~ M.Se. (C.S)-09

{219 VARDHAMAN MAHAVEER OPEN UNIVERSITY, KOTA

Software Engineeriﬂg

Course DeveJopment Committee

Chairman

Prof. (Pr.) Naresh Dadhich

Vice Chancellor

Vardhaman Mahaveer Open University, Kota

‘Convener / Coordinator
Prof. (Dr.) D.S. Chauhan
University of Rajasthan Jaipur

Member Secretary/ Internal Coordinator
Sh. Rakesh Sharma
V.M. Open University Kota

Members

i. Prof. (Dr.) Neeraj Bhargava
Department of Mathematics
M.D.S. University Ajmer

2. Dr. (Mrs.) Madhavi Sioha
Reader& Head (Computer Sc.)
BIT, Jaipur Campus, Faipur

© 3. Prof. (Ms.) Swati V. Chande

Principal (Computer Sc.)
Internationat School of Informatics &
Management, Jaipur

4. Prof. (Dr.) D.P. Sharma
Jaipur

5. Sh, Rajeev Shrivastava
LBS College Jaipur

Editing and-Course Writing

Editor ,
Prof. Swati Y. Chande

International Bchool of Informatics & Management, Jaipur

Writers
Prof. (Dr.) Neeraj Bhargava Sh. Rajeev Shrivastava
MDS University Afmer LBS College Jaipur
Sh. Rakesh Sharma Ms. Pratishtha Mathur
VMOU Kota AIM & ACT lJaipur
Sh. Bharat Gupta Smt Varsha Gupta
MIT Kota MIT Kota
Academic and Administrative Arrangement
Prof. (Dr.) Naresh Dadhich Prof(Dr.) M.K. Ghadoliya Yogendra Goyal
Vice Chancellor Director ' In Charge
Academic Material Production & Distribution

Vardhaman Mahaveer Open University

- Course Production

Yogendra Goyal
Assistant Production Officer
Vardhaman Mahaveer Open University

Production : May 2010 ISBN No. : 978-81-8496-210-9

All rights reserved, No part of this book may be reproduced in any form by mimeograph or any other means, without
permission in writing from VM Open University Kota.

Printed and published on behalf of Registrar, VM Open Univetsity Kota.

Printed by The Diamond Printing Press, faipur, 500 Copies

MSc.(CS) 09

{2))) VARDHAMAN MAHAVEER OPEN UNIVERSITY, KOTA

SOFTWARE ENGINEERING
Unit Number- Unit Name — Page Number
UNITI INTRODUCTION TO SOFTWARE ENGINEERING 1-16
UNITII SOFTWARE REQUIREMENTS ANALYSIS 17-34
UNITHI SOFTWARE SPECIFICATIONS 3541
UNITIV SOFTWARE PROCESS MODELS 42-54
UNIT V SOFTWARE DESIGN 55-69
UNITVI PROJECT MANAGEMENT 70-83
UNMITVII SOFTWARE COST ESTIMATION, METRICS ‘
- AND MEASURES 84-99
UNIT VIII -SOFTWARE REUSE = 100-107
UNITIX VERIFICATION AND VALIDATION - 108-114 -
UNITX SOFTWARE TESTING 115-137
UNITXI QUALITY MANAGEMENT 138148
UNITXH PROCESS IMPROVEMENT AND MEASUREMENT 149159

UNIT -1

INTRODUCTION TO SOFTWARE

ENGINEERING
Structure of the Unit
1.0 . Objectives
1.1 Introduction
i._2 Software
13 Enginecring
1.4 Software Engineering
1.5 . Emergenceof SoftwareEngineering
1.6 Aims of Software Engineering
1.7 Software Characteristics
1.8 Software Crisis
1.9 Software Myths
1.10 Software Product and Qualities of software product
1.11 Software Process
1.12 Software Engineering Paradigms
1.13 Software Life Cycle _
1.14 Computer-Aided Software Engineering (CASE)
1.15 Summary '
1.16 Unit End Questions
1.17 Further Readings
1.0 OBJECTIVES

After going through this unit students wilt be able to:

+ Understand theméaningof software engineering

.« Understand the aims, characteristics and myths of software engineering

earn about the various software engineering definitions, paradigms etc.

» Understand the software process, and life cycle

» Understand Computer-Aided Software Engineering

LI

1.1 INTRODUCTION

Computers have been used for commercial purposes for ligi'any_yeal"s. The more powerful a computer is,
the more sophisticated programs it can run, Software engineers are required to solve larger and complex
problems in cost-effective and efficient ways. The discipline of software engineering provides a systematic,
cost effective and efficient approach to develop software.

1.2 SOFTWARE

Software is a logical rather than a physical system element, Software is described by its capabilities. The
capabilities include the features, functions and facilities provided by a software. Software is developed by
keeping in mind the hardware and operating system i.e, platform to be used by the software.

Software is a collection of computer pmgrams, prooedures, associated documentation and data. Software
can also be described as a collection ofprograms that aim at enhancing the capabilities of the hardware to
meet out the users objectives. .

Software products may be-

J Generic developed io besoldto arange of different customers, and
. Customlsed developed fora smgle customer 1o suite the specnﬁc needs of the customer.

SofuvareApphcauons _

On the basis of their application, software canbe classified into various categories. These 'mélude, '
* System Software .
« Real-Time Software
+ Business Software |
« Engineeringand Scientific Software
- Embedded Software

~ * Personal computer software |
"« Artificial Intelligence software

* Web based software etc.

1.3 ENGINEERING

Engineering is the analysis , design, oonstructton, vexification, and management oftechnical or non-technical

entities,
For the engineering of an entity, an engineer needs to identify
@ the problem to be solved, and the characteri_sties of the entity.
(i) the structure and prbc&cs to construct the entity |
(iii) errors and updar.ions of enhancements in the entity.

1.4 SOFTWARE ENGINEERING

Software Engineering (SE) is the field of computer science that deals with the construction of targe or

complex softwate Systems. :
_ 2

Computer science is concerned with tﬁeory and fundamentals; softwaie engineering is concerned with the
practicalities of developing and delivering useful software usine the theory and fundamentals. '

The development of a large software is a group activity or say software engineering activity. A software
component or utility written by one can be combined with components written by another to build a
system. The components one writes may be modified by others; it may be used by others to construct
" different versions of system. The difference between programming and software €ngineering activity is that
programming is primarily a personal activity, while software engineering is essentially a team activity.

Various Software Engineering definitions _ |
Software Engineering has been defined by many authors differently. Some of these definitions are:

1. Asperthe [EEE Software Engineering Standards, Software en_gineeting is the application ofa
systematic, disciplined, quantifiable approach to the development, operation and maintenance of
software.

2. Software engineering is a discipline whose aim is to produoe'error free software that satisties the
user’s requirements and can be delivered on time within the budget. '

3, Software engineering is an eng_ineérlng discipline which is oonoemed'with_all aspects of; software
production. : ' '
4. Software engineering is a methodological and managerial discipline concerning the systernatic

production and maintenance of software products that are developed and maintained within
anticipated and controlled time and cost limits. :

The role of Software Engineer

The evolution of the software engineering field has led to a proper definition of the role of a software

-engineer. For the development of simaller software products, software engineer must of course bea good
programmer, be well-versed in data structures and algorithms, and be fluent in one or more programming
languages. These requirements however, are for the small scale software development to be doneby a
single individual. A software engineer is usually also involved in development of very large scale software,
which requires a wider knowledge of the Software Development procedures.

A software engineer must be familiar with several design approaches, be able to translate vague requirements
into precise specifications, and be able to communicate with the user of a system in terms of the application
terms rather than in computer buzz words. They should also have the flexibility and openness to grasp, and
become conversant with the essentials of different application areas. The software engineer needs the
ability to move among several levels of abstraction at different stages ofthe project, from specific application
procedures and requirements, to abstractions for the software system, to a specific design for the system,
and finally to the detailed design testing and delivery level.

Modeling is another requirement. The software engineer must be able to build and use a model of the
application to guide choices of the many trade-offs that he or she will face. The model is used to answer
questions abott both the behavior of the system and its performance. The model can be used by the
_ engineer, as well as the user. ' - ' _

Software engineer isa member of a team and therefore needs good communication skills and interpersonal
skills. The software engineer also needs the ability to schedule work, both of his or her own and that of
others. _

As discussed above, a software engineer is responsible for many things. in practice, many organizations
divide the responsibilities among several specialists with different titles. For example, an analyst is responsible
for deriving the requirements and a programmer is responsible for coding the system. Arigid fragmentation
of role, however, is often counterproductive. '

The qualities that a software eﬁg;ineer shuld posses include:
3

+ Familiarity with several{lesign approaches
+ Ability to translate vague requirements into precise specifications

+ Ability to communicate with the users of a system in terms of the appllcatlon terms rather than in
computer buzz words. y

+ Should be well versed in data structures and algorithms

. Must be a good programmer prefereably an expert in one ormore programming languages
« Ability to move among several levels of abstraction at different stages of the project

» Ability to build and usea model of the application to guide choices

+ Good communication skills and interpersonal skills.

1.5 EMERGENCE OF SOFTWARE ENGINEERING

- Software engineering techniques have evolved over ihany years as aresult there are series of innovations
in program writing, Let us examine some developments in program wntmg which have contributed in
software engineering discipline,

Early Computer programming

Early computer programs were very small in size and lacked sophistication. These programs were usually
written in assembly languages.

High-Level Language Programming

Highlevel languages reduced the effort required to develop software products and helped programmers to
. write larger programs. The sofiware development style was still exploratory.

Control Flowfbaséd design

As the complexity and size of the programs kept on increasing, it was difficult not only to write cost-
effective and correct programs but also difficult to understand the programs written by others. To solve thig
problem, control flow structure was designed for the programs. A program’s control flow structure indicates
the sequence in which the program’s instructions are executed. (Flow charting techmque isusedto deptct
the control flow of a program).

Data Structure-Oriented Design

In this type of development, programmers first pay attention to the design of the important data structmes
of the program than to the control structure, This technique is called data structure-oriented design.

Data Flow-Oriented Design

This technique advocates that the majordata items handled by a system must be first identified and then the
processing required on these data items to produce the desired outputs should be determined. The functions
{called processes) and the data items that are exchanged between the different functions arereptesented in
a diagram known as Data Flow Diagram (DFD). DFD has proventobea genenc technique which can be
used to model all types of systems and not just software systems.

Object-Oriented Design

In this technique the natural objects (such as student, employee etc.) occurring in the problem are identified
~ and then the relationships among the objects are determined. Each object essentially acts as a data hiding

or data abstraction entity. It has wide acceptance due to its simplicity, code and design reuse, promise of
Jower development time, low cost, more robust code and easy maintenance.,

4

1.6 AIMS OF SOFTWARE ENGINEERING

Software engineering has had to evolve its aims based on observation of thousands of projects. The aims
of software engineering are:- '

1. Make qualitythe prime objective

On time delivery of the software product

Detetmine the problems before writing the requirements
Evaluate design altematives

Use an appropriate pfocess model

Minimize intellectual distance

Ensure focus on the adaptations required as the software’s environment evolves. |

-

1.7 SOFTWARE CHARACTER_ISTICS_

The characteristics of software are:-
¢ Softwareis developed or engineered; it isnot manufactured in the classical sense.

* . Softwareis used for decision making.
+ Software doesn’t wear out i.e. it works as long as it meets out the objectives. -

"« Most software is custom built, rather than being assembled from existing oomponéﬁts. _
. Sbﬁware is flexible i.e. it can accommodate changes that emerge during its life time.

As an engineeting discipline evolves, a collection of standard design reusable components is created.
Reusability is an important characteristic of a high quality software component. '

1.8 SOFTWARE CRISIS

The problems associated with software development are referred as “Crisis”. The term refers to aset of
problems that are encountered during the development of computer software, The probiems are notonly
limited to software that does not work properly rather it encompasses problems associated withhow we

develop software; maintain existing software and how to meet out the pace with the growing demand for
more software. ' ' ' ' :
Software engineering appears to be among the few optioné available to tackle the present software crisis.

Organizations are spending a larger portion of their budget on software. Software products are difficult to
alter and debug and also often fail to meet the user requirements. They are not reliable, proneto crash and

are often delivered late.

Itis believed that the only best possible solution to the present sofiware crisis can po_ésibly come froma
spread of software engineering practices among the developers.

Reasons of software crisis
« Communication between project leader and custorners, software developers, and associated

support staff can break down because of the special characteristics of software ot the
misunderstood requirements. ' '

o [Ifthereisdelayinany stége of development then scheduling does not match with actual timing,

+ Quality of software may not be good because most of the developefs use historical data for

development of software,

* Software developers often resist changes or make some patch wokk to redfuce their efforts,

Tabie 1.1: Software crisis from programmer’s and iiser’s point of view

Programmer’s View User’s View
Problem of portability Software cost is very high
Problem i documentation .| Hardware goes down very often.
Problem in co-ordination of work with | Problem of different versions of
different people software
Problem of maintenance in proper Problem of bugs - -
manner - _
Problem of piracy of soﬂware Lack of specialization in development

1.9 SOFTWARE MYTHS

* Software Myths beliefs about sofiware and the process used to build it - can be traced to the earhest days
- of computing. Myths have a number of attributes that have made them insidious. For instance, myths

. appear to be reasonable statements of fact, they have an intuitive feel, and they are often promulgated by

experienced practitioners who “know the score
Management Myths

Managers with software responsibility, like maﬁagers inmost disciplines, are often under pressur_é to
maintain budgets, keep schedules from slipping, and improve quality. Like a drowning person who grasps
ata straw, a software manager often grasps at beliefin a software myth, if the belief will lessen the pressure.

Myth : We already have a book that’s full of standards and procedures for building software. Won’t that

provide my people with everything they need to know?
Reality : The book of standards may very well exist, but is it used?

- Are software practitioners aware of its existence?

- Doesitreflect modemn software engineering practloe'7

- Isitcomplete? I it adaptable? '

- Is:t streamlined to improve time to delivery while still mamtalmngafocus on Quahty"
Inmany cases, the angwer to these questions is no.

Myth : Ifwe get behind schedule, we can add more programmers and catoh up (sometlmes called the
Mongolian horde concept).

" Reality : Software development is not a mechanistic process like manufacturing, In the words of Brooks:

“Adding peopleto alate software project makes it later” At first, this statement may seem counterintuitive. -
However, as new people are added, people who were working must spend time educating the newcomers,

thereby reducing the amount of time spent on productive development effort.

Myth : If we decide to outsource the software project to a third party, we can just relax and let that
Sirm build it. _ _

Reality : If an organization does not understand how to manage and control software project mternally, it
will mvanably struggle when it out sources software pro_]ect ' _

6

_ Customer Myths

A customer who requests computer software may be 2 person at the next desk; a technical group in the
organization, the marketing /sales department, or an cutside company that has requested software under
contract. In many cases, the customer believes myths about software because sofiware managers and
practitioners dolittle to correct misinformation. Myths lead to false expectations and ultimately, dissatisfaction
with the developers. ' ' -

Myth : A general statement of objectives is sufficient to begin writing programs, we can fill in
details later. : '

Reality : Although a comprehensive and stable statement of requirements is not always possible, an
ambiguous statement of objectives is a recipe for disaster. Unambiguous requirements are developed only
through effective and continuous communication between customer and developer.

Myth: Projeét requirenients contimrally change, but change can be easily accommodated because
software is flexible. o ' S

Reality : It’s true that software requirements change, but the impact of change varies with the time at
whichitis intro_ducéd. When requirement changes are requested early, cost impact is relatively small.
However, as time passes, cost impact grows rapidly - resources have been committed, a design framework
has been established, and then a change can cause upheaval that requires additional resources and major
design modification. B : o . '
Figure | depicts the increase in cost ot change with time from the requirements phase to the production
phase. ' ' :

Fowinarrts Arciils [PR) TR Tt

[~ L

Figure 1.1 : The cost of change increases with time

1.10 SOFTWARE PRODUCT AND QUALITIES OF SOFTWARE
PRODUCT : - B : -
The goal of any engineering activity is to build a product. The product of software engineering isa
software system but the difference between software product and other productsis thatitis modifiable.
The user wants the software product to be reliable and user friendly. The designer of the software wants it
to be maintainable and portable. - o '

Qualities of Software Product

1. Correctness-Aprogram is functionally correct if itbehaves according to the specification of
the functions it should provide (cailed functional requirements specifications). The
definition of correciness assumes that a specification of the system is available and that it
is possibleto determine unambiguously whether or not aprogrammeets the specifications.
Cotrectness is a mathematical property that establishes the equivalence between the Software

and its specification.

40

Reliability - Software is reliable if the user can depend on it. The notion of reliability is on the
other hand, relative; ifthe consequence of a software error is not serious, the incorrect
software may still be reliable. Software products are commonly released along with a list of
knownbugs. Users of software take it for granted that Release 1 of aproduct is buggy. This
isone of the most striking symptoms of the immaturity of the software engineering field
as an engineering discipline. Software design errors are generally treated as unavoidable.

Whereas with all other products the customer receives a guarantee of reliability, with
software we get a disclaimer that the software manufacturer is not responsible for any
damages dueto product errors. Software engineering can truly be called an engineering
discipline only when we can achieve software reliability comparabletothe rehab111tyof other

* engineering products,

Robustness - A program is robust if it behaves reasonably, even in circumstances that were not
anticipated ' in the requirements specification - for example, when it encounters incorrect input
data or some hardware malfunction (say, a disk crash). Robustness and correctness are
stronglyrelated withouta sharp dividing linebetween them.

User Fnendlmess - A software system is user friendly if its human users find it easy to
use. Thisdefinition reflects the subjective nature ofuser fiiendliness. An application used by
novice programmers qualifies as user friendly by virtue of different properties than an

~ application that isused by expert programmers. For example a inovice user may appreciate

verbose messages, while an experienced user growsto detest and ignore them. ‘Similarly,
anonprogrammer may appreciate the use of menus, while a programmer may be more
comfortable with typing conunands :

Verifiability - A software system i 1s ifiableifits proj)erties can be verified easily. Veriﬁcati;m

can be performed either by formal analysis methods or through testing. Verifiability is usuaHy an
internal quality, although it sometimes becomes an extemnal quality also.

Maintainability - Software maintenance is used to refer to the modifications that are made to
software at any time according to the user’s requirements or to fix bugs. Usually maintenance
costs exceed 60% of the total costs of software. On the basis of the type of modification done,
maintenance cost can be divided into three categories — Corrective, adaptive and perfective,

Reusability - R_eusablhty appears to be more applicable to sofiware components than to
whole products but it certainly seems possible to build products that are revisable.

Portability - Software is portable ifit can run in different environments. The term environment
can refer to a hardware platform or a software environment such as a particular operating
system. Portability refers to the ability to runa system on different hardware platfomxs

Data Abstraction - Abstraction is a process where we 1dent1fy the important aspects ofa
phenomenon and ignore its details. Thus, abstraction is a special case of separation, of
concerns wherein we separate the concern ofthe important aspects from the concern of the
unimportant details. Data abstraction is a concept which encapsulates data structures and well
defined procedures/ finctions in a singleunit. This encapsulatlon forms awall whichis intended
to shield data representation from computer users.

10. Modularity - A complex system may be divided into smaller pieces called modules. Asgystem

composed of modules is called modular. The main benefit of modularity is thatit allows the
principle of separation of concerns tobe applied in two phases: when dealing with the
details ofeach module in isolation (and ignering details of other modules); and when
dealing with the overall characteristics of all modules and their relationships in order to
integrate them into a coherent system.

i.11_SOFTWARE PROCESS , -~~~ | S

A software process defines the approach that is taken as software is engineered, Software engineéring is
performed by creative, knowledgeable people who should work within a defined and mature software
© process. : ' '

Software engineering is a layered technology. Figure 1.2 shows the layers in Software Engineering. Any
engineering approach must rest onan organizational commitment to quality. :

Focus on Quality

Processes
Methods

Figure 1.2 : Software Engineering Layers

The bedrock that supports software engineering is a focus on quality:

The foundation for software engineering is the process layer. Process defines a framework for a set ofkey
process areas. They key process areas form the basis for management control of software projects and
establish the context in which technical methods are applied, work products are produced, quality is
ensured and change is managed. ' : ' -

The software engineeﬁ.ng methods rely on a set of basic principles and provide the technical support fo
building software. Methods complete the tasks that include requirements analysis, design, program
~ construction, testing and maintenance. '

Software engineering tools provide automated or semii-automated support for the process and the methods.
CASE(Computer-Aided Software Engineering) tools combine software, hardware and a software
engineering database(a repository containing information about analysis, design, program construction and
testing) to create a software engineering environment.

Key' Process Areas (KPAs) - The KPAs of Software Engineering are deécribéd by the following
characteristics:- s : .

+ Goals—theoverall objectives to achieve

+ Commitments— Reqﬁiret_nents that must be met to achieve the gbals

+ Abilities Thingsthat must bein place organizationally and technically

+ Activities— The specific tasks to achieve the KPA function

+ Methods formonitoring implementation

+ Methods for verifying implementation

The Software Process
Software process is a framework for the tasks that are needed to construct quality software. It defines the
approach that is taken as software in engineered. The activities carried out in a software process are

shown in figure 1.3.
9

Common Process Framework
" T Framework Activities|

Figure 1.3: Software Process.

A common process framework is established by defining a small mmmber of framework .activiti&s that are _
applicable to all software projects. o

A number of task sets — collections of S.E. work tasks, project milestones, software work products and
software quality assurance points. . :

Umbrella activities are independent of any one framework activity and occur throughout the process. :

1.12 SOFTWARE ENGINEERING PARADIGMS °

To solve actual problems in an industry, a software engineer ora team of engineers must incorporate a
development strategy that encompasses the process methods and tools layers and the generic phases. This
- strategy is referred as a process model or a software engineering paradigm. Aprocess model for software
engineering is chosen based on the nature of the project. Different software engineering paradigms or -
. process models are covered in unit-4. o

“1.13 SOFTWARE LIFE CYCLE

Software life cycleis a series of identifiable stages that a software product undergoes during its lifetime. A
graphical view of the software development life cycle, that provides a visual explanation of the term waterfall
used to denote it is given in figure 1.4, Each phase yields results that flow into the next and the process
ideally proceed in an orderly and linear fashion.

Adherence to alife cycle model during software development has become universally accepted by software
development organizations. The advantage of adhering to a life cyclemodel is that it encourages development
of software in a systematic and disciplined manner. When a single programmer develops a softwares, he
has the freedom to decide the steps of development, but when a software development team works on a
project, it is necessary to have a precise understanding among team members about what and when to do
specific job. Otherwise it may lead to confusion or failure of the project. It is possible that one member
may decide to write the program and other may decide to prepare the test data for the project.

14

Figure 1.4 : Waterfall model of the Software Life Cycle

From the inception of an idea for a software system, until it is implemented and delivered to a customer,
and even after that, the system undergoes several changes. The software is said to have alife cycle composed
of several phases. Each of these phases results in the development of either a part of the system or
something associated with the system, such as a test plan or auser manual. In the traditional life cycle
model, called the waterfall model, or the Liner Seqnential Model each phase has well-defined starting and
ending points, with clearly identifiable inputs to the next phase. In practice, it is rarely so simple.

A sample waterfall life cycle model comprises the following phases:-

- Requirements analysis and specification: Requirements analysis is usually the first phase of
alarge-scale software development project. It is undertaken after a feasibility study Jfas been
performed to define the precise costs and benefits of a software system. The purpose of this
phase isto identify the exact requirements for the system. Such study maybe performed by the
customer, the developer, a marketing organization, or any combination of the three. In cases
where the requirements are not clear, e.g. for a system that has never been developed before -
much interaction is required between the user and the developer. The requirements at this stage

are in end- user terms. Vatious software engineering methodologies advocate that this phase

must also produce user manuals and system test plans.

+ Design and specification: Once therequirements for a system have been documented, software
engineers design a spftwafe system to meet them. This phase is sometimes split into two sub
phases: architectura} or high-level design and detailed design. High-level design deals with the
overall module structire and organization, rather than the details of the modules. The high- level

" designisrefined by designing eachmodule in detail (detailed design). Separating the requirements -

analysis phase from the design phase is an instance of a fundamental what'how dichotomy that
we encounter quite often in computer science. The general principle involves making a clear
distinction between what the problem is and how to solve the problem. In this case, the
requirements phase attempts to specify what the problem is. There are usually many ways that
the requirements may be met, including some solutions that do not involve the use of computers
at all. The purpose of the design phase is to specify a particular software system that will meet
the stated requirements. Again, there are usually many ways to build the specified system. In the

coding phase, which follows the design phase, a particular system is coded to meet the design

specification. _
~+ Coding and module testing: Thisis the phase that produces the actual code that will be defivered
to the custorner as the running system. The other phases of the life cycle may also develop code,

such as prototypes, tests, and test drivers, but these are for use by the developer. Individual
tnodules developed in this phase are also tested before being delivered to the next phase.

+ Integration and sysfem testing: All the modules that have been developed before and tested
individually are put to gether < integrated - in this phase and tested as a whole system.

b
1

. Delivéry and maintenance: Once the system passes all the tests, it is delivered to the customer
and enters the maintenance phase. Any modifications made to the system after initial delivery are
usually attributed to this phase.

A commonly used tetmind]ogydistinguishw between high phases and low phases of the software life cycle:
the feasibility study, requirements analysis, and high-level design contribute to the former, and unpiementauom
otiented activities contribute to the latter.

The process may be decomposed into a different set of phases, with different names, diﬁ‘erent purposes,
and different granularity. Entirely different life cycle schemes may even be proposed, not based on a strictly
phased waterfall development. For example, it is clear that if any tests uncover defects in the system, we
have to go back atleast to the coding phase and perhaps to the design phase to correct some mistakes. In
general, any phase may uncover problems in previous phases; this will necessitate going back to the
previous phase and redoing some earlier work. For example, if the system design phase uncovers
inconsistencies or ambiguities in the system requirements, the requirements analysis phase must be revisited
to determine what requirerents were really intended.

Another simplification in the above presentation is that it assumes that a phase is completed before the next
onebegins. In practice, it is often expedient to starts a phase before a previous one is finished, Thismay
happen, for example, if some data necessary for the completion of the requirements phase will not be
availablé for some time. Or it might be necessary because the people ready to start the next phase are
available and havenothing else to do.

Drawbacks of Linear Sequentlal Model
* Real projects rarely follow the sequential flow that the model proposes.
+ Itisdifficult for the customer to state all requirements explicitly in the beginning,
* Thecustomer must have patience to get the working version of the software,
» A major mistake left out initially wiil make the entire software non workable.

+ Developers are often delayed unnecessarily,

1.14 COMPUTER-AIDED SOFTWARE ENG_INEERING (CASE)

CASEisa tdol which aids a software engineer to maintain and develop sofiware. The workshop for software
engineering iscalled an Integrated Project Support Environment (IPSE) and the tool set that filis the workshop
iscalled CASE. Itis an automated support tool for software emgmeers in any software engmeenngprocess

‘Software engineering mainly mcludes the following processes:-
+ Translation of' Customeriuserneeds into software requirements
+ Translate software requirements into design specification
« Tmplementation ofdesign into code |
» Testing ofthe code
* Documentation

CASE technology provides software process support by automating sone process activities and by providing
information about the sofcware, whichis being developed. Some example acuwhes which can be automated

usmg CASE are:-

. The generation of user nﬁm‘faces ﬁ'om a graphical interface descnpuon, whichis created interactively
by the user.

12

» Tounderstand the design by using a data dictionary, which holds information aboutfhe entities and.
relations thatexist in adesign. ' _ h

L
!]

__.i» Program dehuggingﬁn{)ughtheprdvision of information about an executing program.
Levels of CASE B '
There are three different levels o CASE technology:- |
+ Production process support technology — This includes support for process activities such as
specification, design, implementation, testing and soon. iy ‘
* Process management aid technology — It includes tools to support process modeling and
process management. These tools are used for specific support activities.
« Metacase technology—Meta-CASE tools are generators, whichareusedto create production

process management suppot tools.
Architecture of CASE Environment '
" User Interface
Tools Management Services
Taols B
Objecl Manégement -
Sharéd Repository
Figure 1.5: CASE Eni;immn&nt '
The importantoompdﬁents of amodern CASE environment are:-
« Userlnterfice o

"« Tools Management Syste_m-("[‘ools set)
« Object Management System (OMS)

+ Repository |
a) User Interface—It provides a consistent framework for accessing different tools making easier
for the user to interact with different tools. :

b) Tools Management System —The tools set holds the different types of improved quality
tools. Tools management service (TMS) controls the behavior of tools within the environment.

¢) Object Management System— It maps specification design, text data, project plan etc. into
the underlying storage management system i.e. repository. This component provides integration
services, a set of standard modules that couple tools with the repository. It also provides
Configuration Management services by enabling the identification of all configuration objects.

. d) Repository - Itis the CASE database and the access confrol functions that enable the Object.
_ 13

Management Layer to interact with the database, CASE repository can be a project database, |
IPSE database, data dictionary, CASE database and so. on

Objectives of CASE -

Improve the objectives of CASE are to, Productmty Use f CASE increase the speeds with
which systems are designed and developed

Improve Information System quality

'« Easeand improve thetesting process ttlro_ugh _the use of al_ltomated _cheekirtg |
'+ Improve theintegration of development activities

* Improve the quality and completeness of documentation

'+ Standardize the development process

* Management of the project improves

. Time reduces in the overall construction process

* Improve software portability across environments

Improve Effectiveness - Effectxveness means doing the right task. CASE tools can suggest

procedures to approach a task.

Reasons of rejections of CASE by organizations

L]

Theinitial cost of purchasing and using of CASE is high

Training cost of personnel

Benefits of using CASE are in the later stages of SDLC

CASE increases the lengthrof duration in initial stages

CASE tools cannot easily share information between tools

Different methodology standards within organization, CASE forces to foliow a specific
methodology for system development

Lack of confidence in CASE products ”

- Tal;]e [.2; Lisi of CASE Touls -
PurposeofTeol |

Applicatisn
Planniny

Case Tool
Excel, M5-Project, PERT/ | Planning, acheduling,
CPM Metwork, Estimstion | comdrel
: touls :

Editing Diagram editors, Text Spesd and Efficiency
sdilocs, work processors)

Testing Test data generstors, File Speed and Efficiency

) comparators o
Prototyping Hiph level modeling Conficmatlon and
certification langoape, user inerface cestification SRS
enetators

Elocumeniation Report generators, Fast struciiral

publishing imaping, PET documeniation with
' : erlation . qoality of presestation
Prgramming and Brogram geaeraiors, code | Prograsmzlug of high
Lenguage p ing cornpil | twality with no errors,
egration P l g inkery Inlerfa system inlegralion

inf ion oonnectivity

Progrem analysis Iool Cross reference yencrators, | Analyses rigks, ihetmns.
static analyzers, dymamic features
anabyrers -

k)

Advantages of CASE Tools _ _
The majorbeneﬁts of usmg CASF *ools mclude -

Improved productmty

14

"« Better documentation '
+ Improved accuracy |
» Intangible benefits
+ Improved quality .
Reduced lifetime maintenance
* Opportunity to non-programmers
» Reduced cost of software
* Produce high quality and consistent documents
« Impact on the style of a working of company

1.15 SUMMARY

Software engineerifigisthe field of computer science that deals with the construction of large or complex sofiware
system. Software engineering is essentially a team activity. Software engineering is a discipline whose aimis to
produce error free software that satisfies the user’s requirements and can be delivered on time within the budget.
The software engineer mustbe familiar with several design approaches, be able to translate vague requirements
into precise specifications, and be able to communicate with the user of a system in terms of the application terms
" rather than in computer buzz words. Sofiware engineering has had to evolve its a2ims based on observation of
thousands of projects.

The problems associated with software development are referred as “Crisis”. The term refers to a set of
problems that are encountered during the development of computer software. Software Myths- beliefs about
* software and the process used to build it - can be traced to the earliest days of computing,

The product of software engineer is asoftware system but the difference between software product and
other productisthat itismodifiable. The designer of the software wants it to be maintainable and portable.

A software process defines the approach that is taken as software is engineered. Software engineeringisa
layered technology. Anyengineering approach mustrest or an organizational commitment to quality. A software
life cycleis the series of identifiable stages that a software product undergoes during its lifetime. Adherence to a
" life cyclemodel during sofiware development has become universally accepted by software development

organizations.

CASE isatool which aids a software engineer tomaintain and develop software. It is an automated support tool
for the software engineers in any software engineering process. CASE technology provides software process
support by automating some process activities and by providing information about the software, which isbeing
developed. '

1.16 UNIT-END QUESTIONS

What is meant by Software Engineering?
What are the characteristics of Software?
Define Software Lifecycle.

Whatis CASE? Explain. _—
What is software Crisis? Why it happens? '

e O S e

What do you mean by software process?

15

7 What are the aims of Software Engineering?

8 What are Software Myths?

9 Explaintheyoleof software engincer

10 Explain different types of software applications.

1.17 FURTHER READINGS

I. Fundamentals of Software Engineering, Rajib Mall, Prentice Hall of India.
2. Software Enginecring - A Practitioner’s Approach, Roger S. Pressman, McGrawHill

16

UNIT-1I

SOFTWARE REQUIREMENTS ANALYSIS

Structure of the Unit

20 Objectives

2.1 Introduction

22 . Identifying Software Requirements
2.2.1 Functional Requirements

222 Non-Functional Requirements

23 UserRequirements

2.4 SystemReqLdrdnmts

2.5 FeasibilityStudy | |

2.6 Process ofRéqmﬁremmtEnginem'ing |
2.6.1 Requirements Elicitation
262 Requirements Analysis andModeling
263 Tleqmremmts Documentation
2.6.4 Requirements Review
2.6.5 Requirements Management

21 Software Requirements Document (SRS)

2.8 System Models'

2.9 Analytical Frameworks

| 291 Structured analysismodeling:
292 Objectorientedmodeling
293 DaModeling

2.10 Introductionto CASE tools

2.11 Summary

' 2.12 UnitEnd Questions

213 Furtther Readings

2.0 OBJECTIVES
After going through this unit studentSWill be ableto:

17

* Understand the meaning of requirement-onginoering

+ Understand the ways for identifying precise requirements of customer
* Understand the Software Requirement Spemﬁcatlon document

. Identlfy the functional and non-functional nequments

* Understand the feasibility studies techmques ,

2.1 INTRODUCTION

Requirement analysis is a software engineering task that bridges the gap between system-level software
allocation and software design. Requirement analysis enables the system engineer to specify software
function and performance, indicate software’s interface with other system elernents and establish constraints
- that software must meet. Requirement analysis allows the software engineer-to refine the software allocation
and build models of the data, functional and behavioral domains that will be treated by software.

Requirement analysis provides sofiware designer with models that can be translated in to data, architectural,
interface and procedural design.

Requirements analys13 in systems engineering and software engineering, encompasses those tasks that go
into determining the needs or conditions to meet for a new or altered product, taking account of the
possibly conflicting requirements of the various stakeholders, Requirements analysis is the first stage in the
- systems engineering process and software development process,

Systematic requirements analysis is also known as requirements engineering. It is sometimes referred to
~ looselyby names such as requirements gathering, requirements capture, or requirements specification. The
term requirements analysiscan also be applied specifically to the analysis proper .

Requirements analysis is critical to the success ofa development project. Requirements must be actionable,

measurable, testable, related to identified business needs or opportunities, and defined to a level of detail -
sufﬁcnent for system deswgn Figure 2.1 shows the components of thoAnalys1s phase '

,-«-m-—'*--..

- o /s/yswm Anm&
vy ais __,__.._.!: s, o Coniral

, ‘i.,&vrancgj *

- Reyuireraants
Laop

Functional Anarysls
anl Alfecation

MOCUEZ= BEMOaDw

I
P
I Vaiilgaton b AV 4

N /'{J
MROCESS CUTMIT
Figure 2,1 : System Analysis

The requirement analysis and specification phase starts once the feasibility study phase is complete and the
project is found to be financially sound and technically feasible. The goal of the requirement analysis and
specification is to clearly understand the customer requirements and to systematically orgamze these

requirements in a specification document : _ _ e

18

2.2 IDENTIFYING SOFTWARE REQUIREMENTS
The requirements can be classified into the following types:- | t
"« Requirements that should be absolutely met.
¢ Requirements that are highly desirable but not necessary.
+ Requirements that are possible but could be eliministed.

