. Very easy to process,

2. Can be easily shared with other applications developed using different programming

languages.

Disadvantages of Sequential Files

Sequential files can be only processed sequentially. If you need to read record number N, you

must first read the previous N-1 records. Especially not good for programs, that make frequent

searches in the file.

UNIT - 1 BUSINESS DATA PROCESSING 5

Records in an ordered Sequential file are arranged, in order, on some key field or fields. When

we want to insert, delete or amend a record we must preserve the ordering. The only way to do

this is to create a new file. In the case of an insertion or update, the new file will contain the

inserted or updated record. In the case of a deletion, the deleted record will be missing from the

new file.

The main drawback to inserting, deleting or amending records in an ordered Sequential file is that

the entire file must be read and then the records written to a new file. Since disk access is one of

the slowest things we can do in computing this is very wasteful of computer time when only a few

records are involved.

For instance, if 10 records are to be inserted into a 10,000 record file, then 10,000 records will

have to be read from the old file and 10,010 written to the new file. The average time to insert a

new record will thus be very great. To solve this problem random files are introduced.

1.5.2 Random (Direct) Access Files

Direct access files allow direct access to a particular record in the file using a key and this greatly

facilitates the operations of reading, deleting, updating and inserting records. Direct files are also

known as relative files.

Records in relative files are organized on ascending Relative Record Number. A Relative file may

be visualized as a one dimension table stored on disk, where the Relative Record Number is the

index into the table. Relative files support sequential access by allowing the active records to be

read one after another.

Relative files support only one key. The key must be numeric and must take a value between 1

and the current highest Relative Record Number. Enough room is allocated to the file to contain

records with Relative Record Numbers between 1 and the highest record number.

For instance, if the highest relative record number used is 10,000 then room for 10,000 records

is allocated to the file.

Figure 1 below contains a schematic representation of a Relative file. In this example, enough

room has been allocated on disk for 328 records. But although there is room for 328 records in

the current allocation, not all the record locations contain records. The record areas labeled

“free”, have not yet had record values written to them.

Figure 3: Random Access File

Advantages of Random Access Files

1. In comparison to sequential access files, you may significantly save on the amount of disk

space required by the file by using random access.

2. With random access, files can be opened for both read/write at the same time. This is a

great advantage over using sequential access.

UNIT - 1 BUSINESS DATA PROCESSING 6

Disadvantages of Random Access Files

You can have wasted space if many fields in the records are left blank or if most of the strings

stored in the record are significantly shorter than the length dimensioned for the string.

Self Learning Exercise-1

i. Fill in the blanks

a) Direct files are also known as

b) Files generally take one of two different forms:…………….or …………

c) A record consists of several………

ii. State True or False

a) The advantage of sequential file is that it needs no sorting.

b) Every record in a sequential file must process a key field.

c) Records in relative files are organized on ascending Relative Record Number.

d) File is a collection of fields.

1.6 Concept of Organization

An organization is a group of members intentionally organized to accomplish an overall, common

goal or set of goals.

1.6.1 Features of Organization

Vision

Members of an organization often have some image in their minds about how the organization

should be working, how it should appear when things are going well.

Mission

An organization operates according to an overall purpose, or mission.

Values

All organizations operate according to overall values, or priorities in the nature of how they carry

out their activities. These values are the personality, or culture, of the organization.

Strategic Goals

Members of an organization often work to achieve several overall accomplishments, or goals, as

they work toward their mission.

Strategies

Organizations usually follow several overall general approaches to reach their goals.

Systems and Processes that (Hopefully) are Aligned with Achieving the Goals

Organizations have major subsystems, such as departments, programs, divisions, teams, etc.

Each of these subsystems has a way of doing things to, along with other subsystems, achieve the

overall goals of the organization. Often, these systems and processes are defined by plans, poli-

cies and procedures.

1.6.2 Organization as a System

It helps to think of organizations as systems. Simply put, a system is an organized collection of

parts that are highly integrated in order to accomplish an overall goal. A system has various inputs

UNIT - 1 BUSINESS DATA PROCESSING 7

which are processed to produce certain outputs, that together, accomplish the overall goal de-

sired by the organization. There is ongoing feedback among these various parts to ensure they

remain aligned to accomplish the overall goal of the organization. There are several classes of

systems, ranging from very simple frameworks all the way to social systems, which are the most

complex. Organizations are, of course, social systems.

Systems have inputs, processes, outputs and outcomes. To explain, inputs to the system include

resources such as raw materials, money, technologies and people. These inputs go through a

process where they’re aligned, moved along and carefully coordinated, ultimately to achieve the

goals set for the system. Outputs are tangible results produced by processes in the system, such

as products or services for consumers. Another kind of result is outcomes, or benefits for con-

sumers, e.g., jobs for workers, enhanced quality of life for customers, etc. Systems can be the

entire organization, or its departments, groups, processes, etc.

Feedback comes from, e.g., employees who carry out processes in the organization, customers/

clients using the products and services, etc. Feedback also comes from the larger environment of

the organization, e.g., influences from government, society, economics, and technologies.

Each organization has numerous subsystems as well. Each subsystem has its own boundaries of

sorts, and includes various inputs, processes, outputs and outcomes geared to accomplish an

overall goal for the subsystem. Common examples of subsystems are departments, programs,

projects, teams, processes to produce products or services, etc. Organizations are made up of

people — who are also systems of systems of systems — and on it goes. Subsystems are

organized in an hierarchy needed to accomplish the overall goal of the overall system.

The organizational system is defined by, e.g., its legal documents (articles of incorporation, by

laws, roles of officers, etc.), mission, goals and strategies, policies and procedures, operating

manuals, eta. The organization is depicted by its organizational charts, job descriptions, market-

ing materials, etc. The organizational system is also maintained or controlled by policies and

procedures, budgets, information management systems, quality management systems, perfor-

mance review systems, etc.

1.7 Different Management Levels

There are three different levels of management:

1. Top level management, consists of Board of directors, managing directors or executive

committee members.

2. Middle level management, consists of managers such as personnel, production, sales,

marketing, finance, operations etc.

3. Lower or operating level management, consists of foreman, supervisors, daily laborers

etc.

1.7.1 Top Level Management

Top level management refers to a group of individuals who occupy functional positions in an

enterprise such as Board of directors, general managers and other key officers who are respon-

sible for smooth and systematic operations of the enterprise. Top management does not directly

execute work. Experts say, it is a concept of functions concerning the manner in which the

enterprise should achieve its goal. Generally for a large enterprise key functions and duties can-

not be carried out by individuals, hence a compact group of members is formed. Top level

management should focus more on capability of workers both in general and technical qualities.

It involves creative imagination, initiative, and sense of judgments. It is also described as

UNIT - 1 BUSINESS DATA PROCESSING 8

policymaking group responsible for overall direction and activities of the enterprise.

Main objective in Top level management are:

1. Setting key objectives, policies and identifying factors essential for the development of

the enterprise.

2. Efficient accomplishment of goals in the enterprise and maintaining strategic balance in all

actions taken by the authorities in higher level.

3. Making appointments to the top position in the enterprise such as managers, department

heads etc.

4. Reviewing the work of different personnel in all levels.

The function of the top level management is providing a detailed description of the nature of their

activities in the objects clause of their memorandum of association. Objectives may also be

specific such as specialty in workmanship, competitive pricing, marketing, and relationship with

the customers, workers, and public. Framing up policy such as production policy indicates schedule

of productions to be completed. Product policy lays down size, color, material, design etc.

Marketing policy focuses on various channels of selling. A personnel policy deals with recruit-

ment and placement. It includes organizing which deals with allocation of duties to the personnel.

Controlling plays a key role in the top level management, which makes comparisons with the

actual results and planned targets.

1.7.2 Middle level management

Middle level management deals with the task of implementing the policies and plans formulated

by the top level. It comprises of departmental heads and other executive officers who will lead

the group of workers to the planned targets and provide them with necessary resources in order

to get the job done. This group is responsible for the execution and interpretation of policies

throughout the organization and for the successful operations assigned to the division or depart-

ments. In this level the managers have to plan the operations, issue instructions laid by the top

management, collect the resources required and control the work of the men. Managers are

responsible for leading all the function within each department; they provide the guidance and

structure for a purposeful enterprise. Functions to be performed in the middle level management

are.

1. Follow the rules and policies formulated by the top management.

2. Motivating personnel for higher productivity.

3. Collecting detailed analysis report of the department and the personnel.

4. Mutual understanding with other departments in the enterprise.

5. Recommendations to top management.

1.7.3 Low level management or Operative management

It is the lowest level in the business enterprise Foreman, supervisor executives assisted by num-

ber of workers carry out the process to be done as per schedule. Their authority and responsi-

bility in the enterprise will be very much less compared to other workers. They have to follow the

rules and guidelines made out by the higher authorities of the enterprise. The importance of the

functions in this level cannot be overlooked. The plan developed by the top level management

will fail if the workers in the lower level do not fully realize the work allotted to them and the

nature of their work.

The quality and quantity of the work done will depend upon the performances of the workers in

UNIT - 1 BUSINESS DATA PROCESSING 9

this level how hard they work to attain their goals. The supervisors in this level have to maintain

standards of the quality of the manufactured product, assign duties to the workers as per plan

and schedules given by the top and middle level management. They are also responsible for

maintaining respect, discipline among themselves and increase the spirit of work among the work-

ers.

Self Learning Exercise - 2

i. Fill in the blanks

d)………. management deals with task of implementing the policies and plans formu-

lated by the top level.

e) Low level management is known as

ii. State True or False

e) Organization is not a system.

f) Systems have inputs, processes, outputs and outcomes.

1.8 Introduction to Visual Basic

Visual Basic is a programming language and environment developed by Microsoft. Based on the

BASIC language, Visual Basic was one of the first products to provide a graphical programming

environment and a paint metaphor for developing user interfaces. Instead of worrying about

syntax details, the Visual Basic programmer can add a substantial amount of code simply by

dragging and dropping controls, such as buttons and dialog boxes, and then defining their ap-

pearance and behavior.

Although not a true object-oriented programming language in the strictest sense, Visual Basic

nevertheless has an object-oriented philosophy. It is categorized as an object based program-

ming language as it does not support all features of an OOP language. It is also called an event-

driven language because each Visual Basic object can react to different events such as a mouse

click.

Since its launch in 1990, the Visual Basic approach has become the norm for programming

languages. Now there are visual environments for many programming languages, including C,

C++, Pascal, and Java. Visual Basic is sometimes called a Rapid Application Development

(RAD) system because it enables programmers to quickly build prototype applications.

Visual Basic

l Visual: Refers to the method used to create GUI. Rather than writing many lines of code

for the appearance & location of interface elements used in a program, we can simply

add pre-built objects on the screen.

l BASIC

l Beginner’s All-purpose Symbolic Instruction Code

l By John Kemeny and Thomas Kurtz

l Designed to teach programming to beginners

l BASIC language interpreter, one of Microsoft’s first products

l BASIC

l Included with DOS

UNIT - 1 BUSINESS DATA PROCESSING 10

l QBASIC - included with DOS Version 5 - subset of BASIC

l Visual Basic

l 1992 - Visual Basic 1 for Windows 3

l Visual Basic 4 - for Windows 95

l Visual Basic 5 - for Office 97

l Visual Basic 6 - for Windows 98 & Office 2000

l Visual BASIC .NET

1.9 Features of Visual Basic

Visual Basic was designed to be easy to learn and use. The language not only allows program-

mers to easily create simple GUI applications, but also has the flexibility to develop fairly com-

plex applications as well. Programming in VB is a combination of visually arranging components

or controls on a form, specifying attributes and actions of those components, and writing addi-

tional lines of code for more functionality. Since default attributes and actions are defined for the

components, a simple program can be created without the programmer having to write many

lines of code.

Forms are created using drag and drop techniques. A tool is used to place controls (e.g., text

boxes, buttons, etc.) on the form (window). Controls have attributes and event handlers associ-

ated with them. Default values are provided when the control is created, but may be changed by

the programmer. Many attribute values can be modified during run time based on user actions or

changes in the environment, providing a dynamic application. For example, code can be inserted

into the form resize event handler to reposition a control so that it remains centered on the form,

expands to fill up the form, etc. By inserting code into the event handler for a keypress in a text

box, the program can automatically translate the case of the text being entered, or even prevent

certain characters from being inserted.

Visual Basic can create executables (EXE), ActiveX controls, DLL files, but is primarily used to

develop Windows applications and to interface web database systems. Dialog boxes with less

functionality (e.g., no maximize/minimize control) can be used to provide pop-up capabilities.

Controls provide the basic functionality of the application, while programmers can insert addi-

tional logic within the appropriate event handlers. For example, a drop-down combination box

will automatically display its list and allow the user to select any element. An event handler is

called when an item is selected, which can then execute additional code created by the program-

mer to perform some action based on which element was selected, such as populating a related

list.

The language is garbage collected using reference counting, has a large library of utility objects,

and has basic object oriented support. Since the more common components are included in the

default project template, the programmer seldom needs to specify additional libraries. Unlike

many other programming languages, Visual Basic is generally not case sensitive, although it will

transform keywords into a standard case configuration and force the case of variable names to

conform to the case of the entry within the symbol table entry. String comparisons are case

sensitive by default, but can be made case insensitive if so desired.

1.10 Need of Visual Basic

VB is a visual programming language. Before the invention of visual programming, a programmer

spends a lot of time writing code for the user interface. Moreover, a large percentage of the time

UNIT - 1 BUSINESS DATA PROCESSING 11

is wasted in actions such as aligning the buttons properly, determining which button has been

clicked and then executing the appropriate code.

The functionality of each application is different and so coding it is inevitable. However, the user

interface components that are used with different applications remain essential the same. For

example, the applications will always use a window as the base for the interface and buttons to

initiate actions.

This means that if the process of building the user interface is simplified then the time and effort

required in developing an application can be reduced. So it was need an environment that would

allow easy designs of the user interface. Thus was born the art of visual programming.

1.11 Visual Basic Editions

l Learning Edition – It is introductory edition that lets you easily create Windows applica-

tions. It comes with all the tools you need to build main stream Windows applications.

l Professional Edition – It is for computer professionals and includes advanced features

such as tools to develop ActiveX and Internet controls.

l Enterprise Edition – It is the most advanced edition and is aimed at programmers who

build distributed applications in a team environment. It includes all the features of the

Professional edition, plus tools such as Visual SourceSafe (a version control system)

etc.

Self Learning Exercise- 3

i. Fill in the blanks

f) The ………….. Edition of Visual Basic includes ActiveX and Internet controls.

g) Visual Basic is sometimes called a ……………………… system.

h) Latest version of Visual Basic is …………

ii. State True or False

g) Visual Basic is introduced by Microsoft.

h) Visual Basic is not a visual programming language.

i) Visual programming aims at providing the user with an interface that is difficult to use.

1.12 Summary

l A file is a collection of related records.

l A file is made up of records, which are made up of fields.

l A record is recognized or identified by record KEY.

l Files can consist of records of fixed length or variable length.

l In a sequential file records are arranged in a predetermined order according to one or

more keys contained in the record.

l In a direct access file the records are arranged in an order that is related to record key in

a way determined by program logic.

l An organization is a group of people intentionally organized to accomplish an overall,

common goal or set of goals.

l Three different levels of management are Top level management, Middle level manage-

ment, Lower or operating level management.

UNIT - 1 BUSINESS DATA PROCESSING 12

l Visual Basic is a programming language and environment developed by Microsoft.

l Based on the BASIC language, Visual Basic was one of the first products to provide a

graphical programming environment and a paint metaphor for developing user inter-

faces.

1.13 Glossary

RAD Rapid Application Development (RAD) is a programming

system that enables programmers to quickly build working

programs.

GUI Graphical User Interface is a program interface that takes

advantage of the computer’s graphics capabilities to make the

program easier to use.

Internet The Internet is a worldwide, publicly accessible network of

interconnected computer networks that transmit data by packet

switching using the standard Internet Protocol (IP).

OOP Object-oriented programming (OOP) is a programming

language model organized around “objects” instead of “actions”

and data instead of logic.

Object Based Language This term is used to describe languages that support some

features of Object-oriented Programming, but not all. e.g. Visual

Basic supports encapsulation and polymorphism, but not

inheritance.

1.14 Further Reading

1. Steven Holzner, “Visual Basic 6 Programming (Black Book)”, Dreamtech Press, New

Delhi.

2. Evangelas Petroutsos,” Mastering Visual Basic 6", BPB Publications, New Delhi.

3. Deitel, Deitel, “Visual Basic 6 How to program”, Pearson Education.

4. Noel Jerke, “The Complete Reference VB 6”, TataMcgraw Hill.

5. Nambissan R., “Computerized Business Application”, Galgotia, New Delhi.

6. Orilla, “An Inroduction to Business Data Processing”, McGraw Hill, New Delhi

1.15 Answers to Self Learning Exercises

i. Fill in the blanks True/False

a) relative files/ random access files a) False

b) Sequential file, random access files b) True

c) Fields c) True

d) Middle Level d) False

e) Operative management e) False

f) Professional f) True

g) Rapid Application Development (RAD) g) True

h) VB.NET h) False

UNIT - 1 BUSINESS DATA PROCESSING 13

1.16 UNIT END QUESTIONS

1. What are data files? Explain the concept of records and fields.

2. How is a sequential file organized? How are records in a sequential file accessed? How

are these records processed?

3. Explain the random access file organization.

4. What is the concept of organization? Identify some common characteristics of any

organization.

5. Discuss three different levels of management.

6. Write a note on Visual Basic.

7. List out some important features of Visual Basic.

8. Discuss the need of Visual programming languages.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 14

Unit -2: Creating an Application in Visual Basic

Structure of the Unit

2.0 Objectives

2.1 Introduction

2.2 Windows Program Architecture

2.3 Procedural and Event Oriented Languages

2.4 Integrated Development Environment

2.5 Types of Visual Basic Projects

2.6 Object Model

2.7 Visual Basic Controls

2.7.1 Common Controls

2.7.2 Other Controls

2.8 Variables and Constants

2.8.1 Managing Variables

2.8.2 Managing Constants

2.9 Visual Basic Data Types

2.10 Operators in Visual Basic

2.11 Summary

2.12 Glossary

2.13 Further Readings

2.14 Answers to Self Learning Exercises

2.15 Unit End Questions

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 15

2.0 Objectives

At the end of this unit, you will be able to-

l Understand windows architecture

l Distinguish between procedural and event oriented languages

l List the various components of Visual Basic

l Understand the various programming constructs provided by Visual Basic

2.1 Introduction

In the previous unit we introduced Visual basic and discussed the need of visual programming.

VB is a visual programming language.

Any VB application has two parts:

l User Interface - This is the screen displayed by the application. We interact with an

application via the interface.

l Program - Computers need clear cut instructions to tell them what to do, how to do, and

when to do. A set of instructions to carry out a specified task is called a program. This is

what goes on in the background.

All interactions between the user and the application are via the user interface. Thus, for any

application to be successful it needs to have a good user interface. A good user interface will be:

l Easy to learn

l Easy to use

l Attractive

2.2 Windows Program Architecture

Windows program does 2 things:

l Perform initial activities when the program is first loaded into memory. These activities

consist of creating the program’s own window and startup activities, such as setting

aside some memory space.

l Process messages from windows.

The key item in the first step is creating the program’s window, which is the piece of the screen

that the program will control. Application programs only write inside their own window, not in

other program’s windows or on the background of the screen. Restricting output to the program

window is one of the keys to having several programs coexist on the same screen. Program

windows are always rectangular and may contain different elements such as menus, bitmaps,

dialog boxes, etc., depending upon what the program does. The client area of the window is the

central portion in which the program can draw graphics and text. When a program’s window is

visible, it will just wait until Windows sends the program a message. The waiting is accomplished

by a program loop, called the ‘message-loop’.

2.3 Procedural and Event Oriented Languages

Procedural languages (imperative programming) is referred to a programming paradigm based

upon the concept of the procedure call. Procedures contain a series of computational steps to be

carried out. Any given procedure might be called at any point during a program’s execution,

including by other procedures or by itself.

l Previous programming language paradigms have emphasized the process for solving a

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 16

problem.

l Once the program was complete we would:

l provide input

l run the program

l display the answer(s)

l Things always happened in the same sequence.

l The program always terminated when the process was complete.

Examples : BASIC, C, COBOL

Event-oriented language is a computer programming paradigm in which the flow of the program

is determined by user actions (mouse clicks, key presses) or messages from other programs. It’s

called event-oriented because the operating system detects events like keypresses, mouse activ-

ity, timer timeouts, and other system events, and then passes control to a program that is expect-

ing one or more of these events to occur. Once the application processes the event, the applica-

tion transfers control back to the operating system which waits for the next event to occur.

Examples : Visual Basic, Java Script, Tcl/Tk.

Figure 2.1 Procedural Vs Event Driven Approach

l Input to event-driven programs come from event sources; sensors, input devices, ob-

jects on a web page.

l Events occur asynchronously and are placed in an event queue as they arise.

l Events are removed from the event queue and processed (“handled”) by the program’s

main processing loop.

l As a result of handling an event the program may produce output or modify the value of

a state variable.

l There is no predefined starting or stopping point.

Self Learning Exercise -1

i. Fill in the blanks

a) Program windows are always—————.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 17

b) Basic is a ————— language.

c) The client area of the window is the central portion in which the program can draw

———— and———.

ii. State True or False

a) Windows program accepts messages from ’message loop’.

b) C is an event driven language.

2.4 Integrated Development Environment

Visual Basic is not just a language. It’s an Integrated Development Environment (IDE) in which

you can develop, run, test and debug your applications.

IDE is a programming environment integrated into a software application that provides a GUI

builder, a text or code editor, a compiler and/or interpreter and a debugger. Visual Studio, Delphi,

JBuilder, FrontPage and DreamWeaver are all examples of IDEs.

l Menu Bar – It displays the commands you used to work with VB. Each option on the

menu bar has a drop-down list of items related to options chosen from it. Access key

and shortcut keys are also provided.

l Context Menu – Contains shortcuts to frequently performed actions. Opened with

right click of mouse.

l Toolbar– Provides quick access to commonly used commands for programming, stan-

dard functions, form design, debugging and editing.

l Toolbox-Provides a set of tools that you use at design time to place control on form.

l Project Explorer Window- It lists the forms & modules in current project (Project is

the collection of files you use to build an application).

l Properties Window- Lists the property settings for the selected form or control. Prop-

erty is the characteristic of an object.

l Form Designer - Displays the current form under design.

l Form Layout-Using this window, you can position forms as you want them to appear

on the screen when they are first displayed.

l Immediate Window – It is a debugging aid.

Form Layout WiFigure 2.2 VB IDE

F o r m
D e s ig n e r

W i n d o w

C o d e E d i t o r
W i n d o w

P r o j e c t
E x p l o r e r

P r o p e r t i e s
w in d o w

V i s u a l B a s i c 6 I n t e r a c t i v e D e v e l o p m e n t E n v i r o n m e n t

F o r m L a y o u t
W i n d o w

T o o l b o x

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 18

2.5 Types of Visual Basic Projects

An application is a collection of objects that work together to accomplish something useful. In

VB the application is called a Project. A Project could be the management of a Video store, the

calculation of mortgages or the Payroll for 1000 employees etc. The types of projects that can

be created with Visual Basic are:

Table 2.1: Types of Visual Basic Projects

Standard EXE The Standard EXE project allows you to create an application, which

can be compiled into an .exe file. The .exe file then can be distributed

using the Package & Deployment Wizard, which creates a setup pro-

gram for the application.

ActiveX DLL An ActiveX DLL’s code is executed within the main program’s ad-

dress space. It behaves as if the class was created within the main

program’s code. Because the code lies inside the program’s address

space, calling methods is very fast. ActiveX DLL must run on the same

computer as the main program.

ActiveX EXE An ActiveX EXE’s code is run in a separate process. When the main

program calls an ActiveX EXE’s method, the system marshals the call

to translate the parameters into the ActiveX EXE’s address space,

calls the method, translates the results back into the main program’s

address space, and returns the result. This is slower than running an

ActiveX DLL’s method inside the main program’s address space.

ActiveX EXEs can run on a different computer than the main pro-

gram.

ActiveX Control An ActiveX control is a standard user interface element that you can

create. These elements can be used in any container that supports

ActiveX controls, such as Visual Basic forms.

ActiveX Document An ActiveX document is a Visual Basic application that is “published”

to a Web site and then downloaded and executed in the user’s Web

browser. An ActiveX document is not a Web page in the usual sense,

as it involves no HTML or script.

DHTML Application A DHTML application project contains one DHTML designer for each

IIS Application HTML page in the project. The project can also include class modules,

(Web Class) code modules, forms, and other executable components. When

compiled, the executable components reside in a DLL file that is

referenced from each HTML file in the application. This keeps the

content separate from the executable components.

In Visual Basic, a project is the group of all the files that make up your program. These might

include forms, modules (not attached to a form), graphics, and ActiveX controls. Common file

extensions in a Visual Basic 6.0 Project are,

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 19

Table 2.2: Common file extensions in Visual Basic Projects

.vbg Visual Basic Group project file, which contains a list of all projects in one

group.

.vbp Visual Basic Project, VB saves a project file (.vbp) in ASCII format. The

project file contains entries that reflect setting for project. These include the

forms & modules in a project, references, miscellaneous options that you can

select to control compilation.

.frm Form modules which contain textual description of the form and its controls

including their property setting.

.bas Standard modules, which contain public or module level declaration of the

types, constants, variables, external procedures & public procedures.

.ocx ActiveX controls are optional controls, which can be added to the toolbox and

used on forms.

.cls Class modules are similar to form modules, except that they have no visible

interface. You can use class modules to create your own objects, including

code for methods & properties.

.res Resource files contain bitmaps, text strings and other data that you can change

without having to re-edit your code.

.pag The property page module file, which contains information about the property

pages.

.ctl User control modules are also similar to forms, but are used to create ActiveX

controls.

.dob ActiveX documents, that are similar to forms, but are displayable in the Internet

browser such as IE.

.dsr ActiveX designer are tools for designing classes from which objects can be

created. The design interface for forms is the default design.

.exe The executable file for a project (standard EXE)

.vbd The ActiveX document file created to make your form web enabled.

.dll The ActiveX DLL, or an in process component file that provides reusable

code.

Self Learning Exercise -2

i. Fill in the blanks

d) Examples of IDE are——————, ———————— and———————

———.

e) —————-lists the property setting for the selected form or control.

f) The executable file for a project has extension —————.

ii. State True or False

c) VB is not an IDE.

d) Toolbar display the commands you used to work with VB.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 20

e) The ActiveX document file has extension .vbd.

2.6 Object Models

An object model defines the structural relationships and dynamic interaction between a group of

related objects, a group of objects that work together for a common purpose. Object models

are in a hierarchical type of structure with one object at the root. The design of the object model

defines how objects within that model can be accessed. Let us consider the following object

model for a business application to be built using Visual Basic. In this model, the ‘Visit’ object is

the root object from which all other objects are created. This example is used just to describe

that an object model described the interaction between its components (objects).

In developing the business tier for the application, we are going to build a series of objects that

we can classify as belonging to one of three distinct groups (fig. 2.3).

l Infrastructure

l Service

l Data

Figure 2.3 Object Model

Infrastructure Objects provide access to the resources that an application will use. In this

case, we only need to actively manage one resource - the connection to the database. The

application will use more resources, like memory, disk drives, and so on, but the application

framework provided by Visual Basic and the Web server (either PWS or IIS) will do this for us.

One sure way of ensuring the presentation layer code is not allowed to circumvent the business

rules is to never allow the code direct access to any of the infrastructure objects. In this case, we

do it by creating an object that is only accessible to objects in the model. In other words, this

object is private to the model as a whole and the code will not be able to directly access or call

methods on it.

Service Objects provide access to application services. An application service is defined to be

anything that an application can actually do. So, in this case we might have an object that can

carry out operations like creating customers, deleting customers, viewing orders placed by a

customer, etc. The activities outlined (for example the operation of creating a new customer) will

have to conform to certain criteria - business rules.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 21

We may decide that any object in our model can create a customer by calling the appropriate

object; additionally we may decide that not only can another object call this object to create a

customer but the code can as well. It is through these service objects that the presentation layer

code can get to the business rules.

Data Objects define single instances of some entity in the system somewhere. This is a deliber-

ately broad description, but in our case it nearly always refers to rows in the database. So, we

may have an object to describe a single customer, or a single order, and so on. The advantage of

this approach is that it lets you add a great degree of detail to the data objects.

2.7 Visual Basic Controls

A control is an object that an application uses in conjunction with a window (form) to enable user

interaction. Controls provide the user with a way to type text, choose options, initiate actions,

view status, and view and edit text.

2.7.1 Common Controls

l Text Box -The text box is the standard control that is used to receive input from the user

as well as to display the output. It can handle string (text) and numeric data but not

images or pictures. String in a text box can be converted to a numeric data by using the

function Val(text).

l Label - The label is a very useful control for Visual Basic, as it is not only used to

provide instructions and guides to the users, it can also be used to display outputs. One

of its most important properties is Caption. Using the syntax label.caption, it can dis-

play text and numeric data.

l Command Button - The command button is a very important control as it is used to

execute commands. It displays an illusion that the button is pressed when the user clicks

on it. The most common event associated with the command button is the Click event,

and the syntax for the procedure is

 Private Sub Command1_Click ()

Statements

 End Sub

l Picture Box -The Picture Box is one of the controls that is used to handle graphics. You

can load a picture at design phase by clicking on the picture item in the properties win-

dow and select the picture from the selected folder. You can also load the picture at

runtime using the LoadPicture method. For example, the statement will load the picture

grape.gif into the picture box.

Picture1.Picture=LoadPicture (“C:\VB program\Images\grape.gif”)

The image in the picture box is not resizable.

l Image Box- The Image Box is another control that handles images and pictures. It

functions almost identically to the picture box. However, there is one major difference,

the image in an Image Box is stretchable, which means it can be resized. This feature is

not available in the Picture Box. Similar to the Picture Box, it can also use the LoadPicture

method to load the picture. For example, the statement loads the picture grape.gif into

the image box.

Image1.Picture=LoadPicture (“C:\VB program\Images\grape.gif”)

l List Box - The function of the List Box is to present a list of items where the user can

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 22

click and select the items from the list. In order to add items to the list, we can use the

AddItem method.

List1.AddItem “Lesson1”

List1.AddItem “Lesson2”

The items in the list box can be identified by the ListIndex property, the value of

the ListIndex for the first item is 0, the second item has a ListIndex 1, and the s e c -

ond item has a ListIndex 2 and so on

l Combo Box– The function of the Combo Box is also to present a list of items where the

user can click and select the items from the list. However, the user needs to click on the

small arrowhead on the right of the combo box to see the items which are presented in a

drop-down list. In order to add items to the list, you can also use the AddItem method.

Combo1.AddItem “Item1”

l Check Box -The Check Box control lets the user select or unselect an option.

You can include the statements Check1.Value=1 to mark the Check Box and

Check1.Value=0 to unmark the Check Box, and use them to initiate certain actions. For

example, the program will change the background color of the form to red when the

check box is unchecked and it will change to blue when the check box is checked.

Private Sub Check1_Click ()

If Check1.Value = 0 Then

Form1.BackColor = vbRed

ElseIf Check1.Value = 1 Then

Form1.BackColor = vbBlue

End If

End Sub

l Option Box - The Option Box control also lets the user selects one of the choices.

However, two or more Option Boxes must work together because as one of the Option

Boxes is selected, the other Option Boxes will be unselected.

In the following example, the shape control is placed in the form together with s i x

Option Boxes. When the user clicks on different option boxes, different shapes w i l l

appear. The values of the shape control are 0, 1, and 2,3,4,5 which will make it ap-

pear as a rectangle, a square, an oval shape, a rounded rectangle and a r o u n d e d

square respectively.

Private Sub Option1_Click ()

Shape1.Shape = 0

End Sub

Private Sub Option2_Click()

Shape1.Shape = 1

End Sub

Private Sub Option3_Click()

Shape1.Shape = 2

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 23

End Sub

Private Sub Option4_Click()

Shape1.Shape = 3

End Sub

Private Sub Option5_Click()

Shape1.Shape = 4

End Sub

Private Sub Option6_Click()

Shape1.Shape = 5

End Sub

l Drive List Box -The Drive ListBox is used to display a list of drives available in your

computer. When you place this control into the form and run the program, you will be

able to select different drives from your computer.

l Directory List Box -The Directory List Box is used to display the list of directories or

folders in a selected drive. When you place this control into the form and run the pro-

gram, you will be able to select different directories from a selected drive in your com-

puter.

l File List Box -The File List Box is used to display the list of files in a selected directory

or folder. When you place this control into the form and run the program, you will be able

to a list of files in a selected directory.

2.7.2 Other Controls

l Frame

In Visual Basic 6.0, the Frame control is used as a container for grouping controls.

l Timer

Creates a timer that can execute code at regular intervals. The Timer control is anactual

control that is sited on a form at design time; however it is not visible at run time.

l Shape

The Shape control provides an easy way to draw rectangles, circles, and other shapes

on a form at design time.

l Line

The Line control provides an easy way to draw lines on a form at design time.

l Data

The Visual Basic 6.0 Data control is used as a mechanism for binding controls to a

database using DAO. The Data control also provides an interface for navigating data,

with buttons for moving back and forth through rows in a database table.

l OLE

The OLE Container control is used to add insertable OLE objects to forms.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 24

Table 2.3: Properties and Events Common to Controls
Common Events

l Mouse Events

Ø Click

Ø DblClick

Ø MouseDown

Ø MouseUp

Ø MouseMove

l Keyboard Events

Ø KeyDown

Ø KeyUp

Ø KeyPress

Ø Change

l Focus

Ø GotFocus

Ø LostFocus

Common Properties

l Name- Name of control

l Appearance- 0 for flat look & 1

for 3-D look.

l BackColor

l ForeColor

l Font

l Caption

l Text

l Width, Height

l Left, Top – set the coordinates of

the control’s upper-left corner

l Enabled- True (control can get

focus), false(disable the control)

l Visible

Self Learning Exercise -3

i. Fill in the blanks

g) Service objects provide access to ——————————..

h) ————————are used to accept information from the user.

i) The —————————— is used to display the list of directories or folders in a

selected drive.

ii. State True or False

f) The window is the base for user interface of an application.

g) Label is used to receive input from the user as well as to display the output.

h) An event is any user action directed at the application.

2.8 Variables and Constants

Variable is a location in the computer’s memory where data is stored, it is a storage location with

a type. The type is one of the intrinsic Visual Basic types. Variables can have values assigned to

them and these values can be changed programmatically. Variables are a powerful tool but, there

are times when we want to manipulate a defined value, one whose value you want to ensure

remains constant.

2.8.1 Managing Variables

Variables are used to store values. To name a variable in Visual Basic, you have to follow a set of

rules. The following are the rules when naming a variable in Visual Basic,

l It must be less than 255 characters

l No spacing is allowed

l It must not begin with a number

l Period is not permitted

Examples of valid and invalid variable names are displayed below:

Valid Name Invalid Name

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 25

My_Car My.Car

this year 1NewBoy

Long_Name_Can_beUSED He&HisFather (& is not acceptable)

In Visual Basic, one needs to declare the variables before using them by assigning names and

data types. They are normally declared in the general section of the code’s window using the

Dim statement. The format is as follows:

Dim variableName as DataType

Dim password As String

Dim YourName As String

Dim FirstNum As Integer

Dim SecondNum As Integer

Dim Total As Integer

Dim DoDate As Date

You may also combine them in one line, separating each variable with a comma, as follows:

Dim password As String, yourName As String, firstnum As Integer,

If data type is not specified, VB will automatically declare the variable as a Variant

After declaring various variables using the Dim statements, we can assign values to those vari-

ables. The general format of an assignment is

Variable=Expression

The following are some examples:

FirstNumber=100

SecondNumber=firstNumber-99

UserName=”John Lyan”

UserPass.Text = password

Label1.Visible = True

2.8.2 Managing Constants

Constant is a variable that has fixed value. To declare a constant you use the following syntax:

Scope Const ConstantName As DataType = Value

Scope represents the range of the variable. ConstantName is a string representing the name of

the variable. DataType represents what sort of data is stored in the variable. Value is the value of

the constant. For example,

Public Const MissingDiskMsg As String = “Disk not ready. Please insert a disk”

if declared in the General Declarations section of a form, MissingDiskMsg can be accessed in all

procedures in that form. So

Msgbox MissingDiskMsg, vbOKOnly

Displays a message box saying ‘Disk not ready. Please insert a disk.’.

2.9 Visual Basic Data Types

Visual Basic offers the usual set of intrinsic (built-in) data types one expects in a modern lan-

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 26

guage. Each type has a specific and unchanging size. The following table illustrates the data types

available in Visual Basic with their storage size and the range of values they can accommodate.

Table 2.4 Visual Basic Data Types

Data type Storage size Range

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long (long

integer)
4 bytes -2,147,483,648 to 2,147,483,647

Single (single-

precision

floating-point)

4 bytes
-3.402823E38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E38 for positive values

Double

(double-

precision

floating-point)

8 bytes
-1.79769313486232E308 to -4.94065645841247E-

324 for negative values; 4.94065645841247E-324 to

1.79769313486232E308 for positive values

Currency

(scaled integer)
8 bytes

-922,337,203,685,477.5808 to

922,337,203,685,477.5807

Decimal 14 bytes +/-79,228,162,514,264,337,593,543,950,335 with no

decimal point; +/-7.9228162514264337593543950335

with 28 places to the right of the decimal; smallest

non-zero number is +/-

0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

String

(variable-

length)

10 bytes +

string length
0 to approximately 2 billion

String (fixed-

length)

Length of

string
1 to approximately 65,400

Variant (with

numbers)
16 bytes Any numeric value up to the range of a Double

Variant (with

characters)

22 bytes +

string length
Same range as for variable-length String

User-defined

(using Type)

Number

required by

elements

The range of each element is the same as the range of

its data type.

2.10 Operators in Visual Basic

In order to compute inputs from users and to generate results, we need to use various math-

ematical operators. In Visual Basic, the symbols for the operators are somewhat different from

normal mathematical operators, as shown in Table 2.5.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 27

Table 2.5: Arithmetic Operators

Operator Mathematical function Example

^ Exponential 2^4=16

* Multiplication 4*3=12

/ Division 12/4=3

Mod
Modulus(returns the remainder

from an integer division)
15 Mod 4=3

\
Integer Division(discards the

decimal places)
19\4=4

+ or & String concatenation
"Visual"&"Basic"="Visual

Basic"

Dim firstName As String

Dim secondName As String

Dim yourName As String

 Private Sub Command1_Click()

firstName = Text1.Text

secondName = Text2.Text

yourName = secondName + “ “ + firstName

 Label1.Caption = yourName

End Sub

Self Learning Exercise -4

i. Fill in the blanks

j) —————data type can store any object reference.

k) We can declare any variable using —————.

l) To store variable length data you can use…………data type.

ii. State True or False

i) Variable name must be greater than 255 characters.

j) Scope represents the range of the variable.

2.11 Summary

l Procedural languages are based upon the concept of the procedure call.

l Event-oriented language is a computer programming paradigm in which the flow of the

program is determined by user actions (mouse clicks, key presses) or messages from

other programs.

l Visual Basic is not just a language. It’s an Integrated Development Environment in which

you can develop, run, test and debug your applications.

l Object models are in a hierarchical type of structure with one object at the root.

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 28

l A Visual Basic programming environment provides all features that are required to de-

velop a graphical user interface as ready to use components.

l Visual programming commonly uses windows, buttons, text boxes, list boxes as compo-

nents.

l The characteristics of the components are referred to as its properties.

l A method is a code that is built into component and can be executed as required.

l An event is any user action directed at the application.

l Variables store values required for performing calculations.

2.12 Glossary

HAL Hardware Abstraction Layer (HAL) is a layer of programming that al-

lows a computer operating system to interact with a hardware device at a

general or abstract level rather than at a detailed hardware level.

SRM Security Reference Monitor Checks for proper authorization before grant-

ing access to objects.

DLL Dynamic Link Library, a library of executable functions or data that can

be used by a Windows application

Windows NT Windows NT (New Technology) is a family of operating systems pro-

duced by Microsoft

ActiveX A loosely defined set of technologies developed by Microsoft for sharing

information among different applications

2.13 Further Readings

1. Steven Holzner, “Visual Basic 6 Programming (Black Book)”, Dreamtech Press, New

Delhi.

2. Evangelas Petroutsos, “Mastering Visual Basic 6”, BPB Publications

3. Deitel, Deitel, “Visual Basic 6 How to program”, Pearson Education

4. Noel Jerke, “The complete reference VB 6”, TataMcgraw Hill

2.14 Answers to Self Learning Exercises

i. Fill in the blanks ii. True/False

a)rectangular a)True

b)procedural b)False

c)graphics, text c) False

d)Visual Studio, FrontPage, DreamWeaver d) False

e)Properties Window e)True

f).exe f)True

g)application services g)False

h)Text Boxes h)True

i)Directory List Box i)False

j)object j)True

k)dim

l)Variant

UNIT -2 CREATING AN APPLICATION IN VISUAL BASIC 29

2.15 Unit End Questions

1. Discuss the main layers of Window Architecture.

2. Distinguish procedural and event driven languages. Why event driven languages are so

popular? Give examples of both.

3. What do you understand by IDE? What are the advantages of IDE? Discuss main ele-

ments of IDE.

4. Create Object Model for any restaurant.

5. Design user interface in VB that accepts student name(textbox), class(Combo box),

marks in 3 subjects(text box) and then display report card in text box in following

format

Name: Ram Class : BCA I year Grade : A

UNIT - 3 WRITING CODE IN VISUAL BASIC 30

Unit - 3: Writing Code in Visual Basic

Structure of the Unit

3.0 Objective

3.1 Introduction

3.2 Invoking Visual Basic

3.2.1 Saving the Project and Running

3.3 Decision Control Structure

3.3.1 Using If.....Then.....Else Statements with Operators

3.3.2 Select…..Case

3.4 Loop Control Structure

3.4.1 Do Loop

3.4.2 For....Next Loop

3.4.3 The While…Wend loop

3.5 Sub Procedures

3.6 Visual Basic Functions

3.6.1 Inbuilt Functions

3.6.2 User Defined Functions

3.7 Menus

3.7.1 Creating menus

3.7.2 Creating menu items

3.7.3 Creating Submenus

3.8 What is an Event?

3.9 Common Controls

3.10 Data Validation

3.10.1 Field-Level Validation

3.10.2 Form-Level Validation

3.11 Summary

3.12 Glossary

3.13 Further Readings

3.14 Answers to Self Learning Exercises

3.15 Unit End Questions

UNIT - 3 WRITING CODE IN VISUAL BASIC 31

3.0 Objectives

At the end of the unit, you will be able to

l Invoke Visual Basic

l Create and run the application

l Understand basic decision control structure (if-else, select)

l Understand loop control structure (Do-while, For, While)

l Understand menus, sub-procedures and sub-functions

l List the properties, methods and events of most commonly used controls in Visual Basic

l Decide what controls are to be used and when

3.1 Introduction

In the previous chapter, we were introduced to the Visual Basic. This chapter focuses on the

some basic building blocks of VB such as loops, built in functions, menus.

Then we discuss some basic controls used in user interface of VB. Each interface element was

discusses in detail in terms of:

Where is it used?

l Important Properties

l Important Methods

l Important Events

Finally the chapter discusses the types of data validation.

3.2 Invoking Visual Basic

To invoke Visual Basic, follow these steps:

l Click on the ‘Start’ button.

l Select the option ‘Programs’.

l Select the option ‘Microsoft Visual Studio 6.0’ from the options display.

l Click on the option ‘Microsoft Visual Basic 6.0’ from those displayed.

l Click on the ‘Open’ button. (The Standard EXE option is selected by default.)

A new project always provides a form. A form is a window in Visual Basic application.

There are two main steps in creating an application in Visual Basic:

1. Design the interface- The first step is to create the forms. It has two stages: placing

controls in the form and setting the control properties. When you drag a control from

Toolbox, corresponding properties will be displayed in Property Window.

2. Write code- After designing the interface the next step is to associate the code with the

controls. When you double click on the Command button1, the Code Window displays

the following lines:

Private Sub Command1_Click()

 ‘write your code here

End Sub

UNIT - 3 WRITING CODE IN VISUAL BASIC 32

3.2.1 Saving the Project and Running

Saving a project can be complicated in Visual Basic because it involves saving multiple files. To

save a new Visual Basic project for the first time,

l Select the sub option ‘Save Project’ in ‘File’ option.

You will be prompted separately for a form name (i.e. the name of the .frm file) and then a

project name (the .vbp file). Usually same name is given to both the files.

l Save the form first and then save the project.

There should be one Visual Basic Project (.VBP) file and separate Form (.FRM) and Module

(.BAS) files for each form and module used in the current project.

To execute a Visual Basic Project, click on the start button on the toolbar or select start from the

run menu.

l Select the menu option ’Run’.

l Click on the sub option ‘Start’.

3.3 Decision Control Structure

Visual Basic includes a number of features that allow us to select among alternative pathways or

to repeat the execution of a particular block of statement. For example, we can select to execute

one of several different blocks or two blocks of statements, depending on value of an expres-

sion. This process is known as selection/ branching and the statements that are used in selection

are, If.....Then.....Else and Select…..Case. Many programs require that a set of statements be

executed repeatedly, until some particular condition is satisfied. This process is known as loop-

ing. The statements used for looping are Do…While/Until, For…Next and While… Wend

3.3.1 Using If.....Then.....Else Statements with Operators

To effectively control the Visual Basic program flow, we use If...Then...Else statement together

with the conditional operators and logical operators. If…Then…Else execute a expression if a

condition is true and execute a different expression if it is false.

The general format for the if...then...else statement is

If condition(s) Then

 VB expressions

Else

 VB expressions

End If

Any If…Then...Else statement must end with End If. Sometimes it is not necessary to use Else.

Example

The following example accepts a number from the user and multiplies it by 2.

Private Sub Form_Click()

Dim number As Integer, ans As Integer

number = InputBox(“Enter a number”)

If number >0 then

 ans = number * 2

UNIT - 3 WRITING CODE IN VISUAL BASIC 33

 Print ans

End If

End Sub

3.3.2 Select…..Case

If you have a lot of conditional statements, using If…Then…Else could be very messy. For

multiple conditional statements, it is better to use Select…Case. Select…Case allows us to do

various comparisons against one variable that we use throughout the whole statement.

The format is:

Select Case expression

 Case value1

 Block of one or more VB statements

 Case value2

 Block of one or more VB Statements

 Case value3

 Block of one or more VB statements

 Case value4

 .

 .

 .

 Case Else

 Block of one or more VB Statements

End Select

The data type specified in expression must match that of Case values.

Examples

Example 1:

grade=txtgrade.Text

Select Case grade

 Case “A”

 result.Caption=”High Distinction”

 .

 .

End Select

Example 2:

mark = mrk.Text

Select Case mark

 Case Is >= 85

 comment.Caption = “Excellence”

UNIT - 3 WRITING CODE IN VISUAL BASIC 34

Example 3:

 mark = mrk.Text

Select Case mark

Case 0 to 49

 comment.Caption = “Need to work harder”

3.4 Loop Control Structures

Visual Basic allows a procedure to be repeated as many times as long as the processor could

support. This is generally called looping .

3.4.1 Do Loop

The Do loop can be used to execute a fixed block of statement indefinite number of times. The

Do loop keeps executing it’s statement while or until the condition is true. Two keywords while

and until can be used with the do loop.

The format are

a) Do While condition

 Block of one or more VB statements

 Loop

b) Do

 Block of one or more VB statements

 Loop While condition

c) Do Until condition

 Block of one or more VB statements

 Loop

d) Do

 Block of one or more VB statements

 Loop Until condition

3.4.2 For....Next Loop

The For loop is the most popular loop. For loops enables us to execute a series of expressions

multiple numbers of times.

The format is:

 For counter=startNumber to endNumber (Step increment)

 One or more VB statements

 Next

 Example:

(a) For counter=1 to 10

 display.Text=counter

 Next

(b) For counter=1 to 1000 step 10

 counter=counter+1

 Next

UNIT - 3 WRITING CODE IN VISUAL BASIC 35

3.4.3 The While…Wend loop

While loop is same as do loop. It can be used to execute a fixed block of statement indefinite

number of times. The While loop executes a series of statements as long as a given condition is

True.

While condition

statement

Wend

3.5 Sub Procedures

Procedures are a series of statement that are executed when called. Sub procedures are proce-

dures which do not return a value. Each time when the Sub procedure is called, the statements

within it are executed until the matching End Sub is encountered. It can be defined with the “Sub”

statement:

Sub sub_name(argument_list)

statement_block

End Sub

Example:

 Sub Showdate()

MsgBox Date()

End Sub

3.6 Visual Basic Functions

Function is a Procedure which returns a value. They are similar to normal procedures but the

main purpose of the functions is to accept certain inputs and pass them on to the main program to

finish the execution. Functions are declared with the keyword Function. In VB there are two

types of functions, inbuilt and user defined. Some of inbuilt functions are, InputBox(), MsgBox(),

Left(), Right() etc.

3.6.1 Inbuilt functions

A function is referred to as “built-in” if it shipped with your language. To make your job a little

easier, Microsoft Visual Basic comes equipped with many functions that you can use right away

in your program. Some of inbuilt functions are, InputBox(), MsgBox(), Left$(), Right$() etc.

Some of these functions will be discussed in ore detail in the next chapter.

3.6.2 User Defined Functions

The general format of a function is as follows:

Public Function functionName (Arg As dataType,..........) As dataType

or

Private Function functionName (Arg As dataType,..........) As dataType

*Public indicates that the function is applicable to the whole program and

*Private indicates that the function is only applicable to a certain module or procedure.

Function function_name(argument_list)

statement_block

UNIT - 3 WRITING CODE IN VISUAL BASIC 36

function_name = return_value

End Function

Example:

Function NextDay() As Date

 NextDay = Date()+1

End Function

Passing argument by Value

By value is a way in which you pass values and protect the calling procedure’s passed data so

that the called procedure cannot change the original data. To pass argument as call by value, use

ByVal.

Example:

Function Add(ByVal n1 As Integer, ByVal n2 As Integer) As Integer

 Add = n1 + n2

 n1 = 0

 n2 = 0

End Function

Passing argument by Reference

By reference is a way in which you pass values and allow the called procedure to change those

values, also called by address. Default parameter passing technique in VB.

Example:

Function Add(n1 As Integer, n2 As Integer) As Integer

 Add = n1 + n2

 n1 = 0

 n2 = 0

End Function

The following program will automatically compute examination grades based on the marks that a

student obtained.

Public Function grade(mark As Variant) As String

UNIT - 3 WRITING CODE IN VISUAL BASIC 37

Select Case mark

 Case Is >= 80

 grade = “A”

 Case Is >= 70

 grade = “B”

 Case Is >= 60

 grade = “C”

 Case Is >= 50

 grade = “D”

 Case Is >= 40

 grade = “E”

 Case Else

 grade = “F”

End Select

End Function

Private Sub compute_Click()

 grading.Caption = grade(mark)

End Sub

Private Sub End_Click()

 End

End Sub

Self Learning Exercise-1

i. Fill in the blanks

a) The ————— function will display a message box where the user can enter a

value or a message in the form of text.

b) The objective of —————— is to produce a pop-up message box.

c) The style value of VbOk is—.

d) We can pass arguments in function by———and by ——————.

ii. State True or False

a) Message boxes display output, and input boxes get input.

b) If you have a lot of conditional statements, If-Then-Else is better.

c) Default parameter passing technique is by value.

3.7 Menus

Menus are often necessary in applications and it is essential that developers have an ability to

manipulate them in design-time. Creating menus is fairly simple in VB. Once a menu item is

created, it acts about the same as a Command Button. You simply program its click event.

UNIT - 3 WRITING CODE IN VISUAL BASIC 38

3.7.1 Creating menus

To create menus in VB you use the Menu Editor. You can find this under Tools | Menu Editor.

The VB Menu editor:

Menu Editor

To create a top menu (i.e. File), use the following steps:

1) Select Tools | Menu Editor

2) Enter the text to be displayed for the menu in the Caption text box (i.e. File). As always

you can use the & to set the Shortcut key: So &File would display the menu File and

could be accessed by Alt+F

3) Enter a name for the menu. This will be used when accessing the menu’s properties in

your code.

4) Make sure that there are no dots before File in the list box (i.e. ...File). If there are, press

the < button on the dialog box until there are none. These will be explained later.

5) Click OK. If you have used the examples, you will now see something like this:

Main Menu

3.7.2 Creating menu items

To create a menu item (i.e. Open, on the File Menu), use the following steps:

1) Select Tools | Menu Editor

2) Click the item on the list after the menu you want this item to go on. (i.e. after File). If

there is an item already there, click Insert:

UNIT - 3 WRITING CODE IN VISUAL BASIC 39

Options in Menu Editor

3) Enter the text to be displayed for the menu item in the Caption text box (i.e. Open). As

always you can use the & to set the Shortcut key: So &Open would display the menu

item Open and could be accessed by Alt+O when the File menu is open

4) Enter a name for the menu item. This will be used when accessing the menu’s properties

in your code.

5) Press the > button once. You will see four dots (....) appear before the text Open. This

shows that Open is a item on the menu File:

Creation of sub menu

6) Click OK. If you have used the examples, you will now see something like this when you

click on File:

File sub menu

6) To write some code that runs when a menu item is clicked, simply click the menu item

during design time. A code window will open with a new procedure. Enter any code you

want to run when the menu item is clicked here.

3.7.3 Creating Submenus

In the Menu editor, you will notice that when you press the < and > buttons, dots will appear

before the selected item. These show what item belongs to what. For example:

UNIT - 3 WRITING CODE IN VISUAL BASIC 40

&File
....&Open
....&Save
....&Insert...
........&Text
........&Image
....&Close
&Help
....&About

<< Top Menu
<< Menu item of File
<< Menu item of File
<< Menu item of File
<< Sub Menu of Insert
<< Sub Menu of Insert
<< Menu item of File
<< Top Menu
<< Menu item of Help

So, to create a sub menu, simply follow these steps:

1) Select Tools | Menu Editor

2) Create a menu item which you want to contain the sub menu (which will have the > after

it) i.e. Insert on the File menu

3) Insert an item after the menu item you have just created. (i.e. after Insert...). Click Insert:

4) Enter the text to be displayed for the sub menu item in the Caption text box (i.e. Text). As

always you can use the & to set the Shortcut key: So &Text would display the menu item

Text.

5) Enter a name for the menu item. This will be used when accessing the menu’s properties

in your code.

6) Press the > button until the item is indented once more than the menu you want to contain

a sub menu. You will see four dots (....) appear before the text Open. This shows that

Open is a sub menu item on the menu item Insert:

How to create submenu in submenu

6) Click OK. If you have used the examples, you will now see something like this when you

click on File:

Menu control list box

UNIT - 3 WRITING CODE IN VISUAL BASIC 41

Self Learning Exercise-2

i. Fill in the blanks

e) To create menus in VB you use the……..

f) &File would display the menu File and could be accessed by ……….

g) We can use the & to set the

ii. State True or False

d) Caption is used to accessing the menu’s properties in your code.

e) In menu editor —> button is used to insert sub menu.

3.8 What is an event?

The ‘look’ of a Visual Basic application is determined by what controls are used, but the ‘feel’ is

determined by the events. An event is something which can happen to a control. For example, a

user can click on a button, change a text box, or resize a form. As explained in Creating a Visual

Basic Application, writing a program is made up of three events: 1) select suitable controls, 2) set

the properties, and 3) write the code. It is at the code writing stage when it becomes important to

choose appropriate events for each control. To do this double click on the control the event will

be used for, or click on the icon in the project window (usually top right of screen). A code

window should now be displayed similar to the one shown below.

Events of Form Control

The left hand dropdown box provides a list of all controls used by the current form, the form

itself, and a special section called General Declarations. The corresponding dropdown box on

the right displays a list of all events applicable to the current control (as specified by the left hand

dropdown box). Events displayed in bold signify that code has already been written for them,

unbold events are unused.

Common Events are:

DoubleClick: This event is triggered whenever a user double clicks on that control.

MouseMove: When a user passes the mouse over a control this event is triggered.

GetFocus: This event is triggered when you first give focus to a control either by clicking on it or

by tabbing to it.

LostFocus: This event is triggered when you have had focus on a control and then attempt to

move focus from that control.

Load: This event is only in the form control and it is initiated when the form is first loaded.

UNIT - 3 WRITING CODE IN VISUAL BASIC 42

3.9 Common controls

l The Form

The window is called a form in VB. It is the base on which the user interface is built.

Table 3.1 Form Methods

Method Description How to use

Load

The Load statement initializes and loads
the form into memory without

displaying it on the screen.
Load Form1

Unload Unload removes a form from memory.
Unload Form1

or
Unload Me

Show
The Show method loads a form into
memory if not loaded already and

displays it on the screen.
Form1.Show

Hide
The Hide method removes a form from

the screen.
Form1.Hide / Me.Hide

Table 3.2 Form Properties and Events

Properties Events

Caption :- The text that appears on the
title bar of the form.

Name:- Text used in the code to identify
a form

Initialize/ Terminate
Load/ Unload

Activate/ Deactivate
QueryUnload

l The List Box

 List boxes display long lists of options from which users can choose.

Table 3.3 List Box Properties

List Index Is a number used to access individual elements in the list box (starts

with 0).

Sorted Used to display the items in a sorted order.

MultiSelect Used to specify if the user can select multiple items in the list.

ListCount Used to return the number of items in a list box

Selected Sets the selection status of an item in a ListBox control.

Table 3.4 List Box Methods

AddItem This method adds the specified item to the list box.

RemoveItem Used to delete an item from the list.

SetFocus Used to make the list box the current active element

UNIT - 3 WRITING CODE IN VISUAL BASIC 43

Table 3.5 List Box Events

Click Occurs each time the user clicks on the list box.

Scroll Occurs when a user scrolls through the list in the list box.

l The Combo Box or Dropdown List Box

A combo box control combines the features of a text box and a list box.

Table 3.6 Combo Box properties

Style The value assigned to this property decides the "look" of the combo box.
Three styles:
Simple Combo Box
Drop down Combo Box
Drop down List Combo Box

Locked Used to specify whether the user can enter a value in the text box section of
the control.

l Option Button (Radio Button)

The radio buttons are used when the user can select one and only one of the multiple

options.

Table 3.7 Properties of Option Button

Properties Method Events

Caption- The text that appears next to the
option button.
Value- This property specifies whether the
option button is selected.
Enabled- Sets a value that determines
whether a form or control can respond to
user-generated events.

Move –

Move a
control on the
form.

Click- Occurs when the
user clicks on the
option button.

l The Frame Control

Table 3.8 Properties of Frame control

Properties Method Events

Caption – The text
that appears on the
frame.

Move - Moves the frame
control along with the controls
placed within it.
Drag – Begin, ends or cancels a
drag operation of the control

Click – Occurs when the
user clicks on the frame
control.

UNIT - 3 WRITING CODE IN VISUAL BASIC 44

l The Check Box

Table 3.9 Properties of Check Box

Properties Method Events

Caption– The text that
appears on the check box.
Value- Where the check

box is selected

Move Click – Occurs when the
user clicks on check box.

l The Scroll Bars

Scroll bars provide easy navigation through a log list of items or a large amount of infor-

mation. The values can range from –32,768 to 32,767.

Table 3.10 Properties of Scroll Bars

Properties Method Events

Min- Defines the smallest
value.

Max- Defines the largest
value.

Value- Current value of scroll
bar.

Move Scroll- Occurs when the scroll bar
control is repositioned

Change- Occurs when the user scrolls
through the scroll bar.

Self Learning Exercise-3

i. Fill in the blanks

h) —————— display long lists of options from which users can choose.

i) —————— event is triggered when you first give focus to a control.

j) —————— provide easy navigation through a long list of items or a large amount

of information.

k) The window is called a ———— in VB.

ii. State True or False

f) The text that appears on the title bar of the form is called the caption.

g) The window is called a frame in VB.

h) Load and Unload are Form methods.

i) Check boxes are used when the user can select one and only one of the multiple

options.

UNIT - 3 WRITING CODE IN VISUAL BASIC 45

Figures of common controls

List Box Com bo Box

Option Buttons Check boxes

Frame Control Scroll Bar

3.10 DATA VALIDATION

In Visual Basic, there are two data validation techniques:

Form-Level Validation: Data is verified after the user enters all the fields on the form.

Field-Level Validation : Data in the fields are verified one at a time, after the user fills in the fields.

UNIT - 3 WRITING CODE IN VISUAL BASIC 46

3.10.1 Field-Level Validation

Field-level validation ensures that the value entered in the field as a whole is in accordance with

the application’s requirement. If it isn’t, you can alert the user to the problem. Appropriate times

to perform field-level validations are

l When the user attempts to leave the field.

l When the content of the field changes for any reason. This isn’t always a feasible strat-

egy. For example, if you’re validating a date to be formatted as “mm/dd/yy”, it won’t be

in that format until all the keystrokes are entered.

When a user enters and leaves a field, events occur in the following order:

1. Enter

2. GotFocus

3. Leave

4. Validating

5. Validated

6. LostFocus

3.10.2 Form-Level Validation

Form –Level validation is the process of validating data in all the fields on a form. We usually

write code to validate data in the Click event of the CommandButton, after the user has entered

all the fields on the form.

When we implement form-level validation, we verify the data on a form in a single procedure.

The three main events used in form-level validation are: KeyPress, KeyDown, KeyUp

Some validation examples are:

1. LostFocus event

When a form or a control loses focus, the LostFocus event is fired. Focus is lost when a user tabs

to another fields or clicks on another filed. We are checking the data just as the user is leaving the

field.

To verify that the employee code consists of 4 characters

Private Sub txtcode_LostFocus()

 If Len (txtCode.Text) <> 4 Then

 Beep

 MsgBox “code should consist of 4 characters”

 txtCode.SetFocus

 End If

 End Sub

2. SetFocus Method

 In form-level and field-level validations focus is always set back to the field with invalid data.

UNIT - 3 WRITING CODE IN VISUAL BASIC 47

For example, if the user leaves the name of the employee blank we use the SetFocus method to

place the cursor on the TextBox.

If txtName.Text = “ “ Then

 Beep

 MsgBox “Name should not be empty”

 txtName.SetFocus

End If

Self Learning Exercise-4

i. Fill in the blanks

l) —————— validation is the process of validating data in all the fields on a form.

m) When a form or a control loses focus, the ———— event is fired.

n) The three main events used in form-level validation are: ————, ———— and —

————

ii. State True or False

j) In form-level and field-level validations focus is always set back to the field with invalid

data.

k) In field-level validation data in the fields are verified every time, after the user fills in the

fields.

3.11 Summary

l Visual Basic offers several forms of the If and the Select…Case statements to make

comparisons.

l The comparison operators, especially when combined with the logical operators, pro-

duce advanced compound conditions.

l Message boxes display output, and input boxes get input.

l The message and input boxes offer ways for your programs to request information that

regular controls can’t handle.

l Use controls to display and get data values that are always needed.

l Use message and input boxes to display messages and get answers that the program

needs in special cases, such as for error conditions and exception handling.

l Visual Basic supports several forms of looping statements. The Do and For loops pro-

vide you with the power to write any kind of looping section your program needs.

l The first kind of list, the List Box control, lets users select from a list of items that an

application displays.

l The Combo Box control works like a List Box control but lets the user enter new values

into the list.

l The option buttons and check boxes work almost exactly alike except that the option

buttons are mutually exclusive and provide users with a single option from a selection.

l The scrollbars let users select values based on a range, using either a horizontal or verti-

UNIT - 3 WRITING CODE IN VISUAL BASIC 48

cal scrollbar.

3.12 Glossary

EXE
EXE is the common filename extension for denoting an executable
file (a program) in the OpenVMS, MS-DOS, Microsoft Windows, and
OS/2 operating systems.

VBP

Visual Basic Project file. The *.VBP file provides a lot of information
about a Visual Basic project, including the type of executable it
creates, the references and components it contains, and the
information included under the Project Properties popup Make tab.

Menu Editor Menu Editor is an editor to create menus in Visual Basic.

3.13 FURTHER REFERENCES

1. Steven Holzner, “Visual Basic 6 Programming (Black Book)”, Dreamtech Press, New

Delhi.

2. Evangelas Petroutsos,”Mastering Visual Basic 6", BPB Publication

3. Deitel, Deitel, “Visual Basic 6 How to program”, Pearson Education

4. Noel Jerke, “The complete reference VB 6”, TataMcgraw Hill

3.14 Answers to Self Learning Exercises

i. Fill in the blanks ii. True/False

a) InputBox() a)True

b) MsgBOx b) False

c) 1 c) False

d) value, reference d) False

e) Menu Editor. e) True

f) ALT+F f) True

g) Shortcut key g) False

h) List Box h)True

i) GetFocus i)False

j) Scrollbar j) True

k) form k) False

l) Form-Level

m) Lost Focus

n) KeyPress, KeyDown, KeyUp

3.15 Unit End Questions

1. What is the difference between ‘Caption’ property and ‘Name’ property?

2. What is the difference between List and ListIndex property?

3. Discuss VB in built functions?

4. List out common properties, methods and events of List Box and Combo Box.

5. Why VB is known as event driven programming language?

6. What is the importance of data validation? Discuss different types of data validation in

VB?

UNIT - 4 IDE, FORMS AND CONTROLS 49

Unit - 4: IDE, Forms and Controls

Structure of the Unit

4.0 Objectives

4.1 Introduction

4.2 Working with Multiple Forms

4.2.1 Adding new Forms to your program

4.2.2 Adding code modules to a project

4.2.3 Accessing the forms and modules of a project

4.2.4 Variables and Constants in multiple forms project

4.3 Use of ListBox and ComboBox Controls

4.3.1 List Box properties

4.3.2 Combo box style properties

4.3.3 Methods associated with list box and combo box

4.3.4 Using Run- time properties to manipulate list box on combo box

4.4 Inbuilt Functions

4.4.1 MsgBox() Function

4.4.2 InputBox() Function

4.5 String Functions

4.6 Arrays

4.7 Initializing and Terminating Events

4.8 Summary

4.9 Glossary

4.10 Further Readings

4.11 Answers to Self Learning Exercises

4.12 Unit End Questions

UNIT - 4 IDE, FORMS AND CONTROLS 50

4.0 Objectives

IDE means software in which there is an environment provided to user in which there are many

tools available for coding, testing, debugging, deployment and maintenance.

The objectives for this unit deal with working with multiple forms in a project. The objectives are

know how to,

1. Use design and run-time properties to manipulate combo boxes and list boxes.

2. Use one/multi dimensional array.

3. Work with control and variable arrays.

4. Use message box and input box.

5. Work with fixed and variable length string variable.

4.1 Introduction

To simplify the task of writing programs, Microsoft has built in to VB a software program to help

you write your VB projects. That software, known as the Integrated Development Environment

(IDE for short) is what comes to the screen when you start VB and is the topic of this chapter.

Visual Basic forms are windows. This chapter also provides details about how forms are handled

in VB. Programming in VB is a combination of visually arranging components or controls on a

form, specifying attributes and actions of those components, and writing additional lines of code

for more functionality. To create professional applications, you need extensive knowledge of

Visual Basic controls and their numerous properties, methods, and events. This chapter dis-

cusses some of the frequently used Visual Basic controls.

4.2 WORKING WITH MULTIPLE FORMS

In Visual Basic, the basic building block of an application is a form, which is simply a window. A

VB form looks just like any other form that you use in Windows applications. The header area

has a caption, the control menu, and the minimize/maximize/close buttons. The large area of the

form is called the client area. The VB IDE can insert forms into your project, and then you can

resize the forms as well as change other properties of the form.

Although some programs you write will be simple so that you can use a single form in them, but

due to limited amount of space on single form most will be made up of multiple forms.

Also by multiple forms you can design separate form for separate program tasks. For example,

if you have a task in your program that is not performed often putting it onto a separate form

makes more sense than trying to squeeze it on to a single form with every thing else. Also by

loading and unloading form as you need then, you can save system resources. In other words

your program takes up as little space as possible while running. This is done using the Multiple

Document Interface (MDI) feature of Visual Basic. An MDI form is always contained within a

parent form. This is exactly the same type of parent/child relationship which you see in Word.

Each new Word document is contained in its own window, but is always framed within the larger

window that is the Word application.

4.2.1 Adding new form

Visual basic starts a new project with a single blank form, as shown in the following figure.

UNIT - 4 IDE, FORMS AND CONTROLS 51

Now you can add controls to this form and write code to handle events that occur on the form.

At some point in your design, you may decide that you need one or more additional forms to

handle a new task or provide space to relieve the crowding on the initial form.

For adding new form you can either click the add form button or select project®add

Form. This action places a new black form on the screen. This form looks just like your first

form. If you did not rename your first form from the default of form1 the new form is named from

2 (or Form 3, Form 4, and so on). Otherwise, the new form is named Form 1. After you add a

new form, you can place control on it and write code for its events, just like for the initial form.

You can also access new form from other forms in your program by following Statements (Load,

unload) and methods (show, hide).

Table 4.1: Form Methods

Method/

Statement
Purpose Syntax Example

Load
Places a form in memory but does not

display it.

Load form-name
Load form1

Unload
To remove form both from screen and

memory.

UnLoad form-name
UnLoad form1

Show
To display form if form was not

loaded. This method implicitly loads it

and then displays it.

Form-name.Show
Forml.show

Hide Removes the form from the screen but
does not remove it from memory.

Form-name. Hide Forml.Hide

Show method also has an optional argument that determines whether the form is shown as a

modal or modeless form. If a form is shown modally (a modal form) then program control does

not return to procedure that called the show method. Until the modal form is closed (example of

UNIT - 4 IDE, FORMS AND CONTROLS 52

modal form is windows 95 shut down screen) you cannot focus on another window while modal

form is displaced, where as in modeless you can move to another form. To create modal form

you can give show method as shown here.

Form1. Show vbModal

4.2.2 Adding Code module to project

As you write more code to handle more events and more tasks, you may often find that you need

to access the same procedure from a number of different places on a form or from multiple

forms. If this is the case, storing the procedure in a module file makes sense. To add module file

to hold your procedure, you can do so either by clicking arrow on add form button and

choosing module from drop-down menu or by choosing project®add module after clicking. The

following screen will then be displayed.

Visual Basic gives the default name module1 to module. If you want you can change this name by

changing value of name property of module.

4.2.3 Accessing the Forms and modules of a project

As you add forms and modules to program, they are added to project explorer window. You

simply select a form or module by clicking its name in project window. For Form you will have

two buttons.

View Object - to work on design of form.

View Code - to edit code associated with the form.

Whereas, for module only view code is enabled because a module has no visual elements.

Double - clicking name of form and module has same effect as clicking view object button and

view code button respectively.

You can also access properties of controls of a Form in code of another Form By specifying

form name, such as form name.control properties.

4.2.4 Variables and Constants in multiple forms project

Normally forms are complete in themselves. But in many programs, need of communication

between forms is required. Imperatives regarding access to variables/constants used in multiple

form projects are,

l Variable/constants declared in procedure of form can be used only in that procedure of

that form (Private).

l If a variable is declared in General Section of Form code then it can be accessed by all

procedures of that form.(Global to Form module)

l If variable is declared in General Section of module file without Public keyword then it

can be accessed by all procedures of module file only.

l If a variable is declared by public keyword in module file then it can be used by all

procedures in all form module and Procedures of module file also.

Self Learning Exercise-1

i. Fill in the blanks

a) Load method of form places a form in …….. but does not …….. it.

b) Module files have extension ……..

UNIT - 4 IDE, FORMS AND CONTROLS 53

c) If a variable is declared by ………. keyword in module file then it can be used by all

procedures in all form modules and Procedures of module file also.

d) Default access modifier for the methods in code window is ……….

ii. True/False

a) In modeless form you can move to another form.

b) In modal form you can focus on another window

c) If a variable is declared in General Section of Form code then it can be accessed by

all procedures of that form.

d) Hide Method of form removes the form from the screen and also from memory.

4.3 Use of List Box and Combo Box Controls

To the user, list box is similar to choosing channel on a TV. The cable company decides which

channel to put on selection list, the customers then, can pick any of these channels but can’t add

one to the list if they don’t like any of the choices provided. With the list box, choices are set up

by the programmer, user can select only from the items the programmer decides should be

available.

Both controls provide a list of choices but in different ways. A list box is limited to a list of

choices. Form this list, user can make one on several choices. A Combo box enables the user to

make one choice or to enter a choice. It is called a Combo Box because it is a combination of list

box and text box.

4.3.1 List Box Properties :

Few commonly used properties of list box are,

List: This property can be used to add items at design time. After inserting an element, the user

should press ctrl+Enter to insert new element.

Multi selection: allows user to make more than one selection from a list. This property can

have three values 0, 1, 2 each one has following meanings -

0 (Default) Multiple selection not allowed

1 Simple multiple selection. This is done by clicking the mouse or pressing the space

 bar to select or deselect an item in a list.

2 Extended multiple selection (Shift+Click or shift + Arrow key) Extends selection to al-

low a block of items to be selected ctrl + click selects or deselects an item from the list.

Columns: Determines list box containing more than one column and how scroll bars are shown

if list box needs to be extended. If value of this property is zero, list box is arranged in single

column and vertical scroll bar. If value of this property is a positive integer then items arranged

are in series of columns, filling each column from left to right and horizontal scroll bar.

List count: Represents number of items in a list box.

List Index: Represents the selected items. ((Note: -1 If no item is selected)

Text: Contains the item from whichever line of the list box that has the focus if no item is selected

then this will have empty string (“ “)

Sorted: To sort the list.

UNIT - 4 IDE, FORMS AND CONTROLS 54

4.3.2 Combo Box Style Properties:

Most properties/methods of list box are also available in Combo Box. But Combo Box does

not support multiple-selection. Combo Box are available in three styles which are as follows:

Drop Down Combo Box: Presents the users with a text Box combined with a drop down list.

The users can either select an item from the list or type an item in the text box portion.

Simple Combo Box: Displays a text box and a list that does not drop down. As with drop

down combo box user can either select an item from list or type an item in text box portion.

Drop Down List: Displays a drop down list box from which users can make a choice. The users

can not enter items that are not in the list.

4.3.3 Methods associated with list box and combo box

Methods associated with list Box and combo box are given below

AddItem: To add item in list box at run time.

Syntax : <listbox name>. AddItem “<item”> [Index]

 Example: List1.AddItem “First”.

 Index is used so insert an item at specified position.

RemoveItem: To remove an item from list, this method can be used. To specify an item to be

deleted, index value can be used.

Example: List1. RemoveItem 0

Clear: To remove all items from list box.

Example: List1.Clear

The Load event occurs when a form is loaded in memory. This event can be used to fill combo

and list boxes with data at runtime. As an example, examine the following procedure,

Private Sub Form - Load ()

List1.AddItem “Books”

List1.AddItem “Magazine”

List1.AddItem “Newspaper”

End sub

4.3.4 Using Run-time properties to manipulate list or combo Boxes

Not all properties of list or Combo Box controls are available to you at design time. Some of

them are only available to you at run-time, and these are known as run-time properties. Some of

these run-time properties are read only. That means only property’s value can be retrieved dur-

ing run time. You can’t assign it a value with code. Runtime properties can be both retrieved and

assigned with code. They are therefore known as Read-Write properties.

Some run-time properties are given below,

ListCount (Read only): Returns no of items in list or combo box. Its value changes as items are

added or removed from list

Example Print List1.ListCount

List (read+write): You can retrieve or assign an item from/to list

Example List1.List (0) =”Report”

Print List1.List(3)

UNIT - 4 IDE, FORMS AND CONTROLS 55

ListIndex (read/write): Indicate index value of the currently selected item in list/combo box

If you want to display an item in Combo Box, then you can assign index value of that item to

ListIndex property.

Combo1.ListIndex=0 OR set 1st value as a default selection

Combo1.ListIndex = Combo1.ListCount – 1 OR set last value as selected item.

For example if you want to display items of a list,

For i = 0 to List1.ListCount-1

 Print List1.List (i)

Next i

Self Learning Exercise-2

i. Fill in the blanks

e) A ……….. combines the features of textbox control and a list box.

f) ………….. method can be used to remove all items from list box.

g) ……….. property indicates index value of the currently selected item in list/combo

box.

h) ……….. method can be used to add an item in list/ combo box.

ii. True/False

e) Multiple Selection is allowed in Combo Box.

f) Value of List Index property will be -1 If no item is selected

g) Maximum possible value for style property of combo box is four.

h) ListCount is ReadOnly Property.

4.4 MsgBox and InputBox Functions

The InputBox() and MsgBox() functions facilitate input and output of messages in the interface

windows.

4.4.1 MsgBox () Function

The objective of MsgBox is to produce a pop-up message box and prompt the user to click on

a command button before he /she can continues. This message box format is as follows,

yourMsg = MsgBox(Prompt, Style Value, Title)

Table 4.2 Style Values

Button Layout
Style

Value
Short Description

vbOKonly 0 Displays the Ok button.

vbOKCancel 1 Displays the Ok and Cancel button.

vbAbortRetryIgnore 2 Displays the Abort , Retry , Ignore

vbYesNoCancel 3 Displays Yes, No and Cancel button

vbYesNo 4 Displays the Yes / No button

vbRetryCancel 5 Displays the Retry and Cancel buttons.

UNIT - 4 IDE, FORMS AND CONTROLS 56

Example:

 yourMsg=MsgBox(“Click OK to Proceed”, 1, “Startup Menu”)

 OR

 yourMsg=Msg(“Click OK to Proceed”. vbOkCancel,”Startup Menu”)

Table 4.3 Return Values and Command Buttons

Return Value Value Short Description

vbOk 1 The User Clicked OK

vbCancel 2 The User Clicked Cancel

vbAbort 3 The User Clicked Abort

vbRetry 4 The User Clicked Retry

vbIgnore 5 The User Clicked Ignore

VbYes 6 The User Clicked Yes

VbNo 7 The User Clicked No

To make the message box looks more sophisticated, you can add an icon besides the message.

The Icons displayed in the message box are described in table 4.4.

Table 4.4 Icon Descriptions

Icon on message Value Short Description Icon

vbCritical 16 Displays critical message icon

vbQuestion 32 Displays question icon

vbExclamation 48 Displays exclamation icon

vbInformation 64 Displays information icon

Example:

testMsg2 = MsgBox(“Click to Test”, vbYesNoCancel + vbExclamation, “Test Message”)

Message Box

UNIT - 4 IDE, FORMS AND CONTROLS 57

4.4.2 The InputBox() Function

An InputBox() function will display a message box where the user can enter a value or a mes-

sage in the form of text. The format is

myMessage=InputBox(Prompt, Title, default_text, x-position, y-position)

myMessage is a variant data type but typically it is declared as string, which accept the message

input by the users. The arguments are explained as follows:

l Prompt - The message displayed normally as a question asked.

l Title - The title of the Input Box.

l default-text - The default text that appears in the input field where users can

use it as his intended input or he may change to the message he

wish to key in.

l x-position and y - Position - the position or the coordinate of the input box.

userMsg = InputBox(“What is your message?”, “Message Entry Form”, “Enter your message

here”, 500, 700)

Input Box

4.5 String Functions

Several built-in string functions perform string manipulations to augment simple concatenation

with the “&” operator.

String variables can be assigned a series of characters or a null string. The value of a string can be

assigned to another string variable.

A null string assignment is as given below

Person = “”

A text box on label is cleared with a null string as given below

Text1.Text = “”Labell.Caption = “”

Visual Basic allows you single concatenation operation that is ampersand symbol (&).

Consider the code,

First = “Sudha”

Second = “Morwal”

Myname = First & “ “ & second

Print Myname

UNIT - 4 IDE, FORMS AND CONTROLS 58

This leads to the display

Sudha Morwal

Visual Basic provides several functions to manipulate string. Some of these functions are summa-

rized in the following table,

Table 4.5 Built-in string functions

Use Function Example Output

Length of the

String

Len instr = “Sudha”

Result = Len
(instr)

5

Change Case of

string

Ucase

Lcase

Ucase(“sudha”)

Lcase(

“SUDHA”)

SUDHA

sudha

Searching a string

Whether a word,

phrase or group
of characters

exists in string. If

so, where?

Instr (source-string, search-string)

InstrRev(source-string, search-string)

InstrRev Searches from last position

Print Instr (“I’ll

see you next

Tuesday”, “You”)

10

Extracting pieces

of string

Left – Retrieves specified no. of

characters from left end of string.

e.g. Left (Input string, number of chars)
Right = Retrieves specified no. of

chararcters from right end of string.
Mid = Retieves characters from the

middle of a string.

Print

MID(“Sudha

Morwal”,8)

Morwal

Fixed - Length Strings: Most strings that you use in your programs will be of the type known as

variable - length strings. These strings can contain any amount of text. As information is stored in

the variable, size of variable adjusts to accommodate the length of the string. Both implicit and

explicit declarations shown earlier create variable length strings.

Visual Basic also provides strings of fixed length. As the name suggests fixed - length strings

retain the same size, irrespective of the length of data assigned to it. If length of string variable is

larger than the string assigned to it then remaining length of the variable is filled with spaces. If

length of sting is shorter then the value assigned to it, the rest of the characters will be truncated.

Only as many characters as will fit in the variable are stored.

A fixed length string variable can only be declared using on explicit declaration like the following.

Dim variable-name As Strings *string-length

For example

Dim sName as string * 25.

Self Learning Exercise-3

i. Fill in the blanks

i) Output of Print Instr (“I’ll see you next Tuesday”, “see”) is ……..

j) Output of Len(“Sudha”) is ………

k) A null string can be represent by ………….

UNIT - 4 IDE, FORMS AND CONTROLS 59

ii. True/False

i) Print Ucase(“softech”) displays Softech.

j) MID(“computer”,1,4) gives output comp

k) String variable can be assigned null string.

l) Symbol (+) is used to concatenate two string

4.6 Arrays

Generally one variable can hold a single value only. Therefore if we want to store 10 values, using

10 variables can be a solution. But it is not a good practice to use so many variables, therefore,

in this situation, we require a single variable which can store multiple values. Such a variable is

called an Array. So Array is collection of values which is referred by a single name. These values

should be of same type. In memory, an array occupies consecutive memory locations so all

values are stored consecutively. To declare a variable of Array data type, we can use.

Dim <Name of variable> (size)

for example, Dim ar (5)

In above example ar is an array of 6 values. Array index starts with zero and upper bound of

index in ar(5) is 5. So we can store total 6 values in the array i.e. ar(o), ar(1), ar(2), ar(3), ar(4)

ar(5). If data is not defined as in above example then it will be automatically of type variant and

if you want to specify array of 5 integers then you can declared as given below,

Dim ar (5) As Integer.

As By default index is zero But you can also specified range of index value as given below :

Dim ar (1 to 10) As Integer.

Now index will start with 1 and 10 is last index.

LBound, UBound are the functions which determine lower bound and upper bound of an array.

Use of these functions is given as follows,

Dim A(5) As Integer

Print UBound (ar)

Print LBound (ar)

4.6.1 Types of Arrays

Visual Basic provides two types of Arrays Fixed-length and Dynamic arrays.

(i) Fixed-Length Arrays

In fixed length arrays, size of Array is constant. Scope of Array is defined as follows,

a. To create a global array, place public statement in the declaration section of standard

code module to declare the array. No further declarations are needed.

b. To create a module - level array, place Dim Statement in the General declaration

section of a form module or in standard module. No further declarations are needed.

c. To declare an array with local scope, declare within procedures.

To declared two dimensional Array we can use,

Dim ar (1 to 3, 1 to 5) as integer

UNIT - 4 IDE, FORMS AND CONTROLS 60

(ii) Dynamic Array

Mostly we don’t know size of an array in advance. So we have to change array size at run time.

In that situation, we can declare dynamic array, size of which can be changed later on. To declare

dynamic array, we can use,

Dim ar () as Integer.

To define its size we use ReDim statement as follows :

ReDim ar (4)

Redim can be used in procedure only.

Dynamic allocation is important for several reasons; first it allows the size of an array to be

increased (on decreased) as items are added (on deleted) from a list. In many programs, the size

of list will not be known in advance. ReDim allows the size of a list to be kept flexible.

Second, Redim allows an array to be declared at procedure level. As a rule, define all variable,

including array variables at the lowest level possible. Redim provides this capability.

Third, it is possible to release the memory allocated for an array. By reducing the size of an array

to zero, all memory is released as in the instruction,

Redim ar (0)

As we redeclare array by ReDim, Visual Basic stores default value in memory allocated dynami-

cally. So values stored earlier in that array will be lost. If you want that earlier values should be

retained by array you can use Preserve keyword in ReDim declaration as given below-

Redim Preserve ar (size)

But by Preserve keyword only upper bound can be changed. We can’t change data type of an

array using ReDim if array is of data type other then variant type. But data typed of array of

variant type can be changed. Example is given below

Dim ar () as integer

Dim br (5) as integer

Private Sub Form1 _Activate ()

Redim ar (4)

Print Ubound (ar)

i = Ubound (br)

Redim preserve br (i+5)

Print Ubound (br)

End Sub

Output will be

4

10

4.6.2 Control Array

Control array is a group of controls, all of same type, that have the same name and are identified

by an index. Control arrays are similar to array.

Advantages of control array are,

UNIT - 4 IDE, FORMS AND CONTROLS 61

l Adding an element to a control array requires fewer system resources than adding an

individual control of same type. For example three independent text boxes (Text1, Text

2, Text3) use more resources than a three element text-box array.

l The elements of control array share a common set of event procedures. This means you

have to write program code in only one place to handle the same event for all controls in

the array.

l Control arrays provide the only means of adding controls to a form while your program

is running.

l Using control array, you can avoid hitting the limit of 254 control names per form. This

allows you to add as may controls as you need.

Creating Control Array

You must create a control array at design time. Although you can add elements to a control array

at runtime, at least first element of array must be created in design environment.

You can create control array using following methods,

l Click to control and select edit and copy. Click on form and select edit & paste. So new

ctrl. is shown in same position as the original control because it inherit all the properties

of original control. So drag new control to the position where you like to place it.

OR

l Add individual controls to form and then change the name properties of all controls to

the same value. After these step, a dialog box appears, press yes in that.

After you create control array, you can write a single code to handle a particular event for all

controls in an array. For each event Visual Basic passes the index property of controls that

triggered the event to the event procedure as an argument.

To write code for each of the elements of a control array, you simply enter the code in code

window just as you would for any other control then whenever that event is fixed by any of the

controls in the array, the code is executed.

Self Learning Exercise-4

i. Fill in the blanks

l) Collection of controls having same name and identified by index is known as …...

m) The …………. Keyword allows you to resize an array without loosing content

n) The ……….. keyword allows you to resize an array.

ii. True/False

m) By Preserve keyword only upper bound can be changed.

n) Change of data type of an array using preserve can not be possible even in the case of

array is of variant data type.

o) Redim allows an array to be declared at procedure level.

p) Using control array you can avoid hitting the limit of 254 control names per form.

4.7 Form Initializing & Terminating Events

Load - Occurs when a form is loaded into memory. You can use this event to fill

combo and list boxes with data.

UNIT - 4 IDE, FORMS AND CONTROLS 62

Unload - Occurs when a form is removed from memory.

Activate - Occurs as each new instance of the form is created before the load

event occurs. Also occurs when the user returns to the form from other

forms.

Got Focus - When an object (Form/control) receives Focus, this event occurs.

Lost Focus - It’s the LostFocus event when, focus has left the object. Special events

occurs on each form you can place code in. We associate event proce-

dure for any of them.

Deactivate - Occurs when user moves to another form or form is hidden.

Initialize - Occurs when an instance of form object is created.

Terminate - Occurs when an instance of form object is destroyed.

4.8 Summary

This chapter has covered several topics critical to the study of VB. It discussed how you can use

InputBox and MsgBox functions in program to accept value and print any value respectively.

Control arrays were introduced. A control array is nothing more than a group of objects with the

same name. VB provides the index number for each object within the group. For example you

might have a control array of text boxes and another control array of list boxes.

This chapter also discussed list and combo boxes as examples of one dimensional lists of items.

With combo box determining which item has been selected is much easier because this item

always appears in the combo box.

This chapter also described the use of one dimensional variable arrays. A one dimensional array

is a list of more than one variable with the same.Variable arrays can be declared in several ways.

The preferred one is, ReDim ar(5) as string. ReDim permits the size of an array to be dynamically

controlled, keeps the variable declaration at procedure level, and permits memory to be released

by reducing the size of array to zero.

Array subscript always begins with zero.

To ensure that previously assigned values to an array are not lost when array is redimensioned,

use preserve keyword.

String is a sequence of characters. String functions deal with ways of manipulating and converting

strings. Set of string functions deals with converting a string from one form to another.

Left (), Right () and Mid () return part of String.

RTrim (), Trim () and LTrim () remove blank spaces.

Instr () returns position of sub-string within a larger string.

This chapter also discussed How you can develop a project having multiple forms. Load function

is used to load form in memory, Show and Hide functions are used to display or hide a form from

a screen.

UNIT - 4 IDE, FORMS AND CONTROLS 63

4.9 Glossary

IDE IDE means a software in which there is an environment provided to the

user in which there are so many tools available for coding, testing,

debugging, deployment and maintenance.

Control Array Control array is a group of controls, all of same type, that have the

same name and are identified by an index

4.10 Further Readings

1. Alan Eliason, Ray Malarkey, “Visual Basic 6, Environment, programming and Application”.

2. Brain Siller and Jeff Spotts, “Visual Basic 6”.

4.11 Answers to Self Learning Exercises

i. Fill in the Blanks ii. True/False

a) Memory, Display a) True

b) .BAS b) False

c) Public c) True

d) Private d) False

e) Combo Box e) False

f) Clear f) True

g) ListIndex g) False

h) AddItem h) True

i) 7 i) False

j) 5 j) True

k) “” k) True

l) Control Array l) True

m) Preserve m) True

n) ReDim n) False

o) True

p) True

4.12 Unit End Questions

1. Write a VB program which work as a calculator. (Use control array for digits)

2. Design a VB application which has two list boxes one of them has MultiSelect property

TRUE. Add Two buttons one of them transfer the selected items from First list box to

second list box and other will transfer the selected items from Second list box to First list

box.

UNIT - 5 WORKING WITH FILES 64

Unit - 5: Working With Files

Structure of the Unit

5.0 Objectives

5.1 Introduction

5.2 Data File

5.2.1 Sequential File Organization

5.2.2 Random Data Files

5.3 Accessing Database Files

5.3.1 Terminology

5.3.2 Structure of Data Base Application

5.3.3 Database Connectivity through Data Control

5.3.4 Database Connectivity through objects (DAO, ADO, RDO)

5.4 Summary

5.5 Glossary

5.6 Further Readings

5.7 Answers to Self Learning Exercises

5.8 Unit End Questions

UNIT - 5 WORKING WITH FILES 65

5.0 Objectives

At the end of this unit you will be able to,

l Use built-in VB file processing system control.

l Understand concepts important to design of Sequential File records and Random

Access files.

l Access data base file.

l Apply connectivity through data control.

l Understand three methods of database connectivity DAO,ADO and RDO

5.1 Introduction

If data needed by a program are to be saved the data must be stored on disk, a computer can

store two types of files; program files & data files. Program files contain VB or application

specific instructions. These include .VBP, .FRM, .BAS files. Data files contain the data to read

to and from program files. These files will include text files(.txt) and data files(.dat).

This chapter begins with an introduction to four file processing controls - drive list box, the

directory list box, the file list box and common dialog control. Following this, we examine how to

write to and read from a sequential file besides sequential file processing VB also provide random

access file processing(default). With random access file processing, fixed length records are

managed and all records must correspond to one type. VB includes some special controls (ADO,

DAO, RDO) for accessing external databases. These controls allow a user to access an existing

database and to navigate through the collection of stored data with little or no programming.

Built-in Visual Basic File processing system Control

Many Visual Basic applications require information about the current disk drive (which is open),

the directories stored on the disk placed in the current drive, and the file stored within a directory

or placed on the disk. Visual Basic provides four controls to avail facility that is just described.

Drive list Box displays available disk drive on a computer..

Dir list box displays the directories created for a disk placed in disk drive.

File list box displays files stored within the directories including root directories.

Collectively these three tools tells you what files are stored on a specific drive within the named

directory

Common Dialog Control

Opens standard dialog boxes such as open, color, print and save dialog boxes. If common dialog

control is not available on tool box the add it by selecting component option of project menu,

after that select Microsoft Common Dialog Control 6.0.

Example

UNIT - 5 WORKING WITH FILES 66

Step1 : Drag and drop drive, directory, file list boxes on form

Step2 : Write following code in change event of drive list box

Private Sub drive_change()

dir1.path = drive1.drive

End Sub

Step3 : Write following code in change event of dir list box

Private Sub dir_change()

file1.path = dir1.drive

End Sub

Step 4 : Take a combo box on form and add following items in list property of that combo box.

*.txt

*.doc

.

Step 5 : Add the following statement in change event of combo box

file1.pattern = combo1.text

Step 6 : Save and Run

5.2 Data Files

Data files contain the data to read to and from program files. Database file is an example of data

file. We will describe database file in detail later on.

5.2.1 Sequential File Organization

Sequential means that the file is accessed one byte after the other in sequence, rather than jumping

to a specific location.

Sequential access is especially useful for text files, where each character in the file represents

either a character (including blank space) or a text formatting characters (newline). Text formatting

is limited to reading and writing of strings of text, rather than a set of records (unit of data to be

UNIT - 5 WORKING WITH FILES 67

processed by computer at a time is known as record). With sequential access, two files are

typically required - one to read data from and one to write data to. It is not possible to read and

write to same file at the same time. If, for example, you want to insert a record into a sequential

file, it is necessary to read from one file and write to second file until the desired location is

reached. At this time a new records is inserted and written to second file (not the first). Once this

is done, all remaining record must be read from first file and written to second.

Functions and statements

Most useful functions and statements applied to sequential file are as follows -

EOF Returns a value to indicate whether the end-of-file has been reached.

LOC Returns the current position within an open file.

LOF Returns size of an open file in bytes.

Seek Sets the position in a file for the next read or write.

Open Enables input or output to a file.

Close Closes input/output to a file.

Input # Reads characters from a sequential file and assigns data to variables.

Print # Writes formatted data to sequential file.

Write # Writes raw data to a sequential file.

How these functions and statements can be used is described below-

Open

Syntax Open file For [mode][Access] [lock] As [#filenumber [len = reclen]]

Example Open “notes.txt” For Output As #1 (if file does not exist then it will create it.)

Write

Syntax Write# filenumber [, expression list]

Example Write #1, a,b,c (this will write values of variables a, b and c in the file having number

1)

Print

Syntax Print file number [[{spc(n)|tab(n)}][expression list][{;|,}]

Example Print #1, Text1.Text

Input

Reads list of numeric or string expressions from a file. This statement is used when the exact type

of data is known in advance.

Syntax Input #filenumber, variable list

Example Input #1, a,b,c (three values read from file which have file number1 and store in

a,b,c respectively)

LineInput

This statement reads a text file one line at a time, reading all characters up to a carriage return.

Syntax LineInput #file number, variable name

Example LineInput #1, textline

UNIT - 5 WORKING WITH FILES 68

Close

Syntax Close [[#]filenumber][,[#]filenumber]...

Example Close #1

Example Program:

This exercise accepts a text and stores and retrieves it in/from text file, as shown on following

screen.

Private Sub write_click() Private Sub read_click()

Open “notes.txt” For Output As #1 Open “notes.txt” For Intput

As #2

Write #1, Text1.text Do Until EOF(2)

Close #1 Input #2, linetext

Text1.text = “ “ Text1.text = Text1.text & linetext

read.enabled = true Loop

write.enabled=false Close #2

End Sub End Sub

Kill

To delete a file from a disk

Syntax Kill filespec

filespec is name of file. Kill will not work if file is open.

Self Learning Exercise-1

i. Fill in the blanks

a) Kill is used to ……… a file from a disk

b) EOF returns a value to indicate whether the ……………. has been reached.

c) Print # writes ……….. data to sequential file.

UNIT - 5 WORKING WITH FILES 69

d) Write # writes ……….. to a sequential file.

ii. True/False

a) Sequential access file means that the file is accessed one byte after the other in

sequence, rather than jumping to a specific location.

b) Data files contain the data to read to and from program files.

c) Database file is not an example of data file

d) In sequential files it is possible to read and write to same file at the same time.

5.2.2 Random Access Files

Sequential files do not have any structure. As a matter of fact, the structure is defined by the code

that read the file rather than in the file itself that’s why Visual Basic does not contain a function to

jump to a specific record in a sequential file

One way to move some structure into the file itself is to store user defined record rather than just

string data. You can then open in Random mode and are not limited to sequential access.

Creating Record Type

You can use user-defined data type by using Type statement to create a custom record. Type

declarations are entered in general section of code window.

For example following code declares a student record type

Private Type student

roll-no As Integer

name As String*30

percentage As Single

End Type

Custom record type can be accessed from code as follows-

Dim std As student

std.name = “sudha”

std.roll-no = 15

std.perc = 70.98

Functions and Statements

Seek

Moves file pointer to specific record number.

Syntax Seek filenumber, record number

Example Seek #2, 10 (now next record to be read or write will be 10th recording file #2)

LOC

Returns current location in a file.

Syntax LOC(file number)

Example LOC(#2) (return 9, since10 is next record to process)

Open

Opens a file.

UNIT - 5 WORKING WITH FILES 70

Syntax Open file for Random As file number len = record length

Example Open “test.dat” For Random As #1 Len = RecordLen ‘ where RecordLen =

Len(rec-name)

Close

Same as in sequential access file

Get

Reads from a file into variable

Syntax Get [#] filenumber,[record number], variable name

Example Get #2, 10 (This read 10th record)

Put

Writes from a variable to a disk file

Syntax Put [#] file number, [record number], variable name

Example Put #1, std (if no record number is specified then record will be written to current file

pointer)

Seek

Moves from record to record.

Syntax Seek file number, record number

Example Seek #1,3 (next Get and Put will be 3rd record)

Example

Following code accepts five records from user and writes to file #1.

For i = 1 to 5

std.roll-no = InputBox(“Enter roll number”)

std.name = InputBox(“Enter name”)

std.perc = Val (InputBox(“Enter percentage”)

Put #1, std

Next I

Following code reads 4th record of file #1 and prints it.

Get #1, 4, std

MsgBox “name = “&std.name

MsgBox “roll number = “& std.roll-no

MsgBox “Percentage = “&std.perc

Visual Basic also provides third type of file that is Binary file which allows variable length record

size. Whereas Random file allows only fixed length record size. If for example, a student’s name

is allocated 30 bytes but only requires 10, then 20 bytes of storage would be wasted with

random access storage. With Binary storage only characters entered are stored. If student’s

name requires 10 bytes then only 10 bytes are used.

Self Learning Exercise-2

i. Fill in the blanks

UNIT - 5 WORKING WITH FILES 71

e) Seek moves ……….. to specific record number.

f) LOC returns current ………… in a file.

g) Get reads from a …….. into variable.

ii. True/False

e) Random files do not have any structure.

f) Binary file allows variable length record size.

g) Random file allows fixed length record size.

5.3 Accessing Database Files

Visual Basic has been a tool of choice for database programmers everywhere. With each successive

version, Microsoft has added more functionalities to make database programming and hence

access easier. VB’s powerful database feature set has grown with the addition of new tools and

technologies with new versions.

5.3.1 Terminology

Before going in detail of data base access facility of VB we have to know some terms regarding

database. Some of them are given below,

Data Data are known as facts.

Database Collection of data.

DBMS Collection and management of data is known as Data Base Management System.

RDBMS (Relational DBMS) is a system in which many related databases can be managed.

Table A table is a logical structure used to group sets of related information. For example

one table represents information about a set of students (roll-no, name, address)

and another represents marks (roll-no, mark-obtains, total, percentage).

Field A field is an attribute of a record. An attribute of student database is roll-no,

another is name.

Primary Key Attribute which can uniquely identify a record. For example in student database

roll-no of each student will have unique value so it can uniquely identify each

record therefore we can set roll-no a primary key.

Foreign Key Foreign keys are fields in common, between tables. For example we have roll-

no common in both tables (student, marks). So roll-no is primary key in student

and foreign key in marks table.

Indexes Access to a database record is often made faster through use of an index assigned

to fields rather than primary key field. Suppose you want to retrieve a student

record by entering name of the student, rather than the unique roll-no. To

accomplish this you can create an index based on student name keeping this

index separate from the data base table. Before retrieving a record from the

table, the index is searched for record containing the specified student name. If

the search is successful the record location of student is identified. This allows

direct access to student record.

Queries Queries are questions asked for database. In VB Structured Query Language

(SQL) is used to retrieve data from a database. For example

UNIT - 5 WORKING WITH FILES 72

SELECT name,address

FROM student

WHERE roll-no = 15

5.3.2 Structure of database application

A Database application contains three elements

User Interface

Users interact with this component. This includes all screens used to view and modify data.

Database Engine

This is a collection of DLL which combines with programs at run time. This is responsible to

read, write and modify database.

Data Store

A data store is a collection of files, database tables.

5.3.3 Database Connectivity through Data Control

Visual Basic is designed to enable a developer to create window-based applications quickly and

easily. This extends to creation of database applications as well. Visual Basic enables you to

write a complete data management application with no programming. The components that make

these capabilities possible are data control and data bound control.

This is the easiest way to connect database by simply setting data control properties, it is pos-

sible to connect to database without writing a single line of code, through the Data Control.

Creation of database using database manager Application

It is possible to create database within VB environment. For this follow the following steps-

Step 1. Select Visual Data Manager option of AddIns menu in VB environment.

Step 2. Select the database, say, Microsoft Access. Then enter the database file name. Follow-

ing screen will be displayed

Step 3. Right click on properties and then select new table. Following screen will displayed

UNIT - 5 WORKING WITH FILES 73

Step 4. Feed table name and then click on add field button. Enter all fields information(name,

type, size etc.). Repeat by pressing Add Field button for as many fields as required.

Then press Build the table.

Step 5. To Enter the data in table right click on table name and select open, the following screen

will be displayed.

Step 6. Enter as many data as you want by repeatedly clicking Add button.

How to connect a database using Data Control

Step 1. Open a new project in VB and add data control on form as shown on the following

screen.

UNIT - 5 WORKING WITH FILES 74

Step 2. Select Data Control(data1) and change following properties

DataBaseName - File name of database file

Record Source - Table Name/ Query Name

Step 3. Add Bound Control to display contents of records of table of selected database. As an

example we add text boxes as a bound control. So add Text boxes to display data as

given on the following screen.

Step 4. Select Text Box and change the following properties.

Data Source - Data Control name (say Data1)

Data Field - Field name of table selected in step 3 (say roll-no)

Step 5. Repeat step 4 for all fields you want to be displayed.

Step 6. Run the Application. First record will be displayed and you can go to next records using

navigation buttons of data control.

One of the most frequently used properties of the data control is the Recordset.

Recordset

Three alternative values of this property are as follows,

Table A data set that is returned from table of database and may be updated.

Dynaset A data set that is returned from a query and may be updated.

Snapshot A data set that may be either table or a query but is read only, that is, may not be

updated

EOF / BOF Indicate End of File(i.e. last record) and Begin of File(i.e. First Record). Use of

UNIT - 5 WORKING WITH FILES 75

these properties will be clear by following example code (in this code, the pro-

grammer wants to prohibit users to go to the position after last record. Similarly,

you can write code to prohibit user to go to position before the first record).

Private Sub move_next()

If Not Data1.Recordset.EOF then

Data1.Recordset.MoveNext

else

MsgBox “You are already at last record.”

end if

End Sub

While creating a database application you will need some more methods. Some of them are

described below.

Refresh

To open database,

To reopen database with different set of data control properties,

To move to first record in a recordset.

Syntax [form.]datacontrol.Refresh

Example Data1.Refresh

AddNew

Clears the buffer in preparation for creating a new record in table or dynaset

Syntax [form.]datacontrol.AddNew

Example Data1.AddNew

Delete

To delete current record

Syntax [form.]datacontrol.Delete

Example Data1.Delete

Edit

To open current record for editing

Syntax [form.]datacontrol.Edit

Example Data1.Edit

Update

To save the contents of copy buffer to table of dynaset.

Syntax [form.]datacontrol.Update

Example Data1.Update

FindFirst

To locate the First record that satisfies specified criteria and makes it the current record.

Syntax [form.]datacontrol.FindFirst criteria

UNIT - 5 WORKING WITH FILES 76

Example Data1.FindFirst roll-no = ‘5’

FindNext

To locate the Next record that satisfies specified criteria and makes it the current record.

Syntax [form.]datacontrol.FindNext

Example Data1.FindNext

FindPrevious

To locate the Previous record that satisfies specified criteria and makes it the current record.

Syntax [form.]datacontrol.FindPrevious

Example Data1.FindPrevious

FindLast

To locate the Last record that satisfies specified criteria and makes it the current record.

Syntax [form.]datacontrol.FindLast criteria

Example Data1.FindLast roll-no = ‘5’

MoveFirst

To move to the first record in a specified recordset and make it the current record.

Syntax [.form]datacontrol.MoveFirst

Example Data1.MoveFirst

MoveNext

To move to the Next record in a specified recordset and make it the current record.

Syntax [.form]datacontrol.MoveNext

Example Data1.MoveNext

MovePrevious

To move to the Previous record in a specified recordset and make it the current record.

Syntax [.form]datacontrol.MovePrevious

Example Data1.MovePrevious

MoveLast

To move to the Last record in a specified recordset and make it the current record.

Syntax [.form]datacontrol.MoveLast

Example Data1.MoveLast

Seek

In table type recordset, moves to the indexed record specified by method argument.

Example:

This exercise assumes that a table with name “std” is created in chk.mdb database. Now design

an interface to add, delete and modify records in table. Update button is used to indicate that

record should now be saved. Following figure represents the interface and after that code corre-

sponding to each button is also given.

UNIT - 5 WORKING WITH FILES 77

Private Sub Add_Click()

Data1.Recordset.AddNew

End Sub

Private Sub Update_Click()

Data1.Recordset.Fields(“roll-no”) = Val(Text1.Text)

Data1.Recordset.Fields(“name”) = Text2.Text

Data1.Recordset.Update

End Sub

Private Sub Delete_Click()

If Not Data1.Recordset.EOF Then

Data1.Recordset.Delete

Data1.Recordset.MoveNext

Else

MsgBox “No record to delete”

End If

End Sub

Private Sub Edit_Click()

Data1.Recordset.Edit

End Sub

Private Sub Form_Load()

Data1.Refresh

Text1.Text = Data1.Recordset.Fields(“roll-no”)

Text2.Text = Data1.Recordset.Fields(“name”)

End Sub

In case of data in result of query. Design time binding will be as follows-

UNIT - 5 WORKING WITH FILES 78

1. Write the query in the visual data manager window

2. It will ask name of the query.

3. Now give recordsettype - Snapshot and recordsource - Query name

Rest of the process is same.

You can also give query data at run time. Example code is given by-

data1.RecordSource = “SELECT [name],[roll-no] FROM std”

data1.Refresh

5.3.4 Database Connectivity through Objects (DAO, ADO, RDO)

DAO (Data Access Objects)

Data Control provides limited access to database but there is no or less programming when it is

used. But DAO is a powerful Object oriented programming interface which provides full control

on database but there is more programming required. And also DAO help you to understand the

concepts behind the controls. You can perform more detailed input validation before an attempt

is made to enter the data into database.

This is also an efficient way to handle the database using DAO. Steps are given below,

Step 1. Take a new project

Step 2. Select references option of Project menu. Following window will displayed.

Step 3. Select Microsoft DAO 3.51 Object Library. Press OK.

Step 4. Write following declaration in general section of code window.

Dim db As Database

Step 5. Write following statement in load event of form.

Set db = OpenDataBase(“chk.mdb”) ‘ Path if required

Step 6. Write following statement in unload event of form.

db.close

Step 7. To access recordset object add following declaration in general section.

Dim rs As Recordset

Step 8. Add following statement to load event handler

Set rs = db.OpenRecordset(“std”,dbOpenTable)

UNIT - 5 WORKING WITH FILES 79

rs.MoveFirst

Step 9. Add controls(say text boxes) to display data to form. Add following code to load event

text1.text = rs(“roll-no”)

text2.text = rs(“name”)

Step 10. Add Two command buttons change caption and name of button to Next and Previous

respectively.

Step 11. Add following code to click event of Next button

Private Sub cmdNext_click()

If Not rs.EOF Then

 rs.MoveNext

 Text1.text = rs(“roll-no”)

 Text2.text = rs(“name”)

 Else

 MsgBox “You are at the Last Record”

End If

End Sub

Step 12. Add following code to click event of Previous button

Private Sub cmdPrevious_click()

If Not rs.BOF Then

 Text1.text = rs(“roll-no”)

 Text2.text = rs(“name”)

 rs.MovePrevious

 Else

 MsgBox “You are at the Last Record”

End If

End Sub

Step 13. Test and Run the application.

In DAO programming Recordset properties can have four types of values; those are, Table type,

Dynaset, Snapshot and Forward Only. First three are already described above.

Forward Only Recordset

It is same as Snapshot type but only allow forward scrolling through its record. This means

MoveFirst, MovePrevious, Find methods do not work on the Recordset. It is faster then Snap-

shot.

To set type of Recordset any one statement of following statements can be used-

Set rs = db.OpenRecordset(“std”,dbOpenTable) ‘ std is the name of a table

Set rs = db.OpenRecordset(“std”,dbOpenSnapshot)

Set rs = db.OpenRecordset(“std”,dbOpenDynaset)

Set rs = db.OpenRecordset(“std”,dbOpenForwardOnly)

UNIT - 5 WORKING WITH FILES 80

Other methods (rs.AddNew, rs.Edit, rs.Delete, rs.MoveNext ect.) work as in data control.

RDO (Remote Data Object)

Visual Basic is a great tool for creating front end for client/ server application. These types of

applications are used to access data stored in database servers such as SQL server and Oracle.

Visual Basic program can easily access data stored in a variety of remote locations through use

of RDO. After connection to data source is made, same code statements that are used for DAO

can be used to access the data using RDO. To give a feel for similarities between RDO and

DAO, following table lists a number of RDO objects and their corresponding DAO objects-

rdoEngine dbEngine

rdoEnvironment Workspace

rdoConnection Database

rdoTable TableDef

rdoResultSet Recordset

rdoColumn Fields

rdoQuery Querydef

rdoResultset can have following values-

rdoResultset Type Recordset Type Definition

Keyset Dynaset Updatable set of records.

Static Snapshot Non-Updatable set of records.

Dynamic Not Applicable Similar to Keyset

Forward Only Forward Only Similar to static, but you can

move forward only through set

of records.

RDO do not support any rdoResultset Type that returns a table. This is because RDO are

geared to using SQL statements to retrieve subset of information from one or more tables. Also

because there is no table equivalent, RDO does not support indexes.

AddNew, Delete, Edit, Update and all Move methods are also available in RDO.

Dim db As rdoConnection

Dim rs As rdoResultset

Dim sSql As String

Set db = rdoEngine.rdoEnvironment(0).OpenConnection(“MyDSN”)

sSql = “SELECT * FROM std”

Set rs = db.OpenResultset(sSql, rdOpenKeyset)

rs.MoveFirst

While Not rs.EOF

Print rs.rdoColumns(0)

rs.MoveNext

Wend

rs.close

db.close

UNIT - 5 WORKING WITH FILES 81

ADO(Active Data Object)

ADO is an object oriented interface which provides facility to access database using OLEDB

data providers. ADO provides fast and easy access to data, ADO have mainly three objects-

Connection: Object of highest level. This establishes connection between application and data

source.

Command: This object is used for querying data source.

Recordset: This object is used to access records which are result of query. Using this object

we can add, remove and modify records.

Data control is available for design time data connectivity corresponding to DAO. Similarly

ADODC is also available for design time data connectivity corresponding to ADO. Here we will

only discuss data connectivity through ADODC.

1) To add ADODC on tool box select components of project menu.

2) Select the check box Microsoft ADO Data Control 6.0 (OLEDB) then press OK.

3) Drag and Drop ADO Data Control on Form. as displayed in following screen.

4) Right click on ADODC and select properties, the following screen will be displayed.

5) Select Use Connection String and press Build button.

6) Select driver, say Microsoft Jet OLEDB provider. Press Next button.

7) Enter or browse database name & press test connection if test connection is successful,

press OK.

UNIT - 5 WORKING WITH FILES 82

8) Press Record Source tab on property window and select command type cmdTable.

9) Press Apply and then OK button.

10) Drag and Drop bound control on form (say text boxes) and change following proper-

ties.