On the basis of the characteristics of requnemmts, the requirements are clasmﬁed into the followmg two
types: Functional Requ:rements and Non Functlonal Requirements.

2.2.1 Funcﬂonal Requirements

Functional REquirements are the functionalities requ1red from the system. They define factors
like I/O formats, storage structure, computational capabilities, timing etc.

To document the functional requirements of a system, it is essential to leam how to first identify
the high-level functional requirements.of the system. Through, the execution of a high-level
_requirement, user can get some tseful work done. Each requirement typically involves accepting
some data from the user, converting it to the required response and outputting the response to
-theuser. Each high-level fimctional requirement may involve a series of i interactions between the
system and one or more users.

Initially some data is given by the user, the system may dlsplay some response (called system
action). The user may input further data and this process may continue as per the requirement.
There can be different interaction scenarios or sequences depending on the user’s optlon selection.
Thedifferent scenarios are essentla]ly the different paths.

In requlremmts spemﬁcatlon, itis nnportmt to define the prec:se datai mput to the system and the
precise data output by the system.

Thehigh-level functional requirements often need to be 1dent1ﬁed either froman mfonnal problem
description document or from a conceptual understandmg of the problem. There can be many
types of users of a system and their requirements or expectations from the system may be
different. It is often useful to identify the different types of users who might use the system and
thentry to identify the requirements from each uset’s perspective. _

2 2 2 Non Funcﬁonal Requirements _

' They deﬁne the charactensncsfpropertl&s or quahtles of a product mcludmgusablhty, eﬂimency,' '

pe:fonnanoe, space, reliability, accuracy etc. Examples of nonfunctional requirements include

- aspects conceming maintainability, portability and usability. The non-functional requn‘emmts may

- alsoinclude reliability issues, accuracy of) results, hmnan—computer interface issues and constraints
- on system xmplementatlon : : - _

2.3 USER REQUIREMEN TS

User requirements include statements of fact and assumptions that define the expectatlons of the systernin
terms of mission objectives, environment, consiraints, and measures of effectiveness and suitability. The
users are those that perform the eight primary functions of systems engineering, with special emphasis on
the operator as the key user. Operational requirements will define the basnc need and, ata mxmmum,
answer the queshons posed in the followmg listing;

i

19

0perat10nal distribution or deployment Where will the systembe uscd? _

Mission profile or scenario: How will the system accomplish its misSion objectwe'?
Performance and related parameters: What are the critical system parameters to accomplish the
mission?

Utilization environments: How are the various system components to be used?

Effectiveness requirements: How effective or efficient rraust the system be mpu'lbrmmg itsnisston?
Operational life cycle: How long will the system be inuse by theuser?

Environment: What environments will the system be expected to operate inan effective manner? -

2.4 SYSTEM REQUIREMENTS
Systement requirements can be specified under the followingheads

Performance Requirements: Performance requirements state the extent to which a mission or
function must be executed; genetally measured in terins of quantity, quality, coverage, timeliness
or readiness. During requirements analysis, performance (how well does it have to be done)

" requirements will be interactively developed across all identified functions based on system life

cycle factors; and characterized in terms of the degree of certainty in their estimate, the degree of
criticality to system success, and their relationship to other requirements.

Design Requirements: Design requirements include the “build to,” “code to,” and “buy to”
requirements for products and “how to execute” requirements forprocesses expressed in technical
data packages and technical manuals.

Derived Requirements: Derived Requirements are requianents that are implied or transformed .
from higher-level requirement. For example, a requirement for long range or hlgh speed may
result in adesign requlremeut forlow weight.

Allocated Requirement: Allocated requirement is a requirement that is established by dividing
or otherwise allocating a high-level requirement into multiple lower-level requirements.

2.5 FEASIBILITY STUDY

The aim of the feasibility study activity is to determine whether the product would be worth ornot. The
type of study determines if a project can and should be taken, The feasibility study activity involves the
analysis of the problem and collection of all relevant information relating to the product i.e. input to the
system, processing required on input data, output required to be produced by the system and various
constraints on the system. For the conduct of the feasibility study, the developer will usually consider the
- following types of inter-related feasibility study:- ' _

Technical Feasibility — It emphasises on the conﬁguratlon of the system than the actual make
of hardware. The configuration should give the complete system’s requirement,

Operational feasibility - Its emphasises on human, orgamzatlonnl and political aspects. i.e.
what changes, skills and structure is required.

Economic Feasibility It is lheteclnuque for evaluating the effectiveness of a proposed system.
It is also known as cost/benefit analysis mddetmnmes&ebmeﬁtsandsawngsthatareexpoctd
from aproposed system.

Management Feasibility — It determines whether the pfoposed system is acceptable to

management, If management does not support the system then the system is considered as non-
20

feasible.

‘e Time Feasibility - If determines whether the system can be implemented within a stipulated
time frame. If project takes longer time then it is likely to be rejected. '

» Legal Feasibility — It checks whether the proposed system is within the legal aspects of the
country. ‘ o '

« - Social Feasibility — It determines whether a proposed project willbe accéptable to the people
ornot.

2.6 PROCESS OF REQUIREMENT ENGINEERING |
Requiretﬁmt engineeting process takes the following steps- | '

+ Requirement Elicitation (gathering)

« Requirementanalysis and modeling

s+ Requirement documentation

+ RequicmentReview

» Requirement Management _ _
Figure 2.2 shows the steps in the software requiements engineering process:

Problem Statemenﬂ Input
Requirement | Requirement N __{Requirement| | Requirement Requirement
Elicitation . -Analysis " IDocumentation| Review | Management
Process Steps
Software Requiremen Output
Specification (SRS} S

Figure 2.2 : Requirement Engineaing?rooes-
2.6.1 Requirement Elicitation

Requirement Elicitation is the practice of obtaining the requirements of a system from users, '
customers and other stakeholders. The practice is also sometimes referred as requirements
gathering. Requirements elicitation practices include interviews, questionnaires, user observation,
workshops, brain storming, and prototyping. | '

Information is gathered from the multiple sources. The Requirements Analyst draws out from

an

each of these groups what their reqmremcnts from the application are and what they expect the
application to accomplish. Considering the multiple sources involved, the list of requirements
gathered in this manner could run into pages. The level of detail of the requirements list is based
on the number and size of user groups, the degree of complexity of business processes and the
size of the application, . _ o o

- The process model of feqidrcmentelicitation & analysis is shown in figure 2.3. -
Problems faced in Requirements Elicitation |
* Ambiguousunderstanding of processes
* Inconsistency withinasiﬁgle process by multiple users
e Conflicting mtcrcsisof multiple sources
* ChangesinRequirements after project has begun

262 Requirement analysis and modeling

Once all requirements have been gathered, a structured analysis of these ¢an be done afier .
modeling the requirements. Some of the Software Requirements Analysis techniques used are
requirements animation, autornated reasoning, knowledge-based critiquing, consistency checking,
analogical and case-based reasoning. ' , o o

In this phase, each requirement is analyzed from the point of view of consistency, validity and
Teasibility for organization’s consideration. Consistency confirms that it does not conflict with
other requirements but supports others where necessary. Validity conforms its relevance to goals
and objectives. Feasibility ensures that the necessary inputs are available without error and
technology support is possible to execute the requirements,

The technical software development staff works with users to find 'ouf -
* whatoperations the system should provide
A mquu'eEl performance of the system
. ___:"ha_idwm*e/soﬂwa;ecohstaintsetc; S o T
 This stage depeﬁds on the user acceptance i.e. how well ihe system achieves the’ﬁéé}’é needs
and supports the work to be automated. R T :
Requirements Analysis is a difficult process because, |
* Usersoften don’t know what they want from the system, _
* Different users have dlﬁ'ezenttmes ofmqulrcmentsmdﬂwy express this in different ways,

* Since analysis takes place in an organizational context, political and other factors in
organizations may affect the requirements of the system,

» Theeconomic and business environment in which analysis takes place is dynamic i.e.
New requirements may emerge from the users who werenot originally involved.

22

" Figure23 :Pmoe,ss model ofRequiremmts élicitationand an_alysis

~ Each orgamzatlon has its own generic process modet of el1cltat10n and analys:s dqaendmg onthe
factors such as skills of staff, standards used etc.

The process activities shown above are:-

* Domain Knowledge — Knowledge of the domain must be clearly understood by the'/
analysts i.e. if a system for any manufacturing industry is to be developed then the analyst must
acquire complete knowledge about the manufacturing process.

. Requirements collection — It is the process ofi interacting with the users in the system to
find out their requirements. In this step, dmnamkmwledge develops ﬁuﬁlerand is great[yunproved.

. Classification — This activity receives the unstructured oollecnon of requlrements and
orgamzes theminto clusters.

~« Contlict resolution — When many users are involved, requlrements may oonﬁlct This
 stepis concerned w1th ﬁndmg and resolvmg thesc conflicts. '

"« Prioritization— There will be some activities more unportant than. others mthe system. In
this step, the most important requnrements are dlsoovered through 111teract10n with theusers of
the system.

. Requirements validation — The requtrements ate validated to find whether they are
S oomplete, consnstent and in accordance w1th the requlrements ofthe usess. - :

2.6.3 Reqmrements Documentation

Requirements documentation is also called Software Requirement Specification (SRS). Itis a
very important activity which is carried out after requirement elicitation and analysis. It is the way
to present requirements in a consistent format. Itis a specification for a software product.

SRS could be written by a customer or a developer of the system. The SRS written by the user
is used to-define the needs and expectations of the users and SRS written by the developer
serves as a contract document between both the user and the developer. Therefore Tequirements
“ must be written so that they are meamngﬁll not only to the customem but also to demgners of
'development team.

Requirements Definition

A system requirements definition is descnptlon of ﬁmctlonsfscmoes which the system should
provide and the constraints under which the system must operate. It should only specify the
external behaviour of the system it should not be concerned with syster design characteristics.

The requirements should not be defined using an implementation niodel i.. the definition should
23 :

" be written in such a way that it is understandable to users, The teqmrements may either be
functional or non functional, '

“The functional requirements should be -)
» Consistent - The requirements should not have contradictory definitions.
« Complete - All functions required by the user should be defined.

2,64 Requirements Review

The purpose of the Requirements Review is to review the System Requirements Specification
document to ensure that the documented requirements reflect the current knowledge of the user
and market requirements, to identify requirements that may not be consistent with product
development constraints, and to put the requirements document under version control to serve
as a baseline for continuous new product development. The Review checks include -

+ Adherenceto guidelines
e Individual requirements checks

» Fitness for purpose. '
Arewewxsammualpmcess,mqmmnentsmwewscmbemfonnalorfonnal .

Informal Review

It simply involves developers discussing requirements with as many as system users as much
possible. Many problems can be detected by talking about the system to users before making a
commitment to a formal review. _

Formal Review _

In this review, the developers explain the system reqmrements and the implications of each
requirement to the user. The review team must check each requirement for consistency and must
check the requirements as a whole for completeness, Reviewers must check the follomng.

L. Verlﬂability-—ls the requirement as stated, testable?
» Comprehensnb:hty Itlstherequmentpropertyunda’stoodbytheusmofthesystem,

. 'Iheebllity—ltlsthepmoess of going back to the source of the requirement to assess the
impact of any change. It also checks the impact of change on the rest of the system.

¢ Adaptability - It is requirement that user can accept the systan

265 Requirements Management

Requirement management is defined as a systematic approach to eliciting, organizing and
documenting the requirements of the system and a process that establishes and maintains agreement
betweenusermddevelopemteamonmechanglngreqmremquSofﬂwsystemPlamunglsan
essential stage in the requirements management process, Requirements management stage is
very expensive for each project. The planning establishes the lovel of requirements management
detail. Thestepsmvoivedmreqmmmﬂmmaganmtm'e-

¢ Requirement identification
« Change management process
» Traceability policies
‘ 24

o CASE tool support

2.7 SOFTWARE REQUIREMENTS SPECIFICATION DOCUMENT
(SRS)

SRS stands for Software Requirements Specification. It establishes the basis fnragreementbetwmm's
and developers or suppliers on what the software product is expected to do, as well as what it is not
expected to do. Some of the features of SRS are—

» Jtsets arigorous assessment of requirements before design can begin.

. Itsets the basis for software design, test, deployment, training etc. It also sets pre-requisite for a
good design thoughitis not enough.

o ‘It sets basis for software enhancement and maintenance.
+ Itsefs basis for project plans like Scheduling and Estimation.

This document is generated as output of requirement analysis. SRS should be consistent, correct,

* unambiguous and complete. The developer can prepare the SRS after detailed discussions with the user.
Requirement analysisis asoftware engineering task that bridges the gap between system-level software
allocation and software design. Requirement analysis enables the system engineer to specify software
function and performance which indicates software’s interface with other system elements and establish
constraints that software must meet. Requirement analysis allows the software engineer to refine software
allocation and build models of the data, functional and behavioral domains that will be treated by software.
The SRS i produced at the culmination of the analysis task. The function and performance allocated to
software as part of system engineering are refined by establishing a complete information description, a
detailed functional and behavioral description, an indication of performance requirements and design

 constraints, appropriate validation criteria and other data pertinent requirements. ' ’

* The framework for the SRS that canbe used for our purposesisas under:-

1. Introduction

a. S_o_opé.

b. Overview

c. SystemReference -
d Overall description

e. Softwareproject constraints
2. OvenllInformation Description
, Infonnﬁoncmtenti_-epmmmﬁon
b Information flow representation
i DataFlow |
i Control Flow
System Interfaces
 Hardware and Software interfaces
e Operating Environment

25

3.

% =

£ User Environment
Functional Description
-Ia. - Functional Partitioning -~ .
b. Functional Déscription
i PrboessingNarrative.
i Constraints
fil. Pafqnngnoe Requirements
i DesignLimitations
- \3 SﬁpporﬁngDiagtmns
c. Control Description
i Control Specification
ii - DesignConstrainis
| Behaviorél Desci‘ipﬁqnpf the system B
'~ a VarionsSystemstates |
b, Eventsandacuons bf systelﬁs '
Other pon-functional attributes - |
“a Security
b BinaryCompatibility
c. Reliability
d. Maintsinability
e. Portability
£ Extensibility
g Reusability
h. Application A flinity/Compatibility
i Resource Utlization |
j. Serviceability
k. ... others as appropﬁate
Validation and Criteria
a. Performance boundaries
b. Classes of tests
c. Expected software response
d. Special considerations
Bibliography
Appendix

. The objectives of the sections are as follows,

1.

Introduction — states the gqals and objectives of the software, descnbmg itin the context of the
computer based system.

| Overall Information Desc'rlptlon provides a detailed description of the problem that the.
- software must solve. In this section 1nfonnatxoncontent and relauonslnps flow and structure are

documented.

Functional Description - provides the description of each finction required to solve the problem.
A processing narrative is provided for each function, design constraints are stated and justified,

performance characteristics are stated and one or more dlagrams are included to graphically
represent the overall structure of the software.

Behavioral Description of the System — _ examines the operation of the software as a
consequence of external events and internally generated control charactetistics. -

Validation and Criteria—provides answers to questions like—how do we recognize a suocessful
implementation? What classes of tests must be conducted to validate function, performance and

‘Bibliography and Appendix— contains references to all docaments that relate to the software.

It includes other software engineering docurnentation, technical references, vendor literature and

. standards. The appendix contains mfonnatlon that supplements the specification like tabular
_ data, charts, phs etc.

e

Characteristics of a Software Requireménts Specification

A good SRS is

-
.
.
L]
L
'-o

unambiguous,
complete,
vm'ﬁable,
consistent,
modifiable,

traceable, and

Usable dunng the operatlon and mamtcnanoe phase.

Unamb:guous

Every requirement has ohly oneintetpretation,
Each charactéristic of the final product is described using a single unique tefm.
A glossary should beused whena termusedina partlcular oontext oou[d have multlple meanmgs.

Complete

: A complete SRS must L possess the followmg quahtlcs

L

- inclusion of all sxgmﬁcant requirements,
| deﬁmtlon of the responses of the software o all realizable classes ofi mput,
_ confonmty to any standard that applies to 1t,

full labeling and referencing of all tables and diagrams and the definition of all terms.

27

Verifiable
* Every reqmrcmalt must be verifiable.

* Theremust exist some finite cost-effective process with which a person ormachine can check
that the software meets the requirernent. _

Consistent _
+ Nosetofindividual requirements described in the SRS canbein conflict.
¢ Typesoflikely conflicts: :
* Two or morerequirements describe the samereal world objéct in di&'erent terms.
* The specl.ﬁed characteristics of real world objects might conﬂlct.
¢ - There maybe alogical ortempoml conflict between twospec:ﬁed actions.
Modiﬂable

.. Thestmctureandstyleofthe SRSanesuchtlmtanymcessarydwgestomereqummtscan
bemade easnly, completely and consistently.

» acoherent and easy-to-use organization (including a table of contents, index and cross-
. _
» notberedundant - this can lead to errors.
Traceable | ‘M
 Theorigin of each requirement mustbe clear. _
'+ TheSRS should ficilitate the referencing of each requirement in future development or enhancement
~ documentation.
e Types:
"« Backward traceability
' . Each requirement must expllcltly reference its source in previous documents.

¢ Forward traceability
. Eachreqmrement must have an unique name orrefermce number.

Usable during the operation and maintenance phase

TheSRSmuﬂaddms&enwdsof&eopaaMnmﬁmm@mephmthﬂngﬂwevaﬂml@hmmt
oftl'lcsoﬁware.

Beneﬁts of Software Requirements Specification
The followmgare the benefits of a good Software Requirement Speclﬁcauon (SRS):

o Congruencybetween the Users/Customers (stakeholders) and the suppliers/developers on what
the software product is to do. The complete description of the functions to be performed by the
soﬁwmespemﬁedmﬂxeSoﬁwueReqmmﬂSpeaﬁcaumhdpﬂwpotermlmwdamnme
1fthe software in question adheres to theirneeds.

. Reduoe the development effort. The preparauon of the Software Requirement Specification
forces various concerned groups in the customer’s organization to consider rigorously all of the
requirements before design begins and reduces later redesign, recoding, and retesting. Careful

review of the requirements in the Software Requirement Speclﬁcatxon can reveal omissions,
, 28

misunderstandings, and inconsistencies early in the development cycle when these probléms are
easier to correct. o

Provide a basis for estimating costs and schedules. The description of the product to be developed
as given in the Software Requixement Specification is arealistic basis for estimating project costs
and can be used to obtain approval for bids or price estimates. : : '

Provideabaseline for vatidation and verification, Organizations can develop their validation-amxl
Verification plans much more productively from a good Software Requirement Specification. As
a part of the development contract, the SRS provides abaseline against which compliance can
bemeasured. ' ‘ _ -

. Facilitate transfer, The Software Requirement Specification makes t easier to ransfer the software

product to new users or new machines. Customers thus find it easier to transfer the software to
other parts of their organization, and suppliers find it easiex to transfer it to new customers.

Serve as a basis for enhancement. Because the Software Requirement Specification discusses
the product but not the project that developed it, the SRS serves as a basis for later enhancément
of the finished product. The SRS may need to be altered, but it does provide a foundation for
continued production evaluation.

2.8 SYSTEM MODELS
Systern models are an important element of the system engineering process. The software engineer creates

models that:-

.

»

Define the processes that serve the needs of the vision under consideration.
Characterize the behavior of the processes and the assumptions on which the behavior is based.

Explicitly define the inputs to the model.
Characterize all links that will enable the software engineer to better understand the vision.

"o construct a system model, the software engineer should consider a number of limiting factors:-

-

Assumptions —to reduce the number of po.ssible permutations and variations.
Simplifications — to enable the model to be created in a timely manner.

Constraints —to guide the manner in which the model is created and the approach taken when
the modelis implemented. ' '

Limitations - to helps to bind the system.
Preferences - to indicate thc.prefeﬂa:l architecture for all data, functions and technology.

The resultant system model may call for a completely automated solution, partly automated solution or non
automated solution. : : Ce

2.9 ANALYTICAL FRAMEWORKS

Analytical frameworks combine reusable solutions with analysis pattetns, research, useful organization
techniques, and specific examples of successful approaches. An analytical framework isa little like your
own personal library, tailored specifically to your own experience and background. Analytical frameworks
incorporate patterns and also provide a checklist of skills, tools, and techniques that are necessary for

researching a particular area, such as business analysis or system architecture, Ananalytical framework is

_ useful only if the tools are familiar to the modeler.

29

Some of the following analysis models cover the analytical framework of different approaches:-

* Structured analysis modeling

!

» Object oriented modeling
+ Datamodeling

2.9.1 Structured analysis modeling |

Structured Analysis consists of interpreting the system concept {or real wotld) into data and

control terminology i.e. into data flow diagrams. The flow of data and control from bubble to

data store and to bubble can be very hard to track and the number of bubbles can get to be

extremely large. One approach s to first define events from the outside world that require the
system to react, then assign a bubble to that event, bubbles that need to interact are then connected

until the system is defined. - 3 C

Data Flow Diagrams (DFDs) are a graphical representation of the flow of data through a

system. They are directed graphs showing processing elements and data stores with the dataflow

between them. In a DFD), the nodes are external entitites, processes or data stores, and the

edges are data flows. . .

A process can be further decomposed to a more detailed DFD which shows the sub-processes
and data flows within it. The sub-processes can in turn be decomposed further with another set
of DFDs until their functions can be easily understood. Processes which do not need to be

. decomposed further are called functional primitives and are described by a process specification
(or mini-spec). The process specification can consist of pseudo-code, flowcharts, or structured
English. The DFDs thus model the structure of the system as a network of interconnected
processes composed of functional primitives. : '

A DFD is augmented by a data dictionary that dexcn“bes all of the data flows, data elements, files
and data bases. ' ' o

DFDs can be used to represent a system in terms of the input data to the system, various

processing carried out on these data and the output data generated by the system. The symbols

used in DFDs are shown in figure 2.4.

]
_ r'/ N
External entity k) Process
. ~ .
Date Store e Diata Flow |

Output

Figure 2.4 : Symbols used in DFDs

Context Diagram

Context diagrams are diagrams that represent all external entities that may interact witha system.
30

»
[}

This diagram is the highest level view of asystem, similar to Block Diagram, showing a, possibly

B software-based, system as a whole and its inputs and outputs from/to external factors. It represents
the entire system as a single bubble. This bubble is labeled according to the main function of the
system. It is also known as Level-0 DFD. Figure 2.5 shows the context diagram of an Accounts
Payable system '

Fucohass Ordes

Reports .
Chock. Baxk B

lances ’
Managemes Bank .

Fig.2.5: Context Diagram of an Accounts Payable System

A Context diagram does not show any detail butis an overview of the system. We can elaborate
the context diagram into further level-1, level-2 etc. diagrams. The level-1 DFD canbe drawn
made as in figure 2.6. S

— - :
B o _
Verflled Invoice i i Payable
e e S

. Supplier . ~ Update B

Suppier s " lnmm ; e
alion : Payable

B #coount Balancs
i Accounts, ’
i Payable
Record
Chuck
Preparations Supplier
b Check 4 - i
T S
" Suppher
: Adddress
g
ts-.mplbrbata
[

Fig. 2.6 : Level 1 DFD for Accounts Payable System
Comihon Errors while constructing a DFD model .- |
The following are the most common errors made while constructinga DFD fora systcm:.-
"« Manydesigners/developers commit the mistake of drawﬁlg mote than one bubble in the
context diagram. : ' | ' _
e Many d&éigll&éfﬂevelopels have external entities at all levels of DFDs. All external entities

interacting with the system should be represented only in the context diagram. The external
entities should not appear at other levels ofthe DFD. :

« Itisacommon lapse to have either too less or too many bubblesina DFD. Only3to7
bubbles per diagram should be allowed. ' . '

« Another common error is to present control information in DFD.\.pfF[') isadata flow

K3 |

representation of a system and it does not represent control information.

Jj2.9.2 Object oriented modeling _ _ _
Object modeling was recently introduced into system dcvelopment. Itemphasiseson:-
* Combiningprocesses, data and flows into the one modeling paradigm, thus allowing objects
to be modeled as independent entities thatcan be flexibly combined into cooperating systems,
* Easyconversion from analysis to design models, through theu_séof sitnilar terms. '

* Supportof multimedia information and not only record structures. _

In object analysis it is not necessary to consider in terms of building one large system. We |
identify objects as independent entities with their own local goals. Such objects can exchange
messages between them to achieve a global goal of the large system.

Theobjective of objectoriented analysisis to define all classes and the relationships and behavior
associated with them are relevant to the problem. The following concepts must be known to the
developer for modeling:- : -

* Abstraction is aboutlooking only at the information that s relevant at he time.
. When modeling, 2 or 3 orthogonal views of the system are created. | |
* Diagrams are independent views of the model and mayBe of different types.

* Inobject oriented analysis, the object model, or data view, is the primary and most stable
view ofthe system. ' ' _ '

* Hardware engineering produces well encapsulated hardware designs.

\\ .

- * Applying encapsulation techniques to software encourages maintainable, re-useable and

extensible code. _ -

Object Oriented Analysis builds a class-oriented model that relies on an understanding of OO
Concepts. . ' o - .

293 Datamodeling

Data modeling in software engineering is the process of creating a data model by applying format
data model descriptions using data modeling techniques. Data modeling is a method used to
define and analyze data requirements needed to support the business processes of an organization.
The data requirements are recorded as a conceptual data model with associated data definitions.
Actual implementation of the conceptual model is called a logical data model. To implement one
conceptual data model may require multiple logical data models. Data modeling defines the
relationships between data elements and structures. . L o
Datamodeling techniques are used to model data in a standard, consistent, predictable mainer
in order to manage it as a resource, The use of this standard is strongly recommended for all
projects requiring a standard means of defining and analyzing the data resources within an
organization. | - I | -
Data modeling may be performed during various types of projects and in multiple phases of
~ projects. Data models are progressive; there is no such thing as the final data model for a
- business or application. Instead a data model should be conisidered a living document that will
change in response to a changing business. The data models should ideally be stored in a repository :
'so that they can be retrieved, expanded, and edited over time. Datamodels represent mformation
32

areas of interest.

There ate several notations for data modeling, The actval model is frequently called “Entity -
 relationship model”, because it depicts data in terms of the entities and relationships described in
the data. An entity-relationship model (ERM) isan abstract conceptual representation of structured
data. Entity-relationship modeling is a relational schema database modeling method, used
- in software engineering to produce a type of conceptual data model (or semantic data
model) of a system, often arelational database, and its requirements in a top-down fashion.
These models are being used inthe first stage of information system design during the requirements
analysis to describe information needs or the type of information that is to e stored ina database.
Entity relationship diagram is essential for thedesign of database tables, extracts, and metadata.

2.10 INTRODUCTION TO CASE TOOLS

CASE is theuse of computer-based support i the software development process. This includes all kinds
of computer-based support for any of the managerial, administrative, or technical aspects of any«pﬁ ofa
software project. o . |

Computer-Aided Software Engineering (CASE), in the field of Software Engineering is the scientific
application of a set of tools and methods to software development which results in high-quality, defect- -
free, and maintainable software products. It also refers to methods for the development of information -
systems together with automated tools that can be used in the software development process. -

... A CASE tool is a computer-based product aimed at supporting one or more software engineering
activities within a software development process. ' ' : :

CASE tools are a class of software that automates many of the activities involved in various life cycle -
phases. Forexample, when establishing the functional requirements of a proposed application, prototyping
tools can be used to develop graphic models of application forms/screens to assist users to visualize how
an application will look after completion. Subsequently, system designers canuse automated design tools
to transform the prototyped functional requirements into detailed design documents. Developers can then
use automated code generators to convert the design documents into code. Automated tools canbeused
collectively, or individually. For example, prototyping tools could be used to define application requirements
that get passed to design technicians who convert the requirements into detailed designs in a traditional
manner using flowcharts and narrative documents, without the assistance of automated design software,

Themajor benefits of using CASE tools includes:-
» Improved productivity
* Better documentation
+ Iraproved accuracy
. Intangiblebenefits
s Improved quality
+ Reduced lifetime maintenance
» Opportunity to non-programmers
» Reduced cost of software
« Produce high quality and consistent dowmenfs
+ Impact on the style of a working of company

33

"
2.11 SUMMARY

Requirement analysis' is a software engineering task that bridges the gap between system-levet sofiware |

allocation and software design, Requirement analysis allows the sofiware engineer to refine the software
allocation and build models of the data, functional and behavioral domains that will be treated by software,
Requirements are classified into Functional Requirements and Non Functional Requirements.

Requirement engineering takes the following processes-
"« Requirementelicitation (gathering)
. Requirinmf analysis and modeling
* Requirment documentation
* Requirements review
. Requiremmts management

SRS stands for Software Requirement Specification. It establishes the basis fdr ag-eemeht between users
-and developers or suppliers on what the software product is expected to do, as well as what it is not
expected to do. The SRS is produced at the culmination of the analysis tagk, -

Analytical frameworks combine reusable solutions with ahalysm paftems, research, useful orgamzatloh
- techniques, and specific examples of successful approaches. An analytical framework i is useful only if the
tools are familiar to the modeler.

Computer-Aided Software Engineering (CASE) in the field of Software Engineering is the scientific
application of a setof toois and methods to software which results in high-quality, defect-free, and maintainable
software products. CASE tools are a class of so&ware that automates many of the activities mvolved in

vanous life cycle phases

2.1 2 UNIT—END QUESTION’S
1. What do youunderstand by requurements ehcltatlon? _
Discuss the significance and use of requirement engineeting?
What isSRS? What -aré the ébmpon‘eﬂts of SRS? |
Discuss the characteristics of good SRS,
What do you mean by a DFD? Explam some of the symbols used todraw a DFD
What is data modeling? Explam.
What do you mean by requirement management?
Describe the ideabehind CASE tools.

IS TN VR NN

2.13 FURTHER READINGS _
1. Software Engineering ~ A Practitioner’s Approach, Roger S. Pressman, McGrawhill
2. Fundamentals of Software Engineering, Rajib Mall, Prentice Hali of India

34

UNIT - 1K

'SOFTWARE SPECIFICATIONS

Structure of the Unit

3.0 Objectives
3.1 Introduction
3.2 Critical Systems Specification
33 Risk-DrivenSpecificationi
34 Safety SpeciﬁCétion
3.5 SecuntySpeclﬁcahon
2 3.6 Soi’twareRehablhtySpemﬁcatlon
3.6.1 Typesof System Failure _
3.62 StepsinBuildingReliability Specification
3.7 UserInterface Specification
371 The User Interface Specification Process *
38 Summay |
3.9 Unit-End Questions
310 Furier Readings

3. 0 OBJECTIVES
On reading this chapter the students willbe able to undetstand

<+ what are critical systems SpBCIﬁcathIlS

« how dependability requirements mayhe identified by analyzing risks faced by critical systems
~ » how safety reqmrements are generated from system risk analysxs '
* the denvatlon of security requxrements
* describe metrics used for reliability speclﬁcauon
» understand issues inuser interface specification

3.1 INTRODUCTION

The ability to produce comect computer programs that meet the needs of the user has been a long standing
desire on the part of computer professionals. A correct program is one that does what it should do. A
program is correct if it meets its specifications. Developing a software system without a specification isa
random process. The implementation is doomed to be modified, sometimes forever, because it never
precisely matches the client’s needs. The goal of a specification is to capture the client’s requirements in a}
concise, clear, unambiguous manner to minimize the risks of failure in the development process, Itis much
cheaper to change a specification than to changc an implementation.

Additionally, the specification must leave as mu‘ch freedom as possibleto the nnplementer, inorderfo find
the best implementation in terms of development oost, efficiency, usability and maintainability.

In this chapter the critical systems specifications are discussed in detail,

3.2 CRITICAL SYSTEMS. SPECIFXCATION o ‘
Software specifications are of prime importance for critical systems. Because of the high potential costs of
system failure it is important to ensure that the specification for critical systems accurately reflects the real
needs of users of the system. Only when the specifications are right, the system can be dependable.

Cntical systems spectfication supplements the normal requirements specification process by focusingon
the dependability requirements of the system. Its goal is to recognize the risks faced by the system and -

-~ generate dependability requirements to cope with them.

The user requirements for critical systems are usually spemﬁed usmg natural language and system models.,

3.3. RISK-D_RIVEN SPECIFICATION

The risk-driven specification procegé._ involves understanding the risks faced by the system, discovering -
their roof causes and generating requirements to manage these risks.

The steps in the process are illustrated in figure 3.1 and include,

i) Risk Identification: Potential risks that may arise and are dependent on the environment in which
the system is to be used are identified.

Software related risks arenormally concerned with failure to delivera system service or with the
failure of monitoring and protection systems. Risk identification should be done in consultatwn
with experienced engineers, domain experts and professional safety advisors.

i) Risk Analysis and Classification: Risks that are potentially serious and not'lmprobable are se-
- lected for further analysis. Some of the risks may be eliminated at this stage if they seem very
unlikely ever fo arise.

Risks can be categorized into three levels, Intolerable, Aslowas reasonably practical (this risk
is tolerated only if risk reduction is impractical or grossly expensive), and Acceptable.

i) Risk Decomposition: It is the process of discovering the root causes of risks in a particular
system. Each risk is analyzed individually to discover potential root causes of that risk.

iv) Risk Reduction Assessment: Proposals for ways in which the identified risks may be reduced or
eliminated are made. These then generate system dependability requirements that define the
defenses against the risk and how these risks could be managed if it arises. The strategies that
can be used are Risk Avoidance, Risk Detection and Removal, and Damage Limitation.

36

Risk dentification
|

[Riskmmmmssiﬁcaﬁm i

| Risk Reduction Assessment |

Figure 3.1: The Risk-Driven Specification Process

3.4 SAFETY SPECIFICATION

A safety specification stipulates that nothing bad ever happens. Safety requirements usuatly apply to the
system as a whole rather than to individual sub-systems. In systems engineering terms, the safety of a

system is an emergent property. _
Safety requirements can be categorized as:
i) Functional safety requirements

These define the safety functions of the protection system i.e. they define how the system should
provide protection. ' _

i) Safety integrity requirements _
These define the reliability and availability of the protection system.

Theprocess of safety specification and assurance undergoes various steps, and is part of an overall safety
life cycle thiat is defined in an international standard for safety management, [EC61508. These steps in-
clude, defining and identifying the scope of the risk, assessing the probable system hazards and estimate =
the risk they pose. This s followed by safety requirements specifications and the allocationof these safety

* requirements to different subsystems. The development activity involves planning and implementation. The
safet critical system itselfis designed and implemented, as are related external systemns that may provide

. additional protection. In paraliel with this, the safety validation, installation, and operation and maintenanc

of the system are planned, The safety life cycle has beenillustrated in figure 3.1. :

Safety considerations are taken into account at all phases of the system including delivery, maintenance and

Figure 3.1: Thefafety Life-cycle

3.5 SECURITY SPECIFICATION .- - ..

Security is important in all aspects of life and the i mcreasmg pervaswencss and capablhty of soﬁware
applications makes software security increasingly so. The problem with most software today is that it
contains numerous flaws and errors that are often located and exploited by attackers to compromise the
software’s security and other required properties. - -
Secure software 1s software that is able to resist most attacks, tolerate the majority of attacks it cannot
resist and recover quickly with a minimum of damage from the very few attacks it cannot tolerate. Secure
software cannot be intentionally subverted or forced to fail, It remains dependable in spite of intentional
efforts to compromise that dependability. Software security matters because so many critical functions -
have eome to be completely dependent on software. This makes software a very high-value target for
attackers, whose motives may be malicious, criminal, adversarial; or terrorist.

Applications designed with secmt;'hmmd are safer than those where secunty isan aﬁerthought
The stagesin the secunty speclﬁcahon process are: ' '

1. AssetIdentification and Evaluation: The assets data and programs and their requn'ecl degree of '
protection areidentified. The evaluation is based on the criticality or the pmtechon requlred forthe

assets,

" 2. Threat Analysns and Risk Assessment: Posmble security threats are 1dent1ﬁcd and the risks a associ-
ated with each ofthese threats are esnmated

'3 Threat A381gmnent Kentified threats are related to the assets so that, for each 1dcnt1ﬁed asset,
there is a list of assoctated threats.