Data field field name

Data source ADODC name

UNIT - 5 WORKING WITH FILES 83

11) Drag and Drop three buttons add, save and delete. Add following code corresponding

to each button

Private Sub cdmdAdd_Click()

Adodc1.Recordset.AddNew

Text1.SetFocus

cmdSave.Enabled = True

End Sub

Private Sub CmdDelete_Click()

Adodc1.Recordset.Delete

Adodc1.Recordset.MovePrevious

End Sub

Private Sub cmdSave_Click()

Adodc1.Recordset.MoveLast

Adodc1.Recordset(0) = Val(Text1.Text)

Adodc1.Recordset(1) = Text2.Text

Adodc1.Recordset.Save

cmdAdd.Enabled = True

End Sub

12) Test and Run, output screen will look like.

ii. True/False

h) In Forward Only Recordset, MoveFirst, MovePrevious, Find methods do not work

on the Recordset.

Self Learning Exercise-2

i. Fill in the blanks

h) DAO Stands for………….

i) ADO stands for ………..

j) RDO stands for ……………

k) RDO can easily access data stored in a variety of …………. Location.

UNIT - 5 WORKING WITH FILES 84

i) RDO do not support any rdoResultset type that return a table.

j) Refresh can not be used to move to first record in a recordset.

k) Refresh can be used to open database.

5.4 Summary

This unit presented many topics, those are centered on how Visual Basic implements the rela-

tional database model through use of Jet Engine and makes the database easy to use through the

data control. The chapter also introduced the data manager tool for building database tables.

First we discussed Sequential and Random Access data files. After that Database files were

discussed.

The data control allows easy access to VB and other databases. Important properties are,

DataBaseName identifies the path to the database.

RecordSource identifies whether the data control will contain data from table or a query.

RecordSetTypeidentifies whether the data contained by the data con-

trol will be an updateable data set

from a table or query or read-only dataset.

Bound Control has two properties to be set

DataSource identifies which data control

DataField identifies field in the data control Recordset.

Other methods of database connectivity were also discussed which are DAO, ADO, RDO.

DAO Jet Engine is used. In this, the methods are,

OpenRecordset To create Recordset.

OpenDatabase To open databases.

RDO is used to access Remote Object.

ADO is an object oriented interface which provides facility to access database using OLEDB

data providers. ADO provides fast and easy access to data, We have discussed ADO data

control which provides design time connectivity.

5.5 Glossary

Data Data are known facts.

Database Collection of data.

DBMS Collection and management of data is known as Data Base Management

System

RDBMS Is a system in which many related database tables can be managed

Table A table is a logical structure used to group sets of related information

Field A field is an attribute of a record.

Primary Key Attribute which can uniquely identify a record.

Foreign Key Foreign keys are fields in common between tables.

Queries Queries are questions asked for database.

UNIT - 5 WORKING WITH FILES 85

5.6 Further Readings

1. Alan Eliason, Ray Malarkey, “Visual Basic 6, Environment, programming and Applica-

tion”.

2. Brain Siller and Jeff Spotts “Visual Basic 6”.

5.7 Answers to Self Learning Exercises

i. Fill in the blanks ii. True/False

a) delete a) True

b) end - of - file b) True

c) formatted c) False

d) raw data d) False

e) File pointer e) False

f) Location f) True

g) File g) True

h) Data Access Object h) True

i) Active Data Object i) True

j) Remote Data Object j) False

k) Remote k) True

5.10 Unit End Questions

1. Create the following interface and add Buttons corresponding to movenext, movefirst,

moveprevious, movelast. Write the code To enable the navigations in the above example

interface.

2. Add four buttons of caption New, Save, Edit, Delete to above interface. And write code

corresponding to add new record, save entries, edit already existing record and delete a

record using ADODC.

UNIT - 6 INTRODUCTION TO DATABASE 86

Unit - 6: Introduction to Database

Structure of the Unit

6.0 Objectives

6.1 Introduction

6.2 Data Report

6.2.1 Sections of Report

6.2.2 Steps to Create a Report from a Database

6.2.3 Navigating a report

6.3 Displaying Data in Grid

6.3.1 What is Data Grid?

6.3.2 Creation and Data Connectivity to Data Grid

6.4 Validation and Error Trapping

6.5 Multiple Document Interface (MDI)

6.6 Object Linking and Embedding

6.6.1 Object Linking at Design Time

6.6.2 Object Embedding at Design Time

6.7 Summary

6.8 Glossary

6.9 Further Readings

6.10 Answers to Self Learning Exercises

6.11 Unit End Questions

UNIT - 6 INTRODUCTION TO DATABASE 87

6.0 Objectives

Main objectives of this unit are to,

l Know how to create a report.

l Know how to display data in Grid form

l Know how to create MDI application

l Understand meaning of OLE and to know how to use OLE custom control

l Know how to capture and handle runtime errors.

6.1 Introduction

You have become familiar about database programming using Visual Basic. Some advanced

concepts which are very useful in application development are left for discussion, for example we

want an application which includes more than one document.

We want to include documents of other applications such as Microsoft Excel, Word, PaintBrush

etc in our application

How we can handle some Runtime errors such as divide by zero, file does not exist etc. so that

we can display appropriate messages in place of system’s run time error messages which are not

understandable in most of the cases.

We want to display data of database in presentable form with required format. Data Report

provides this facility. How we can create report will be discuss in this chapter.

Sometimes there is requirement to display data in tabular form, since tabular form is the best way

to display data, how this requirement will be fulfilled will also be discussed in current chapter.

6.2 Database Report

If you want a hardcopy of a database or selected amount of information of a table then printing

of database file is not a better solution since it will not be a formatted and presentable document.

Therefore some tool should be there for this requirement, Database Report is the solution.

Despite the fact that online information systems always promise a “paperless” office, everyone

likes to have printed reports. In Visual Basic, Database Report enables you to easily display a

print preview screen, with print and explore button, from an ADO data source. Visual Basic also

supports Crystal Report a popular reporting tool that has been packaged with Visual Basic.

6.2.1 Sections of Database Report

Database Report is divided into several sections which are given below-

Report Header Information displayed once, at top of the report.

Page Header Information displayed at top of every page.

Detail Section The part of report that is repeated for each record in the ADO data

source.

Page Footer Information displayed at the bottom of every page.

Report FooterInformation displayed once at end of the report

6.2.2 Steps to Create a Report from a Database

Step 1: Open a new project and select data project from the following window.

UNIT - 6 INTRODUCTION TO DATABASE 88

Step 2: Double click on Data Environment in project explorer window.

Step 3: Right click on connection, select the properties.

Step 4: Select the database provider - say Microsoft Jet 4.0 OLEDB and press next.

UNIT - 6 INTRODUCTION TO DATABASE 89

Step 5: Type or browse database name, test connection and press OK.

Step 6: Right click on connection, select Add command.

Step 7: Right click Command and select Properties.

Step 8: Select table from list of database objects and select table name from list of object name,

UNIT - 6 INTRODUCTION TO DATABASE 90

and press OK.

Step 9: Expand command in Data environment window. Expand the form in project explorer

window and both following screens should be displayed.

Step 10: Drag and Drop fields from data environment window to form window.

Step 11: Double click on Data Report1 in data project window. And set following data report

properties,

Data Source Data Environment1

Data member Command1

Step 12: Now click on data Environment and Check that following windows are displayed on

screen.

UNIT - 6 INTRODUCTION TO DATABASE 91

Self Learning Exercise-1

i. Fill in the blanks

a) Default name of data report is ……….

Step 13: Drag and Drop fields from data environment window to Data report1.

Step 14: Add a button of Caption report to form and write following code to click event of that

button.

Private Sub report_Click()

DataReport1.Show

End Sub

 Step 15: Run the project. Output screen will be displayed as follows.

UNIT - 6 INTRODUCTION TO DATABASE 92

b) Method used for display of data report is ………..

c) ………….. and ……….. properties of data report that have to be set.

ii. True/False

a) Data Report has to combine with data environment if you want to use it.

b) We can export data report in other formats also, such as HTML

c) We can view objects of other Applications through Data Report.

6.3 Displaying Data in Grid

Information displayed in tabular form that is in rows and columns is known as Grid. Data Grid

fills the rows from a data source in a table. It is used to retrieve and update the database records.

6.3.1 What is Data Grid?

Data Grid is a control which allows you to display data in the form of grid of columns and rows.

Depending on how data grid is set up, the user can edit the cells of the grid directly, and change

the underlying data.

6.3.2 Creation and Data Connectivity of Data Grid

Since you will not find Data Grid control on the ToolBox therefore, to add Data Grid control on

toolbox follow the steps given below,

1) Right click on empty area of ToolBox

2) Select component from context menu

3) Check Microsoft Data Grid Control 6.0 check box.

4) Press OK, close Component Dialog Box.

Data connectivity to Grid can be possible after the execution of the following steps.

Step 1: Drag and Drop Data Grid Control on the form and Add ADODC control as given on the

following Screen-

Step 2: Set properties of ADODC as described in chapter 5.

Step 3: Set the Data Source property to ADODC control name. Data Grid configures its col-

umns automatically based on the data source.

Step 4: Right click on Grid and select Retrieve Fields. Heading row of grid will be filled by field

names of records of database.

Step 5: Run the project. Output Screen will be displayed as follows,

UNIT - 6 INTRODUCTION TO DATABASE 93

Self Learning Exercise-2

i. Fill in the blanks

d) To bind the DataGrid control to a recordset, set its …….property and optionally,

the ………..property.

e) Grid Control has …………. and …………… properties to represent location of the

currently active cells.

f) T o represent total number of rows and columns of grid properties are …………. and

…………

ii. True/False

d) We can Connect ADO Data Control with data Grid.

e) We can also display result of query in Data Grid.

f) We can Connect Data Control with data Grid.

6.4 Validation and Error Trapping

As you are writing code, Visual Basic informs you of syntactical errors. However once the

program is running, you may encounter unexpected runtime errors in many circumstances. For

example you try to open a file that a user has already deleted you will get Run Time Error-File

Not Found.

In this situation Visual Basic stops execution of the application and displays an error message.

Programmer can also write code to handle these types of errors according to his /her own way.

For that he has to follow the following steps,

i) Set Error trap

ii) Write error handler

iii) Exit from error handler

i) Set Error Trap

On Error statement is used to trap an error. On Error statement interrupts the normal flow of

your program when an error occurs and begins execution of error handler. It can be used in the

following ways,

On Error GoTo (Label): Control goes to the statement whose label is specified.

On Error Resume Next: Control should be transferred to the statement that follows the

UNIT - 6 INTRODUCTION TO DATABASE 94

error. In other words program is allowed to continue even though

it contains a run-time error.

On Error GoTo 0(Zero) This statement disables any enabled error handler.

On Error GoTo <label> is explained by following example-

Private Sub disp()

On Error Go To DivByZero

i = n1/n2

Print i

Exit Sub

DivByZero: MsgBox “Error : Divide by zero”

End Sub

ii) Error handler

An error handler should provide information of error and its solution. And also it should also

allow the user to execute remaining work. ErrObject will help programmer in writing error han-

dler. Which contains information of an error and it’s properties. Some properties of ErrObject

are,

Number Error’s Identification number.

Description Information about error i.e. which error it is.

Source Object or Application name in which error occurs.

Methods associated with ErrObject are,

Raise If in a series of procedures, all procedures don’t have error handler

Then, Raise method is used to send error from one procedure to another to handle it.

Syntax Err.Raise number, Source, destination, helpfile, helpcontext

Example Err.Raise number = 101

Clear To set error number to zero.

Example

Private Sub Form-Load()

On Error GoTo err1

........

......

Exit Sub

err1:

MsgBox err.number

MsgBox err.description

MsgBox err.Source

End Sub

iii) Exiting an error handler

Resume or Resume Next is used to exit from error handler. Exit Sub statement can also be used

to prevent execution of error handler.

UNIT - 6 INTRODUCTION TO DATABASE 95

Self Learning Exercise-3

i. Fill in the blanks

g) Errors arise during running of program is known as ……… errors.

h) Default property of Err object is …………..

i) ……… statement allows to stop runtime error.

ii. True/False

g) Default property of Err object is description.

h) File not found is an example of Run time Error.

i) On Error statement is used to trap an error.

6.5 Multiple Document Interface

Multiple Document Interface (MDI) allows programs to work with multiple forms contained

within a parent form. The MDI enhances programs into two ways. First you can have one

container form that acts as the background for your overall application. If a user moves the

container form the child form contained inside moves as well, which helps keep your application

interface organized and self contained. Second perhaps even more powerful, your user can

work on multiple documents at one time. MDI application allows the use of multiple interfaces of

the same form, which can add a great deal of power and flexibility to your program.

Steps to Create MDI Application

In this section, you will walk through the steps of creating a simple MDI application using Visual

Basic. You can create an MDI application using the following steps,

Step 1: Create a new project

Step 2: Create a MDI parent form by clicking Add MDI form option in project menu item.

Step 3: Create a standard form and set its MDI child property to True.

Step 4: Run the program to see how child forms behave inside the parent. Child forms will be

displayed only within the area of parent form as displayed on following screen,

AutoShowChildren and ScrollBars are special properties of MDI form. AutoShowChildren de-

UNIT - 6 INTRODUCTION TO DATABASE 96

termines whether child forms are shown automatically as they are loaded that means their Load

statement and Show statement have same effect on form.

The ScrollBars property determine whether MDI form shows scrollbars when necessary. When

this property is True, Scrollbars are shown on MDI form if one or more child form extends

beyond the boundary of MDI parent form.

Self Learning Exercise-4

i. Fill in the blanks

j) The SDI stands for ………….

k) The MDI stands for ……………

l) A VB program can have …………. MDI forms.

m) Forms that are contained within MDI form are referred as…………..

ii. True/False

j) If AutoShowChildren property of MDI Form is True that means Load statement and

Show statement have same effect on form.

k) To make a form child form, we set its MDI child property to False.

l) MDI allows programs to work with multiple forms contained within a parent form.

m) If a user moves the container form the child form contained inside does not.

6.6 Object Linking and Embedding (OLE)

OLE is the method for displaying and manipulating data found in other window applications for

example, Microsoft Word, Excel etc. With Object linking, VB application is linked by path name

to another windows application. However, other window application called server application,

stores and maintains linked data.

With Object Embedding Source data from server application is actually stored in VB application

called the client application.

The simplest and quickest way to use OLE is by making use of the OLE container control,

provided as standard by Visual Basic. With no programming, you can draw one of these controls

onto your Visual Basic form, set the Source to point to the file of your choice and you have

created an OLE client application.

6.6.1 Object Linking at Design Time

Step 1: Start new project.

Step 2: Double click OLE Control.

Step 3: An Insert Dialog Box will appear as shown below,

UNIT - 6 INTRODUCTION TO DATABASE 97

Step 6: To edit added Object just double click on object.

6.6.2 Object Embedding at Design Time

Step 1: Create a new Project

Step 2: Add OLE Control to FORM

Step 3: Click create from File. The following window will appear on screen,

Step 4: Select the source application of which object you want to add

OR

Click create from file type folder in which required file is stored.

Step 5: Object will be added to form Run the application out put will be as shown in following

figure,

UNIT - 6 INTRODUCTION TO DATABASE 98

Self Learning Exercise-5

i. Fill in the blanks

n) OLE is associated with three concepts, Object, server and ………..

o) OLE stands for ……………….

ii. True/False

n) In Object Linking client stores the data.

o) In Object Embedding means server stores the data.

6.7 Summary

Data Report enables you to easily display a print preview screen with print button with no pro-

gramming or less programming.

Information presented in the form of tables (rows and columns) is known as Grid. Data Grid and

MSFlexGrid are controls which allow programmer to display information in Grid form. We can

also bind grid to a database table to display complete table of records in grid form with no

programming.

Error handling is added to file processing code to trap errors such as, drive not responding to a

request, or a file does not exist. VB contains a large number of trappable errors. The instruction

OnError GoTo ErrorSection must be matched with label, with ErrorSection found later in the

code

MDI allows user to work on more than one document at one time.

Object Linking means to link the client application to the server application, with the server

storing the data.

Object Embedding means to link the client application to server application with the client storing

the data. With object embedding the link path is set; however, the source data is bound to the VB

application.

6.8 Glossary

Step 4: Set the path where file is located but Do not click Link.

Step 5: Set Sizemode of OLE1 control to Autosize.

Step 6: Test and Run The application.

UNIT - 6 INTRODUCTION TO DATABASE 99

Data Grid is a control which allows you to display data in the form of grid of

columns and rows.

MDI Application allows programs to work with multiple forms contained within a parent

form.

OLE is the method for displaying and manipulating data found in other

windows applications.

6.9 Further Readings

1. Steven Holzner, “Visual Basic 6 Programming Black Book”, Dreamtech Press, New

Delhi.

2. Evangelas Petroutsos,”Mastering Visual Basic 6", BPB Publications, New Delhi

3. Deitel, Deitel, “Visual Basic 6 How to program”, Pearson Education

4. Noel Jerke,” The Complete Reference VB 6", TataMcgraw Hill

6.10 Answers to Self Learning Exercises

i. Fill in the Blanks ii. True/ False

a) Data report1 a) True

b) Show b) True

c) Data Source and Data member c) True

d) Data Source, Data member d) True

e) Row, Col e) True

f) Rows, Cols f) False

g) Runtime g) False

h) Number h) True

i) On Error i) True

j) Single Document Interface j) True

k) Multiple Document Interface k) False

l) Single l) True

m) MDI Child Form m) False

n) Client n) False

o) Object Linking and Embedding o) False

6.11 Unit End Questions

1. Create a MDI application and add a menu item File having new & exit options. Create

instance of an editor corresponding to new button and close all open document in exit

option.

2. Trap and handle error of file does not exit if you are trying to read a file which has either

been deleted or does not exists.

3. Create the following interface. Write a code to add new records to grid corresponding

to add button; and clear text boxes to allow the next student’s record to be added to the

grid.

UNIT - 7 GRAPHICS IN VISUAL BASIC 100

Unit - 7: Graphics in Visual Basic

Structure of the Unit

7.0 Objectives

7.1 Introduction

7.2 Dragging and Dropping Multiple Objects

7.3 Graphics

7.4 Layering Graphics

7.5 Simple Animation

7.6 ActiveX

7.6.1 Types of ActiveX Components

7.6.2 In-process V/s Out-of-process Components

7.6.3 Which ActiveX Component You Want to Build?

7.6.4 Design an ActiveX Control

7.6.5 Registering an ActiveX Control

7.6.6 Using a Custom ActiveX Control in a Visual Basic Program

7.6.7 ActiveX Document DLLs V/s EXEs

7.7 Dynamic Link Libraries

7.7.1 Using DLL Procedure in Your Application

7.7.2 Types of Windows DLL

7.7.3 Advantages of Creating and Using DLLs in VB 6.0

7.8 Multimedia

7.9 MFC Library

7.9.1 History

7.9.2 Advantages

7.9.3 Disadvantages

7.9.4 Future of MFC Library

7.9.5 Versions of MFC Library

7.10 Object Oriented Features of Visual Basic

7.11 Summary

7.12 Glossary

7.13 Further Readings

7.14 Answers to Self Learning Exercises

7.15 Unit End Questions

UNIT - 7 GRAPHICS IN VISUAL BASIC 101

7.0 Objectives

After reading this chapter you will be able to understand,

l The basic concepts of Graphics and animation in VB

l ActiveX concepts and implementation

l Concepts of Dynamic Link Libraries

l Multimedia in VB6.0

l MFC library and

l Object Oriented Features of Visual Basic

7.1 Introduction

This chapter is on one of the most popular topics in Visual Basic—graphics. A branch of Com-

puter Science that deals with the theory and techniques of computer image synthesis. Computer

graphics is used to enhance the transfer and understanding of information in science, engineering,

medicine, education, and business by facilitating the generation, production, and display of syn-

thetic images of natural objects with realism almost indistinguishable from photographs. Com-

puter graphics facilitate the production of images that range in complexity from simple line draw-

ings to three-dimensional reconstructions of data obtained from computerized axial tomography

(CAT) scans in medical applications. Graphics has became essential part of computer science as

well as human beings who interact with computers. Here, we’ll cover how to use graphics in

Visual Basic. There’s a great deal of graphics power in Visual Basic.

7.2 Dragging and Dropping Multiple Objects

Windows users fall into two general categories: those who prefer to use the keyboard and those

who prefer to use the mouse. Programmers have been taught to look after the needs of keyboard

users by providing access keys (the underlined letter in a command or menu) and shortcuts (such

as a CTRL + letter combination), but the needs of mouse users have largely been ignored.

Programmers tend to primarily be keyboard users, so the emphasis on keyboard-oriented fea-

tures is understandable, but every programmer should consider providing mouse support as

well.

One thing that mouse users expect is the ability to drag and drop. If you look at most major

applications or at Windows itself, drag and drop is everywhere. For example, users are accus-

tomed to dragging and dropping files in the Windows Explorer and to dragging and dropping text

in Microsoft Word.

In graphical user interfaces, drag-and-drop is the action of (or support for the action of) clicking

on a virtual object and dragging it to a different location or onto another virtual object. In general,

it can be used to invoke many kinds of actions, or create various types of associations between

two abstract objects.

Dragging requires more physical effort than moving the same pointing device without holding

down any buttons. Because of this, a user cannot move as quickly and precisely while dragging.

However, drag-and-drop operations have the advantage of thoughtfully chunking together two

operands (the object to drag, and the drop location) into a single action. Extended dragging and

dropping (as in graphic design) can stress the mousing hand. As a feature, support for drag-and-

drop is not found in all software, though it is sometimes a fast and easy-to-learn technique for

users to perform tasks.

UNIT - 7 GRAPHICS IN VISUAL BASIC 102

A design problem appears when the same button selects and drags items. Imprecise movement

can cause a dragging when the user just wants to select. Another problem is that the target of the

dropping can be hidden under other objects. The user would have to stop the dragging, make

both the source and the target visible and start again.

How Drag and Drop Works?

Drag and drop is actually the same as cutting and pasting (or copying and pasting) using the

mouse instead of the keyboard. In both cases you have a source (where you are cutting or

copying from) and a target (where you are pasting to). During either operation, a copy of the

data is maintained in memory. Cut and paste uses the Clipboard; drag and drop uses a DataObject

object, which is in essence a private clipboard.

Self Learning Exercise-1

i. Fill in the Blanks

a) Dragging is initiated by calling the ________ method.

ii. State True/False

a) Drag and drop is actually the same as cutting and pasting (or copying and pasting)

using the mouse instead of the keyboard.

7.3 Graphics

There are two principal ways of drawing graphics in Visual Basic: using graphics methods and

using graphics controls (like the line and shape controls). Graphics methods work well in situa-

tions where using graphical controls requires too much work. For example, creating gridlines on

a graph would require an array of line controls but only a small amount of code using the Line

method. In addition, when you want an effect to appear temporarily, you can write a couple of

lines of code for this temporary effect instead of using another control. Also, graphics methods

offer some visual effects that are not available in the graphical controls. For example, you can

only create arcs or paint individual pixels using the graphics methods.

Visual Basic Coordinate System for Graphics

We can draw figures in forms and controls like picture boxes, so we should know how measure-

ments and coordinates are set up in those objects. Visual Basic coordinate systems have the

origin (0, 0) at upper left and are specified as (x, y), where x is horizontal and y is vertical (note

that y is positive in the downwards direction). When we draw graphics in Visual Basic, we’ll be

using this coordinate system. The default unit of measurement in Visual Basic is twips (or 1/

1440s of an inch). That unit was originally chosen to be small enough to be device-independent,

but if you don’t like working with twips, you can change to other measurement units like millime-

ters, inches, and so on.

7.4 Layering Graphics

When you create graphics in Visual Basic, bear in mind that graphical controls and labels,

nongraphical controls, and graphics methods appear on different layers. The behavior of these

layers depends on three things: the AutoRedraw property, the ClipControls property, and whether

graphics methods appear inside or outside the Paint event. Usually the layers of a form or other

container are as follows:

l Front layer: Nongraphical controls like command buttons, checkboxes, and file con-

trols.

UNIT - 7 GRAPHICS IN VISUAL BASIC 103

l Middle layer: Graphical controls and labels.

l Back layer: Drawing space for the form or container. This is where the results of graph-

ics methods appear.

Anything in one layer covers anything in the layer behind it, so graphics you create with the

graphical controls appear behind the other controls on the form, and all graphics you create with

the graphics methods appear below all graphical and nongraphical controls. Combining settings

for AutoRedraw and ClipControls and placing graphics methods inside or outside the Paint

event affects layering and the performance of the application. You can find the effects created by

different combinations.

Table 7.1: Combination of AutoRedraw, ClipControls and Paint

AutoRedraw ClipControls Method In/Out

Paint Event

Description

True True(Default) Paint event Ignored Normal Layering

True False Paint event Ignored Normal Layering Forms with

many controls that do not overlap

may paint faster because no

clipping region is calculated or

created.

False

(Default)

True (Default) In Normal Layering

False True Out Nongraphical control in front.

Graphical Control and Graphical

method appear mixed in the
middle and back layer.

False False In Normal Layering, affecting only

pixel that were previously

covered.

False False Out Graphics Methods and all controls
appear mixed in the three layers.

7.5 Simple Animation

The simplest way you create animation is by displaying successive frames of the animation se-

quence at intervals. We use timer control for this purpose. That is a good job for the timer

control. To see how this works, we will create an example now. In this example, we will just

switch back and forth between two simple images, image1.bmp and image2.bmp, which are

simply strips of solid color, red and blue.

To store those images in our program, add an image list control, ImageList1. You add image list

controls with the Project|Components menu item; click the Controls tab in the Components

dialog box that opens, select the Microsoft Windows Common Controls item, and click on OK

to close the Components box. Draw a new image list control, ImageList1, and right-click it,

selecting Properties in the menu that opens. We click the Images tab in the image lists property

pages, and we use the Insert Picture button to insert the two images in image1.bmp and image2.bmp

into the image list.

Next, add a timer control, Timer1; set its Interval property to 1000 (in other words, 1 second),

and set its Enabled property to False. Also add a command button, Command1, with the caption

UNIT - 7 GRAPHICS IN VISUAL BASIC 104

‘Start Animation’, and a picture box, Picture1, setting the picture box’s AutoSize property to

True so that it resizes itself to fit our images. That’s it, now we are ready to write some code. We

start the animation when the user clicks the ‘Start Animation’ button by enabling the timer:

Private Sub Command1_Click()

Timer1.Enabled = True

End Sub

We will keep track of the current image with a Boolean variable named blnImage1; if this

Boolean variable is True, we will display the first image in the image list:

Private Sub Timer1_Timer()

Static blnImage1 As Boolean

If blnImage1 Then

Picture1.Picture=ImageList1.ListImages(1).Picture

...

Otherwise, we will display the second image in the image list:

Private Sub Timer1_Timer()

Static blnImage1 As Boolean

If blnImage1 Then

Picture1.Picture=ImageList1.ListImages(1).Picture

Else

Picture1.Picture=ImageList1.ListImages(2).Picture

End If

...

Finally, we toggle blnImage1 :

Private Sub Timer1_Timer()

Static blnImage1 As Boolean

If blnImage1 Then

Picture1.Picture=ImageList1.ListImages(1).Picture

Else

Picture1.Picture=ImageList1.ListImages(2).Picture

End If

blnImage1 = Not blnImage1

End Sub

And that is s all we need. When you run the program and click the Start Animation button, the

animation starts: the picture box flashes red and blue images once a second.

7.6 ActiveX

ActiveX controls and ActiveX documents are two of the ActiveX components you can build

with Visual Basic. In fact, the ActiveX part of Visual Basic has exploded in scope lately, along

with many changes in terminology, and will surely do so again.

UNIT - 7 GRAPHICS IN VISUAL BASIC 105

The whole ActiveX field started originally to differentiate controls designed for Internet usage

from general OLE (Object Linking and Embedding) controls. In time, however, all OLE controls

have come to be referred to as ActiveX controls. In fact, the field has taken off so vigorously that

now Visual Basic can build not just ActiveX controls in Visual Basic (you used to have to build

ActiveX controls for use in Visual Basic in other programming packages, like Visual C++), but

ActiveX components. What is an ActiveX component? In programming terms, all ActiveX com-

ponents are really OLE servers, but that doesn’t help us understand what’s going on. It’s better

to break things down and look.

7.6.1 Types of ActiveX Components

The three types of ActiveX components:

l ActiveX Controls

l ActiveX Documents

l Code Components (OLE automation servers)

ActiveX Controls

ActiveX controls, those are the controls you can add to the Visual Basic toolbox using the

Components dialog box. You can add those controls to a Visual Basic program like any other

control. You can also use ActiveX controls on the Internet, embedding them in your Web pages.

ActiveX controls can support properties, methods, and events.

Your ActiveX control can be built entirely from scratch (in other words, you’re responsible for its

appearance), it can be built on another control (such as a list box), or it can contain multiple

existing controls (these ActiveX controls are said to contain constituent controls). Visual Basic

ActiveX controls are based on the Visual Basic UserControl object. When you create an ActiveX

control, you create a control class file with the extension .ctl. Visual Basic uses that file to create

the actual control, which has the extension .ocx. After you register that control with Windows

(you can use Windows utilities like regsvr32.exe to register a control), the control will appear in

the Visual Basic Components dialog box, ready for you to add to a program. You can also use

these controls in web pages.

ActiveX Documents

ActiveX documents are new to many programmers, but the idea is simple. Instead of restricting

yourself to a single control in a web page, now you can create the whole page. With ActiveX

documents, the result is just like running a Visual Basic program in your Web browser or other

application.

Visual Basic ActiveX documents are based on the Visual Basic UserDocument object. When

you create an ActiveX document, you save it with the extension .dob. Visual Basic uses that

.DOB file to create the EXE or DLL file that holds the actual code for the ActiveX document. In

addition, Visual Basic produces a specification file, with the extension .vbd, that describes the

ActiveX document, and it’s that file that you actually open in the host application, such as the

Microsoft Internet Explorer. With ActiveX documents, you can let users save data (using the

PropertyBag property); that data is stored in the VBD file.

Code Components (OLE Automation Servers)

Code components were formerly called OLE automation servers. These objects let you use their

code in other programs. For example, you might have a calculation routine that you expose in a

code component; doing so makes that routine available to other programs. Code components

can support properties and methods.

UNIT - 7 GRAPHICS IN VISUAL BASIC 106

7.6.2 In-Process V/s Out-of-Process Component

If an ActiveX component has been implemented as part of an executable file (EXE file), it is an

out-of-process server and runs in its own process. If it has been implemented as a dynamic link

library (DLL file), it is an in-process server and runs in the same process as the client application.

If your ActiveX component is an out-of-process server, it is an EXE file, and can run standalone.

Applications that use in-process servers usually run faster than those that use out-of-process

servers because the application doesn’t have to cross process boundaries to use an object’s

properties, methods and events. There are a few reasons why you may want to create your

ActiveX document as an in-process component (DLL file). The performance of an in-process

component surpasses that of the same component compiled as an EXE. In addition, multiple

programs accessing the same EXE can overwrite global data; that doesn’t happen if they each

have their own in-process server.

7.6.3 Which ActiveX Component You Want To Build?

With all the different types of ActiveX components to choose from, how do you decide which

type of component you want to create? Take a look at this list:

l To build an invisible component that provides routines in code that you can call, build a

code component (ActiveX EXE or an ActiveX DLL).

l To build a component that can run in the same process with your application, build an

ActiveX DLL.

l To build a component that can serve multiple applications and can run on a remote

computer, build an ActiveX EXE.

l To build a visible component that can be dropped into an application at design time,

build an ActiveX control.

l To build a visible component that can take over an application window at runtime, build

an ActiveX document.

7.6.4 Design an ActiveX Control

You can design the appearance of your ActiveX control entirely from scratch, creating an entirely

new control, never seen before. In that case, you’re responsible for creating the control’s ap-

pearance from scratch. Later, you can add events to your control, as well as methods and

properties.

To design the appearance of your entirely new control, you can use the Visual Basic graphics

methods that the UserControl object supports, such as Circle, Line, PSet, Print, Cls, and Point.

You can also display an image in the UserControl object by setting its Picture property.

Let’s see an example. Here, we’ll just draw two lines to crisscross an ActiveX control and draw

a black box in the middle. Create a new ActiveX control now, and double-click it at design time

to open the code window to the UserControl_Initialize function:

Private Sub UserControl_Initialize()

…….

End Sub

This function is just like the Form Load procedure that we’re familiar with. Set the control’s

AutoRedraw property to True so we can draw graphics from UserControl_Initialize, and then

draw the lines to crisscross the control, using the Line method and ScaleWidth and ScaleHeight

just as you would in a Visual Basic form:

UNIT - 7 GRAPHICS IN VISUAL BASIC 107

Private Sub UserControl_Initialize()

Line (0, 0)-(ScaleWidth, ScaleHeight)

Line (0, ScaleHeight)-(ScaleWidth, 0)

...

End Sub

Next, we draw a filled-in black box in the center of the control this way:

Private Sub UserControl_Initialize()

Line (0, 0)-(ScaleWidth, ScaleHeight)

Line (0, ScaleHeight)-(ScaleWidth, 0)

Line (ScaleWidth / 4, ScaleHeight / 4)-(3 * ScaleWidth / 4, _

3 * ScaleHeight / 4), , BF

End Sub

Let’s test this new ActiveX control now in the Microsoft Internet Explorer (assuming you have

that browser installed). To do that, just select the Run menu’s Start item now. Doing so opens the

Project Properties dialog box.

Leave UserControl1 in the Start Component box, and make sure the Use Existing Browser box

is clicked, then click on OK. This registers our control with Windows, creates a temporary

HTML page with the control embedded in it, and starts the Internet Explorer. Now we’ve cre-

ated our first ActiveX control and designed its appearance from scratch. If we wanted to, we

could add events, properties, and methods to this control.

Here’s the temporary HTML page that Visual Basic creates to display our ActiveX control; note

that our control is registered with Windows and has its own ID, so this page can use the HTML

<OBJECT> tag to embed one of our controls in the page:

 <HTML>

<BODY>

<OBJECT classid=”clsid:B2A69D3B-D38C-11D1-8881-E45E08C10000">

</OBJECT>

</BODY>

</HTML>

Note, however, that when you select End in the Run menu, Visual Basic unregisters our control

with Windows. To register it permanently, use a Windows utility like regsvr32.exe.

7.6.5 Registering An ActiveX Control

To install an ActiveX control in Windows, you must register it with Windows, and you can do that

either with the setup program or with the Window regsvr32.exe utility. Let’s see an example.

Here, we’ll see how to register an ActiveX control named, say, activex.ocx with Windows. First,

use the File menu’s Make activex.ocx menu item to create activex.ocx. Next, we’ll use

regsvr32.exe, which is usually found in the

UNIT - 7 GRAPHICS IN VISUAL BASIC 108

C:\windows\system directory,

To register that control with Windows.

Here’s how to register our ActiveX control:

C:\windows\system>regsvr32 c:\vbbb\activex.ocx

After the ActiveX control is registered, it will appear in the Visual Basic Components dialog box

(which you open with the Project menu’s Components item), and you can add it to the Visual

Basic toolbox.

7.6.6 Using A Custom ActiveX Control In A Visual Basic Program

Now that we’ve registered our Visual Basic control with Windows (see the previous topic), how

do you add it to a form in a Visual Basic project? You add ActiveX controls that you build to

Visual Basic projects just as you add any other ActiveX controls, such as the ones that come

with Visual Basic.

Let’s see an example. Suppose you have created a calculator ActiveX control. After we register

the calculator ActiveX control, that control will appear in the Visual Basic Components dialog

box. Start a new standard EXE project now and open the Visual Basic Components dialog box

by selecting the Project|Components item. Next, click the Controls tab in the Components dia-

log box.

Click the entry labeled calculator (“calculator” was the name we gave to the project when we

created this control) in the Components dialog box to add our calculator, and close that dialog

box to add the calculator to the Visual Basic toolbox . Now draw a new calculator ActiveX

control in the program’s main form, creating the new control, CalculatorControl1.

(CalculatorControl was the name we gave to the UserControl object when we created this

control), and run the program.

That’s it, Now we’ve created, registered, and added a functioning ActiveX control to a Visual

Basic program.

7.6.7 ActiveX Document DLL’s V/s EXE’s

You understand both ActiveX document EXEs and DLLs. Here’s the difference: if an ActiveX

document is written as an executable file (EXE file), it is an out-of-process server and runs in its

own process; if it has been implemented as a dynamic link library (DLL file), it is an in-process

server and runs in the same process as the client application.

Although ActiveX documents are usually built as EXE projects, the benefit of DLLs is that

applications that use in-process servers usually run faster than those that use out-of-process

servers because the application doesn’t have to cross process boundaries to use an object’s

properties, methods, and events. In addition, the performance of an in-process component, or

DLL file, surpasses that of the same component compiled as an EXE. Also, multiple programs

accessing the same EXE can overwrite global data, but that doesn’t happen if they each have

their own in-process server.

7.7 Dynamic Link Libraries (DLLs)

A dynamic link library (DLL) is a collection of small programs, any of which can be called when

needed by a larger program that is running in the computer. The small program that lets the larger

program communicate with a specific device such as a printer or scanner is often packaged as a

DLL program (usually referred to as a DLL file). DLL files that support specific device opera-

tions are known as device drivers. The advantage of DLL files is that, because they don’t get

UNIT - 7 GRAPHICS IN VISUAL BASIC 109

loaded into random access memory (RAM) together with the main program, space is saved in

RAM. When and if a DLL file is needed, then it is loaded and run. For example, as long as a user

of Microsoft Word is editing a document, the printer DLL file does not need to be loaded into

RAM. If the user decides to print the document, then the Word application causes the printer

DLL file to be loaded and run.

A DLL file is often given a “.dll” file name suffix. DLL files are dynamically linked with the

program that uses them during program execution rather than being compiled with the main

program. The set of such files (or the DLL) is somewhat comparable to the library routines

provided with programming languages such as C and C++.

The original purpose for DLLs was saving both disk space and memory required for applications

by storing it locally on the hard drive. In a conventional non-shared library, sections of code are

simply added to the calling program; if two programs use the same routine, the code has to be

included in both. Instead, code which multiple applications share can be separated into a DLL

which only exists as a single, separate file, loaded only once into memory during usage. Extensive

use of DLLs allowed early versions of Windows to work under tight memory conditions.

DLLs provide the standard benefits of shared libraries, such as modularity. Modularity allows

changes to be made to code and data in a single self-contained DLL shared by several applica-

tions without any change to the applications themselves. This basic form of modularity allows for

relatively compact patches and service packs for large applications, such as Microsoft Office,

Microsoft Visual Studio, and even Microsoft Windows itself.

Another benefit of the modularity is the use of generic interfaces for plug-ins. A single interface

may be developed which allows old as well as new modules to be integrated seamlessly at run-

time into pre-existing applications, without any modification to the application itself. This concept

of dynamic extensibility is taken to the extreme with ActiveX.

In Visual Basic (VB), only run-time linking is supported; but in addition to using LoadLibrary and

GetProcAddress API functions, declarations of imported functions are allowed. When importing

DLL functions through declarations, VB will generate a run-time error if the DLL file cannot be

found. The developer can catch the error and handle it appropriately.

In short DLL has two functions:

1. It permits the sharing of code. The same DLL can be used by many other DLLs and

applications. The Win32 API, for instance, is implemented as a series of Windows DLLs.

Moreover, as long as multiple processes load the same DLL at the same base address,

they can share the code in the DLL. In other words, a single DLL in memory can be

accessed by multiple processes.

2. It allows for component-based and modular development, which makes development

and the upgrade process easier.

7.7.1 Using DLL Procedure in Your Application

Because DLL procedures reside in files that are external to your Visual Basic application, you

must specify where the procedures are located and identify the arguments with which they should

be called. You provide this information with the Declare statement. Once you have declared a

DLL procedure, you can use it in your code just like a native Visual Basic procedure.

When you call any DLLs directly from Visual Basic, you lose the built-in safety features of the

Visual Basic environment. This means that you increase the risk of system failure while testing or

debugging your code. To minimize the risk, you need to pay close attention to how you declare

UNIT - 7 GRAPHICS IN VISUAL BASIC 110

DLL procedures, pass arguments, and specify types. In all cases, save your work frequently.

Calling DLLs offers you exceptional power, but it can be less forgiving than other types of

programming tasks.

In the following example, we’ll show how to call a procedure from the Windows API. The

function we’ll call, SetWindowText, changes the caption on a form. While in practice, you would

always change a caption by using Visual Basic’s Caption property, this example offers a simple

model of declaring and calling a procedure.

Declaring a DLL Procedure

The first step is to declare the procedure in the Declarations section of a module:

Private Declare Function SetWindowText Lib “user32” _

Alias “SetWindowTextA” (ByVal hwnd As Long, _

ByVal lpString As String) As Long

You can find the exact syntax for a procedure by using the API Viewer application, or by search-

ing the Win32api.txt file. If you place the Declare in a Form or Class module, you must precede

it with the Private keyword. You declare a DLL procedure only once per project; you can then

call it any number of times.

Calling a DLL Procedure

After the function is declared, you call it just as you would a standard Visual Basic function.

Here, the procedure has been attached to the Form Load event:

Private Sub Form_Load()

SetWindowText Form1.hWnd, “Welcome to VB”

End Sub

When this code is run, the function first uses the hWnd property to identify the window where

you want to change the caption (Form1.hWnd), then changes the text of that caption to “Wel-

come to VB.”

Remember that Visual Basic can’t verify that you are passing correct values to a DLL procedure.

If you pass incorrect values, the procedure may fail, which may cause your Visual Basic applica-

tion to stop. You’ll then have to reload and restart your application. Take care when experiment-

ing with DLL procedures and save your work often.

7.7.2 Types of Windows DLL

l Advapi32.dll: Advanced API Services library supporting numerous APIs including many

security and Registry calls

l Comdlg32.dll: Common Dialog API library

l Gdi32.dll: Graphics Device Interface API library

l Kernel32.dll: Core Windows 32-bit base API support

l Lz32.dll: 32-bit compression routines

l Mpr.dll: Multiple Provider Router library

l Netapi32.dll: 32-bit Network API library

l Shell32.dll: 32-bit Shell API library

l User32.dll: Library for user interface routines

UNIT - 7 GRAPHICS IN VISUAL BASIC 111

l Version.dll: Version library

l Winmm.dll: Windows Multimedia library

7.7.3 Advantages of Creating and Using DLL’s in VB6.0

A Dynamic Link Library (DDL) is a file that contains compiled code. In this sense, it’s like an

executable program (i.e., an EXE file), but there is one major difference: Once a DLL is installed

and registered on a system, its code is available to any program that calls it. This can be an

advantage when you’re writing multiple programs that will usually be installed together. By plac-

ing shared code in a DLL, you can decrease program size and simplify the task of upgrades, and

also make the code easily reusable in other projects.

Another use for DLLs is in Web programming. Active Server Page (ASP) technology lets you

include code in your Web pages to provide dynamic functionality and database access, but the

ASP code is viewable by anyone who visits your site. If you want to hide your code so that

others cannot “borrow” it for their own use, you can create a DLL and install it on the server.

Then, your ASP page can call the DLL as needed, so the full functionality is available without

exposing your source code to others.

In VB, you create a DLL by selecting ActiveX DLL from the New Project dialog box. The new

project will contain a single class module, which illustrates how VB DLLs work. A DLL that you

create will contain one or more classes, which are essentially identical to the classes you can

create in a standard VB EXE project. When a program calls a DLL, it will actually be making

use of the DLL’s classes and their methods and properties. An ActiveX DLL can contain forms

and other components as well, but classes are at the heart of their functionality.

Self Learning Exercise-2

i. Fill in the Blanks

b) The three types of ActiveX components are ____________,____________ and

___________.

c) To build a component that can run in the same process with your application, build an

ActiveX ________.

d) ________.dll is Multiple Provider Router library.

ii. State True/False

b) Visual Basic ActiveX controls are based on the Visual Basic UserControl object.

c) You cannot create animation by displaying successive frames of the animation sequence

at intervals.

d) When you call any DLLs directly from Visual Basic, you lose the built-in safety features

of the Visual Basic environment.

7.8 Multimedia and VB6.0

Multimedia refers to devices other than the screen or the printer to play sounds, watch videos or

record music. This is done through the use of the Multimedia control. Don’t look for it in the

toolbox, it’s not there. It is an additional control that you must load.

First, create a new form in Project Lesson7 and call it “multimed.frm”. Then, in the menu, at

Project —> Components, find the item “Microsoft Multimedia Control 6.0” and check the box

next to it. Hit OK and that’s it. The Multimedia control should now appear in your toolbox.

UNIT - 7 GRAPHICS IN VISUAL BASIC 112

If you select the multimedia control and put it down on the form, you will have a button bar like

all the ones you’ve seen on CD players, recorders, etc. In the DeviceType property you specify

what type of device this control controls:

Table 7.2: Device Types

Device Type Device

CDAudio CD Audio Player

DAT Digital Audio Tape Player

Overlay Overlay

Scanner Scanner

VCR Video Tape Player and Recorder

Video Disc Video Disk Player

Other Other device not specified

7.8.1 Example: A Simple CD Player

We create a new form and call it multimed.frm. After adding the Multimedia control to the toolbox,

we put a MM control on the form. Since we will only be using one MM control, we’ll leave its

name as MMControl1. The only property we have to change at this time is the DeviceType, to

tell it that we are using the CD player, so we write CDAudio in DeviceType. We add a few labels

to complete the form and we get:

Now we have to write the code to operate the CD player.

Before we start to write the code there are a few things to know about the MM control. There is

a Track property which contains the number of the current track. But its most important property

is called the Command property and it can take on several values that, in fact, operate the

device.

UNIT - 7 GRAPHICS IN VISUAL BASIC 113

Table 7.3: Values of Command Property

Command Value Meaning

Open Open the device

Close Close the device

Eject Eject the CD

Play Play the device

Pause Pause the device

Next Go to next track

Prev Go to beginning of the current track. If used within 3
second of most recent Prev, Goes to beginning of the

previous track.

Record Initialize recording

Save Save open device files

Seek Step backward and forward a track

Stop Stop the device

Step Step forward through tracks

Understand that both Track and Command are run-time properties because they are meaning-

less at design time. For example, to open the CD player:

MMControl1.Command = “Open” ’we assign the value “Open” to the Command property.

To pause: MMControl1.Command = “Pause” ’we assign the value “Pause” to the Command

property.

Now, as you have seen, the trick is to know with which events to associate the code that has to

be written. The first one is fairly obvious: when we load the form, the Form_Load event, we will

open the device. Now, one we haven’t used before. When we unload the form, we will close the

device. The reason is that, once launched, the device will keep on playing, even if the form is

closed. So, just click on the Form_Unload event and write the code there. Finally, just to see that

things are running smoothly, we will use the StatusUpdate event for the MM control to display

the track being played every time the status of MMControl1 changes (change track, pause, play

are all status changes).

As you will see, once the CD starts playing, you can use the buttons in the MM toolbar to control

what it does.

UNIT - 7 GRAPHICS IN VISUAL BASIC 114

The final application will look like this.

7.9 Concept of MFC Library

The Microsoft Foundation Class (MFC) Library is a collection of classes (generalized definitions

used in object-oriented programming) that can be used in building application programs. The

classes in the MFC Library are written in the C++ programming language. The MFC Library

saves a programmer time by providing code that has already been written. It also provides an

overall framework for developing the application program.

There are MFC Library classes for all graphical user interface elements (windows, frames, menus,

tool bars, status bars, and so forth), for building interfaces to databases, for handling events such

as messages from other applications, for handling keyboard and mouse input, and for creating

ActiveX controls.

7.9.1 History

MFC was introduced in 1992 with Microsoft’s C/C++ 7.0 compiler for use with 16-bit versions

of Windows. It was part of an overall Microsoft effort to gain market share for development

tools, and it was designed to showcase the capabilities of the C++ programming language. C++

was just beginning to replace C for development of commercial application software and C/C++

7.0 was the first of Microsoft’s compilers to add C++ support. MFC was inspired by, and owes

much of its structure to, the Think Class Library (TCL) on Macintosh, later bought by Symantec.

MFC v8 was released with Visual Studio 2005. MFC is not included with the free Express

edition of VS-2005. Microsoft recommends use of .NET for new development. The Object

Windows Library (OWL), designed for use with Borland’s Turbo C compiler, was a competing

product introduced by Borland around the same time. Since it more strictly followed some OO

design guidelines, OWL was more popular than MFC for a time.However, it lost market share

when OWL updates lagged the addition of new features to Windows. Borland then released

VCL (Visual Component Library) to replace the OWL framework. VCL is incompatible with

OWL.A decision by Borland was made to discontinue OWL development and Borland began

licensing MFC from Microsoft.

7.9.2 Advantages

Advantages of using MFC Library are

l It Provides an object-oriented programming model to the Windows APIs.

UNIT - 7 GRAPHICS IN VISUAL BASIC 115

l C++ wrapper types for many common Windows resource-related data types that pro-

vide automatic closure of handles when the objects creating them go out of scope.

l Provides a Document/View framework for creating Model-View-Controller-based ar-

chitectures.

l Provides utility classes such as CString and collection classes, which are usable even by

console applications.

l Faster executables than produced by interpreters like Visual Basic.

l Generally faster executables than those produced by the .NET Framework.

l Capable IDE (integrated development environment) for debugging and code develop-

ment.

l Relatively small GUI executables.

l mfc42.dll has been included with all distributions of the Windows operating sys-

tem since Win98-First Edition.

l Windows 95 included mfc40.dll.

l executables do not require the end-user to have the .NET Framework, which is

over 15 mb.

l alternatives to MFC either must link with that vendor’s library, or supply a .dll.

Numerous wizards are available for a variety of tasks, especially generating minimal working

applications from which to build.

l Integration with form designer to position controls.

l Large amount of resources available, from books to websites to sample code

l Fast compilation speed.

l Similar code base (but typically not completely the same) can be used for desktop and

Pocket PC applications.

7.9.3 Disadvantages

Disadvantages of MFC Library are

l Minimally portable to other operating systems.

l Mainsoft has made MFC tools available for Unix,

l Microsoft shipped MFC versions for the Apple Macintosh operating systems in

the 1990s. Visual Studio support for the Macintosh has since been discontinued.

l Desktop and Pocket PC versions are similar, but not completely compatible.

l Depending on the specific situation, code size will generally be larger than using native

Win32.

l Depending on the specific situation, performance can potentially be somewhat slower

than using Win32.

l Large library with a significant learning curve.

l Alternatives such as VCL and Visual Basic provide RAD (rapid application develop-

ment).

l Compatibility with past versions results in non-conformance with modern C++ stan-

dards.

UNIT - 7 GRAPHICS IN VISUAL BASIC 116

l Microsoft recommends that new development use .NET, so the future of MFC is cloudy.

l It is not clear to what extent Microsoft actually used MFC for internal development of

the software they market. Microsoft reportedly used vanilla C (along with a specialized

framework) for most or all of the development of their Office suite.

l Still requires varying degrees of knowledge of the underlying Windows API depending

on how much non-MFC wrapped and custom Windows API code is needed.

l Does not provide a complete abstraction layer interface to the underlying Windows API,

requiring custom Windows API code for those portions not covered by MFC.

l .NET does a much better job at providing an object oriented, complete, natural, and

well organized API.

7.9.4 Future of MFC Library

Once promoted by Microsoft, emphasis on MFC has been eclipsed by a number of other tech-

nologies, especially the family of computer languages associated with the .NET Framework. C#

and Visual Basic are often preferred for commercial software development because the com-

plexity of C++ and MFC is often a concern.

Microsoft still officially supports MFC by developing new versions with each new version of

Microsoft Visual Studio (except the free Express version does not support MFC). Vendors and

computer programmers that have made a strategic commitment to C++ and the Windows plat-

form continue to use MFC for new development.

7.9.5 Versions of MFC Library

Table 7.4: MFC Library Versions

Product Version MFC Version

Microsoft C/C++ MFC 1.0

Visual C++ 1.0 MFC 2.0

Visual C++ 1.5 MFC 2.5

Visual C++ 2.0 MFC 3.0

Visual C++ 2.1 MFC 3.1

Visual C++ 2.2 MFC 3.2

Visual C++ 4.0 MFC 4.0

Visual C++ 4.1 MFC 4.1

Visual C++ 4.2 MFC 4.2

Pocket PC Enbedded 3.0 MFC 4.2

Visual C++ 5.0 MFC 4.21

Visual C++ 6.0 MFC 6.0

Visual C++ .NET 2002 MFC 7.0

Visual C++ .NET 2003 MFC 7.1

Visual C++ 2005 MFC 8.0

7.10 Object Oriented Features of Visual Basic

Visual Basic 6.0 supports object-oriented language elements and has support for objects distrib-

uted in libraries. Visual Basic 2005 extends the support for object-oriented programming by

supporting all of its language properties.

UNIT - 7 GRAPHICS IN VISUAL BASIC 117

Access Levels

In Visual Basic 6.0, the keywords Private, Friend, Public, and Static are used to set access levels

for declared elements.

In Visual Basic 2005, the keywords Private, Friend, Public, and Static, plus the new keywords

Protected and Protected Friend are used to set access levels for declared elements. The access

level of a declared element is the extent of the ability to access it— that is, what code has

permission to read it or write to it.

Attributes

In Visual Basic 6.0, limited support for embedded attributes is provided through tools such as the

Procedure Attributes in the Visual Basic IDE.

In Visual Basic 2005, an Attribute is a descriptive tag that can be used to annotate type and type

member statements, thereby modifying their meaning or customizing their behavior. For example,

class statements and class method statements can be annotated with attributes. Your application

and other applications, such as the Visual Basic compiler, can use reflection to access attributes

to determine how types and type members can be used.

Attributes can be used to perform Aspect Oriented Programming (AOP) with Visual Basic. An

aspect is a part of a program that cross-cuts its business logic. In other words, it is needed to

complete the program, but is not necessarily specific to the domain that the program is written

for. Isolating such aspects as logging and persistence from business logic is the aim of the aspect-

oriented programming paradigm.

Binary Compatibility

In Visual Basic 6.0, the Binary Compatibility option allows you to automatically retain class and

interface identifiers from a previous version of a component when you compile a new version.

In Visual Basic 2005, the Binary Compatibility option is not supported; instead binary compat-

ibility is accomplished with attributes. This gives you direct control over the information placed in

your compiled component, such as class and interface identifiers, virtual table offsets, and any

appropriate COM attributes.

Class Modules

In Visual Basic 6.0, a class is defined in a class module. A single class module is stored in a

special type of file that has a .cls file extension.

In Visual Basic 2005, a class is defined in a Class statement that specifies the name and the

members of a class. Class statements are stored in source files. The entire source file can be

viewed as plain text. Multiple Class statements as well as other type statements can be stored in

single source file. Visual Basic does not require the name of the source file to match a Class or

type defined in the source file.

Class Constructor Methods

In Visual Basic 6.0, the class Initialize event handler named Class_Initialize is used to execute

code that needs to be executed at the moment that an object is created.

In Visual Basic 2005, one or more constructors are added to a class to execute code and

initialize variables. Constructors are the methods in a class that are named New. The New method

can be overloaded to provide multiple constructors with the name New within the same class

statement.

UNIT - 7 GRAPHICS IN VISUAL BASIC 118

Class Destructor Methods

In Visual Basic 6.0, the Nothing keyword is used to disassociate an object variable from an

actual object. The Set statement is used to assign Nothing to an object variable.

In Visual Basic 2005, for the majority of the objects that your application creates, you can rely

on the garbage collector to automatically perform the necessary memory management tasks.

However, unmanaged resources require explicit cleanup. The most common type of unmanaged

resource is an object that wraps an operating system resource, such as a file handle, window

handle, or network connection.

Class Initialization

In Visual Basic 6.0, a class Initialize event can be handled by a Class_Initialize method to execute

code that needs to be executed at the moment an object is created. For example, the values of

class data variables can be initialized.

In Visual Basic 2005, The Initialize event and the Class_Initialize handler are not supported. To

provide class initialization, add one or more constructor methods to the classes and structures

you define.

Data Classes

In Visual Basic 6.0, data source and complex data consumer classes are used to work with

external data such as Microsoft SQL Server databases. A data source class provides data from

an external source. A data consumer class can be bound to an external source of data such as a

Data Source class.

In Visual Basic 2005, data source, simple data consumer, complex data consumer, and binding

classes are used to work with external and internal data.

Default Property

In Visual Basic 6.0, any class property can be defined as the default property of the class.

In Visual Basic 2005, the default member of a class or structure can only be a property that takes

one or more arguments. Default property members are defined by including the Default keyword

in one property declaration statement in a class or structure.

Error Handling

In Visual Basic 6.0, the On Error statement is used for unstructured exception handling.

In Visual Basic 2005, both unstructured and structured exception handling are supported. Struc-

tured exception handling is a control structure containing exceptions, isolated blocks of code,

and filters to create an exception-handling mechanism.

Events

In Visual Basic 6.0, the Event, RaiseEvent, and WithEvents keywords are used to declare, raise,

and handle events.

In Visual Basic 2005, the Event, RaiseEvent, and WithEvents keywords plus the new AddHandler,

RemoveHandler, and Handles keywords are used to declare, raise, and handle events. The

AddHandler and RemoveHandler keywords allow you to dynamically add, remove, and change

the event handler associated with an event. The Handles keyword allows you to define a Handles

clause on a method. Handles declares that a procedure handles a specified event.

Generics

In Visual Basic 6.0, generic types are not supported.

UNIT - 7 GRAPHICS IN VISUAL BASIC 119

In Visual Basic 2005, generics are used to implement parametric polymorphism in a Visual Basic

program. Generic code is written without mention of any specific type and thus can be used

transparently with any number of new types.

Global Classes

In Visual Basic 6.0, the value of the Instancing property of a class determines whether a class is

private — that is, for use only within one component, or available for other applications to use. It

also determines how other applications create instances of the class and how other applications

call the class members.

In Visual Basic 2005, the Instancing property is no longer supported. You can apply the Public

keyword to class statements in an assembly to expose classes in that assembly to other assem-

blies. You can reference an external assembly such as a class library to enable code in your

application to use the Public classes from that class library.

You can use the Imports keyword to import namespace names from referenced projects and

assemblies. The Imports keyword can also import namespace names defined within the same

project as the file in which the statement appears.

You can apply the Shared keyword to field, property, and method members of classes and

structures to implement shared members. Shared members are properties, procedures, and fields

that are shared by all instances of a class or structure. The shared members of a class can be

accessed without instantiating the class.

Implementation Inheritance

In Visual Basic 6.0, implementation inheritance is not supported.

In Visual Basic 2005, you can implement ad-hoc polymorphism through implementation inherit-

ance. This allows you to define classes that can be used interchangeably by client code at run

time, but with functionally different (yet identically named) methods or properties. You can define

base classes that serve as the basis for derived classes. Derived classes inherit, and can extend,

the properties, methods, and events of the base class. Derived classes can also override inher-

ited methods with new implementations.

Interface Inheritance

Visual Basic 6.0 provides polymorphism through multiple ActiveX interfaces. In the Component

Object Model (COM) that forms the infrastructure of the ActiveX specification, multiple interfaces

allow systems of software components to evolve without breaking existing code. In Visual Basic

2005, you can implement ad-hoc polymorphism with the .NET Framework’s Interface keyword.

Multiple classes may implement the same Interface, and a single class may implement one or

more interfaces. Interfaces are essentially definitions of how a class needs to respond. An interface

defines the methods, properties, and events that a class needs to implement, and the type of

parameters each member needs to receive and return, but leaves the specific implementation of

these members up to the implementing class. Multiple interfaces have the advantage of allowing

systems of software components to evolve without breaking existing code.

Methods: Overloading

In Visual Basic 6.0, method overloading is not supported.

In Visual Basic 2005, Method overloading is used to implement ad-hoc polymorphism in a

Visual Basic program. A method is overloaded when more than one version of the method is

defined in a class. The overloaded versions differ in their parameters and returns types.

UNIT - 7 GRAPHICS IN VISUAL BASIC 120

Methods: Overriding

In Visual Basic 6.0, methods can not be overridden.

In Visual Basic 2005, you can use the Overrides keyword to override a method in a derived

class to provide a different implementation of a method from the derived class’s base class.

Operator Overloading

In Visual Basic 6.0, operator overloading is not supported.

In Visual Basic 2005, operator overloading allows the behavior of a standard operator (such as

*, <>, or And) to be defined for a user-defined class or structure.

Variable Declaration

In Visual Basic 6.0, you can declare variables of different types in the same statement. If you do

not specify the data type of a variable in the statement, it defaults to Variant.

In Visual Basic 2005, you can declare multiple variables of the same data type without having to

specify the data type of each variable in the statement.

Object Lifetime

In Visual Basic 6.0, object lifetime is deterministic; every object instance maintains a reference

count. When the last reference to an instance is released and the count equals zero, the object is

terminated immediately.

In Visual Basic 2005, object lifetime is non-deterministic; a destructor is not necessarily called as

soon as the last reference is released. This is because the common language runtime maintains a

reference tree instead of individual reference counts. The garbage collector traces the reference

tree in the background. If it finds an object or group of objects that have no references from any

currently executing code, it calls the destructors of all such objects.

Reflection

In Visual Basic 6.0, reflection is not supported.

In Visual Basic 2005, the classes in the .NET Framework class library System. Reflection

namespace can be used to obtain information about types such as classes, interfaces, and value

types at run time and to create type instances to invoke and access them.

Self Learning Exercise-3

i. Fill in the Blanks

e) In Visual Basic 2005, the keywords Private, Friend, Public, and Static, plus the new

keywords ________ and _____________ are used to set access levels for declared

elements.

f) In Visual Basic 6.0, method overloading is _____ supported.

ii. State True/False

(e) In Visual Basic 6.0, methods can be overridden.

(f) DLL stands for Digital Link Library.

7.11 Summary

This unit gives an idea about dragging and dropping multiple objects and discusses graphics in

Visual Basic in detail.

Simple animation can be created by displaying successive frames of the animation sequence at

UNIT - 7 GRAPHICS IN VISUAL BASIC 121

intervals in Visual Basic.

ActiveX controls and ActiveX documents are two of the ActiveX components, which can be

built with Visual Basic.

Dynamic Link Library is a collection of small programs, any of which can be called when needed

by a larger program that is running in the computer.

The Microsoft Foundation Class (MFC) Library is a collection of classes (generalized definitions

used in object-oriented programming) that can be used in building application programs.

Visual Basic also supports many features of object oriented programming like overloading, over-

riding, interface inheritance etc.

7.12 Glossary

ActiveX ActiveX components are really OLE servers. There are three types of

ActiveX Components : ActiveX Controls, ActiveX Documents and Code

Components (OLE automation servers).

DLL A dynamic link library (DLL) is a collection of small programs, any of

which can be called when needed by a larger program that is running in the

computer.

MFC Library The Microsoft Foundation Class (MFC) Library is a collection of classes

(generalized definitions used in object-oriented programming) that can be

used in building application programs.

7.13 Further Readings

1. Alan Eliason, Ray Malarkey, “Visual Basic 6, Environment, Programming and Applica-

tion”.

2. Brian Siller, Jeff Spotts, “Visual Basic 6”.

7.14 Answers to Self Learning Exercises

i. Fill in the Blanks ii. True/False

a) DoDragDrop a) True

b) ActiveX Controls, ActiveX Documents, Code Components b) True

c) Class Libraries c) False

d) Mpr.dll d) True

e) Protected and Protected friend e) False

f) Not f) False

7.15 Unit End Questions

1. Which are the different types of Windows DLL?

2. What is method overloading?

3. Explain the Visual Basic coordinate system.

4. Which method handles the class initialize event in VB6.0?

5. What is method overriding?

6. Describe the Layering.

7. Describe the MFC and DLL’s.

8. Is VB object oriented? If yes, explain its features.

9. Explain the disadvantages of using MFC.

10. Explain ActiveX.

UNIT - 8 VB.NET 122

Unit - 8: VB.NET

Structure of the Unit

8.0 Objectives

8.1 Introduction

8.2 The Visual Studio.Net IDE

8.3 The .NET Frame Work

8.3.1 Components of .NET Framework

8.3.2 .NET Framework Advantage

8.3.3 .NET Framework Supported Languages

8.4 VB.NET & Internet

8.4.1 XML Web Services and Mobile Application Development

8.4.2 Simplified Data Access

8.4.3 Security

8.4.4 Improved Coding

8.5 Migration from VB to VB.NET

8.5.1 Methods of Migrating

8.5.2 Migration Strategies

8.6 Namespaces

8.6.1 Creating Namespaces

8.6.2 Using Namespaces in VB.NET

8.6.3 Types of Namespaces

8.7 Versioning

8.7.1 Assemblies and Assembly Version

8.7.2 .NET Version Number

8.7.3 Setting Version number

8.8 Attributes

8.9 Summary

8.10 Glossary

8.11 Further Readings

8.12 Answers to Self Learning Exercise

8.13 Unit End Questions

UNIT - 8 VB.NET 123

8.0 Objectives

After reading this chapter you will be able to understand,

l The basic concepts and features of VB .NET.

l Visual studio .NET IDE and Framework of .NET

l Concepts of Namespaces, Versioning and Attributes

l Migration from Visual Basic to Visual Basic .NET

8.1 Introduction

Visual Basic .NET provides the easiest, most productive language and tool for rapidly building

Windows and Web applications. Visual Basic .NET comes with enhanced visual designers, in-

creased application performance, and a powerful integrated development environment (IDE). It

also supports creation of applications for wireless, Internet-enabled hand-held devices. We dis-

cuss the features of VB.Net in detail in the following sections.

Windows-based Applications

Visual Basic .NET comes with features such as a powerful new forms designer, an in-place menu

editor, and automatic control anchoring and docking. Visual Basic .NET delivers new productiv-

ity features for building more robust applications easily and quickly.

Building Web-based Applications

With Visual Basic .NET we can create Web applications using the shared Web Forms Designer

and the familiar “drag and drop” feature. We can double-click and write code to respond to

events. Visual Basic .NET 2003 comes with an enhanced HTML Editor for working with com-

plex Web pages.

Easy Deployment

With Visual Basic .NET we can build applications more rapidly and deploy and maintain them

with efficiency. Side-by-side versioning enables multiple versions of the same component to live

safely on the same machine so that applications can use a specific version of a component.

XCOPY-deployment and Web auto-download of Windows-based applications combine the

simplicity of Web page deployment and maintenance with the power of rich, responsive Win-

dows-based applications.

Power, Flexible, Simplified Data Access

We can tackle any data access scenario easily with ADO.NET and ADO data access. The

flexibility of ADO.NET enables data binding to any database, as well as classes, collections, and

arrays, and provides true XML representation of data. Correct access to ADO enables simple

data access for connected data binding scenarios.

Full Object Oriented Construct

We can create reusable, enterprise-class code using full object-oriented constructs of VB.NET.

Language features include full implementation inheritance, encapsulation, and polymorphism.

Structured exception handling provides a global error handler.

XML Web Services

XML Web services enable us to call components running on any platform using open Internet

protocols. Working with XML Web services is easier where enhancements simplify the discov-

ery and consumption of XML Web services that are located within any firewall.

UNIT - 8 VB.NET 124

Mobile Application

Visual Basic .NET and the .NET Framework offer integrated support for developing mobile

web applications for more than 200 Internet-enabled mobile devices. These new features give

developers a single, mobile Web interface and programming model to support a broad range of

Web devices, including WML 1.1 for WAP—enabled cellular phones, compact HTML (cHTML)

for i-Mode phones, and HTML for Pocket PC, handheld devices, and pagers.

COM Interoperability

We can maintain our existing code without the need to reprogram. COM interoperability enables

us to leverage our existing code assets and offers flawless bi-directional communication between

Visual Basic 6.0 and Visual Basic .NET applications.

Reusability of Existing Investment

We can reuse all our existing ActiveX Controls. Windows Forms in Visual Basic .NET provide

a robust container for existing ActiveX controls. In addition, full support for existing ADO code

and data binding enable a smooth transition to Visual Basic .NET.

8.2 The Visual Studio.Net IDE

Visual Studio .NET IDE (Integrated Development Environment) is the Development Environ-

ment for all .NET based applications which comes with rich features. Visual Studio .NET IDE

provides many options and is packed with many features that simplify application development

by handling the complexities. Visual Studio .NET IDE is an enhancement to all previous IDE’s

by Microsoft.

The key features of Visual Studio .NET IDE are,

Common IDE for all .NET Projects

Visual Studio .NET IDE provides a single environment for developing all types of .NET applica-

tions. Applications range from single window applications to complex n-tier applications and rich

web applications.

Option to choose from Multiple Programming Languages

We can choose the programming language of our choice to develop applications based on our

expertise in that language. We can also incorporate multiple programming languages in one .NET

solution and edit that with the IDE.

Customizable

We can customize the IDE based on our preferences. The ‘My Profile’ settings allow us to do

this. With these settings we can set the IDE screen the way we want, the way the keyboard

behaves and we can also filter the help files based on the language of our choice.

Built-in Browser

The IDE comes with a built-in browser that helps us to browse the Internet without launching

another application. We can look for additional resources, online help files, source codes and

much more with this built-in browser feature.

Working with Visual Studio .NET IDE

Start Page

When we open VS .NET from

Start->Programs->Microsoft Visual Studio .NET->Microsoft Visual Studio .NET,

UNIT - 8 VB.NET 125

the Start Page appears in the main area of the screen. The start Page allows us to select from the

most recent projects (last four projects) with which we worked or it can be customized based on

our preferences.

New Project Dialogue Box

The New Project dialogue box like the one in the image below is used to create a new project

specifying it’s type allowing us to name the project and also specify it’s location where it is saved.

The default location on the hard disk where all the projects are saved is

C:\DocumentsandSettings\Administrator\MyDocuments\VisualStudioProjects.

UNIT - 8 VB.NET 126

Following are different templates under Project Types and their use.

Windows Application

This template allows creating standard windows based applications.

Class Library

Class libraries are those that provide functionality similar to ActiveX and DLL by creating classes

that access other applications.

Windows Control Library

This allows to create our own windows controls. Also called as User Controls, where you group

some controls, add it to the toolbox and make it available to other projects.

ASP .NET Web Application

This allows to create web-based applications using IIS. We can create web pages, rich web

applications and web services.

ASP .NET Web Service

Allows to create XML Web Services.

Web Control Library

Allows to create User-defined controls for the Web. Similar to user defined windows controls

but these are used for Web.

Console Application

A new kind of application in Visual Studio .NET. They are command line based applications.

Windows Service

These run continuously regardless of the user interaction. They are designed for special purpose

and once written, will keep running and come to an end only when the system is shut down.

Other

This template is to develop other kinds of applications like enterprise applications, database

applications etc

Working Window

The Integrated Development Environment (IDE) shown in the image below is what we actually

work with. This IDE is shared by all programming languages in Visual Studio. You can view the

toolbars towards the left side of the image along with the Solution Explorer window towards the

right.

UNIT - 8 VB.NET 127

Self Learning Exercise-1

i. Fill in the Blanks

a) ASP .NET Web Application allows to create ________ applications using IIS.

b) _____________are command line based applications.

ii. State True/False

a) IDE stands for Interface Development Environment

b) ASP .NET Web Service allows to create windows Services

8.3 The .NET Framework

.NET is a “Software Platform”. It is a language-neutral environment for developing rich .NET

experiences and building applications that can easily and securely operate within it. When

developed applications are deployed, those applications will target .NET and will execute

wherever .NET is implemented instead of targeting a particular Hardware/OS combination. The

components that make up the .NET platform are collectively called the .NET Framework.

The .NET Framework is a managed, type-safe environment for developing and executing

applications. The .NET Framework manages all aspects of program execution, like, allocation

of memory for the storage of data and instructions, granting and denying permissions to the

application, managing execution of the application and reallocation of memory for resources that

are not needed.

The .NET Framework is designed for cross-language compatibility. Cross-language compatibility

means, an application written in Visual Basic .NET may reference a DLL file written in C# (C-

Sharp). A Visual Basic .NET class might be derived from a C# class or vice versa.

UNIT - 8 VB.NET 128

8.3.1 Components of .NET Framework

The .NET Framework consists of two main components:

Common Language Runtime (CLR)

Class Libraries

Common Language Runtime(CLR)

The CLR is described as the “execution engine” of .NET. It provides the environment within

which the programs run. This CLR manages the execution of programs and provides core ser-

vices, such as code compilation, memory allocation, thread management, and garbage

collection. Through the Common Type System (CTS), it enforces strict type safety, and it en-

sures that the code is executed in a safe environment by enforcing code access security. The

software version of .NET is actually the CLR version.

Working with CLR

When the .NET program is compiled, the output of the compiler is not an executable file but a file

that contains a special type of code called the Microsoft Intermediate Language (MSIL), which

is a low-level set of instructions understood by the common language run time. This MSIL de-

fines a set of portable instructions that are independent of any specific CPU. It’s the job of the

CLR to translate this Intermediate code into a executable code when the program is executed

making the program to run in any environment for which the CLR is implemented. And that’s

how the .NET Framework achieves Portability. This MSIL is turned into executable code using

a JIT (Just In Time) complier. The process goes like this, when .NET programs are executed, the

CLR activates the JIT complier. The JIT complier converts MSIL into native code on a demand

UNIT - 8 VB.NET 129

basis as each part of the program is needed. Thus the program executes as a native code even

though it is compiled into MSIL making the program to run as fast as it would if it is compiled to

native code but achieves the portability benefits of MSIL.

Class Libraries

Class library is the second major entity of the .NET Framework which is designed to integrate

with the common language runtime. This library gives the program access to runtime environ-

ment. The class library consists of lots of prewritten code that all the applications created in VB

.NET and Visual Studio .NET will use. The code for all the elements like forms, controls and the

rest in VB .NET applications actually comes from the class library.

8.3.2 .NET Framework Advantage

The .NET Framework offers a number of advantages to developers. The following paragraphs

describe them in detail.

Consistent Programming Model

Different programming languages have different approaches for doing a task. For example, ac-

cessing data with a VB 6.0 application and a VC++ application is totally different. When using

different programming languages to do a task, a disparity exists among the approach developers

use to perform the task. The difference in techniques comes from how different languages inter-

act with the underlying system that applications rely on.

With .NET, for example, accessing data with a VB .NET and a C# .NET looks very similar

apart from slight syntactical differences. Both the programs need to import the System. Data

namespace; both the programs establish a connection with the database and both the programs

run a query and display the data on a data grid. .NET example explains that there is a unified

means of accomplishing the same task by using the .NET Class Library, a key component of the

.NET Framework.

The functionality that the .NET Class Library provides is available to all .NET languages resulting

in a consistent object model regardless of the programming language the developer uses.

Direct Support for Security

Developing an application that resides on a local machine and uses local resources is easy. In this

scenario, security is not an issue as all the resources are available and accessed locally. Consider

an application that accesses data on a remote machine or has to perform a privileged task on

behalf of a no privileged user. In this scenario security is much more important as the application

is accessing data from a remote machine.

With .NET, the Framework enables the developer and the system administrator to specify method

level security. It uses industry-standard protocols such as TCP/IP, XML, SOAP and HTTP to

facilitate distributed application communications. This makes distributed computing more secure

because .NET developers cooperate with network security devices instead of working around

their security limitations.

Simplified Development Efforts

Let’s take a look at this with Web applications. With classic ASP, when a developer needs to

present data from a database in a Web page, he is required to write the application logic (code)

and presentation logic (design) in the same file. He is required to mix the ASP code with the

HTML code to get the desired result.

ASP.NET and the .NET Framework simplify development by separating the application logic

UNIT - 8 VB.NET 130

and presentation logic making it easier to maintain the code. You write the design code (presen-

tation logic) and the actual code (application logic) separately eliminating the need to mix HTML

code with ASP code. ASP.NET can also handle the details of maintaining the state of the con-

trols, such as contents in a textbox, between calls to the same ASP.NET page.

Another advantage of creating applications is debugging. Visual Studio .NET and other third

party providers provide several debugging tools that simplify application development. The .NET

Framework simplifies debugging with support for Runtime diagnostics. Runtime diagnostics helps

you to track down bugs and also helps you to determine how well an application performs. The

.NET Framework provides three types of Runtime diagnostics: Event Logging, Performance

Counters and Tracing.

Easy Application Deployment and Maintenance

The .NET Framework makes it easy to deploy applications. In the most common form, to install

an application, all you need to do is copy the application along with the components it requires

into a directory on the target computer. The .NET Framework handles the details of locating and

loading the components an application needs, even if several versions of the same application

exist on the target computer. The .NET Framework ensures that all the components the applica-

tion depends on are available on the computer before the application begins to execute.

8.3.3 .NET Framework Supported Languages

As mentioned on the .NET Framework introduction, .NET Framework is designed for cross-

language compatibility. Cross-language compatibility means .NET components can interact with

each other irrespective of the languages they are written in. An application written in VB .NET

can reference a DLL file written in C# or a C# application can refer to a resource written in

VC++, etc. This language interoperability extends to Object-Oriented inheritance.

The table below lists all the languages supported by the .NET Framework and describes those

languages. The languages listed below are supported by the .NET Framework up to the year

2003. In future there may be other languages that the .NET Framework might support.

Table 8.1 Languages Supported by .NET Framework

Languages Description/Usage

APL APL is one of the most powerful, consistent and concise

computer programming languages ever devised. It is a language

for describing procedures in the processing of information. It

can be used to describe mathematical procedures having

nothing to do with computers or to describe the way a computer

works

C++ C++ is a true OOP. It is one of the early Object-Oriented

programming languages. C++ derives from the C language.

Visual C++ is the name of a C++ compiler with an integrated

environment from Microsoft. This includes special tools that

simplify the development of great applications, as well as

specific libraries. Its use is known as visual programming.

C# C# called as C Sharp is a full-fledged Object-Oriented

programming language from Microsoft built into the .NET

Framework. First created in the late 1990’s was part of

Microsoft’s whole .NET strategy.

UNIT - 8 VB.NET 131

COBOL COBOL (Common Business Oriented Language) was the

first widely used high-level programming language for business

applications. It is considered as a programming language to

have more lines of code than any other language.

Component Pascal Component Pascal is a Pascal derived programming language

that is specifically designed for programming software

components.

Eiffel Eiffel is an Object-Oriented (OO) programming language,

which emphasizes the production of robust software. Eiffel is

strongly statically typed mature Object-Oriented language with

automatic memory management.

Forth Forth is a programming language and programming

environment. It features both interactive execution of

commands (making it suitable as a shell for systems that lack

a more formal operating system), as well as the ability to

compile sequences of commands into threaded code for later

execution.

ForTran Acronym for Formula Translator, Fortran is one of the oldest

high-level programming languages that is still widely used in

scientific computing because of its compact notation for

equations, ease in handling large arrays, and huge selection of

library routines for solving mathematical problems efficiently.

Haskell Haskell is a computer programming language that is a

polymorphicly typed, lazy, purely functional language, quite

different from most other programming languages. It is a wide-

spectrum language, suitable for a variety of applications. It is

particularly suitable for programs which need to be highly

modifiable and maintainable.

Java Language The Java language is one of the most powerful Object-

Oriented programming languages developed till date. It’s

platform independence feature makes it a very popular

programming language.

Microsoft JScript Microsoft JScript is the Microsoft implementation of the

ECMA 262 language specification. JScript is an interpreted,

object-based scripting language. It has fewer capabilities than

full-fledged Object-Oriented languages like C++ but is more

than sufficiently powerful for its intended purposes.

Mercury Mercury is a new logic/functional programming language,

which combines the clarity and expressiveness of declarative

programming with advanced static analysis and error detection

features.

Oberon Oberon is a programming language very much like Modula-2

in syntax but with several interesting features. It’s based on

OOP concepts and provides a Windows-based graphical user

interface.

UNIT - 8 VB.NET 132

Oz Oz is a high-level programming language that combines

constraint inference with concurrency. Oz is dynamically typed

and has first-class procedures, classes, objects, exceptions

and sequential threads synchronizing over a constraint store

Pascal Principle objectives for Pascal were for the language to be

efficient to implement and run, allow for the development of

well structured and well organized programs, and to serve as

a vehicle for the teaching of the important concepts of computer

programming. The Prime area of application that Pascal entails

is the learning environment

Perl Practical Extraction and Report Language, Perl, is a language

optimized for scanning arbitrary text files, extracting

information from those text files, and printing reports based

on that information. It’s also a good language for many system

management tasks.

Python Python is an interpreted, interactive, Object-Oriented

programming language. Python combines remarkable power

with very clear syntax. It has modules, classes, exceptions,

very high-level dynamic data types, and dynamic typing.

RPG Report Program Generator, RPG, is used for generation of

reports from data files, including matching record and sub-

total reports. RPG is one of the few languages created for

punch card machines that is still in common use today

Scheme Scheme is a statically scoped programming language. It was

designed to have an exceptionally clear and simple semantics

and few different ways to form expressions

Small Talk Smalltalk is an expressive language that uses a simple sub set

of human languages, nouns and verbs. Smalltalk was the first,

and remains one of the few, pure object systems, which simply

means that everything in a Smalltalk program is an object.

Smalltalk is generally recognized as the second Object

Programming Language (OPL).

Standard ML Standard ML is a safe, modular, strict, functional, polymorphic

programming language with compile-time type checking and

type inference, garbage collection, exception handling,

immutable data types and updateable references, abstract data

types, and parametric modules

Microsoft Visual Basic Visual Basic is a “visual programming” environment for

developing Windows applications. Visual Basic makes it

possible to develop complicated applications very quickly.

This site is all about Visual Basic.

UNIT - 8 VB.NET 133

Self Learning Exercise-2

i. Fill in the Blanks

c) The .NET Framework consists of two main components: CLR and _________.

d) ____________ means .NET components can interact with each other irrespective of

the languages they are written in.

 ii. State True/False

c) CLR stands for Common Language Runtime.

d) Class library is the second major entity of the .NET Framework which is designed to

integrate with the common language runtime.

8.4 VB.NET and Internet

The Internet is a network of networks, linking computers to computers sharing the TCP/IP

protocols. Each runs software to provide or “serve” information and/or to access and view

information. The Internet is the transport vehicle for the information stored in files or documents

on another computer. It can be compared to an international communications utility servicing

computers. It is sometimes compared to a giant international plumbing system. The Internet itself

does not contain information. It is a slight misstatement to say a “document was found on the

Internet.” It would be more correct to say it was found through or using the Internet. What it was

found in (or on) is one of the computers linked to the Internet.

Internet may use one or all of the following Internet services:

Electronic mail (e-mail):

Permits you to send and receive mail.

Telnet or remote login:

Permits your computer to log onto another computer and use it as if you were there.

FTP or File Transfer Protocol:

Allows your computer to rapidly retrieve complex files intact from a remote computer and view

or save them on your computer.

The World Wide Web (WWW or “the Web”):

The largest, fastest growing activity on the Internet.

To make web application development easier and faster VB.NET architecture provides us many

useful tools and facilities With VB.NET we can create web applications using the shared Web

Forms Designer and the familiar “drag and drop” feature. You can double-click and write code

to respond to events. Visual Basic .NET 2003 comes with an enhanced HTML Editor for work-

ing with complex Web pages. . The main features of VB.NET, which make it a right choice for

web application development, are already discussed in introduction.

8.4.1 XML Web Services & Mobile Application Development

VB.NET also provides XML web services. These services enable us to call components running

on any platform using open Internet protocols. Working with XML Web services is easier where

enhancements simplify the discovery and consumption of XML Web services that are located

within any firewall. Mobile and PDA’s are becoming the most popular devices to access Internet.

That’s why VB.NET and the .NET Framework offer integrated support for developing mobile

web applications for more than 200 Internet-enabled mobile devices. These new features give

UNIT - 8 VB.NET 134

developers a single, mobile Web interface and programming model to support a broad range of

Web devices, including WML 1.1 for WAP—enabled cellular phones, compact HTML (cHTML)

for i-Mode phones, and HTML for Pocket PC, handheld devices, and pagers.

8.4.2 Simplified Data Access

We can tackle any data access scenario easily with ADO.NET and ADO data access. The

flexibility of ADO.NET enables data binding to any database, as well as classes, collections, and

arrays, and provides true XML representation of data. Seamless access to ADO enables simple

data access for connected data binding scenarios.

8.4.3 Security

Developing an application that resides on a local machine and uses local resources is easy. In this

scenario, security isn’t an issue as all the resources are available and accessed locally. Consider

an application that accesses data on a remote machine or has to perform a privileged task on

behalf of a no privileged user. In this scenario security is much more important as the application

is accessing data from a remote machine.

VB.NET enables the developer and the system administrator to specify method level security. It

uses industry-standard protocols such as TCP/IP, XML, SOAP and HTTP to facilitate distrib-

uted application communications. This makes distributed computing more secure because .NET

developers cooperate with network security devices instead of working around their security

limitations.

8.4.4 Improved Coding Style

You can code faster and more effectively. A multitude of enhancements to the code editor, in-

cluding enhanced IntelliSense, smart listing of code for greater readability and a background

compiler for real-time notification of syntax errors transforms into a Rapid Application

Development(RAD) coding machine.

Self Learning Exercise-3

i. Fill in the Blanks

e) RAD stands for _____________.

f) VB.NET provides __________which enable us to call components running on any

platform using open Internet protocols.

ii. State True/False

e) VB.NET enables the developer and the system administrator to specify method level

security

8.5 Migration from VB to VB.NET

Microsoft Visual Basic has had many evolutions since its original release, Visual Basic 1.0. The

release of Visual Basic .NET is the biggest evolution yet. The language has been redesigned to

take advantage of the .NET Framework. By leveraging the features that the .NET Framework

provides, Visual Basic supports language features such as code inheritance, visual forms inherit-

ance, and multi-threading. The object model is more extensive than earlier versions, and Visual

Basic .NET totally integrates with the .NET Framework. Therefore, interaction between com-

ponents written in other .NET languages is very efficient.

UNIT - 8 VB.NET 135

Why migrate to VB.NET?

The first question that strikes ones mind is “why should I migrate?” Managed Code is a very

important feature of the .NET architectural framework. This is what makes Java applications

robust when compared to older generation Microsoft applications. VB.NET code targets the

Common Language Runtime (CLR) by compiling into an intermediate language, which is then

executed under strict control (managed). CLR manages the code in a very similar fashion to the

Java model, thereby making applications much more Robust, Stable and secure. The application

also becomes more maintainable because of the managed code.

Under the .NET framework, VB.NET applications are packaged as self-contained, self-de-

scribing, versioned assemblies (collection of classes and meta data). One can deploy, remove

and manage N different versions of an application or DLL on the same machine without creating

conflicts. This enables a product company to easily manage versions and upgrades without caus-

ing the headaches so common with usual upgrades or OEM-versioning. Desktop applications

can be much more easily converted to Web Based applications using the Web Forms paradigm

of .NET made available through VB.NET. Microsoft strategy is to eventually migrate all its

products to the .NET framework This would mean that a couple of years down the line VB6,

and other non-.NET products would be obsolete.

.NET applications when developed carefully can be platform independent. Managed code built

using .NET will run on platforms that host the .NET framework irrespective of the Operating

System or machine type. Such non-Microsoft platforms have started to appear already. If one is

convinced of a necessity to migrate to VB.NET, the next question that arises is “How to mi-

grate?”

8.5.1 Methods of Migrating

After getting a feel of VB.NET, let us now look at the methods to migrate the application from

VB to VB.NET. The various methods that can be used to migrate the application are covered

below. In many cases, these approaches will be combined. A redesign from scratch may be

better for some code modules whereas many others might need only language/syntax level port-

ing.

Migration Wizard

Visual Studio.NET provides a Visual Basic Upgrade Wizard (also called as Migration Wizard).

This wizard does almost the entire migration barring some modifications that must be made to

complete the upgrade process.

Fresh Design

Redesign of certain core modules or perhaps the whole application is a possible approach if new

features of the .NET architectural framework are considered. Managed code (under CLR) can

run in tandem with unmanaged code (e.g. COM components). Therefore it is possible to reuse

many existing components as such. However, paradigm shifts towards XML web services, Web

Forms, Windows Forms etc. call for some rework in design, coding and deployment.

Use of Customized tools to enhance migration

Porting driven by a wizard and re-design are easier when migrated using customized tools like

the “Cal-Migrater” developed internally by CSWL for a health care product migration. This tool

makes use of both the wizard and redesign approach to make faster pace through the .NET

porting activity.

UNIT - 8 VB.NET 136

8.5.2 Migration Strategies

There are two strategies to migrate using the above methods viz. Vertical migration and Horizon-

tal migration. Both these strategies help us find out key areas that need an immediate upgrade

and the modules that can be upgraded later.

Vertical Migration

In vertical migration, a module of the application that is fairly standalone or isolated is taken, and

all the tiers of this module are migrated to VB.NET. Vertical migration can be adopted in situa-

tions where the modules are mostly loosely coupled and/or we are not sure of the risk and effort

factors of total migration. Thus migrating one module will give a good idea on the effort required

to migrate other modules.

Horizontal Migration

In horizontal migration, one layer of all the modules is migrated to VB.NET followed by other

layers. For example, first the UI would be migrated then the middle tier. Horizontal migration is

ideal in situations where the modules are tightly coupled and the effort and risk involved in the

migration is known to a large extent.

Issues While Migrating

However there are a few issues that are to be taken care of while migrating from VB to VB.NET.

As mentioned earlier, porting the application using the wizard approach does automate the pro-

cess to an extent but some modifications must be made to complete the upgrade process. The

wizard produces a report in HTML format with the information of the places where it failed to

migrate the application to .NET. There are number of changes that can be done to the VB6

application to make the upgrade process much more efficient. Some important aspects are listed

below.

l Avoid using late binding. This is because properties and methods cannot be verified

during the upgrade process.

l Specify default properties. VB6 specifies a default property for every component. For

example, the default of Textbox is Text property and Caption is default for Label com-

ponent. But in VB.NET there is nothing called as default property.

l Use Zero-Bound Array. In VB we can declare an array with any positive integer as its

lower bound. But in VB.NET all the arrays are zero bound.

l Examine API calls with fixed length strings in VB application because VB.NET doesn’t

support fixed length strings.

l Lines and Shapes are not supported in VB.NET and hence cannot be upgraded. Instead

a graphic object is provided for shapes.

l Use constants instead of underlying values. VB6 constants will convert to the correct

value when upgraded to VB.NET, but if actual values are used then it may end up with

wrong hard-coded values. For example, for Boolean values using -1 and 0 instead of

True and False and will have an adverse effect in VB.NET because in VB.NET True is1.

l Re-Design of the whole application can be considered if the application will Grow over

time. VB.NET being object oriented, the code can be reused and the application can be

extended with less effort and time. Doing the same in VB6 would need a lot more time &

effort.

UNIT - 8 VB.NET 137

l Be taken online, i.e. web application. VB.NET provides web forms that can be used

both for web application and VB application. This gives it dual manageability.

Self Learning Exercise-4

i. Fill in the Blanks

g) There are two strategies to migrate using the above methods: Vertical migration and

_____________ .

h) In____________, one layer of all the modules is migrated to VB.NET followed by

other layers.

ii. State True/False

f) VB.NET provides web forms that can be used both for web application and VB

application.

8.6 Namespaces

A namespace is a collection of different classes. All VB applications are developed using classes

from the .NET System namespace. The namespace with all the built-in VB functionality is the

System namespace. All other namespaces are based on this System namespace.

A namespace can be seen as a container for some classes in much the same way that a folder on

your file system contains files. Namespaces are needed because there are a lot of .NET classes.

Microsoft has written many thousands of base classes, and any reasonably large application will

define many more. By putting the classes into namespaces we can group related classes together,

and also avoid the risk of name collisions: If your company happens to define a class that has the

same name as the class written by another organization, and there were no namespaces, there

would be no way for a compiler to figure out which class a program is actually referring to. With

namespaces, there isn’t a problem because the two classes will be placed in different namespaces,

which compares with, say, the Windows files system where files with the same name can be

contained in different folders.

It is also possible for namespaces to contain other namespaces, just as folders on your file

system can contain other folders as well as files. System is the basic namespace used by every

.NET code. If we can explore the System namespace little bit, we can see it has lot of subordi-

nate namespaces. For example, System.IO, System.Net, System.Collections, System.Threading,

etc.

8.6.1 Creating Namespaces

Every project in Visual Basic.Net has a root namespace, which is set in the Property page of the

project. When we create a project, by default, the name of the root namespace for the project is

set to the name of the new project. For example, the root namespace for a project named

ProjectOne is ProjectOne. Usually, when we create a project, we would like to give it a name,

which we like. So, we need to change the ProjectOne to the name which we wish. We can also

organize classes using the Namespace keyword.

The Example

Namespace a.VB.Namespaces

Public Class Hello

Public Function GetMessage() As String

Return “Hello, world”

UNIT - 8 VB.NET 138

End Function ‘GetMessage

End Class ‘Hello

End Namespace ‘a.VB.Namespaces

This is simple namespace example. We can also build hierarchy of namespace. Here is an ex-

ample for this.

Namespace Books

Namespace Inventory

Imports System

Class AddInventory

Public Function MethodOne()

Console.WriteLine(“Adding Inventory through MethodOne!”)

End Function

End Class

End Namespace

End Namespace

8.6.2 Using Namespaces in VB.NET

We have created a Namespace in the previous step. Now, we will use the Namespace explicitly

through direct addressing or implicitly through the Imports statement.

Direct addressing involves directly accessing any class in the namespace by providing the fully

qualified name.

Example of using fully qualified name is given below:

Microsoft.VisualBasic.MsgBox(“Using Fully Qualified Name”)

If we want to make all the classes in a given namespace available without the need to type the

entire namespace each time, you can use the Imports statement. An example of using the Imports

statement is given below:

Imports Microsoft.VisualBasic

…..

MsgBox(“Using Imports Statement”)

8.6.3 Types of Namespaces

Namespaces can be divided in to two categories:

Local Namespaces: These are accessible only to the applications to which they belong.

Global Namespaces: These are accessible from all applications.

Some Namespaces and Their Use

l System: Includes essential classes and base classes for commonly used data types, events,

exceptions and so on.

l System.Collections: Includes classes and interfaces that define various collection of ob-

jects such as list, queues, hash tables, arrays, etc.

l System.Data: Includes classes which lets us handle data from data sources.

UNIT - 8 VB.NET 139

l System.Data.OleDb: Includes classes that support the OLEDB .NET provider.

l System.Data.SqlClient: Includes classes that support the SQL Server .NET provider.

l System.Diagnostics: Includes classes that allow to debug our application and to step

through our code.

l System.Drawing: Provides access to drawing methods.

l System.Globalization: Includes classes that specify culture-related information.

l System.IO: Includes classes for data access with Files.

l System.Net: Provides interface to protocols used on the internet.

l System.Reflection: Includes classes and interfaces that return information about types,

methods and fields.

l System.Security: Includes classes to support the structure of common language runtime

security system.

l System.Threading: Includes classes and interfaces to support multithreaded applications.

l System.Web: Includes classes and interfaces that support browser-server communica-

tion.

l System.Web.Services: Includes classes that let us build and use Web Services.

l System.Windows.Forms: Includes classes for creating Windows based forms.

l System.XML: Includes classes for XML support..

Self Learning Exercise-5

i. Fill in the Blanks

i) ________is the basic namespace used by every .NET code.

j) Namespaces can be divided in to two categories: Local Namespaces and __________.

 ii. State True/False

g) A namespace is a collection of different packages.

h) System.Data.OleDb includes classes that support the OLEDB .NET provider.

8.7 Versioning

The .NET Framework helps in building reliable applications by minimizing conflicts between

components with a new versioning strategy involving public and private components. Private

components reside in the same directory as the application using them. Applications don’t con-

sider component version when they’re using private components; an application loads whatever

physical file it finds in its directory.

But with public components, .NET applications always load the component version used when

you created an application. Applications don’t just use blindly whatever files the Registry points

to. Using public components lets you install multiple versions of the same component on a ma-

chine. .NET also lets you modify how apps use public components.

To learn how to manage component versioning, begin by looking at .NET assemblies. Assem-

blies are files—usually DLLs—that contain one or more .NET classes and the metadata that

describes them. Each assembly contains its own version number, along with the name, public

key, and version of every assembly it references. This strategy forever links any assembly with all

the assemblies it uses, including the version numbers.

UNIT - 8 VB.NET 140

When you create a new component, .NET stores the component’s version number in the

assembly’s metadata. Every project includes the source file AssemblyInfo. The extension matches

the project type. .NET automatically adds an Assembly Version attribute for your project in the

source file. The version looks like this in VB projects:

<Assembly: AssemblyVersion(“1.0.*”)>

The C# version differs only superficially:

[assembly: AssemblyVersion(“1.0.*”)]

Version numbers have four components: major version, minor version, build number, and revi-

sion number. The default version 1.0.* sets the build number to the number of days since January

1, 2000, and the revision number to the number of seconds since midnight, local time. So the

build and revision numbers increase over time. If you’re creating commercial components, you’ll

want to change this default attribute to better manage the versions of your component in the field:

<Assembly: AssemblyVersion(“1.0.0.0”)>

Each build should increase the build number on the assembly version.

8.7.1 Assemblies

The ‘Assembly’ is a new concept that the .NET framework introduces to make your journey in

programming more easier. The .NET framework introduces assemblies as the main building

blocks of your application. An application can contains one or more assemblies. An assembly

can be formed in one or more files. This all depends on your programming needs. An assembly

can consist of the following four elements:

l Your code, compiled into MS Intermediate Language (MSIL). This code file can be

either an EXE file or a DLL file.

l The assembly manifest, which is a collection of metadata that describes assembly name,

culture settings, list of all files in the assembly, security identity, version requirements, and

references to resources. The assembly manifest can be stored with the intermediate

code, or in a standalone file that contains only assembly manifest information.

l Type metadata

l Resources

An assembly can have two types of versions. The first one which we call “Version Number”

consists of a four-part string with the following format:

<major number>,<minor number>,<build>,<revision>

For example a version number of 3.5.20.1 indicates 3 as the major version, 5 as the minor

version, 20 as the build number, and 1 as the revision number.

The second type of versions is called “Informational Version”. The informational version consists

of a string that contains the version number besides additional information like packaging, mar-

keting literature, or product name. This type of version is used for informational purposes only,

and is not used at runtime for calculating versioning related decisions.

8.7.2 .NET Version Number

The .NET version number consists of four parts:

<major number>,<minor number>,<build>,<revision>

Assume that you are working on a project and that you are building a new version on regular

basis, Such as daily. Each day that you build the application, you will increment the build version.

UNIT - 8 VB.NET 141

If you have to make multiple builds in one day, you can increment the revision number. Regard-

less how you actually use the four parts of the version to track your project, They become very

important when you begin changing them.

The first two numbers are often referred to as the logical version number of an assembly. For

example, in the COM world, it is often common to ask, “What version of ADO you are using?”

with common answer being “2.5” or “2.6.”

Although the first two numbers might be the logical version, however, the client applications of

strongly named assemblies care about all the numbers. The runtime sees assemblies with differ-

ent version numbers as different assemblies, and this means your client, by default, will see these

as different assemblies. It is actually possible for the administrator to override this default behav-

ior if necessary.

8.7.3 Setting The Version Number

Setting the version number can be accomplished in a couple of ways. If you look in the

AssemblyInfo.vb file that is created as a part of your project, you will see the following line:

<Assembly: AssemblyVersion(“1.0.*”)>

This will allow you to set the version for the application. Or, you can enter the following lines in

the code modules for your classes:

Imports System.Reflection

<Assembly: AssemblyVersionAttribute(“2.3.4.6”)>

These lines have to go outside the classes you have created.

Self Learning Exercise-6

i. Fill in the Blanks

k) Version numbers have four components: major version, minor version, _________

and ______________.

ii. State True/False

i) An application can contains only one assembly.

8.8 Attributes

Attributes are declarative tags that can be used to annotate types or class members, thereby

modifying their meaning or customizing their behavior. This descriptive information provided by

the attribute is stored as metadata in a .NET assembly and can be extracted either at design time

or at runtime using reflection. To see how attributes might be used, consider the <WebMethod>

attribute, which might appear in code as follows:

<WebMethod(Description:=”Indicates the number of visitors to a page”)> _

Public Function PageHitCount(strULR As String) As Integer

Ordinarily, public methods of a class can be invoked locally from an instance of that class; they

are not treated as members of a web service. In contrast, the <WebMethod> attribute marks a

method as a function callable over the Internet as part of a web service. This <WebMethod>

attribute also includes a single property, Description, which provides the text that will appear in

the page describing the web service.

You may feel why attributes are used on the .NET platform and why they are not simply imple-

mented as language elements. The answer comes from the fact that attributes are stored as

metadata in an assembly, rather than as part of its executable code. As an item of metadata, the

UNIT - 8 VB.NET 142

attribute describes the program element to which it applies and is available through reflection

both at design time (if a graphical environment such as Visual Studio .NET is used), at compile

time (when the compiler can use it to modify, customize, or extend the compiler’s basic opera-

tion), and at runtime (when it can be used by the Common Language Runtime or by other

executable code to modify the code’s ordinary runtime behavior).

8.8.1 Syntax and Use

In Visual Basic, an attribute appears within angle brackets (a less-than (<) and a greater-than

symbol (>)). The attribute name is followed by parentheses, which are used to enclose argu-

ments that might be passed to the attribute. For example, the <Obsolete> attribute marks a type

or type member as obsolete. We can apply <Obsolete> as a parameter-less attribute as follows:

<Obsolete()>

If no arguments are assigned to the attribute, we can omit the trailing parentheses:

<Obsolete>

If more than one attribute is applied to a single program element, the attributes are enclosed in a

single set of angle brackets and delimited from one another by a comma. For example:

<Obsolete(), WebMethod()> Public Function PageCount(strURL As String) As Integer

Each attribute corresponds to a class derived from System.Attribute. The VB.NET compiler

treats an attribute as an instance of the attribute’s class.) By convention, we drop the trailing

string “Attribute” from the class name to form the attribute name, although the attribute name can

also be identical to the class name. Thus, for example, the <WebMethod> attribute corresponds

to the WebMethodAttribute class in the System.Web.Services namespace, which in turn is found

in System.Web.Services.dll. Alternately, you can also specify the attribute as

<WebMethodAttribute>. If the namespace containing the attribute class is not automatically

accessible to the Visual Basic compiler or to Visual Studio, the Imports directive should be used,

and a reference should be added to the project either using the References dialog in Visual

Studio or the /r switch in the command-line compiler. Required arguments must be supplied to

the attribute as positional arguments only; named arguments are not accepted. A comma sepa-

rates all arguments, whether named or positional.

Unless it has a modifier, an attribute immediately precedes the language element to which it

applies and must be on the same logical line as that language element. If they are on different

lines, the Visual Basic .NET line continuation character (the underscore, or _) must be used.

This syntax is valid for attributes applied to the following language elements:

l Class

l Constructor

l Delegate

l Enum

l Event

l Field

l Interface

l Method

l Parameter

l Property

l Return Value

l Structure

UNIT - 8 VB.NET 143

For example, the following Class statement illustrates this general usage of an attribute:

<AttributeUsage(AttributeTargets.All)> Public Class MyCustomAttrAttribute

The following statement indicates how attributes are used with parameter declarations:

Public Sub FunctionOne(strName As String, _

 <ParamArrayAttribute()> lValues As Long)

There are two exceptions to this rule. Some attributes must be prefaced with a modifier (either

Assembly: or Module:) indicating the program element to which the attribute applies. In that

case, the attribute must be placed at the top of the source file (i.e., immediately following any

Option and Imports statements), along with any other attributes that require a modifier. This

syntax is valid for an attribute applied to an assembly or a module only.

Self Learning Exercise-7

i. Fill in the Blanks

l) _________are declarative tags that can be used to annotate types or class members

m) Each attribute corresponds to a class derived from ____________

ii. State True/False

j) In Visual Basic, an attribute appears within angle brackets (a less-than (<) and a

greater-than symbol (>)).

8.9 Summary

In this unit we have discussed what is IDE, the features and components of IDE. We have

discussed the process of migration from VB to VB.NET, the concept of Namespace, Attribute

and Versioning and types of namespace used in VB.NET.

8.10 Glossary

.NET FrameWork Type-safe environment for developing and executing

applications.

Attribute Is a declarative tag that can be used to annotate types or class

members

Class Library Provides functionality similar to ActiveX and DLL by creating

classes that access other applications.

CLR Provides the environment within which the programs run.

COM Interoperability COM interoperability enables you to leverage your existing

code assets and offers seamless bi-directional communication

between Visual Basic 6.0 and Visual Basic .NET applications.

Console Application Command line based applications.

IDE Is the Development Environment for all .NET based applications

which comes with rich features

Namespace Is a collection of different classes, can be seen as a container

for some classes

Version Number The .NET version number consist four parts:<major

number>,<minor number>,<build>,<revision>

Windows Application allows to create standard windows based applications

UNIT - 8 VB.NET 144

Windows Control Library allows to create our own windows controls

XML Web Service Enable you to call components running on any platform using

open Internet protocols.

8.11 Further Readings AND REFERENCES

1 Gary Cornell, Jonathan Morrison, “Programming in VB.NET: a guide for experienced

Programmers”, Apress publication, Delhi

2 Steven Holzner ,”Visual Basic .NET Programming: Black Book”, Dreamtech Press,

New Delhi.

3 Tony Gaddis, Kip Irvine, Bruce Quenton ,”Starting out with Visual Basic .NET pro-

gramming”, Dreamtech Press, New Delhi.

4 Jeffery R Shapiro, “Visual Basic .NET: The Complete Reference”, Tata Mcgraw Hill,

New Delhi

5 www.startvbdotnet.com

8.12 Answers to Self Learning Exercises

i. Fill in the Blanks ii.True/False

a) Web Based a) True

b) Console Applications b) False

c) Class Libraries c) True

d) Cross-language compatibility d) True

e) Rapid Application Development e) True

f) XML web services f) True

g) Horizontal migration g) False

 h) Horizontal migration h) True

i) System i) False

j) Global Namespaces j) True

k) build number, revision number

l) Attributes

m) System.Attribute

8.13 Unit End Questions

1. What is Cross Language compatibility?

2. Explain the two types of migration Strategies?

3. Which are the two types of namespaces?

4. How can we set the version number?

5. Is it possible to omit the trailing parenthesis of a attribute? If yes, when?

6. Explain the features of the VB.NET.

7. Explain the .NET framework.

UNIT - 8 VB.NET 145

8. What is Common Language Runtime? Explain it’s working?

9. Explain the methods of migrating from VB to VB.NET.

10. Explain at least seven languages supported by .NET framework.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 146

Unit - 9: Creating Applications in VB.NET

Structure of the Unit

9.0 Objectives

9.1 Introduction

9.2 Data Types and Conversion Functions

9.2.1 Data Types

9.2.2 Conversion Functions

9.3 Operators and Their Precedence

9.3.1 Operator Type

9.3.2 Precedence of operators

9.4 Conditional Constructs and Looping

9.4.1 IF…Else…End If

9.4.2 Select…Case

9.4.3 Do Loop

9.4.4 While Loop

9.4.5 For…Next Loop

9.5 Arrays

9.6 Windows forms

9.7 Windows controls

9.7.1 Label, Link Label

9.7.2 Textbox

9.7.3 RichTextBox

9.7.4 Button

9.7.5 Check Box

9.7.6 Radio Button

9.7.7 List Box

9.7.8 Combo Box

9.7.9 Picture Box

9.7.10 Scroll Bar

9.7.11 Timer

9.8 Summary

9.9 Glossary

9.10 Further Readings

9.11 Answers to Self Learning Exercises

9.12 Unit End Questions

UNIT - 9 CREATING APPLICATIONS IN VB.NET 147

9.0 Objectives

After going through this unit you will be able to

l Use Various control structures and

l Know about Data types available in VB.NET

l Understand windows form

l Use various controls available with form

l Create standalone applications in .NET environment i.e. in VB.NET.

9.1 Introduction

From the previous Unit you have learned about .NET framework you have also learned what is

IDE i.e. Integrated Development Environment.

In this Unit we will discuss about Windows forms and various controls that can be placed on the

form.

Before going through this unit you are supposed to have an overview of Unit-8 and Unit-2.

9.2 Data Types and Conversion Functions

All of the languages under the .NET umbrella now implement a subset of a common set of data

types, defined in the .NET Framework’s Base Class Library (BCL). Because all .NET languages

share a consistent and structured way to represent data, bugs and security holes due to the way

information is stored in a program are a thing of the past.

9.2.1 Data Types

Boolean 2 bytes

Byte 1 byte

Char 2 bytes

Date 8 bytes

Decimal 16 bytes

Table 9.1: Data types in VB.Net

Type Storage Size Value Range

Boolean 2 bytes True or False

Byte 1 byte 0 to 255 (unsigned)

Char 2 bytes 0 to 65535 (unsigned)

Date 8 bytes January 1, 0001 to December 31, 9999

Decimal 16 bytes +/- 79,228,162,514,264,337,593,543 ,950,335 with

no decimal point+/-

7.92281625142643375935439503 35 with 28 places

to right of the decimal point, smallest non-zero number

is +/- 0.0000000000000000000000000001

Double 8 bytes 1.79769313486231E+308 to 4.94065645841247E-

324 for positive values, 4.94065645841247E-324

to 1.79769313486231E+308 for negative values

UNIT - 9 CREATING APPLICATIONS IN VB.NET 148

Integer 4 bytes -2147483648 to 2147483647

Long 8 bytes 9,223,372,036,854775808 to

9,223,372,036,854775807

Object 4 bytes Any type can be stored in a variable of type object

Short 2 bytes -32768 to 32767

Single 4 bytes 3.402823E+38 to 1.401298E-45 for negative values

and 1.401298E-45 to 3.402823E+38 for positive

values

String Depends on 0 to approximately 2 billion Unicode characters

implementation

platform

User defined Sum of sizes of its members, each member of the structure has a rang

type(structure) determined by its data type and dependent of the ranges of other

members

9.2.2 Conversion Functions

Table 9.2: Conversion Functions

Cbool Converts to Bool data type

Cbyte Converts to Byte data type

Cchar Converts to Character data type

Cdate Converts to Date data type

CDbl Converts to Double data type

Cdec Converts to Decimal data type

Cint Converts to Integer data type

CLng Converts to Long data type

Cobj Converts to Object type

Cshort Converts to Short data type

CSng Converts to Single data type

CStr Converts to String data type

Conversion between character and character codes

ASC: Takes a character and returns its character code e.g. ASC(“A”) returns 65

Chr: Takes a character code and returns its corresponding character e.g. Chr(65) returns A

9.3 Operators and their Precedence

An operator is a symbol (e.g., =, +, >, etc.) that causes VB.NET to take an action. That action

might be an assignment of a value to a variable, the addition of two values, or a comparison of

two values, etc.

The rules of precedence tell the compiler which operators to evaluate first. As is the case in

algebra, multiplication has higher precedence than addition, so 5 + 7 * 3 is equal to 26 rather

than 36. Both addition and multiplication have higher precedence than assignment, so the com-

piler will do the math, and then assign the result (26) to myVariable only after the math is com-

pleted. In VB.NET, parentheses are used to change the order of precedence much as they are in

algebra.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 149

9.3.1 Operator Type

There are four major types of operators in VB.Net, Assignment, Mathematical, Relational and

Logical.

The assignment operator causes the operand on the left side of the operator to have its value

changed to whatever is on the right side of the operator. The following expression assigns the

value 15 to myVariable:

Dim myVariable As Integer = 15

VB.NET uses seven mathematical operators: five for standard calculations (+, -, *, /, and \), a

sixth to return the remainder when dividing integers (Mod), and a seventh for exponential opera-

tions (^).

Relational operators are used to compare two values and then return a Boolean (i.e., true or

false). The greater-than operator (>), for example, returns true if the value on the left of the

operator is greater than the value on the right. Thus, 5>2 returns the value true, while 2>5 returns

the value false.

If statements test whether a condition is true. Often you will want to test whether two conditions

are both true, or only one is true, or neither is true. VB.NET provides a set of logical operators

for this.

Table 9.3: Operators and their Functions

Arithmetic (Mathematical) Assignment

^ Exponentiation = Assignment

* Multiplication ^=Exponentiation followed by Assignment

/ /= Division followed by Assignment

\ \= Integer division followed by Assignment

Mod += Addition followed by Assignment

+ -= Subtraction followed by Assignment

- &= Concatenation followed by Assignment

Comparison (Relational) Concatenation

< Less than &

> Greater than +

<= Less than or equal to Logical/Bitwise

>= Greater than or equal to NOT reverse the logical value of its operand

<> Not equal to OR performs the logical or operation

IS True if two objects refer to

same address

XOR performs the logical xor operation (true

if either operand is true, false otherwise)

LIKE performs string pattern

matching

AND performs the logical and operation (true

if both operands are true, false otherwise)

9.3.2 Precedence of Operators

The rules of precedence tell the compiler which operators to evaluate first. As is the case in

algebra, multiplication has higher precedence than addition, so 5+7*3 is equal to 26 rather than

36. Both addition and multiplication have higher precedence than assignment, so the compiler

will do the math, and then assign the result (26) to myVariable only after the math is completed.