4. Technology Analysis: Available security technolog;les and their apphcablhty against the 1dent1ﬁed
~ threats are assessed. '

5. Security Requlrements Spemﬁcatlon 1t 1dent1ﬁes the secunty technologles that may be used to.
protect agamst threats to the system.

Asset Identification & Evaluation |

¥

.Threat Analysis and Risk Assessment

Y

Threat Assi gmnenf

Y

Technology Analysis

Y

Security Requirements Specification

Figure 3.2: The Security Specification Process

38 -

3.6 SOFTWARE RELIABILITY SPECIFICATION

Reliability is the probability that an item will perform arequired function without failure under stated condi-
tions for a stated period of time.

‘Ina computer based system, there are three dimensions to be considered when specifying the overall |
system reliability. Theseinclude,
" i) Hardware Reliability: It is the probability that a hardware component fails
ii) Software Reliability: It is the ability of a computer program to perform its intended functions and
operations in a system’s environment, without experiencing failure. It is the probability of failure-
free software operation for a specified period of time ina specified environment, It includes the
probability that a software :

component will produce an incorrect output
a software does not wear out

can continue to operate after abad result.

jii) Operator Reliability: Itis the probability that the operator of a system will makeanemor. . -

Reliability is a dynamic system attribute. System reliability shiould be specified as anon-functional
" requirement. Reliability metrics are units of measure for system reliability. System reliability is
: measur;l by counting the number of operational failures and relating these to demands made on
. _the system at the time of failure. Along-term measurement program is required to assess the
" reliability of critical systems '

A ' .
3.6.1 Types of System Failure =~ ' ' _

It is software failures, not software faults, that affect the reliability ofa system. The types of failures
 that can occur are system specific and the consequences of system failure depend on the nature of that
failure, Table 3.1 illustrates the classification of system failures. =~ R

“Type of System Failure | Description

Transient | Only occurs with certain inputs

Permanent = Occurs on all inputs -

Recoverable System can recover without operator help

Unrecoverable | Operator has to help . ' .

Non-corrupting . | Failure does not corrupt system state or data
| Corrupting - | System state or data are altered

“Tuble 3.1: Classification of System Failures

Combinations of these types of failures, such as a transient, recoverable and cormupting failure, may occur.

For large systems, composed of several sub-systems, the reliability requirements of the sub-systems may
vary. For sich systems, the reliability requirements therefore, may be specified for the sub-systems indi-
vidually rather than for the whole system. This wilt avoid imposing the same reliability requirements onall
sub-systems, thereby reducing time and cost. For smaller systems however, the reliability requirements
should be specified on system basis. : R

3.6.2 Steps in Building Reliability Specification
The steps involved in establishing a reliability specification ére,

« For each sub-system identify the types of system failure that may occur and analyze consequences
of possible system failures : '

39

* Fromsystem failure analysis, partition failure into appropriate classes

+» For each failure class identified, define the rehablhty requirements using an appropriate reliability
metric.

3.7 USER INTERFACE SPECIFICATION

For the user, the user interface is the system. What users want is for devclopers to build apphcat:ons that
meet their needs and that are easy to use. v

User interface design is important for several reasons mcludmg,
i) the more intuitive theusermtcrfaoe, the easier it is to use, _
if) the better the user interface the easier it is to frain people to use it, reducing the training costs.
iii) the better the user interface the less help people will need to use it, reducing the support costs.

iv) thebetter the user interface the more users will like to use it, increasing their satisfaction with the

system.
A User,Interfaoe (UI) Specification is a document that captures the details of the software user interface -

into a written document. The specification covers all possible actions that an end user may perform and all

visual, auditory and other interaction elements. It is the main source of implementation information for how
~ thesoftware should work. A Ul specification thus defines the rules of engagement for a user interacting
~ with a specific page on a website or screen within an application.

Before Ul specification is created, a lot of work is done already for defining the application and desired
 functionality. Usually there are requirements for the software which are basis for the use case creation and

usecase pnormzmg.
3.7.1 Thé User Interface Specification Process

The steps in the Ul speciﬁcétion prbcess are,

i) Use case definition: The purpose of writing use casc.s is to enhance the Ul designer’s under-
standing of the features that the product must have and of the actions that take place when the user
interacts with the product,

i) Design draft creation: The Ul demgn draft is done-on the basis of the use case analysns The
purpose of the Ul design draft is to show the design proposing, and to explam how the user
interface enables the user to complete the main use cases, without going into details.

It should be as visual as possible and all the matcnal created must bein such a format that it can be
used in the final Ul specification, is good time to conduct usablhty testing or expert evaluatlons and
-makechanges. -

fif) Writing the user interface specification: The Specification should chntain all needed userinter-
face details. Good Ul specifications take into account the data and contextof the user within the

- application. The Ul specification can be seen as an extension on the design draft, i.e. it is a com-
plete description that contains all details, exceptions, error cases, notifications, etc. The docmnent
is reviewed by the stakeholders so that all necessary details are in place.

3.8 SUMMARY

- = Critical systems specification supplements the normal reqmrements speclﬁfcatlon process by fo-
cusmg on the dependability requirements of the system.

40

« The goal of cntlcal systems specification is to recognize the risks faced by the system and ganerate '.

depmdablllty requirements to cope with them.

« The aim of'the specification process should be to understand the risks (safety, security, etc.) faced

by the system and to define requirements that reduce these risks.

» The stages of’ nsk-based specification are: Risk Identification, RlSk Analysis and Clasmﬁcatlon,
Risk Decomposition, Risk Reduction Assessment.

« Safety requirements should be based on an analysis of the ﬁossible hazards and risks.

+ The Security Requirements Specification identifies the security technologlcs that maybe used to
protect against threats to the system.

- Software Reliability is the ability of a computer program to perform its intended functions and
operations in a system’s environfnent, without experiencing failure.

~ « Software Reliability Specification considers, How likelyisit thata software component will pro-

3.9

e A

ducean mco,rrept output. Soﬂware failures are different from hardware failures in that software
does not weat out. It can continue in operation even after an incorrect result has been produced.

» A User Interface (UI) Specification is a document that captures the details of the software user
interface into a written document. :

UN IT END QUESTIONS
1. Describe the steps in Risk-Driven Speci fication.
What are the characteristics of a Secure Software?

_ Explainthe stages in the security specification process.
 Whatre the types of failure that affect the reliability of a system?
Wite a Reliability Specification for Bank Auto-Teller System..

‘What is the need for user interface specification?
Write the steps in the User Interface specification process

3.10 FURTHER READINGS

1. SoftwareEngineering, lan Somerville, Addison Wesley, 6th edition, 2000

2. Software Engineering: A Practitioner’s Approach, Roger S. Pressman, McGraw-Hill.

41

UNIT-1V

SOFTWARE PROCESS MODELS

Structure of the Unit

40 Objectives

4.1 Introduction

42 ProcessActivities

4.3 Processlteration = _
4.4. Software Development Techniques

4.5

4.6

4.7

4.8
4.9

4.10

4.11

4.12
4.13
4.14

415

416

4.4.1 Predictive Software Development
442 Adaptivé Software De\?elbpme-ﬂt'
Waterféll Model
4,5.1 'Stages
4.52 Advantages & Disadvantages
Incremental Model |
4.6.1 Advantages & Disad\fantagﬁs
Prototyping .
4.7.1 Prototyping Process .
4.7.2 Advantages & Disadvantages
Concurrent Development |
Rapid Applicatidn Developient (RAD)
49.1 Development Methbdology '
492 Phases
4.9.3 ~ Advantages & Disadvantages
Spiral Model
4.10.1 The Spiral Process
4.10.2 Advantages & Disadvantages
Unified Development Process
4.11.1 Rational Unified Process
Aspect Oriented Software Development.
4GLTécln1iquw
Summary
Unit End Questions
Further Readings

42

4.0 OBJECTIVES:

After going through this un students will be able o,
» Understand the Software Process
. Comprehend' the.proeess medels.
« Appreciate the need for different models,

- 4.1 INTRODUCTION

A soﬁware processis a set of activities and associated results that produce a software product. Asoftware
Process provides a framework for managing activities that can easily get out of control. By improving the
software development process, the quality of the resulting products can be improved. The strategy is to
improve the management of the sofiware process with the assumptionthat improvements in techniques will
occur consequently. The resulting improvement in the process as a whole should result in better quality
software. : : '

4.2 SOFTWARE PROCESS'ACTIVITIES |

The pmductlon of software involves a number of different activities. durmg which we try to ensure that the
_ nequlred functions and the required level of attributes are dehvered

Productmn actmtles can be grouped into four broad categories:

Speclﬁcatlon Thisisa descnptlon of what the software has to do and sets aceeptable levels for
software attributes. For most software systems going from the user needs to a statement of
requirements and then to a precise specification is a difficult and error prone task. The study of
Requirements Engineering is an increasingly important part of Software Engineering.

Design: This covers the high-level structural description of the architecture of the system, through
the detaileddesign of the individual components in the system and finally to the implementation of -
the system ona pamwlar computing platform (usuallyhardware plus operating soﬂware)

Valldatmn and Venﬁcatu:m Validation s the actmty of checklng the correct system is belng

- _ - censtructed (building the right system). Verification is the activity of checking the system is being

- constructed correctly (building the system right). These activities are essentlal to ensure that
software project is going in the right direction.

Maintenance: This activity ensures that the system keeps track with changm inits operatmg
environment throughout its operational life. This involves correcting emrors that are discovered in
operation and modifying the system to take account of changes in the system requirements.
Repaiting Millennium Bug errors in software is an example of Maintenance activity. In one sense
we can see the Millennium Bug problem as a change of requirement because when these systems
were written their intended lifetime was much shorter than has turned out to be the case.

4.3 PROCESS ITERATION

System Requirements nevally evolve int he course of a project os prooeSS iteraction where earlier stages
are reworked is always part of the process for large systems Itematlons may be applied to any of the
generic process models,

43 {

4.4 SOFTWARE DEVELOPMENT TECHNIQUES

Some projects have clear objectives and goals while other’s end results are uncertain. A’'one size fils are
project development method cannot therefore be applied. Many factors may affect the chosen project
development method of an organization or project team. When evaluating the projct to be taken, it needs
tobeconmdewdwheﬂlerthep'o_]ectsmfakmhardomamwxﬁ:apredwtablepahtoranewommthmmtmn
outcomes. The planning therefore could be predictive or adaptive. .

4.4.1 Predictive Software Development

 Project from a familiar herritory usuall rely on a predictive method of planning, Predlcuvcplamnng

provides alinear, spedific development paln structured around producing a pre-determined end
result within a specific time frame. Example of this approachis the ‘waterfall'method discussed
442 Adaptive Software Development

Evolving pro;ectstlmtfacehangmg conditions are best suited foradaptweplannmg. 'Ihsapproach
involves breating a project into small compnents over an undetermined time frame to allow

ultimate flexibility n directing the course of the project. Adaptive teams may choose ‘agile’

 techniques.
Agile Software Development

Agile software development isa conoeptua] framework for undertalcmg software eugmeermg projects.
' Agilemethods attempt to minimize risk and maximize productivity by developing software in short iterations
and de-emphasizing work on secondary or interim work artifacts. Scrum and Extreme Programming (XP)

are two of the most popular Agilé methods.The following sections discuss the Software Process models.

Extreme Programming (XP) is a lighweight, efficient, low-risk, flexible; predictable and scientific way to
software development. It follows the incremental ptanning approach that comes up quickly with an overall
plan that is expected to evolve through the life of the project.

4.5 WATERFALL MODEL

- Waterfall approach was first Process Model to be introduced and followed widelyin Soﬁware Engineering
" to ensure success of the project. In the “Waterfall” approach, the whole process of software development
is divided into separate process phases. The phases in Waterfall modet are: Requirement Specifications
phase, Software Design, Implementation and Testing & Maintenance. All these phases are cascaded so
that second phase is started as and when defined set of goals are achieved for first phase and it is signed
off, so thename “Waterfall Model”.

N
T
[}
[f
&wuﬁmh
sﬁ\& L w:_J

Figure 4.1 : The Waterfall Model

4.5.1 The stages of “The Waterfall Model” are: .

Requirement Analysis & Definition: All possible requirements of the system to be developed
arecaptured in this phase. Requirements are set of functionalities and constraints that the end-
user expects from the system. The requirements are gathered from the end-user by consultation,
these requirements are analyzed for their validity and the possibility of incorporating the
requirementsin thesystem to be developed s also studied. Finally, a Requirement Specification
document is created which acts asa guideline for the next phase of the model. '

System & Software Design: Before going in for actual coding, itis very important to understand
what is to be created and what it should ook like. The requirement specifications from first
phase are studied in this phase and system design isprepared. System Design helps in specifying
Hardware and system requirements and also helps in defining overall system architecture. The
system design specifications serve as input for the next phase of the model.

Implementation: Onreceiving system design documents, the work is divided inmodules/units
and actual coding is started. The system is first developed in small programs called units, which
are then integrated. Each unit is develaped and tested forits functionality; this is referred to as
_ UrﬁtTesting.
Testing: This stage uncovers eIrors introduced during coding and also the errors introduéed
during the previous phases. This stage thus, uncovers requirement, design, and coding efros int
he programs.
Testing is done at different stages. The starting point of testingis uni testing: Unit testing verifies
if the modules/ units meet their specifications. -

As modules are integrated into the sytem, integration testing is performed integration testing
focuses on testing the interconnection between modules. After the system is put together, system

testing is performed. System testing is done to test the system against system requirements, to
check if it works as per the requirements specification.

Deployment of system: Onee the system is tested, it is installed at the clients sets.

Maintenance: This phase of the Waterfall Model is virtually anever ending phase. Generally,
problems with the system developed come up after its practical use starts, so the issues related :
to the system are solved after deployment of the system. Not all the problems come in picture
directly but they atise from time to time and needs to be solved; hence this process isreferredas
Maintenance. ' ' : \

4.5.2 Advantages and Disadvantages of Waterfall Model

Advantages: The advantage of waterfall development is that it allows for departmentalization
and managerial control. A schedule can be set with deadlines for each stage of development and
aproduct can proceed through the development process and theoretically, be delivered ontime.
Development moves from concept, through design, implementation, testing, installation,
troubleshooting, and ends up at deployment and maintenance, Each phase of development
proceeds in strict order, without any overlapping or iterative steps.

Disadvantages: The disadvantage of wateffall development is that it does not allow for much
reflection orrevision. Once an application is in the testing stage, it is very difficult to go back and
change something that wasnot well-thought outin the concept stage.

4.6 INCREMENTAL MODEL

The incremental model is an intuitive approach to the waterfall model. Multiple development cycles take
place here, makingthe life cycle a “multi-waterfall” cycle. Cyclesare divided into smallet, more easily

45

managed iterations. Each iteration passes thrbugh the requirements, design, implementation and testing
- phases. L _ _ \

A working version of software is produced during the first iteration, so thatthereisa working software

carly on during the software life cycle. Subsequent iterations build on the initial software produced during

the first iteration.

Oaritioe:

~ Figure _4-.2 : Incremental Life Cycle Model

4.6.1 Advantages & Disadvanta.ges of Incremental Model
Advantages : | :
* Generates working software quickly and early during the software life cycle.
. More flexible —less costly to change scope andﬁquireﬁents. '
. Easier to test and debug during a smaller iteration, |
* Easierto managerisk because risky pieces are identified and handled during its iteration,
* Eachiteration is an easily managed milestone,
Disadvantages |
* . Bachphaseofan iteration is rigid and do not overlap each other.

* . Problems may arise pertaining to system architecture because not all requirements are
gathered up front for the entire software life cycle. :

4.7 PROTOTYPING | |
Software prototyping is the creation of prototypes, i.., incomplete versions of the software program being
developed. : _

A prototype implements only a small subset of the features of the eventual program, and the implementation
may be completely different from that of the eventual product, |

The purpose of a prototype is to allow users of the software to evaluate proposals for the design of the
eventual product by actually trying them out, rather than having to interpret and evaluate the design based
on descriptions. _ o ' :
- 471 Prototyping Process

The process of prototyping involves the folIowing steps

* Identifybasic requirements _ S : _

* Determine detailed requirements including the input and output information desired. Details,

sueh as security, can however be ignored at this stage. :

46 .

» Develop initial Prototype

+ Developthe nitial prototype thatincludes only usex interfaces.

« Review _

« The customé'rs, including end-users, examine the prototype and provide feedback on
additions or changes.

+ Reviseand enhance the Prototype

Using the feedback both the specifications and the prototype can be improved. Negotiation
about what is within the scope of the product may be required.

-4.7.2 Advantages & Disadvantages of Prototyping
There are many advantages to using prototyping in software development these include,

Reduced time and costs: Prototyping can improve the quality of requirements and specifications
provided to developers. Because changes cost exponentially more to implement as they are
detected laterin development, the early determination of what the user really wants can result in
faster and less expensive software. ' : : :

lmpro#ed and increased user involvement: Prototyping requires user involvementand allows
the user to see and interact with a prototype allowing them to provide better and more complete
feedback and specifications. The presence of the prototype being examined by the user prevents
many misunderstandings and miscommunications that occur when each side believe the other
understands what they said. Since users know the problem domain better than anyone on the
development team does, increased interaction can result in final product thathas greater tangible
and intangible quality. ‘

Disadvantages

Prototyping can also have disadvantages. These are,

Insufficient analysis: The focusona limited prototype'can distract developers from properly
analyzing the complete project. This can lead to overlooking better solutions, preparation of
incomplete specifications or the conversion of limited prototypes into poorly engineered final

 projectsthatarehardto maintain. Further, since a prototype is limited in fanctionality it may not
scale well if the prototype is used as the basis ofa final deliverable, which may not be noticed if
developers are too focused on building a prototypeas a model.

User confusion of prototype and finished system: Users can begin to think that a prototype,
intended to be thrown away, is actuallya final system that merely needs to be finished or polished.
This can lead them to expect the prototype to accurately model the performance of the final
system when this isnot the intent of the developers. Users can also become atached to features
that were included in a prototype for consideration and then removed from the specification for
a final system.

Developer attachment to prototype: Developers can also become attached to prototypes
they have spent a great deal of effort producing; this can lead to problems like attempting to
convert a limited prototype into a final system when it does not have an appropriate underlying
architecture.
Excessive development time of the prototype: Akey property of prototyping is the fact that

- itis supposed to be done quickly: Ifthe developers lose sight of this fact, they may try to develop
a prototype thatis too complex. When the prototype is thrown away the precisely developed
requirements that it provides may not yield a sufficient increase in productivity to make up for the
time spent developing the prototype. Users can become stuck in debates over details of the

prototype, holding up the development team and delaying the final product.
_ 47 .

Expense of implementing prototyping: The start up costs for building a development team
focused on prototyping may be high. Many companies have development methodologies in
place, and changing them can mean retraining, retooling, or both. Many companies tend to Just
Jump into the prototyping without bothering to retrain their workers as much as they should.,

A comumon problem with adopting prototyping technology is high expectations for productivity
with insufficient effort behind the leaming curve. In addition to training for the use of a prototyping technique,
there is an often overlooked need for developing corporate and project specific underlying structure to
support the technology. When this underlying structure is omitted, lower productivity can often result,

4.8 CONCURRENT DEVELOPMENT

Inthe concurrentmodel of Software Development, multiply features or functions are concurrently developed
.along with the entire development life cycle. The mode] difires a series of events that will trigger transitions
from state to state for each ofthe software engineering activities, actions or tasks. It is applicable to all
types of software development and provides an accurate picture of the current state of a project. Rather
than confining software engineering activities, actions and tasks to a sequence of envets, it defines a network
ofactivities. Each activity, action or task on the network exists simultaneously with other activities, actions
or tasks. Events generated at one point int he process network trigger transitions among the states.

- LI — Represents the
— State of a SAv Engg.

{ Under o
/‘{Development;f—‘.——"“'-_*_'__ Aotivity of task

P T . _ .
_,......_M_L";/_’_/.\\ _‘;._ N
i Awaitin J\\ /{ Under)
[\ Changes | “oal - . _Review
“““““ T { Under T —— -

.| _Revision a /

Figure 4.3: An element of the Concurrent Model

4 9 RAPID APPLICATION DEVELOPM]?.NT (RAD)

RAD is alinear sequential software development process model that emphasis is an extremely short

development cycle using a component based construction approach. If the requirements are well understood

and defined, and the project scope is a constraint, the RAD process enables a development team to create

a fully functional system within very short time period. .

The RAD concept implies that products can be developed faster and can be of higher quality through:
* * Gathering requirements using worksheps or focus groups :

. Prototyping and early, reiterative user testing of designs

* There-useofsoftware components _ _
* Anigidly paced schedule that defers design improvements to the next product version

48

o Less formality in reviews and other team communication

Some companies offer products that provide some or all of the tools for RAD software development.
These products include requirements gathering tools, Prototyping tools, Computer-Aided Software
Engineering (CASE) tools, language development environments such as those for the Java platform,
groupware for communication among development members, and testing tools. RAD usually embraces

object-oriented programming methodology, which inherently fosters software re-use. The most popular -

object-oriented programming languages, C++ and Java, are offered in visual programming packages often
described as providing rapid application development environment. '

" 49.1 Development Methodology

The traditional software development cycle follows arigid sequence of steps with a formal sign-
off at the completion of each. A complete, detailed requirements analysis is done that attempts
to capture the system requirements in a Requirements Specification. Users are forced 1o “sign-
off” on the specification before development proceeds to the next step. This is followedbya
complete system design and then development and testing, -

But, what if the design phase reveals requirements that are technically unachievable, or extremely
expensive to implement? What if errors in the design are found during the build phase? The
elapsed time between the initial analysis and testing is usnally a period of several months. What
if business requirements or priotities change or the users realize they unnoticed critical needs

 during the analysis phase? These are many of the reasons why software development projects

either fail or don’t meet the user’s expectations when delivered.
RAD is amethodology for compressing the anatysis, design, build, and testf-phases into a series

of short, iterative development cycles. This has anumber of distinct advantages over the traditional
sequential development model. ‘ : \

492 Phases \
RAD model has the following phases: |

+ BusinessModeling: Theinformation flow amongbusiness functions is defined by answering
questions like what information drives the business process, what information is generated, who
generates it, where does the information go, who processes it and so on. o

data objects (entities) that are needed to support the business. The attributes (character of each
entity) are identified and the relation between these data objects (enti_ties)_is‘deﬁned.

« Process Modeling: The data object defined in the data modeling phéise are transformed to
achieve theinformation flow necessary to implement abusiness function. Processing descriptions
are created for adding, modifying, deleting or retrieving a data object.
« Application Generation: Automated tools are used to:fgcilitatc 'wns:trucﬁon of the software.
o Testing and Turn over: Many of the pmgrmnﬁngcbmponentshéve alreadybeen-t&éicd

‘since RAD emphasis reuse. This reduces overall testing time. But new components must be
tested and all interfaces must be fully exercised. '

493 Advantages and Disadvantages — -

RAD reduces the development time and reusability of oomponehts’ help to speed up development.
All functions are modularized so itis easyto work with, :

For large projects RAD requires highly skilled engiiléers in the team, Both end customerand

\ developer should be committed to complete the system in a much abbreviated time frame. If
commitment is lacking RAD will fail. RAD is based on Object Oriented approach-and ifitis
difficult tomodularize the project RAD model may not work well. e

: - ' 49

» DataModeling: The information collected from business modeling isrefined into a set of _

4.10 SPIRAL MODEL

_The spiral model is similar to the incremental model, with more emphases placed on risk analysis. The
spiral model has four phases: Planning, Risk Analysis, Engineering and Evaluation. A software project .
repeatedly passes through these phases in iterations (called Spirals in this model). In the baseline spiral,
starting in the planning phase, requxrements are gathered and risk is assessed, Each subsequent spirals
builds on the baseline spiral.

4.10.1 The Spiral Process

Requirements are gathered during the planning phase. In the risk analysis phase&, d process is
undertaken to identify risks and alternate solutions, Aprototype is produced at the end of the
- risk analysis phase. -
~ Software is produced in the engineering phase, along with testing at the end of the phase. The
" evaluation phase allows the customer to evaluate the output of the project to date before the
project continues to the next spiral. '

In the spiral model, the angular component represents progress, and the radius of the spiral
represents cost. - : _

Firgl 21

Figure 4.4 : A Typical Spiral Model
4.10.2 Advantages & Disadvantages

Advantag&s

+ High amount of risk a11aly51s

* Good for large and mission-critical projects.

» Software is produced early in the software life cycle.
D:sadvantages

« Canbeacostlymodel to use.

¢ Riskanalysis reqmr&eh:ghly specific experhse

* Project’s success is highly dependent on the risk analysis phasé.

* . Doesn’t work well for smaller projects.

50

4.11 UNIFIED DEVELOPMENT PROCESS

The unified de;élopxnent process is an iterative and incremental sofiware developmént process framework.
It is an extenisible framework which is customized for specific organizations or projects.

The Unified Process describeshow to effectively deploy commercially proven approaches to software
development for sofiware development teams. These are called “best practices” not only because one can
precisely quantify their value, but also, because they are observed to be commonly used in industry by
sucoessful organizations. .

4.J1.1 Rational Unified Process

The Rational Unified Process (RUP) a unified development process framework created by
‘Rational Software Corporation’, a division of IBM. The Rational Unifiéd Process provides
each team member with the guidetines, templates and tool mentors necessary for the entire team
to take full advantage of among others the following best practices:

1. Develop softwareiteratively
Manage requirements

Use mmponent—ﬁased architectures
Visually model software

Verify software quality

Control changes to software

S wm oA W

Develop Software Iteratively- Given today’s sophisticated software systems, it is not possible
to sequentially first define the entire problem, design the entire solution, build the software and
" then test the product at the end. An iterative approach that allows an increasing understanding of

the problem through successiverefinements, and to incrementally grow an effective solution over

multipleiterations is required.
The RUP supports an iterative approach to development that addresses the highest risk items at
every stage in the lifecycle, significantly reducing a project’s risk profile. This iterative approach
helps in attacking risk through demonstrable progress frequent, executable releases that enable
continuous end user involvement and feedback. Since each iteration ends with an executable
_ release, the development team stays focused on producing results, and frequent status checks
help ensure that the project stays on schedule. An iterative approach also makes it easier to
accommodate tactical changes in requirernents. : '

Manage Requirements - The Rational Unified Process describes how to elicit, organize, and

document required functionality and constraints; track and document tradeoffs and decisions;

and easily capture and communicate business requirements. The notions of use case and scenarios
proscribed in the process has provento be an excellent way to capture functional requirements
and to ensure that these drive the design, implementation and testing of software, making it more
likely that the final system fulfills the end userneeds. They provide coberent and traceable thréads
through both the development and the delivered system. '

Use Component-based' Architectures - The process focuses on early development and

baselining of a robust executable architecture, prior to committing resources for full-scale

development. It describeshow to design aresilient architecture that is flexible, accommodates
change, is intuitively understandable, and promotes more effective software reuse. The Rational
Unified Process supports component-based software development and provides a systematic
approach to defining an architecture using new and existing components. The components are
assembledina well-defined architecture, such-as the Internet, CORBA, and COM, for which

1 ' | 51

an industry of reusable components is emerging, . —IJ_:?—:-.

Visually Modeling Software - The process shows how to visually model sofiware to capture

- the structure and behavior of architectures and components, This allows hiding the details and
writing code using “graphical building blocks.” Visual. abstractions help in communicating different
aspects of the software, see how the elements of the system fit together, make sure that the
building blocks are consistent with the code; maintain consistency between a design and its
implementation; and promote unambignous communication.

Verify Software Quality - Poor application performance and poor reliability are commeon
factors which dramatically inhibit the acceptability of today’s software applications. Hence, quality
should be reviewed with respect to the requirements based onreliability, finctionality, application
performance and system performance. The Rational Unified Process assists in the planning,
design, implementation, execution, and evaluation of these test types. Quality assessment is built
into the process, in all activities, involving all participants, using objective measurements and
criteria, and not treated as an afterthought or a separate activity performed by a separate group.

Controi Changes to Software - The ability to manage change making certain that each change
is acceptable, and being able to track changes is essential in an environment in which change is

inevitable. The process describes how to control, track and monitor changes to enable successful Ly,

iterative development. It also guides in how to establish secure workspaces for each developer
by providing isolation from changes made in other workspaces and by controlling changes of all
software artifacts. And it brings a team together to work as a single unit by describing how to
automate integration and build management.

412 ASPECT ORIENTED SOFTWARE DEVELOPMENT

Aspect are properties that cross-cut several components in a subsystem i.e. they are concerus that cut
across other concrsn. A concern is any area of i interest in a software system.

Aspect-Oriented Software Development (AOSD) teclnuqu&s provide systematlc means for the 1dent1ﬁcatlon,
modularisation, representation and composition of crosscutting concerns such as security, mobility and
real-time constraints. It addresses modularity problems that are not handed well by other approaches. It
complements these approaches such as the structured programming and Obj ect oriented progrmmnmg
approaches, and doesn treplace them '

' 4.13 4GL TECHNIQUES

4GLs or Fourth- Generation Languages specify software at a high level and emplay automatic code
geoeration. They automatically convert a format software specification mto aprogram. The stagcs in4GL
model aré shown in figure 4.5 :

Figure4.5: Staggsin4GLModel -~~~ *

Requirements are gathered from the customer and further studied and analysed so that these could be
directly translated into an operational prototype. After having gathered the requiements, a stralegy is laid
out for the design of the software. This is necessary for large projects. The code is then generated based on
some specification such as input and output forms. : - - '

4.14 SUMMARY -

« A software processis a set of activitiesand associated results that produce a software product.
A software rocess provides a framework for managing activities that can very easily get out of
control. - '

« The production of software involves a number of different activities during which we try to
ensure we deliver the required functions and the required level of attributes. '

« Waterfall approach was first Process Model to be introduced and followed widely in Software
Engineering ta ensure success of the project. In “The Waterfall” approach, the whole process of
software development is divided into separate process phases. The phases in Waterfall model

are: Requirement Specifications phase, Software Design, Implementation and Testing &

Maintenance.

« Theincremental model is an intuitive approach to the waterfall model. Mulﬁple development
cycles take place here, making the life cycle a“multi-waterfall” cycle. Cycles are divided up into

smaller, more easily managed iterations. Each iteration passes through the requirements, design, -

implementation and testing phases.

« Software prototyping, a possible activity during software development, is the creation of
_ prototypes, i.e., incomplete versions of the software program being developed.
« Aprototypetypically implements only asmall subset of the features of the eventual program, and
the implementation may be completely different from that of the eventual product

« Concurrent Development is a software development technique m which multiple modules of the
software are concurrently developed along with entire development life cycle. '

» TheRapid Applicaﬁox_i Development (RAD) model is pnmanly based on the concept of software _

component réx_lsability & follows the component based construction approach.

_« Thespiral model is similarto the ineremental model, withmore emphases placed on risk analysis.
The spiral model has four phases; Planning, Risk Analysis, Engineering and Evaluation.

~« Theunified Deﬁelopment Process describe how to effectively deploy commercially proven

approaches to software development teams.

» Aspect-Oriented Software Development (AOSD) techniques provide systematic means forthe - |

identification, modulatisation, representationand composition of crosscutting concerns suchas
security, mobility and real-time constraints. '

. 4GL technique specifies software at ahighlevel and also employs automatic code generation.

4.15 UNIT END QUESTIONS

What do mean by software development life cycle?
What is software process and activity?
Write a short note on Agile method. |

What is RAD process model? When is it used?

IO FE N

53

5 Whatis water fall model, write advantages and disadvantages of water fall model,
" 6 Whatis prototyping model, why is it important?
7 Writea short note on aspect oriented development.

4.16 FURTHER READINGS
1. Sofiware Engineering: A Practioner’s Approach, Roger S.Pressman, McGrawHill

34

UNIT-V

'SOFTWARE DESIGN

* Seructure of the Unit

50 Objectives
5.1 Infroduction _
52 Relationship betweenAnalysis and Design
53 Design Concepts' -
5.4 - Tools and Diagramming aids
55 Modularity
5.6 DesignStrategies
.57 IFunction-Oﬁented Design
58 Object-Oriented Design
59 Data-Oriented Design
5.10 DataFlow-Oriented Design
511 Real TimeDesign
5.12 User Interface Design
5.13 UserInterface Design Issucs
514 User Interface Design Process
7515 UserAnalysis '
516 UserInterface Prototyping
5.17 Interface Evaluation
518~ Summary
5.19 UnitEnd Questions
520 Further Readings

5.0 OBJECTIVES |

After completing this unit students will be able to
« Understand design concepts
+ Beaware of software desgin strategies

Apply different strategies
55

. Understantusermtea‘facedesgm issues & processes
+ - Differentiate between desgin strategies

5.1 INTRODUCTION - o

A software design is ameaningful engincering represeatation of some softwars prodict hatis fobe built,
A-designmnbettacedtoﬂwwst_onwr’smquimncatsmdcdnbc:assmmdforqlﬂtjiagainstmedeﬁued
aitaiahﬂwmﬂwa?mg‘maﬁgmmxgdwigxbmmmmaﬁrmofm&m,mﬂﬁm

interfaces and components.

‘5.2 RELATIONSHIP BETWEEN ANALYSIS AND DESIGN

Software Analysis refers to the process which Analysts go through to determine how asystem should
~ operate. Rtisaprocess for determining what functions the system should perform, whether it’s feasible for

 the fystem t6 be developed, what data is going to be collected and stored. Systems Analysis is thus
concemedwith problem solving - creating a system that will solve an organizational problem.

~ Systems Design is the process where the analyst designs how the system will operate. The physical com-

ponctﬁs-fdf?the.system are defined here. It specifies how the problem at hand will be solved. Itis at this
. Stage that it is decided how the system will operate, in terms of the bardware, softiware and network

infrastructure, e.g forms, user interface and reports that will be used.
- Tranisitidhl from Analysis to Design

A typical software development lifecycle starts with analysis to guide system design. The challenge how-
ever is in transitioning from findings about users, their activities, needs, the feasibility of the project at hand,
the functions tobe performed by the software etc. into design requirements, constraints and implications
that are directly applicable to design. Processes such as contextual design and design objects such as
‘scenarios, or tasks aid in transition,

3.3 DESIGN CONCEPTS

The design process is very important. From a préctical point of view, a labourer, would not go for buildinga
house without an approved blneprint thereby risking the structural integrity and customer satisfaction.
Same is the case with building software products. The emphasisin design ison quality. This phase provides

us with representation of software that can be assessed for quality. Also, this is the only phase in which the -

customer’s requirements can be accurately translated into a finished software product or system. Software
design thus serves as the foundation for all software engineering steps that follow regardless of which
process model is being employed. Without a proper design we risk building an unstable system —one that
will fail when small changes are made, one that may be difficult to test, one whose quality cannot be
assessed until late in the software process, perhaps when critical deadlines are approaching and much
capital hasalready been invested into the product. - ' '

During the design process the software spécifications are transformed into design models that describe the
details of the data structures, system architecture, interface, and components. Each design product is
reviewed for quality before moving to the next phase of software development. At the end of the design
process a design specification document is produced. This docoment is composed of the design models
that describe the data, architecture, interfaces and components,

At the dataand architectural levels the emphasis is placed on the patterns as theyrelate to the application
to be built. Whereas at the interface level, human ergonomics often determine the design approach employed.
Lastly, at the component level the design is concerned with a ‘programming approach’ which leads to

56

effective data and procedural designs.
Design Specification Models |

o Data design - created by transforming the analysis information model (data dictionary and ERD)
into data structures required to implement the software. Part of the data designmayoccur in conjunction

wiﬂat‘txcda;signofsoﬁwan'earchitech:r&

More detailed data design occurs as each software component

« Architectural design - defines the relationships among themajor structural elements of the software,

the “design patterns’ than can be used

to achieve the requirements that have been defined forthe

system, and the constraints that affect theway in which the architectural patterns can be applied. It is
derived from the system speciﬁcatim,ﬁw analysismodel, and the subsystem interactions defined in

the analysis model.

"« Interface design - describes how the software elements communicate with each other, with other
systems, and with human users, thedata flow and control flow diagramspmvidemuchofthenecwsary

information required.