In VB.NET, parentheses are also used to change the order of precedence much as they are in

algebra.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 150

The following is the precedence of operators.

^, - ,*/ ,\ ,mod, +- ,+ ,& ,= ,<>, < , >, >=,<=, like, IS, NOT, ANS, OR, XOR

9.4 Conditional Constructs and Loops

While methods branch unconditionally, often we want to branch within a method depending on a

condition that we evaluate while the program is running. This is known as conditional branching.

Conditional branching statements allow us to write logic such as “If you are over 25 years old,

then you may rent a car.”

VB.NET provides a number of constructs that allow us to write conditional branches into our

programs; these constructs are described in the following sections.

9.4.1 If…Else…End if

If conditional expression is one of the most useful control structures which allows us to execute

an expression if a condition is true and execute a different expression if it is False. The syntax

looks like this:

If condition Then

[statements]

Else If condition Then

[statements]

-

-

Else

[statements]

End If

9.4.2 Select…Case

The Select Case statement executes one of several groups of statements depending on the value

of an expression. If our code has the capability to handle different values of a particular variable

then we can use a Select Case statement. We use Select Case to test an expression, determine

which of the given cases it matches and execute the code in that matched case.

The syntax of the Select Case statement looks like this:

Select Case testexpression

 [Case expressionlist-n

 [statements-n]] . . .

 [Case Else elsestatements]

End Select

9.4.3 Do Loop

The Do...Loop allows us to run one or more lines of code repetitively, but we don’t know how

many times. The Do...Loop is generally slower than the For...Loop, as it tests the value of a

expression in each loop.

Do { While | Until } condition

UNIT - 9 CREATING APPLICATIONS IN VB.NET 151

 [statements]

[Exit Do]

 [statements]

Loop

-OR-

Do

 [statements]

[Exit Do]

 [statements]

Loop { While | Until } condition

Parts

While

Required unless Until is used. Keyword. Repeat the loop until condition is False.

Until

Required unless While is used. Keyword. Repeat the loop until condition is True.

condition

Optional. Boolean. Expression that evaluates to a value of True or False.

statements

Optional. One or more statements that are repeated while, or until, condition is True.

Table 9.4: The 4 different types of Do loops

Type of Do Loop Explanation Example

Do While … Loop The Do While ... Loop evaluates Do While

the condition, and if the condition condition

is true, then it evaluates the statements Statements Loop

following the condition. When it has

finished doing this, it evaluates the

condition again and if the condition

is true, it evaluates the statements

again. It continues repeating this

process until the condition is false.

Do Until ... Loop The Do Until ... Loop is similar to the Do Until

Do While ... Loop except it keeps condition

evaluating the statements until the Statements Loop

condition is true rather than while

it is true.

Do ... Loop While The Do ... Loop While evaluates the Do

statements only once. It then statements

evaluates the condition, and if the Loop While

UNIT - 9 CREATING APPLICATIONS IN VB.NET 152

condition is true, evaluates the condition

statements again. This process

continues until the condition is false.

Do ... Loop Until Similar to Do ... Loop While except Do statements Loop Until

that it evaluates the statements until condition

the condition is true.

Note The Do loops support an Exit Do statement to immediately jump out of the loop. The

Exit Do statement is similar to the Exit For in For/Next loops.

9.4.4 While Loop

A While loop can be used to execute a fixed block of statement an indefinite amount of time.

Table 9.5: Two Types of While Loops

Type of Loop Explanation Example

While ... Do The While ... Do loop evaluates the While condition

condition, and if the condition is true, Do expression

then it evaluates the expression

following the Do. When it has finished

doing this, it evaluates the condition

again and if the condition is true, it

evaluates the expression following the

Do again. It continues repeating this

process until the condition is false.

Do ... While The Do ... While loop evaluates the Do expressionWhile

expression once no matter what. condition

It then evaluates the condition, and

if the condition is true, evaluates the

expression again. This process

continues until the condition is false.

The While loops support an Exit While statement to immediately jump out of the loop. Its use is

analogous to the use of Exit For in For loops. As with the For loop, the While loop when

considered as an expression always returns the Boolean value True.

The While loop is similar to the Do While ... Loop except that it does not support an Exit

statement. It uses While ... Wend instead of Do While ... Loop as its syntax.

While condition

 statements

Wend

9.4.5 For…Next Loop

For Each element In group

 [statements]

UNIT - 9 CREATING APPLICATIONS IN VB.NET 153

[Exit For]

 [statements]

Next [element]

Parts

element

Required. Variable. Used to iterate through the elements of the collection or array. The

data type of element must be such that the data type of the elements of group can be

implicitly converted to it.

group

Required. Object variable. Must refer to an object collection or array.

statements

Optional. One or more statements between For Each and Next that are executed on

each item in group.

The For Each...Next loop is entered if there is at least one element in group. Once the loop has

been entered, the statements are executed for the first element in group; if there are more ele-

ments in group, the statements in the loop continue to execute for each element. When there are

no more elements, the loop is terminated and execution continues with the statement following

the Next statement.

Repeats a group of statements a specified number of times.

For counter = start To end [Step step]

 [statements]

[Exit For]

 [statements]

Next [counter]

Parts

counter

Required. Variable. The type of counter is usually Integer but can be any elementary

numeric type that supports the greater than (>), less than (<), and addition (+) operators.

start

Required. Expression. The initial value of counter. The start expression usually evaluates

to type Integer but can evaluate to any data type that widens to the type of counter.

end

Required. Expression. The final value of counter. The end expression usually evaluates

to type Integer but can evaluate to any data type that widens to the type of counter.

step

Optional. Expression. The amount by which counter is incremented each time through

the loop. The step expression usually evaluates to type Integer but can evaluate to any

data type that widens to the type of counter. If not specified, step defaults to 1.

statements

Optional. One or more statements between For and Next that are executed the specified

number of times.

The step argument can be either positive or negative. The value of the step argument determines

UNIT - 9 CREATING APPLICATIONS IN VB.NET 154

loop processing as follows:

Step value Loop executes if

Positive or zero counter <= end

Negative counter >= end

The expressions start, end, and step are all evaluated only once, when the For statement is first

encountered. They are not evaluated again, even if the loop statements change their constituent

parts.

The counter variable is compared to end every time before the loop is entered. This includes the

first time the For statement is executed. Therefore, if the value of start is past the value of end

when the loop is entered, the loop is not executed, and execution passes immediately to the

statement following the Next statement.

After the loop statements have executed, step is added to counter. At this point, the For state-

ment again compares counter to end. As a result of this comparison, either the statements in the

loop execute again, or the loop is terminated and execution continues with the statement follow-

ing the Next statement.

Changing the value of counter while inside a loop can make it more difficult to read and debug

your code.

For/Next loops enable you to evaluate a sequence of statements multiple times. This is unlike the

If and Select statements where the program passes through each statement at most once during

the formula’s evaluation.

For/Next loops are best when you know the number of times that the statements needs to be

evaluated in advance.

Exit

Exits a procedure or block and transfers control immediately to the statement following the

procedure call or the block definition.

Exit { Do | For | Function | Property | Select | Sub | Try | While }

Parts

Do

Immediately exits the Do loop in which it appears. Execution continues with the state-

ment following the Loop statement. Exit Do can be used only inside a Do loop. When

used within nested Do loops, Exit Do transfers control to the loop that is one nested

level above the loop where Exit Do occurs.

For

Immediately exits the For loop in which it appears. Execution continues with the state-

ment following the Next statement. Exit For can be used only inside a For...Next or

For Each...Next loop. When used within nested For loops, Exit For transfers control

to the loop that is one nested level above the loop where Exit For occurs.

Function

Immediately exits the Function procedure in which it appears. Execution continues with

the statement following the statement that called the Function procedure. Exit Func-

tion can be used only inside a Function procedure.

Property

Immediately exits the Property procedure in which it appears. Execution continues with

the statement that called the Property procedure, that is, with the statement requesting

UNIT - 9 CREATING APPLICATIONS IN VB.NET 155

or setting the property’s value. Exit Property can be used only inside a Property pro-

cedure.

Select

Immediately exits the Select Case in which it appears. Execution continues with the

statement following the End Select statement. Exit Select can be used only inside a

Select Case statement.

Sub

Immediately exits the Sub procedure in which it appears. Execution continues with the

statement following the statement that called the Sub procedure. Exit Sub can be used

only inside a Sub procedure.

Try

Immediately exits the Try or Catch block in which it appears. Execution continues with

the Finally block if there is one, or with the statement following the End Try statement

otherwise. Exit Try can be used only inside a Try…Catch…Finally statement.

While

Immediately exits the While loop in which it appears. Execution continues with the state-

ment following the End While statement. Exit While can be used only inside a While

loop. When used within nested While loops, Exit While transfers control to the loop

that is one nested level above the loop where Exit While occurs.

Do not confuse Exit statements with End statements. Exit does not define the end of a state-

ment.

9.5 Arrays

Arrays allow you to refer to a series of variables by the same name and to use a number, called

an index or subscript, to tell them apart. This helps you create shorter and simpler code in many

situations, because you can set up loops that deal efficiently with any number of elements by

using the index number.

Array Dimensions

An array can have one dimension or more than one. The dimensionality or rank corresponds to

the number of subscripts used to identify an individual element. You can specify up to 32 dimen-

sions, although more than three is extremely rare.

Array Size

Every dimension of an array has a nonzero length. The elements of the array are contiguous along

each dimension from subscript 0 through the highest subscript of that dimension. Because Visual

Basic allocates space for an array element corresponding to each index number, you should

avoid declaring any dimension of an array larger than necessary.

Arrays do not have fixed size in Visual Basic. You can change the size of an array after you have

created it. The ReDim statement assigns a completely new array object to the specified array

variable. Therefore, ReDim can change the length of each dimension.

Arrays as Objects

Arrays are objects in Visual Basic .NET, so every array type is an individual reference type. This

has the following implications:

l An array variable holds a pointer to the data constituting the elements and the rank and

length information.

l When you assign one array variable to another, only the pointer is copied.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 156

l No two array variables are considered to be of the same data type unless they have the

same rank and element data type.

Array Class

All arrays inherit from the Array class in the System namespace, and you can access the meth-

ods and properties of System.Array on any array. For example, the Rank property returns the

array’s rank, and the Sort method sorts its elements.

Array Element Type

An array declaration specifies a data type, and all its elements must be of that type. When the

data type is Object, the individual elements can contain different kinds of data (objects, strings,

numbers, and so on). You can declare an array of any of the fundamental data types, of a struc-

ture, or of an object class

You can also declare an array that contains other arrays as its elements. In this case, the constitu-

ent arrays must all have the same element data type, which you specify in the declaration. An

array of arrays is called a jagged array because the constituent arrays do not have to have the

same sizes.

There are several different ways to declare array variables.

l The first way is to use empty parentheses and explicitly specify the type of the array:

‘Declare x to be a Global variable

‘of Number Array type

Global x () As Number

‘Initialize x

x = Array (10, 20, 30)

‘Declare y to be a Shared variable

‘of String Range Array type

Shared y () As String Range

‘Initialize y

y = Array (“A” To “C”, “H” To “J”)

l The second way is to declare the variable without specifying that it is an array and

without giving its type and waiting for the first assignment to the variable to completely

specify its type:

‘Declare y to be a Local variable

‘but do not specify its type

Dim y

‘The type of y is now set to be a String Array

y = Array (“Sun”, “Mon”, “Tue”, “Wed”, “Th”, “Fri”, “Sat”)

l The third way is to declare that the variable is an array but not specify its type fully until

the first assignment. Assuming the declaration of y above:

‘Declare z to be a Local variable that is an Array

UNIT - 9 CREATING APPLICATIONS IN VB.NET 157

Local z()

‘z is set to Array (“Mon”, “Tue”) and is a String Array

z = y(2 to 3)

l The fourth way is to explicitly specify the size of the array during the declaration. If you

use this technique, the array is automatically created and default values are used to fill the

array. For example, for a Number Array, each element is initialized to 0 and for a String

array each element is initialized to the empty string “”. Since this type of declaration

actually creates the array, you must specify its type with the As clause so that Crystal

Reports knows how much storage space to reserve for the array.

Dim a(2) As String

‘Assign a value to the first element of the array a

a(1) = “good”

a(2) = “bye”

‘The & operator can be used to concatenate strings

‘the formula returns the String “goodbye”

formula = a(1) & a(2)

Assigning Values to Elements of an Array

You can assign values to elements of an array and also use the values of the elements for other

computations.

Global x() As String

x = Array (“hello”, “bye”, “again”)

x (2) = “once”

‘Now x is Array (“hello”, “once”, “again”)

‘The statement below would cause an error if not

‘commented out since the array has size 3

‘x (4) = “zap”

‘The formula returns the String “HELLO”

formula = UCase (x (1))

The Redim and Redim Preserve keywords can be used to resize an array, which is useful if you

want to add extra information to it. Redim erases the previous contents of the array first before

resizing it whereas Redim Preserve preserves the previous contents.

Dim x () As Number

Redim x (2) ‘Now x is Array (0, 0)

x (2) = 20 ‘Now x is Array (0, 20)

Redim x (3) ‘Now x is Array (0, 0, 0)

x (3) = 30 ‘Now x is Array (0, 0, 30)

Redim Preserve x (4) ‘Now x is Array (0, 0, 30, 0)

formula = “finished”

UNIT - 9 CREATING APPLICATIONS IN VB.NET 158

Arrays and For/Next loops

Arrays are commonly used with For/Next Loops. The following example creates and then uses

the array Array (10, 20, 30, ..., 100) using a For/Next loop.

Dim b (10) As Number

Dim i

For i = 1 To 10

 b(i) = 10 * i

Next i

Several variables can be declared in a single statement by separating their declarations with

commas.

Self Learning Exercise-1

True/False

a) ASC Conversion function takes a character and returns its character code

b) & is a comparison operator

c) Arrays allow you to refer a series of variables by the same name and to use a number.

d) The Dimensionality or rank corresponds to the number of subscripts used to identify

an individual element.

e) Arrays have fixed size in Visual Basic.

f) All arrays inherit from Array class in the System namespace

9.6 Windows Forms

In Visual Basic its these Forms with which we work. They are the base on which we build,

develop all our user interface and they come with a rich set of classes. Forms allow us to work

visually with controls and other items from the toolbox. In VB .NET forms are based on the

System. Windows.Forms namespace and the form class is System.Windows.Forms.Form. The

form class is based on the Control class which allows it to share many properties and methods

with other controls.

Once you click OK a new Form opens with the title, Form1, towards the top-left side of the

form and maximize, minimize and close buttons towards the top right of the form. The whole

form is surrounded with a border. The main area of the form in which we work is called the Client

Area. It’s in this client area we design the user interface leaving all the code to the code behind

file. Forms also support events which let’s the form know that something happened with the

form, for example, when we double-click on the form, the Form load event occurs. VB .NET

also supports forms to be inherited.

Properties

Below are the properties of a Windows Form. Properties displayed below are categorized as

seen in the properties window.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 159

Table 9.6: Properties of Windows Form

Appearance Properties Description

BackColor Gets/Sets the background color for the form

BackgroundImage Get/Sets the background image in the form

Cursor Gets/Sets the cursor to be displayed when the user moves the

mouse over the form

Font Gets/Sets the font for the form

ForeColor Gets/Sets the foreground color of the form

FormBorderStyle Gets/Sets the border style of the form

RightToLeft Gets/Sets the value indicating if the alignment of the control’s

elements is reversed to support right-to-left fonts

Text Gets/Sets the text associated with this form

Behavior Properties Description

AllowDrop Indicates if the form can accept data that the user drags and

drops into it

ContextMenu Gets/Sets the shortcut menu for the form

Enabled Gets/Sets a value indicating if the form is enabled

ImeMode Gets/Sets the state of an Input Method Editor

Data Properties Description

DataBindings Gets the data bindings for a control

Tag Gets/Sets an object that contains data about a control

Design Properties Description

Name Gets/Sets name for the form

DrawGrid Indicates whether or not to draw the positioning grid

GridSize Determines the size of the positioning grid

Locked Gets/Sets whether the form is locked

SnapToGrid Indicates if the controls should snap to the positioning grid

Layout Properties Description

AutoScale Indicates if the form adjusts its size to fit the height of the font

used on the form and scales its controls

AutoScroll Indicates if the form implements autoscrolling

AutoScrollMargin The margin around controls during auto scroll

AutoScrollMinSize The minimum logical size for the auto scroll region

DockPadding Determines the size of the border for docked controls

Location Gets/Sets the co-ordinates of the upper-left corner of the form

MaximumSize The maximum size the form can be resized to

MinimumSize The minimum size the form can be resized to

UNIT - 9 CREATING APPLICATIONS IN VB.NET 160

Size Gets/Sets size of the form in pixels

StartPosition Gets/Sets the starting position of the form at run time

WindowState Gets/Sets the form’s window state

Misc Properties Description

AcceptButton Gets/Sets the button on the form that is pressed when the user

uses the enter key

CancelButton Indicates the button control that is pressed when the user presses

the ESC key

KeyPreview Determines whether keyboard controls on the form are regis-

tered with the form

Language Indicates the current localizable language

Localizable Determines if localizable code will be generated for this object

Window Style Properties Description

ControlBox Gets/Sets a value indicating if a control box is displayed

HelpButton Determines whether a form has a help button on the caption

bar

Icon Gets/Sets the icon for the form

IsMdiContainer Gets/Sets a value indicating if the form is a container for MDI

child forms

MaximizeBox Gets/Sets a value indicating if the maximize button is displayed

in the caption bar of the form

Menu Gets/Sets the MainMenu that is displayed in the form

MinimizeBox Gets/Sets a value indicating if the minimize button is displayed

in the caption bar of the form

Opacity Determines how opaque or transparent the form is

ShowInTaskbar Gets/Sets a value indicating if the form is displayed in the Win-

dows taskbar

SizeGripStyle Determines when the size grip will be displayed for the form

TopMost Gets/Sets a value indicating if the form should be displayed as

the topmost form of the application

TransparencyKey A color which will appear transparent when painted on the

form

Option and Imports statements:

Option statement sets the number of options for rest of your code. The possibilities are –

Option Explicit: Set to On or Off- On is default. It requires the declaration of all variables before

they are used(this is default)

Option Compare: Set to Binary or Text. This specifies if strings are compared using binary or

text comparison operators.

Option Strict: Set to On or Off. Off is default. When you assign a value of one type to a variable

of another type. Visual Basic will consider that an error if this statement is on.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 161

Note: use option statement first thing in your code.

Imports

Used to import the namespace so you don’t have to qualify items in that namespace by listing the

entire namespace when you refer to them.

InputBox Function

It is used to get a string of text from the user. The Syntax is-

Public Function InputBox (Prompt as String[, Title as String [,=”” [, Default Response as String=””

[,XPos as integer= -1 [, Ypos as integer= -1]]]]) as String

Prompt: A String expression displayed as the message in Dialog box.

Title: A String expression displayed in the title bar of Dialog box.

Default Response: A String expression displayed in the Textbox as the default response if no

other input is provided.

XPos: The distance in the pixels of the left edge of the dialogbox from the left edge of the screen.

YPos: The distance in the pixels of the upper edge of the dialogbox from the top

edge of the screen.

MsgBox Function

It is used to display the message to the user.

The Syntax is-

Public Function MsgBox (Prompt as Object [, Buttons as MsgBoxStyle = MsgBoxStyle.OKOnly

[, Title as Object=Nothing]]) as MsgBoxResultArguments

Prompt: A String expression displayed as the message in Dialog box.

Buttons: The sum of values specifying the number and type of Buttons to display, the icon Style

to use, the identity of the default button and the modality of the message box.

Title: A String expression displayed in the title bar of Dialog box.

MsgBox Constants

Constant Value Description

OKOnly 0 Displays Ok Button

OKCancel 1 Displays Ok and Cancel Buttons

AbortRetryIgnore 2 Displays Abort, Retry and Ignore Buttons

YesNoCancel 3 Displays Yes,No and Cancel Buttons

YesNo 4 Displays Yes and No Buttons

RetryCancel 5 Displays Retry and Cancel Button

Critical 16 Shows Critical icon

Question 32 Shows Warning query icon

Exclamation 48 Shows Warning Message icon

Information 64 Shows Information Message icon

DefaultButton 1 0 First Button is default

UNIT - 9 CREATING APPLICATIONS IN VB.NET 162

DefaultButton2 256 Second Button is default

DefaultButton3 512 Third Button is default

Self Learning Exercise-2

True/False

g) In VB.NET forms are based on System.Forms.Windows.Form class.

h) MsgBox Function is used to display the message to the user

i) Option Compare specifies if strings are compared using binary or text comparison

operators.

9.7 Windows Controls

Control is an object that can be drawn on to the Form to enable or enhance user interaction with

the application. Examples of controls are TextBoxes, Buttons, Labels, Radio Buttons, etc. All

these Windows Controls are based on the Control class, the base class for all controls.

9.7.1 Label, LinkLabel

Label

Labels are those controls that are used to display text in other parts of the application. They are

based on the Control class.

LinkLabel

LinkLabel is similar to a Label but they display a hyperlink. Even multiple hyperlinks can be

specified in the text of the control and each hyperlink can perform a different task within the

application. They are based on the Label class which is based on the Control class.

Properties

ActiveLinkColor : used to set the color of active link.

LinkColor : used to set the color of link.

LinkVisited : used to set the color of visited link.

Events

LinkClicked : occurs when a link is clicked inside the link label

9.7.2 TextBox

Windows users should be familiar with textboxes. This control looks like a box and accepts input

from the user. The TextBox is based on the TextBoxBase class which is based on the Control

class. TextBoxes are used to accept input from the user or used to display text. By default we

can enter up to 2048 characters in a TextBox but if the Multiline property is set to True we can

enter up to 32KB of text

Some important properties in the Behavior section of the Properties Window for

TextBoxes.

Properties:

Enabled : Default value is True. To disable, set the property to False.

Multiline : Setting this property to True makes the TextBox multiline which allows

to accept multiple lines of text. Default value is False.

PasswordChar : Used to set the password character. The text displayed in the TextBox

UNIT - 9 CREATING APPLICATIONS IN VB.NET 163

will be the character set by the user. Say, if you enter *, the text that is

entered in the TextBox is displayed as *.

ReadOnly : Makes this TextBox readonly. It doesn’t allow to enter any text.

Visible : Default value is True. To hide it set the property to False.

Text : sets/gets the current text in the control

TextAlign : Allows to align the text from three possible options. The default value is

left and you can set the alignment of text to right or center.

Scrollbars : Allows to add a scrollbar to a Textbox. Very useful when the TextBox is

multiline. You have four options with this property. Options are are None,

Horizontal, Vertical and Both. Depending on the size of the TextBox

anyone of those can be used

Events

TextChanged : when the text of control is changed

Click : occurs when the text box is clicked

Methods

AppendText : Appends text to current text in textbox

Clear : clears all the text from the textbox

Copy : copies all the selected text in the text box to the clip board

Cut : moves the selected text to the clip board

Paste : replaces the selected text in the text box with the contents of clip board

Select : selects text in the text box

9.7.3 RichTextBox

RichTextBoxes are similar to TextBoxes but they provide some advanced features over the

standard TextBox. RichTextBox allows formatting the text, say adding colors, displaying par-

ticular font types and so on. The RichTextBox, like the TextBox is based on the TextBoxBase

class which is based on the Control class. These RichTextBoxes came into existence because

many word processors these days allow us to save text in a rich text format. With RichTextBoxes

we can also create our own word processors. We have two options when accessing text in a

RichTextBox, text and rtf (rich text format). Text holds text in normal text and rtf holds text in rich

text format

Properties

Multiline : Setting this property to True makes the TextBox multiline which allows

to accept multiple lines of text. Default value is False.

Readonly : Makes this TextBox readonly. It doesn’t allow to enter any text.

Visible : Default value is True. To hide it set the property to False.

Maxlength : Used to set the maximum no of characters the user can type into the

richtextbox

Lines : Used to set no. of lines of text

Wordwrap : Used to indicate the control to wrap the words

Text : Used to get/set the current text

UNIT - 9 CREATING APPLICATIONS IN VB.NET 164

SelectedText : Used to get/set the selected text

SelectedLength : Used to get/set the length of selected text

Methods

AppendText : Appends the text to the current text in RTB

Clear : Clears all the text from the RTB

Cut : Moves the current selection in RTB to the clipoard

Copy : Copies the current selection in RTB to the clipboard

CanPaste : Determines if you can paste information from the clip board

Find : Searches the text within the contents of Rich Text Box

Paste : Replaces the selected text in the text box with the contents of clip board

LoadFile : Loads the contents of specified file into Rich Text Box

SaveFile : Saves the contents of Rich Text Box in a file

SelectAll : Selects all the text in RTB

Events

Click : Occurs when the RTB is clicked

ReadOnlyChanged : Occurs when the readonly property is changed

TextChanged : Occurs when the text in RTB is changed

Example

Code for creating bold and italic text in a RichTextBox.

Drag a RichTextBox (RichTextBox1) and a Button (Button1) onto the form. Enter some text in

RichTextBox1, say, “We are working with RichTextBoxes”. Paste the following code in the click

event of Button1. The following code will search for text we mention in code and sets it to be

displayed as Bold or Italic based on what text is searched for.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles Button1.Click

RichTextBox1.SelectionStart = RichTextBox1.Find(“are”)

‘using the Find method to find the text “are” and setting it’s

‘return property to SelectionStart which selects the text to format

Dim ifont As New Font(RichTextBox1.Font, FontStyle.Italic)

‘creating a new font object to set the font style

RichTextBox1.SelectionFont = ifont

‘assigning the value selected from the RichTextBox the font style

RichTextBox1.SelectionStart = RichTextBox1.Find(“working”)

Dim bfont As New Font(RichTextBox1.Font, FontStyle.Bold)

RichTextBox1.SelectionFont = bfont

End Sub

When you run the above code and click Button1, the text “are” is displayed in Italic and the text

UNIT - 9 CREATING APPLICATIONS IN VB.NET 165

“working” is displayed in Bold font. The image below displays the output

9.7.4 Button

One of the most popular control in Visual Basic is the Button Control (previously Command

Control). They are the controls which we click and release to perform some action. Buttons are

used mostly for handling events in code, say, for sending data entered in the form to the database

and so on. The default event of the Button is the Click event and the Button class is based on the

ButtonBase class which is based on the Control class.

Properties

BackColor : Sets the background color of the button

BackGroundImage : Sets the background image of the button

Font : Style of the text that appears on the button

Text : Caption of the button

TextAlign : Specify where on the button the text should appear

Enabled : Specify whether control should be enabled at runtime (true by default)

Visible : Specify whether control should be visible at runtime(true by default)

Dock : Specify the layout of the control on form

Methods

Performclick : Causes a click event for a button

Events

Click : Causes when button is clicked

Gotfocus : Causes when button receives the focus

Lostfocus : Causes when button looses the focus

Self Learning Exercise-3

j) Make a label that will take us to ”www.yahoo.com”

k) Write an application code for setting the Color of Text with particular color

l) Write an application for Saving Files to RTF

9.7.5 CheckBox

CheckBoxes are those controls which gives us an option to select, say, Yes/No or True/False. A

checkbox is clicked to select and clicked again to deselect some option. When a checkbox is

selected a check (a tick mark) appears indicating a selection. The CheckBox control is based on

the TextBoxBase class which is based on the Control class.

Properties

BackgroundImag : Used to set a background image for the checkbox.

CheckAlign : Used to set the alignment for the CheckBox from a predefined list.

Checked : Default value is False, set it to True if you want the CheckBox to be

displayed as checked.

CheckState : Default value is Unchecked. Set it to True if you want a check to appear.

When set to Indeterminate it displays a check in gray background.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 166

FlatStyle : Default value is Standard. Select the value from a predefined list to set

the style of the checkbox.

ThreeState : This property is set to False by default. Set it to True to specify if the

Checkbox can allow three check states than two.

Events

CheckedChanged : Occurs when the checked property is changed

9.7.6 RadioButton

RadioButtons are similar to CheckBoxes but RadioButtons are displayed as rounded instead of

boxed as with a checkbox. Like CheckBoxes, RadioButtons are used to select and deselect

options but they allow us to choose from mutually exclusive options. The RadioButton control is

based on the ButtonBase class which is based on the Control class. A major difference between

CheckBoxes and RadioButtons is, RadioButtons are mostly used together in a group.

Properties

BackgroundImage : Used to set a background image for the RadioButton.

CheckAlign : Used to set the alignment for the RadioButton from a predefined list.

Checked : Default value is False, set it to True if you want the RadioButton to be

displayed as checked.

FlatStyle : Default value is Standard. Select the value from a predefined list to set

the style of the RadioButton.

Events

CheckedChanged : Occurs when the value of checked property changes.

9.7.7 ListBox

The ListBox control displays a list of items from which we can make a selection. We can select

one or more than one of the items from the list. The ListBox control is based on the ListControl

class which is based on the Control class.

Properties

HorizontalScrollBar: Displays a horizontal scroll bar to the listbox. Works when the listbox

had Multiple Columns.

Multicolumn : Default value is false, set it true if you want the list box to display

multiple columns

ScrollAlwaysVisible: Default value is set to False. Setting it to True will display both Vertical

and Horizontal scrollbar always.

SelectionMode : Default value is set to one. Select option None if you do not any item to

be selected. Select it to MultiSimple if you want multiple items to be

selected. Setting it to MultiExtended allows you to select multiple items

with the help of Shift, Control and arrow keys on the keyboard.

Sorted : Default value is set to False. Set it to True if you want the items dis-

played in the ListBox to be sorted by alphabetical order.

Items : Allows us to add the items we want to be displayed in the list box

UNIT - 9 CREATING APPLICATIONS IN VB.NET 167

Events

Selected Index : Occurs when the selected Index property has changed.

Changed

9.7.8 ComboBox

ComboBox is a combination of a TextBox and a ListBox. The ComboBox displays an editing

field (TextBox) combined with a ListBox allowing us to select from the list or to enter new text.

ComboBox displays data in a drop-down style format. The ComboBox class is derived from the

ListBox class

Properties

Items : Gets a collection of the items in combo box.

SelectedItem : Returns/sets item in the ComboBox.

SelectedText : Returns the selected text in textbox part of Combo Box.

Sorted : Sets the items in sorted order.

DropDownStyle : Allows us to set the look of the ComboBox. The default value is set to

DropDown which means that the ComboBox displays the Text set by

it’s Text property in the Textbox and displays it’s items in the

DropDownListBox below. Setting it to simple makes the ComboBox to

be displayed with a TextBox and the list box which doesn’t drop down.

Setting it to DropDownList makes the ComboBox to make selection

only from the drop down list and restricts you from entering any text in

the textbox.

Methods

FindString : Finds the firstitem in the combo box that begins with the indicated string

GetItemText : Get the item of an item

Select : Selects the range of text.

FindStringExact : Finds the item that matches the indicated string exactly.

Events

DropDown : Occurs when the drop down portion of ComboBox is shown.

Selected Index : Occurs when the selected Index property has changed.

Changed

Self Learning Exercise-4

m) Write an application to check a RadioButton’s state

n) Write an application that will show the selected item from ListBox in a TextBox

o) Write an application that will remove all the items from Combo Box

9.7.9 Picture Box

Picture Boxes are used to display images on them. The images displayed can be anything varying

from Bitmap, JPEG, GIF, PNG or any other image format files. The PictureBox control is based

on the Control class.

Notable property of the PictureBox Control in the Appearance section of the properties window

is the Image property which allows to add the image to be displayed on the PictureBox.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 168

Properties

BorderStyle : Indicate the border style for the picture box

Image : Indicate the image that is in the picture box

Events

Resize : Occurs when the picture Box is resized

SizeModeChanged : Occurs when size mode changes

As the picture box is derived directly from the control class, so we can say that picture box

inherits the properties, methods and events from control class such as click event.

Adding Images to PictureBox

Images can be added to the PictureBox with the Image property from the Properties window or

by following lines of code.

Private Sub Button1_Click(ByVal sender As System.Object,_

ByVal e As System.EventArgs) Handles Button1.Click

PictureBox1.Image = Image.FromFile(“C:\sample.gif”)

‘loading the image into the picturebox using the FromFile method of the image class

‘assuming a GIF image named sample in C: drive

End Sub

9.7.10 Scrollbars

Anyone familiar with windows knows that scrollbars are those vertical or horizontal controls that

display a scroll box or thumb that you can manipulate

There are two types of scrollbars- Horizontal & Vertical

Most controls that typically uses scrollbars come with them built in, such as multilane textboxes,

list controls and Combo Box. However you can use the scrollbars if you want to do some

custom work such as scrolling the image in picture box or letting the user get visual feedback

while setting numeric ranges, as when they are setting red, green and blue values to select a color.

Properties

LargeChange : Indicate the value added to or subtracted from to the value property

when the scrollbar it self is clicked

Maximum : Indicate the upper limit of scrollable range

Minimum : Indicate the lower limit of scrollable range

SmallChange : Indicate the value added to or subtracted from to the value property

when user clicks on arrow button

Value : Indicate the value corresponding to the current position of scrollbox

Events

Scroll : Occurs when the scroll box is moved

ValueChanged : Occurs when the value property has changed either by a scroll event or

programmatically

UNIT - 9 CREATING APPLICATIONS IN VB.NET 169

9.7.11 Timer

Timers let you create periodic events, timers are no longer controls but components, and they do

not appear in the window at run time. At design time they appear in the component tray under-

neath the form you have added them to.

You set how often you want timer to generate Tick events by setting the interval property(in

millisecond)

Each time a Tick event happens, you can execute code in a handler for this event just as you

would for any other event.

Note: In VB6 and before you could set a timer’s interval property to 0 to disable the timer, but

the minimum possible value for this property is now 1. you now use the enabled property to turn

timers on/off. You also can use the new start and stop methods to start and stop the timer.

Property

Enabled : Indicate whether the timer is running.

Interval : Indicate the time (in milliseconds) between timer Ticks

Methods

Start : Starts a timer

Stop : Stops a timer

Event

Tick : Occurs when the timer interval has elapsed (and timer is enabled)

Self Learning Exercise-5

True/False

p) PictureBoxes are used to display text on them

q) There are two types of scrollbars- Horizontal & Vertical

r) Timers let you create periodic events

9.8 Summary

l Options:sets the number of options for rest of your code

l Label: used to display the text that cannot be edited by the user

l LinkLabel: Based on the label class, supports, web-style hyperlinks to the internet and

other windows forms

l TextBox: Box like control in which you can enter text.

l Buttons: The plain control that you simply click and release provides the most popular

way of creating and handling an event in your code.

l Listbox: displays a list of items, from which user can select one or more items.

l Timers: lets you to create periodic events.

l Windows form: represents the window that will appear in your application. You place the

control on the form it self.

UNIT - 9 CREATING APPLICATIONS IN VB.NET 170

9.9 Glossary

AutoSize property A Label property that, when set to true, causes the label’s size

to display all the text in the text property

Boolean A value that can either be true or false

Button A rectangular button-shaped control that performs an action

when clicked with mouse

Caption property The property of many controls that determines text displays

somewhere on the control

CheckBox Control A control, which may appear alone or in groups, allow the user

to make yes/no or on/off selection.

Chr Function An intrinsic function that accepts a character code as an argu-

ment and returns the character that corresponds to the code

ComboBox A control that is combination of a text box and list box

Do Until loop A looping structure that causes one or more statements to re-

peat until its test expression is true

Do While loop A looping structure that causes one or more statements to re-

peat as long as an expression is true

Exit Do Stops the execution of Do..While or Do..Until loop

Exit For Stops the execution of For…Next loop

For Each…Next loop A loop designed specifically to access values fro arrays and

array like structure

For..Next loop A loop designed specifically to initialize, test and increment a

counter variable

If….Then A statement that can cause other statements to execute under

certain conditions

If….Then…Else A statement that will execute one group of statements if a con-

dition is true, or another group of statements if the condition is

false

If….Then…ElseIf A statement that is like a chain of If…Then…Else statements.

They perform their test s, one after the other, until one of them

found to be true.

Index A number that identifies a specific element within an array

Label A control that displays the text that cannot be changed or en-

tered by the user

ListBox A control that appears as box containing list of items

ListBox control A control that displays the list of items and also allows the user

to select one or more items from the list

PictureBox A control that displays a graphic image.

RadioButton Control A control that usually appears in groups and allows the user to

select one of the several possible options.

Step value The value added to the counter variable at the end of each

iteration of a For….Next loop

Timer Control Allows an application to automatically execute code at regular

time intervals

UNIT - 9 CREATING APPLICATIONS IN VB.NET 171

9.10 Further Readings AND REFERENCES

1 Gary Cornell, Jonathan Morrison:, “Programming in VB.NET: a guide for experience

Programmers”, Aspress publication, Delhi

2 Steven Holzner, “Visual Basic .NET Programming: Black Book”, Dreamtech Press,

New Delhi.

3 Tony Gaddis, Kip Irvine, Bruce Quenton, “Starting out with Visual Basic .NET pro-

gramming”, Dreamtech Press, New Delhi.

4 Jeffery R Shapiro, “Visual Basic .NET: The Complete Reference”, Tata Mcgraw Hill,

New Delhi.

5 www.startvbdotnet.com.

9.11 Answers to Self Learning Exercises

True/False

a) True

b) False

c) True

d) True

e) False

f) True

g) False

h) True

i) True

j) Make a label that will take us to www.yahoo.com

Drag a LinkLabel (LinkLabel1) onto the form. Write the following code on the click event of this

label.

Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, ByVal_

e As System.Windows.Forms.LinkLabelLinkClickedEventArgs)_

Handles LinkLabel1.LinkClicked

System.Diagnostics.Process.Start(“www.yahoo.com”)

‘using the start method of system.diagnostics.process class

‘process class gives access to local and remote processes

End Sub

k) Write an application code for setting the Color of Text with particular color

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _

System.EventArgs) Handles Button1.Click

RichTextBox1.SelectionStart = RichTextBox1.Find(“are”)

‘using the Find method to find the text “are” and setting it’s return

‘property to SelectionStart which selects the text

UNIT - 9 CREATING APPLICATIONS IN VB.NET 172

RichTextBox1.SelectionColor = Color.Blue

‘setting the color for the selected text with SelectionColor property

RichTextBox1.SelectionStart = RichTextBox1.Find(“working”)

RichTextBox1.SelectionColor = Color.Yellow

End Sub

l) Write an application for Saving Files to RTF

Drag two RichTextBoxes and two Buttons (Save, Load) onto the form. When you enter some

text in RichTextBox1 and click on Save button, the text from RichTextBox1 is saved into a rtf

(rich text format) file. When you click on Load button the text from the rtf file is displayed into

RichTextBox2. The code for that looks like this:

Private Sub Save_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Save.Click

RichTextBox1.SaveFile(“hello.rtf”)

‘using SaveFile method to save text in a rich text box to hard disk

End Sub

Private Sub Load_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Load.Click

RichTextBox2.LoadFile(“hello.rtf”)

‘using LoadFile method to read the saved file

End Sub

The files which we create using the SaveFile method are saved in the bin directory of the Win-

dows Application

m) Write an application to check a RadioButton’s state

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

If RadioButton1.Checked = True Then

TextBox1.Text = “Selected”

Else

TextBox1.Text = “Not Selected”

End If

End Sub

n) Write an application that will show the selected item from ListBox in a TextBox

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object,_

ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

TextBox1.Text = ListBox1.SelectedItem

‘using the selected item property

End Sub

UNIT - 9 CREATING APPLICATIONS IN VB.NET 173

o) Write an application that will remove all the items from Combo box

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

ComboBox1.Items.Clear()

‘using the clear method to clear the list box

End Sub

True/False

p) False

q) True

r) True

9.12 Unit End Questions

1 Write an application that will to remove a particular item from the List Box.

2 Write an application that will Count the number of Items in ComboBox on the click event

of a button

3 Write an application that will display some text when the Checkbox is checked

4 Can you create Windows Services using VB.Net

 Yes Yeses

 No No

5 Can you create Command Line applications using VB.Net

 Yes

 No

6 JIT (in .NET) stands for:

 Just in Time

 Job in Transit

 Java Intermediate Translation

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 174

Unit - 10: Object Oriented Programming in VB.NET

Structure of the Unit

10.0 Objectives

10.1 Introduction

10.2 Classes and Objects

10.2.1 Fields, Properties, Methods and Events

10.2.2 Creation of Console Based Application

10.2.3 Constructors and Destructors

10.3 Abstraction

10.4 Encapsulation

10.5 Inheritance

10.5.1 Access Modifiers

10.5.2 Inheritance Modifiers

10.5.3 Use of MyClass and MyBase Keyword

10.6 Polymorphism

10.6.1 Interfaces

10.6.2 Function Overloading

10.6.3 Function Overriding

10.7 Shadowing

10.8 Property Routines and System Windows

10.9 Event Procedure

10.9.1 Declare a delegate

10.9.2 Declare Event and Raise It

10.9.3 Handle the Event

10.10 Summary

10.11 Glossary

10.12 Further Readings

10.13 Answers to Self Learning Exercises

10.14 Unit End Questions

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 175

10.0 Objectives

After going through this unit you will be able to

l Understand object oriented concepts through VB.Net

l Appreciate Reusability of code

l Implement Inheritance and

l Apply Polymorphism

10.1 Introduction

Up to this unit we have discussed basic controls, their properties, methods and events. We have

discussed how to create interface and how to write the code corresponding to interface.

In this unit we will discuss object oriented concepts and their implementation in VB.NET such as

implementation of Inheritance, Polymorphism, Encapsulation, Shadowing etc.

You are supposed to take a brief idea of Objects Oriented Concepts before reading this unit.

10.2 Classes and Objects

Visual Basic .NET is Object-Oriented. Everything we do in Visual Basic involves objects in

some way or other and everything is based on the Object class. Controls, Forms, Modules, etc.

are all types of classes. Visual Basic .NET comes with thousands of built-in classes which are

ready to be used. Let’s take a closer look at Object-Oriented Programming in Visual Basic. We

will see how we can create classes and objects, how to inherit one class from other, what is

polymorphism, how to implement interfaces and so on. We will work with Console Applications

here as they are simple to code.

Classes are types, and Objects are instances of the Class. Classes and Objects are very much

related to each other. Without objects you can’t use a class. In Visual Basic we create a class

with the Class statement and end it with End Class. The Syntax for a Class looks as follows:

Public Class Test

 ——Variables

 ——Methods

 ——Properties

 ——Events

End Class

The above syntax creates a class named Test. To create a object for this class we use the new

keyword and that looks like this:

Dim obj as new Test()

or

Dim object as Test = new Test()

The following code shows how to create a Class and access the class with an Object. Open a

Console Application and place the following code in it.

Module Module1

Imports System.Console

Sub Main()

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 176

Dim obj As New Test()

‘creating a object obj for Test class

obj.disp()

‘calling the disp method using obj

Read()

End Sub

End Module

Public Class Test

‘creating a class named Test

Sub disp()

‘a method named disp in the class

Write(“Welcome to OOP”)

Read()

End Sub

End Class

Output of above code is the image below.

10.2.1 Fields, Properties, Methods and Events

Fields, Properties, Methods, and Events are members of the class. They can be declared as

Public, Private, Protected, Friend or Protected Friend.

Fields of a class are also called class’s data members.

Fields and Properties represent information that an object contains. Fields of a class are like

variables and they can be read or set directly. For example, if you have an object named House,

you can store the numbers of rooms in it in a field named Rooms. It looks like this:

Public Class House

 Public Rooms As Integer

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 177

End Class

Properties are retrieved and set like fields but are implemented using Property Get and Property

Set procedures which provide more control on how values are set or returned.

Methods represent the object’s built-in procedures. For example, a Class named Country may

have methods named Area and Population. You define methods by adding procedures, Sub

routines or functions to your class. For example, implementation of the Area and Population

methods discussed above might look like this

Public Class Country

Public Sub Area()

Write(“————”)

End Sub

Public Sub population()

Write(“————”)

End Sub

End Class

Events allow objects to perform actions whenever a specific occurrence takes place. For ex-

ample when we click a button, a click event occurs and we can handle that event in an event

handler.

10.2.2 Creation of Console Based Application

There’s another new type of Visual Basic application in VB.NET-console applications. These

applications are command line based and run in DOS window. This gives the feeling once again

that VB.NET is following lead of Java because Java applications run in DOS window in win-

dows (Visual Basic itself has not interacted with DOS for years), However the change is a

welcome one, because it provides us with an option for very simple programming without wor-

rying about user interface implementation and issues.

To create Console application, Select, File->New->Project menu item then select Console ap-

plication in the template box.

In this case because there is no user interface VB opens the project directly to a code window.

The code looks like this:

Module Module1

Sub main()

End Sub

End Module

Console applications are based on VB Modules that are specifically designed to hold code that

is not attached to a form or other such class. Notice the Sub main() and End Sub. When console

application is run, the statements inside Sub and End Sub block run automatically.

We can display a message on the console by using WriteLine/Write method, a prewritten method

available to us in VB.NET. This method is part of System.Console class, which in turn is part of

the System namespace. The System.Console class is part of the .NET framework class library,

along with thousands of other classes. To organize all those classes the .NET uses namespace

this gives classes their own space and stops conflicts between the various name in such classes

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 178

For example:

Module Module1

Sub main()

 System.Console.WriteLine(“Hello Welcome to VB”)

 Read()

End Sub

End Module

When you run this code by selecting the Debug->Start menu item, it displays our message and

prompt about the enter key like this

Hello Welcome to VB

_

Module Module1

Sub main()

System.Console.Write(“Hello Welcome to VB”)

Read()

End Sub

End Module

When you run this code by selecting the Debug->Start menu item, it displays our message and

prompt about the enter key like this

Hello Welcome to VB_

You can also use write a method so that it displays your message but does not wait for prompt

about the enter key.

Fields, properties, methods and events are only part of OOP. Generally speaking a language is

object oriented if it supports Abstraction, Encapsulation, Polymorphism and Inheritance.

10.2.3 Constructors and Destructors

A constructor is a special member function whose task is to initialize the objects of it’s class. This

is the first method that is run when an instance of a type is created. A constructor is invoked

whenever an object of it’s associated class is created. If a class contains a constructor, then an

object created by that class will be initialized automatically. We pass data to the constructor by

enclosing it in the parentheses, following the class name when creating an object. Constructors

can never return a value, and can be overridden to provide custom initialization functionality. In

Visual Basic we create constructors by adding a Sub procedure named New to a class. The

following code demonstrates the use of constructors in Visual Basic.

Module Module1

Sub Main()

Dim con As New Constructor(10)

WriteLine(con.display())

‘storing a value in the constructor by passing a value(10) and calling it with the

‘display method

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 179

Read()

End Sub

End Module

Public Class Constructor

Public x As Integer

Public Sub New(ByVal value As Integer)

‘constructor

x = value

‘storing the value of x in constructor

End Sub

Public Function display() As Integer

Return x

‘returning the stored value

End Function

End Class

A destructor, also know as finalizer, is the last method run by a class. Within a destructor we can

place code to clean up the object after it is used, which might include decrementing counters or

releasing resources. We use Finalize method in Visual Basic for this and the Finalize method is

called automatically when the .NET runtime determines that the object is no longer required.

When working with destructors we need to use the overrides keyword with Finalize method as

we will override the Finalize method built into the Object class. We normally use Finalize method

to deallocate resources and inform other objects that the current object is going to be destroyed.

Because of the nondeterministic nature of garbage collection, it is very hard to determine when a

class’s destructor will be called. The following code demonstrates the use of Finalize method.

Module Module1

Sub Main()

Dim obj As New Destructor()

End Sub

End Module

Public Class Destructor

Protected Overrides Sub Finalize()

Write(“hello”)

Read()

End Sub

End Class

When you run the above code, object obj of class, destructor is created and “Hello” is dis-

played. When you close the DOS window, obj is destroyed.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 180

Self Learning Exercise-1

i. Fill in the Blanks

a) The new keyword is used to create __________ of a class.

b) Class statement ends with ____________.

c) ____________of a class also called its data members.

d) ____________represent the objects built in procedures.

e) In console application ____________ method is used to display message on con-

sole.

f) ____________ is a special member function whose task is to initialize the object of its

class.

g) A destructor also known as ____________ , is last method run by a class.

10.3 Abstraction

An abstract class is the one that is not used to create objects. An abstract class is designed to act

as a base class (to be inherited by other classes). Abstract class is a design concept in program

development and provides a base upon which other classes are built. Abstract classes are similar

to interfaces. After declaring an abstract class, it cannot be instantiated on it’s own, it must be

inherited. Like interfaces, abstract classes can specify members that must be implemented in

inheriting classes. Unlike interfaces, a class can inherit only one abstract class. Abstract classes

can only specify members that should be implemented by all inheriting classes.

Creating Abstract Classes

In Visual Basic .NET we create an abstract class by using the MustInherit keyword. An abstract

class like all other classes can implement any number of members. Members of an abstract class

can either be Overridable (all the inheriting classes can create their own implementation of the

members) or they can have a fixed implementation that will be common to all inheriting members.

Abstract classes can also specify abstract members. Like abstract classes, abstract members

also provide no details regarding their implementation. Only the member type, access level,

required parameters and return type are specified. To declare an abstract member we use the

MustOverride keyword. Abstract members should be declared in abstract classes.

Implementation of Abstract Class

When a class inherits from an abstract class, it must implement every abstract member defined

by the abstract class. Implementation is possible by overriding the member specified in the ab-

stract class. The following code demonstrates the declaration and implementation of an abstract

class.

Module Module1

Public MustInherit Class AbstractClass

‘declaring an abstract class with MustInherit keyword

Public MustOverride Function Add() As Integer

Public MustOverride Function Mul() As Integer

‘declaring two abstract members with MustOverride keyword

End Class

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 181

Public Class AbstractOne

 Inherits AbstractClass

‘implementing the abstract class by inheriting

Dim i As Integer = 20

Dim j As Integer = 30

‘declaring two integers

Public Overrides Function Add() As Integer

Return i + j

End Function

‘implementing the add method

Public Overrides Function Mul() As Integer

Return i * j

End Function

‘implementing the mul method

End Class

Sub Main()

Dim abs As New AbstractOne()

‘creating an instance of AbstractOne

WriteLine(“Sum is” & “ “ & abs.Add())

WriteLine(“Multiplication is” & “ “ & abs.Mul())

‘displaying output

Read()

End Sub

End Module

The output of above code is the image below.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 182

Self Learning Exercise-2

i. Fill in the Blanks

h) We can’t instantiate an ____________.

i) To declare an abstract member we use _____________ keyword.

ii. True/False

a) When a class inherits from an abstract class, it must implement every abstract member

defined by the abstract class.

10.4 Encapsulation

It is all about the separation between implementation and interface. In other words when you

encapsulate an object, you make its code and data internal and no longer accessible to the

outside except through a well defined interface. This is also called as data hiding.

Encapsulation allows developers to build objects that can be changed without affecting the client

code that uses them. The interface of the object, the set of exposed properties and methods of

the object, doesn’t change even if the internal implementation does. Encapsulation has been

supported by VB since version 4.0.

Implementation of Encapsulation

Lets take a look at two trivial examples of a Person class and implement the same functionality in

two different ways.

Person Class Implementation#1

Public Class Person

Private m_sFirstName as String

Private m_sLastName as String

Public Property FirstName() as String

Get

 FirstName = m_sFirstName

 End Get

 Set(ByVal Value as String)

 m_sFirstName = Value

 End Set

End Property

Public Property LastName() as String

 Get

LastName = m_sLastName

 End Get

 Set(ByVal Value as String)

m_sLastName = Value

 End Set

End Property

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 183

ReadOnly Property FullName() as String

 Get

FullName = m_sLastName & “, “ & m_sFirstName

 End Get

 End Property

End Class

Person Class Implementation #2

Public Class Person

Private m_sFirstName as String

Private m_sLastName as String

Private m_sFullName as String

Public Property FirstName() as String

 Get

FirstName = m_sFirstName

 End Get

 Set(ByVal Value as String)

m_sFirstName = Value

m_sFullName = m_sLastName & “, “ & m_sFirstName

 End Set

 End Property

 Public Property LastName() as String

 Get

LastName = m_sLastName

 End Get

 Set(ByVal Value as String)

m_sLastName = Value

m_sFullName = m_sLastName & “, “ & m_sFirstName

 End Set

 End Property

 ReadOnly Property FullName() as String

 Get

FullName = m_sFirstName

 End Get

 End Property

End Class

This illustrates how the internal implementation of the classes is different but the external interface

encapsulates how the class works internally. The goal of encapsulation is to allow a developer to

transparently use different implementations of the same object.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 184

Self Learning Exercise-3

i. Fill in the Blanks

j) Encapsulation is also known as ____________.

ii. True/False

b) Encapsulation is separation between implementation and interface.

c) When you encapsulate an object, you make only its code internal and no longer

accessible to the outside except through a well defined interface .

10.5 Inheritance

A key feature of OOP is reusability. It’s always time saving and useful if we can reuse something

that already exists rather than trying to create the same thing again and again. Reusing the class

that is tested, debugged and used many times can save us time and effort of developing and

testing it again. Once a class has been written and tested, it can be used by other programs to suit

the program’s requirement. This is done by creating a new class from an existing class. The

process of deriving a new class from an existing class is called Inheritance. The old class is called

the base class and the new class is called derived class. The derived class inherits some or

everything of the base class. In Visual Basic we use the Inherits keyword to inherit one class from

other. The general form of deriving a new class from an existing class looks as follows:

Public Class One

—

—

End Class

Public Class Two

 Inherits One

—

—

End Class

Derived classes inherit and can extend the properties, methods, events, fields and constants

defined in the base class. The exceptions here are constructors which are not inherited.

Implementation of Inheritance

Using Inheritance we can use the variables, methods, properties, etc. from the base class and

add more functionality to it in the derived class. The following code demonstrates the process of

Inheritance in Visual Basic.

Imports System.Console

Module Module1

Sub Main()

Dim ss As New Two()

WriteLine(ss.sum())

Read()

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 185

End Sub

End Module

Public Class One

‘base class

Public i As Integer = 10

Public j As Integer = 20

Public Function add() As Integer

Return i + j

End Function

End Class

Public Class Two

 Inherits One

‘derived class. class two inherited from class one

Public k As Integer = 100

Public Function sum() As Integer

‘using the variables, function from base class and adding more functionality

Return i + j + k

End Function

End Class

Output of above code is sum of i, j, k as shown in the image below.

By default any class can serve as a base class unless you explicitly mark it with NotInheritable

keyword

Visual Basic supports multilevel inheritance not multiple inheritance , multiple inheritance is achieved

through the feature of multiple interfaces.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 186

10.5.1 Access modifiers

Public: Entities declared as public have public access. There are no restrictions on the accessi-

bility of public entities.

Protected: Entities declared as protected have protected access. They are accessible only from

within their own class or from a derived class. You can use protected only at class level.

Friend: Entities declared as friend have friend access. They are accessible only from within the

program that contains their declaration and from anywhere else in the same assembly.

Protected Friend: Entities declared as Protected Friend have Protected Friend access. The

rules for Protected and Friend apply to Protected Friend as well.

Private: Entities declared as private have Private access. They are accessible only from within

their declaration context, including from any nested procedure. You can use private only at mod-

ule, namespace or file level.

10.5.2 Inheritance Modifiers

By default, all classes can serve as base classes in VB.NET. However you can use two class

level modifiers called inheritance modifiers to modify their behavior.

NotInheritable: prevents a class from being used as base class.

MustInherit: Indicates that the class is intended for use as a base class only.

Note: Objects of MustInherit class cannot be created directly, they can be created only as base

class instances of derived class.

10.5.3 Use of MyClass and MyBase Keyword

This example will demonstrate you the use of MyClass and MyBase keyword

Class Parent

Public Overridable Sub p1()

Console.Write(“Parent.p1”)

End Sub

Public Sub p2()

MyClass.p1()

‘Implementing keyword MyClass here tells all derived classes to refer to the base / abstract class

wherein the keyword MyClass appears

End Sub

End Class

Class Child

Inherits Parent

Public Overrides Sub p1()

Console.Write(“Child.p1”)

MyBase.p2()

End Sub

End Class

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 187

Sub Main()

Dim p As Parent

Dim c As Child

p = New Parent()

p.p1() ‘OK

p.p2() ‘OK

p = New Child()

p.p1() ‘stack overflow error is prevented

‘If MyClass is not implemented above in the base class, you

 will get a stack overflow error.

‘So why does the stack oveflow occur?

‘*Parent.p2() calls Parent.p1()

‘*Parent.p1() is polymorphic because it can be overridden

‘*Child.p1() overrides Parent.p1() so any calls to ‘Parent.p1() will actually

‘call Child.p1() if you have an instance of class Child.

‘*Child.p1() calls MyBase.p2()

‘*MyBase.p2() is actually Parent.p2()

‘Now if you are still with me, the pitfall comes when you have an instance of class Child and ‘call

procedures p1 and p2. Calling p1 produces the following execution flow:

‘Child.p1 -> Parent.p2 -> Child.p1 -> Parent.p2 -> Child.p1 -> etc.

‘and the cycle repeats until we have no stack space left. Calling p2 produces the following

‘execution flow:

‘Child.p2 -> Child.p1 -> Parent.p2 -> Child.p1 -> Parent.p2 -> Child.p1 -> etc.

‘Implementing the keyword MyClass in the base class tells all derived classes to use the method

‘in the base class itself and therefore, stack overflow error is prevented

p.p2() ‘stack overflow error is prevented

c = New Child()

c.p1() ‘stack overflow error is prevented

c.p2() ‘stack overflow error is prevented

End Sub

Self Learning Exercise-4

i. Fill in the Blanks

k) Reusability can be achieved through ____________.

l) ____________ prevents a class from being used as base class.

ii. True/False

d) The process of deriving a new class from an existing class is called Inheritance.

e) Visual Basic we use the Inherited keyword to inherit one class from other.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 188

10.6 Polymorphism

Polymorphism is one of the vital features of OOP. It means ”one name, many forms”. It is also

called Overloading which means the use of same thing for different purposes. Using Polymor-

phism we can create as many functions we want with one function name but with different argu-

ment list. The function performs different operations based on the argument list in the function

call. The exact function to be invoked will be determined by checking the type and number of

arguments in the function.

VB Handles polymorphism with both late binding and multiple interfaces.

10.6.1 Interfaces

Interfaces allow creation of definitions for component interaction. They also provide another

way of implementing polymorphism. Through interfaces, we specify methods that a component

must implement without actually specifying how the method is implemented. We just specify the

methods in an interface and leave it to the class to implement those methods. Visual Basic .NET

does not support multiple inheritance directly but using interfaces we can achieve multiple inher-

itance. We use the Interface keyword to create an interface and implements keyword to imple-

ment the interface. Once you create an interface you need to implement all the methods specified

in that interface. The following code demonstrates the use of interface.

Imports System.Console

Module Module1

Sub Main()

Dim OneObj As New One()

Dim TwoObj As New Two()

‘creating objects of class One and Two

OneObj.disp()

OneObj.multiply()

TwoObj.disp()

TwoObj.multiply()

‘accessing the methods from classes as specified in the interface

End Sub

End Module

Public Interface Test

‘creating an Interface named Test

Sub disp()

Function Multiply() As Double

‘specifying two methods in an interface

End Interface

Public Class One

 Implements Test

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 189

‘implementing interface in class One

Public i As Double = 12

Public j As Double = 12.17

Sub disp() Implements Test.disp

‘implementing the method specified in interface

WriteLine(“sum of i+j is” & i + j)

Read()

End Sub

Public Function multiply() As Double Implements Test.Multiply

‘implementing the method specified in interface

WriteLine(i * j)

Read()

End Function

End Class

Public Class Two

 Implements Test

‘implementing the interface in class Two

Public a As Double = 20

Public b As Double = 32.17

Sub disp() Implements Test.disp

WriteLine(“Welcome to Interfaces”)

Read()

End Sub

Public Function multiply() As Double Implements Test.Multiply

WriteLine(a * b)

Read()

End Function

End Class

Output of above code is the image below.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 190

10.6.2 Function Overloading

The following code demonstrates the implementation of Polymorphism through function over-

loading.

Module Module1

Sub Main()

Dim two As New One()

WriteLine(two.add(10)) ‘calls the function with one argument

WriteLine(two.add(10, 20)) ‘calls the function with two arguments

WriteLine(two.add(10, 20, 30)) ‘calls the function with three arguments

Read()

End Sub

End Module

Public Class One

Public i, j, k As Integer

Public Function add(ByVal i As Integer) As Integer

‘function with one argument

Return i

End Function

Public Function add(ByVal i As Integer, ByVal j As Integer) As Integer

‘function with two arguments

Return i + j

End Function

Public Function add(ByVal i As Integer, ByVal j As Integer, ByVal k As Integer) As Integer

‘function with three arguments

Return i + j + k

End Function

End Class

Output of the above code is shown in the image below.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 191

10.6.3 Function Overriding

By default, a derived class Inherits methods from its base class. If an inherited property or

method needs to behave differently in the derived class it can be overridden; that is, you can

define a new implementation of the method in the derived class. The Overridable keyword is

used to mark a function as overridable. The keyword Overrides is used to mark that a function

is overriding some base class function. Let us see an example.

Import the System namespace (already available in .NET).

Imports System

Our simple base class:

Class Human

 ‘Speak() is declared Overridable

 Overridable Public Sub Speak()

 Console.Writeline (“Speaking”)

 End Sub

End Class

Now, let us derive a class from Human:

An Indian is a Human:

Class Indian

 Inherits Human

 ‘Let us make Indian speak Hindi, the National Language

 ‘in India

 ‘Speak() is overriding Speak() in its base class (Human)

 Overrides Public Sub Speak()

 Console.Writeline (“Speaking Hindi”)

 ‘Important: As you expect, any call to Speak() inside this class

 ‘will invoke the Speak() in this class. If you need to

 ‘call Speak() in base class, you can use MyBase keyword.

 ‘Like this

 ‘Mybase.Speak()

 End Sub

End Class

Just a class to put our Main().

Class MainClass

 ‘Our main function

 Shared Sub Main()

 ‘Tom is a generic Human

 Dim Tom as Human

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 192

 Tom=new Human

 ‘Tony is a human and an Indian

 Dim Tony as Indian

 Tony=new Indian

 ‘This call will invoke the Speak() function

 ‘in class Human

 Tom.Speak()

 ‘This call will invoke the Speak() function

 ‘in class Indian

 Tony.Speak()

 End Sub

End Class

Self Learning Exercise-5

i. Fill in the Blanks

m) _________________means “one name, multiple forms”.

n) ______________ allow us to create definitions for component interaction.

o) Visual Basic .NET does not support multiple inheritance directly but using

______________ we can achieve multiple inheritance.

ii. True/False

f) Polymorphism is known as Data Hiding.

g) Only the early binding is handled by VB.NET.

h) Visual Basic .NET doesn’t support multiple inheritance but it can be achieved through

feature of multiple interface.

i) Overloading allows us to add new versions of existing methods as long as their param-

eter lists are different.

j) Method signature of an overridden method can be different from the base class when

we use the keyword overrides.

10.7 Shadowing

Shadowing turns out that you can have programming element in the same module, class or struc-

ture with the same name but different scope when you have two such elements and the code

refers to the name they share, the compiler uses the element with the narrower, closer scope.

This is known as shadowing. To implement shadowing we use the keyword shadows.

Overriding as the term says is to override the base class implementation or provide a

new implementation in the derived class. We can override members in the base class in VB.Net

using the keyword Overrides. Method signature of the overridden methods should be same as

the base class methods i.e. overridden members must accept the same data type and number of

arguments.

This is a VB.Net concept by which we can provide a new implementation for the base class

member without overriding the member. We can shadow a base class member in the derived

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 193

class by using the keyword “Shadows”. The method signature, access level and return type of

the shadowed member can be completely different than the base class member.

Overloading allows us to add new versions of existing methods as long as their parameter lists

are different. Overriding allows our subclass to entirely replace the implementation of a base

class method with a new method that has the same method signature. As we’ve just seen, we can

even combine these concepts to not only replace the implementation of a method from the base

class, but also to simultaneously overload that method with other implementations that have

different method signatures.

However, any time we override a method using the Overrides keyword, we are subject to the

rules governing virtual methods – meaning that the data type of the object controls which imple-

mentation of the method is invoked. Sometimes we may want to be able to create a new imple-

mentation of a method in our subclass – replacing the implementation in the base class – but we

don’t want to follow the rules governing virtual methods. In particular, we may want to write

client code that can use our object as though it were literally of the base class data type – totally

being able to ignore the implementation in the subclass. This is a primary use for the Shadows

keyword.

The Shadows keyword can also be used to entirely change the nature of a method or other

interface element from the base class – though that is something that should be done with great

care since it can seriously reduce the maintainability of our code. Normally, when we create an

Employee object, we expect that it can only act as an Employee, but also as a Person since

Employee is a subclass of Person. However, with the Shadows keyword we can radically alter

the behavior of an Employee class so it doesn’t act like a Person. This sort of deviation from

what is normally expected invites bugs and makes code hard to understand and maintain. Let’s

see how Shadows can be used to override non- virtual methods.

Overriding Non-Virtual Methods

Earlier in the chapter we discussed virtual methods and how they are automatically created in

VB.NET when the Overrides keyword is employed. We can also implement non-virtual methods

in VB.NET. Non-virtual methods are methods that cannot be overridden and replaced by

subclasses, and so most methods we implement are non-virtual.

If we don’t use the Overridable keyword when declaring a method, it is non-virtual. Non-virtual

methods are easy to understand. Since they can’t be overridden and replaced, we know that

there’s only one method by that name, with that method signature and so when we invoke it there

is no ambiguity about which specific implementation will be called. The reverse is true with virtual

methods, where there may be more than one method of the same name, with the same method

signature and so we need to understand the rules governing which implementation will be invoked.

We can override non-virtual methods by using the Shadows keyword. In fact, we can use the

Shadows keyword to override methods regardless of whether or not they have the Overridable

keyword in the declaration.

This can be very dangerous. The designer of a base class must use care when marking a method

as Overridable – ensuring that the base class will continue to operate properly even when that

method is replaced by other code in a subclass. Designers of base classes typically just assume

that if they don’t mark a method as Overridable that it will be called and not overridden. Thus,

overriding a non-virtual method by using the Shadows keyword can have unexpected and

potentially dangerous side effects since we are doing something that the base class designer

assumed would never happen.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 194

Shadowed methods follow different rules than virtual methods when they are invoked. In other

words, they don’t act like regular overridden methods, but instead they follow a different set of

rules to determine which specific implementation of the method will be invoked. In particular,

when we call a non-virtual method, it is the data type of the variable that refers to the object that

indicates which implementation of the method is called – not the data type of the object as with

virtual methods.

To override a non-virtual method we can use the Shadows keyword instead of the Overrides

keyword. To see how this works, let’s add a new property to our base Person class:

Public ReadOnly Property Age() As Integer

 Get

 Return DateDiff(DateInterval.Year, Now(), BirthDate())

 End Get

End Property

We’ve added a new method to our base class – and thus automatically to our subclass – called

Age.

This code has a bug – on purpose, for illustration. The DateDiff parameters are in the wrong

order, so we’ll get negative age values from this routine. Why an intentional bug? Sometimes

there are bugs in base classes – sometimes in base classes we didn’t write and cannot fix be-

cause we don’t have the source code. In this case we walk through the use of the Shadows

keyword to help address a bug in our base class – acting under the assumption that for some

reason we can’t actually go fix the code in the Person class. We are not using the Overridable

keyword on this method, so any subclass is prevented from overriding the method by using the

Overrides keyword. The obvious intent and expectation of this code is that all subclasses will use

this implementation and will not override it with their own.

However, the base class cannot prevent a subclass from shadowing a method, and so it doesn’t

matter whether we use Overridable or not – either way works fine for shadowing.

Before we shadow the method, let’s see how it works as a regular non-virtual method. First, we

need to change our form to use this new value. Add a text box named txtAge and a related label

to the form:

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 195

Next let us change the code behind the button to use the Age property. We will also include the

code to display the data on the form right here to keep things simple and clear:

Private Sub btnOK_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnOK.Click

 Dim objPerson As Employee = New Employee()

 With objPerson .Name = “Fred”

 .BirthDate = #1/1/1960#

txtName.Text = .Name

txtBirthDate.Text = Format(.BirthDate, “Short date”)

txtAge.Text = .Age

End With

End Sub

Also, change the birth date value to something that will be valid for an Employee, since we don’t

want that to error out on us now.

At this point we can run the application and the age field should appear in our display as ex-

pected – though with a negative value due to the bug we introduced. There is no magic or

complexity here – this is basic programming with objects and basic use of inheritance as we

discussed at the beginning of this chapter.

Of course we don’t want a bug in our code – but if we assume we don’t have access to the

Person class, and since the Person class doesn’t allow us to override the Age method – what are

we to do? The answer lies in the Shadows keyword – which allows us to override the method

anyway.

Let us shadow the Age method within the Employee class – overriding and replacing the imple-

mentation in the Person class even though it is not marked as Overridable. Add the following

code to Employee:

Public Shadows ReadOnly Property Age() As Integer

Get

Return DateDiff(DateInterval.Year, BirthDate(), Now())

End Get

End Property

In many ways this looks very similar to what we have seen with the Overrides keyword, in that

we are implementing a method in our subclass with the same name and parameter list as a

method in the base class. In this case, however, we’ll find some different behavior when we

interact with the object in different ways.

Remember that our code in the form is currently declaring a variable of type Employee and is

creating an instance of an Employee object:

Dim objPerson As Employee = New Employee()

This is the simple case, and not surprisingly when we run the application now we will see that the

value of the age field is correct – indicating that we just ran the implementation of the Age

property from the Employee class. At this point we’re seeing the same behavior that we got from

overriding with the Overrides keyword.

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 196

Let us take a look at the other simple case – where we are working with a variable and object

that are both of data type Person. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim objPerson As Person = New Person()

 With objPerson

 .Name = “Fred”

 .BirthDate = #1/1/1960#

 txtName.Text = .Name

 txtBirthDate.Text = Format(.BirthDate, “Short date”)

 txtAge.Text = .Age

 End With

End Sub

We have a variable of type Person and an object of that same type. We would expect that the

implementation in the Person class would be invoked in this case, and that is exactly what

happens – the age field will display the original negative value, indicating that we’re invoking the

buggy implementation of the method directly from the Person class. Again this is exactly the

behavior we would expect from a method overridden via the Overrides keyword.

This next one is where things get truly interesting. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim objPerson As Person = New Employee()

 With objPerson

 .Name = “Fred”

 .BirthDate = #1/1/1960#

 txtName.Text = .Name

 txtBirthDate.Text = Format(.BirthDate, “Short date”)

 txtAge.Text = .Age

 End With

End Sub

Now we are declaring the variable to be of type Person, but are creating an object that is of data

type Employee. We did this when exploring the Overrides keyword as well – and in that case

we discovered that the version of the method that was invoked was based on the data type of

the object. The BirthDate implementation in the Employee class was invoked.

If we run the application now we will find that the rules are different when the Shadows keyword

is used. In this case, the implementation in the Person class is invoked – giving us the buggy

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 197

negative value. The implementation in the Employee class is ignored – we get the exact opposite

behavior to that with Overrides.

The following table summarizes which method implementation is invoked based on the variable

and object data types when using shadowing or non-virtual methods:

Variable Object Method invoked

Base Base Base

Base Subclass Base

Subclass Subclass Subclass

In most cases the behavior we’ll want for our methods is accomplished by the Overrides key-

word and virtual methods. However, in those cases where the base class designer doesn’t allow

us to override a method and we want to do it anyway, the Shadows keyword provides us with

the needed functionality.

Shadowing Arbitrary Elements

The Shadows keyword can be used not only to override non-virtual methods, but it can be used

to totally replace and change the nature of a base class interface element. When we override a

method we are providing a replacement implementation of that method with the same name and

method signature. Using the Shadows keyword we can do more extreme things – like changing

a method into an instance variable, or changing a Property into a Function.

However, this can be very dangerous, since any code written to use our objects will naturally

assume that we implement all the same interface elements and behaviors as our base class – since

that is the nature of inheritance.

By totally changing the nature of an interface element, we can cause a great deal of confusion for

programmers who will be interacting with our class in the future.

To see how we can replace an interface element from the base class, let’s entirely change the

nature of the Age property. In fact, let’s change it from being a readonly property method to

being a read-write property. We could get even more extreme – changing it to a Function or Sub.

To do this, remove the Age property from the Employee class and add the following code:

Public Shadows Property Age() As Integer

 Get

 Return DateDiff(DateInterval.Year, BirthDate(), Now())

 End Get

 Set(ByVal Value As Integer)

 BirthDate() = DateAdd(DateInterval.Year, -Value, Now())

 End Set

End Property

With this change, the very nature of the Age method has changed. It is no longer a simple read

only property, now it is a read-write property that includes code to calculate an approximate

birth date based on the age value supplied.

As it stands, our application will continue to run just fine. This is because we’re only using the

read- only functionality of the property in our form. We can change the form to make use of the

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 198

new read- write functionality:

Private Sub btnOK_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim objPerson As Person = New Person()

 With objPerson

 .Name = “Fred”

 .BirthDate = #1/1/1960#

 .Age = 20

 txtName().Text = .Name

 txtBirthDate().Text = Format(.BirthDate, “Short date”)

 txtAge().Text = .Age

 End With

End Sub

This will report a syntax error, however.

The variable we are working with, objPerson, is of data type Person – and that data type does

not provide a writable version of the Age property. This means that, in order to use our enhanced

functionality, we must be using a variable and object of type Employee:

Dim objPerson As Employee = New Employee()

If we now run the application and click the button we’ll see that the Age is displayed as 20, and

the birth date is now a value calculated based on that age value – indicating that we are now

running the shadowed version of the Age method as implemented in the Employee class.

As if that wasn’t odd enough, we can do some even more strange and dangerous things. We can

change Age into a variable and we can even change its scope. For instance, we can comment out

the Age property code in the Employee class and replace it with the following:

Private Shadows Age As String

At this point we have changed everything. Age is now a String instead of an Integer. It is a

variable instead of a Property or Function. It has Private scope instead of Public scope.

At this point our Employee object is totally incompatible with the Person data type – something

that shouldn’t occur normally when using inheritance.

This means that the code we wrote in Form1 will no longer work. The Age property is no longer

accessible and can no longer be used and so our project will no longer compile. This directly

illustrates the danger in shadowing a base class element such that its very nature or scope is

changed by the subclass.

Since this change prevents our application from compiling, remove the line in the Employee class

that shadows Age as a String variable – and uncomment the shadowed Property routine.

Public Shadows Property Age() As Integer

 Get

 Return DateDiff(DateInterval.Year, BirthDate(), Now())

 End Get

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 199

 Set(ByVal Value As Integer)

 BirthDate() = DateAdd(DateInterval.Year, -Value, Now())

 End Set

End Property

This will restore our application to a working state and we can move on.

Self Learning Exercise-6

i. Fill in the Blanks

p) To implement shadowing we use the keyword ____________.

q) To override non-virtual method we use the keyword ____________.

r) The shadows keyword can be used not only to override___________, but it can be

used to totally replace and change the nature of a base class interface element

ii. True/False

k) When Overridable keyword is not used in the method declaration, it is non-virtual

method.

l) If we don’t use the Overridable keyword when declaring a method, it is virtual.

10.8 Property Routines and System Windows

You can use both properties and fields to store information in an object.

While fields are simply Public variables, properties use property procedures to control how

values are set or returned. You can use the Get and Set keywords for getting/setting properties.

 See the following example.

 Import the System namespace

‘Imports System

‘Dog is a class.

 Public Class Dog

 ‘A private variable to hold the value

 Private mAgeOfDog as Integer

‘This is our property routine:

 Public Property Age() As Integer

 ‘Called when someone tries to retreive the value

Get

 Console.Writeline (“Getting Property”)

 Return mAgeOfdog

End Get

Set(ByVal Value As Integer)

 ‘Called when someone tries to assign a value

 Console.Writeline (“Setting Property”)

 mAgeOfDog=Value

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 200

End Set

End Property

End Class

‘Another class:

Class MainClass

 ‘Our main function. Execution starts here.

 Shared Sub Main()

 ‘Let us create an object.

 Dim Jimmy as Dog

 Jimmy=new Dog

 ‘We can’t access mAgeofDog directly, so we should

 ‘use Age() property routine.

 ‘Set it. The Age Set routine will work

 Jimmy.Age=30

 ‘Get it back. The Age Get routine will work

 Dim curAge=Jimmy.Age()

 End Sub

End Class

System Windows: The whole power of Visual Basic has been that you can develop forms,

visually, adding controls and other items from the tool box. In VB.NET, the support for windows

form is in System.Windows.Forms namespace, and the form class is

System.Windows.Forms.Form. The form class itself is based on control class, which means that

forms share a lot of properties and methods that controls do.

Self Learning Exercise-7

i. Fill in the Blanks

s) You can use the _____ and _____ keywords for getting/setting properties.

ii. True/False

m) Get/Set keywords are used for Getting/Setting properties.

n) In VB.NET, the support for windows form is in System.Windows.Forms namespace.

10.9 EVENT PROCEDURE

Events in the .NET Framework are based on the delegate model. Delegates are type-safe Func-

tion Pointers or Callbacks. A delegate can reference both static and instance methods.

Implementation of an event is a three-step procedure,

(i) Declare a delegate, if definition is not provided the .NET Framework would provide a

default delegate implementation.

(ii) Declare the event signature using Event keyword and raise the event using RaiseEvent

statement.

(iii) Handle the event by declaring an event receiver, often called event handler, which is a

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 201

subroutine that responds to the event.

10.9.1 Declare a delegate

Delegate is a class that can hold reference to a method. Delegate class has signature, and it can

hold references only to methods that match its signature. Delegate can be declared as

Delegate Sub sampleDel(ByVal Cancel As Boolean)

Any method that has same signature can be attached to this delegate; procedure that would have

the same signature can handle this event.

10.9.2 Declare Event and Raise It

Event can be declared in three ways:

evtSample As sampleDel - mechanism to register the event handler for this type of declaration

is to be provided by the class declaring the event. The event is implemented by using explicitly

declared delegate. The event is raised by making a call to evtSample.

Public Event evtSample as sampleDel - event handler can be registered by using AddHandler

method in the Class that would provide the Handler. The event is implemented by using the

above-declared delegate. The event is raised by making a call to RaiseEvent.

Public Event evtSample(Cancel as Boolean) - event handler procedure would be registered

by using Handles keyword in the declaration itself. The event is implemented by using implicitly

declared delegate by the framework. The event is raised by making a call to RaiseEvent.

10.9.3 Handle the Event

Declaring a sub and either attaching it to the delegate or registering with the event declaring class

can handle the event.

The example shown declares a delegate in class CTimer and also declares three events in the

class using all the aforementioned declarations. The class also provides mechanism to register

event and raises events with intervals simulating 5, 10 and 30 units of the interval. Another class

CClock is defined that has members to handle the RaisedEvents from CTimer class.

To run the sample from command line use - vbc /out:Event.exe Event.vb

Imports System

Public Class CTimer

 Delegate Sub SecondDel(ByVal xintTime As Integer)

 Private evtSecond As SecondDel

 Public Event evtMinute As SecondDel

 Public Event evtHour(ByVal xHour As Integer)

 public Shared lngSeconds As Long

 Public Sub Register(ByVal objSecond As SecondDel)

 evtSecond = evtSecond.Combine(evtSecond, objSecond)

 End Sub

 Public Sub OnTimer()

 lngSeconds = lngSeconds + 1

 If lngSeconds Mod 5 = 0 Then

 evtSecond(lngSeconds)

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 202

 End If

 If lngSeconds Mod 10 = 0 Then

 RaiseEvent evtMinute(lngSeconds)

 End If

 If lngSeconds Mod 30 = 0 Then

 RaiseEvent evtHour(lngSeconds)

 End If

 End Sub

End Class

Public Class CClock

 Private WithEvents mobjTimer As CTimer

 Sub New()

 mobjTimer = New CTimer()

 mobjTimer.Register(New CTimer.SecondDel(AddressOf SecondEvent))

 AddHandler mobjTimer.evtMinute, AddressOf MinuteEvent

 While (mobjTimer.lngSeconds < 60)

 mobjTimer.OnTimer()

 System.Threading.Thread.Sleep(100)

 End While

 End Sub

 Private Sub SecondEvent(ByVal xintTime As Integer)

 Console.WriteLine(“Second’s Event”)

 End Sub

 Private Sub MinuteEvent(ByVal xintTime As Integer)

 Console.WriteLine(“Minute’s Event”)

 End Sub

 Private Sub mobjTimer_evtHour(ByVal xintTime As Integer) _

 Handles mobjTimer.evtHour

 Console.WriteLine(“Hour’s Event”)

 End Sub

 Public Shared Sub Main()

 Dim cc1 = New CClock()

 End Sub

End Class

Self Learning Exercise-8

i. Fill in the Blanks

t) Events in the .NET framework are based on the ____________

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 203

ii. True/False

o) Implementation of an event is three step procedure.

p) Delegate class reference both static and instance methods.

10.10 Summary

l Class: is a type of object also known as blue print.

l Object: is an instance of class, much like a variable is an instance of data type.

l New: keyword is used to instantiate the object of a class.

l Constructor: A special method which is called automatically when you create an object

from a class.

l Destructor: Is the last method run by the class, also known as finalizer.

l Encapsulation: A separation between the interface and implementation.

l Inheritance: A reusability feature which allows us to derive a new class from existing one.

l Polymorphism: “one name multiple forms”, means the use of same thing for different

purposes.

l Interface: allows us to create definition for component interaction.

l Abstraction: ability to create an abstract representation of a concept.

l Shadowing: provides a new implementation for the base class member without overrid-

ing the members.

l MustInherit: A keyword that indicates that class is intended for use as a base class

l NotInheritable: A keyword that prevents a class from being used as a base class.

10.11 Glossary

Abstraction The ability to create an abstract representation of a concept in code

Class A program structure that defines an abstract data type

Constructor A class method that is automatically called when an instance of a class

is created.

Encapsulation The hiding of data and procedure inside a class

Finalizer A class method that is automatically called just before an object is

destroyed

Interface To create definitions for component interaction

MustInherit Indicates that the class is intended for use as a base class only

NotInheritable Prevents a class from being used as base class

Object Oriented A programming technique centered on creating objects. A way of

Programming designing and coding applications that had led to using interchangeable

software components

Overridable In a procedure declaration, indicates that the procedure may be

keyword overridden in derived class

Polymorphism One name, multiple forms

Properties Represent information that an object contains

Shadows Shadow a base class member in the derived class

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 204

10.12 Further Readings AND REFERENCES

1. Gary Cornell, Jonathan Morrison, “Programming in VB.NET: a guide for experience

Programmers”, Apress publication, Delhi

2. Steven Holzner, “Visual Basic .NET Programming: Black Book”, Dreamtech Press,

New Delhi.

3. Tony Gaddis, Kip Irvine, Bruce Quenton, “Starting out with Visual Basic .NET pro-

gramming”, Dreamtech Press, New Delhi.

4. Jeffery R Shapiro, “Visual Basic .NET: The Complete Reference”, Tata Mcgraw Hill,

New Delhi

5. www.startvbdotnet.com

10.13 Answers to Self Learning Exercise

i. Fill in the Blanks ii. True/False

a) Instance a)True

b) End Class b)True

c) Fields c)False

d) Methods d)True

e) Write/WriteLine e)False

f) Constructor f)True

g) Finalizer g)False

h) Abstract Class h)True

i) MustOverride i)True

j) Data Hiding j)False

k) Inheritance k)True

l) NotInheritable l)False

m) Polymorphism m)False

n) Interface n)True

o) Interface o)True

p) Shadows p) True

q) Shadows q)True

r) non-virtual methods

s) Get, Set

t) Delegate Model

10.14 Unit End Questions

1. The employee list for a company contains employee code, name, designation & basic

pay. The employee is given a House Rent Allowance (HRA) of 10% of the basic pay &

Dearness Allowance (DA) of 45% of the basic pay. The total pay of the employee is

calculated as Basic Pay + HRA + DA. Write a class to define the details of the em-

ployee. Write a constructor to assign the required initial values. Add a method to calcu-

UNIT - 10 OBJECT ORIENTED PROGRAMMING IN VB.NET 205

late HRA, DA & total pay & print them out. Write another class with main method.

Create objects for three different employees and calculate the HRA, DA & total pay.

2. Write a class with a method to find the area of rectangle. Create a subclass to find the

volume of a rectangular shaped box.

3. Write a class called Square with a method area(double a) that accepts a argument of

type double and return nothing and that finds the area (a2) of the square. Create a class

Cube which is subclass of Square & write an overriding method area(double a) that

finds the surface area(6a2) of cube.

4. Write an abstract class with a method special that takes an integer as a argument and

returns nothing. Create a subclass of this class & implement the special method that finds

numbers that are perfect squares from 1 up to n.

5. Write an interface called Numbers, with a method Process that takes two arguments as

type of integer and returns an integer value. Write a class called Sum, in which the method

Process finds the sum of two numbers & returns an int value. Write another class called

Average, in which the Process method finds the average of the two numbers & returns

an int.

6. Write an interface called Exam with a method Pass() that accepts an argument of type

integer and returns a Boolean value. Write another interface called Classify with a method

division (integer average) which returns a String. Write a class called Result which imple-

ments both Exam & Classify. The pass method should return true if the mark is greater

than or equal to 50 else false. The division method must return “First” when the param-

eter average is 60 or more, “Second” when average is 50 or more but below 60, “No

Division” when average is less than 50

7. What do you mean by Polymorphism? How is the run time binding achieved in VB.NET?

8. Differentiate between

a. Constructor and Destructor

b. Function Overloading and Function Overriding

c. Abstract Class and Interface

9. Write short note on

a. Encapsulation

b. Shadowing

c. Event Procedure

UNIT - 12 WEB AND VB.NET 235

Unit -12: Web and VB.NET

Structure of the Unit

12.0 Objective

12.1 Introduction

12.2 Introduction to ASP.NET

12.2.1 Advantages Using ASP.NET

12.2.2 Differences between ASP.NET and Client-Side Technologies

12.3 ASP.NET Features

12.4 ASP.NET Development Environment

12.5 Web Application State

12.6 Web Forms

12.6.1 Components of Web Forms

12.6.2 Notable Properties of Page Object

12.6.3 The ASPX Extension

12.7 Web Forms User Controls

12.8 Web Forms Page Life Cycle

12.8.1 Round Trips

12.8.2 Stages in Web Forms Processing

12.9 Conditional Statements and Loops

12.9.1 If....Then....Else Statement

12.9.2 Select Case Statement

12.9.3 For Loop

12.9.4 Do Loop

12.10 Arrays and Strings

12.11 Functions

12.12 Creating and Running a Web Application

12.13 Multiform Web Project

12.13.1 Using Image Buttons

12.13.2 Using List Boxes

12.14 Page Class

12.15 Summary

12.16 Glossary

12.17 Further Readings

12.18 Answers to Self Learning Exercises

12.19 Unit End Questions

UNIT - 12 WEB AND VB.NET 236

12.0 Objectives

After going through this unit you will be able to

l Get familiar with environment and features of ASP.NET

l Able to learn the concept of client side and server side technologies.

12.1 Introduction

From the previous unit you have learnt about the concepts of .NET framework, namespace,

versioning and attribute. In this unit we will discuss what is ASP.NET?, its feature, advantages

and concept of web form and controls that can be placed on form. The life cycle of page and the

steps for creating and running a web page are also discussed in this unit. Before going through

this unit it is required that you must read Unit-8 and solve the exercises.

12.2 Introduction to ASP.NET

ASP.NET, the next version of ASP, is a programming framework used to create enterprise-class

Web Applications. These applications are accessible on a global basis leading to efficient infor-

mation management. The advantages ASP.NET offers is more than just the next version of ASP.

Since 1995, Microsoft has been constantly working to shift it’s focus from Windows-based

platforms to the Internet. As a result, Microsoft introduced ASP (Active Server Pages) in No-

vember 1996. ASP offered the efficiency of ISAPI applications along with a new level of sim-

plicity that made it easy to understand and use. However, ASP script was an interpreted script

and consisted unstructured code and was difficult to debug and maintain. As the web consists of

many different technologies, software integration for Web development was complicated and

required to understand many different technologies. Also, as applications grew bigger in size and

became more complex, the number of lines of source code in ASP applications

increased dramatically and was hard to maintain. Therefore, an architecture was needed that

would allow development of Web applications in a structured and consistent way.

The .NET Framework was introduced with a vision to create globally distributed software with

Internet functionality and interoperability. The .NET Framework consists of many class libraries,

includes multiple language support and a common execution platform. It’s a very flexible founda-

tion on which many different types of top class applications can be developed that do different

things. Developing Internet applications with the .NET Framework is very easy. ASP.NET is

built into this framework, we can create ASP.NET applications using any of the built-in lan-

guages.

Unlike ASP, ASP.NET uses the Common Language Runtime (CLR) provided by the .NET

Framework. This CLR manages execution of the code we write. ASP.NET code is a compiled

CLR code instead of interpreted code (ASP). CLR also allows objects written in different lan-

guages to interact with each other. The CLR makes development of Web applications simple.

12.2.1 Advantages of using ASP.NET

l ASP.NET drastically reduces the amount of code required to build large applications

l ASP.NET makes development simpler and easier to maintain with an event-driven, server-

side programming model

l ASP.NET pages are easy to write and maintain because the source code and HTML are

together

l The source code is executed on the server. The pages have lots of power and flexibility

by this approach

UNIT - 12 WEB AND VB.NET 237

l The source code is compiled the first time the page is requested. Execution is fast as the

Web Server compiles the page the first time it is requested. The server saves the com-

piled version of the page for use next time the page is requested

l The HTML produced by the ASP.NET page is sent back to the browser. The applica-

tion source code you write is not sent and is not easily stolen

l ASP.NET makes for easy deployment. There is no need to register components be-

cause the configuration information is built-in

l The Web server continuously monitors the pages, components and applications running

on it. If it noticies memory leaks, infinite loops, other illegal software or activities, it

seamlessly kills those activities and restarts itself

l ASP.NET validates information (validation controls) entered by the user without writing

a single line of code

l ASP.NET easily works with ADO .NET using data-binding and page formatting fea-

tures

l ASP.NET applications run faster and counters large volumes of users without perfor-

mance problems

12.2.2 Differences between ASP.NET and Client-Side Technologies

Client-side refers to the browser and the machine running the browser. Server-side on the other

hand refers to a Web server.

Client-Side Scripting

Javascript and VBScript are generally used for Client-side scripting. Client-side scripting ex-

ecutes in the browser after the page is loaded. Using client-side scripting you can add some cool

features to your page. Both, HTML and the script are together in the same file and the script is

downloaded as part of the page which anyone can view. A client-side script runs only on a

browser that supports scripting and specifically the scripting language that is used. Since the

script is in the same file as the HTML and as it executes on the machine you use, the page

may take longer time to download.

Server-Side Scripting

ASP.NET is purely server-side technology. ASP.NET code executes on the server before it is

sent to the browser. The code that is sent back to the browser is pure HTML and not ASP.NET

code. Like client-side scripting, ASP.NET code is similar in a way that it allows you to write your

code alongside HTML. Unlike client-side scripting, ASP.NET code is executed on the server

and not in the browser. The script that you write alongside your HTML is not sent back to the

browser and that prevents others from stealing the code you developed.

Self Learning Exercise-1

i. Fill in the Blanks

a) ASP.NET is purely __________technology.

ii. State True or False

a) Javascript and VBScript are generally used for Client-side scripting.

b) Client-side scripting executes in the browser before the page is loaded.

UNIT - 12 WEB AND VB.NET 238

12.3 ASP.NET Features

ASP.NET is not just a simple upgrade or the latest version of ASP. ASP.NET combines unprec-

edented developer productivity with performance, reliability, and deployment. ASP.NET rede-

signs the whole process. It’s still easy to grasp for new comers but it provides many new ways of

managing projects. Below are the features of ASP.NET.

Easy Programming Model

ASP.NET makes building real world Web applications dramatically easier. ASP.NET server

controls enable an HTML-like style of declarative programming that let you build great pages

with far less code than with classic ASP. Displaying data, validating user input, and uploading

files are all amazingly easy. Best of all, ASP.NET pages work in all browsers including Netscape,

Opera, AOL, and Internet Explorer.

Flexible Language Options

ASP.NET lets you leverage your current programming language skills. Unlike classic ASP, which

supports only interpreted VBScript and JScript, ASP.NET now supports more than 25 .NET

languages (built-in support for VB.NET, C#, and JScript.NET), giving you unprecedented flex-

ibility in your choice of language.

Great Tool Support

You can utilize the full power of ASP.NET using any text editor, even Notepad. But Visual

Studio .NET adds the productivity of Visual Basic-style development to the Web. Now you can

visually design ASP.NET Web Forms using familiar drag-drop-doubleclick techniques, and en-

joy full-fledged code support including statement completion and color-coding. VS.NET also

provides integrated support for debugging and deploying ASP.NET Web applications. The En-

terprise versions of Visual Studio .NET deliver life-cycle features to help organizations plan,

analyze, design, build, test, and coordinate teams that develop ASP.NET Web applications.

These include UML class modeling, database modeling (conceptual, logical, and physical mod-

els), testing tools (functional, performance and scalability), and enterprise frameworks and tem-

plates, all available within the integrated Visual Studio .NET environment.

Rich Class Framework

Application features that used to be hard to implement, or required a 3rd-party component, can

now be added in just a few lines of code using the .NET Framework. The .NET Framework

offers over 4500 classes that encapsulate rich functionality like XML, data access, file upload,

regular expressions, image generation, performance monitoring and logging, transactions, mes-

sage queuing, SMTP mail, and much more. With Improved Performance and Scalability ASP.NET

lets you use serve more users with the same hardware.

Compiled execution

ASP.NET is much faster than classic ASP, while preserving the “just hit save” update model of

ASP. However, no explicit compile step is required. ASP.NET will automatically detect any

changes, dynamically compile the files if needed, and store the compiled results to reuse for

subsequent requests. Dynamic compilation ensures that your application is always up to date,

and compiled execution makes it fast. Most applications migrated from classic ASP see a 3x to

5x increase in pages served.

Rich output caching

ASP.NET output caching can dramatically improve the performance and scalability of your

application. When output caching is enabled on a page, ASP.NET executes the page just once,

UNIT - 12 WEB AND VB.NET 239

and saves the result in memory in addition to sending it to the user. When another user requests

the same page, ASP.NET serves the cached result from memory without re-executing the

page. Output caching is configurable, and can be used to cache individual regions or an entire

page. Output caching can dramatically improve the performance of data-driven pages by elimi-

nating the need to query the database on every request.

Web-Farm Session State

ASP.NET session state lets you share session data user-specific state values across all machines

in your Web farm. Now a user can hit different servers in the Web farm over multiple requests

and still have full access to her session. And since business components created with the .NET

Framework are free-threaded, you no longer need to worry about thread affinity.

Enhanced Reliability

ASP.NET ensures that your application is always available to your users.

Memory Leak, DeadLock and Crash Protection

ASP.NET automatically detects and recovers from errors like deadlocks and memory leaks to

ensure your application is always available to your users. For example, say that your application

has a small memory leak, and that after a week the leak has tied up a significant percentage of

your server’s virtual memory. ASP.NET will detect this condition, automatically start up another

copy of the ASP.NET worker process, and direct all new requests to the new process. Once the

old process has finished processing its pending requests, it is gracefully disposed and the leaked

memory is released. Automatically, without administrator intervention or any interruption of ser-

vice, ASP.NET has recovered from the error.

Easy Deployment

ASP.NET takes the pain out of deploying server applications. “No touch” application

deployment. ASP.NET dramatically simplifies installation of your application. With ASP.NET,

you can deploy an entire application as easily as an HTML page, just copy it to the server. There

is no need to run regsvr32 to register any components, and configuration settings are stored in an

XML file within the application.

Dynamic update of Running Application

ASP.NET now lets you update compiled components without restarting the web server. In the

past with classic COM components, the developer would have to restart the web server each

time he deployed an update. With ASP.NET, you simply copy the component over the existing

DLL, ASP.NET will automatically detect the change and start using the new code.

Easy Migration Path

You don’t have to migrate your existing applications to start using ASP.NET. ASP.NET runs on

IIS side-by-side with classic ASP on Windows 2000 and Windows XP platforms. Your existing

ASP applications continue to be processed by ASP.DLL, while new ASP.NET pages are pro-

cessed by the new ASP.NET engine. You can migrate application by application, or single pages.

And ASP.NET even lets you continue to use your existing classic COM business components.

XML Web Services

XML Web services allow applications to communicate and share data over the Internet, regard-

less of operating system or programming language. ASP.NET makes exposing and calling XML

Web Services simple. Any class can be converted into an XML Web Service with just a few lines

of code, and can be called by any SOAP client. Likewise, ASP.NET makes it incredibly easy to

UNIT - 12 WEB AND VB.NET 240

call XML Web Services from your application. No knowledge of networking, XML, or SOAP

is required.

Mobile Web Device Support

ASP.NET Mobile Controls let you easily target cell phones, PDAs and over 80 mobile Web

devices. You write your application just once, and the mobile controls automatically generate

WAP/WML, HTML, or iMode as required by the requesting device.

Self Learning Exercise-2

ii. State True or False

c) ASP.NET automatically detects and recovers from errors like deadlocks and memory

leaks to ensure your application is always available to your users.

12.4 ASP.NET Development Environment

Most of the programming languages with which we work require a development environment to

code, test and run the programs. You may purchase a copy of that software at your local com-

puter store and work with it. With ASP.NET things are different. ASP.NET is a development

technology that is built into the .NET Framework. You can create ASP.NET applications with a

simple editor like a notepad. If you prefer to work in a development environment then you have

many to choose from. Visual Studio .NET (should purchase) is one development environment

from Microsoft. Another development environment from Microsoft which is preferred by many

developers is Microsoft Web Matrix. The best thing about ASP.NET Web Matrix is

it’s free (available as a 1.4 MB free download) and provides most of the features Visual Studio

.NET provides.

12.4.1 Setting Up the Development Environment

ASP.NET, you know, is based on the CLR, class libraries and other tools which are integrated

into the .NET Framework. To develop and run an ASP.NET application you need to have the

.NET Framework installed on your machine. .NET Framework comes pre installed with Oper-

ating Systems like Windows 2003 Server and Windows XP. For other operating systems (Win-

dows 2000, 98, Me, NT 4.0) you need to install the .NET Framework manually. You can install

.NET Framework manually in two ways: .NET Framework SDK or VS .NET.

Installing the .NET Framework with SDK is simple. Download .NET Framework from

Microsoft.com and double-click setup file and follow the instructions. Installing .NET Frame-

work with Visual Studio .NET is simple too. When you install Visual Studio .NET you will be

prompted to insert the disk that contains the .NET Framework.

IIS

To develop a Web Application you need IIS (Internet Information Server) on your machine. IIS

comes pre installed in Operating Systems like Windows 2000, XP and 2003. You need to con-

figure IIS to run ASP.NET Web applications. You should configure IIS prior to the installation of

Visual Studio .NET software on your machine to avoid errors. In most cases configuring IIS

after the installation of VS .NET will result in many errors and unexpected behaviour by the

application.

By default, IIS creates a folder on the server’s hard drive with the name Inetpub. The Inetpub

folder contains a subfolder called wwwroot. The wwwroot folder is the root for the Web site. All

the ASP.NET applications you develop using VS .NET are saved in this wwwroot folder.

UNIT - 12 WEB AND VB.NET 241

Web Hosting

You also can test and run your applications on a server owned by hosting providers. The host will

give you details you need to know to upload files onto his server, test those files, etc. Web

Hosting providers charge some amount for providing service. There are some hosting providers

who provide some space for a certain period of time on their servers for ASP.NET developers to

test their applications free of charge. You can find about them on the resources page of this site.

Visual Studio .NET

Visual Studio .NET consists of five CDs. Follow the guide lines on installing the software as

mentioned in the manuals/ files accompanying the software.

Database

To develop ASP.NET database applications you need to install SQL Server 2000 or higher or

Oracle depending on the database you wish to use. Use of SQL Server with ASP.NET

is recommended as it’s said that SQL Connections are 70% faster than OLEDB Connections.

Also, performance improves dramatically when you use SQL Server with ASP.NET.

Self Learning Exercise-3

i. Fill in the Blanks

b) ASP.NET is based on the _______, class libraries and other tools which are inte-

grated into the .NET Framework

12.5 Web Application State

A Web page is recreated every time it is posted back to the server. In traditional Web program-

ming this means that all the information within the page and information in the controls is lost with

each round trip. To overcome this limitation of traditional Web programming, the ASP.NET page

framework includes various options to help us preserve changes. One option involves keeping

information on the client, directly in the page or in a cookie and another option involves storing

information on the server between round trips. We will take a look at both the options.

Saving State in the Client

If we decide to save data in the client then that data is not stored on the server. This means that

the page has to store all the data in controls so that it can be sent back to the server when the

page is posted back to the server. The different ways in which you can save state in a client are

discussed below:

HTML Hidden Form Fields

The default way of saving the state of the data is to use HTML hidden fields. A hidden field stores

text data with the HTML <input style=”hidden”>. A hidden field will not be visible in the browser

but we can set its properties just like we set properties for other standard controls. When a page

is posted to the server, the content of a hidden field is sent in the HTTP Form collection along

with the values of other controls. In order for hidden field values to be available during page

processing, we must submit the page using an HTTP post method. That is, you cannot take

advantage of hidden fields if a page is processed in response to a link or HTTP GET method.

Cookies

A cookie is a small text file that stores data on the client’s machine or is persistent in-memory

during the client browser session. It contains page-specific information the server sends to the

client along with page output. Cookies can be temporary with specific expiration times and dates

UNIT - 12 WEB AND VB.NET 242

or persistent. We can use cookies to store information about a particular client, session, or

application. Cookies are saved on client machine, and when the browser requests a page, it

sends the information in the cookie along with the request information. The server can read the

cookie and extract its value. Cookies are a relatively secure way of maintaining user-specific

data as the browser can only send the data back to the server that originally created the cookie.

Query Strings

A query string is information added to the end of a page’s URL. For example, it looks like the

following:

https://login.yahoo.com/config/login_verify2?src=ym

In the above URL , the query string starts with the question mark (?) and includes attribute-value

pair, called “src.” Query strings provide a simple and limited way of maintaining state informa-

tion. Most browsers impose a 255-character limit on the length of the URL. Also, as the query

values are exposed to the Internet via the URL, in some cases security may be an issue. In order

for query string values to be available during page processing, we must submit the page using an

HTTP get method. You cannot take advantage of a query string if a page is processed in re-

sponse to an HTTP post method.

View State

The Control.ViewState property provides a way for retaining values between multiple requests

for the same page. This is the method that the page uses to preserve page and control property

values between round trips. When a page is processed, the current state of the page and controls

is hashed into a string and saved in the page as a hidden field. When the page is posted back to

the server, the page parses the view state string at page initialization and restores property infor-

mation in the page.

Saving State on the Server

We can also save an application’s state on the server. Saving an application’s state on the server

provides with more security than client-side options. The different ways in which you can save

state in a server are discussed below:

Application State

An application’s state is stored using the application’s state object (HttpApplicationState class)

for each active Web Application. Application state is a global storage mechanism accessible

from all pages in the Web application and is useful for storing information that needs to be main-

tained between server round trips and between pages. Application state is a key-value dictionary

structure created during each request to a specific URL. You can add your application-specific

information to this structure to store it between page requests. Once you add your application-

specific information to application state, the server manages it for you.

Session State

Besides application state, ASP.NET also can store session states using a session state object

(HttpSessionState class) for each active Web Application. Session state is similar to application

state, but it is scoped to the current browser session. If different users are using an application,

each user will have a different session state. If a user leaves the application and returns later, that

user will have a different session state. Session state is a key-value dictionary structure for stor-

ing session-specific information that needs to be maintained between server round trips and

between requests for pages. Once we add our application-specific information to session state,

the server manages this object for us. Depending on the options we specify, session information

UNIT - 12 WEB AND VB.NET 243

can be stored in cookies, an out-of-process server, or a SQL Server.

Using Database

Maintaining state using database is a very common method when storing user-specific informa-

tion where the information store is large. Database storage is particularly useful for maintaining

long-term state or state that must be preserved even if the server must be restarted. The data-

base approach is often used along with cookies. For example, when a user accesses an applica-

tion, he might need to enter a username/password to log in. You can look up the user in your

database and then pass a cookie to the user. The cookie might contain only the ID of the user in

your database. You can then use the cookie in the requests that follow to find the user information

in the database as needed.

Self Learning Exercise-4

i. Fill in the Blanks

c) ________ is a small text file that stores data on the client’s machine or is persistent in-

memory during the client browser session.

d) The _________________property provides a way for retaining values between

multiple requests for the same page.

ii. State True or False

d) A Web page is recreated every time it is posted back to the server

12.6 Web Forms

Web Forms are based on ASP.NET. Working with Web Forms is similar to working with Win-

dows Forms. But the difference is that we will create Web pages with Web forms that will be

accessible by a Web browser. Web Forms are Web pages that serve as the user interface for a

Web application. A Web Forms page presents information to the user in any browser or client

device and implements application logic using server-side code. Web Forms are based on

the System.Web.UI.Page class. The class hierarchy for the page class is shown below.

 Object

 Control

 TemplateControl

 Page

12.6.1 Components of Web Forms

In Web Forms pages, the user interface programming is divided into two parts: the visual com-

ponent (design page) and the logic (code behind page).

The visual element is the Web Forms page. The page consists of a file with static HTML, or

ASP.NET server controls, or both simultaneously. The Web Forms page works as a container

for the static text and the controls we want to display. Using the Visual Studio Web Forms

Designer and ASP.NET server controls, we can design the form just like in any Visual Studio

application.

The logic for the Web Forms page consists of code that we create to interact with the form. The

programming logic is in a separate file from the user interface file. This file is the “code-behind”

file and has an “.aspx.vb” (VB) or “.aspx.cs” (C-Sharp) extension. The logic we write in the

code-behind file can be written in Visual Basic or Visual C#.

UNIT - 12 WEB AND VB.NET 244

The code-behind class files for all Web Forms pages in a project are compiled into the project

dynamic-link library (.dll) file. The .aspx page file is also compiled, but differently. The first time

a user loads the aspx page, ASP.NET automatically generates a .NET class file that represents

the page, and compiles it to a second .dll file. The generated class for the aspx page inherits from

the code-behind class that was compiled into the project .dll file. When the user requests the

Web page URL, the .dll files run on the server and dynamically produces the HTML output for

your page.

When you open a new ASP.NET Web Application in Visual Studio .NET the form that is loaded

(WebForm1.aspx) looks like the image shown in Figure 12.1.

The form opens in design mode and you can switch to HTML view by clicking on the HTML

tab. Startvbdotnet.aspx file in the image above is standard HTML with ASP elements embedded

in it.

UNIT - 12 WEB AND VB.NET 245

From the above image notice the Codebehind attribute (second line). The codebehind attribute

connects this code to the appropriate Visual Basic or C# code (code behind file).

Startvbdotnet.aspx.vb, the codebehind file for Startvbdotnet.aspx where you write your logic

looks like this:

Public Class Startvbdotnet Inherits System.Web.UI.Page

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Protected WithEvents Label1 As System.Web.UI.WebControls.Label

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)_

Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer

‘Do not modify it using the code editor.

InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)_

Handles MyBase.Load

‘Put user code to initialize the page here

End Sub

End Class

12.6.2 Notable Properties of Page Object

Below are some notable properties of Page objects:

Application : Gets an application object

ClientTarget : Gets/Sets if you want to override automatic browser capabilities detec-

tion and handle page rendering for specific browsers

ErrorPage : Gets/Sets an error page’s URL in case there are unhandled page excep-

tions

IsPostBack : Indicates if a page was created after a client postback or if it is being

loaded for the first time

IsValid : Indicates if the page validation was successful Request Gets the current

http request object

Response : Gets the current http response object

Server : Gets the current server object

Session : Gets the current session object

UNIT - 12 WEB AND VB.NET 246

Site : Gets Web Site data

User : Gets data about the user

Validators : Gets a collection of validation controls on the page

12.6.3 The ASPX Extension

Many of us wonder why the extension for ASP.NET is .aspx. Well, long time ago, when ASP.NET

was being developed at Microsoft it was referred to as ASP+ (ASP Plus). You can’t use a “+”

symbol in a filename but if you turn the + symbol about 45 degrees, it looks like a x. Microsoft

chose .aspx as the extension of ASP+. After the name was changed to ASP.NET, Microsoft

didn’t change the extension and left it as aspx.

Self Learning Exercise-5

i. Fill in the Blanks

e) Web Forms are based on the ________ class.

f) In Web Forms pages, the user interface programming is divided into two parts: the

visual component and the _________.

12.7 Web Forms User Controls

In addition to HTML and Web server controls, you can simply create your own custom, reus-

able controls by using the same techniques you have learned to develop Web Forms pages.

These controls are called user controls.

User controls offer you an easy way to partition and reuse common user interface (UI) function-

ality across your ASP.NET Web applications. Like a Web Forms page, you can author these

controls with any text editor, or develop them using code-behind classes. Also, like a Web

Forms page, user controls are compiled when first requested and stored in server memory to

reduce the response time for subsequent requests. Unlike pages, however, user controls cannot

be requested independently; they must be included in a Web Forms page to work.

User controls offer you greater flexibility than server-side includes (SSIs) by accessing the ob-

ject model support provided by ASP.NET. Rather than simply including the functionality pro-

vided by another file, you can program against any properties you declare in the control, just like

any other ASP.NET server control.

While you need to choose a single language when authoring a user control, you can include

multiple user controls in a single Web Forms page that have been authored in different languages.

For example, you can create a user control with Visual Basic that imports data from an XML file

and another user control, created with C#, that contains an order form, and include both controls

in the same Web Forms page.

When you create a Web application using Visual Studio .NET, all pages and user controls in the

application must be in the same programming language.

In addition, you can cache output from a user control independently from the rest of its containing

Web Forms page. Called fragment caching, this technique can improve performance for your

site if used appropriately. For example, if your user control contains an ASP.NET server control

that makes a database request, but the rest of the page contains only literal text and simple code

that runs on the server, you can fragment cache the user control to increase your application’s

performance.

UNIT - 12 WEB AND VB.NET 247

12.8 Web Forms Page Life Cycle

In general, the life cycle for a Web Forms page is similar to that of any Web process that runs on

the server. Certain characteristics of Web processing information is passed via HTTP protocol,

the stateless nature of Web pages, and so on. However, the ASP.NET page framework per-

forms many Web application services for us. It is important to understand the sequence of events

that occur when a Web Forms page is processed.

It will be helpful to understand some fundamental characteristics of how Web Forms pages work

in Web applications before we examine the details of what goes on inside a page when it is

processed.

12.8.1 Round Trips

Most Web pages require processing on the server. For example, consider a products page used

to check the availability of a certain product. When a user selects his product and hits the submit

button the page must check on the server to see whether the selected product is available or not.

This kind of functionality is achieved by handling server control events. Whenever a user interac-

tion requires processing on the server, the Web page is posted back to the server, processed,

and is returned back to the browser. This sequence is called round trip. The image below dem-

onstrates server round trip.

In any Web scenario, Web pages are recreated with every round trip. When the server finishes

processing and sends the page to the browser, it discards the page information. This frees server

resources after each request and a Web application can scale to support hundreds or thousands

of simultaneous users. The next time the page is posted, the server starts over in creating and

UNIT - 12 WEB AND VB.NET 248

processing it, and for this reason, Web pages are said to be stateless. Stateless means the values

of a page’s variables and controls are not saved on the server.

ASP.NET works around the above said limitations in the following ways:

l ASP.NET saves page and control properties between round trips. This is referred to as

saving the view state of the control.

l It provides state management facilities so that you can save your own variable and appli-

cation-specific or session-specific information between round trips.

l It can detect when a form is requested for the first time versus when the form is posted, and

allows you to program accordingly. You may want a different behavior during a page

postback versus an initial request.

12.8.2 Stages in Web Forms Processing

Table 12.1: Web Forms Processing Stages

Stage Means Use

Page Initialization The page’s Page_Init event is During this event, the ASP.NET

raised, and the page and page framework restores the

control view state are control properties and postback

restored. data.

User Code Initialization The page’s Page_Load event Read and restore values stored

is raised. previously, Using the

Page.IsPostBack property,

check whether this is the first

time the page is being

processed. If this is the first time

the page is being processed then

perform initial data binding.

Otherwise, restore control

values. Read and update

control properties.

Validation The Validate method of any Test the outcome of validation in

validator Web server controls an event handler

is invoked to perform the

control’s specified validation.