« Componént-level design - created by transforming the structural elements defined by the software
architecture into procedural descriptions of sofiware components using information obtained from
the process specification, control specification, and state transition diagram.

These models collectively form the designmodel, whichis represented diagrammaticallyas a pyramid
structure (Figure 5.1) with data design at the base and component level designatthe pinnacle.

Fi
.! -
i R
;N
/Component
/7 Lever N
7 Design Y
——

Architechnical \
Dasign \\

\

Interfate \

Design \ :
- -\
Data - At

posign \

| Figure 5.1 + The Design Model

" Design Guidelines

In order to evaluate the quality of a design the criteria fora good design should be setup. Such a design

should:
‘o exhibit good architectural structure
‘s bemodular

« contain distinct represéntations of data, architecture, interfaces; and components

- mnt

« 1iead to data structures that are appropriate for the objects to be implemented and be drawn from

57

: -:i*ecog;nizabledesignpattems _
* leadto components that exhibit independent functional characteristics o
* leadto interfaces that reduce the complexity of connections between modules and with the.extemal
. &@M@uga@uﬁbleﬂwﬂm@ﬂﬁhﬁvmbyMMﬂMmﬂmmm
ysis ' .

These criteria are not achieved by chance. The software design process encourages good design through
‘theapplication of fundamental design principles, systematic methodology and through review, '

Design Principles

Software design can be viewed as both a process and a model. o _
The design processis a sequence of steps that enable the designer to déscn"be all aspects of the soﬁware 1
to be built. s - ' -
The design model is equivalent to the architec;t’s plans for a house, It begins byr_eprwmting the totality of -.

the entity to be built, and slowly refines the entity to provide guidance for constructing each detail, Simitarly
the design model that is created for software provides a variety of views of the computer sofiware.”

The set of principles which has been established to aid the software engineer in navigating the design
process are: -

1. The design process should not suffer from restricted vision — A good designer should consider
alternative approaches. Judging each based on the requirements of the problem, the resources available
to do the job and any other constraints.

2. Thedesign should be traceable to the analysis model — because a single element of the design model |
often traces to multiple requirements, it is necessary to have a means of tracking how the requirements
have been satisfied by the model.

3. The design should not create components that aready exist — Systems are constructed using a set of
design patterns, many of which may have likely been encountered before. These patterns should
always bereused,

_ 4. The design should such that the software should be close to the problem as it exists in theeal world
- That is, the structure of the software design should mimic the structure of the problem domain.

5. Thedesign should exhibit uniformity and integration— adesign isuniform ifit appears that one person
developed the whole thing. Rules of style and format should be defined fora design team before
design work begins. A design is integrated if care is taken in defining interfaces between design
components, ‘ _ _

6. Thedesign should be structured to degrade gently, even with bad data, events, or operating conditions
are encountered. It should be designed to accommodate unusual circumstances, and if it must terminate
processing, do so in a graceful manner. '

7. The designshould be reviewed to minimize conceptual errors — there is sometimes the tendency to
focus on minute details when the design is reviewed, missing the forest for the trees. The designer
team should ensure that major conceptual elements of the design have been addressed before worrying
about the syntax of the design model. ' :

8. Design isnot coding, coding is not design — Even when detailed designs are créhted for progmm
components, the level of abstraction of the design model is higher than source code,

9. Thedesign should be structured to accommodate change.

10. The design should be assessed for quality as it is being created. _
: : 58 ' !

. When these design principles are properly applied, the design exhibits both external and internal quality
factors. External quality factors are those factors that can readily be observed by the user. Intemal quality
factors relate to the technical quatity more so the quality of the design itself. To achieve internal quality
factors the designer must understand basic design concepts.)

" Fandamental Software Design Concepts

A set of fundamental software design concepts has evolved, each providing the software designer witha
foundation from which more sophisticated design methods canbe applied. Each concept helps the sofiware
engmearto answer the following quesuons ' :

. Whatcriteria canbe used to partition software into individual compommts?
2. 'How is function or data structure detail separated from a conceptual representation of soﬁwarc?
3. Are there uniform criteria that define the technical quality of a software demgn?
The fundamental design conceptsare: |

Abstractmn - allows designers to focus on solvinga problem without being concemed about irrelevant
Jower level details. Abstraction can be procedural abstraction - - named sequence of events or data
abstraction - named collection of data objects. -

Reﬂnement process of elaboration where the dwlgner prov:des successively more detall foreach
design component.

Modularity - the degree to which software can be understood by examining its components
independently of one another. Modularity is dlscussed in detail in section 5.5

+ ' Software architecture - overall structure of the software components and the ways in whlch that
structure prowdes conceptual mtegnty for a system.

Control hierarchy or program structure - repmmts the module organization and impliesa control .
hierarchy, but does not represent the procedural aspects of the software.

Structural partitioning - Honzontal partitionirig defines three partitions namely mput\data :
transformations, and output; vertical partitioning factoring distributes control in a top-down manner
with control decisions in top level modules and procesmng wotk in the lower level modules.

Data structure - representation of the logical relatlonslnp among mdmdual data elcments reqmrcs
at least as much attention as algorithm design.

~ Software procedure- precise specification of processing event sequences, declsnonpomm, repeutwe
operations, data organization/structure.

+ Information hiding - information (data and procedure) contained withina module isinaceessible to
_ modules thathave no need for such information.

5.4 TOOLS AND DIAGRAMMING AIDS USED FOR DESIGN

The input from the analysnsphasensusedto dmveprogramsu'ucttm’l‘hcsoﬁwaredmlgms framedusmg
the following tools:

« DataFlow Dlagram (DFD)
s Data Dictionary

. Decision Tree
+ Decision Tables

59

* Structure Chart -
< ¢ Structured English

Data Flow Diagram (DFD): ADFD isa graphicalrepreseatationofthe ‘flow’of data through an informmifion
system, It shows what data will be input to and output from the system, where the data will come from and
go to, and where the data will be stored.

Data Dictmnary Data Dictionary is a soft of metadata which contains the definition & rcpresmtatlon of
data elements. It can also be described as a life that defines tha basic organizaiton of a database. It contains
_ information such as database design, stored procedure dtails, user permissions and statistics of processes,

growﬂ1, performance and user.
Decision Tree: It is a graphical represention of decisions and their possible consequence.

Decision Table: It lists causes and effects in a matrix. Bach coumn of the matrix represents a unique
combination of causes & effects. The causes are the conditions to be checked and the effects are the
actions or expected results.

Structure Chart: Structure charts are used to specify the high level _design, or architecture, of a software.
As adesign tool, they aid the programmer in dividing & conquering alarge software problems,

j Structure English: Structured English is the use of English Language with the syntax of structurned
' programuming, It aims at specifying the software design elements in simple Enghsh so thatthesecanbe -
understood easnlyby everyone,

5.5 MODULARITY

The concept of modularity in computer sofiware has been advocated for about five decades. The software
isdivided into separately names and addressable components called modules that are integrated to satisfy
problem requirements. A reader cannot easily grasp large programs comprising of a single module. The
number of variables, control paths and complexity would make understanding virtually impossible,
Consequently a modular approach will allow for the software to be intellectually manageable. One cannot
however subdivide software indefinitely to make the effort required to understand or develop it negligible. -
This is because as the number of modules increase, the effort (cost) associated with integrating the modules
increases. A good software design is believed to imply clean decomposition of the problem into modules,
and the neat arrangement of these modules in a hierarchy. The primary characteristics of neat module
decomposition are high cohesion and low ooup]mg

Cohesion

Cohesion is 2 measure of functional strength of a module. Amodule having high cohesion and low coupling
is said to be functionally independent of other modules, By the term functional independence, we mean that
- acohesivemodule performs a single task or function. A functionally independent module has minimal

interaction with other modules.
- Classification of cohesion :
The different classes of cohcsmn that a module maypossess are depicted in ﬁguge 5.2

Coincidental § Logical _'I'emporal. Procedural Communicational | Sequential | Funetional

Low - : - . : ' ' —» High
Figure 5.2: Classification of cohesion '

Coincidehtal cohesion: Amoduleis said to have coincidental cohesion, ifit performs a set of tasks that
relate to each other very loosely. In this case, the module contains a random collection of functions, It is
likely that the fanctions have been put in the module out of pure coincidencéwithout any thought or design.

60

- — e ————————

- Forexample, ifina transaction processing system (TPS), he get-input, print-error, and shmmarize-members
" functions are grouped into one module. The grouping does nothave any relevance to the structure of the
problem. '

Logical cohesion: A moduleis said to be logically cohesive, if all elemenits of the module perform similar
operations, €.. error handling, data input, data ouiput, etc. An example of logical cohesion isthecase
where a set of print functions generating different output reports are arranged into asingle module.

Temporal cohesion: Whena module contains functions that are related by the fact that afl the functions
must be executed in the same time span, the module is said to exhibit temporal cohesion. The set of
functions responsible for initialization, start-up, shutdown of some process, etc. exhibit ternporal cohesion.

Procedural cohesion: A module is said to possess procedural cohesibn, if the set of fanctions of the .
module are all part of a procedure in which certain sequence of steps haveto be carried out for achieving
an objective, e.g. theal gorithm for decoding a message.

Communicational cohesion: Amoduleis said to have communicational oohésion, if alt functions of the
module refer to or update the same data stracture, €., the set of functions defined on an array ora stack.

Sequential cohesion: A module is said to possess sequential cohesion, if the elements of a module form
the parts of sequence, where the output from one element of the sequence isinput to thenext. For example,
in a TPS, the get-input, validate-input, sort-input functions are grouped into one module.

Functional cohesion: Functional cohesion is said to exist, if different elements of amodule cooperate to

achieve a single function. For example, amodule containing all the functions required to manage employees’
pay-roll exhibits functional cohesion. Suppose & module exhibits functional cohesion and weare asked to
describe what the module does, then we would be able to describe it using a single sentence.

Coupling -

Coupling between two modules is ameasure of the degree of interdependence or interaction between the
twomodules. Amodale having high cohesion and low couplingis said to be functionally independent of
other modules. Iftwo modules interchange large amounts of data, then they are highly interdependent. The
degree of coupling between two modules depends on their interface complexity. The interface complexity
is basically determined by the number of types of parameters that are interchanged while invoking the
functions of themodule. ')

Classification of Coupling

Even ifthere areno techniques to precisely and quantitatively estimate the coupling between two modules,
classification of the different types of coupling will helpto quantitatively estimate the degree of coupling
. between two modules. Five types of coupling can occur between any two modules. This is shown in figure
5.3. ' '

Data | Stamp | Control | Gommon | Content

Low ~p High

Figure 5.3: Classification of coupling

} Data coupling: Two modules are data coupled, if they oomunicat_e through a parameter. An exatﬁple is
an elementary data item passed as a parameter between two modules, e.g. an integer, a float, a character,
etc. This data item should be problem related and notused for the control purpose.

Stamp coupling: Two modules are stamp coupled, if they communicate using a composite data item such
as a structurein C.
Control coupling: Control coupling exists between two modules, if data from one module is used to

direct the order of instructions execution in another. An example of control coupling is a flag setinone
module and tested in another module. " :

Corﬁi_non coupling: Two modules are common coupled, if they share data through some global data

_items. ' :
Content coupling: Content coupling exists between two modules, if they share codé, e.g. abranch from
one moduleinto another module,

Functional independence

Amodule having high cohesién and low coupling is said to be functionally independent of other modules.
By the term functional independence, we mean that a cohesive module performs a single task or function.
A functionally independent module has minimal interaction with other modules. '

Need for functional independence _ 3 _
Functional independence is a key to any good design due to the following reasons:

* Error isolation: Functional independence redulqes'emr propagation. The reason behind this is that
- ifamodule is functionally independent, its degree of interaction with the other modules is less.
- Therefore, any error existing in a module would not directly effect the other modules. :

* Scope of reuse: Reuse of a module becomes possible. Because each module does some well-
defined and precise function; and the interaction of the module with the other modules is sithiple and
minimal. Therefore, a cohesive module can be easily taken out and reused in a different program, -

* - Understandability: Complexity of the design is reduced, because different modules can be

- understood it isolation as modules are more or less independent of each other.

5.6 DESIGN STRATEGIES

There exist various strategies to help guide the design process. These strategies include general strategies
and also specific strategies or methods. Methods are more specific in that they generally suggest and
provide a set of notations to be used with the method, a description of the process to be used when

e

following the method and a set of guidelines in using the method. Such methods are useful as a means of -

transferring knowledge and as a common framework for teams of software engmecm

General Strategies

- Some often mentioned examples of general strategies useful in the design process are divide-and-conquer

and stepwise refinement, top-down vs. bottom-up strategies, data abstraction and information hiding, use
ofheuristics, use of patterns and pattem languages, use of an iterative and incremental approach.

Specific Strategies

The specific strategies include, fonction-oriented design, object-oriented design, data-oriented design, étc, :

we discuss some of the specific strategies and the differences between them in the following sections.

5.7 FUNCTION-ORIENTED DESIGN

- Thisis one of the classical methods of software design, where decomposition centers on identifying the
major software finctions and then elaborating and refining them in a top-down manner, Function oriented
or structured design is generally used after structured analysis, thus producing, among other things, data
flow diagrams and associated process descriptions. Researchers have proposed various strategies (eg.,
transformation analysis, transaction analysis) and heuristics (eg., fan-in/fan-out, scope of effect vs. scope
of control) to transform a DFD into a software architecture generally represented as a structure chart,

The following are the salient features of a typical function-oriented design approach:

1. A systém is viewed as something that performs a set of functions. Starting at this high-level view of
62 '

the system, each function is successively refined iti.n more detailed functions. For example, consider
a fimction create-new-library-member which essentially creates the record for a new member, assigns
a unique membership number to him, and prints a bill towards his membership charge. Each ofthese
sub-fnctions may be split into more detailed subfunctions and so on.

2. Thesystem state is centralized and shared among different functions, e.g. data such as member-
records is available for reference and updating to several functions.)

5.8 OBJECT-ORIENTED DESIGN /

In the object-oriented design approach, the system is viewed as a collection of objects. The state is
decentralized among the objects and each object manages its own state information. For example,ina
Library Automation Software, each library member may be a separate object with its own data and
functions to operate on these data. The functions defined for one object cannot refer or change data of
other objects. Objects have their own internal data which define their state. Similar objects constitute a
class. In other words, each object is amember of some class. Classes may inherit features from super
class. : :

Function-oriented vs. object-oriented design approach

The following are some of the important differences between function-oriented and obj ect-oriented design.

‘s Untlike function-oriented design methods, in OOD, the basic abstraction are not real-world functions
such as sort, display, track, etc, but real-world entities such as employee, picture, machine, radar
system, etc. For example in OOD, an employee pay-roll software is not developed by designing
functions such as update-employee-record, get-employee-address, etc. but by designing objects
such as employees, departments, etc. Grady Booch sums up this difference as “identify verbs ifyo
are after procedural design and nouns if you are afterobject-oriented design” :

« In OOD, state information is not represented in a centralized shared memorybut is distributed
among the objects of the system. For example, while developing an employee pay-roll system, the
employee data such as the names of the employees, their code numbers, basic salaries, efc. are
usually implemented as global data in a traditional programming system; whereas in an object-oriented
system these data are distributed among different employee objects of the system. Objects *
communicate by message passing. Thereal-world functions however must also be implemented. In ..
QOD, the functions are usually associated with specific real-world entities (objects); they directly
access only part of the system state information,

« Function-oriented techniques group functions together if, as a group, they constitute a higher-level
function. On the othér hand, object-oriented techniques group functions together on the basis of the
data they operate on. _

5.9 DATA-ORIENTED DESIGN

Data-oriented design shifts the perspective of programming from objects to the data itself, The type of the
data, how itis laid outin memory, and how it will be read and processed is the primary concern. The design '
starts from the dataa program manipulates rather than from the function it performs. The software engineer
first describes theinput and output data structares and then develops the program’s.control structure
based on these data structures. - | o

Programming, by definition, is about transforming data: It’s the act of creating a sequence of machine
instructions describing how to process the input data and create some specific output data. So it makes
sense for us to concentrate primarily on that data instead of on the code that manipulates it. Data-oriented -

. design does not imply that something is data- driven. A data-driven design is usually a design that exposes

a large amount of functionality outside of code and %gts the data determine the behavior of the design.

5.10 DATA FLOW-ORIENTED DESIGN

Data-flow oriented design involves understanding of how data moves from one module to another in a
project. Various modules of a project are identified, and for each of the modules, the inputs provided and
the outpuis which it provides are found out. The inputs and outputs of each module, with other modules are
then associated. For example, module 1 may accept some form of input from the user and result in some
outpat. The output from modute 1 may provided as input to module 2, which may perform some process
-and result in its own output. This cutput may be passed as input to the next module This process continues,
until the final results are obtained.

Data Flow-oriented Design Steps
+ Establishtypeofinformation flow
. Detmniminfonnation fiow boundaries
... Map DFD into program shucnﬁ‘e
. beﬁ'ne control hierarchy by factoring

* Refinemodel using design measures and heuristics

5.11 REAL TIME DESIGN

Real nme system are different from other types of soﬁware system. Their correct functioning on the result
produced by the system and the time at which these result are produced.

Because of the need to respond to timing demands made by different stimuli/responses, the system
architecture must allow for fast switching between stismulus handlers, -

Tlmmg demands of different stimuli are different. Real-time systems are therefore usually desxgned as
cooperating processcs w1th areal-time executive controlling these processes.

Design process of real tlme system _

The process of designing a real time system has the followmg steps:
. Identlfythe stimuli to be processed and the required responses to these stimuli.
* Foreach timulus and résponse, iderrﬁijfthe timing constraints,

* Aggregate the stimulus and response processing into concurrent processes. A process may be
associated with each class of stimutus and response. Design algorithms to process each class of
- stimulus and response. These must meet the given timing requirements.

'« Designascheduling system which will ensure that processes are started in time to meet their deadlines,
* Integrate using a real-time operating system.

5.12 USER INTERFACE DESIGN -

Careful user interface design is an essential part of the overall sofiware design process. If a software
system is to achieve ifs full potential, it is essential that its user interface should be designed to match the
“skills, experience and expectations of its anticipated users. Good user interface design is critical for system
dependability. A poorly designed user interface means that users will probably be unable to access some
of the system features, will make mistakes and will feel that the system hinders rather than helps them in
achieving whatever they are using the system for.

When makmg user mterfaoe design degisions, one should takc info accouat the physical and mental capabilities
64

of t_hepeopie who use software. Important factors to be considered in user interface design include, -

« Peoplehavealimited short-term memory. Therefore, if we present users with too much info'rm;aﬁan _

at the same time, they may notbeable to takeit all in.

"« Weallmake mistakes, especially when we have to handle too mnuch information or are ua_lda“ stress.
. 'When systems g0 Wiong and issue warning messages and alarms, this often puts more sress on
users, thus increasing the chances that they will make operational errors. '

. Wehaveadiverserangeof physical capabilities. Some people see and hear better than others, some
people are color-blind, and some are better than others at physical manipulation. :

User Interface design principles

User familiarity : Theinterface should use terms and concepts drawn from the experience of the people
who tnax make most use of the system.

Consistency : Theinterface should be consistent i.e., wherever possible, corﬁparable operations should
be activated in the same Way. _ -

Minimal surprise : Users should never be surptised by the behavior of a system. |
Recoverability : The interface should include mechanisms to allow users 10 TecOVel from errors:

User guidance : The inferface should provide meant gful feedback when errors oocur and providé context-
sengitive user help facilities. : o _

User diversity : The interface shoutd provide appropriate interaction facilities for different types of
system users. We have different interaction preferences. Some peopleliketo work with pictures, others
with text. Direct manipulation is natural for some people, but others prefer a style of interaction that is
based on issuing commands to the system.
The gencral principles are applicableto all user interface designs and should normally be instantiated as
more detailed design guidelines for specific organizations OF types ofsystem. ' '

The principle of user familiarity suggests that users should not be forced to.adapt to an interface because it
is convenient toimplement. The interface shonld use terms that are familiar to the user, and the objects
manipulated by the system should be directly related to the aser’s working environment. The underlying
implementation of the interface in terms of files and data structures should be hidden from the end user.

The principle of user interface oonsistencyméans that system ds and menus should havethe same

format, parameters should be passedtoall commands in the same way, and command punctuation should

be similar. Consistmtinterfacwreduoemlemﬁngmne. Interfaceconslsﬁmcyacrossapphcanomm also
importanLAsfarasmssiblyconmandSwiﬁxsinﬁiarmm hldiﬁ'aﬂﬁapplicaﬁonéshouldbeexpr&ed
the same way. EIrors are often caused when the same keyboard command, such as ‘Control-B’ means
different things in different systems. ' _ _

The principleof: minimal surpriseis appropriate because people get very irritated when asystem behaves
_ inanunexpected way. As asystem isused, usersbuild a mental model of how the system works. If an
action in one context causes aparticular type of change, itisreasonableto expect that the same action in
adifferent onnt’cxtwill'cansea(':mnpamblechange; Ifsomethingmmpietdydiﬁhenthappms,ﬁmmis
both surprised and confused. Interface designers should therefore tryto ensure that comparable actions
have comparable effects. ' o . . N _
Surprises inuser interfaces m'eoﬁmthcmﬂtofﬂxcfactthatmanymtafmes‘ are molded. This means that
{here are several modes of working (.-, viewing modeand editing mode), and the effect of acommand
is different dependingon the mode. Itis very important that, when designing an interface, oneincludesa
visual indicator showing the user the current mode. The principle of recoverability is important because
users inevitably make mistakes when using a system. The jmterface design can minimize these mistakes

5

-

(e.8. using menus avoids typing mistakes), but mistakes can neverbe completely eliminated. ¢ msaquenﬂy;
one should include interface facilities that allow users to recover from their mistakes. These can be of three
kinds: \..

1. Conﬁrmation of destructive actions: Ifa user specifies an action that is potentially destructive, the

sxléte}n- should ask the user to confirm that this is really what is wanted before destroying any

01,

2. 'The provision of an undo facility: Undo restores the system to a state before the action occurred,
Multiple levels ofundo are useful because users don’t always recognise immediately that a mistake
has been made. :

3. Checkpointing: Checkpointing involves saving the state of a system atperiodic inter—vals and allowing
the system to restart from the last checkpoint. Then, when mistakes occur, users can goback to a
previous state and start again, '

Interfaces should have built-in user assistance or help facilities. These should be mtegrated with the system
and should provide different levels of help and advice. Levels should range from basic information on

getting started to a full description of system facilities. Help systems should be structured so that users are

not overwhelmed with information when they ask for help.

The principle of user diversity recognizes that, formany interactive systems, there may be different types of
users. Somemay be casual users who interact occasionally with the system while others may be power
users who use the system for several hours each day. Casual users need interfaces that provide guidance,
- butpower users require shortcuts so that they can interact as quickly as possible. Furthermore, users may
suffer from disabilities of various types and, if possible, the interface should be adaptable to cope with
these. Therefore, one might include facilities to display enlarged text, to replace sound with text, to produce
very large buttons and so on, - '

The priniciple of recognizing user diversity can conflict with the other interface design principles, since some
users may prefer very rapid interaction over, for example, user interface consistency, Similarly, the leve] of
user guidance required can be radically different for different users, and it may be impossible to develop
support that is suitable for all types of users. One therefore has to make compromises to reconcile the
needs of these users ' _

'5.13 USER INTERFACE DESIGN ISSUES

A coherent user intexface must integrate user interaction and information presentation. This can be difficult
because the designer has to find a compromise between the most appropriate styles ofinteraction and

presentation for the application, the background and experience of the system users, and the equipment
thatisavailable. " : . .

User interaction means issuing commands and associated data to the computer Command-line interface,
- and aspecial-purposc language are early methods to communicate with the machine. Another approach is
that of direct manipulation. Here the user interacts directly with objects on the screen, Direct manipulation
usually involves a pointing device thatindicates the object tobe manipulated and the action, which specifies
what should be done with that object. For example, to delete a file, onemay click on anicon representing
that file and drag it to atrash can icon.

Menu selection is a method of interation in which the user selects a command from a list of possibilities
called a menu. In this approach, to delete a file, one would select the file icon then select the delete

command,

Using the Command language approach The user issues a special command and associated parameters to
instruct the system what to do. To delete a file, one would type a delete command with the filename as a
parameter of using the command tine approachs.

\ 66

5.14 USER INTERFACE DESIGN PROCESS
" User interface design is an iterative process involving close iiaisons between users and designers. The3
core activities in this process are: ' _

« User analysis: Understand what the users will do with the system;

« System prototyping: Develop a series of prototypes for experiment;

. Interfacoevaluation: Experiment with these prototypes withusers.

5.15 USER ANALYSIS

1f one doest not understand what theusers want to do with a system, che has no realistic prospect of
designing an effective interface User analyses have1o be described in terms that users and other designers
can understand. Scenarios, where one described typical episodes of use, are one way of describing these

analyses.

User preferences onl the basis of cognition, cultural backgmﬁnd_, p:rofessional’background, expereince etc.
“mustbe identified. This analysis of theuser should be oneof the factors in determining the userinterface.

5.16 USER INTERFACE PROTOTYPING -

The aim of prototyping s to allow isers to gain direct experience with the interface. Without such direct
- @Xperience, itis impossible to judge the usability of an interface.
Prototyping may bea two-stage process:
@ Early.in the process, paper prototypes maj(be used;
(i) The design is then refined and increasingly sophisticated automated prototypes are then
developed. |
i I’apér Prbtotyp‘ing _
. Work through scenarios using sketches of the interface.
. Use a storyboard to present aseries of interac jons with the system.
. Paper protofyping is an effective way of getting user reactions to adesign proposal. .
i Automated Profotyping ' | |
a) Script-driven prototyping _
. Develop a setof sbﬁptsandscrealsusingaprototypetool
b Viwlpoganmis o
. Usealanguagedesigned forrapid development.
¢ Intemet-basedprototyping

. Use a web browser and associated scripts.

5.17 INTERFACE EVALUATION -
Some evaluationof auser interface designshould be carried qut {0 a55¢SS its suitability. The evaluation may

be full scale or on ausability specification. Full scale evalvationis very expensive and impractical formost
systems. Ideally, an interface should be evaluated agﬁar}inst ausability specification. Theevaluation canbe

._'I
i

. done using ditterent techniques. These includes:
i Questionnaires for user feedback. B
i Video recording of system use and subsequent tape evaluation,
i Instrumentation of code to collect information about facility use and user errors,
v The provision of code in the software to collect on-line user feedback.

5.18 SUMMARY .
. Amﬂwmedesignisammhgﬁﬂmgineeﬁngmmsmmﬁmofmmemﬁwmpmmmatismbe

built. A design cai be traced to the customer’s requirements and can be assessed for quality against
predefined criteria.

prints as a starting point for system design. The blueprints are the actual representation of the analysis
done by the software engincers and are called tools of structured analysis.
"+ Theconceptof modularity in computer software has been advocated for about five decades, In
- essence, the software is divided into separately names and addressable components called modules
that are integrated to satisfy problem requirements, ' ' :
* There exist variious strategies for designing a systern. Some of thes strategies are, funcitons - oriented
- design, object oriented design, data oriented design etc..
* Function- oriented design, or structured desgin fouceses first on the functions to be caried out by the
Sytem, and the data, data flow follow this step. |
- % Intheobject-oriented design approach, the system is viewed as collection of objects (i.c. entities).
‘Thesstate is decentralized among the objects and each object manages its own state information.
* Indata anented design, the data that the functions one to process, is firstidentified & structured and
then, the fimctions designed. - ' '
* Careful user interface design is an essential part of the overall software design process. Ifa software
' systemistoachieveitsﬁﬂlpoﬁenﬁal,itis&ssenﬁalﬂmtitsuserinterfaceslwuldbedesignedtomatch
the skills, experience and expectations ofits anticipated users, '

"

5.19 UNIT-END QUESTIONS

1 Whatare the steps followed in software design phase?
Explaianigncomeptsinsoﬁwareeugineeﬁng?

White a short note on software design tools?

Whatdo mean by modular designing?

Whatis fimction oriented design?
Whatisﬂicdiﬁ’etmoebetmﬂmcﬁonoﬁmtedmdobjectoﬁmteddesign?
Whatis real time design? | S
What s the role of user interface in software designand whyt is important?
How do function oriented and data oriented design differ? |
10- Discussthe principles of user inferfice design?

\OOO\JO\(A&N_M

68

'5.20 FURTHER READINGS
1. hitp:/fscitec.uwichill.edu.bblcup/online/cs22/desig. - concepts and principleshim.
2. Software Engineering: A Practioner's Approach, Roger S. Pressman, McGrawHill
3. htip://cnx.org/context/m14630/atest | N

6.6

UNIT- VI

PROJECT MANAGEMENT

Structure of the Unit

6.0 Objectives

6.1 Introduction to Project Management

6.2 ManagementActivities

6.3 Management Structures

64 ProjectPlanning |
. 6.4.1 Project planning Objectives
6.4.2 EstimationReliability Factors
6.4.3 Project Planning Activities
6.4.4 Project Cost Estimation

6.5 ProjectScheduling and Tracking

651 SoftwareProject Scheduling

6.5.2 Trackingthe Schedule
Risk Management

6.7 Risk Identification and Projection

6.8 Risk Mitigation, Monitoring, and Management (RMMM)

69 Productiviy)

. 6.10 Project Milestones

6.11 Work Definition, Allocation and Assignments

6.12 Summary |

6.13 UnitEnd Questions

6.14 FurtherReadings

6.0 OBJECTIVES
After studying this unit, students will learn

- Concept and need of Project management
Management activities

"+ Projectplanning

76

-+ Project tracking and scheduling
« Risk management

6.1 INTRODUCTION TO PROJECT MANAGEMENT

Project Management is an integral part of software development. It involves planning, monitoring, and
control of the people, process, and events that occur as software evolves from the events and from a
preliminary concept to an operational implementation. It is an important task in softiware development
because building computer software is 2 complex task, particularly if it involves many people working over
along period of time. Hence software projects need to be managed. This management is done at various
levels. For e.g. Software Engineer manages his/her day to day activities, planning, monitoring, and controlling -
technical tasks. Project Managers plan, monitor, and control the work of a team of software engineers,
Senior managers coordinate the interface between business and software professionals. For a large project

a proper management process is essential for success.

6.2 MANAGEMENT ACTIVITIES'

The job description for sofiware managers varies tremendously depending on the organisation and on the™
software product being developed. However project management is composed of several different types
of activities such as: \

* Proposal writng

* Project planning and scheduling

= Project costing

» Project monitoring and reviews

* Personnel selection and evaluation

* Report writingand prdamtation o
Which can be further decomposed as Analysis and design of objectives and events, Planning the work
according to the objectives, Assessing and controlling risk (or Risk Management); Estimating resowrces,
Allocation of resources, Organizing the work, Acquiting human and material resources, Assigning tasks,
Directing activities, Controlling project execution, Tracking and reporting progress (Management information
system), Analyzing the results based on the facts achieved , Defining the products of the project, Forecasting
future trends in the project, Quality Management, Issues management, Issue solving, Defect prevention,
Identifying, managing & controlling changes, Project closure (and project debrief), Communicating to
stakcholders, Increasing / decreasing a company’s workers. _ : ‘
The first task in sofiware project management is writing a proposal to carry out that project. The proposal
describes the objectives of the project and how it will be carried out. It usually includes cost and schedule
estimates. It may justify why the project contract should be awarded to a particular organization or a team.

Project planning is concerned with identifying the activities, milestones and deliverables produced by a
project. _

Project cost estimation estimates the cost associated with the esources required to accomplish the project
plan. Itis based on planning information about the project. Information for initial cost astimation comes .
from the feasibility study and requirement analysis. It is important for making good management decisions
in a software project. _

7

Project monitoring is a continuing project activity. The management must keep track of the progress of the
_project and compare actual and planned progress and costs. The monitoring can be done using formal
mechanism or by the help of informal discussions with project staff. '

Project managers usually have to select people to work on their projectl Ideally, skilled staff with
apppropriate experience will be available to work on the project. Sometimes management has to seitle for
less than ideal team due to lack of project budget, less availability of experienceal staff etc.

Project managers are usually tesponsible for reporting on the project to both the client and contract

organisation. Project manager must write concise, coherent documents which abstract critical information

from detailed project reports. They must be able to present this information during progress reviews.

6.3 MANAGEMENT STRUCTURES

In the scheduling of the project, detailed scheduling is done only afier acmd_aésiglunent ofthe people has
been done, as task assignment needs information about the capabilities of team members. The project

team is led by a project manager who does the planning and task assignment. This form ofhierarchical -
management structure s fairly common and manager was earlier called the chief programmer team. The -

project managet is responsible for all major technical dectsions of the project. He does most of the desigh
and assigns coding of the different parts of the design to the programmers. The management structure of
team typically consists of programmers, testers, & configuration controller, and possibly alibrarian for
"~ documentation. There may be other rofes like database manager, backup project manager or aback up-
configuration controller. These roles are logical roles and one person may do multiple such roles. Fora
* small project, a one level hierarchy suffices. For large projects the structure can be extended by partitioning
the project into modules, and having module leaders who are responsible for all tasks related to their
module and has a team with them for performing these tasks.

6.4 PROJECT PLANNING

Project planning is a part of project management, which relates to theuse of schedules such as Gant charts
to plan and subsequently report progress within the project environment. Initially, the project scope is
defined and the appropriate methods for completing the project are determined. Following this step, the

durations for the various tasks necessary to complete the work are listed and grouped into a work -

breakdown struchire. Thelogical dependencies between tasks are defined using an activity network diagram
that enables identification of the critical path. Float or slack timein the schedule can be calculated using
project management software. Then the necessary resources can be estimated and costs for each activity
can be allacated to each resource, giving the total project cost. At this stage, the project plan may be
optimized to achieve the appropriate balance between resource usage and project duration to comply with
the project objectives. Once established and agreed, the plan becomes what is known as the baseline.
Progress is measured against the baseline thronghout the life of the project.

Software planning involves estimating how much time, effort, money, and resonrces will be required to

build a specific software system, After the project scope is determined and the problem is decomposed

into smaller problems, software managers use historical project data (as well as personal experience and

intuition) to determine estimates for each. The final estimates are typically adjusted by taking project
complexity and risk into account. The resulting work product is called a project management plan.”

'64.1. Project planning Objectives | |

A plan fora project is devised with the following objectives: _

« Toprovideaframework that enables software manager to make areasonable estimate of

resources, cost, and schedule. -

» _Projectoutcomes should be bound_’lgy ‘best case’ and ‘worst case’ scenarios.

. Estimates should be updated as the project progresses.

642 Estimation Reliability Factors

Thé estimations done during the project planning phase rely on the following factors |

. Project complexity
« Projestsize |

« Degresof structural uncertainty (degree to which requirements bave solidified, the ease
with which functions can be compartmentalized, and the hierarchical nature of the information
processed) _ '
- Availabilityofhistorical information

6.43 Projectplanning Activities

Folowing are the actiﬁties associated with software project planning:

() Software Scope: The firstactivity in software project planning is the determination of
software scope. Software scope describes the data and control to be processed, function,
performanee, constraints, interfaces and refiability, Functions described in the statement of scope
are evaluated and in some cases refined to provide more detail prior to the beginning of estimation.

Obtaining necessary information for scope : The most commonly used technique to bridge the
communication gap between the customer and developer and to get communicatin process
started is to conduct a preliminary meeting ot interview. As the commurnication is initiated, the
analyst must ask some context free questions which focus on the customer, the overall goals and
benefits. Fore.g.

+ Whoisbehind the request for this work?

. Who will use the solution?

= Whatwill bethe economic benefit of a successful solution?

. Is there another source for the solution?

The next set of questions put to the client, enables the analyst to gain a better understanding of
theproject: . . . o

« Would you chracterize “good” output that would be generated by a successtul solution? -
+ Whatproblem(s) will this solution address? -

. Canyoushow methe eavironmentLin which the solution will besed ? etc.
The final set of questions focuses on effectiveness of the mesting like,

* Are.you the right person to answer these questions? '

» Aremyquestions relevant to the problem that ydl_x have?
'« Can anyone provide additional information ? etc.

Sometimes a bumber of independent investigators develop a team oriented approach to
requiresnents gathering that can be applied to establish the scope of the project.