Event Handling If the page was called in Perform application-specific

response to a form event, the processing and handle the

corresponding event handler specific event raised.

in the page is called during

this stage

Cleanup The Page_Unload event is Perform final cleanup work.

called because the page has Close files, closing database

finished rendering and is connections and discard objects.

ready to be discarded.

[source: http://www.startvbdotnet.com]

UNIT - 12 WEB AND VB.NET 249

Self Learning Exercise-6

i. Fill in the Blanks

g) Cleanup stage of page cycle called the __________event because the page has

finished rendering and is ready to be discarded.

ii. State True or False

e) ASP.NET saves page and control properties between round trips. This is referred to

as saving the view state of the control.

12.9 Conditional Statements and Loops

12.9.1 If....Then....Else Statement

If conditional expression is one of the most useful control structures which allows us to execute a

expression if a condition is true and execute a different expression if it is False. If the condition is

true the statements following the Then keyword will be executed, else the statements following

the ElseIf will be checked and if true, will be executed, else the statements in the else part will be

executed.

If Then Sample

The following code demonstrates If..Then..Else conditional statement. It asks the user to enter a

number between 1 and 3 in a textbox and checks for the number entered using the If..Then..Else

statement and displays some text if the condition is true.

Private Sub IfThen_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles IfThen.Click

If CInt(TextBox1.Text) = 1 Then

Label1.Text = “You entered” & CInt(TextBox1.Text)

ElseIf CInt(TextBox1.Text) = 2 Then

Label1.Text = “You entered” & CInt(TextBox2.Text)

ElseIf CInt(TextBox1.Text) = 3 Then

Label1.Text = “You entered” & CInt(TextBox2.Text)

Else

Label1.Text = “You entered another number”

End If

End Sub

12.9.2 Select Case Statement

Select Case is similar to If..Then..Else statement. Select Case allows us to do various compari-

sons against one variable that we use throughout the whole statement. Select Case is cleaner and

easier to understand if you are continually comparing against one variable.

Select Case Sample

The following sample asks the user to enter a vowel in a textbox and checks the value entered

using the the Select Case statement and if true displays some text.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles Button1.Click

UNIT - 12 WEB AND VB.NET 250

Select Case TextBox1.Text

Case “a”

Label1.text = “You entered A”

Case “e”

Label1.Text = “You entered E”

Case “i”

Label1.Text = “You entered I”

Case “o”

Label1.Text = “You entered O”

Case “u”

Label1.Text = “You entered U”

End Select

End Sub

12.9.3 For Loop

The For loop is the most popular loop. For loops enables us to execute a series of expressions

multiple numbers of times. The For loop needs a loop index, which counts the number of loop

iterations as the loop executes.

For Loop Sample

The following code demonstrates for loop.

Private Sub ForLoop_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles ForLoop.Click

‘assuming you have a button named ForLoop

Dim i As Integer

For i = 1 To 5

Response.Write(“Welcome to ASP.NET”)

Next i

End Sub

12.9.4 Do Loop

The Do loop can be used to execute a fixed block of statements indefinite number of times. The

Do loop keeps executing it’s statements while or until the condition is true. Two keywords while

and until can be used with the do loop. The Do loop also supports an Exit Do statement which

makes the loop to exit at any moment.

Do Loop Sample

The following code demonstrates Do loop.

Private Sub DoWhile_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles DoWhile.Click

‘assuming you have a button named DoWhile

Dim x As Integer

UNIT - 12 WEB AND VB.NET 251

x = 0

Do Until x = 10

x = x + 1

Response.Write(x)

Loop

End Sub

12.10 Arrays and Strings

Arrays

An array is a way of declaring a whole group of variables at once. Arrays are programming

constructs that store data and allow us to access them by numeric index or subscript. Arrays help

us create shorter and simpler code in many situations. Arrays are based on the System.Array

namespace. They are declared using Dim, ReDim, Static, Private, Public and Protected key-

words. An array can have one dimension or more than one. The dimensionality of an array refers

to the number of subscripts used to identify an individual element.

An array declaration looks as follows: Dim Sports (5) as String. This single line creates a

Sports array that has 6 elements starting from Sports(0) to Sports(5). The first element of an

array is always referred by zero index. To change the dimension (redimension) of the Sports

array which we already declared we use the following statement: ReDim Sports(20). The size

of Sports array changes from 11 to 21.

Arrays Sample

The following sample will demonstrate arrays. Drag a button and a textbox control on to the

Web Forms page. Open the code designer window and paste the following code.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

Dim Sports(5) As String

Sports(0)=”Tennis”

Sports(1) = “Cricket”

Sports(2) = “Rubgy”

Sports(3) = “Aussie Rules”

Sports(4) = “Soccer”

Sports(5) = “Hockey”

Label1.Text = “The sport in the location you entered is” & “ “ &_

Sports(CInt(TextBox1.Text))

End Sub

The above sample code creates a Sports array with six elements, asks the user to enter a number

between 0 and 5 and displays the sport that is stored in the location (number) the user entered on

a label when the button is clicked. Test the code at the bottom of this page for understanding.

Strings

Strings are supported by the .NET String class. The String data type can represent a series of

UNIT - 12 WEB AND VB.NET 252

characters and can contain approximately up to 2 billion Unicode characters. There are many

built-in functions in the String class. Some .NET Framework functions are also built into the

String class. Some common String functions are discussed below:

LCase : Converts a string to lower case

UCase : Converts a string to upper case

Len : Calculates the number of characters in the string

LTrim : Omits spaces that appear on the left-side of the string

RTrim : Omits spaces that appear on the right-side of the string

Trim : Omits both leading and trailing spaces

Clone : Clones a string

Concat : Joins two strings

Space : Used to create a string with spaces

Left : Takes two arguments and returns a string that consists of the left-most char-

acters of the string sent

Right : Takes two arguments and returns a string that consists of the right-most

characters of the string sent

Instr : Searches and returns a shorter string within a long string

Replace : Seraches for a small string in a long string and replaces it with the specified

string

Self Learning Exercise-7

i. Fill in the Blanks

h) Strings are supported by the .NET _______class.

ii. State True or False

f) Select Case allows us to do various comparisons against many variables that we use

throughout the whole statement.

g) Arrays are programming constructs that store data and allow us to access them by

numeric index or subscript.

12.11 Functions

Variables

Variables are used to store data. A variable has a name to which we refer and the data type, the

type of data the variable holds. You need to declare variables before using them. Variables are

declared with the Dim keyword and Dim stands for Dimension.

Variables Sample

The following code creates two variables, adds them and stores the sum in a third variable.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles MyBase.Load

Dim x As Integer = 10

Dim y As Integer = 20

UNIT - 12 WEB AND VB.NET 253

Dim z As Integer = x + y

Response.Write(“Sum is” & “ “ & z)

End Sub

Constants

When we have certain values that we frequently use while programming, we should use Con-

stants. A value declared as constant is of fixed value that cannot be changed once set. Constants

should be declared as Public if we want it to be accessed by all parts of the application. We use

the Const keyword to declare a constant. The following line of code declares a constant:

Public Const Pi as Double=3.14159265

SubProcedures

Procedures are a series of statements that are executed when called. Procedures makes us

handle the code in a simple and organized fashion. Sub procedures are procedures which do not

return a value. Each time when the Sub procedure is called, the statements within it are executed

until the matching End Sub is encountered. The Page_Load event, which is the starting point of

the program itself is a sub procedure. When the application starts execution, the control is trans-

ferred to Page_Load procedure automatically which is called by default.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles MyBase.Load

Display()

‘control looks for a sub procedure named Display() and executes it

End Sub

Sub Display()

Response.Write(“In Sub Procedure”)

End Sub

Functions

Function is a Procedure which returns a value. Functions are used to evaluate data, make calcu-

lations, or to transform data. Declaring a Function is similar to declaring a Sub procedure but

functions are declared with the Function keyword. The following is an example on Functions.

This simple application is an online loan repayment calculator that asks the user to enter the

amount he wants to borrow, the duration of the loan and based on that information calculates his

monthly repayments. To start, drag four labels, two textboxes and a button from the toolbox on

to the Web Forms page. Open the code designer and paste the following code. Look at Live

Code demo towards the botom of this page for user interface design.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

Calc()

‘when the user submits his data, control passes to Calc function

End Sub

Public Function Calc() As Long

Dim amt, temp, temp1, totinterest, mi, mitemp, tot As Double

UNIT - 12 WEB AND VB.NET 254

‘declaring the required variables

temp = CInt(TextBox1.Text) * 13

‘multiplying the amount the user wants to borrow with 13.Assuming the

‘interest rate to be 13%

totinterest = temp / 100

‘calculating the interest amount for the amount entered

mitemp = CInt(TextBox2.Text) * 12

‘multipling the years entered with 12 to get the number of months

mi = totinterest / mitemp

‘calculating monthly interest

temp1 = CInt(TextBox2.Text) * 12

‘multipling the years entered with 12 to get the number of months

amt = CInt(TextBox1.Text) / temp1

‘dividing the amount borrowed with number of months it is borrowed for

tot = amt + mi

‘calculating the total by adding the amount + monthly interest

Label1.Text = “Your monthly repayment is:” & “ “ & Int(tot)

disp()

End Function

Public Sub Disp()

Label4.Text = “Not Satisfied? Would you like to try another option?”

End Sub

Self Learning Exercise-8

ii. State True or False

h) Variables are used to store data.

i) Function is a Procedure which returns a value.

12.12 Creating and Running a Web Application

The following is a simple and interesting sample. It asks the user to enter some information and

generates a username and password based on the information entered and displays the newly

generated login information to the user. To start, drag six labels, four textboxes and a button

control on to the Web Forms page. TextBox1 accepts first name, TextBox2 accepts last name,

TextBox3 accepts age and TextBox4 accepts country. Look at the sample below for the user

interface. Open the code designer window and paste the following code.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

Dim mystr As String

Dim mystr1 As String

UNIT - 12 WEB AND VB.NET 255

Dim mystring As String

Dim midd As String

‘declaring three strings

mystr = Left(TextBox1.Text, 3)

‘using the left function

mystr1 = Right(TextBox2.Text, 3)

‘using the right function

midd = Mid(TextBox4.Text, 2, 6) & CInt(TextBox3.Text) - 11

‘using the mid function

mystring = mystr & mystr1 & TextBox3.Text

Label5.Text = “Your user name is” & ““ & mystring

Label6.Text = “Your random password generated by our server is” & “ “ & midd

TextBox1.Visible = False

TextBox2.Visible = False

TextBox3.Visible = False

TextBox4.Visible = False

Label1.Visible = False

Label2.Visible = False

Label3.Visible = False

Label4.Visible = False

End Sub

To run this application press F5. you will se the output .Other wise you can also run this applica-

tion on internet explorer on typing http://localhost or the name of server and the path where you

have stored the data.

You can also note the path when you run this application in ASP environment.

12.13 Multiform Web Project

12.13.1 Using Image Buttons

Image controls let you display static images, but not all images are static in Web pages; some are

interactive. For example, Web pages can support image maps—those clickable images with

“hotspots” that, when clicked, will cause something to happen, as well as images that act like

buttons when you click them. You can support those kinds of interactive images with image

buttons.

Image controls are supported in HTML with HTML elements, but image buttons use

HTML <input> elements where the type attribute is set to “image” (in other words, an HTML

image map). As with other Web server controls, image buttons support both Click and Com-

mand events. You can see an image button at work in Figure 14.2, where the ImageButton

example in the code for this book is displaying the location of the mouse when you click the

image.

UNIT - 12 WEB AND VB.NET 256

Here’s the HTML created to support the image button you see in Figure. The image here is

stored in the file map.jpg.

<input type=”image” name=”ImageButton1" id=”ImageButton1"

src=”file:///C:\inetpub\wwwroot\ImageButton\map.jpg” border=”0"

style=”Z-INDEX: 102; LEFT: 2px; POSITION: absolute; TOP: 90px” />

Image buttons are supported with the System.Web.UI.WebControls.ImageButton class; here is

the hierarchy of this class:

System.Object

 System.Web.UI.Control

 System.Web.UI.WebControls.WebControl

 System.Web.UI.WebControls.Image

 System.Web.UI.WebControls.ImageButton

You can find the significant public properties of System.Web.UI.WebControls.ImageButton

objects in Table 12.2 and the significant public events in Table 12.3. (This class has no non-

inherited methods.) Note that as with other Web server controls, these tables do not list the

significant properties, methods, and events this class inherits from the Control and WebControl

classes this class inherits from the System.Web.UI.WebControls.Image class

Table 12.2 Significant Public Properties of ImageButton Objects

Property Means

CommandArgument Returns or sets an (optional) value holding text associated with the

command given by the CommandName property.

CommandName Returns or sets the command name for this image button. If you assign

a value to this property, the Command event occurs when the button is

clicked.

UNIT - 12 WEB AND VB.NET 257

Table 12.3 shows the significant Public Events of ImageButton Objects

Method Means

Click Occurs when the image button was clicked.

Command Occurs when the image button was clicked and the CommandName

property holds some text—use a Command event handler to handle

this one.

Image buttons are images that also support Click events. When you handle Click events in image

buttons, you are passed the location of the mouse in the image in an ImageClickEventArgs

object; that location is what you need when you want to create an image map that the user can

click to perform some action.

The position of the mouse is stored in pixels; the origin, (0, 0), is at the upper-left corner of the

image. Here’s how the ImageButton example displays the coordinates in the image at which the

user clicked the mouse:

Private Sub ImageButton1_Click(ByVal sender As System.Object, _

ByVal e As System.Web.UI.ImageClickEventArgs) Handles _

ImageButton1.Click

 TextBox1.Text = “You clicked the image at “ & e.X & “, “ & e.Y

End Sub

You can see the results in Figure. Image maps often let the user navigate to a new URL when you

click a “hotspot” in them, and you can handle that with the Response object’s Redirect method.

Here’s an example that makes the browser navigate to http://www.microsoft.com when the user

clicks a region of the image—the rectangle stretching from (100, 50) to (200, 150)—which we’ll

treat as a hotspot:

Private Sub ImageButton1_Click(ByVal sender As System.Object, _

ByVal e As System.Web.UI.ImageClickEventArgs) Handles _

ImageButton1.Click

 If (e.X >= 100 And e.X <= 200) And (e.Y >= 50 And e.Y <= 150) Then

 Response.Redirect(“http://www.microsoft.com”)

 End If

End Sub

You can also use the Command event handler to make the ImageButton control work like com-

mand buttons. In particular, you can connect a command name to the image button with the

CommandName property, and the CommandArgument property can also be used to pass addi-

tional information about the command. Here’s how you might put that to work in code:

Private Sub ImageButton1_Command(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.CommandEventArgs) _

Handles ImageButton1.Command

 If e.CommandName = “NavigateButton” Then

 TextBox1.Text = e.CommandArgument

 End If

UNIT - 12 WEB AND VB.NET 258

End Sub

As with image controls, you can set the URL of the image to be used to the ImageUrl property.

To set the ImageUrl property at design time, click this property in the Properties window and

browse to the image you want to use. You can also set the ImageUrl property at runtime; just

assign it a string containing the URL of the image you want to use. You can also set the image’s

width and height with the Width and Height properties.

That’s it for image controls and buttons. There are only a few ways to display images in Web

pages that browsers will understand, and we’ve covered them now—the background property

of Web forms that let you set background images, image controls that translate into HTML

 elements, and image buttons that translate into HTML <input type = “image”> elements.

Next, we’ll take a look at Web server list controls.

12.13.2Using List Boxes

As when working with Windows forms, you use list boxes to create a control that allows single

or multiple selection of items from a list. When the user clicks an item in the list box, that item

appears in the text box at the bottom of the application, as you see in the figure.

In HTML, list boxes are supported with the HTML <select> control, and the items in the list

boxare supported with HTML <option> elements. For example, here’s the HTML that creates

the single-selection list box.

<select name=”ListBox1" size=”4" onchange=”__doPostBack(‘ListBox1’,’’)”

language=”javascript” id=”ListBox1"

style=”height:128px;width:145px;Z-INDEX: 102;

LEFT: 156px; POSITION: absolute; TOP: 72px”>

Self Learning Exercise-9

i. Fill in the Blanks

i) _____________ Returns or sets an (optional) value holding text associated with

UNIT - 12 WEB AND VB.NET 259

the command given by the CommandName property

12.14 Page Class

Namespace: System.Web.UI

Assembly: System.Web (in system.web.dll)

Syntax

Public Class Page Inherits TemplateControl Implements IHttpHandler

The Page class is associated with files that have an .aspx extension. These files are compiled at

run time as Page objects and cached in server memory.

If you want to create a Web Forms page using the code-behind technique, derive from this class.

Rapid application development (RAD) designers, such as Microsoft Visual Studio, automatically

use this model to create Web Forms pages.

The Page object serves as the naming container for all server controls in a page, except those

that implement the INamingContainer interface or are child controls of controls that implement

this interface.

The Page class is a control that acts as the user interface for your Web application, and as such

should be scrutinized to make sure best practices for writing secure code and securing applica-

tions are followed.

The following code example demonstrates how the Page class is used in the code-behind page

model. Note that the code-behind source file declares a partial class that inherits from a base

page class. The base page class can be Page, or it can be another class that derives from Page.

Furthermore, note that the partial class allows the code-behind file to use controls defined on the

page without the need to define them as field members.

<%@ Page Language=”VB” CodeFile=”pageexample.aspx.vb” Inherits=”MyCodeBehindVB”

%>

<html>

 <head runat=”server”>

 <title>Page Class Example</title>

 </head>

 <body>

 <form runat=”server”>

 <div>

 <table>

 <tr>

 <td> Name: </td>

 <td> <asp:textbox id=”MyTextBox” runat=”server”/> </td>

 </tr>

 <tr>

 <td></td>

UNIT - 12 WEB AND VB.NET 260

 <td><asp:button id=”MyButton” text=”Click Here” onclick=”SubmitBtn_Click” runat=”server”/

></td>

 </tr>

 <tr>

 <td></td>

 <td></td>

 </tr>

 </table>

 </div>

 </form>

 </body>

 </html>

Self Learning Exercise-10

i. Fill in the Blanks

j) The ________ object serves as the naming container for all server controls in a page.

12.15 Summary

In this unit you have learned the features of ASP.NET, its server side and client side Technolo-

gies, the life cycle of a web page, steps in creation and running a web application and a brief

introduction of System.Web.UI.Page class.

12.16 Glossary

CLR Common Language Runtime provided by the .NET Framework. This

CLR manages execution of the code we write.

IIS Internet Information Server. To develop a Web Application IIS is

required on the machine.

XML Web XML Web services allow applications to communicate and share data

Services over the Internet, regardless of operating system or programming

language

12.17 Further Readings and References

1. Mridula Parihar, Essam Ahmed, Jim Chandler, Bill Hatfield ,”ASP.NET Bible”, Unique

Color carton, New Delhi

2. Mathew Macdonald, “ASP.NET: The Complete Reference”, Tata Mcgraw Hill, New

Delhi

3. John Alexander, Billy Hollis, “Developing Web Applications with Visual Basic .NET and

ASP.NET”, John Wiley New Delhi

4. http://www.startvbdotnet.com

5. http://www.msdn2.microsoft.com

UNIT - 12 WEB AND VB.NET 261

12.18 Answers to Self Learning Exercises

i. Fill in the Blanks ii. True/False

a) server-side a) True

b) CLR b) False

c) Cookie c) True

d) Control.ViewState d) True

e) System.Web.UI.Page e) True

f) Logic f) False

g) Page_Unload g) True

h) String h) True

i) CommandArgument i) True

j) Page

12.19 UNIT END QUESTIONS

1. What is the differences between ASP.NET and Client-Side Technologies

2. List out the features of ASP.NET

3. What do you understand by ASP.NET Development Environment ? Explain.

4. Explain the Life Cycle of web form page.

5. What is the use of System.Web.UI.Page Class

UNIT - XIII CONTROLS IN VB.NET 262

Unit - 13: Controls in VB.NET

Structure of the Unit

13.0 Objective

13.1 Introduction

13.2 Web Server Controls

13.3 Custom Controls

13.3.1 Developing a Simple Custom Control

13.3.2 Defining Simple Properties

13.3.3 Defining Class Properties

13.3.4 Retrieving Inner Content

13.4 Dialog Boxes

13.4.1 Simple Dialog Box

13.4.2 Open Dialog Box with another Web Form

13.4.3 Returning value from the dialog box

13.5 Client and Server HTML Controls

13.6 HTML Server Controls

13.6.1 HTML tags

13.7 Windows Services

13.7.1 Creating a Windows Service in .NET

13.7.2 Investigating Installers

13.7.3 Adding FileSystemWatcher Event Code

13.7.4 Testing Service

13.7.5 Debugging Service

13.8 Web Services

13.8.1 HTTP GET Operation

13.8.2 HTTP POST Operation

13.8.3 SOAP

13.8.4 WSDL – a type library for a Web Service

13.9 Deploying an application

13.9.1 Deploying ASP.NET Applications

13.9.2 Installing the Application

13.10 Summary

13.11 Glossary

13.12 Further Readings

13.13 Answers to Self Learning Exercises

13.14 Unit End Questions

UNIT - XIII CONTROLS IN VB.NET 263

13.0 Objective

After going through this unit you will be able to,

l Understand different types of controls – HTML & Server controls

l Use of dialog boxes for interaction with user

l Understand services of web pages & different operations performed by them

l Apply the process of deployment and installation of an application.

13.1 Introduction

From the previous Unit you have learned about ASP.NET, the web form and their components

and the life cycle of a web page. You have also learned the concept of functions, arrays etc.

In this Unit we will discuss about how to make a web pages in .NET ,controls that can be placed

on a web page and different services performed by web page.

Before going through this unit it is required that you must read Unit-12 and solve the exercises.

13.2 Web Server Controls

Web server controls are one of the coolest new things about ASP.NET. I tend to think of them as

HTML controls on steroids, but let me introduce you to some of them and see what you think.

Web server controls are just like HTML controls... only different. Let me clarify that. Web

controls are easily identified by the fact that they have a runat=”server” attribute. They are also

handled at the server by the ASP.NET runtime when a page containing them is requested. They

can expose and raise server events which you can use to interact with them. They are identified

by giving them an id attribute which you can then use to reference the control in your code. In all

these ways, web controls are just like HTML controls.

The most obvious difference between the two is that the tags for web controls don’t look like

HTML tags. This is because they are not as closely tied to the basic HTML tags as HTML

controls are. While HTML controls tend to emit their corresponding HTML tag (with the at-

tributes you’ve set), they almost always just emit that HTML tag. Web controls can emit multiple

HTML tags in all sorts of combinations (or whatever else is needed) in order to accomplish their

task. They perform higher level fuctions and do not necessarily map directly to any one HTML

tag. Their object model is generally more complex and is ususally more abstract then that of an

HTML control.

They look something like this:

<asp:label id=”lblSample” runat=”server” />

That was simply a label control. It doesn’t do much except output whatever text you assign to it

surrounded by a tag. It’s one of the simplest of all the web controls. I’ve included a

sample aspx file named labelsample.aspx illustrating the above line in use in this lesson’s zip file

available at the bottom of this page.

calendarsample.aspx

<%@ Page Language=”VB” %>

<script runat=”server”>

 Sub btnSubmit_Click(Sender As Object, E As EventArgs)

 If calSample.SelectedDates.Count = 0 Then

 frmDateSelection.Visible = True

UNIT - XIII CONTROLS IN VB.NET 264

 lblSelectedDate.Visible = False

 Else

 frmDateSelection.Visible = False

 lblSelectedDate.Visible = True

 lblSelectedDate.Text = “You Selected: “ _

 & calSample.SelectedDate

 End If

 End Sub

</script>

<html>

<head>

<title>ASP.NET Calendar Web Control Sample</title>

</head>

<body bgcolor=”#FFFFFF”>

<div align=”center”>

<form id=”frmDateSelection” action=”calendarsample.aspx”

 method=”post” runat=”server”>

<asp:calendar id=”calSample” runat=”server” />

<asp:button id=”btnSubmit” text=”Submit Date Selection”

 onClick=”btnSubmit_Click” runat=”server” />

</form>

<asp:label id=”lblSelectedDate” runat=”server” />

</div>

</body>

</html>

It declares a calendar web control.

UNIT - XIII CONTROLS IN VB.NET 265

It gets you a lot of functionality with practically no code! That’s the type of power web controls

give you. They take a given set of functionality and package it up into a nice neat control with

methods, properties, and events that make sense based on the type of control involved. For

example, the calendar control contains a property SelectedDate that you can use in your code to

manipulate the highlighted date and an event SelectionChanged that you can use the perform

some action when the selection is changed.

Self Learning Exercise-1

ii. State True or False

a) Web Server controls are just like HTML Controls.

b) ASP.NET requires that all HTML elements must be properly closed and properly

nested.

13.3 Custom Control

13.3.1 Developing a Simple Custom Control

It is easy to start authoring your own ASP.NET server controls. To create a simple custom

control, all you have to do is to define a class that derives from System.Web.UI.Control and

override its Render method. The Render method takes one argument of type

System.Web.UI.HtmlTextWriter. The HTML that your control wants to send to the client is

passed as a string argument to the Write method of HtmlTextWriter.

13.3.2 Defining Simple Properties

Properties are like “smart” fields that have accessor methods. You should expose properties

instead of public fields from your controls because properties allow data hiding, can be versioned,

and are supported by visual designers. Properties have get/set accessor methods that set and

retrieve properties, and allow additional program logic to be performed if needed.

The following sample shows how to add simple properties that correspond to primitive data

types such as integer, Boolean, and string. The sample defines three properties - Message is of

type string, MessageSize is of type enumeration, and Iterations is of type integer. Note the page

syntax for setting simple and enumeration properties.

13.3.3 Defining Class Properties

If a class A has a property whose type is class B, then the properties of B (if any) are called

subproperties of A. The following sample defines a custom control SimpleSubProperty that has

a property of type Format. Format is a class that has two primitive properties - Color and Size,

which in turn become subproperties of SimpleSubProperty.

Note that ASP.NET has a special syntax for setting subproperties. The following code example

shows how to declaratively set the Format.Color and Format.Size subproperties on

SimpleSubProperty. The “-” syntax denotes a subproperty.

<SimpleControlSamples:SimpleSubProperty Message=”Hello There” Format-Color=”red”

Format-Size=”3" runat=server/>

13.3.4 Retrieving Inner Content

Every control has a Controls property that it inherits from System.Web.UI.Control. This is a

collection property that denotes the child controls (if any) of a control. If a control is not marked

with the ParseChildrenAttribute or marked with ParseChildrenAttribute(ChildrenAsProperties

= false), the ASP.NET page framework applies the following parsing logic when the control is

UNIT - XIII CONTROLS IN VB.NET 266

used declarartively on a page. If the parser encounters nested controls within the control’s tags,

it creates instances of them and adds them to the Controls property of the control. Literal text

between tags is added as a LiteralControl. Any other nested elements generate a parser error.

The following sample shows a custom control, SimpleInnerContent, that renders text added

between its tags by checking if a LiteralControl has been added to its Controls collection. If so,

it retrieves the Text property of the LiteralControl, and appends it to its output string.

If your custom control derives from WebControl, it will not have the parsing logic described in

the sample, because WebControl is marked with ParseChildrenAttribute(ChildrenAsProperties

= true), which results in a different parsing logic. For more information about the

ParseChildrenAttribute, see the SDK documentation.

Self Learning Exercise-2

i. Fill in the Blanks

a) Every control has a Controls property that it inherits from ________________.

b) The Render method takes one argument of type _________________.

13.4 Dialog Box

Using dialog box in any application is very important in order to have close talk between the user

and the application. These dialogs between the user and the application greatly enhance the

usability of the application. As it allow your application to have dialogs with the user more closely.

Dialog box can be used to give some feedback to the user or to get some input from the user or

even both.

It is really simple to implement a dialog box in the window based application.

Dim fChild As New frmChild

frmChild.Show vbModal

It requires some bit technique to open it, specially if you want to open a modal dialog box. In the

following article, we will see some of the important technique of implementing dialog box in the

web-based application.

13.4.1 Simple Dialog Box

The first and usual technique of implementing dialog box is to put JavaScript to the particular

event (usually click event) of the control. It is really an easy way when your application already

know when to open a dialog box when the page load to the browser.

Here is the simple example, put a button form control to the web page and insert the following

code.

btnOpen1.Attributes.Add(“onclick”, “alert(‘GOT IT?’);”)

its a one line code to pop a alert message to the user.

Same way, suppose you want that, the application open a confirmation dialog box from where

the user can select his option. You can use this method very well. Like, you want to open a

confirmation dialog box when user clicks on the delete button of the page. Simply use following

code for that:

btnDelete.Attributes.Add(“onclick”, “if(confirm(‘Are you sure to delete?’)){}else{return false}”)

It will create a small javascript code to the browser. When user selects “No” from the confirma-

tion dialog box, it will return false. Hence nothing will happen. And if user select “Yes”, it will

return true and will post the page.

UNIT - XIII CONTROLS IN VB.NET 267

13.4.2 Open Dialog Box with Another Web Form

To open an another web page as a dialog box we use,

btnOpen2.Attributes.Add(“onclick”, “window.open (‘child.aspx’)”)

btnOpen is again a web form control and when user click on this button, it will open another

instance of the browser with the page “child.aspx”.

It creates one another instance of the browser, put one more application to the task bar, even the

dialog box is modeless. It is possible to open a page in the same browser with modal dialog box.

Here is the code for that

btnOpen3.Attributes.Add(“onclick”, “window.showModalDialog(‘child.aspx’,

null,’status:no;dialogWidth:370px;dialogHeight:220px;dialogHide:true;help:no;scroll:no’);”)

It simply creates a small javascript code to the page and attach the click even of the control to

that script. If you look at the html source code of the page, then you will find we you want to

know/ here is the html code of page that is create with above dialog box popup.

<input type=”submit” name=”btnOpen1" value=”Open 1" id=”btnOpen1" onclick=”alert(‘GOT

IT?’);” style=”width:64px;Z-INDEX: 101; LEFT: 8px; POSITION: absolute; TOP: 8px” />

<input type=”submit” name=”btnDelete” value=”Delete” id=”btnDelete” onclick=”if(confirm(‘Are

you sure to delete?’)){}else{return false}” style=”width:64px;Z-INDEX: 102; LEFT: 8px;

POSITION: absolute; TOP: 48px” />

<input type=”submit” name=”btnOpen2" value=”Open 2" id=”btnOpen2"

onclick=”window.open(‘child.aspx’)” style=”width:64px;Z-INDEX: 103; LEFT: 8px; POSI-

TION: absolute; TOP: 88px” />

<input type=”submit” name=”btnOpen3" value=”Open 3" id=”btnOpen3"

onclick=”window.showModalDialog(‘child.aspx’,null,’status:no;dialogWidth:370px;

dialogHeight:220px;dialogHide:true;help:no;scroll:no’);”

 style=”width:64px;Z-INDEX: 104; LEFT: 8px; POSITION: absolute; TOP: 128px” />

13.4.3 Returning Value from the Dialog Box

Suppose you have opened a dialog box for some purpose and you want that it returns some

value to the parent web form.

For returning any thing to the parent window from the child dialog box, javascript provides one

attribute of the window object, that is

window.returnValue

to understand its working. We create a small web project with two web forms named:

parent.aspx

child.aspx

Parent web form will have one textbox and a button. Look at the following code of the parent

web form.

parent.aspx

<body MS_POSITIONING=”GridLayout”>

 <form id=”Form1" method=”post” runat=”server”>

 <asp:TextBox id=”txtValue” style=”Z-INDEX: 101; LEFT: 16px; POSITION: absolute;

TOP: 24px” runat=”server”></asp:TextBox>

 <asp:Button id=”btnOpen” style=”Z-INDEX: 102; LEFT: 176px; POSITION: absolute; TOP:

UNIT - XIII CONTROLS IN VB.NET 268

24px” runat=”server” Text=”Open...”></asp:Button>

 </form>

</body>

parent.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

 btnOpen.Attributes.Add(“onclick”, “var strReturn;

strReturn=window.showModalDialog(‘child2.aspx’,null,’status:no;dialogWidth:370px;

dialogHeight:220px;dialogHide:true;help:no;scroll:no’);

if (strReturn != null) document.getElementById(‘txtValue’).value=strReturn;”)

End Sub

And, child web form which will have a textbox and two buttons. Look at the following code of

the child page.

child2.aspx

<body MS_POSITIONING=”GridLayout”>

 <form id=”Form1" method=”post” runat=”server”>

 <asp:TextBox id=”txtValue” style=”Z-INDEX: 101; LEFT: 16px; POSITION: absolute; TOP:

24px” runat=”server”></asp:TextBox>

 <asp:Button id=”btnOK” style=”Z-INDEX: 103; LEFT: 48px; POSITION: absolute; TOP:

56px” runat=”server” Text=”Ok” Width=”56px”></asp:Button>

 <asp:Button id=”btnCancel” style=”Z-INDEX: 102; LEFT: 112px; POSITION: absolute;

TOP: 56px” runat=”server” Text=”Cancel”></asp:Button>

 </form>

</body>

child2.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

 btnOK.Attributes.Add(“onclick”, “window.returnValue =

document.getElementById(‘txtValue’).value; window.close();”)

 btnCancel.Attributes.Add(“onclick”, “window.close();”)

End Sub

The purpose of this small module is, that when user clicks on the button of the parent form, it will

open child.apsx file in the dialog box. In the child form user will enter some value in the textbox

and it he click on the Ok button it will return that value to the parent form. With that it will update

the textbox of the parent form. And of course, if user clicks on the Cancel button, it will simply

close the child dialog box without doing anything.

In all of the above cases, there is nothing to do with the ASP.NET. All of things are actually

handle by the javascript. See the javascript code of the child web form.

<input name=”txtValue” type=”text” id=”txtValue” style=”Z-INDEX: 101; LEFT: 16px; POSI-

TION: absolute; TOP: 24px” />

UNIT - XIII CONTROLS IN VB.NET 269

<input type=”submit” name=”btnOK” value=”Ok” id=”btnOK” onclick=”window.returnValue

= document.getElementById(‘txtValue’).value; window.close();” style=”width:56px;Z-INDEX:

103; LEFT: 48px; POSITION: absolute; TOP: 56px” />

<input type=”submit” name=”btnCancel” value=”Cancel” id=”btnCancel”

onclick=”window.close();” style=”Z-INDEX: 102; LEFT: 112px; POSITION: absolute; TOP:

56px” />

In the child web form, the value to be return is assigned to the window.returnValue. And the

return value is assigned to a variable in the parent web form. Thereafter, it assigned to the textbox.

The idea is that, window.returnValue returns some value from the child window to the parent

window, and thereafter, you can do any thing with that returned value. You can even pass to the

VB code using parameter of the query string of the document action.

There will be one limitation of using above method of returning value from the dialog box. And

the limitation is that you can only return one value to the parent window.

One thing you must have notice that I have used response object for closing the dialog box.

Writing javascript script to the response object is another way to put javascript to the web form.

In above code it simply create script, which contains window.close() statement, and write it to

the browser. At client side of the browser, browser reads the script and executes it.

So, from the last example we learnt new way to put javascript to the browser and that is using

response object.

You can use response object to popup a alert message also. Here is the code for that:

Private Sub btnOpen5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnOpen5.Click

 Dim strScript As String = “”

 strScript = “<script>”

 strScript = strScript & “alert(‘Simple alter message!!!!’);”

 strScript = strScript & “</script>”

 Response.Write(strScript)

End Sub

Above code, simply pops an alert message to the user.

If you want to display some variable message in the alert message then it you can do that with

slight change.

Private Sub btnOpen6_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnOpen6.Click

 Dim strScript As String = “”

 Dim intSum As Integer

 strScript = “<script>”

 intSum = 344 + 233

 strScript = strScript & “alert(‘SUM : “ & intSum & “‘);”

 strScript = strScript & “</script>”

 Response.Write(strScript)

UNIT - XIII CONTROLS IN VB.NET 270

End Sub

there will be a drawback again, in using above method to pop alert box, you will notice that if you

have tried the above code. We will talk about it later on.

Same thing can be done by registering javascript code to the browser. Following is the example,

will do the same thing, but here we will register the javascript to the page.

Private Sub btnOpen7_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnOpen7.Click

 Dim strScript As String = “”

 strScript = “<script>”

 strScript = strScript & “alert(‘Simple alter message!!!!’);”

 strScript = strScript & “</script>”

 Page.RegisterClientScriptBlock(“ClientScript”, strScript)

End Sub

Now about that drawback, yes, you are right, it wash screen of the parent window when it pop

the alert message or dialog box. The all controls of the parent window will remain hidden unless

you close the alert box or dialog box.

It is because, the javascript that is generated is attached to the top of the html page. You can

easily understand this you see the generated html code of the page. Look at the following:

This Code is generated using Response object:

<script>alert(‘Simple alter message!!!!’);</script>

<HTML>

<HEAD>

 <title>WebForm1</title>

</HEAD>

<body MS_POSITIONING=”GridLayout”>

</body>

</HTML>

Or the Code generated using RegisterClientScriptBlock method :

<HTML>

<HEAD>

<title>WebForm1</title>

</HEAD>

<body MS_POSITIONING=”GridLayout”>

 <form name=”Form1" method=”post” action=”MainForm.aspx” id=”Form1">

 <script>alert(‘Simple alter message!!!!’);</script>

 </form>

</body>

</HTML>

UNIT - XIII CONTROLS IN VB.NET 271

Self Learning Exercise-3

i. Fill in the Blanks

c) Using __________ in any application is very important in order to have close talk

between user and the application.

13.5 Client and Server HTML Controls

In concerning about attribute ‘id’ is role ends on client-side, i.e., this attribute it’s only used by

browsers engines and by programmers to, easily, find an html element in page. This very useful

attribute is not required, and thus, is only rendered when programmers explicitly set ASP.NET

Controls ID property value.

If you heavily use client-side scripting then you, certainly, thought why this attribute isn’t always

rendered. Well, try thinking on the opposite scenario, where all html elements have its own id

attribute rendered, even elements that usually are not changed by script (like labels) and all the

other that in your case are not needed. This last scenario seems to me a waste of resources,

valuable resources like network bandwidth.

The role of attribute ‘name’ is far most complex. In fact, most of richness of ASP.NET user

experience is built on top of its uniqueness.

Unlike ‘id’ the ‘name’ attribute is almost always rendered, and even when is not rendered di-

rectly to element attributes it could still be in use on script statements (usually __doPostBack).

The ‘name’ attribute has two tasks to accomplish:

The first come from the old ASP times and is the fact that ‘name’ value is used as key in the post

values server-side collection (HttpContext.Current.Request.Form)

The second, a new responsibility added by ASP.NET, is to delegate on ‘name’ value the respon-

sibility of identifying uniquely the element source of current post back.

This last responsibility adds a new constrain to ‘name’ attribute value: it must be unique but it also

must be something that maps directly to a single Server-Side Control, the same that previously

render the ‘name’ attribute value.

To achieve this task, every ASP.NET Control has a UniqueID property that is built based on the

control hierarchy. In order to ensure that a control always has the same UniqueID its assumed

that his parent hierarchy is always built the same way, even dynamic controls should always be

added at the same point of the Page Life Cycle.

the bridge between client and server-side that allows the raise of server-side control events

like OnClick and OnChange (OnTextChange, OnSelectIndexChange, etc.).

13.6 HTML Server Controls

13.6.1 HTML tags

HTML server controls are HTML tags understood by the server.

HTML elements in ASP.NET files are, by default, treated as text. To make these elements pro-

grammable, add a runat=”server” attribute to the HTML element. This attribute indicates that the

element should be treated as a server control.

All HTML server controls must be within a <form> tag with the runat=”server” attribute.

ASP.NET requires that all HTML elements must be properly closed and properly nested.

UNIT - XIII CONTROLS IN VB.NET 272

HTML Server Control Description

HtmlAnchor Controls an <a> HTML element

HtmlButton Controls a <button> HTML element

HtmlForm Controls a <form> HTML element

HtmlGeneric Controls other HTML element not specified by a specific HTML

server control, like <body>, <div>, , etc.

HtmlImage Controls an <image> HTML element

HtmlInputButton Controls <input type=”button”>, <input type=”submit”>, and

<input type=”reset”> HTML elements

HtmlInputCheckBox Controls an <input type=”checkbox”> HTML element

HtmlInputFile Controls an <input type=”file”> HTML element

HtmlInputHidden Controls an <input type=”hidden”> HTML element

HtmlInputImage Controls an <input type=”image”> HTML element

HtmlInputRadioButton Controls an <input type=”radio”> HTML element

HtmlInputText Controls <input type=”text”> and <input type=”password”>

HTML elements

HtmlSelect Controls a <select> HTML element

HtmlTable Controls a <table> HTML element

HtmlTableCell Controls <td>and <th> HTML elements

HtmlTableRow Controls a <tr> HTML element

HtmlTextArea Controls a <textarea> HTML element

Web server Control

Web server controls are special ASP.NET tags understood by the server.

Web Server Controls

Like HTML server controls, Web server controls are also created on the server and they require

a runat=”server” attribute to work. However, Web server controls do not necessarily map to any

existing HTML elements and they may represent more complex elements.

The syntax for creating a Web server control is:

<asp:control_name id=”some_id” runat=”server” />

Web ServerControl Description

AdRotator Displays a sequence of images

Button Displays a push button

Calendar Displays a calendar

CheckBox Displays a check box

CheckBoxList Creates a multi-selection check box group

DataGrid Displays fields of a data source in a grid

DataList Displays items from a data source by using templates

UNIT - XIII CONTROLS IN VB.NET 273

DropDownList Creates a drop-down list

HyperLink Creates a hyperlink

Image Displays an image

ImageButton Displays a clickable image

Label Displays static content which is programmable (lets you apply

styles to its content)

LinkButton Creates a hyperlink button

ListBox Creates a single- or multi-selection drop-down list

Literal Displays static content which is programmable (does not let

you apply styles to its content)

Panel Provides a container for other controls

PlaceHolder Reserves space for controls added by code

RadioButton Creates a radio button

RadioButtonList Creates a group of radio buttons

Repeater Displays a repeated list of items bound to the control

Table Creates a table

TableCell Creates a table cell

TableRow Creates a table row

TextBox Creates a text box

Xml Displays an XML file or the results of an XSL transform

Self Learning Exercise-4

i. Fill in the Blanks

d) HTML Server Controls are _________ tags understood by the server.

e) All HTML server controls must be within a ________ tag with the runat=”server”

attribute.

f) ___________ control creates a hyperlink button.

ii. State True or False

c) AdRotator Control displays the sequences of rotation in a text.

13.7 Windows Services

Windows services are applications that run outside of any particular user context in Windows

NT, Windows 2000, or Windows XP. The creation of services used to require expert coding

skills. You can also write a Windows service in any other language that targets the common

language runtime. This article walks you through the creation of a useful Windows service, then

demonstrates how to install, test, and debug the service.

If you’re running Windows NT® or Windows® 2000, you’re running at least a handful of Win-

dows services (previously called Windows NT Services). Typically these services provide sys-

tem-level support, including the system event log, task scheduler, and telephony. An important

aspect of Windows services is that they can run without a user context, albeit only under Win-

dows NT, Windows 2000, or Windows XP at this point. They don’t require a user to be logged

in order to do their work, and they generally run in a higher-powered security mode than do most

users.

Windows services are often started by Windows when you boot up, but can be stopped, paused,

restarted, and shut down from the Services applet provided by Windows. In addition, you can

UNIT - XIII CONTROLS IN VB.NET 274

manage Windows services programmatically, and Microsoft® .NET makes this easy, using the

ServiceController component that’s part of the .NET Framework.

Creating a Windows service in Visual Studio .NET is amazingly simple. If you follow the steps,

you end up with a service, and debugging the service is much simpler than in previous versions.

This article focuses on creating a simple, somewhat useful Windows service which monitors file

changes on a specific drive, or, with modification, on multiple drives. As you follow the steps to

build this Windows service, I’ll explain the EventLog and FileSystemWatcher components pro-

vided by the Microsoft .NET Framework. You’ll see how to add an installer to your project, so

that the InstallUtil program that comes with Visual Studio can install your service, and you’ll see

how to debug your service as well, taking advantage of the ServiceController component that is

provided by the .NET Framework.

13.7.1 Creating a Windows Service in .NET

From a developer’s perspective, a Windows service application exists as an executable file,

although this file may contain more than one service. You determine the behavior of each service

in your project by writing a class for each that inherits from the ServiceProcess.ServiceBase

class (creating a Windows Service project takes care of most of these types of details for you),

and adding code to handle the various methods provided by this class. Among other things, the

service you create can provide code for the OnStart, OnStop, OnPause, OnContinue, and

OnShutdown methods called by the Service Control Manager (SCM) as you interact with the

service. None of these procedures is required, but you can use them to provide specific behavior

in reaction to requests from the SCM’s user interface, or from other services. (The Service

Control Manager mentioned here is, by the way, not the same as the service COM uses to

bootstrap objects, even though they share the same name.)

The service class you create can’t install itself, however. You must also supply an Installer class

that inherits from Configuration.Install.Installer. For each service in your project, this class cre-

ates one ServiceProcessInstaller object (which knows how to install the service with the SCM

for you), and a ServiceInstaller object. The ServiceInstaller object writes information to your

registry for you as needed for the installation—specifically, to a subkey under the

HKEY_LOCAL_MACHINE\ System \CurrentControlSet \Services key.

Once you’ve created your service class with the appropriate functionality built in, you’ll follow

these steps to get it up and running:

Compile your project to create an EXE.

Use the InstallUtil program that’s part of the .NET platform to install your project (you should

load it as a service).

Use the Services applet from the Control Panel to start your service. By default, the project you

created sets the start type to Manual.

If you want to debug your service, now’s the time to grab onto the process containing your

service, and step through the code looking for problems.

This article covers each of these steps in some detail.

Walkthrough

To illustrate the process, we will be creating a simple service that actually does something useful

rather than using the example provided by Microsoft which writes “Hello, World” to your event

log every second it runs. The service monitors file activity on the drive that you specify when you

UNIT - XIII CONTROLS IN VB.NET 275

start the service. This service writes informational messages into your application’s event log,

indicating that you’ve changed an item in the file system underneath the path you specify.

The .NET platform, provides the FileSystemWatcher component, which makes it easy to deter-

mine when users have modified, deleted, added, or moved files on a drive. All you have to do is

place one of these components on the design surface for your service class, and you can react to

events raised by the component when files are changed. It’s even easier to take advantage of

event logs—the EventLog class is provided by the .NET Framework as well, so you can just

drop it and use it.

 To create this, follow these steps:

Start Visual Studio .NET, and create a new project. From the New Project dialog box, choose

either a Visual Basic or Visual C#™ project, and select the Windows Service project type. Set

the name for the project to FileWatcher, and place it in a convenient folder. (When entering code

throughout this article, choose the appropriate code sample, C# or Visual Basic .NET, matching

your project type.

You don’t have to use the Windows Service project template, but if you choose not to, you’ll

need to do a lot more work on your own. Selecting the project template sets up the appropriate

inheritance, and includes the necessary components.

Modify the file name. Once Visual Studio has created the project, you’ll find a class named

Service1 within the project. In the Solution Explorer window, rename this file FileWatcher.cs or

FileWatcher.vb, depending on the project language.

Open the class in Design view. With the FileWatcher class selected, you can either press Shift+F7

or choose the View | Designer menu item.

Modify the service properties. In the Properties window, set the service’s properties. The three

Boolean properties (CanPauseAndContinue, CanShutDown, and CanStop) control the behav-

ior of the running service. The ServiceName property provides the name the system uses to refer

to the service. (You might also investigate the CanHandlePowerEvent, which indicates that the

service handles the computer power status changes indicated in the PowerBroadcastStatus class.

Modifying that property isn’t really necessary in this example.)

Add the FileSystemWatcher component. With the FileWatcher class still open in Design view,

locate the Toolbox window (press Ctrl+Alt+X, or use the View | Toolbox menu item to ensure

that it’s visible). Find the Components tab, and then double-click on the FileSystemWatcher

component to add an instance to the designer. Modify the component’s name to be fsw.

Set fsw’s properties. Select the FileSystemWatcher component you just added and modify its

properties. Although you can accept the FileSystemWatcher object’s default properties, you’ll

probably always want to set at least the Filter, Path, and IncludeSubdirectories properties. The

following figure shows the FileSystemWatcher object’s Properties window, once you’ve set all

its properties.

UNIT - XIII CONTROLS IN VB.NET 276

Add startup code. Generally, you’ll need code in your service’s OnStart event that sets up your

service and its data structures, and perhaps logs information to the system event log. In this case,

your service will simply set fsw’s Path property based on the arguments passed into the service,

and will log the event to the event log. Use the View | Code menu item (or press F7) to load the

class’s module, find the existing OnStart procedure, and modify it

You can also write code to handle the OnContinue, OnCustomCommand, OnPause, OnShutdown,

OnPowerEvent, and OnStop events of the service.

Add an Installer. Select the View | Designer menu item (or press Shift+F7). Make sure the

Properties window is visible (use the View | Properties window menu item, or press F4), and

click on the designer surface to make sure it’s selected. Then select the Add Installer link at the

bottom of the Properties window to add the installer classes.

13.7.2 Investigating Installers

Once you’ve selected the Add Installer link, Visual Studio .NET creates a new project file

named ProjectInstaller.cs (or .vb). Right now, this new file contains two components:

ServiceProcessInstaller1 and ServiceInstaller1. If you investigate the properties of each, you’ll

see that the ServiceInstaller1 object includes a ServiceName property. This component installs

your particular service. The other component, ServiceProcessInstaller1, has properties such as

Account, Password, and UserName. This component takes care of interacting with the Win-

dows SCM on behalf of your service. You may have more than one ServiceInstaller component

in your project—if your project contains multiple classes that inherit from ServiceBase, for ex-

ample—but it will only have a single instance of a ServiceProcessInstaller object.

UNIT - XIII CONTROLS IN VB.NET 277

Note: that Visual Studio .NET sets the ServiceName property of the ServiceInstaller object

when you add the ServiceInstaller object to your project. If you change the name of your service

class, you’ll need to manually change this property to match.

There are a few important things that you should note. The class that Visual Studio .NET creates

for you, inheriting from System.Configuration.Install.Installer (named ProjectInstaller by default),

must include the RunInstaller attribute, set to True, in order for the installation to be invoked

when you install the assembly. If you remove this or set it to False, you service won’t be installed.

Like other classes that include a Designer window, this one provides an InitializeComponent

method. The intent is that you won’t modify this—make all your changes in the designer. Code

you might add, however, would be in reaction to the various events raised by the

ServiceProcessInstaller or ServiceInstaller classes, including Before/AfterCommit, Before/

AfterInstall, Before/AfterRollback, and Before/AfterUninstall. These events give you a chance

to modify the default behavior for the installer classes that you add to your projects.

By default, the ServiceInstaller class’s StartType property is set to Manual. If you want your

service to start automatically when you install it, select the ServiceInstaller1 component in

ProjectInstaller’s designer, and set the StartType property to Automatic.

In order for the installer to be able to install your service, you need to supply information about

the account the service will run as. For this simple service, you can set the Account property of

ServiceProcessInstaller1 to be LocalSystem—that way, you needn’t supply any authentication

information. However, if you don’t set the Account property to LocalSystem, or you don’t

supply a valid UserName and Password property values, the installation setup will fail.

13.7.3 Adding FileSystemWatcher Event Code

The FileSystemWatcher component provides a number of events to which you can react in

code, including Changed, Created, Deleted, and Renamed.

The designer will take you to the appropriate event handler stub, and will add the necessary code

to hook up the event, as well. Follow these steps to set up your code:

Select the FileWatcher object in the Solution Explorer window, and then use View | Designer

(Shift+F7) to open the designer window.

Select the FileSystemWatcher component on the FileWatcher class designer.

Add code for the Changed event. In reaction to the Changed event, you’ll write the type of

change, plus the name of the file or folder, to the event log. In the code window, select fsw from

the left dropdown list at the top of the window, and then select Changed from the right-hand list.

Add code for the Created event. In reaction to the Created event, write the name of the new file

or path to the event log.

Add code for the Deleted event. In reaction to the Deleted event, write the name of the deleted

file or path to the event log

Add code for the Renamed event.

If you’re creating a Visual Basic .NET project, you’re all finished. If you’re creating a C# project,

however, you’ll need to manually hook up the event handlers for the event procedures you just

added. (Visual Basic .NET provides this internal plumbing for you—C# does not.) Therefore, if

you’re creating a C# project, follow this final step: in the FileWatcher.cs module, find the

InitializeComponent procedure. Ensure that the lines of code appear before the call to the EndInit

method of the fsw object. These lines add event handlers for the procedures you’ve created.

UNIT - XIII CONTROLS IN VB.NET 278

If you used the Events button on the Properties windows toolbar to create the event procedures,

you won’t need to add the code in the final step yourself—Visual Studio will have added it for

you. If you’re using Visual Basic .NET, you needn’t worry about these event handlers, since

Visual Basic .NET takes care of the hookups under the covers.

13.7.4 Testing Service

Unlike many applications you’ll create using Visual Studio .NET, you cannot simply run a Win-

dows service from within the development environment. You must build the executable, install it,

and test it as a running service. (Debugging a service is another story altogether, which I’ll cover

in the next section.) Follow these steps to test your Windows service:

Use the File | Save All menu item, or press Ctrl+Shift+S, to save your entire project.

Choose the Build | Build menu item (or press Ctrl+Shift+B) to build your service’s executable

file.

Find the executable. Use the Visual Studio .NET Command Prompt item from the Start menu.

It’s installed as a subitem of the Visual Studio .NET Tools item to open a Windows command

prompt. (If you don’t follow these steps, you won’t have your MS-DOS path set correctly.)

Change to the folder where your project is stored. Navigate to the bin\debug folder for C#

projects, or the bin folder for Visual Basic projects, and locate the FileWatcher.exe file you’ve

just created.

Install your service. Run the InstallUtil tool that comes with Visual Studio, using the following

command line:

InstallUtil filewatcher.exe

Start the service. Unless you modified the ServiceInstaller1 StartType property, you’ll need to

start your service. Bring up the Windows service manager. (The exact steps depend on your

operating system. In Windows 2000, you can use the Administrative Tools applet in Control

Panel and select the Services item.) In the Services tool, find the FileWatcher service and double-

click it to load the properties dialog box for the service. If you want to specify a path other than

C:\ for the FileWatcher class, you can do that in the Start Parameters textbox. When you’re

ready, press Start to start the service.

Investigate the Startup events. Open the Event Viewer (again, the steps vary depending on your

operating system). Select the Application log, and note that you should find two entries in the

event log already. The first, sent from your service’s OnStart event procedure, contains the text

“FileWatchService starting. There are 0 args. Watch path is ‘C:\’.” (The text will be different if

you specified an argument when you started the service.) The second, sent automatically (be-

cause you set the service’s AutoLog property to True), indicates that the service started success-

fully.

Test the service. Open Windows Explorer, navigate to the folder your service is “watching,” and

make some changes. Rename, delete, or modify files. Switch back to the event viewer, and you

should see information about your changes logged there.

Remove the service. When you’re done, use the Services dialog box to stop your service. Run

InstallUtil with its /u parameter to uninstall your service. You’ll also need to shut down the Win-

dows Services applet to completely remove your service from memory.

13.7.5 Debugging Service

At some point, you’re likely to want to single-step through the code you’ve written in your

service application. Although you can debug services much as you debug other applications, you

UNIT - XIII CONTROLS IN VB.NET 279

cannot simply press F5 to start running the service from within the Visual Studio development

environment, as you can with other projects.

Because you must compile and install a service before running it, debugging becomes a little

more complex than for normal applications. Visual Studio .NET makes this process as easy as

possible. Once your service is running, you can grab onto the running process and debug your

code. To test this out, follow these steps:

Reinstall and start your service, as described in the previous section. (You must start the service

running, or you won’t be able to debug it.)

In Visual Studio, with your project loaded, select the Debug | Processes menu item, displaying

the Processes dialog box.

Select the Show system processes checkbox so that the Available Processes list includes running

services.

In the Available Processes list, select the Filewatcher.exe entry, and then click Attach. On the

Attach to Process dialog box, make sure that the Common Language Runtime option is selected,

then select OK to accept. Then you can close the Processes dialog box.

Set a breakpoint in your code at the location you’d like to test. In this case, set a breakpoint on

one of the event procedures you’ve created within the FileWatcher class.

Trigger the breakpoint by taking the necessary action within the file system. For example, if you

set a breakpoint in the Created event procedure, creating a new folder in the “watched” folder

should bring you back to your breakpoint. At this point, you can single-step through the code, as

you would with any other application. Press F5 to continue running when you’re finished with

your testing.

When you’re finished debugging, detach the debugger from the running process using the Debug

| Processes menu. Select the FileWatcher project in the list of debugged processes, then click the

Detach button that’s to the right of the list. Dismiss the dialog box.

Use the Debug | Stop Debugging menu item to end the debugging session.

One solution is to cheat—that is, insert a pause into the OnStart procedure, using code like this

System.Threading.Thread.Sleep(25000);

This code causes the thread to sleep for 25 seconds. This is long enough for you to dig through

the Debug | Processes menu item, find the process you want to debug, and attach to it, but not so

long that the SCM times out. Once you’ve added this code, you can step through your OnStart

procedure.

Self Learning Exercise-5

i. Fill in the Blanks

g) ______________ are applications that run outside of any particular user context in

Windows NT, Windows 2000 or Windows XP.

ii. State True or False

d) Windows Services are often started by windows when you boot up, but can not be

stopped, paused, restarted and shutdown.

13.8 Web Services

Web Services promise to bring information into your applications from the Internet in much the

UNIT - XIII CONTROLS IN VB.NET 280

same way that browser have made information available to end users. The .Net framework

introduces Web Services as an integral part of the architecture, making it very easy to create and

consume these services with minimal amounts of code written. In fact, if you read Microsoft’s

documentation, Web Services are featured as the new component architecture in the distributed

age where not only Internet exposure is handled through them but also common reusable busi-

ness and application services.

 The .Net framework abstracts most of the internal logic that handles the remoting details of

method calls over the wire and Visual Studio .Net builds support for Web Services directly into

the development environment. With all of this in place it becomes almost as easy to call a remote

method as it is to call a local method. And that after all is what Web Services are about – making

server side logic easily available to client applications.

Web Service’s mission is to provide a Remote Procedure Call (RPC) interface for client applica-

tions to call class methods on the server side. Actually, the handling interface on the server need

not be a class, but in the case of .Net and COM before it classes are typically used as the

implementing entity. The idea is that in order to create a Web Service, you create a class method

with standard input and output parameters and you then mark those classes and the specific

methods as exposable over the Net.

Web Services are meant to expose functionality of a server to other applications. The ‘client’

applications in this case may be a Fat Client Windows app, a Fat Server Web application that

runs a standard Web backend such as ASP, Cold Fusion, Web Connection etc., a browser

based client application using script code, or even Java applet running in a browser on a Unix

machine. As long as a client application has support for the Simple Object Access Protocol

(SOAP) it can call the remote Web Service and return data for it, assuming the user is autho-

rized.

SOAP is an important part of this process – it’s the protocol that’s responsible for routing the

RPC message from the client to the server and returning the result back to the client application.

SOAP is based on XML and follows a relatively simple design that’s easy to implement. SOAP’s

simple protocol has contributed to its widespread support on just about any platform and devel-

opment environment. You can find SOAP clients for COM (the MSSOAP Toolkit is available

for Visual Studio 6 developers), .Net (obviously), Perl, Java, C++, PHP – and just about any

development environment you can think of.

SOAP implementations provided by vendors typically consist of two pieces: A client side Proxy

that handles the SOAP message creation and result message cracking to return the result data, as

well as a server piece that implements the Web Service logic. The server piece tends to be an

application server that calls out to custom Web Service classes that you create and that contain

the business logic of your Web Service. The server code you write essentially consists of simple

methods to handle inputs and outputs via parameters and return values respectively. The logic

you write in the actual method is up to you and contains any functionality that your language of

choice supports. This means writing code to call your business objects or if the process is simple

enough using procedural code to perform some operation. Although Web Services can expose

classes, you’ll find that typically you end up creating wrapper classes for existing business ob-

jects in order to handle the specific logic required to drive your Web Service. As such you’re

breaking up the business tier with a front end service (the Web Service) and a business service

(your actual business objects – or if you use procedural code just that code).

One important thing to remember is that Web Services follow typical Web rules. For one they

UNIT - XIII CONTROLS IN VB.NET 281

are stateless. This means that even though Web Services expose classes, they are more of a

remote procedure call interface than a remote class interface. You call methods with parameters

rather than storing state in properties between method calls. In fact, none of the major Web

Service implementations support properties in any way. If you need to keep state you’ll have to

use Web Server specific functionality such as the ASP or ASP.NET Session object to store that

state and retrieve it on subsequent hits. Since Web Services use the standard Web architecture,

the same tools you’ve used for HTML based browser applications can also be used in the Web

Services code, although you will find that you spend very little time accessing this functionality in

your Web Service code as the frameworks abstract away the need to deal with the HTTP and

Web Server layer for the most part. Things that you may need to manage yourself include state

and security since the Web Service architecture doesn’t provide this for you. In both cases you

can however take advantage of the HTTP services (Authentication, SSL for example) or the

Web server features like the session object to make short work of dealing with these issues.

SOAP proxies vary widely in quality and ease of use and unfortunately, as the official SOAP

spec is still under heavy construction by the standards bodies. Interoperability is not perfect, but

getting better all the time. Be sure to stay up with your vendor’s latest toolkits for best compat-

ibility. Proxies are the key to making Web Services easy to use and consume. Microsoft’s imple-

mentations in both COM and .Net provide proxy interfaces that simulate the remote object and

provide you with a simple call interface that lets you create the proxy and then call methods on it

the same way as you would on a local object. Visual Studio .Net takes this one step further by

actually providing you a real proxy object that contains the actual methods of the remote object

making it possible to even use time saving features like IntelliSense on the object.

Creating Web Services in .Net and consuming the service either in a Windows Form application

or an ASP.Net Web page is almost trivial.For the remainder of this article I’ll walk you through

creating a Web Service and then creating two clients – one as a Windows Form and one as

ASP.Net Web Form to consume that Web service. In this example you will study how Web

Services are implemented and how they behave rather than building an elaborate sample

application. Before this lets talk about how .Net implements Web Services so you can get an

idea of what happens behind all the fancy black box code that .Net provides to make Web

Services so easy to use.

Behind the scenes there are three major components that make up a Web Service:

1. The Web Service on the Server side

2. The client application calling the Web Service via a Web Reference

3. A WSDL Web Service description that describes the functionality of the Web Service

Net Web Services use WSDL files to get a type description of the Web Service which provides

the detail needed to the client to create a proxy. The proxy calls the Web Service using the

SOAP protocol passing parameters and returning a return value for the remote method call.

A Web Service in .Net consists of a .ASMX page that either contains a class that provides the

Web Service functionality or references a specific external class that handles the logic in an

external class file. Classes are standard .Net classes and the only difference is that every method

that you want to expose to the Web is prefixed with a [WebMethod] attribute. Once the .ASMX

page has been created the Web Service is ready for accessing over the Web. .Net provides a

very useful information page about Web Service showing all the methods and parameters along

with information on how to access the Web Service over the Web. You can also use this page to

test basic operation of Web Service without calling the Web Service with a ‘real’ client.

UNIT - XIII CONTROLS IN VB.NET 282

[source:www.programmersheaven.com]

Net Web Services that run over HTTP can be called in 3 different ways:

13.8.1 HTTP GET Operation

You can pass parameters to a Web Service by calling the ASMX page with query string param-

eters for the method to call and the values of simple parameters to pass.

13.8.2 HTTP POST Operation

Works the same as GET Operation except that the parameters are passed as standard URL

encoded form variables. If you use a client such as wwIPStuff you can use AddPostKey() to add

each parameter in the proper parameter order.

13.8.3 SOAP

This is the proper way to call a Web Service in .Net and it’s also the way that .Net uses internally

to call Web Services.

The GET and POST operations are useful if you need to call a Web Service quickly and no

SOAP client is readily available. For example, in a browser based client application it may be

easier to use GET and POST instead of constructing and parsing the more complex SOAP

headers that are passed back and forth in a SOAP request. But with a proper SOAP client in

place SOAP provides the full flexibility of the protocol, where GET and POST operations have

to stick to simple inputs and outputs. Among other things that you can do with SOAP is pass

complex objects and data over the wire and for these operations to work you need to use

SOAP.

13.8.4 WSDL – a type library for a Web Service

When you create a Web Service you automatically get support for a WSDL (Web Service

Description Language) schema that describes the Web Service by accessing the .ASMX page

with a querystring of WSDL:

A WSDL file describes all the methods and method signatures, as well as the namespaces and

the handling URL for the Web Service in an XML document. This document works very much

like a type library does in COM for the client application to determine what functionality is

available in the Web Service. Visual Studio.Net uses the WSDL file to create a Web Reference

on the client side from your Web Service. It reads the WSDL

UNIT - XIII CONTROLS IN VB.NET 283

file and based on the definitions found in the WSDL file creates a proxy class that mimics the

interface of the Web Service. The resulting class is actual source code that you can look at (see

Web References sidebar). Because this class is actually linked into your client project the class

becomes available in IntelliSense and you can actually see the full interface of the class as you

type.

Self Learning Exercise-6

i. Fill in the Blanks

h) Web Service’s mission is to provide a _________________ interface for client ap-

plications to call class methods on the server side.

i) The full form if WSDL is ___________________.

ii. State True or False

e) Web Services promise to bring information into your application from the Internet in

much the same way that browsers have made information available to end users.

f) SOAP is a protocol that is responsible for routing the RPC message from the client to

the server.

13.9 Deploying ASP.NET Applications

After creating and testing your ASP.NET application, the next step is to deploy the application.

Deployment is the process of distributing the finished application to be installed on other com-

puter. We can use the built-in deployment feature that comes with Visual studio .NET to create

a Windows Installer file - a .msi file for the purpose of deploying applications.

13.9.1 Deploying Applications

To start, open the Web Application project you want to deploy. Say, you have a project named

“Deploy” with ten Web pages in it. Select File->Add Project->New Project from the main

menu. From the Project Types pane select Setup and Deployment Projects and from the Tem-

plates pane select Web Setup Project. Type WebSetup1 for name and specify a location in the

location box and click OK. The New project dialogue box looks like the image below.

UNIT - XIII CONTROLS IN VB.NET 284

When you click OK on the above dialogue box, the project is added to the solution explorer

window and also a File System Editor window appears as shown in the figure.

The File System Editor window has two panes. Select Web Application Folder in the left pane in

this window. From the Action menu (on main menu), select Project Output to open the Add

Project Output Group dialog box. It looks like the image below.

Make sure that Deploy is selected in the Project drop-down list and select Primary Output from

the list and click OK. You also can select other options depending upon the users of your appli-

cation.

Now, in the File System Editor window, select Web Application Folder and open it’s Properties

window. The Properties window for the Web Application Folder looks like the image below.

UNIT - XIII CONTROLS IN VB.NET 285

You can use the default Virtual Directory specified by the installer or you can specify one. Click

next to install the application.

Self Learning Exercise-7

i. Fill in the Blanks

In this window, set the VirtualDirectory property to any name, say FinishedApp. FinshedApp

will be the folder on the target machine where you will install this application. The name you set

for this VirtualDirectory property should not already exist on the target machine. If it does, the

contents in the folder will be overwritten. Also, set the DefaultDocument property to any page in

the application. The page you set in this property will be the default page for the Web Applica-

tion. Once you are finished with the Properties window build the solution by selecting Build-

>Build WebSetup1 from the main menu. After the solution is built sucessfully, a WebSetup1.msi

file is created in the Debug directory of the Web Setup project. The default path to the debug

directory is as follows:

C:\Documents and Settings\Administrator\My Documents\Visual Studio

Projects\deploy\WebSetup1\Debug.

13.9.2 Installing the Application

You can copy the WebSetup1.msi file to the target machine and double-click to install the Web

Application. When you double-click the setup file the dialog that opens looks like the image

below.

UNIT - XIII CONTROLS IN VB.NET 286

j) ____________ is the process of distributing the finished application to be installed on

other computer.

ii. State True or False

f)Deployment process creates a Window Installer file with the extension .msi.

13.10 Summary

In short there are two types of controls HTML and server controls used for web pages. Different

dialogue boxes are used for the interaction with he user . This unit also explains the steps for the

deployment and application of the web application.

13.11 Glossary

Deployment The process of distributing the finished application to be installed

on other computer.

Dialog Box Used to give some feedback to the user or to get some input

from the user

GET Passes parameters to a Web Service by calling the ASMX

page with query string parameters

POST Parameters are passed as standard URL encoded form

variables.

SOAP Simple Object Access Protocol , the protocol that’s responsible

for routing the RPC message from the client to the server and

returning the result back to the client application

Web Services Provides a Remote Procedure Call (RPC) interface for client

applications to call class methods on the server side.

Windows Services Applications that run outside of any particular user context in

Windows NT, Windows 2000, or Windows XP.

WSDL Web Service Description Language, describes all the methods

and method signatures

13.12 Further Readings

1. Mridula Parihar, Essam Ahmed, Jim Chandler, Bill Hatfield, “ASP.NET Bible”, Unique

Color carton, New Delhi

2. Mathew Macdonald, “ASP.NET: The Complete Reference”, Tata Mcgraw Hill, New

Delhi

3. John Alexander, Billy Hollis, “Developing Web Applications with Visual Basic .NET and

ASP.NET”, John Wiley New Delhi

13.13 Answers to Self Learning Exercises

i. Fill in the Blanks ii. True/False

System.Web.UI.Control a) False

System.Web.UI.HtmlTextWriter b) True

Dialog Box c) False

HTML d) False

<form> e) True

LinkButton f) True

Windows Services g) True

Click next and you will be taken to the next dialog which looks like the image below.

UNIT - XIII CONTROLS IN VB.NET 287

UNIT - 14 FILE HANDLING IN VB.NET 288

Unit - 14: File Handling in VB.NET

Structure of the Unit

14.0 Objective

14.1 Introduction

14.2 File Handling

14.2.1 FileStream Class

14.2.2 StreamReader and StreamWriter Class

14.2.3 BinaryReader and BinaryWriter Class

14.2.4 Code to Create a File

14.2.5 Code to Create a File and Read from it

14.3 Object

14.4 Error Handling

14.4.1 Processing Errors

14.4.2 When to Use Error Handlers

14.4.3 The Try — Catch Statement

14.4.4 More Complex Try — Catch Error Handlers

14.4.5 The Err Object

14.4.6 Test for Multiple Runtime Errors:

14.4.7 Exit Try

14.4.8 Error Handlers and Defensive Programming Techniques

14.5 Multithreading

14.5.1 Creating Threads

14.5.2 Suspending a Thread

14.5.3 Resuming a Thread

14.5.4 Making a Thread Sleep

14.5.5 Stopping a Thread

14.5.6 Thread Priorities

14.6 Data access

14.6.1 Data Grid

14.6.2 Repeater Control

14.6.3 Data List

14.7 Summary

14.8 Glossary

14.9 Further Readings and References

14.10 Answers to Self Learning Exercises

14.11 Unit End Questions

UNIT - 14 FILE HANDLING IN VB.NET 289

14.0 Objective

After going through this unit you will understand,

l features of file handling

l multithreading in .NET

l how to catch the run time error

l how to write an error handling routine

l how to fetch the data from database

l how to display the data on your web page using Data Grid , Repeater, and Data List

control.

14.1 Introduction

From the previous Unit you have learned about how to make a web pages in .NET. You have

also learned various controls that can be placed on a web page.

In this Unit we will discuss about file handling, multithreading and DataBase Connectivity

Before going through this unit it is required that you must read Unit-12 & Unit-13 and solve the

exercises.

14.2 File Handling

File handling in Visual Basic is based on System.IO namespace with a class library that supports

string, character and file manipulation. These classes contain properties, methods and events for

creating, copying, moving, and deleting files. Since both strings and numeric data types are sup-

ported, they also allow us to incorporate data types in files. The most commonly used classes are

FileStream, BinaryReader, BinaryWriter, StreamReader and StreamWriter.

14.2.1 FileStream Class

This class provides access to standard input and output files. We use the members of FileAccess,

FileMode and FileShare Enumerations with the constructors of this class to create or open a file.

After a file is opened it’s FileStream object can be passed to the Binary Reader, BinaryWriter,

Streamreader and StreamWriter classes to work with the data in the file. We can also use the

FileStreamSeek method to move to various locations in a file which allows to break a file into

records each of the same length.

14.2.2 StreamReader and StreamWriter Class

The StreamReader and StreamWriter classes enables us to read or write a sequential stream of

characters to or from a file.

14.2.3 BinaryReader and BinaryWriter Class

The BinaryReader and BinaryWriter classes enable us to read and write binary data, raw 0’s and

1’s, the form in which data is stored on the computer.

The following examples puts some code to work with textual data using FileStream and

StreamReader and StreamWriter classes.

14.2.4 Code to create a File

Imports System.IO

‘NameSpace required to be imported to work with files

Public Class Form1 Inherits System.Windows.Forms.Form

UNIT - 14 FILE HANDLING IN VB.NET 290

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles MyBase.Load

Dim fs as New FileStream(“file.doc”, FileMode.Create, FileAccess.Write)

‘declaring a FileStream and creating a word document file named file with

‘access mode of writing

Dim s as new StreamWriter(fs)

‘creating a new StreamWriter and passing the filestream object fs as argument

s.BaseStream.Seek(0,SeekOrigin.End)

‘the seek method is used to move the cursor to next position to avoid text to be

‘overwritten

s.WriteLine(“This is an example of using file handling concepts in VB .NET.”)

s.WriteLine(“This concept is interesting.”)

‘writing text to the newly created file

s.Close()

‘closing the file

End Sub

End Class

The default location where the files we create are saved is the bin directory of the Windows

Application with which we are working. The following figure displays that.

14.2.5 Code to create a file and read from it

Drag a Button and a RichTextBox control onto the form. Paste the following code which is

shown below.

Imports System.IO

‘NameSpace required to be imported to work with files

UNIT - 14 FILE HANDLING IN VB.NET 291

Public Class Form1 Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal....., Byval.....)Handles Button1.Click

Dim fs as New FileStream(“file.doc”, FileMode.Create, FileAccess.Write)

‘declaring a FileStream and creating a document file named file with

‘access mode of writing

Dim s as new StreamWriter(fs)

‘creating a new StreamWriter and passing the filestream object fs as argument

s.WriteLine(“This is an example of using file handling concepts in VB .NET.”)

s.WriteLine(“This concept is interesting.”) ‘writing text to the newly created file

s.Close() ‘closing the file

fs=New FileStream(“file.doc”,FileMode.Open,FileAccess.Read)

‘declaring a FileStream to open the file named file.doc with access mode of reading

Dim d as new StreamReader(fs)

‘creating a new StreamReader and passing the filestream object fs as argument

d.BaseStream.Seek(0,SeekOrigin.Begin)

‘Seek method is used to move the cursor to different positions in a file, in this code, to

‘the beginning

while d.peek()>-1

‘peek method of StreamReader object tells how much more data is left in the file

RichTextbox1.Text &= d.readLine()

‘displaying text from doc file in the RichTextBox

End while

d.close()

End Sub

Output of the above code is displayed below.

UNIT - 14 FILE HANDLING IN VB.NET 292

Self Learning Exercise-1

i. Fill in the Blanks

a) File handling in VB.NET is based on _____________ namespace.

ii. True/False

a) The StreamReader and StreamWriter classes enable us to read or write a random

stream of characters to or from a file.

b) The BinaryReader and BinaryWriter classes enable us to read and write binary data in

a file.

14.3 Object

All object types inherit, either directly or indirectly, from the CLR type System.Object class. A

major facility of the Object class is its ability to enforce a singular rooted inheritance hierarchy on

all types in the CLR. Although you may think that this kind of inheritance does not apply to value

types, value types can be treated as a subtype of Object through boxing. The libraries make

extensive use of the Object type as the parameters to, and the return type of, many functions.

Table 14.1 CLR Built-in Reference Types: Object Types

CIL Name Library Name Description CLS Support

Object System.Object
Base class for all

object types
Y

String System.String Unicode string Y

The Object class provides a number of methods that can be called on all objects:

l Equals returns true if the two objects are equal. Subtypes may override this method to

provide either identity or equality comparison. Equals is available as both a virtual method

that takes a single parameter consisting of the other object with which this object is being

compared and a static method that, naturally, requires two parameters.

l Finalize is invoked by the garbage collector before an object’s memory is reclaimed.

Because the garbage collector is not guaranteed to run during a program’s execution,

this method may not be invoked. In C#, if a developer defines a destructor, then it is

renamed to be the type’s Finalize method.

l GetHashCode returns a hash code for an object. It can be used when inserting objects

into containers that require a key to be associated with each such object.

l GetType returns the type object for this object. This method gives access to the metadata

for the object. A static method on the Type class can be used for the same purpose; it

does not require that an instance of the class be created first.

l MemberwiseClone returns a shallow copy of the object. This method has protected

accessibility and, therefore, can be accessed only by subtypes. It cannot be verridden. If

a deep copy is required, then the developer should implement the ICloneable interface.

l ReferenceEquals returns true if both object references passed to the method refer to the

same object. It also returns true if both references are null.

UNIT - 14 FILE HANDLING IN VB.NET 293

l ToString returns a string that represents the object. As defined in Object, this method

returns the name of the type of the object—that is, its exact type. Subtypes may override

this method to have the return string represent the object as the developer sees fit. For

example, the String class returns the value of the string and not the name of the String

class.

Most of the methods defined on Object are public. MemberwiseClone and Finalize, however,

have protected access; that is, only subtypes can access them. The following program output

shows the assembly qualified name and the publicly available methods on the Object class

System.Object, mscorlib, Version=1.0.2411.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089

Int32 GetHashCode()

Boolean Equals(System.Object)

System.String ToString()

Boolean Equals(System.Object, System.Object)

Boolean ReferenceEquals(System.Object, System.Object)

System.Type GetType()

Void .ctor()

The program retrieves the Object class’s Type object and then displays its public method’s

prototypes. The two protected methods are not shown. The preceding output also shows the

use of built-in types, such as Boolean, Int32, and String.

Example given below demonstrates how many classes override the ToString method. The de-

fault behavior is to print a string representing the type of the object on which it is invoked—that

is the action of the Object class. String and Int32 have both overridden this behavior to provide

a more intuitive string representation of the object on which it is invoked.

Overriding the ToString method

using System;

 namespace Override

{

 class Sample

 {

 static void Print(params Object[] objects)

 {

 foreach(Object o in objects)

 Console.WriteLine(o.ToString());

 }

 static void Main(string[] args)

 {

 Object o = new Object();

 String s = “Mark”;

UNIT - 14 FILE HANDLING IN VB.NET 294

 int i = 42;

 Print(o, s, i);

 } } }

One interesting feature of this example relates to the use of the params keyword. You can call the

Print method with any number of arguments, and these arguments will be passed to the method

in an array that holds Object references. Within the Print method, each member of the array will

have its virtual ToString method called, so the correct method for each argument will be invoked.

You may wonder how the value i of type int is passed given that it is a value type: It is boxed.

Listing 2.5 produces the following output:

System.Object

Mark

42

The constructor for Object should be called whenever an object is created; it must be called if

the goal is to produce verifiable code. “verifiable code” means proven type-safe code. As a

simplification of the rules, compiler writers must ensure that a call to the constructor for the base

class occurs during construction of all derived classes. This call can occur at any time during the

construction of derived classes; it need not be the first instruction executed in the constructor of

subtype. Developers should be aware that construction of the base class may not have occurred

when a user-defined constructor starts running.

Self Learning Exercise-2

i. Fill in the Blanks

b) All object types inherit, either directly or indirectly, grom the CLR type ___________

class.

c) __________ method returns a string that represents the object.

ii. True/False

c) GetHashCode returns a hash code for an object.

d) Equals is available only as static method.

14.4 Error Handling

You will learn how to build blocks of code that handle run time errors, also referred as excep-

tions which occur as a result of normal operating conditions for example. Errors due to a disk not

being in the drive or to an offline printer.

Visual Basic .NET includes the Try—Catch code block, a new syntax for handling error. Now

you’ll learn how to trap run time errors using Try—Catch code block, and how to use the

Err.Number and Err.Description properties to identify specific runtime errors. You’ll also learn

how to use multiple Catch statements to write more flexible error handlers, build nested Try—

Catch code blocks, and use the Exit Try statement to exit a Try…Catch code block prematurely.

14.4.1 Processing Errors

A runtime error, or program crash, is an unexpected problem in a Visual Basic program from

which the program can’t recover. It’s not that Visual Basic don’t smart enough to handle the

glitch; it’s just that Visual Basic hasn’t been told what to do when something goes wrong.

You however do not have to live with the occasional errors that cause your programs to crash.

UNIT - 14 FILE HANDLING IN VB.NET 295

You can write special Visual Basic runtimes, called structured error handlers, to respond to

runtime errors. An error handler handles a runtime error by telling the program how to continue

when one of its statements doesn’t work. Error handlers are placed in the event procedures, in

which there is a potential for trouble, or in generic functions or subprograms that handle errors

for you systematically. As their name implies, error handlers handle, or trap, a problem by using

the Try…Catch statements and a special error-handling object Err. The Err object has a Num-

ber property that identifies the error number and a Description property that allows you to print

a description of the error.

14.4.2 When to Use Error Handlers

You can use error handlers in any situation in which an expected or an unexpected action might

result in an error that stops program execution. Typically, error handlers are used to process

external events that influence a program – for example, events caused by a failed network or

Internet connection, a disk not being in the floppy drive, or an offline printer. The Following table

lists potential problems that can be addressed by error handlers

Table 14.2: Problems that can be handled by error handlers

Problem Description

Network/Internet Problems Network servers, modems or resources that fail, or go

down, unexpectedly.

Disk drive problems Unformatted or incorrectly formatted disks, disk that aren’t

properly inserted, bad disk sectors, disks that are full,

problems with CD-ROM drives, and so on.

Path Problems A path to a necessary file is missing or incorrect.

Printer Problems Printers that are offline, out of paper, out of memory, or

otherwise unavailable.

Software not installed A file or component that your application relies on is not

installed on user’s computer, or there’s an operating system

incompatibility.

Permission Problems The user doesn’t have the appropriate permissions to

perform a task.

Overflow Errors An activity that exceeds the allocated memory space.

Out-of-Memory errors Application or resource space that’s not available in

Microsoft Windows.

Clipboard Problems Problems with data transfer or Windows clipboard.

Logic Errors Syntax or logic error undetected by the compiler

14.4.3 The Try — Catch Statement

The basic syntax for Try - - - Catch exception handler is simply the following:

The Try Statement identifies the beginning of an error handler:

 Try

 ‘Statements that might produce a runtime error

 Catch

UNIT - 14 FILE HANDLING IN VB.NET 296

 ‘Statements to run if runtime errors occur

 Finally

 ‘Optional statements to run whether an error occur or not

 End Try

The statement between the Try – Catch keywords is called protected code because any runtime

errors resulting from these statements won’t cause the program to crash.

Example:

 Try

 prcTextFile.StartInfo.FileName = (“C:\ProgramFiles\ErrorHandler\VbNetError.txt “)

 prcTextFile.Start ()

 Catch

 MessageBox.Show (“Unable to locate the desired file”)

 Finally

 MessageBox.Show (“Error Handler Complete”)

 End Try

In a real program you’ll probably want to use the Finally code block to update important vari-

ables or properties, display data, or perform other cleanup operations.

14.4.4 More Complex Try — Catch Error Handlers

As your program become more sophisticated, you might find it useful to write more complex Try

—_ Catch error handlers that manage a variety of runtime errors and unusual error handling

situations.Try — Catch provides for this complexity by:

(1). Permitting multiple lines of code in each Try, Catch or Finally code block.

(2). Offering the Catch When syntax, which tests specific error conditions.

(3). Allowing nested Try — Catch code block, which can be used to build sophisticated and

robust error handlers.

In addition a special error handling object named Err allows you to identify and process runtime

errors and conditions in your program.

14.4.5 The Err Object

Err is a special Visual Basic object that’s assigned detailed error handling information each time

a runtime error occurs. The most useful Err properties for identifying runtime errors are Err.Number

and Err.Description.

Err.Number: contains the number of the most recent runtime error.

Err.Description: a short error message that matches the runtime error numbers.

By using the Err.Number and Err.Description properties together in an error handler, you can

recognize specific errors and respond to them and you can give the user helpful information

about how he or she should respond.

The Following table lists a few of the runtime errors that Visual Basic application can encounter:

UNIT - 14 FILE HANDLING IN VB.NET 297

Table 14.3: Runtime Errors

Error Number Default Error Message

5 Procedure call or argument is not valid

6 Overflow

7 Out of Memory

11 Division by Zero

51 Internal Error

52 Bad file name or number

53 File not found

55 File already open

76 Path not found

482 Printer error

For more information on a particular error, search for Visual Studio online Help. Unused error

numbers in the range of 1-1000 are reserved for future use by Visual Basic.NET.

14.4.6 Test for Multiple Runtime Errors:

 Try

 prcTextFile.StartInfo.FileName = (“C:\Program Files\ErrorHandler\VbNetError.txt “)

 prcTextFile.Start ()

 Catch When Err. Number = 53 ‘If File Not Found Error

 MessageBox.Show (“Unable to locate the desired file”)

 Catch When Err. Number = 7 ‘If Out of Memory Error

 MessageBox.Show (“Are you sure about the file Path”)

 Catch

 MessageBox.Show (“Problem Loading File”)

 Finally

 MessageBox.Show (“Error Handler Complete”)

 End Try

14.4.7 Exit Try

As with any block structure, it is very nice to be able to jump out of the structure when needed.

This is the purpose of the Exit Try statement.

If we have a Finally block that block’s code must be run before the Try block is exited.

 Try

 ‘Any Protected Code

 prcTextFile.StartInfo.FileName = (“C:\Program Files\ErrorHandler\VbNetError.txt “)

 prcTextFile.Start ()

 If blnFlg = True Then Exit Try

 Catch

 ‘Error Handling Logic/Code

UNIT - 14 FILE HANDLING IN VB.NET 298

 MessageBox.Show (“Unable to locate the desired file”)

 Finally

 ‘Execution Resumes Here

 MessageBox.Show (“Error Handler Complete”)

 End Try

Based on the flow of your code, you can jump out of the protected region at any point with the

Exit Try statement.

14.4.8 Error Handlers and Defensive Programming Techniques

Consider the following piece of code:

If File exists Then

 prcTextFile.StartInfo.FileName = (“C:\Program Files\ErrorHandler\VbNetError.txt “)

 prcTextFile.Start ()

 Else

 MessageBox.Show (“File Not Found”)

 End If

This If—Then statement isn’t an actual error handler because it doesn’t prevent a runtime error

from halting a program. Instead, it’s a validation technique that some programmers call Defensive

Programming.

In this particular case, testing to see whether a file exists with a .NET framework method is

actually faster than waiting for Visual Basic to issue an exception and recover from an runtime

error using an error handler. When should you use defensive programming techniques and when

should you use error handlers? The answer depends on how often you think a problem will occur

with the statements you plan to use. If there’s a real likelihood that a piece of code will produce

a runtime error more than 25 percent time, defensive programming logic is usually the most

efficient way to manage potential problems.

Self Learning Exercise-3

i. Fill in the Blanks

d) _________is a special object that is assigned detailed error handling information.

ii. True/False

e) Syntax for the Try—Catch is as follows

Try

‘statements

Finally

‘statements

Catch

‘statements

End Try

UNIT - 14 FILE HANDLING IN VB.NET 299

f) The most useful Err properties for identifying runtime errors are Err.Number and

Err.Description.

14.5 Multithreading

Multithreading gives programs the ability to do several things at a time. Each stream of execution

is called a thread. Multithreading is used to divide lengthy tasks into different segments that

would otherwise abort programs. Threads are mainly used to utilize the processor to a maximum

extent by avoiding its idle time. Threading lets a program seem as if it is executing several tasks at

once. What actually happens is, the time gets divided by the computer into parts and when a new

thread starts, that thread gets a portion of the divided time. Threads in VB .NET are based on

the namespace System.Threading.

14.5.1 Creating Threads

To create threads lets work with an example. The following example opens a new windows

application and name it as Thread and add a class named count1 using the Projects->Add Class

item. This class will count from 1 to a specified value in a data member named CountTo when

you call the Count method. After the count has reached the value in CountTo, a FinishedCounting

event will occur. The code for the Count class looks like this:

Public Class Count1

Public CountTo as Integer

Public event FinishedCounting(By Val NumberOfMatches as Integer)

Sub Count()

Dim ind,tot as Integer

tot=0

For ind=1 to CountTo

tot+=1

Next ind

RaiseEvent FinishedCounting(tot)

‘makes the FinishedCounting event to occur

End Sub

End Class

Let us use this class with a new thread. Get back to the main form and create an object of this

class, counter1, and a new thread, Thread1. The code looks like this:

Public Class Form1 Inherits System.Windows.Forms.Form

Dim counter1 as new Count1()

Dim Thread1 as New System.Threading.Thread(Address of counter.Count)

Drag a Button and two TextBoxes (TextBox1, TextBox2) onto the form. Enter a number in

TextBox1. The reason for entering a number in textbox is to allow the code to read the value

specified in TextBox1 and display that value in TextBox2, with threading. The code for that looks

like this:

Public Class Form1 Inherits System.Windows.Forms.Form

Dim counter1 as new Count1()

UNIT - 14 FILE HANDLING IN VB.NET 300

Dim Thread1 as New System.Threading.Thread(Address of counter.Count)

Private Sub Button1_Click(ByVal sender as System.Object, ByVal e as System.EventArgs)_

Handles Button1.Click

TextBox2.Text=” “

counter1.CountTo=TextBox1.Text

AddHandler counter1.FinishedCounting,AddressOfFinishedCountingEventHandler

‘adding handler to handle FinishedCounting Event

Thread1.Start()

‘starting the thread

End Sub

Sub FinishedCountingEventHandler(ByVal Count as Integer)

‘FinishedCountingEventHandler

TextBox2.Text=Count

End Sub

The result of the above code displays the value entered in TextBox1, in TextBox2 with the

difference being the Thread counting the value from 1 to the value entered in TextBox1.

14.5.2 Suspending a Thread

Threads can be suspended. Suspending a thread stops it temporarily. Working with the example

in the previous section, add a new button Button2 to the main form. When this button is clicked

the thread is suspended. The code for that looks like this:

Private Sub Button2_Click(ByVal sender as System.Object, ByVal e as System.EventArgs)_

Handles Button2.Click

Thread1.Suspend()

End Sub

14.5.3 Resuming a Thread

Threads can be resumed after they are suspended. With the example above, add a new button

Button3 to the main form. When this button is clicked the thread is resumed from suspension.

The code for that looks like this:

Private Sub Button3_Click(ByVal sender as System.Object, ByVal e as System.EventArgs)_

Handles Button3.Click

Thread1.Resume()

End Sub

14.5.4 Making a Thread Sleep

Threads can be made to sleep which means that they can be suspended over a specific period of

time. Sleeping a thread is achieved by passing the time (in milliseconds,1/1000 of a second) to

the thread’s sleep method. With the example above, add a new button Button4 to the main form.

When this button is clicked the thread is stopped. The code for that looks like this:

Private Sub Button4_Click(ByVal sender as System.Object, ByVal e as System.EventArgs)_

Handles Button4.Click

UNIT - 14 FILE HANDLING IN VB.NET 301

Thread1.Sleep(100/1000)

End Sub

14.5.5 Stopping a Thread

Threads can be stopped with it’s abort method. With the example above, add a new button

Button5 to the main form. When this button is clicked the thread is stopped. The code for that

looks like this:

Private Sub Button5_Click(ByVal sender as System.Object, ByVal e as System.EventArgs)_

Handles Button5.Click

Thread1.Abort()

End Sub

14.5.6 Thread Priorities

Threads can also be assigned priority for execution. Thread priority can be set by the thread’s

Priority property and assigning a value from predefined Thread Priority enumeration.

Values for Thread Priority:

Above Normal -> Gives thread higher priority

Below Normal ->Gives thread lower priority

Normal -> Gives thread normal priority

Lowest -> Gives thread lowest priority

Highest -> Gives thread highest priority

Working with the above example, add a new button Button6 to the main form. When this button

is clicked the thread is assigned Highest priority .The code for that looks like this:

Private Sub Button6_Click(ByVal sender as System.Object, ByVal e as System.EventArgs)_

Handles Button6.Click

Thread1.Priority=System.Threading.ThreadPriority.Highest

‘setting Highest priority for the thread

End Sub

Self Learning Exercise-4

i. Fill in the Blanks

e) _______ feature allows the program to do several things at a time.

f) Sleeping of a thread is achieved by passing the time in _______________ to the

thread’s sleep method.

ii. True/False

f) Threads can be stopped with its Stop() method.

g) Threads can’t assign the priority.

14.6 Data Access

14.6.1 Data Grid

One of the most common tasks in classic ASP was retrieving tabular information from a database

UNIT - 14 FILE HANDLING IN VB.NET 302

and displaying it in an HTML table. With classic ASP this would require many lines of intermixed

HTML and code; the following pseudocode shows what the code would commonly look like:

Create Database Connection

Populate a recordset based on some SQL query

Output the HTML table header (<table ...>)

Loop through the recordset

 Emit the HTML for a table row

 ...

Emit the HTML table footer (</table>)

One of the advantages of ASP.NET is that it contains a number of Web controls. These Web

controls, which emit HTML, provide a programmatic interface, allowing developers to separate

code and content and treat these HTML emitting entities as objects in their code. That is, if we

wanted to display some HTML content using ASP.NET we’d do the following:

<script language=”vb” runat=”server”>

 sub Page_Load(sender as Object, e as EventArgs)

 lblMessage.Text = “Hello, World!”

 end sub

</script>

<asp:label runat=”server” id=”lblMessage” />

Here the label Web control lblMessage is placed in the HTML using HTML-like tags with the

runat=”server” attribute specified. Then, in the Page_Load event handler (which is run every

time the page is loaded) the Text property of the lblMessage Web control is set to “Hello,

World!” The use of Web controls here separates the code from the content; in classic ASP one

would need to place a <%=”Hello, World!”%> in the proper place within the HTML content to

achieve the same effect.

There are ASP.NET Web controls that are much more useful and powerful than the simple label

control. The DataGrid Web control is one such powerful control. The DataGrid emits the needed

HTML for data-bound HTML tables. As we’ll soon see, binding data to a DataGrid is very easy;

furthermore, with only a few slight property changes you can customize the look and feel the

DataGrid’s output, rendering very professional looking HTML tables.

14.6.1.1 DataGrid Basics

To place a DataGrid on an ASP.NET Web page you need to add the following code:

<asp:datagrid runat=”server” id=”ID_of_DataGrid” />

Here the id you choose will be the name of the DataGrid you’ll use when referring to it in your

server-side code. The syntax above gets us started using a DataGrid by placing it in the HTML

content, but in order to have the DataGrid display anything useful we need to bind the DataGrid

to some collection of information. This collection of information can be any object that supports

the IEnumerable interface. This includes things like Arrays, collection classes (ArrayList, Hashtable,

etc.), DataSets, DataReaders, and a number of other objects. Since we’d like to focus on dis-

playing database information, for this article we’ll focus on binding DataGrids to DataReaders,

which are synonymous to forward-only, firehose cursors Recordsets in classic ADO/ASP. (For

UNIT - 14 FILE HANDLING IN VB.NET 303

more information on reading database results into DataReaders using ADO.NET be sure to

read: Efficiently Iterating Through Results from a Database Query using ADO.NET.)

So, how is data bound to the DataGrid? The first thing we need to do is to take a DataReader

containing some database data. For this example we hitting the ASPFAQs.com database and

bring back the ten most popular FAQs. Once we have this data in a DataReader, to bind it to our

DataGrid we just need to write two lines of code. The first line sets the DataGrid’s DataSource

property to the DataReader; the second line calls the DataGrid’s DataBind method.

<% @Import Namespace=”System.Data” %>

<% @Import Namespace=”System.Data.SqlClient” %>

<script language=”vb” runat=”server”>

 Sub Page_Load(sender as Object, e as EventArgs)

 BindData()

 End Sub

 Sub BindData()

 ‘1. Create a connection

 Dim myConnection as New SqlConnection(

 ConfigurationSettings.AppSettings(“connectionString”))

 ‘2. Create the command object, passing in the SQL string

 Const strSQL as String = “sp_Popularity”

 Dim myCommand as New SqlCommand(strSQL, myConnection)

 ‘Set the datagrid’s datasource to the datareader and databind

 myConnection.Open()

 dgPopularFAQs.DataSource = myCommand.ExecuteReader(

 CommandBehavior.CloseConnection)

 dgPopularFAQs.DataBind()

 End Sub

</script>

<asp:datagrid id=”dgPopularFAQs” runat=”server” />

Note that the amount of code we have to write to utilize databinding is not much at all. We

essentially create a connection, specify a SQL command (in this case a stored procedure,

sp_Popularity), open the database connection, set the DataGrid’s DataSource property to the

resulting DataReader, and finally call the DataGrid’s DataBind method. This approach com-

pletely isolates the code from the content; there’s no mixing of HTML table and DataReader

output syntax, as we would have had with classic ASP

The DataGrid control is a versatile control and allows for a high degree of customization. How-

ever, if you want to simply display items from a data source as an HTML table, there is a simpler

control—the Repeater control.

14.6.2 Repeater Control

UNIT - 14 FILE HANDLING IN VB.NET 304

The Repeater control performs a very common function that most Web developers have en-

countered in their projects. Very often you need to display records from a database, and most

likely you would use a FOR loop to write the HTML code so that the records can be displayed

within a table. Using the Repeater control, this process can very easily be automated.

The repeater control can be found within the Toolbox in Visual Studio .NET:

Simply drag and drop the control onto the Web Form. To customize the Repeater control,

switch to HTML view, as shown below.

Note that the Repeater control contains five templates to customize the behavior of the control:

A good way to understand the use of these five templates is to refer to the following figure.

When the Repeater control is bound to a data source, the rows within the data source will be

displayed by the <ItemTemplate> and <AlternatingItemTemplate> (if present) elements.

UNIT - 14 FILE HANDLING IN VB.NET 305

Let’s now add the <HeaderTemplate>, <ItemTemplate>, <SeparatorTemplate>, and

<AlternatingItemTemplates> elements to our Repeater control:

<asp:Repeater id=”Repeater1" runat=”server”>

 <HeaderTemplate>

 <table border=”1">

 <tr bgcolor=”#ffcc99">

 <th>ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Address</th>

 </tr>

 </HeaderTemplate>

 <ItemTemplate>

 <tr bgcolor=”#ffcccc”>

 <td><%# DataBinder.Eval(Container.DataItem, “au_id”) %></td>

 <td><%# DataBinder.Eval(Container.DataItem, “au_fname”) %></td>

 <td><%# DataBinder.Eval(Container.DataItem, “au_lname”) %></td>

 <td><%# DataBinder.Eval(Container.DataItem, “address”) %></td>

 </tr>

 </ItemTemplate>

 <AlternatingItemTemplate>

 <tr bgcolor=”#ccff99">

 <td><%# DataBinder.Eval(Container.DataItem, “au_id”) %></td>

 <td><%# DataBinder.Eval(Container.DataItem, “au_fname”) %></td>

 <td><%# DataBinder.Eval(Container.DataItem, “au_lname”) %></td>

 <td><%# DataBinder.Eval(Container.DataItem, “address”) %></td>

 </tr>

 </AlternatingItemTemplate>

 <FooterTemplate>

 </table>

 </FooterTemplate>

</asp:Repeater>

We then bind the Repeater control to a DataSet. To populate each row of the table with a record

from the DataSet used:

<%# DataBinder.Eval(Container.DataItem, “au_id”) %>

In this case, “au_id” refers to the name of a column in the DataSet.

Finally, add a SqlDataAdapter control to your project and connect it to the Authors table within

UNIT - 14 FILE HANDLING IN VB.NET 306

the Pubs database. In the Page_Load event, add in the following codes:

 Private Sub Page_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 If Not IsPostBack Then

 Dim ds As New DataSet

 SqlDataAdapter1.SelectCommand.CommandText = _

 “SELECT * FROM Authors”

 SqlDataAdapter1.Fill(ds, “employee_record”)

 Repeater1.DataSource = ds

 Repeater1.DataBind()

 End If

 End Sub

Run the application. You should now see the following:

The <separatortemplate> element allows you to inject a separator between rows of records.

For example, you might wish to insert a horizontal rule between records, as the following shows:

 ...

 </ItemTemplate>

 <SeparatorTemplate>

 <tr>

 <td><hr></td>

 <td><hr></td>

 <td><hr></td>

 <td><hr></td>

 </tr>

 </SeparatorTemplate>

 <AlternatingItemTemplate>

UNIT - 14 FILE HANDLING IN VB.NET 307

 ...

Now, all the records are separated by a horizontal rule (<hr>):

Adding Button Controls to a Repeater

You can also add Button controls to a Repeater. For example, you might use a Button control to

represent an Author ID, and when the button is clicked, display more information about the

author.

Let’s modify our HTML source to include a Button control. Change the line (there are a total of

two such lines in our HTML source):

<td><%# DataBinder.Eval(Container.DataItem, “au_id”) %></td>

to:

<td><asp:Button CommandName=”ID”

 Text=<%# DataBinder.Eval(Container.DataItem, “au_id”) %>

 runat=server/></td>

The above line will add a Button control within the Repeater control. The CommandName

property is used to uniquely identify the button; if there is more than one Button control, each

control must have a different CommandName.

Next, we need to modify the <asp:Repeater> element so that it knows which event to fire when

the Button control is clicked. We need to specify the OnItemCommand property, indicating the

event to service when the button is clicked:

<asp:Repeater id=”Repeater1"

 OnItemCommand=”Button_ItemCommand” runat=”server”>

Lastly, code the routine for the Button_ItemCommand event:

 Sub Button_ItemCommand(ByVal Sender As Object, _

 ByVal e As RepeaterCommandEventArgs)

 If e.CommandName = “ID” Then

 Response.Write(“ID selected is “ & _

 CType(e.CommandSource, Button).Text())

 End If

 End Sub

UNIT - 14 FILE HANDLING IN VB.NET 308

Run the application and click on one of the buttons:

Note that in the Form_Load event, you need to ensure that subsequent postbacks do not result

in another databinding process. If you do not test for postbacks using the IsPostBack property,

the Button_ItemCommand event will not be serviced.

14.6.3 Data List

The DataList control is somewhat a combination of the DataGrid and Repeater controls. It

works like the Repeater control, allowing you to create templates so that it can be bound to a

data source. It also allows you to edit records, much like the DataGrid control.

To use the DataList control, drag and drop the DataList control from the Toolbox in Visual

Studio .NET.

You can specify the formatting of the DataList control by right-clicking on the control and select-

ing Properties. In the Properties window, click on the Auto Format... link at the bottom:

Choose the color scheme that you like. When you are done, switch to HTML view mode. You

should see something like this:

<asp:DataList id=”DataList1"

 style=”Z-INDEX: 101;

 LEFT: 16px;

 POSITION: absolute;

 TOP: 16px”

 runat=”server”

 BorderColor=”#DEBA84" BorderStyle=”None”

 CellSpacing=”2" BackColor=”#DEBA84"

 CellPadding=”3" GridLines=”Both” BorderWidth=”1px”>

 <SelectedItemStyle Font-Bold=”True” ForeColor=”White”

UNIT - 14 FILE HANDLING IN VB.NET 309

 BackColor=”#738A9C”>

 </SelectedItemStyle>

 <ItemStyle ForeColor=”#8C4510" BackColor=”#FFF7E7">

 </ItemStyle>

 <FooterStyle ForeColor=”#8C4510" BackColor=”#F7DFB5">

 </FooterStyle>

 <HeaderStyle Font-Bold=”True” ForeColor=”White”

 BackColor=”#A55129">

 </HeaderStyle>

</asp:DataList>

The DataList control contains seven templates and seven styles

The DataList control works quite similar the Repeater control (see my previous article on the

Repeater control for a description of the various templates). However, it also supports the Edit,

Update, and Cancel features found in the DataGrid control.

Let’s modify the HTML code for our control, and each addition will be explained along the way.

<asp:DataList id=”DataList1"

 style=”Z-INDEX: 101;

 LEFT: 16px;

 POSITION: absolute;

 TOP: 16px”

 runat=”server”

 CellPadding=”3" BackColor=”#DEBA84" BorderWidth=”1px”

 CellSpacing=”2" BorderStyle=”None” BorderColor=”#DEBA84"

 GridLines=”Both”

Add the following attributes to the <asp:DataList> element:

 OnEditCommand=”Edit_Command”

 OnCancelCommand=”Cancel_Command”

 OnUpdateCommand=”Update_Command”

 OnDeleteCommand=”Delete_Command”

 DataKeyField=”title_id”>

Later, we will add a few LinkButton controls to our DataList control to perform the functions of

Edit, Update, Delete, and Cancel. The above attributes specify the methods to invoke when

such LinkButton controls are clicked. The key of this control to be the field title_id has also been

defined.

Next we add a <HeaderTemplate> element. The text within this element will be displayed as the

title of the table.

 <HeaderTemplate>

 Titles

UNIT - 14 FILE HANDLING IN VB.NET 310

 </HeaderTemplate>

The <ItemTemplate> element allows you to display records from a database by binding them to

the control. Here, three fields (title_id, title, and price) from the Titles table (we will see this

shortly) are. displayed.

 <ItemTemplate>

 <table border=1>

 <tr><td>ID : </td>

 <td>’<%# DataBinder.Eval(Container.DataItem, “title_id”) %>’

 </td></tr>

 <tr><td>Title : </td>

 <td>’<%# DataBinder.Eval(Container.DataItem, “title”) %>’

 </td></tr>

 <tr><td>Price : </td>

 <td>’<%# DataBinder.Eval(Container.DataItem, “price”) %>’

 </td></tr>

 </table>

We have also added two LinkButton controls so that the user can edit or delete the record:

<asp:LinkButton Text=”Edit” CommandName=”Edit”

 Runat=”server” ID=”edit” />

 <asp:LinkButton Text=”Delete” CommandName=”Delete”

 Runat=”server” ID=”delete” />

 </ItemTemplate>

Next, add in the <EditItemTemplate> element so that textboxes can be displayed when the Edit

button is clicked. Also add two LinkButton controls to display the Update and Cancel buttons:

 <EditItemTemplate>

 <table border=1>

 <tr><td>ID : </td>

UNIT - 14 FILE HANDLING IN VB.NET 311

 <td>’<%# DataBinder.Eval(Container.DataItem, “title_id”) %>’

 </td></tr>

 <tr><td>Title : </td>

 <td><asp:TextBox

 Text=’<%# DataBinder.Eval(Container.DataItem, “title”) %>’

 runat=server ID=”title”/>

 </td></tr>

 <tr><td>Price : </td>

 <td><asp:TextBox

 Text=’<%# DataBinder.Eval(Container.DataItem, “price”) %>’

 runat=server ID=”price”/></td></tr>

 </table>

 <asp:LinkButton Text=”Cancel” CommandName=”Cancel”

 Runat=”server” ID=”cancel” />

 <asp:LinkButton Text=”Update” CommandName=”Update”

 Runat=”server” ID=”update” />

 </EditItemTemplate>

That’s it! We now write the code to perform the data binding as well as the editing of the records.

First, import the relevant namespace for data access:

Imports System.Data.SqlClient

When the page is loaded for the first time, load the records from the database:

 Private Sub Page_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 ‘Put user code to initialize the page here

 If Not IsPostBack Then

 LoadData()

 End If

 End Sub

UNIT - 14 FILE HANDLING IN VB.NET 312

The LoadData() method binds the records from the Titles table (from the Pubs database) to the

DataList control. Be sure to add a SqlDataAdapter control to your project.

 Public Sub LoadData()

 Dim ds As New DataSet

 SqlDataAdapter1.SelectCommand.CommandText = _

 “SELECT * FROM Titles”

 SqlDataAdapter1.Fill(ds, “titles_record”)

 DataList1.DataSource = ds

 DataList1.DataBind()

 End Sub

When the Edit link is clicked, you need to set the index for the record to be edited:

 Sub Edit_Command(ByVal sender As Object, _

 ByVal e As DataListCommandEventArgs)

 ‘ to rebind the DataList to the data source to

‘ refresh the control.

 DataList1.EditItemIndex = e.Item.ItemIndex

 LoadData()

 End Sub

When the Cancel link is clicked, reset the edit index to -1:

 Sub Cancel_Command(ByVal sender As Object, _

 ByVal e As DataListCommandEventArgs)

 DataList1.EditItemIndex = -1

 LoadData()

 End Sub

When the Update link is clicked, you need to update the relevant record. Here we extract the

key of the control (which is the title_id) and the values in the edit textbox:

 Sub Update_Command(ByVal sender As Object, _

 ByVal e As DataListCommandEventArgs)

 Dim tbox As TextBox

 Dim title_id, title As String

 Dim price As Single

 ‘—retrieves the key for the row—

 title_id = DataList1.DataKeys(e.Item.ItemIndex)

 ‘—find the textbox control containing the title

 tbox = CType(e.Item.FindControl(“title”), TextBox)

 title = tbox.Text

 ‘—find the textbox control containing the price

UNIT - 14 FILE HANDLING IN VB.NET 313

 tbox = CType(e.Item.FindControl(“price”), TextBox)

 price = tbox.Text

 ‘—updates the database—

 Dim sql As String = “UPDATE titles SET title=’” & _

 title & “‘ , price=” & price & _

 “ WHERE title_id=’” & title_id & “‘“

 Dim conn As New SqlConnection(“server=localhost; “ & _

 “user id =sa; password=;database=pubs”)

 Dim comm As New SqlCommand(sql, conn)

 conn.Open()

 comm.ExecuteNonQuery()

 conn.Close()

 DataList1.EditItemIndex = -1

 LoadData()

 End Sub

Finally, you need to add the code for deleting a record.

 Sub Delete_Command(ByVal sender As Object, _

 ByVal e As DataListCommandEventArgs)

 ‘—retrieves the key for the row—

 Response.Write(DataList1.DataKeys(e.Item.ItemIndex))

 ‘—codes to delete row here——

 ‘

 ‘———————————————

 End Sub

Press F5 and run the application. You should see something like this:

Self Learning Exercise-5

i. Fill in the Blanks

g) The DataList control is somewhat a combination of the DataGrid and ________

UNIT - 14 FILE HANDLING IN VB.NET 314

controls.

True/False

i) The DataGrid control allows for a high degree of customization.

j) The DataList control contains seven templates and six styles.

14.7 Summary

In this unit we have discussed how to create a file and how to write the data in file after that you

can also read the data from a file. You can also introduce the threads in your programs by

multithreading. You can also trap a run time error and can handle it. You can display the data from

database in your web page using Data Grid, Repeater, and Data List control.

14.8 Glossary

BinaryReader class Enables us to read binary data, raw 0’s and 1’s, the form in

which data is stored on the computer.

BinaryWriter class Enables us to write binary data.

DataGrid Can hold text data, but not linked or embedded objects.

DataList Control is somewhat a combination of the DataGrid and

Repeater controls.

DataRepeater Can hold other controls and can embed objects.

Err Err is a special Visual Basic object that’s assigned detailed error

handling information each time a runtime error occurs.

Error A Run time Exception.

FileStream Class Provides access to standard input and output files.

Multithreading Gives programs the ability to do several things at a time.

Object class Provides a number of methods that can be called on all objects.

StreamReader class Enables us to read a sequential stream of characters from a file.

StreamWriter class Enables us to write a sequential stream of characters to a file.

Threads Are mainly used to utilize the processor to a maximum extent

by avoiding it’s idle time.

14.9 Further Readings and References

1. Mridula Parihar, Essam Ahmed, Jim Chandler, Bill Hatfield ,”ASP.NET Bible”, Unique

Color carton, New Delhi

2. Mathew Macdonald, “ASP.NET: The Complete Reference”, Tata Mcgraw Hill, New

Delhi

3. John Alexander, Billy Hollis, “Developing Web Applications with Visual Basic .NET and

ASP.NET”, John Wiley New Delhi

4. http://www.informit.com

5. www.ondotnet.com

UNIT - 14 FILE HANDLING IN VB.NET 315

14.10 Answers to Self Learning Exercises

i. Fill In the Blanks ii. True/False

a) System.IO a) False

b) System.Object b) True

c) ToString c) True

d) Err d) False

e) Multithreading e) False

f) Milliseconds f) True

g) Repeater g) False

h) False

i) True

j) False

14.11 Unit End Questions

1. What are error handling routines explain where and when should use the error handlers.

2. What do you understand by multithreading? Explain with an example.

3. What is the advantage of DataList control over DataGrid and Repeater control?

4. List out any five runtime errors that can be handled .NET?

5. Write a program that will write the data “hello welcome to world of computers” in a file

named as file1.doc and retrieve the contents of the file.