(i) Feasibility : Once scope has been identified, it is reasonable to ask:” Can we build
software to meet this scope? Is the project feasible?” A software team must work to determine
if it can be done within the dimensions just noted. -

73

(i) Resources: The next Software Planning task is estimation of the resources requiredto .
accomplish the software development effort.

" Human resources; The planner begins by evaluating scope and selecting the skills required to
complete development. Both organizational position e.g. manager, senior software engineer and
- speciality(e.g. telecommunications, database, client/server) are specified. For arelatively small
project asingleindividual may perform all sofiware engineering tasks, consulting with specialists
as required. The number of people required for a software project can be determined only after
an estimate of development effort is made. '

Reusable software resources: Component based software engineering emphasizes reusability
i.e. the creation and reuse of software building blocks. Such building blocks, ofien called
components, must be cataloged for easy reference, standardized for casy application, and validated
for easy integration.
Environmental resources :The environmental resources that support the software project, often
called the software engineering environment, incorporates Hardware and Software. Hardware
provides a platform that supports the tools (Softwrae) required to produce the work products
that are an outcome of good software engineering practice. A project planner has to prescribe
. the time window required for hardware and software and verify that these resources will be
* availableintime. ' .
644 Project Cost Estimation

In early days of computing, software costs. oonstltuted small percentage of the overall computer
' based system cost. Today, software is the most expensive element of virtually all computer

based systems.

Software cost and effort cstimation will never be an exact science. Too many vaﬁables;iiﬁﬁiar:,
technical, environmental, political- can affect the ultimate cost of software and effort applied to
developit. .

Software Project Estimation Options
To achieve reliable cost and effort estimates, a number of options arise these include,

Delay estimation until late in the project. Base @{mates on similar projects already completed.
Use simple decomposition techniques to estimate project cost and effort. Use empirical models
for software cost and effort estimation. Automated tools may assist with project decomposition
and estimation.

The Decomposition Techniques such as _

Software sizing (fuzzy logic, function point, standard component, change), Problem-based
estimation (using LOC decomposition focuses on software functions, using FP decomposition
focuses on information domain characteristics) and Process-based estimation (decomposition
based on tasks required to complete the soﬂ:ware Process framcwork) aid in estimating the sizes
hence cost of the software. '

The Empirical Models used for estimation are,
Typically derived from regression analysis of historical software project data with estimated
person-months as the dependent variable and KLOC or FP as independent variables, statec

estimationmodelssuchas Constructive Cost Model (COCOMO) and Dynarmc estimation
model such as Software Equation

" Itmay be more cost effective to acquire a piece 6f soﬂware rather than develop it. Decision tree
analysis provides a systematic way to sort through the make-buy decision. As a rule outsourcing

4

software development requires more skiltful management than does in-house de\}elopmmt of
the same product. -)

-

6.5 PROJECT SCHEDULING AND TRACKING

The process of building and monitoring schedules for software development projects is known as project
scheduling and tracking, To build complex software systems, many engineering tasks need to occur in
parallel with one another to complete the project on time. The output from one task often determines when
another may begin. It is difficult to ensure that a team is working on the most appropriate tasks without
building a detailed schedule and sticking to it.

6.5.1 Software Pro;ect Scheduling

Software project scheduling is an activity that distributes estimated effort across the planned
project duration by allocating the effort to specific software engineering tasks. The schedule
evolves over time. A number of basic principles guide software project scheduling.

Compartmentalization - the product and pmcess must be decomposed into a manageable
number of activities and tasks

. Interdependency - tasks that can be completed in parallel must be separated from those

that must completed serially

. Time alldcatlon every task has start and completion dates that take the task
mterdependencnes into account

Effort validaiion - project manager must ensure that on any given day there are enough
staff members assigned to completed the tasks within the time estimated in the project plan

Defined R&spons:bﬂmes every scheduled task needs to be assigned to a specific team
member

Defined outcomes - every task in the schedule needs to have a defined outcome (usuallya - -

* work product or deliverable)

Defined milestones - amilestone is accomplished when one or more work products from
~ anengineering task have passed quality review : :
Each of these principles is applied as the project schedule evolves.
Relationship between People and Effort

In small software development pm;edasmgleperson can analyze requirerhents, perfonn design,
generate code, and conduct tests. As the size of a project increases more people must become
involved. There is a common myth that is stitl believed by many managers who are responsible
for software development effort: “Tfwe fall behind schedule, we can always add mote programmers

- and catch up later in the project.” Unfommately, adding people to a project afer it is behind
schedule often causes the schedule to slip furthet. The relationship between the number of people
on a project and overall productivity is not finear (e.g. 3 people do not produce 3 times the work
of 1 person, if the people have to work in cooperation with one another) The main reasons for
using more than 1 person on a project are to get the job done more rapldly and to unprove
soﬁware quality.

An Empmcal relationship

 Relation between time to complete the project and human effort applied to project is nonlinear.
The number of lines of code L, is related to effort and development time by the equation -

1= P* EIH t4«‘3
' 75

Where E is development effort in person-months, P is a productivity parameter that reflectsa -
variety of factors thatlead to high quality software engineering work and, tis the project duration
in calendar months. '

Rearranging this software equation, we can anrive at an exprmsidn for development effort E:
E=L¥(P*t") |
Where E is the effort expended over the entire life cycle for software development and maintenance
and tisthe development time in years. _ '
Project Effort Distribution
A recommended distribution of effort across the definition and development phases is often
referred to as the 40-20-40 rule. Forty percent of all effort is allocated to front end analysis and
design. A similar percentage is applied to back-end testing. Coding is taking 20 percent efforts
only. This effort distribution should be used as guideline only. Generally accepted guidelines are:
02-03 % planning '
10-25 % requirements analysis
20-25 % design
15-20 % coding
30-40 % testing and debugging

Software Project Types

A numberof different process models exist for software project. Regardless of whether a software
team chooses a linear sequential paradigm, an iterative paradigm, an evolutionary paradigm,
concurrent paradigm or some permutation, the process model is populated by a set of tasks that
enable a software team to define, develop, and ultimately support computer software.

No single set of tasks is appropriate for all projects. An effective software process should define
a collection of task sets, each designed to meet the needs of different types of projects.

A task set is a collection of software engineering work tasks, milestones, and deliverables that _
must be accomplished to complete a particular project. Task sets are designed to accommodate
different types of projects and different degrees of rigor. Althoughiitis difficult to developa
comprehensive taxonomy of software project types, most software organizations-come across
the following projects: : : _

- Concept development - initiated to explore new business concept or new application of

- technology ' .

New application development - new product requested by customer

Application enhanceroent - maj or modifications to function, performance, or interfaces
(observable to user) '

Application maintenance - correcting, adapting, or extending existing software (not
immediately obvious to user) o :

Reengineering - rebuilding all {or part) of a legacy system
Defining a Task Network

Individual tasks and subtasks have interdependencies based on their sequence. In addition,
“when more than one person is involved in a software engineering project, it is likely that
development activities and tasks will be performed in parallel. A fask network, also called an

76

activity network, is a graphic representation of the task flow for a project. Following figure
shows the task network for a concept development project: ‘

Figure 6.1: Task network for a concept development

Scheduling _
Scheduling tools may be used to schedule any non-trivial project some of the tools used include,

Timeline (Gantt) charts enable software planners to determine what tasks will be need to
be conducted at a given point in time based on estimates for effort, start time, and duration for
each task.

Thebestindicatér of progressis the completion and successful review of a defined software
work product.

Time-boxing is the practice of deciding a priori the fixed amount of time that canbe spent)
on each task, When the task’s time limit is exceeded, development moves on to the next task.

6.52 Tracking the schedule

“The project schedule provides a road map for a software project manger. Ifithas bef.m.pmpérl'y
developed, the project schedule defines the tasks and milestones that must be tracked and
controlled as the project proceeds. Tracking can be accomplished in a number of different ways:

Conducting periodic project status meetings in which each team member reports progress
and problems. - . _
_ Bvaluatingthe results of all reviews conducted throughout the software engineering process. '_
. Determine whether formal project milestones have been accomplished by the scheduled |
Comparing actual start date to planned start date for each project task.
 Meeting informally with practitioners to obtain their subjective assessment of progress to
date and problems on the horizon, o ' - _
~ Using eamned value analysis to access progress quantitatively.
Earned Value Analysis |

'Eamed value is a quantitative measure of percent of project completed so far. The total hours to
complete the entire project are estimated and each task is given an earned value based on its
estimated peroentage contribution to the total. '

"To determine the eamned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work tagk
represented in the schedule.

2. The BCWS values for all work tasks are summed to derive the budget at completion,
BAC. Hence, : .

77

. .
" i BAC=“(BCWS) forall tasks k . .

3. Thevalue for budgeted cost of work performed (BCWP) is computed. The value for
BCWP is the sum of the BCWS values for ali tasks that have actually been oompleted bya pomt
in time on the project schedule.

4. Progressindicator SPIis an indication of the efficiency with which the pro;ect isutilizing
scheduled resources, _

a. SPI=BCWP/BCWS | _ ,
b. SVissimplyan absolute indication of variance from the planned schedule.
i SV=BCWP-BCWS

5. Percent completc»-BCWPIBAC prowdes a quantitative indication of the percent of
completeness of the project ata glven point in time, t. :

Error Tracking _ :
Allows comparison of current work to past projects and provides a quantitative indication of the quality of

the work being conducted. The more quantitative the approach to project tracking and control, the more
Likely problems can be anticipated and dealt with in a proactive manner. :

6.6 RISK MANAGEMENT

Risks are potential problems that might affect the successful completion of a software project. Risks
involve uncertainty and potential losses. Risk analysis and management are intended to help a sofiware
team understand and manage uncertainty during thedevelopmmt process. Theimportant thing is to remember _
that things can go wrong and to make plans to minimize their impact when they do. Tlge work product is
called a Risk Mitigation, Monitoting, and Management Plan (RMMM). :

Rnsk management is a structured approach to managing uncertainty related to a threat a sequence of
human activities including risk assessment, strategies development to manage risks, and mitigation of risk
using managerial resources.

The strategies include transferring the risk to another party, avoiding the risk, reducing thenegahvc effect of
) the risk, and accepting some or all of the consequences of a partlcular risk.

Some traditional risk managements strategies are focused onrisks ste:mnmg from physical or legal causes .
(e.g. natural disasters or fires, accidents, death and lawsuits). Financial risk management, on the other
hand, focuses onisks that can be managed using traded financial instruments. a

The objective of risk management is to reduce different risks related to a preselected domain to the level
accepted by society. It may refer to numerous types of threats caused by environment, technology, hirmans,
organizations and politics. On the other hand it involves all means available for humans, or in particular, for -
arisk management entity (person, staff, organization).

Risk Strategies

* Reactivestrategies - Also known as fire fighting, reactive strategies are used very commonly. In
these the project team sets resources aside to deal with problems and does nothing '(lll‘l‘ll arisk
~ becomesa problem.

* Proactive strategies - In proactive strategies, risk management begins long before technical
work starts, Risks are identified and prioritized by importance; then team builds a plan to avoid
risks if they can, or minimize them if the risks turn into problems. .

78

_Software Risks

Risk atways involves two characteristics:

-

Uncertainty-The risk may or may not happen, that is, there are no 100% probiible risks.
Loss- If the risk becomes a reality, unwanted consequenices or losses wili occur.

When risks are analyzed, it is important to quantlfyﬂxe level of uncertainty and the degree of loss associated
with each risk. To accomplish this, different categories of risks are considered:

6.7

Project risks - threaten the project plan _
Technical risks - threaten product quality and the timeliness of the schedule

Business risks - threaten the viabilify ofthe softwate to be built (market risks, strategic risks,
management risks, budget risks) _

Known risks - predictable from careful evaluation of cuzrent project plan and those extrapolated
from past project expetience '

Unknown risks - some problems simply occur without warning,

RISK IDENTIFICATION AND PROJECTION

" Riskidentificationis asystematic attempt to specify threats to the project plan (estimates, schedule, resource
loading, etc.). By identifying known and predictable risks, the project manager takes a first step towards
* avoiding them when possible and controlling them when necessary. : ‘

There are two different types of risks for each of the categories thé.t have been mentioned above.

-*

Pioduct-specific risks—can beidentified only by those with a clear understanding of the technology,
the people, and the environment that is specific to the project at hand. To identify product
specific risks, the project plan and software statement of scope are examined and identify any
special characteristics of the product that may threaten the project plan.

Generic risks - are potential threats to every software product.

‘One method for identj@ing risks is to create a risk item checklist. The checklist can be used for risk
~_!identification and focuses on some subset of known and predictable risks in the following generic
subcategories: '

»

»

.-

L

, Product size
" Business impact

- Customer characteristics

Process definition
Development environment
Technology tobe built
Staff size and expetience

Risk Components and Drivers

The compbnents of risks are:

Performance, Cost, Support, Schedule
The impact of arisk could be:

7 .

» Negligible, Margiaal, critical, catastrophic

_Therisk drivers affeéting each risk component are classified according to their impact category and the
potential consequences of each undetected software fault or unachieved pro;ect outcome considering are
described.

Risk Projection (Estimation)
Project risk estimation contributes to considering risks in a manner that leads to prioritization of risks so
that resources oouldbeallocatedwhaeﬂmym]l haveﬂ:emaxumunnnpact. 'Iheﬁaurpnmarynskprojecuon
steps are:

» Establish ascale that reflects the perceived likelihood of each risk

* Delineate the consequences of the risk

» - Estimate the impact of a risk on the project and product

* Note the overall accuracy of the risk projection to avoid misund&standings
Risk Table Construction)

A risk table provides a project manager with a method for nsks pl‘Q]GCthI] The steps mvolved inthe
construction of arisk table are:

» Listall risks in the first column of the table

* Classify eachrisk and enter the category label in column two

» Determineaprobabilits for each risk and enter itinto column three

< Entertheseverity of each risk (negligible, marginal, critical, catastrophic) in colunan four
* Sortthetableby probabilityandimpact value

» Determine the criteria for deciding where the sorted table will be divided into the first pnonty
concerns and the second priority concerns

= First priority concerns must be managed (a fifth column canbe added to contam apointer into
the RMMM) -

Assessmg Rlsk Impact

- Theproject team estimates the effect of nsks onthe pmject. The consequences ofnsks canbe detemnned
as follows:
+ Faclors aﬁ"ecting risk consequences - nature (types of problernis arising), scope o (combines éeva-ity
with extent of project affected), timing (when and how long impact is felt)

» Ifcosts are associated with each risk table entry Halstead’s risk exposure metric canbc computed
(RE = Probability * Cost) and added to the risk table, _

Risk Assessment _ _ _
Risk assessment is done to obtain quantitiative or qualitative value of risk related o étang’iblesi!uation and
predicatable threat, Risk Assessment can be done using the following methods:

+ Define referent levels for each project risk that can cause project termination (performance
degradation, cost overrun, support difficulty, schedule slippage).

.» Attempt to develop a relationship between each risk triple (risk, probabﬂlty, lmpact) and each of
the reference levels.

* Predict the set of referent points that define a region of termination, bounded by a curve or areas

of uncertamty
80

'« Trytopredicthow combinations ofrisks will affect areferent level.
Risk Refinement

Risk refirement is the

'« Process of restating the risks as a set of more detailed risks that will be easier to mitigate,
monitor, and manage, -

6.8 RISKMITIGATION, MONITORING, AND MANAGEMENT (RMMM)

Risks are potential problems that might affect the successful completion of a software project. Risks
involve uncertainty and potential losses. Risk analysis and management is intended to help a software team
understand and manage uncertainty during the development process. The important thing is to remember
that things can go wrong and to make plans to minimize their impact when they do. The work product is.
called a Risk Mitigation, Monitoring, and Management Plan (RMMM). -

The implementation of a RMMM Plan is of vital strategic importance. However, in the operational phase,
it needs to be decided, whether the approach to risk management should be proactive or reactive.

Reactive Risk Management

i _ _
¥ Thereactiveapproach is taken usuaily to obtain information regarding risk and esrors in the preliminary as ..

i well as monitoring & follow-up phases of the porject. The reactive approach however, does not identify the
' risks in advance and takes necessary actions only when these risks become problems.

 Proactive Risk Management

The proactive approach to Risk Management is amore rational approach as it involves indentifying the
risks before they become problems, and planninghow to mitigate, monitor and manage them.

In this approach formal risk analysis is performed, the organization corrects the root causes of risk while _5 :

examining risk sources that lie further the bounds of the software.
The steps involvedin proacﬁve RMMM are,
"« Riskmitigation (proactive planing for risk avoidance) _
"+ Riskmonitoring (assessing whether predicted risks oceur or not, ensuring risk aversion steps-are

being propexly applied, collect information for future risk analysis, attempt to determine which
risks caused which problems}) _ ' , _ c

 « Riskmanagement and contingency planing (actions to be taken in the event that mitigation steps
have failed and the risk has become a live problem) ' :
Safety Risks and Hazards _ _ _ _
Tdentifiying safety risks & hazardsis a software quality assurance activity that focuses on identification & -
assessement of potential hazards that may affect software negatively and cause an entire system to fail.
Software safety involves good software enginéering practices so as to ascertain risk assessesment &

—management, implementation of control measures & validation of the efficacy of control measures. It is
thus the collection of activities that assure the safe operation of software.

Risk Information Sheets - ,
/ Risk information sheets coftainalt the detailed data associated with risk. Itis an alternativeto RMMM in
*which qach risk is documented individually. Often risk information sheets (RIS) are maintained using a
databage system. Risk ID; date, probability, impact, description, refinement, mitigation/monitoting,
managément/contingency/trigger, status, originator, assigned staff member are components of Risk information
sheets L
B 1 I s’

6.9 PRODUCTIVITY

Productivity is amanufacturing system that can be measured by counting the number of units which can be
produced and dividing this by the number of person hours required to produce them, However, for any
software problem, there are many different solutions which have different attributes. One solution may

- execute more efficiently while another may be morereadable and easier to maintain. Productivityhenceis
aquality of software production process. it measures the efficiency of the process. An efficient process
results in faster delivery of the products,

6.10 PROJEECT MILESTONES

When planning a project, a series of milestones should be established. A milestone is an endpoint of a
software process activity. At each mile stone, there should be a formal output, such as a report, that can be
presented to management. Milestone reports need not to be large documents, They may simplybe-a short
report of achievements in a project activity. Milestones should represent the end of a distinct, logical stage
of the project. :

ACTIVITIES

' Prototype '\,
_deelopment W
User : Evaluation
requirements - report

Figure 6.2 : Project Milestones

Requiréments

Rasibility
. Specificiion §

study Y

‘System _
~ requiraments §

Arxhitectunal

Feasibility
- design

report

6.11 WORK DEFINITION, ALLOCATION AND ASSIGNMENTS

At the time of software planning, a plan is been set which draws up at the start of project and is be used as
the driver of the project. Most of the plan includes the objectives of the project and constraints which
affect the project management. It also describes the way in which the development team is organized, the
people involved and their roles in the team. The plan also: shows the breakdown of the project into activi-
ties and identifies the milestones and deliverables associatéd with each activity. Afteridentification of activi-
ties, its dependency with other activities is judged. It is also estimated that how much time is required to
complete this task. Project scheduler coordinates which activities are carried out in paralle] and then
coordinates these parallel activities and organize the work so that the workforce is used optimally. In
estimating schedules, manager must also estimate the resources needed to complete each task. The prin-
cipal resource is the human effort needed. In estimating schedules, managers should not assume that every
stage of the project will be problem free. Individuals working on a project may fall ill or may leave,
hardware may breakdown and essential support software or hardware may be delivered late so a good
rule of thumb is to estimate as if nothing will go wrong, then increase the estimate to cover anticipated
problems. The project schedule is usually represented as a set of charts showing work break down,
activities dependencies and staff allocations.

82

6.12 SUMMARY
Software project management is concerned with activities involved in ensuring that software is delivered

on time and on schedule and irraccordance with the requirements of the organizations developmg and
procuring the software.

Project planning is the most time consuming activity. The project plan sets out the resourcesavailable to the
project, the work breakdown and a schedule for the work.

Soﬁware project scheduling is an activity thatdistributes estimated effort across the planned project dura-
tionby allocating the effort to specific software engineering tasks. The schedule evolves over time.

Risks are potential problems that might affect the successful completion of a software project. Risk
analysis and management are intended to helpa software tear understand and manage uncertainty during
the development process.

It is important to remember that things can go wrong and to make plans to numnuzethcmmpactwhenﬂmcy
do. Risk Mitigation, Monitoring, and Management Plan (RMMM) must be genérated to take care of
unplanned events & situations.

6.13 UNIT END QUESTIONS

1 What do you mean by project management? List and discuss the various activities involved in

2 Whatistheimportance of project scheduling is Software engineering? What are the factots that
affect project scheduling?

3 Define task network. Discuss its use in scheduling.
4 - Describe the difference between reactive and proactive risks.
5 Whatis RMMM? Discuss its role in project management_

6.14 FURTHER READINGS

1. Software Engineering: A Practitioner’ sAppmach, Roger S. Pressman, Sixth edltIOIl, McGraw
' Hill Publication

2. Software Engineeting, lan Sommerville, Sixth Edition, Pearson Educa_tion_
3. AnIniegrated Approach to Software Engineering, Pankaj Jalote, Narosa Publishing House
4, httpy//www.comp.lancs.ac.ul/computing/resources/IanS/SE7/Presentations/PPT/4

83

UNIT - VII

SOFTWARE COST ESTIMATION, METRICS AND

MEASURES
Structure of the Unit
7.0 Objectives
7.1 Introduction
7.2 Software Productivity
7.3 . Estimation Techniques .

7.4 - - Algorithmic Cost Modeling

7.5 Project Duration and Staffing

7.6 Empircal Models

7.7 PutnamModel

.78 COCOMO

7.9 . Introduction to Sofiware Metrics and Measures
7.10 Process Mefrics |
7.11 Project Metrics

7.12 Software Measurement

7.13 Summary

 7.14 UnitBEnd questions

7.15 ' Further Readings

7.0 OBJECTIVES

" After studying this unit, students will be able to understand,
* The concept of software productivity

* The fandamentals of software costing

e Different techniques for cost estimation

+ Software metrics and measurements

4

7.1 INTRODUCTION

Software cost estimation is important for making good'management decisions in a software project. It is
also connected to determining how much effort and time a software project requires. Cost estimation has
several uses: _

« Ttestablishesa firm, reliable budget for an in house project.

« It facilitates competitive contract bids when a software house wants to get the contract for
developing aspecific software system. Itis easier to make a close competitive bid with accurate
cost estimates. If they are too high, another competitor will outbid. if they are too low, money
will beloston thedeal.

« It determines whether it is cheaper to develop software in-house, to contract for outside
development, or to buy a software product off-the-sheif and customize it.

Another aspect is the Productivity estimates which are usuaily based on measuring some attributes of the
software and dividing this by the total effort required for development. It is the responsibility of the project -~
manager to make accurate estimations of effort and cost.

From time to time, different software metrics have been developed to quantify various attributes of a
software product. Broadly these may be grouped into two categories. These are

. Productmetnics and
« Processmetrics.

The following sections discuss the cost estimation methods and metrics & measures.

7.2 SOFTWARE PRODUCTIVITY

Productivity in a manufacturing system can be measured by counting the number of units which can be
produced and dividing this by thenumber of person hours required to produce them. The productivity of
engineers in the software development process may have to be estimated by managers. These estimates
may be needed for project estimation and to assess whether process or technology improvements are
_effective. These productivity estimates are usually based on measuring some attributes of the software and
dividing this by the total effort required for development. There are two types of measures which have
been used: _ . :

Size related measures: These are related to the size of output from an activity like number of lines in the
code: ' : o

Function related measures: These are related to overall functionality of the delivered software. Fore.g.
Function points, object points. ' _ . o

Lines of source code per programmer-month is a widely-used metricin productivity measurement. This is
computed by counting the total number of lines of source codewhich are delivered. The count is divided
by thetotal time in programmers months required to.corplete the project. This time therefore includes the
time required for anatysis and design, coding, testing and documentation. '

Analtemative to using code size as the estimated product attribute is to use somemeasure of the functionality
ofthe code. The best known of these measures is the function point count. Function points are language
independent so productivity in different programming languages can be compared. Productivity is expressed
as function points produced per month. The total number of function points in 2 program is computed by
measuring or estimating the following program features: _ :

. External inputsand outputs

.+ Userinteractions
' 85

K External interfaces
. .Filesuscdbythesystem.

Each of these is individually accessed for complexity and givena weighting value that varies from3 tol5
for complex intemal files. The unadjusted function point count (UFC)is computed by multiplying each raw
count by the estimated weight and summing ali values.

UFC= ¥, (number of elements of given type) *(weight)
UFCis multiplied by the project complexity factors to produce final function point count.

Object points are an alternative to function points when 4 GLs or comparabe languages are used for
software development. Object poinis are not object classes that may be produced when an object oriented
approach is taken to software development. Rather, the number of object points in aprogramis a weighted
estimate of: _ - _ '

1. The number of separate screens that are displayed. Simple screen count as 1 object point,
moderately complex screens-count as 2 and very comlex screens count as 3 object points.

2. The number of reports that are produced. For simple reports, count 2 object points, formoderately
' complex reports, count 5 and for reports which are likely to be difficult to produce, count 8
object points, ' ' :

3. Thenumber of 3 GL modules that must be de\}eloped to supplement the 4 GL code. Each 3 GL
module count as 10 object points. '

'The productivity of individual engineers working in-an organization is affected by a number of factors like
* Application domain experience '

* Process quality

* Projectsize

* Technology support

~* Workingenvironment

' Howevcr; individual'diﬁ‘el-enoe@_s in ability are more significant than any of’ ﬂles_;g_factors. ,

The problem with measures expressed as volume/time is that they take no account of non functional
software characteristics such as reliability, maintainability, etc. They imply that more always means better.
These measures also do not take into account the possibility of reusing the software produced. What we
really want to estimate is the cost of deriving a particular system with given functionality, quality, performance,

maintainability, etc. This is only indirectly related to tangible measures such as system size. So productivity
measures must therefore be used only as a guide. They should not be used without careful analysis,

7.3 ESTIMATION TECHNIQUES

It is the responsibility of the project manager to make accurate estimations of effort and cost. This is
particularly true for projects subject to competitive bidding whete abid too high compared with competitors
would result in loosing the contract ar a bid too low could result in a loss to the organization. This does not
mean that intemal projects are unimportant. From a project leader’s estimate the management often decide
whether to proceed with the project. Industry has a need for accurate estimates of effort and size at a very
“early stage in a project. However, when software cost estimates are done early in the software development
process the estimate can be based on wrong or incomplete requirements, A software cost estimation
(SCE) process is the set of techniques and procedures that an organization uses to arrive at an estimate. An

86

important aspect of software projects is to know the cost and the major contributing factor is effort. Todo
so, one or more of the techniques described in table 7.1 may be used. ' :

Table 7.1 : Estimation Techn_iques

Technigue ' Description
Algoritmic Cost modeling A model is developod' using historical cost

information that relates some software metric (usually
its size) to the project cost. An estimate is made of that |.
metric and the model predicts the effort required.

Expert Judgement Several experts on the proposed software development

. techniques and the application domain are consulted.
| They each estimate the project cost. These estimates
are compared and discussed. The estmation progess
iterates until an agreed estimate is reached.

Estimation by analogy This technique is applicable when other projects in the
' same application domain have been completed. The
cost of & new project is estimated by analogy with
these completed projects. :

Parkinson's law Parkinson’s law states that work expands to fill the
time available. The cost is determined by available
resources rather than by objective assessment. if the
software has to be delivered in 12 months and five
people are available, the effort required is estimated to
be 60 person months.

Pricing to win | The software cost is estimated to be whatever the
customer has available to spend on the project. The
estimated effort depends on the the customer's budget
and not on the software functionality.

These approaches to cost estimation can be tackled using either a top down approach or abottom up
approach. Atop down approach starts at the system level. The estimator starts by examining the overall
functionality of the product and how that functionality is provided by incereasing sub functions. The costs
of system level activities such as integration, configuration management and documentation are taken into
account, : -

The bottom up approach, by contrast, starts at the component level, The system is decomposed into
components and the effort required to develop each of these is computed. These costs are then addedto
give the effort required for the whole system development. ' '

Each estimation technique has its own strengths and weaknesses. For large projects, you should use
several cost estimation techniques and compare their results. If these predict radically different costs, this
suggests that enough costing information is not available, More information and repetition of the costing
process until the estimate converges, is required. '
Why SCE is difficult and error prone ? |

+ Software cost estimation requires a significant amount of effort to perform it correctly.

+ SCEisoften done hurriedly, without an appreciation for the effort required.

« Experience at developing estimates, especially for large projects, is necessary

87

+ Humanbiasi.e. AnEstirnator is likely to consider how long a certain portion of the system would
take, and then to merely extrapolate this estimate to the rest of the system, ignoring the non- =~
linear aspects of software development,

The causes of poor and inaccurate estim_ation
* Imprecise and drifting réqﬁrmnents |
« New software projects are nearly always different form the last.
* Software practitioners don’t collect enough information about past projects.
+ Estimates are forced to match the resources avalable. :

7.4 ALGORITHMIC COST MODELING

Most work carried out in the software cost estimation field has so far focused on algorithmic cost modeling.
In this process costs are analyzed using mathematical formulae linking costs or inputs with metrics to
produce an estimated output, The formulae used in a formal model arise from the analysis of historical data.
‘The accuracy of the model can be improved by calibrating the model to the specific development
environment, which basically involves adjusting the weightings of the metrics. There are a variety of different
models available, the best known are Boehm’s COCOMO, Putman’s SLIM, and Albrecht’s’ function _
points. On an initial instinct one might expect formal models to be advantageous for their ‘off-the-shelf’
qualities, but after close observation this is regarded as a disadvantage by cost estimators due to the -
additional overhead of calibrating the system to the local circumstances. However, the more time spent
" calibrating a formal model, the more accurate the cost estimates shouldbe. - '

In terms of the estimation process, nearly all algorithmic models deviate from the classical view ofthe cost
estimation process. - '

Effort
—bﬂ Buration
Other cost ') \ Loading
drivers

Figure 7.1. Classical view of the algorithmic cost estimation process

-An input requirement of an algorithmic model is to provide a metric to measure the size of the finished
system. Typically lines of source code are used, this is obviously not known at the start of the project.
SLOC is also very dependant on the programming language and programming environment, this is difficult
to determine at an early stage in the problem especially as requirements are likely to be sketchy. Despite
this SLOC has been the most widely used size metric in the past, but current trends indicate that it is fast
becoming less stable. This is probably due to the changes in software development process in recent years
highlighted with a tendency to use prototyping, case tools and so forth, An alternative is to use function
points which are related to the functionality of the sofiware rather than its size. A more recent approach is
to use object points. This is in comparison a new methodology and has not been publicized in the same

88

depth as function points and SLOC. In essence the method is very similar to function points but counts
objects instéad of functions. Its recent rise has been prompted by the interest in the object orientation
__rqvolution.

~ Algorithmic models generally provide direct estimates of effort or duration. Themaininputis usuallya
prediction of software size. Effort prediction models take the general form :

- effort=p*S
where p= (1/productivity rate)
where p isa productivity constant and S is the size of the system. ' _

Once the value for p isknown. E.g. productivity =430 source lines of code per month, makingp= 0.0022
and the size of the system has been _estimated at 8500 KLOC.

effort = 0.0022 * 8500

effort = 18.7 person months _
The example above assumes that the relationship between effort and size is linear. Most models allow for

non-linear relationshipsby introducing economies of dis-economies of scale. The general formula being:

7.5 PROJECT DURATION AND STAFFING

In addition to estimating the effort required to developa software systern and the over all cost of that effort,

project managers must also estimate how long the software will take to develop and when staff will be

needed to work on the project. The development time for the project is called the project schedule.

Increasingly, organizations are demanding shorter development schedules so that their products can be,
brought to market before their competitor’s.

The relationship between the number of staff workingon a project, the total effort required and the
development time isnot tinear. As the number of staffincreases, more effort may be needed. People must
spend more time communicating. More time s required to define interfaces between the parts of the
system. Doubling the number of staff does not mean that the duration of the project will be haived.

Di,viding the effort required on a proj ect by the development schedule does not give auseful indication of

{he number of people required for the project team. Generally, the number of people employed ona
_ software project builds up froma relatively small number to a peak and then declines. '

Only asmallnmnber-ofpeopleareneeded at the beginning of apmject to carry out planning and specification.
As the project progresses and more detailed work is required, the qumber of staffbuilds up to a peak.
After implementation and unit testing is complete, the number of staff required stasts toreduce until it

reaches one or two when the product is delivered. A very rapid build up of project staff often cotrelates
with project schedule slippage. Project manager should therefore avoid adding too many staffto a project

carlyinits lifetime.

7.6 EMPIRICAL MODELS

The structure of empirical estimation models is a formula derived from data coltected from past software
projects that uses software size fo estimate effort. Size, itself, isan estimate, described as either lines of
code (LOC) or fimction points (FP). No estimation modelis appropriate for all development environments,
development processes, Ot application types. Models must be customised (values inthe formula must be
altered) so that results from the model agree with the data from the particular environment.

The typical formula of estimation modelsis: -

.39

SV E=a+b(S) . .-
where; o T S
E represents effort, in person months, =
Sisthesizeof the software devélomnent, m LOCorFP, and,
" a, b, and ¢ are values derived from data.

Therelationship between development effort and software size is generally proportional, and tends to
become relatively stable with larger size.

P | o

‘I“f
rd
e
£
P‘Jl’
- .&/
E e
..w-“"’
T i
[T L ‘w
-3
S

Figure 7.2 : Relationship between development effort & software size

The graph in figure 7.2 demonstrates that the amount of effort aoce erates as size increases, i.e., the value
¢ in the typical formula above is greater than 1, : '

7.7 PUTNAM MODEL]
Putman’s SLIM (Software LIfe cycle Management)is an automated ‘macro estimatiopmodel’ for software
estimation. SLIM useslinear programming, statistical simulation, program evaluation and review techniques
™ to derive a software cost estimate. SLIM enables a software cost estimator to perform the following
- Calibration: Fine tuning the model to represent the local software development environment by
- interpreting a historical database of past projects. '
* Build: an information model of the software system, collecting sofiware characteristics, personal
attributes, and computer attributes etc, _
* Softwaresizing: SLIM uses an automated version of the lines of code(LOC) costing technique.
The SLIM model is based on the Putman’s own analysis of the software life cycle in terms ofthe Iialeigh
distribution of) project personnel level versus time. The algorithm used is: :
K = (size {C * 3))3 S
Siz_e is the tines of code, K is the total life-cycle effort (in working years), tis development time (in years).

Cis thetechnology constant, combiningthe effect ofusingtools, languages, methodology and QA procedures
etc. The values of the technology constant can varyfrom as little as 610up to 57314,

9

.Drawbacks of SLIM
) SLIM estimmates are extremely sensitive to the technology factor.
Not suitable for small projects. :
Advantagesof SLIM _
Uses linear programming to consider development constraints on both costand effort.

Requires fewer perameters to generate estimates.

7.8 COCOMO

- The best known and most transparent cost model COCOMO (COnstructive COst MOdel) was developed
* by Boehm, derived from the analysis 0f 63 software projects. The original COCOMO model was a setof
models; 3 development modes (organic, semi-detached, and embedded) and 3 levels (basic, intermediate,

~ and advanced). ' ')

COCOMO model levels:
Basic - predicted software size (lines of code) is used to estimate development effort.

Intermediate - predicted software size (lines of code), plus a set of 15 subjectively assessed ‘cost
drivers’ is used to estimate development effort.

Advanced - on top of the intermediate model, the advanced model allows phase-based cost driver
adjustments and some adjustments at the module, component, and system level.
COCOMO development modes:)

| Organic - small relatively small, simple software projects in which small teams with good application -
experience work to a st of flexible requirements.

Exmbedded - the software project has tight software, hardware and operational constraints.

Semi-detached - an intermediate (in size and complexity) software project in which teams with mixed -
experience levels must meet a mix of rigid and less than rigid requitements.

COCOMO model:
' TBcgen‘eral- formula of the basic COCOMO model is: B
-'E = a8y | |
Where:. |
E represents effort in person-months,
S is the size of the software development in KLOC and;
a and b are values dependent on the development mode,

devglopmmtmode: organic . a=24 b=105
semi-detached a=30 b=11i2
embedded a=36 b=120

The intermediate and advanced COCOMO models incorporate 15 ‘cost drivers’. These ‘drivers’ inultiply
the effort derived for the basic COCOMO model. The importance of each driver is assessed and the
conesp9ndi11g value multiplied into the COCOMO¥quation, which becomes: '

g

r'E = a(S)° x product(cost drivers) ' -

* As an example of how the intermediate COCOMO model works, the following is a calculation of the

estimated effort for a semi-detached project of 56 KLOC. The cost drivers are set as follows:

1.15x1.08x 1.15= 1.43
1.00
1.19x1.13x1.17x 1.10x .07 =

I

Product cost drivers (from the table) set high
Computer cost drivers (from the table) set nominal

Personnel cost dnvers(ﬁomthetable) set low
1.85

Project cost drivers (frbm the table) set high

0.91x0.91x 1.04 = 0.86

hence, product(c.ost drivers) = 1.43x 1.00x 1.85x0.86 = 2.28

for a semi-detached project of S6KLOC: a=3.0 b=1.12 §=56

E = a(8)b x product(cost drivers)

E =3.0x(56)"2x2.28

E = 3.0x90.78x2.28

E = 620.94 person-months

COCOMO 1]

COnstructjve COst MOdel It (COCOMO IMisa model that allows one to estimate the cost, effort, and j

schedule when planning a new software development activity. COCOMO I is the latest major extension
to the original COCOMO model published int 1981. Tt consists of three submodels, each one offering

_ increased fidelity the further along one is in the project planning and design process. Listed in increasing

fidelity, these submodels are called the Applications Composmon, Early Demgn, and Post-architecture
models.)

" Assessment of COCOMO

Drawbacks _
+ Itishard to accurately estimate KLOC early on in the project, whenmost effort estimates are
required.
« Extremely vulnerable to mis-classification of the development mode.

+ Success depends largely on tuning the model to the needs of the organization, using historical
data whichis not a]ways available.

- Advantages

+ COCOMOis transparent, you can see how it works unlike other models such as SLIM.

92

. Drivers are particularly helpful to the estimator*o understand the impact of different factors that.

affect project costs.

7.9 INTRODUCTION TO SOFTWARE METRICS AND MEAS‘URES

Software process and project metrics are quantitative measures that enable software engineers to gain

insight into the efficiency ofthe software process and the projects conducted using the process framework.
In software project management, we are primarily concerned with productivity and quality metrics. The
four reasons for measuring software processes, products, and resources are;

« Tocharacterize- an effort to gain an understanding « of processes, products, resources, and
environments and to establish baselines for comparisons with future assessments

. Toevaluate- determine status withrespect to plans _

+ Topredict-- gaining understandings of relationships among processes and products and building
models of these relationships, and

« Toimprove-identifying roadblocks, root causes, inefficiencies, and other opportunities for
improving product quality and process performance. o

Measures, Metrics, and Indicators
The terms measure, measurement, and métxics are often used interchangeably, it is important to note the
subtle difference between them. '
* '+ Measure- provides aquantitative indication'of. the size of some product or procesS attribute
« Measurement - is the act of obtaining ameasure .

. Melric - is a quantitative measure of the degree'to. which a system, component, or pmces's
possesses a given attribute

Process and Project Indicators
+ Metrics should be collected so that process and product indicators can be ascertained

« Process indicators enable software project managers t0: assess project status, track potential
risks, detect problem area early, adjust workflow or tasks, and evaluate team ability to control
product quality o S o

7.10 PROCESS METRICS

Process metrics are collected across all projects and over long periods of time. ‘Theirintent is to provide as
a set of process indicators that lead to long term software process improvements.

Process is one of the controllable factors in improving software quality and organizational performance.
As shownin figure 7.3 process connects 3 important factors that influence soﬁwarequalilymﬂorgarﬁzaﬁmﬂ
performance. The skill and motivation of people hasbeen shown tobe the single most influential factorin
quality and performance. The complexity of the product can havea substantial impact onquality and team

performance. The technology (i.e. software engineering methods and tools) that populates the process -

also has an impact.

93

: I\:'\
./ '\
.'/l o : .) .
/ Customer Business \
Conditions

{ Characteristics

Figure 7.3: Determinants for software qality and organizational effectiveness

- Inaddition, the process triangle exists withinacircle of environmental conditions that include the development
environment (CASE tools), business conditions (¢.g; deadlines, business rules), and customer characteristics
(e.g. ease of communication and collaboration). '
Toimproveaprocess . .- _

* ' Measure specific attributes of process
* Develop meaningful metrics based on these attributes
« These metrics provide indicators that lead to strategy for imiprovement
Metrics canbe derived from the following process outcomes/attributes
- Enosuncoveredbeforcsoftwarerelease, .
* Defects delivered to & reported by end-user,
* Work products delivered
* Humanefforts expended
* Calendar time expended
. Schedule conformance o |
There are pnvate and pubhc uses for different types ofpmcess data. Because itis natural that individual
software engineers might be sensitive to the use of metrics collected on aindividual basis hence Private

process metrics (e.g. defect rates by individual or module) are known only to the individual or team
Public metrics generally assimilate information that was private to individuals and teams. Project level
defect rates, effort, calendar times, and related data are collected. Public process meirics enable
organizations to make strategic changes to improve the software process. As software metric etiguette
metrics should not beused to evaluate the performance of individuals,

94

As an organization becomes more comfortable with the cellection and use of process metrics, the denvatlon

of simple indicators gives way to a more rigorous approach called statistical software process improvement
(SSPY). Statistical software process improvement helps an organization to dlsoover where it is strongand

where weak.

-7.11 PROJECT METRICS

Unlike software process metrics that are used for strategic purposes, software project metrics are tactical.
‘That is, projoct metrics and the indicators derived from them are used by a project manager and a software
team to adapt project workflow and technical activities. Every project should measure its inputs (resources),
outputs (deliverables), and results (effectiveness of deliverables). Project metrics are used to avoid

basis.

development schedule delays, to mitigate potentxal risks, and to assess product quality on an ou-gomg

The objectives of project metric are

*

Tominimize the development schedule by making adjustments that can av01d delays and mitigate
potential problems

'To assess product quality on an ongoing basis and when necessary, modify technical approach -

to improve quality
To estimate effort

Project metrics enable a software project manager to

-

L]

Assess the status of an ongoing project,

‘Track poteritial risks

Uncover problem areas béfore they go “critt
Adjust work flow or tasks
Evaluate the project team’s ability to contro} qua]nty of software work products.

Metrics collected from past projects help to establish time and effort estimates for current software
projects, Production rates (in terms ofmodels created, review hours, function points, delivered
source lines), Errors uncovered dmmg each software engineering task

Software projects are assessed against the m]ectmemm for improvement

7. 12 SOFTWARE MEASUREMENT

SoﬁwareMeasumnentlsaquanhﬁabledunmmm,am"bm orammmtofanyaspecto_ 250 _
product or process. Software measures can be categorized as direct measur&s & mdmect measures N -

« Direct méasures of software engineering process include cost and eﬁ‘ort D:rectmeasm'cs ofthe:_
pmductmcludehnmofcode(LOC),exewtlonspeed,manow" defectsperrepomng e
s Indirect measures exarmine the qualnyofﬂrlesoﬂwaremoductltsdf (e.g. ﬁmot:onal:ty oomp]emw |

Project metrics can be consolidated to create process melncsthatatepubhctothe soﬁwareorgamzauon
asawhole. Dﬂaentnﬂmdualmeasummenomahzedeemﬁwaremdnmﬂmtmableomnpm

peried.

efficiency, reliability, maintainability).

tobmaderorgamzauonalamges Boths:zeandﬁmct:mwnmtedmetncsarenommhzed. o

95

s Size-Oriented Metrics

The size oriented metrics are direct measures of a software & the process by which they are developed.
They are derived by nonnalizing (dividing) any direct measure (e.g. defects or human effort) associated
with the product orpmject by LOC. Size oriented metrics are widely used but their validity and applicability
is debated.

Example set of Size-oriented metrics_ include
- * Errorsper KLOC (thousand lines of code)
o . . Defects per KLOC
.+ SperLOC
e Pages of Documentation per KLOC

¢ Errorsper person—month
* LOCper pelson-month
e $per Page of documentation
- - Though these metrics widely used they are not umversally accepted as ﬂ1e best way to measure
"~ asoftware process
« Controversy lies in using LOC as a key measure

» Proponents of this method claim
« LOC that is easy to count

« Many existing estimation models use LOC
» Large literature & data based on LOC exists
. But opponents argue that
* LOC measures are progt"ammmg language dependent
.~ When conmdenng productivity, LOC criteria penalizes well des:gned short programs

e »It Can-not accommodate non procedural languages
* Planner must estimate LOC]eng before analysis"ahd de51gn |
Function-Oriented Metrics ' -

Functionoriented metrics are mdn'ect measures of software that focus on frinctionality and utility. These are
based oa productivity measurement approach called the fimction point method. Function points are derived
1e measuxes and assessments of soﬁware complexity. Five characteristies are used to calculate

1 _qect measures of the information domaln of abusiness software
application and assessthent ofits complexity. Once computed function points are used like LOC to normalize
measures for software productivity, quality, and other attributes. Feature points and 3D function points
providé-ameans Of extending the function point concept to allow its use with real-time and other engineeting
applications. The relationship of LOC and function points depends on the language used to implement the
soﬂ:ware : . . L '

Obg ect-O rlented Metncs

Object oriented tetrics are an mtegral part of ob_]ecf technology and describe aspects of object oriented
p{rogrammmg. :

96

\Théy are used for object-oriented projects adn require the use of classes. The set of metrics for OO
projects include, ' '

» Number of scenario scripts _
* Scepario scripts are detailed sequence of steps about user and appiicatiop iﬁteraction
- Scenario scripts are directly correlated to application size and no. of test cases |
» Numberof kéy classes
- Key classes are independent components _
- They Indicate amount of development effortand potetitial reuse
« Number of support classes | _ |
-~ Theseindicate amount 6f development effort and potential reuse
» Averagenumber of support classes per key class -
 Numberofsub systems (aggregation of élasses)
- Ifidentified, it is easier to lay out the schedule
Use-Case oriented Metrics

Use cases capture the functional recjuirements'of asystem. They describe user visible functions and features

and are defined early in software process and can be used as normalization measure before significant-
_ activities are initiated use cases independent of programming languageo Number of use cases is directly

proportional to size of application in LOC & number of test cases that will be designed. Thereisno

standard size of a use case as they are created at different levels of abstraction. For this reason, itisa

suspect as a normalization measure,

Web Engineering Proj ect Metrics _ _ o .

Web engineering promotes systematic, disciplined & quantifiable approachtowards usccessfil development _

of quality web based applications. . ' . '

e Web Engineering project metrics are used for web application projects

« Theset of metrics for web projects include

: » Number of static web pages

- Most common Web Application feature _
- Static pag_eé represent low relative complexity and require less effortto oonstruct
Indicator ofoverall size and effort.
- Number of dynamic web pages |
 « Essential in application like e-commerce, search engines, financial application eft.
. Relatively higher complexity and effort in comparisonto static pages o |
- They indicate overall size and effort.
Number ofinternal page links

. As the number of internal links increases, the effort expanded on navigational design and
construction also increases. - ' _

+* Number ofpersistent data objects

‘Eg. data base or data file. As these data objects grow, the omplexity of web apphcaﬂon
also grows,

Number of external system interfaced o
* Web application must often interface with ”baclcroom” business applications.

-+ Asthe requirement of interfacing grows, system complexnty also grows and developmient
effort increases.

Number of Static content 6b_|ects _

- Static content objects encompases static text based graphlos, video, animation, audto ‘
information incorporated within web application.

Number of dynamic content objects

* Dynamic content objects are generated based on end user actions and encompasses
internally generated text based, graphics, video, animation and audlo information -

Number of executable functions

+ Anexecutable function(e.g. script or sapplet) provides some computational service to-
theend user. As the riumber of executable function increases, modeling and oonstructlon
effort also increase,

- 7.3 SUMMARY -

7.14

Size refated and function related measures for Productivity estimates.

A software cost estimate process is the set of techmques and procedures that an orgamzatlon
uses to arrive at an estimate.

Algorithmic cost Modelling costs are analyzed using mathematical formulag and linking cosls or
inputs with metrics to produce an estimated output. The formulae used in a formal model arise

- from the analysis of historical data.

The best known cost estimation models are Boehm’s COCOMO Putman’s SLIM and
Albrecht’s’ function points.

SLIM uses linear programming, statistical sunulanon, prograrm eva]uanon and rewewtechmquﬁs
to derive a software cost estimate.

* .. InCOCOMO basic model predicted software size (lines of code) is used to estimate develop-

ment effort

Process metrics are collected across all projects and over long periods of time. Their intent is to
provide a set of process indicators that lead to long term software process improvements.

Project metrics and the indicators derived from them are used by a project manager and a
software team to adapt project workflow and technical activities. Every project should measure
its inputs (resources), outputs (deliverables), and results (effectiveness of dehverables)

UNIT END QUESTIONS

What are the important factors that effect cost estimation?

What is the role of size of the project in cost estimating?

Discuss the various method used for cost estimation in brief. |
Desctibe software metric. What is the difference between process and product metric?

-98

O VL S T

7.15

F’\E":“'.P’!\’

5 Explainthe mefric used for web based apphcatlon; How they are different from other

project metrics?

6 What do you mean by software cost estlmauon‘? How it is estimated by COCOMO
model? Explain. . : '

FURTHER READINGS

Roger 5. Pressman, Software Engineering: APractmoner ’s Approach, Slxth edition, McGraw
Hill Publication

fan Sommerville, Software Engineering, Sixth Edition, Pearson education
Pankaj Jalote, An Integrated Approach to Software Engmeenng, Narosa Publishing House
hﬂp.flmmklpedl&org/vwkl!COCOMO
htq:-fxmwikipedia.orgzwﬂd/cmﬁﬁmmn_models
http:!/ectc.u—net.com/costfmodéls.hun

99

UNIT ~ VIII

SOFTWARE REUSE

Structure of the Unit
8.0 Objectives _
8.1 Introduction

8.2 Software Components Reuse
8.3 DesignPatterns

84 Application Frameworks
85 Application System Reuse
8.6 SoftwareEvolution

87 Summary

8.8 Unit End Questions

89 FurtherReadings

8.0 OBJECTIVES
After completing this unit the stadents will learn :
The benefits of software reuse
Different ways to implemeﬁt software reuse)
How reusable concepts can be represented as patterns or embedded in program generators
Development of software product lines. o | '

8.1 INTRODUCTION

The purpose of sofiware reuse is to reduce cost, time, effort, and risk and to increase productivity, quality,
performance, and interoperability. :

* Software reuse is the process of implementing or updating software systems using existing software assets,
Software assets, or components, include all software produets, from requirements and proposals, to
specifications and designs, to user manuals and test suites. Anything that is produced from a software
development effort can potentially be reused. |

Software reuse does not just indicate the reuseof application code. It is possible to reuse specification and
designs. The potential gains from reusing abstract product of development process such as specifications
- maybe greater than those from reusing code components.

100

n most engineenng disciplines the developed processis based on components Teuse. Software system

esign usually congider that all components are {0 be designed specially for the system being developed.

There is no common base apart from \ibraries such as windows system libraries of reusable software
components. BY applying widespread and systematic software 1euse, demands for lower software design
and maintainence costs along with increased quality can bemet.

8.2 SOFTWARE COMPONENTS REUSE

Generalized software components are not designed for one system butare tried and tested ina number of
different environments. Design and implementation faults are discovered and removed so that reusable
component contains few errors. Itis impossible to achieve absolute reliability specificationbut reusable
components rmay have an associated quality explanation. This permits users to integrate them with confidence
in their systetns. '

The reuse of software can be divided at a number oflevels:

1)Applicatibn system reuse | |

Itispo ssible to reuse the whole applicétion system. The major problem here is to ensure that the software
is portable. It should run on a variety of different platforms. '
2) Sub-system reuse

Itis possible to rense major sub-systems of an application.

3) Module or object reuse

It is possible to reuse 'components of a system representing a collection of function.
- 4) Function reuse : _

Itis possible to reuse software components, which implement 2 single function such as a mathematical
Garction. | _

Application system rense is widelyused in software companies {0 implement their systems across 3 range

of machines. Function reuse is widelyused in standard libraties of reusable function such as graphics and
mathematical libraries. Sub-system and module reuse are less usable. _

Four aspects of software reuse are

1) Software development withreuse

goftware development with reuse is an approach which tries to_maxithize the reuse of existing software
components. Benefit of this approach is that overall development costs of the software are decreased.
Cost reduction is only one potential benefit of software reuse. '

Systematic rense in development offers further advantages:

i) Systemreliability is increased |

Reused components in wor ing systems are cXpectéd to be more reliable than new components. These
components have been tested in variety of operational systems environment and have therefore been
exposed to realistic operating conditions.

ii) Overall process risk is reduced

1fwe use a function which already exists, thereis less uncertainty in the cost of reusing that component
than in the costs of development. For project'management this is an important factor as it decreases
uncertainty in project cost elimination, specifically in caseof reuse of relatively large components suchas
sub-systems. :
iii) Effectiveuse can made of specialists

101

Application specialists doing the same work on different project environments can develop reusable
components which encapsulate their knowi edge.

iv) Organizational standards can be embodied in reusable components

Some standards such as user intetface standard , organization standards design standars etc. which canbe
implemented as a set of standard components can be reused,

v} Software development time can be reduced

Itis necessary to bring a system to market as carly as possible, The time factor is more important than
even the overall development costs, Reusing software components speeds up system production because
both development and validation time should bereduced. - ' . .

2) Software development for reuse _
Component reuse may involve making different types of changes.

i) Name generalization; The component name should be modified so that they are neutral rather than a
direct reflection of some specific application entity. ' "

it) Operation generalization: This involves adding operations to a component orremoving operations which
are very specific to some application domain, ' '

- .. 1il)Exception generalization: This involves checking each component to see which exceptions it might thme

and including these exceptions in the component interface.
3) Generator based reuse

An alternative way to reuse components is the generator view. In this approach reusable knowledge is
confined in 2 program generator system which can be programmedin a domain oriented language, Program
generators involve the reuse of standard pattemns and algorithms. These are embedded in the generator
and parameterised by user commands, A program is then antomatically generated. Progam generators
automatically generate programs based on program logic tools such as flowharts. o

Generator-based reuse is possible when domain abstractions and their mapping to executable codé canbe

identified.

A dornain specific language isused to compose and control these abstractions. High-level language compliers
are most widely used ‘program generators’, wherethe reusable components are fragments of object code
corresponding to high level languape construct. The reused elements are abstractions related to programming
language statements. When a domain specific notation is used to describe the application, larger domain
abstraction can be reused. ' o _

Types of program -generator |

Program generators have been categorized onthe basis of the domain that they develop applications for
and tools for software development. Some of the types of program generators are:

Application generators forbusiness data processing N
Pa:serandlexical-'analyser.gmqators for language processing

Code gehelators in CASE tools. '
Generator-based reuse is very cost-effective but its applicability is limited to 2

relatively small number of application domains. It is easier for eﬁd—usc;s to develop progtams
using generators compared to other component-based approaches to reuse.

Aspect-oriented development

102

Aspect-otiented development addresses amajor software engineering problem - the separation
of concerns. -

Concerns are often not simply associated with application functionality but are cross-cutting -

e.g. all components may monitor their own operation, all components may have to maintain
security, etc.

Cross-cutting concems are implemented as aspects and are dynamically woven info a program.
The concern code is reuse and the new system is generated by the aspect weaver. .
N, L

8.3 DESIGN PATTERNS

" Insoftware engineering, a designpatternis a general reusable solutionto a commonlyoccurring problemin -

software design. A design pattern isnot a finished design that can be transformed directly into code. Itisa
description or template for how to solve a problem that can be used in many different situations. Object-
oriented design pattems typically show relationships and interactions befween classes or objects, without
specifying the final application classes or objects that are involved.

Not all software patterns are design patterns. Algorithms are not thought of as design patterns, since they
solve computational problems rather than software design problenus. Architectural pattems are larger in

scope, usually describing an overall pattern followed by an entire program. Programming paradigms de---

scribe a style which can be the basis for an entire programmming language.

The documentation for a design pattern describes the contextin which the pattem is used, the forces within
the context that the pattern seeks to resolve, and the suggested solution. Thereis no single, standard format
for documenting design patterns. Rather, a variety of different formats have been used by different pattern
authors. :

A design pattem usually contains the following sections:

Pattern Name and Classification: A descriptive and uniquename that helps inidentifying and
referring to the pattern. ' : :

Intent: A description of the goal behind the pattern and the reason for using it.

Also Known As: Other names for the pattern. ‘

- Motivation (Forces): Ascenario consisting ofa problem and a contextin which this pattem can
. beused. '

- Applicability: Situations in which this pattern is usable; the context for the pattemn.

Structure: A graphical representation of the pattern. Class diagrams and Interaction diagrams
may be used for this purpose. .
Participants: A listing of the classes and objects used in the pattem and theirroles in the design.
_ Collaboration: A description of how classes and objects used in the pattern interact with each
~ other. : ' '

Consequences: A description of the results, side effects, and trade offs caused by using the
pattern.

Implementation: A description of an implementation of the pattern; the solution part of the

pattern. _

i
. Sample Code: Anillustration ofhow the pattern can be vsed in a programining language
————Known Uses: Examples of real usages of the pattern.

103

Related Patterns: Other patterns that have some relationship with the pattern; dwcussnon ofthe
differences between the pattern and similar patterns. ,

A software product line (SPL) is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way.

Software product line engineering aims to reduce development time, effort, cost, and complexity by taking
advantage of the commonality within a portfolio of similar products. The effectiveness of a software product
line approach directly depends on how well feature variability within the portfolio is implemented and
managed throughout the development lifecycle, from early analysis through maintenance and evolution,

8.4 APPLICATION.FRAMEWORKS

Object oriented development suggests that objects are the most appropriate abstraction for reuse. However,

experience has shown that objects are often too fine grained and too specialized toa particular application.
It has become clear that object oriented reuse is best supported in an object oriented development

process through larger-grain abstraction called framework.

A framework is a subsystem design made up of a collection of abstract and concrete classes and the
~ interface between them. Particular details of the application sub system are implemented by adding
components to fill in pents of the design and by instantiating the abstract classes in the framework. Applications
- are normally constructed by integrating a number of framework.

There are three classes of framework.

1. Systeminfrastructure framework : These frameworks support the development of system
infrastructure such as communications, vser interfaces and compilers.

2. Middleware integration framework : These consist of a set of standard and associated
object classes that support component communication and information exchange,

3. Enterprise applicetion framework : These are concerned with specific application domain
such as telecommunication or financial systems. :

Frameworks are generic and are extended to create amore speclﬁc application or sub-system Extendmg
a framework involves

Adding concrete classes that inherit operations ﬁom abstract classes in the ﬁ‘ameWork
Addhgmdﬁods that are called in response to events that are recognized by the framework.
Problem with frameworks is their complexity which means that it takes a long time to use them effectively.

8.5 APPLICATION SYSTEM REUSE

Application system reuse involves reusing entire application systems either by configuring a system for a
specific environment (COTS) or by integrating two or more systems to create a new application (Developing
application families).
COTS product integration
COTS stands for Commercial Off-The-Shelf Systems. COTS systems are usually complete
application systems that offer an Application Programming Interface. Building large systems
by integrating COTS systems is a viable development. Strategy for some types of system such

as E~commerce systems. The key benefit is faster application development and, usually, lower
development costs.

104

Software Product Line

Software pfbduct lines or application families are applications with generic functionality that can be adapted
and configured for use in a specific context. Each specific applicationis specialized in some way. The -
common core of application family is reused each time anew application is required. The new development
thay involve specific component configuration, implementing additional components and adapting some of
the components to meet new demands. '

Various types of specialization of the application product line may be developed.

- Platform specialization : Various of the application are developed for different platforms.
Environment Specialization : Versions of the application are created to handle particular operating environment
and peripherals devices. '
Functional Specialization : Versions of the application are created for specific customer who have different
requirements .

Process Specialization : The system is adapted to cope with specific business process.

8.6 SOFTWARE EVOLUTION

Software evolution is the process by which programs change shape, adapt to the marketplace and inherit
characteristics from preexisting programs. Software evolution is inevitable since new requirements emerge
when the software is used, the application domain modifies, errors must be repaired, new functionality
must be accommodated, performance and/or reliability may have to be improved. The updations to the
software bring out newer and improved versions of it, and thus it evolves. '

Software Evolution can be categorized as Software Maintenance and Software Reengineering, Mainte-
nance and re-engineering may be applied separately or together. “ ' '

Software Maintenance

Updations to a software may be carried out when there is a known requirement for change, under four
categories, these include,

. Corrective maintenance: Reactive modification of a software product performed after
delivery to correct discovered problems; |

. Adaptive maintenance: Modification ofa software product performed after deiivery to
keep a software product usable in a changed or changing environment;

. Perfective maintenance: Modification of a software product after delivery to improve per-
formance or maintainability;. _ _

« Preventive maintenance: Modification of a software product after delivery to detect and
correct latent faults in the software product before they become effective faults.

Software Re-engineering

Software Reengineering is the process of reorganisingand modifying existing software systems to make
them more maintainable. When a Software is Reengineered, no new functionality is added to the system
but itis restructured and reorganised to facilitate future changes. The advantages of re-engineering are
reduced risk and reduced cost. There is a high risk in new software development. ‘There may be devel-
opment problems, staffing problems and specification problems and also the cost of re-engineering is
often significantly less than the costs of developing new software.

Prof. Meir M. Lehman, and his colleagueshave identified a set ofbehaviours in the evolution of proprietary
software. These behaviours are known as Lehman’s Laws. There are eight laws and these are:

145

Continuing Change, Increasing Complexity, Large Program Evolution, Invariant Work- Rate Conserva-
tion of Familiarity, Continuing Growth, Declining Quality, F eedback System, Table 8.1 describes each of -
these niles.

Table 8.1 Lehman’s Laws for Software Evolution

1 Continuing Systems must be continually adapted else they become
Change progressively less satisfactory in use.
II | Increasing As system is evolved its complexity increases unless work is
i Complexity done to maintain or reduce it

M Seif Regulation | Global system evolution processes are self-regulating.
[System attributes such as size, time between releases and the |
number of reported emors are approxlmately invariant for each
system release.]

v Conservation of { Unless feedback mechanisms are appropriately adjusted, average
Organisational | effective global activity rate in an evolving system tends to ;

: Stability remain constant over product lifetime. :
v Conservation of ; Over the lifetime of a system, the incremental change in each I
familiarity release is approximately constant. i
A% | Continuing The functionality offered by systems must continually increase fo -
growth maintain user satisfaction. ;
VI | Declining The quality of systems will appear io be declining unless they are
quality aciapted to changes in their operational environment.
VIl { Feedback - Evolutionary processes incorporate multi-agent, multl-loop
systern feedback systems and must be treated as feedback systems in

1 order to achieve significant product i 1mpmveme11t. i

These laws however are believed to apply mainly to monolithic, proprietary soﬂware and could be chal-
lenged forapplication to other software types.

Giving | thei increasing dependence on software at all levels of society and economy, the successful evolution
of softwareis becoming mcreasmgly critical.

8.7 SUMMARY | | . _ |
Design withsoftware reuse involves desiging software around good designand existing oomponmis
Software reuse advantages are lower costs, faster software development and lower risks.
Design patterns are high-level abstractions that document successful design solutions.]

Program generators are an alternative approach to concept reuse where the rensable concepts are
embedded in a generator system. The designer specifies the abstractions requu*ed using a domain-
specific language, and an executable program is generated.

Commercial off the self software (COTS) are ready made & available for sale, lease or license to
general public, They may used as atternatives to inhouse developments.

Software product lines are related application that are developed from one or more base
applications. A generic system is adapted and specialized to mest speclﬁc requirements for

functionality, target platform or operational configuration.

8.8 UNIT-END QUESTIONS
1. What do you mean by software reuse? List various level of software reuse.

106

2. Whyarepatterns an effective form of design rense? Wha are the disadvant
to reuse?

3, Whatarethe technical and non technical factors in sofiware reuse?

8.9 FURTHER READINGS
1. Software El_lgineering, 1an Sommerville, Pearson Education, 2004,

107

ages of this approach

UNIT-IX
VERIFICATION AND VALIDATION

Structure of the Unit

9.0 Objectives
9.1 Introduction
9.2 Planning Verification and Validation Activities
9.3 Software Inspections
0.4 Verification and Formal Methods

9.4.1 Clean Room Software Development
9.5 Summary
9.6 Unit End Questions
9.7 Further Readings

9.0 OBJ ECTIVES

 Afer completing this unit students will be able to understand :

* Thedifference between software verification and software validation.
+ Program inspéction methods of discovering delfects inprogram,

* Automated static analysis and its use in verification énd validation,

* How static verification is used in the clean room development process.

9.1 INTRODUCTION

Software Verification and Vatidation (V& V) is the process of ensuring that software being developed or
changed will satisfy functional and other requirements (validation) and each step in the process of building
the software yields the right products (verification). The differences between verification and validation are
unimportant except to the theorists. Practitioners use the term to referto all of the activities that are aimed
at making sure the software will function as required.

Verification & Validation is intended to be a systematic and technical evaluation of software and associ-
ated products of the development and maintenance processes. Reviews and tests are done at the end of
each phase of the development process to ensure sofiware requirements are complete and testable and
that design, code, documentation, and data satisfy those requirements.

I

108

9.2 PLANNING VERIFICATION AND VALIDATION ACTIVITIES

The twomajor Verification and Validation activities are: '

reviews, including inspections and walkthroughs, and testing.

1. Reviews, Inspections, and Walkthroughs _ _

Reviews are conducted during and at the end of each phase of the life cycle to determine whether estab-
lished requirements, design concepts, and specifications have been met. Reviews consist of the presenta-

tion of material to a review board or panel. Reviews are most effective when conducted by personnel who
have not been directly involved in the development of the software being reviewed. -

Informal reviews are condgcted on an as-needed basis. The developer chooses a rcviev# panel and
provides and/or presents the material to bereviewed. The material may be as informal as a computer
listing or hand-written documentation. '

Formal reviews are conducted at the end of each life cycle phase. The acquirer of the software appoints
the format review panel or board, who maymake or affecta go/no-go decision o proceed to the next step
ofthelifecycle. ' _ : :

Formal reviews include the Software Requirements Review, the Software Preliminary Design Review, the
Software Critical Design Review, and the Software Test Readiness Review. U

An inspection or walkthrough is a detailed examination ofa product on a step-by-step o line-of-codeby

line-of.code basis. Thepurposeof conducting inspections and walkthroughs is to find exrors. The group

_ thatdoes an inspection or walkthrough is composed of peers from development, test, and quality assur-

_ance.
2. Testing

Testing is the operation of the software with real or simutated inputs to demonstrate that a product satisfies
jts requirements and, if it does not, o identify the specific differences between expected and actual results.
There are varied Jevels of software tests, ranging from unit or element testing through integration testing and
performance testing, up to software system and acceptance tests. '

- a, Informal Testing

Informal tests are done by the developer to measure the dcvelopniént progress. “Informal’ in

this case does not mean that the tests are done in a casual manner, It just specifies that the
acquirer of the software is not formally involved, that witnessing of the testing isnot required,
and that the prime purpose of the tests is to find etrors. Unit, component, and subsystem
integration tests are usually informal tests.

Informal testing maybe requirements-driven or design- driven. Requirements-driven orblack
box testing is done by selecting the input data and other parameters based on the software
requirements and observing the outputs and reactions of the software. Blackbox testing can
be done at any level of integration. In ~ddition to testing for satisfaction of requirements, Some
of the objectives of requirements-driven testing are to ascertain: - '

Computational correctness.

Proper handling ofboundary conditions,

ncluding extreme inputs and conditions that cause extreme outputs.
State fransitioning as expected. | |
Proper behavior under stress ot highload.

Adeguate error detection, handling, and recovery.

109

Design-driven or white box testing is the process where the tester examines the intemal workings of code.
Design- driven testing is done by selecting the input data and other parameters based on the intemal logic
paths that are to be checked.

The goals of design-driven testing include ascertaining correctness of:

All paths through the code. For most software products, this can be feasibly done only at the unit test

level.

Bit-by-bit finctioning of interfaces.

. Size andtiming of critical elements of code.
. Formal Tests-

'Formal testing demonsrates that the software is ready for its intended use. A formal test

should include an acquirer- approved test plan and procedures, quality assurance witnesses, a
record of all discrepancies, and a test report. Formal testing is always requirements-driven,
and its purpose is to demonstrate that the software meets its requirements.

Each software development project should have at least one formal test, the acceptance test

‘that concludes the development activities and demonstrates that the sofiware is ready for
_ operations. _
-In addition to the final acceptance test, other formal testing may be done on a project. For

- example, ifthe s_o_ftware isto be developed and delivered in increments orbuilds, there maybe
* incremental acceptance tests. As a practical matter, any contractually required test is usually .

considered a formal test; others are "informal."

After acceptance of a software product, all changes to the product should be accepted as a
result of a formal test. Post acceptance testing should include regression testing. Regression

+ testinginvolves rerunning previously used acceptance tests to ensure that the change did not
., disturb functions that have previously been accepted. ' '
_' ¢. Verification and Validation

| During the Software Acquisition Life Cycle the V&V Plan should cover all V&V activities to

be performed during all phases ofthe life cycle. The verification & Validation activities per-

formed at each of the development cycle are discussed below:

- L. Software Concept and Initi_sition Phase . _
- Themajor V&V activity during this phase s to develop a concept of how the systemistobe

reviewed and tested.

o Simple projects may compress the life cycle steps, if 50, the reviews may have to be com-

pressed. Test concepts may involve simple generation oftest cases by a user representative or

“may require the development of elaborate simulators and test data generators. Without an

adequate V&V concept and plan, the cost, schedule, and complexity of the project may be
poorly estimated due to the lack of adequate test capabilities and data.

ii. Software Requirements Phase

V&V activities during this phase should include; Analyzing software requirements to deter-
mineifthey are consistent with, and within the scope of, system requirements, assuring that
the requirements are testable and capable ofbeing satisfied, creating a preliminary version of
the Acceptance Test Plan, including a verification matrix which relates requirements to the
tests used to demonstrate that requirements are satisfied, Beginning development, if needed,

“of'test beds and test data generators. and conducting the phase-ending Software Require-
_ ments Review (SRR). '

116

iii. SoftwareArchitectural (Preliminar;) Design Phase

V&V activities during this phase should include, Updating the preliminary version ofthe Ac-
ceptance Test Plan and the verification matrix, conducting informal reviews and walkthroughs
or inspections of the preliminary software and database designs, the phase-ending Prelimi-
nary Design Review (PDR)at which the allocation of requirements to the software architec-
ture is reviewed and approved.

iv. Software Detailed Design Phase

V&V activities during this phase should include: Completing the Acceptance Test Plan and
fhe verification matrix, including test specifications and unit test plans, conducting informal
reviews and walkthroughs or inspections of the detailed software and data base designs, the
Crifical Design Review (CDR) which completes the software detailed design phase.

v. Software Implementation Phase
V&V activities during this phase should include:
Code inspections and/or walkthroughs, Unit testing software and data structures, Locating,

correcting, and retesting errors and Development of detailed test procedures for the nexttwo
phases.

vi. Software Integration and Test Phase

This phase is a major V&V effort, where t%ae tested units from the previous phase are inte-
grated into subsystems and then the final system. Activities during this phase should include,

Conducting tests per test procedures, Documenting test performance, test completion, and

conformance of test results versus expected results, Providing a test report thatincludes a

summary of nonconformance found during testing, Locating, recording, correcting, and re-

~ testing nonconformance and The Test Readiness Review (TRR), confirming the product's
_ readiness for acceptance testing. : '

vii. Software Acceptance and Delivery Phase

V&V activities during this phase should include, Demonstrating that the developed system
meets its functional, performance, and interface requirements by conducting test analysis &
inspection, Locating, comecting, and retesting nonconformances and The phase-ending Ac-
ceptance Review (AR). : - -

_ viil. Software Sustaining Engineerixig and Operations Phase

Any V&V activities conducted during the prior seven phases are condﬁcted during this phase
as they pertain to the revision or update of the software.

Independent Verification and Validation (IV&YV)

It is aprocess whereby the products of the software development life cycle phases are inde-
pendently reviewed, verified, and validated by an organization that is neither the developer nor
the acquirer of the software. The V&V agent should have no stake in the success or failure of
the software. The IV&V agent's only interest should be to make sure that the software is
thoroughly tested against its complete set of requirements. '

The IV&V activities duplicate the V&V activities step-by- step during the life cycle, with the
exception that the IV &V agent does no informal testing. Ifthereis anIV&V agent, the formal
acceptance testing may be done enly once, by the IV&V agent. In this case, the developer
will do a formal demonstration that the software is ready for formal acceptance.

111

9.3 SOFTWARE INSPECTIONS

Perhaps more tools have been developed to 2id the V&V of software (especially testing) than any other
software activity. The tools available include code tracers, special purpose memory dumpers and formatters,
data generators, simulations, and emulations. Some tools are essential for testing any significant set of
soﬁware, and, if’ they have to be developed, may turn out to be a significant cost and schedule driver.

An especlallyweﬁxl techmique for finding errors is the formal i mspectlon Formal inspections were devel-
oped by Michael Fagan of IBM. Like walkthroughs, inspections involve the line-by-line evaluation of the
product being reviewed. Inspections, however, are sxgmﬁcantly different from walkthroughs and are sig-
nificantly more effective.

Inspections are done by a team, each member of which hasa specificrole. The team isled by a modera-
tor, who is formally trained in the inspection process. The team includes a reader, who leads the team
through the item; one or more reviewers, who look for faults in the item; a recorder, who notes the faults;
and the author, who helps explain the item being inspected.

This formal, highly structured inspection process has been extremely effective in finding and eliminating
errors. It can be applied to any product of the software development process, including documents,
design, and code. One of its important side benefits has been the direct feedback to the developer/author,
and the significant improvement in quality that results. .

9.4 VERIFICATION AND FORMAL METI-IODS

Fonna] method of software development is based on mathernatical reprcsentahon of'the software, usually
~ asaformal specification. These formal methods are mainly concerned with a mathematical analysis of the
specification with transforming the specification to a more detailed, semantically equivalent representation
or with formally venﬁ/mg that one representation of the system is semantically equivalent to another repre-
sentation. _

. Formal method may be used at different stages in the validation and verification process.

1. A formal specification ofthe system may be developed and mathematically analyzed fori incon-
sistency. This technique is effective in discovering specification errors. '

2. A formal verification using mathematical arguments that the code of a software is consistent
with its specification. This requires a formal specification and is effective in discovering pro-
gramming and some design errors. A transformational development process where a formal
specification is transformed through a series of more detailed representation or a cleanroom
process may be used to support the formal verification process. :

9.4.1 Clean Room Software Development

The Cleanroom process is a theory-based, team-oriented process for the development and

- certification of high-reliability software systems under statistical quality control. Iis principal

- objectiveisto develop software that exhibits zero failures in use. For this purpose the life cycle

is different from conventional sofiware development techniques. The approach combines math-

ematical-based methods of software specification, design and correctness verification with

statistical, usage-based testing to certify software fitness for use. Therefore the goals in this

method are to reduce the failures found during testing by enabling good and correct designs

that avoid rework. Most designs pass through detailed specifications and modeling which are
evaluated and proved for cotrectness using formal methods.

The clean room approaéh to software development is based on five key strategjes:

Requirement Analysis: To define requiremmfs for the software product {including fundtion,
usage, environment, and performance) as well as to obtain agreement with the customer on the
12

requirements as the basis for function and usage specification. Requirements analysis may
identify opportunities to simplify the customer's initial product concept and to reveal require-
ments that the customer has not addressed.

Function Specification: Tomake sure the requirement behavior of the softwarein all possible
circumstances of use is defined and documented, The function specification s complete, con-
sistent, correct, and traceable to the software requirements. The customer agrees with the
function specification as the basis for software development and certification. This process is
to express the requirements in a mathematically precise, complete, and consistent form.

Usage Specification: To identify and classify software users, usage scenarios, and environ-
. sments ofuse, to establish and anatyze the highest level siructure and probability distribution for
software usage models, and to obtain agreement with the customer on the specified usage as
the basis for software certification. '

Architecture Specification The purpose is to define the 3 key dimensions of architecture:
Congceptuat architecture, module architecture and execution architecture. The Cleanroom as-
pect of architecture specificationisin decomposition of the history-based black box Function
Specification into state-based state box and procedure-based clear box descriptions. Itis the
beginning of a referentially transparent decomposition of the function specificationinto abox
structure hierarchy, and may be used during increment development.

Increment Planning: To allocate customer requirements defined in the Function specification
to a series of software increments that satisfy the Software Architecture, and to define sched-
ule and resource allocations for increment development and certification. In the incremental

process, a software system grows from initial to final form through a series ofincrements that -

implement user function, execute in the system environment, and accumulate into the final
system,

Cleanroom Development Processes

There are three terms involved when the cleanroom process is used for large system develop- .

ment, these are:

Software Reengineering: The purposc is to prepare reused software for incorporation into
the software product. The functional semantics and interface syntax of the reused software
must be understood and documented, and if incomplete, canbe recovered through function
abstraction and correctness verification. Also, the certification goals for the project must be
achieved by determining the fitness foruse of the reused software through usage models and
statistical testing. '

Increment Design: The purposeisto design and code a software increment that conforms to -

Cleanroom design principles. Increments are designed and implemented as usage hierarchies
through box structure decomposition, and are expressed in procedure-based clear box forms
that can introduce new black boxes for further decomposition. The design is performed in

such a way that it is provably correct using mathematical models. Treating a program as a
mathematical function can do this.

Correctness Verification: The purpose is to verify the correctness of a software increment
using mathematical based techniques. Blackbox specifications are verified to be complete,
consistent, and correct. State box specifications are verified with respect to black box speci-
fications, and clear box procedures are verified with respect to state box specifications, Aset
of cortectness questions is asked during functional verification. Correctness is established by

_ group consensus and/or by formal proof techniques. Any part of the work changed after
verification, must be reverified.

113

9.5 SUMMARY

VenﬁcatlonAnd validation are not the same thmg Verification shows that a program meets its
specification, and validation shows that the program does what the user requires.

Test plan should include details of the items to be tested, the testing schedule, the procedure
for managing the testing process, the hardware and soﬂtware requirements, and any testing

~ problems that may be arise.

Program inspections are effective in ﬁndingpfogram errors. The aim of an inspection is to
search faults. A fault check list should derive the inspection process.

Verification techniques involv examination and analysis of the program to find the EITOrS,
In a program inspection a team checks the code.

Cleanroom development relies on static technique for program verification and statistical test-
ing for system reliability certification, it has been successfil in producing systems that have a
high level of reliability: .

9.6 UNIT END QUESTIONS

© 0N A AW N -

Define validation and verification (V&V)

What are the two main objectives of the V&V?
Name two types of verification.

What is the goal of program testing?

What are two types of testing?

Explain the difference between testing and debugging.
What is the software test plan"

Whatis mspechon ?

What s a static anatyser?

10. What are the three stages of static analysis?

9.7 FURTHER READINGS

1.
2.
3.

Software Engineering: A Practioner’s Approach, Roger S. Pressman, McGrawHill
Software Enginering, lan Someville, Addison Wesley
http:/khambatti.com/mujtaba/Article & Papers/ Cleanroom Software Development.pdf

14

UNIT -X

SOFTWARE TESTING

Structure of the Unit

10.0
10.1
10.2
10.3
104

10.5
10.6
107
10.8
109
10.10
10.11
10.12

Objectives

Introduction

Testing Fundamentals

Testing Technigues & Stxafegies
Test Case Design

10.4.1 Functiona! Testing

10.4.2 Structural Testing

Test Case Generation & Tool Support
Test Case Execution & Analysis
Strategic Issues in Testing
Levels of Testing

Black Box & White Box Testing
Summary

Unit End Questions

Further Readings

10.0 OBJECTIVES

After reading this unit, students should be able to appreciate the following:

-

»

Testing Fundamentals
Test Cases and Test Criteria
Test Case Design |
Functional Testing
Structural Testing _.
Fest Plan Activities During Testing
Strategic Issues in Testing
Unittesting
Integration Testing

10.1 INTRODUCTION |

Quality of design refers to the characteristics that designers specify for an item. The grade of materials,
tolerances, and performance specifications all contribute to the quality of design. As higher-grade materials
are used, tighter tolerances and greater levels of performance are specified, the design quality ofa product
inereases, if the product is manufactured according to specifications.

Testing is the activity through which this compliance to specifications & quality is ensured, Software testing
aims at eveluating the attributes and capbality of the programs and determining that it meets its required
resluts, - : - '

10.2 TESTING FUNDAMENTALS

Testing is the process of executing the software with the intent of finding errors. The system may be tested |

in state and dynamic modes.

Static analysisis used to investigate the structural properties of source code. Dynamic test cases are used
to investigate the behavior of the source code by executing the program on the test data. As The term
"Program Unit" denotes a routine or collection of routines, implemented by an individual programmer. Ina
well-designed system, a program umnit is a stand-alone program or a function unit ofa large system,.

During the testing process, only failures are observed, by which the presence of faults is deduced. The

actual faults are identified by separate activities, commonly referred to as "debugging." In other words, for
identifying faults, after testing has revealed the presence of faults, the expensive task of debugginghas to be
performed. Testing hence, is an expensive method for identification of faults, compared to methods that

directly observe faults,
| Test Oracles

To test any program, we need to have a desctiption of its expected behavior and a method of determining
whether the observed behavior conforms to the expected behavior. For this, we need a test oracle.

A testoracleisa mechanism; different from the program itself, that can be used to check the correctness of
the output of the program for the test cases. Conceptually, we can consider testing a processin which the
test cases are given to the test oracle and the program under testing. The output of the two is, then,

compared to determine if the program behaved correctly for the test cases. This is shown in Figure 10.1. -

Saftwars
Unider
Testing
Resultsof
Text Casesy Tedting
Tost
Orade

Figure 10.1: Testing and Test Oracles

Test oracles are necessary for testing. Ideally, we would like an automated oracle, which always gives a
correct answer. However, often, the oracles are human beings, who mostly compute by hand what the
output of the program should be. Often, it is extremely difficult to determine whether the behavior con-
forms to the expected behavior, our "human oracle” may make mistakes. As a result, when thereisa
discrepancy between theresults of the program and the oracle, we have to verify the resulis produced by
the oracle, before declaring that there is a fault in the program. This is one of the reasons that testing is so

cumbersome and expensive.

The human oracles, generally, use the specifications of the program to decide what the "correct” behavior
’ 116

of the program should be. To help the oracle determine the correct behavior, it is important that the
behavior of the systern or component be unambiguously specified and that the specification itselfis error-
free. In other words, the specifications should actually specify the true and correct system behavior. These
conditions are hard to satisfy. After all, itis the activity of some earlier phase that determines these speci-
fications, and these activities might be error-pronie. Hence, the specifications themselves may contain
errors, be imprecise, or contain ambiguities. Such shortcomings in the specifications are the major cause of
situations where one party claims that a particular condition is not a failure while the other claims it is.
However, thereis no easy solution to this problem. ‘Testing does require some specifications against which
the given system is tested.

There are some systems where oracles are automatically generated from specifications of programs or
miodules. With such oracles, we are assured that the output of the oracle is consistent with the specifica-
tions. However, even this approach does not solve all our problems, because of the possibility of exrors in
- the speciﬁcations'. Consequently, an oracle generated from the specifications will only produce correct
results if the specifications are correct, and it will not be dependable in the case of specification errors.
Furthermore, such systems that generate oracles from specifications are likely to require formal specifica-
tions, which are frequently nof generated during design.

10.3 TEST.ING TECHNIQUES AND S’I‘RATEGIES

Generally, parts of the program are tested before testing the entire program. Besides, partitioning the
problem of testing, anotherreason for testing parts separately is that ifa test case detects an errorinalarge
- program, it will be extremely difficult to pinpoint the source of the error. That is, if a huge program does not
work, determining which module has errors can be a formidable task. Furthermore, it will be exiremely
difficult to construct test cases so that different modules are executed in a sufficient number of different
conditions so that we can fee! fairly confident about them. Tnmany cases, it is even difficult to construct test
cases so that all the modules will be executed. This increases the chances of a module's errors going
andetécted. Hence, it is clear that for a large system, one should first test different parts of the system
independently, before testing the entire system. . :

In incremental testing, some parts of the system are first tested independently. Then, these parts are com- -

bined to form a (sub) system, which is then tested independently. This combination ¢an be done in two
ways: either only the modules that have been tested independently are combined or some new untested
modules are combined with tested modules. Both of these approaches require that the order in which
modules are to be tested and integrated be planned before commencing testing. ' '

Itis assumed that a system is a hierarchy of modules. For such systems, there are two COMmnon ways
modules can be combined, as they are tested, to form a working program: top-down and bottom-up. In
top-down strategy, we start by testing the top of the hierarchy, and we incrementally add modules that it
calls and then test the new combined system. This approach of testing requires stubs to be written, A stub
is a dummy routine that simulates a module. In the top-down approach, amodule (ora collection) cannot
be tested in isolation because they invoke some other modules. To allow the modules to be tested before
their subordinates have been coded, stubs simulate the behavior of the subordinates. :

The bottom-up approach starts from the bottom of the hierarchy. First, the modules at the very bottom,
which have no subordinates, are tested. Then these modules are combined with higher-level modules for
testing, At any stage of testing, all the subordinate modules exist and have been tested earlier. To perform
bottom-up testing, drivers are needed to setup the appropriate environment and invoke themodule. Itis
the job of the driver to invoke the module under testing with the different set of test cases.

Both top-down and bottom-up approaches areincremental, starting with testing single modules and then
adding untested modules to those that have been tested, until the entire system is tested. In the first case,
stubs must be written to perform testing, and in the other, drivers need to be written. Top-down testing is

advaniageous, ifmajor flaws oceur toward the top of the hierarchy, while bottom-up is advantageous ifthe
' 117

major flaws oceur toward the bottom. Often, writing stubs can be more difficult than writing drivers,
because one miay need to know beforehand the set of inputs for the module being simulated by the stub
and to determine proper responses for these inputs. In addition, as the stubs often simulate the behavior of
amodule over a limited domain, the choice of test cases for the super-ordinate module is limited, and
deciding test cases is often verydlﬂiwlt. :

Itisoften best to select the testing method to conform with the development method. Thus, if the system is
developed in a top-down manner, top-down testing should be used, and if the system is developed ina
bottom-up manner, abottom-up testing strategy should be used. By doing this, as paris of the system are
developed, they are tested, and errors are detected as development proceeds. It should be pointed out

that we are concerned with actual program development here, not the design method. The development

can be bottom-up even if the design was done in a top-down manner.

Test Cases and Test Criteria

Having test cases that are good at revealing the presence of faults is central to successful testing. The
reason for thisis that if there is a fault ina program, the program can still provide the expected behavior for
many inputs. Only for the set of inputs that exercise the fault in the program will the output of the program
deviate from the expected behavior. Hence, it is fair to say that testing is as good as its test cases.

Ideally, we would like to determine a set oftest cases such that successful execution of all of them implies
that there are no errors in the program. This ideal goal cannot, usually, be achieved due to practical and
theoretical constraints. Each test case costs money, as effort is needed to generate the test case, machine
time is needed to execute the program for that test case, and more effort is needed to evaluate the resuits.
Therefore, we would also like to minimize the number of test cases needed to detect ervors. These are the
two fundamental goals of a practical testing activity-maximize the rumber of errors detected and minimize
the number of test cases (i.e., minimize the cost). As these two are frequently contradictory, the problem
of selecting the set of test cases with which a program should be tested becomes more complex.

While selecting test cases, the primary objective is to ensure that if there is an ervor or fauit in the program,
it is exercised by one of the test cases. An ideal test case set is one that succeeds (meaning that its
execution reveals no errors) only if there are no errors in the program. One possible ideal set of test cases
isone that includes all the possible inputs to the program. This is often called exhaustive testing. However,
exhausiive testing 1s impractical and infeasible, as even for small programs the number of elements in the
input domain can be extremely large. :

Hence, a realistic goal for testing is to select a set of test cases that is close to ideal. How should we select
' our test cases? On what basis, should we include some element of the program domain in the set of test
‘cases and not include others? For this, test selection criterion {or simply test criterion) can be used. Fora
given program P and its specifications, a test sefection criterion specifies the conditions that must be satis-
fied by a set of test cases T. The criterion becomes a basis for test case selection. For example, if the
criterion is that ali statements in the program be executed at least once during testing, then a set of test
casesTsaﬂsﬁ&sﬂusmmonforaprogramP}fﬂ:eexemhonofPWlmTenmthateachstathmth
is executed at least once. _

There are two aspects of test case selection specifying a criterion for evaluating a set of test cases, and
generating a set of test cases that sattsfy a given criterion. As we will see, many test case criteria have been
proposed. However, generating test cases for most of these is not easy and cannot, in general, be auto-
mated filly. Often, a criterion is spec ified and the tester has to generate test cases that satisfy the criterion.
In some cases, guidelines are available for deciding test cases, Overall, the problem of test case selection
is very challenging, and current solutions are limited in scope.

There are two fundamental properties for a testing criterion: reliability and validity. A criterion is reliable if
all the sets (oftest cases) that satisfy the criterion detect the same errors. That is, it is insignificant which of

the sets satisfying the criterion is chosen; every set will detect exactly the same errors. A criterion is valid,
if for any error in the program, there is some set satisfying the criterion that will reveal the error. A funda-

[§5,]

mental theorem of testing is that if a testing criterion is valid and reliable, ifa set satisfying the criterion
succeeds {revealing no faults) then the program contains no errors. However, it has been shown that no
algorithm exists that will determine a valid criterion for an arbitrary program.

Psychology of Testing

Devising a set of test cases that will guarantee that all errors will be detected is not feasible. Moreover,
there are no formal or precise methods for sclecting test cases. Even though, there are a number of
beuristics and rules of thumb for deciding the test cases, selecting test cases is still a creative activity that
relies on the ingenuity of the tester. Dueto this reason, the psychology of the person performing the testing
becomes important. - ’

The aim of testing is often to demonstrate that aprogram works by showing that it has no errors. Thisis the
opposite of what testing should be viewed as. The basic purpose of the testing phaseisto detect the ervors
that may be present in the program. Hence, onie should not start testing with the intent of showingthat a
program works; but the intent should be to show that a program does not work. With this in mind, we
define testing as follows: testing is the process of executing a program with the intent of finding errors.

This emphasis on proper intent of testing is a trivial matter because test cases are designed by human
beings, and human beings have a tendency to perform actions to achieve the goal they have in mind. So, if
the goal is to demonstrate that a program works, we may consciously or subconsciously select test cases
that will try to demonstrate that goal and that will beai the basic purpose of testing, On the other hand, ifthe
intent is to show that the program doces not work, we will challenge our inteliect to find test cases towards
that end, and we are likely to detect more erroxs. Testing is, essentially, a destructive process, where the
tester has to treat the program as an adversary that must be beaten by the tester by showing the presence
of errors. With this in mind, a test case is *good" if it detects an as-yet-undetected eqror in the program, and
our goal during designing test cases should be to design such "good" test cases.

One of the reasons, many organizations require & producttobe tested by people not involved with devel-
oping the program before finally delivering it to the customet, is this psychological factor. Itis hard tobe
destructive to something we have created ourselves, and we all like to believe that the program we have

written "works." So, it is not easy for someone to test his own program with the proper frame of mind for

testing. Another reason for independent testing is that sometimes errors occur because the programmer did
not understand the specifications clearly. Testing of aprogram by its programmer will not detect such
errors, whereas independent testing may succeed in finding them. -

10.4 TEST CASE DESIGN

There are two basic approaches to test case desigm: functional and stractural. In functional testing, the
structure of the program is not considered. Structural testing, on the other hand, is concerned with testing
the implementation of the program. '

10.4.1 Functional Testing

Equivalence partitioning is a technique for determining which classes of input data have common
propetties. A program should behave in a comparable way for all members of an equivaience
 partition. _ . .
The equivalence partitions may be identified by using program specification or user documenta-
tion and by the tester using expexience, topredict which classes of input value are likely to detect
errors. For example, if an input specification states that the range of some input values mustbea
5-digjt integer, that is, between 10000 and 99999, equivalence partitions might be those values
less than 10000, values between 16000 and 99999 and values greater than 99999. Similarly, 1if
four to cight values are to be input, equivalence pattitions are less than four, between four and
eipht and more than eight.

1y

1
~,

|
I
|
|
|
;

In ﬁmctlonal testing, the structure of the program is not considered. Test cases are decided solely
on the basis of the requirements or specifications of the program or module, and the internals of

the module or the program are not considered for selection of test cases. Due to its nature,

functional testing is often called "black box testing." In the structural approach, test cases are
generated based on the actual code of the program or module to be tested. This structural
approach is sometimes called "glass box testing."

The basis for deciding test cases in functional testing is the requirements or specifications of the
system or module. For the entire system, the test cases are designed from the requirements
specification document for the system. For modules created during design, test cases for func-
tional testing are decided from the module specifications produced during the design.

The most obvious functional testing procedure is éxhaustive testing, which as we have stated, is
impractical. One criterion for generating test cases is to generate them randomly This strategy
has little chance of resulting in a set of test cases that is close to optimal (i.¢., that detects the
maximum errors with minimum test cases). Hence, we need some other criterion or rule for
selecting test cases. There are no formal rules for designing test cases for functional testing. In
fact, there are no precise criteria for selecting test cases. However, there are a number of tech-
niques or heuristics that can be used to select test cases that have been found to be very success-
ful in detecting ervors. Here are some of these tec]mlques :

® Equivalence Class Partitioning

Functional testing is an approach to testing where the specification of the component being
tested is used to derive test cases. The component is a "black box" whose behavior can only be
determined by studying its inputs and the related outputs.

The key problem for the tester whose aim is to discover defectsis to select inputs, which have a
high probability of being members of the set. Effective selection is dependent on the skill and
experience of the tester but there are some structured approaches, which can be used to guide
the selection of test data.

. However, without looking at the intemal structure of the program, it is impossible to detemnne
such ideal equivalence classes (even with the internal structure, it usually cannot be done). The
equivalence class partitioning method tries to approximate this ideal. Different equivalence classes
are formed by putting inputs for which the behavior pattern of the module is specified to be
different into similar groups and then regarding these new classes as forming equivalence classes.
The rationale of forming equivalence classes like this, is the assumption that if the specifications

require exactly the same behavior for each element in a class of values, then the program is likely

to be constructed so that it either succeeds or fails for each of the values in that class. For
example, the specifications of amodule that determine the absolute value for integers specify one
behavior for positive integers and another for negative integers. In this case, two equivalence
classes-one consisting of positive integers and the other consisting of negative integers will be
formed.

For robust software, we must also test for incorrect inputs by generating test cases for inputs that
do not satisfy the input conditions. With this in mind, for each equivalence class of valid inputs we
define equivalence classes for invalid inputs.

Equivalence classes are usually formed by considering each condition specified onan input as
specifying a valid equivalence class and one or more invalid equivalence classes. For example, if
~ aninput condition specifies arange of valuies (say, 6 < count < max), then forms a valid equiva-
lence class with that range and two invalid equivalence classes, one with values less than the
lower bound of the range (i. e/ count < 0) and the other with values higher than the higher bound
(count>max). If the input specifies a set of values and the requirements specify different behav-
ior for different elements in the set, then a valid equivalence class is formed for each of the

126

elements in the set and an invalid class for an entity not betonging to the set.

Essentially, if there is reason o believe that the entire range of an input will notbe treated in the
same manner, then the range should be split into two or more equivalence classes. Also, for each
valid equivalence class, one or more invalid equivalence classes should be identified. For ex-
ample, an input may be specified as a character. However, we may have reason to believe that
the program will pexform different actions if a character is an alphabet, a number, or a speciat
character. In that case, we will split the input into three valid equivalence classes.

Tt is often useful to consider equivalence classes in the output, Foran output equivalence class,
the goal is to gencrate test cases such that the output for that test case lies in the output equiva-
fence class. Determining test cases for output classes may be more difficult, but output classes
have been found to reveal errors that are not revealed by just considering the input classes.

(i) Boundary Value Analysis

It has been observed that programs that work correcily for a set of values in an equivalence class
fail on some special values. These values often lie on the boundary of the equivalence class. Test
 cases, that have values on the boundaries of equivalence classes are, therefore, likely to be
“high-yield" test cases, and selecting suchtest cases is the aim of the boundary value analysis. In
boundary value analysis, we choose an input for a test case froman equivalence class, such that
the input lies at the edge of the equivalence classes. Boundary values for each equivalence class,
including the equivalence classes of the output, should be covered. Boundary value test cases
are also called "exireme cases", Hence, we can say that a boundary value test case is a set of
~ input data that lies on the edge or boundary of a class of input data or that generates output that
lies at the boundary of a class of output data.

In case of ranges, fot boundary value analysis it is useful to select the boundary elements of the
range and an invalid vatue just beyond the two ends (for the two invalid equivalence classes). So,
if the tange is 0.0 <x < 1.0, then the test cases are 0.0, 1.0 (valid inputs), and - 0.1,and 1.1 (for

_ invalid inputs). Similarly, if the input is a list, attention should be focused on the first, and last
- elements of the list. We should also consider the outputs for boundary value analysis. Ifan.

equivalence class can be identified in the output, we should try to gencrate test cases that will

- produce the output that lies at the boundaries of the equivalence classes. Furthermore, we should - -

try to form test cases that will produce an output that does not lie in the equivalence class.

@(if) Cause-Effect Graphing

One weakness with the equivalence class partitioning and boundary value methods is that they
consider each input separately. That is, both concentrate on the conditions and classes of one
input. They do not consider combinations of input circumstances that may form interesting situ-
ations that should be tested. One way to exercise combinations of different input conditions is to
consider all valid combinations of the equivalence classes of input conditions. This simple ap-
proach will result in an unusually large number of test cases, many of which will not be useful for
revealing any new errors. For example, if there are n different input conditions, such that any
combination of the input conditions is valid, we will have 2 test cases.

Causc-effect graphing is a technique that aids in selecting combinations of input conditions in a
systernatic way, such that the number of test cases does not become unmanageably large. The
technique starts with identifying causes and effects of the system under testing. A cause is a
distinct input condition, and an effectisa distinct output condition. Each condition forms anode
in the cause-effect graph. The conditions should be stated such that they can be set to either true
or false. For example, an input condition can be "fileis empty," which canbe set to trueby having
an emptyinput file, and falsebya nonempty file. After identifying the causes and effects, for each
effect we identify the causes that can produce that effect and how the conditions have to be

combined to make the effect true. Conditions are combined using the Boolean operators "and,"

1231

"or," and "not," which are represented in the graph by &, 1, and ". Then, for each effect, all
combinations of the causes that the effect depends on which will make the effect true, are
generated, By doing this, we identify the combinations of conditions that make different effects
true. A test case is then generated for each combination of conditions, which make some effects
true. For example, th elist of Causes and Effects for operating a Bank account could be:

Causes:

c¢l. Command is crediu

¢2. Command is debit

¢3. Account number 1s valid

¢4, Transaction_amount . is valid
Effects:

el, Print "irvalid command”

e2. Print "invalid account-number”
e3. Print "Debit amount not valid”
e4. Debit account

e5. Credit account

Let us llustrate this techue with a small example Suppose that for a bank database there are
two comimands allowed:

credit acct-number transactionwamount‘
debit acct-number transaction amount

- Therequirements are that if the command is credit and the acct-number is valid, then the acoount
is credited. If the command is debit, the acct-number is valid, and the transactionn_amount is
valid (Jess than the balance), then the account is debited. If the command is not valid, the account
number is not valid, or the debit amount is not valid, a suitable message Is generated. We can
identify the following cavses and effects from these requirements, shown in Figure 10.2. o

The cause effect of this is shown in Figure 10.2. In the graph, the cause-effect relationship of this
example is captured. For all effects, one can easily determine the causes each effect depends on
and the exact nature of the dependency. For example, according to this graph, the effect E5
depends on the causes ¢2, ¢3, and ¢4 in a manner such that the effect E5 is enabled when all ¢2,
¢3, and ¢4 are true. Similarly, the effect E2 is enabled if ¢3 is false.

From this graph, a list of test cases can be generated. The basic strategy is to set an effect to
and then set the causes that enable this condition. The condition of causes forms the test case. A
cause may be set to false, true, or don’t care (in the case when the effect does not depend at all
on the cause). To do this for all the effects, it is convenient to use a decision table. The decision

table for this example is shown in Figure 10.3.

This table lists the combinations of conditions to set different effects. Each combination of con-
ditions in the table for an effect is a test case, Together, these condition combinations check for
various effects the software should display. For example, to test for the effect E3, both ¢2 and ¢4
have to be set. That is, to test the effect "Print debit amount not valid," the test case should be:
Command js debit (setting: c2 to True), the account number is valid (setting 03 to False), and the
- transaction money is not proper (setting c4 to False).

122

Figure10.2: The Cause Effect Graph

. SNo. 1 2 3 4 5
Cl ¢ 1 X X I.
C20 X .1 1 X
c3x 0 1 1 1
C4dx x 0 1 i

B 1

E2 1

E3 | 1

B4 1

E5 | I

" Figure 10.3: Decision Table for the Cause-effect Graph

Caus&effect graphing, beyond generating high-yield test cases, also aids the understanding of
the functionality of the system, bécause the tester must identify the distinct causes and effects.
There are methods of reducing the number of test cases generated by proper traversing of the
graph. Once the causes and effects are listed and their dependencies specified, much of the '
remaining work can also be automated.

(iv) Special Cases -
It has been seen that programs often produce incorrect behavior when inputs form some special

" cases. Thereason is that in programs, some combinations of inputs need special treatment, and

providing proper handling for these Spec1al cases is easily ovetlooked. For example, in an arith-
metic routine, if there is a division and the divisor is zero, some special action has to be taken,
which could easilybe forgotten bythe programmer, These special cases form particularly good
test cases, which can reveal errors that will usually not be detected by other test cases.

" Special cases will often depend on the data structures and the finction ofthe module. There are

1o rules to determine special cases, and the tester has to use his intuition and experience to
identify such test cases. Consequently, detenmining special cases is also called errox guessing.

The psychology is particutarly important for eror guessing. The tester shouid play the "devil's

~ advocate™ and try to guess the incorrect assumptions that the programmer could have made and

the situations the programmer could have overlooked or handled incorrectly. Essentially, the
tester is trying to identify ervor prone situations. Then, test cases are written for these situations.
For example, in the problem of finding the number of different words in a file (discussed in earlier

chapters) some of the special cases can be: file is empty, only one word in the file, only one word
123

inaline, some empty lines in the input file, presence of more than one blank between wordé, all
words are the same, the words are already sorted, and blanks at the start and end ofthe file. -

Incorrect assumptions are usually made because the specifications are not complete or the writer
of specifications may not have stated some properties, assuming them to be obvious, Whenever
there is reliance on tacit understanding rather than explicit statement of specifications, there is
scope for making wrong assumptions, Frequently, wrong assurnptions are made about the envi-
ronments. However, it should be pointed out that special cases depend heavily on the problem,
and the tester should really try to "get into the shoes" of the designer and coder to determine
these cases.

- 10.4.2 Structural Testing

A complementary approach to testing is sometimes called siructural or White box or Glass box

 testing. The name contrasts with black box testing because the tester can analyse the code and
‘use knowledge about it and the structure of a component to derive the test data. The advantage
of structural testing is that test cases can be detived systematically and test coverage measured.
The quality assurance mechanisms, which are setup to control testing, can quantify what level of
testing is required and what has be carried out. In the previous section, we discussed functional
testing, which is concerned with the function that the tested program is supposed to perform and
does not deal with the internal structure of the program responsible for actually implementing that -
finction. Thus, functional testing is concerned with functionality rather than implementation of the
program. Various criteria for functional testing were discussed earlier. Structural testing, on the
other hand, is concerned with testing the implementation of the program. The intent of structural
testing is not to exercise all the different input or output conditions (although that may be a by-
product) but to exercise the different programmmg structures and data structures used in the
program.

To test the structure of a program, structural testing aims to achieve test cases that will force the
desired coverage of different structures. Various criteria have been proposed for this, Unlike the
criteria for functional testing, which are frequently imprecise, the criteria for structural testing are
generally quite precise as they are based on program structures, which are formal and precise.
Here we will discuss three different approaches to structural testmg control flow-based testing,
data flow-based testing, and mutation testing,

Control Flow-Based Criteria

 Before we conmder the criteria, letus premsely definea control flow graph for a program. Let
the control flow gra})h (or simply flow graph) of a program P be G. A node in this graph repre-
sents a block of statements that is always executed together, i.e., whenever the first statement is
executed, all other statements are also executed. An edge(i,}) (ﬁom nodeito nodej) represents
apossible transfer of control after executing the last statement of the block represented by node
i to the first statement of the block represented by node j. A node corresponding to a block,
whose first statement is the start statement of P, is called the start node of G, and a node corre-
sponding to a block whose last statement is an exit statement is called an exit node. Apathisa
 finite sequence of nodes (n1, nz, nk), k > I, such that there is an edge (ni, ni+1) for all nodes n;
in the sequence (except the last node nk). A complete path is a path whose first node is the stast
node and the lasinode is an exitnode.

Now, let us consider control flow-based criteria. Perhaps, the simplest coverage criteria is state-
ment coverage, which requires that each statement of the program be executed at least once
- during testing. In other words, it requires that the paths executed during testing include all the
nodes in the graph. This is also called the all-nodes criterion. This coverage criterionis not very
strong, and can leave errors undetected. For example, if there is an if statement in the program
without having an else clause, the statement coverage criterion for this statement will be satisfied

by a test case that evaluates the candition to true. No test case is needed that ensures that the
124

. {

condition in the if statement evaluates to false. This is a serious shortcoming because decisions in
programs are potential sources of errors. Asan example, consider the followmg function to
oompute the absolute value of a number:

—1_htxyz(y) | . .
inty, |
{
if (y>=0)y=0-y,
retamn(y) -

}

 'This program is clearly wrong, Suppose we execute the function with the set of test cases {y-a}
(i.e., the set has only one test case). The staternent coverage criterion will be satisfied by testing
with this set, but the error will not be revealed.

A litflemore general coverage criterion is branch coverage, which requires that each edge in the

control flow graph be traversed at least once during testing. In other words, branch coverage

requires that each decision in the program be evaluated to true and false values at least once

during testing. Testing based on branch coverage is often called branch testing. The 100% branch

coverage criterion is also called the all-edges criterion. Branch coverage implies statement cov-

erage, as each statement is a part of some branch. In the preceding example, a set of test cases

satisfying this criterion will detect the error. '

“The trouble with branch coverage comes if a decision has many conditions in it (consisting of a
Boolean expression with Boolean operators and and or}. In such situations, a decision can

evaluate to true and false without actually exercising all the conditions. For example, consider the
following function that checks the validity of a data item. The data item is valid ifit lies between

0 and 100.
int check(y)
| inty; '

iy >=) && (y <=200)
check =True; |
else chéck =False;

}

-The module is incorrect, as it is checking for y < 200 instead of 100 (perhaps, a typing error
" made by the programmer). Suppose the module is tested with the following set of test cases: {y
=5,y=-5}, The branch coverage criterion will be satisfied for this module by this set. However,
the exror will not be revealed, and the behavior of the module s consistent with its specifications
for all test cases in this set. Thus, the coverage criterion is satisfied, but the error is not detected.
This occurs because the decision is evaluating to true and false because of the condition {y > 0).
The condition (y < 200) never evaluates to false during this t&st, hence the errorin this condition
isnot revealed.

This problem can be resolved byrequmng that all conditions evaluate to true and false. How-
ever, situations can occur where a decision may not get both true and false values even if each

125

individual condition evaluates to true and faise. An obvious solution to this problem is to require
decision/condition coverage, where all the decisions and all the conditions in the dec]mons take
“both true and false values during the course of testing, - -

Studies have indicated that there are many errors whose presence is not detected by branch
testing because some errors are related to some combinations of branches and their presence is
revealed by an execution that follows the path that includes those branches. Hence, a more
general coverage criterion is one that requires all possible paths in the conirol flow graph be
executed during testing, This is called the path coverage criterion or the alf-paths criterion, and
the testing based on this criterion is often called path testing. The difficulty with this criterion is
that programs that contain loops can have an infinite number of possibie paths. Furthermore, not
all paths in a graph may be "feasible" in the sense that there may not be any mputs for whichthe
path canbe executed It should be clear that C path=> Cbranch.

Asthe path ooverage critetion leads toa potentlallymﬁmte number of paths, some efforts have
been made to suggest criteria between the branch coverage and path coverage, The basicaim of
these approaches is to select a set of paths that ensure branch coverage criterion and try some
- other paths that may help reveal errors. One method to limit the number of paths is to consider
‘two paths as same, if they differ only in their sub-paths that are caused due to the Ioops. Even
 withthis I‘eStl‘lCHOD, the number of paths can be extremely large. :

_ Another such approach basedon the cyclomatlc complexity has been proposed namely, the test

 criterion. The test criterion is that if the cyclomatic complexity of a moduleis V, then at feast V
dlstmct paths must be executed during testing. We have seen that cyclomatic complexity V ofa
module is the number of independent paths in the flow graph of amodule. As these are indepen-

" dent paths all other paths can be represented as a combination of these basic paths, These basic
paths are ﬁmte whereas the total number of paths ina module having loops may be infinite,

It should be pointed out that none of these criteria is sufficient to detect all kind of errors in
programs. For example, ifa program is missing out some control flow paths that are needed to
check for a special value (like pointer equals nil and divisor equals zero), then even executing all
the paths will not necessarily detect the error. Similarly, if the set of paths is such that they satisfy
~ the all-path criterion but exetcise only one part of a compound condition, then the set will not
~ reveal any error in the part of the condition that is not exercised. Hence, even the path coverage

criterion, which is the strongest of the criteria we have discussed, is not strong enough to guaran-
tee detection of all the errors. '

Data Flow-Based Testing

Data Flow based testing implies criteria that select the paths to be executed during testing based
on data flow analysis, rather than control flow analysis. In the data flow-based testing approaches,
~ besides the control flow, information about where the variables are defined and where the defi-

- pitions dre used is also used to specify the test cases. The basic idea behind data flow-based

. testing is to make sure that during testing, the definitions of variables and their subsequent use is

. tested. Just like the all-nodes and all-edges criteria try to generate confidence in testing by
... making sure that at least all statements and all branches have been tested, the data flow testing
" tries to ensure some coverage of the definitions and uses of variables. Approaches for use of

o data flow information have been proposed in. Our discussion here is based on the family of data
... flow-based testing criteria that were proposed. Some of these criteria are dlscussed here.

~ For data flow-based criteria, a deﬁmtxon—use graph (def use graph, for short) for the program is
first constructed from the control flow graph of the program. A statement in anodein the flow

h ., graphrepresenting a block of code has vanable OCCuITences m it. A variable occurrence can be

one of the following three types:

» defrepresents the definition of a variable. The variable on the lefi-hand side of an assign-
| 126

ment statement is the one getting defined.

« c-userepresents computational use of a variable. Any statement (e.g., read/write an as-
signment) that uses the value of variables for computational purposes s said to be making c-use

of the variables. In an assignment statement, all variables on the right-hand side have a c-use

occurrence. In a read and a write statement, all variable occurrences are of this type.

= p-userepresents predicate use. These are all the occurrences of the variables in a predi-
cate (i.e., variables whose values are used for computing the value of the predicate), which is
used for transfer of control. ’

Mutation Testing

Mutation testingis another structural testing technique that differs fondamentally from the ap-
proaches discussed earlier, In control flow-based and data flow-based testing, the focus was on
which paths to execute during testing. Mutation testing does not take a path-based approach.
Instead, it takes the program and creates many mutants of it, by making simpie changes tothe -
program. The goal of testing is to make sure that during the course of testing, each mutant 5
produces an output different from the output of the original program. In other words, themuta-
tion-testing criterion does not say that the set of test cases must be such that certain paths are
* executed; instead, it requires the set of test cases to besuch that they can distinguish between the
original program and its mutants. -

In hardware, testing is based on'some fault models that have been developed and that model the
actual faults closely. The fault models provide a set of simple faults, combination of which can
model any faultin the hardware. In software, however, no such fault model exists. That is why
most of the testing techniques try to guess where the fanlts might lie and then select the test cases
that will reveal those faults.)

Tn mutation testing, faults of some pre-decided types are introduced in the program being tested.
Testing, then tries to identify those faults in the mutants. The idea is that ifall these "faults” can be
identified, then the original program should not have these faults; otherwise they would have
been identified in that program by the set of test cases.

This technique will be successful only if the changes introduced in the main program capture the.
most likely faults in some form. This is assumed to hold, due to the competent programmer
hypothesis and the coupling effect. The competent programmer hypothesis says that program-

mers are generally very competent and do not create programs at random, and for a given
problem, a programmer will produce a program that is very "close" to a correct program. In '
other words, a correct progtam can be constructed from an incorrect program with some minor
changes in the program. The coupling effect says that the test cases that distinguish programs, .’
with minor differences in each other are so sensitive that they will also distinguish programs with |
more complex differences. Some experiments are cited, in which ithas been shown that thetest
data that can distinguish mutants created by simple changes can also distinguish up to 99%of the
mutants that have been created by applying a series of simple changes. '

10.5 TEST CASE GENERATION AND TOOL SUPPORT

Once a coverage critérion is decided, two problems have to be solved to use the chosen criterion for
testing, The firstis to decideifa set of test cases satisfy the criterion, and the second is to generate a set of
test cases for a given criterion. Deciding whether a set of test cases satisfies a criterion without theaid of -
any tools is a cumbersome task, though it is theoretically possible to do it manually. For almost all the
structural testing techniques, tools are used to determine whether the criterion has been satisfied. Gener-)
ally, these tools will provide feedback regarding what needs to be tested to fully satisfy the criterion.

127

To generate the test cases, tools are not that easily available, and due to the nature of the problem (i.e.,
undecidability of "feasibility" of a path), a fully automated tool for selecting test cases to satisfy a criterion
~ is generally not possible. Hence, tools can, at best, aid the tester. One method for generating test cases is
to randomly select test data until the desired criterion is satisfied (which is determined by a tool). This can
resultin a lot of redundant test cases, as many test cases will exercisethe same paths,

As test case generation cannot be fully automated, frequently, the test case selection is done manuallyby
the tester, by performing structural testing in an iterative manner, starting with an initial test case set and
selecting more test cases based on the feedback provided by the tool for test case evaluation. The test
case evaluation tool can tell which paths need to be executed or which mutants need to be killed. This
information can be used to select further test cases. For example, to select a test case to execute some
path, static data flow analysis tools can be used to decide what inpuit vatues should be chosen so that when
the program is executed, this particular path is executed. Symbolic evaluation tools can also be quite useful
here, The paths that need to be executed during testing can be treated as programs in their own right and
can be syznbohcallyexecuted. With symbolic executlon, the conditions on mput variables that will enable
this path to be executed can be determmed

However, even with the aid of tools, selecting test cases is not a simple mechamcal prooess Ingenuity and
creativity of the tester are still important, even with the availability of the tools to determine the coverage.

Because of this, and for other freasons, the criteria are often weakened. For example, instead of requiring

100% coverage of statements and branches, the goal mlght be to achieve some acceptably high percent-
age (but less than 100%).

Test Plan Actlvmes During Testmg | -

Atestplanisa gene_r_a_l document for the entire project that defines the scope, approach to be taken, and

the schedule of testing as well as identifies the test items for the entire testing process and the personnel

responsible for the different activities of testing, The test planning can be done well before the actual testing
commences and can be done in paralle]l with the coding and design phases. The inputs for forming the test
plan are: (1) project plan, (2) requirements document, and (3) system design document, The project plan
is needed to make sure that the test plan is consistent with the ovérall plan for the project and the testing

schedule matches that of the project plan. The requirements document and the design document are the -

basic documents used for selecting the test units and deciding the approaches to be used during testing. A
test plan should oontam the following: :

-+ Testunitspecification.
. 'Feat"ur'es to bé tested.
. '- Approach for testmg,
+Testdeliverables.
e Schedule,
+ Persontiel allocation.
~ Oneof'the most important activities of the test planis to identify the test units. A test unit is a set of one or
more modules, together with associated data, that are from a single computer program and that are the

objects of testing. A test unit can occur at any level and can contain from a single module to the entire
systemn. Thus, a test unit may be a module, a few modules, or a complete system.

As seen earlier, different levels of testing have to be used during the testing activity. The levels are specified
in the test plan by identifying the test units for the project. Different units are usually specified for unit,
integration, and system testing, The identification of test units establishes the different fevels of testing that
~ will be performed in the project. Generally, a number of test units are formed during the testing, starting

from the Iower-level modules, which have to be unit tested. That is, first the modules that have to be tested
individually are specified as test units. Then the higher-level units are specified, which maybe a combina-

128

tion of already tested units or may combine some already tested units with some untested modules. ;’l*he
basic idea behind forming test units is to make sure that testing is being perforined incrementally, with each
_ increment including only a few aspects that need to betested. :

An important'factor while forming a unit is the "testability” of a unit. A unit should be such that it can be
easily tested. In other words, it should be possible to form meaningful test cases and execute the unit -
without much effort with these test cases. :

For example, amodule that manipulates the complex data structure formed from a file input by an input
module might not be a suitable unit from the point of view of testability. As forming meaningful test cases for
the unit will be hard, and driver routines will have to be written to convert inputs from files or terminals that
are given by the tester into data structures suitable for the module. In this case, it might be better to form the
unit by including the input module as well. Then the file input expected by the input module can contain the
test cases. : : o '

Features to be tested include all software features and combinations of features that should be tested. A
software feature is a software characteristic specified or implied by the requirements or design documents.
These may include functionality, performance, design constraints, and attributes. . - S

The approach for testing specifies the overall approach to be followed in the current project. The tech-

niques that will be used to judge the testing effort should also be specified. This is, sometimes called the

" testing criterion or the criterion for evaluating the set of test cases used in testing. In the previous sections,
we discussed many criteria for evaluating and selecting test cases. - -

Testing deliverables should be specified in the test plan before the actual testing begins. Deliverables could
be a list of test cases that were used, detailed results of testing, test summary report, test log, and data
about the code coverage. In general, a test case specification report, test summary report, and a test log
should always be specified as deliverables. Test case specification s discussed later. The test summary
report summarizes the results of the testing activities and evaluates the results. It defines the items tested,
the environment in which testing was done, and any variations from the specifications observed during
testing. The test log provides a chronological record of relevant details about the execution of the test

cases.

The schedule specifies the amount of time and effort to be spent on different activities oftesting, and testing -
of different units that have been identified. Personnel allocation identifies the persons responsible for per-
forming the different activities. '

S_pet_:iﬁcétions for Test Case

' Thetest plan focuses on how the testing for the projéct will proceed, which units will be tested, and what
approaches (and tools)are to be used during the various stages of testing. However, it does not deal with
the details of testing a unit, nor does it specify which test cases are to be used. :

Test case specification has to be done separately for each unit. Based on the approach specified in the test
plan, first the features 1o be tested for this unit must be determined. The overall approach stated in the plan
is refined into specific test techniques that should be followed and into the criteria to be used for evaluation. -
Based on these, the test cases are specified for testing theunit. Test case specification gives, for each unit
to be tested, all test cases, inputs to be used in the test cases, conditions being tested by the test case, and
outputs expected for those test cases. e

Test case specification is a major activity in the testing process. Careful selection of test cases that satisfy
the criterion and, specified approach s essential for proper testing, We have considered many methods of
generating test cases and criteria for evaluating test cases. A combination of these can be used to select the
test cases. It should be pointed out that test case specifications containnot only the test cases, but also the
rationale of selecting each test case (such as what condition it is testing) and the expected output forthe test
case. _ L

_ There are two basic reasons test cases are specified before they are used for testing. It is known that
129

' testing has severe limitations and the effectiveness of testing depends very heavily on the exact natare of the
test cases. Even for a given criterion, the exact nature of the test cases affects the effectiveness of testing,
Constructing "good" test cases that will reveal errors in programs is stili a very creative activity that de-

pends a great deal on the ingenuity of the tester. Clearly, it is important to ensure that the set of test cases |

used is of "high quality,"

As with many other verification methods, evaluation of quality of test cases is done through "test case
review." And for any review, a forinal document or work product is needed. This is the primary reason for
having the test case specification in the form of a document. The test case specification document is
reviewed, using a formal review process, to make sure that the test cases are consistent with the policy
specified in the plan, satisfy the chosen criterion, and in general cover the various aspects of the unit to be
tested. For this purpose, the reason for selecting the test case and the expected output are also givenin the
test case specification document. By looking at the conditions being tested by the test cases, the reviewers
can check if all the important conditions are being tested. As conditions can also be based on the output, by
considering the expected outputs of the test cases, it can also be determined if the production of all the
different types of outputs the unit is supposed to produce are being tested. Another reason for specifying
the expected outputs is to use it as the "oracle” when the test case is executed.

Besides reviewing, another reason for formally specifying the test cases in a document is that the process
of sitting down and specifying all the test cases that will be used for testing helps the tester in selecting a

good setof test cases. By doing this, the tester can see the testing of the unit in totality and the effect of the

total set of test cases. This type of evaluation is hard to do in on-the-fly testing where test cases ave
determined as testing prooeeds.

"™ Another reason for formal test case spec:ﬁcatlons is that the specifications can be used as "scripts"” during
~ regression testing,]}qrtlcularly if regression testing is to be performed manually. Generally, the test case
specification document itselfis used to record the results of testing. That is, a column is created when test

cases are specified that is left blank. When the test cases are executed, the results of the test cases are -
recorded in this column. Hence, the specification document eventually also becomes a record of the testing -

resulis.

10.6 TEST CASE EXECUTION AND ANALYSIS

With the specification of test cases, the next step in the testing process is to execute them. This step is also
not straightforward. The test case specifications only specify the set of test cases for the unit to be tested.
However, executing the test cases may require construction of driver modules or stubs. It may also require
modules to set up the environment as stated in the test plan and test case speclﬁeatnons Idataistobe
collected, then data collection forms need to be set up or data collection software developed. Only after all
these are ready can the test cases be executed. Sometimes, the steps to be performed to execute the test
cases are specified in a separate document called the test procedure specification. This document specifies
any special requirements that exist for setting the test environment and describes the methods and formats
foir reporting the results of testing. Measurements, if needed, arealso spec:ﬁed, alongmth how to obtain
_them.

Vmonsoutputsareprodu@edasarwﬂtoftmtcaseexecuﬂmfortheumtund&tm These outputs are
needed to evaluate if the testing has been satisfactory. The most common outputs are the test log, the test
summary report, and the exror report. The test log describes the details of testing. As mentioned earlier, the

test case specification document itself can act as the document for logging the details of testing. The test -

summary report is meant for project management, where the summary of the entire test case execution is
provided. The sumnmary gives the total number of test cases executed, the number and nature of errors
found, and a summary of any metrics data (e.g,, effort) collected. The emror report gives the sammary of all
the errors found. The errors might also be categorized into different levels, if such a categorization is
available and its use has been planned in the test plan. This information can also be obtained from the test

30

log, butitis usﬁally given as a separate document, This report is frequently used to track the status of
defects found during testing. ' o

After testing is complete, the efficiency of the various defect removal techniques can be studied. The
efficiency of a defect removal process can be defined if the total number of errors in the software is known.
This data is not known but can be approximated more accurately after all the defects found in testing are
known. The defect removal efficiency of a defect removing process is defined as the percentage reduction
of the defects that are present before the initiation of the process. The cumulative defect removal efficiency
 of aseries of defect removal processes is the percentage of defects that have been removed by this series,
based on the number of defects present at the beginning of the series. -

For example, suppose a total of 10 defects are detected during development and I field operation. We can
estimate the tota! number of errors in the software before the defect removal operationsbegan as 10.
Suppose that during reviews, four defects were removed. The defect removal efficiency of reviews in this
example is 40%. Suppose that during testing, another four defects are removed, The defect removal
efficiency oftesting then is 66% (asit removed four out ofthe six remaining defects). The cumulative defect
removal efficiency of reviews followed by testing is 80%. Defect removal efficiencies of the different
methods are useful for evaluating the quality assurance process being used. It can also be used to evaluate
how well the activities are performed in a given project, if process data from previous projects is available.

Testing and coding are the two phases that require careful monitorihg, asthese phasés involve the maxi- -

‘mum number of people. A few parameters can be observed for monitoring the testing process. Testing
~ cffortisthe total effort spent by the project team in testing activities; and is an excellent indicator of whether

" orriottesting is sufficient. In particular, if inadequate testing is done, it willbe reflected inareduced testing
effort. From past experience, we know that the total testing effort should be about 40% of the total effort
for developing the sofiware (the exact percentage will depend or the process and will have to be deter-
mined for the process). From this, the estimate of the effort required for Lesting, compared to coding or

design, can be computed and used for monitoring. Such monitoring can catch the "miracle finish" cases, -

where the project "finishes" suddenty, soon after the coding is done. Such "finishes" occur for reasons such
as unreasonable schedules, personnel shortages, and slippage of schedule. Sucha finish, usually, implies
that to finish the project, the testing phase has been compressed too much, whichis likely to nican that the
software has not been evalvated properdy. = o '

Computer time consumed during testing is another measuge that can give valuable information to pto_]ect
management. In general, in a software development project, the computer time consumption islowatthe
 start, increases astime progresses, and reaches a peak. Thereafter, itis reduced, astheproject reachesits
completion. Maxifium computer time is consumed during the latter part of coding and testing, By monitor-
ing the computer time consumed, one can get an idea about how thorough the testing has been. Again, by
comparing the previous buildups in compuier time consumption, computer time consumption of the current
project can provide valuable information about whether ornot the testing is adequate.
Error tracing is an activity that does not directly affect the testing of the current project, but it has many
long-term quality control benefits. By error tracing, wemean that when a fault is detected after testing, it
should be studied and traced back in the development cycle to determine where it was introduced. This
exercise has many benefits. First, it gives quantitative data about how many etrors slip bythe earlier quality
control measures and which phases are more error-proae. ¥f some particular phase is found to be more
crror-prone, the verification activity of that phase should bé strengthened in the future and proper stan-
dards and procedures need to be developed to reduce the ocourrence of errors in the future. The volume
and natese of faults slipping by the cartier quality assurance measures provide valusble input for evaluation
of the quality control strategies. This evaluation can be used to determine which quality control measures
should be strengthened and what sort of techniques should be added. Another benefit of error tracing is
productivity improvement in the future. Exror tracing is a feedback mechanism that is invaluable for leam-
“ing. A designer or programiuer, by secing the mistakes that occurred during his activities, will lear from the

- information and isless likely to make similar mistakes in the future, thoreby increasing his productivity. If

this feedback is not provided, such learning will not take place.
. 131

10.7 STRATEGIC ISSUES IN TESTING

_ Testing is a very important phase in software development life cycle. But the testing may not be very
effective if proper strategy is not used. For the lmplemmtahon of successful software testing strategy, the
following issues must be taken care of: -

* Before the start of the testing process, all the requirements must be speciﬁed ina quantifiable.
manner. _

» Testing objectives must be clarified and stated explicitly.
« Aproper testing plan must be developed.
* Build "robust” software that is designed to test itself.

* Useeffective formal technical reviews as a filter prior fo testing. Formal technical reviews can be
as effective as testing in uncovering errors. For this reason, reviews can reduce the amount of
testing effort that is required to produoe high-quality software, :

> Conduct formal technical reviews to assess the test strategy and the cases themselves. Formal
technical reviews can uncover inconsistencies, omissions, and outright errors in the testing ap-
proach. This saves time and also improves product quality.

* Develop a continuous improvement approach for the testing process. The test strategy should |
be measured. The metrics collected during testing should be used as part of a statistical process

control approach for software testing.

'10.8 LEVELS OF TESTING

Faults can occur during any phase i in the software development cycle. Verification is performed on the
output of each phase, but some faults are likely to remain undetected by these methods. These faults will
‘be eventually reflected in the code. Testing isusuallyrelied on to detect these faults, in addition to the faults
introduced during the coding phase itself. Due to this, different levels of testmg are used in the testing
process; each level of testmg aims to test different aspects of the system.

CHhm, = >]
Naady . Tashng
Ao i
T Taswng
Datign W g
l N Tasiag
Codw Lll

- Teakng

Figure 10.4: Levels of Testing

The basic levels are unit testing, integration testing, testing system and acceptance testing, These different
levels of testing attempt to detect different types of faults. The relation of the faults introduced in different
phases, and the different levels of testing as shown in figure 10.4,

The first level of testing is called unit testing. In this, different modules are tested against the specifications

produced during design for the modules. Unit testing is, essentially, for verification of the code produced

during the coding phase, hence the goal is to test the internal logic of the modules. It is typically done by the

programmer of the module. A module is considered for integration and use by others only after it has been

unit tested satisfactorily. Due to its close association with coding, the coding phase is frequently called

"coding and unit testing". As the focus of this testing level is on testing the code, structural testing is best
: 132

 testing the design.

. Unit Testing

e

suited for this tevel. In fact, as strué:tural testing is not very suitablé for large programs, it is used mostlyat

the unit festing level.

The next level of testing is often called integration testing. In this, many unit-tested modules are combined
into subsystems, which are then tested. The goal here is to see if the modules can be integrated properly.
Hence, the emphasis is on testing interfaces between modules. This testing activity can be considered

The next levels are system testing and acceptance testing. Here the entire software system is tested. The
reference document for this process is the requirements document, and the goal is to see if the software
mieets its requirements. This is essentially a validation exercise, and i many situations, itisthe onlyvalida-

tion activity. Acceptance testing is sometimes performed with realistic data of the client to demonstrate that -

the software is working satisfactorily. Testing here focuses on the external behavior of the system; the
interal logic of the program is not emphasized. Consequently, mostly functional testing is performed at
these levels. _)

These levels of tést‘ing'are performed when a system is being built from the components that have been
coded. There is another level of testing called regression testing that is performed when some changes are

miade to an existing system. Changes are fundamental to software; any software must undergo changes. -

Frequently, a change is made to "upgrade"” the software by adding new features and functionality. Clearly,
the modified software needs to be tested to make sure that the new features to be added do, indeed, work.
However, as modifications have been made to an existing system, testing also has to be done to make sure
that the modification has not had any undesired side effect of making some of the earlier services faulty.
That is, besides ensuring the desired behavior of the new services, testing has to ensure that the desired
behavior of the old services is maintained. This is the task of regression testing:

For regression testing, some test cases that have been executed on the old system are maintained, along
with the output produced by the old system. These test cases are executed again on the modified system
and its output compared with the eatlier output to make sure that the system is working as before on these
test cases. This, frequently, is amajor task when modifications are to be made to existing systems.

A consequence of this s that the test cases for systems should be properly documented for future use.
Often, when we test our programs, the test cases are treated as "throw way" cases; after testing is com-
plete, test cases and their outcomes are thrown away. With this practice, every time regression testing has
to be done, the set of test cases will have to be re-created, resulting in increased cost. In fact, for many
systems that are frequently changed, regression testing "scripts” are used to automatically perform the
regression testing after some changes. Aregression testing script contains alt the inputs given by the test
cases and the output produced by the system for these test cases. These scripts are typically produced

during the system testing, as regression testing is generally done only for complete systems or subsystem. -

When the system is modified, the scripts and comparing the outputs with the outputs givenin the seripts.
Given the scripts, though the use of tools, regression testing can be largely automated. -

Unit testing compromises the set of tests pexformed by an individual programmer prior to integration ofthe
unit into a larger system. The situation isillustrated as follows: :

Codingand debugging Unit Testing Integration Testing

A program unitis usually small enough programmer who developed it can testitin great detail, and cer-
tainly in greater detail the will be possible when the unit is integrated into an evolving software product.
There are four categories of tests that a programmer will typically perform on a program vnit:

+ Function Tests
.. P_eifbtm&nce']‘ast
« Stress Tests
133

. StructureTests_

Functional test cases involve exercising the code with nominal input values for which the expected results
are known, as well as boundary values (minimum values, maximum values, and values on and just outside
the functional boundaries) and special values such as loglcallyrelated inputs, 1x} matrices, the identity
matrix, files of identical elements, and empty files. o

Performances testing determines the amount of execution time spend in various parts of the unit, program
throughout, response time, and device utilization by the program unit. A certain amount of performance
tuning may be done during unit testing, However, caution must be exercised fo avoid expending too much
effort on fine-tuning of a program unit that contributes little to the overall performance of the entire systan.
Performance testing is most productive at the subsystem and system levels.

Stress tests are those tests designed to intentionally break the unit. A great deal can be learned about the
strengths and limitations of aprogram by examining the manner in which a program unit breaks.

Structure tests are concerned with exercising the intemal logic of a program and traversing pammlar
execution paths. Some authors refer collectively to functional, performance, and stress testing as "black
box" testing, while structure testing is referred to as "white box" or "glass box”. The major activities in
structural attesting are deciding which path to exercise, deriving test data to exercise those and msumg
the test coverage achieved when the test case are exercised. '

A test coverage (or test completion) criterion must be established for unit testing, because program units
usually contain too many paths to pexmit exhaustive testing, This can be seen by the examining the program
segment in Figure 10.5. As illustrated in Figure 10.5, loops introduce combinatorial numbers of execution
~ paths and make exhaustive testing impossible.

: 1. N P
: o 0 2
N \ ' 1 4
' ' 2 3
' _ 10 2048
. \ / - P:zx.—.'_ . .

Figure 10.5: Unit Testing

Even if it were possible to successfully test all paths through a program, correctness would not be guaran-
teed by path iesting becanse the program might have missing paths and computational envors that were not
discovered by the particular test cases chosen. A missing path error occurs when a branching staterent
and the associated computations are accidentally omitted. Missing path errors can only be detected by
functional test cases derived fiom the requirements specifications. Thus, tests basedsolely on the program
structure cannot detect all the potential errors in a source program. Coincidental correctness occurs when
a test case fails to detect a computation error. For instance, the expressions (A +A) and (A*A) have
identical values when A has the value 2.

1M

Integration Testing

Bottom-up integration is the traditional stratégy to integrate the components of a software system into a
functioning whole. Bottom-up integration consists of unit testing, followed by subsystem testing, followed
by testing of the entire system. Unit testing has the goal of discovering errors in the individual modules of

the system. Modules are tested inisolation from oneanother in an artificial environmentknownas a “test

harness,” which consists of the driver programs and data necessary to exercise the modules. Unit festing

should be as exhaustive as possible to ensure that each representative handled by each module hasbeen

tested. Unit testing is eased by a system structure that is composed of small, loosely coupled modules.
A subsystem consists of several modules that communicate with each other through well-defined inter-

faces. Normally, a subsystem inplements a major segment operation of the interfaces between modules in

the subsystem. Both control and of subsystem testing: lower level subsystems are successively combined
to form higher-level subsystems. In most software systems, exhaustive testing of subsystem capabilities is
not feasible due to the combinational complexity of the module interfaces; therefore, test cases must be
carefully chosen to exercise the interfaces in the desired manner.

System testing is concemned with subtleties in the interfaces, decision logic, control flow, recovery proce-
dures, throughput, capacity, and timing characteristics of the entire system. Careful test planning is required

to determine the extent and nature of system testing to be performed and to establish criteria by whichthe

results will be evaluated.

» Disadvantages of bottom-up testing include the necessity to write and debug test hamms for the modules

- and subsystems, and the level of complexity that results from combining medules and subsystems into
larger and larger units. The extreme case of complexity results when each moduleis unit tested in isolation
and "big bang" approach to integration testmg. The main problem with big-bang integration is the difficulty
of isolating the sources of error.

Test hatnesses provide data environments and callmg sequences for the routines and subsystems that are
being tested in isolation. Test harness preparation can amountto 50 per cent or more of the coding and
debugging effort for a software product.

Top-down integration starts with the main routine and one or two immediately subm'dmate routines in the
system structure. After this top-level, when "skeleton” has been thoroughly tested, it becomes the test
harness for its immediately subordinate routines. Top-down integration requires the use of program stubs
to simulate the effect of lower-level routines that are called by those being tested.

IRegression Testing
‘When some errors occut in a program then these are rectified. For rectification of these errors, changes
are made to the program. Due to these changes some other errors may be incorporated in the program.
Therefore, all the previous test cases are fested again. This typeof tes{iggis called regression testing.
‘In a broader context, successful tests (of any kind) result in the discovéfjﬁof etrors, and errors must be
comected. Whenever software is corrected, some aspect of the software configuration (the program, its
documentation, or the data that supports it) is changed. Regression testing is the activity that helps to
ensure that changes (due to testing or for other reasons) do not introduce unintended behavior or addi-
tional errors. _ '
Regression testing may be conducted manuaily, by re-executing a subset of all test cases or using auto-
mated capture/playback tools. Capture/playback tools enable the software engineer to capture test cases
and results for subsequent playback and comparison.
'Ihetegrmontestsmte(thewbsetoftesﬁtobeexecu&d)cmhim&neediﬂ‘emﬁclmofﬁtm:
A representative sample of tests that will exercise all software functions.

Additional tests that focus on software fanctions ﬂmatm]ikelytobeaﬁededbyﬂ:echange. |

135

Tests that focus on the software components that have been changed.
As integration testing proceeds, the number of regression tests can grow quite large.

Therefore, the regression test suite should be designed to include only those tests that address one ormore
classes of errors in each of the major program finctions. It is impractical and inefficient to re-execute every
test for every program function once a change has occurred.

10.9 BLACK BOX AND WHITE BOX TESTING

Black bbx testing takes an external -perspect-ii;e of the test object to derive test cases. These tests can Be
functional or non-functional, though usually functional. The test designer selects valid and invalid inputs and
determines the correct output. There is no knowledge of the test object's internal structure,

This method of test design is applicable to all levels of software testing: unit, integration, functional testing,
system and acceptance. The higher the level, and hence the bigger and more complex the box, the more
one is forced to use black box testing to simplify. While this method canuncover unimplemented parts of
the specification, one cannot be sure that all existent paths are tested.

White box testing (a.k.a. clear box testing, glass box testing, transparent box testing, or structural testing)
uses an internal perspective of the system to design test cases based on internal structure. It requires
- programming skillsto identify all paths through the software. The tester chooses test case inputs to exercise
paths through the code and determines the appropriate outputs. In electrical hardware testing, every node
in a circuit may be probed and measured; an example is in-circuit testing (ICT).

Since the tests are based on the actual implementation, if the implementation changes, the tests probably
will need to change, too. For example ICT needs updates if component values change, and needs modi-
fied/new fixture if the circuit changes. This adds financial resistance to the change process, thus buggy
products may stay buggy. Automated optical inspection (AQI) offers similar component level correctness
checking without the cost of ICT fixtures, however changes still require test updates,

While white box testing is applicable at the unit, integration and system levels of the software testing
process, it is typically applied to the unit, While it normally tests paths within a unit, it can also test paths

between units during integration, and between subsystems during a system level test. Though this method .

of test design can uncover an overwhelming number of test cases, it might not detect unimplemented parts
of the specification or missing requirements, but one can be sure that all paths through the test object are

executed,

10.10 SUMMARY

* Testingisthe activiiy through which compliance to specifications & quality is ensured. It is the
process.of executing a software with the intent of finding errors.

* Thetwo basic approaches to test case design are, structural & functional.

« Test case generation cannot be fully automated

‘s Levels oftesting include unit testing, integration testing, Repression testing

« Black Box testing tahes an external view of the test object to device test case.
» White box testing uses an internal purspective of the syste.

10.11 UNIT-END QUESTIONS

1. What are the important testing fundamentals?
' 136

What are top-down and bottom-up approaches of testing.

Describe the procedure of unit testing,

Describe the procedure of integration testing. _

What do you undersfand bSr regression tésting and where do we use it?
Define testing, List and describe van'dus testing techniques briefly.

e IR S Y SR S

What are test cases? How these are generated in black box and white box testing? Describe
- through suitable examples.

8. Does simply presence of fault mean software fai]ﬁre? If no, justify your answer with proper
example. - '
9. What are test oracles?
10. What is the objective of testing?
11, What do you understand by functional testing?
12. Describe different types of functional testing techniques.
* 13. How we can design a test case?
14. Name all types of testing techniques. _
15. Differentiate between unit and integration testing, |
16 What is the effect of psychology of testing?
17. What do you understand by structural testing?
18. Discuss test ase generation.
19. Differentiate between test case and test plan.
20. What do you understand by test case execution and analysis?

10.12 FURTHER READINGS

1. Sofiware Engineering and Testing: An Introduction, B. B. Agarwal, S. P. Tayal, M Gupta,
Laxmi Publications Pvt. L.td., 2008. '

2. www.wikipedia.org

137

UNIT -XI

¥

QUALITY MANAGEMENT

Structure of the Unit

11.0
11.1
11.2
11.3
114
11.5
11.6
11.7
118
11.9

.Objectives

Introduction

Quality Assurance (QA)

QA in Software Development
Software Quality Factors

Software Verification & Validation
Software Maintenance

Software Configuration Management

Summary
Unit - End Questions.

11.10 Further Readings

11.0 OBJECTIVES
After readinéthis chapter, the students will be able to understand,

-

Software quality
Quality assurance
Quality control
Software reliability
Software quality factors
Software validation
Software maintenance

Software configuration management

11.1 INTRODUCTION

The word "Quality" has various meanings.

-138

performancs !

Good manutactudng it
must go on fong fimel

Without defest!

-Figure 11.1: Diﬁ'erentAspects of 'Quality

The definition given by the ISO/IEC 8402 standard is:

"Fhe totality of features and characteristics of a product or a service that bear on its ability to satisfy stated
or implied needs". Software quality can not be specified only as sofiware without error. The software
quality specification must be more accurate and detailed. The formalisation of the software quality can be
done using a quality model. - ' '

In 1977, McCall and his colleagues proposed a quality model to specify software quality. This model is
based on three aspects of a software product. These are product operation, product revision, and product
transition,

Mainbinabity %,
Flaxiity]
Testabifty

) Product ! Product
B ravision Fhier, W IransHion

Ponlabllity ,
Rausablity :

Product operations

Colraciness Reisbilty %
Etiancy degrity
s abilky

) Figure 11.2: McCall’s Quality Factors
The McCall quality model i organized around three types of Quality Characteristics:
« Factors (To specify): Describe the external view of thé software, as viewed by the users.
« Criteria(To build): Describe the internal view of the software, as seen by the developer.
« Metrics (To control): Are defined and used to provide a scale and method for measurement.

Since then, various quality models have been deﬁned, adopted and enhanced over the years for example
those proposed by Bochm or Forse.

The need for one recognized standard quality model became more and more urgmt The ISO/IEC 9126
standard is the result of a consensus for a sofiware quality model. As with McCall's this is also based on
threelevels: :

« Characteristics (Functionality, Reliability, Usébility, Efficiency, Maintainability, Portability);
o Sub-characteristics;
» Metrics.

Each characteristic is refined t6 a set of sub-characteristics and each sub-characteristic is evaluated by a
139

set of metrics. Some metrics are commeon to several sub-characteristics.

There is not a single formal method or technique to specify the metrics. The standardization process is

“ongoing by the ISO project "Evaluation and Metrics". The specification of metrics is not an easy task, Two
problems have to be resolved. The first is to choose the right metric from amongst the large amount of
existing ones. The second is to implement the data collection. The efficiency of a metric, i.e. the relevance
ofthe results to cost, is an important parameter in the choice, '

The quantification of metrics reduces the subjectivity in the software evaluation, even if the analysis of
results is still dependant on the skill and the experience of experts. The results of measurement are values
on the scales of metrics (arange 1 to10, abinary response Yes/No, a rate...). For a measurement value, a
rating tevel is required. The ISO/IEC 9126 proposes four rating levels: Excellent, Good, Fair and Poor,
The first three are considered as satisfactory, the last is considered as unsatisfactory.

Metrics are also used for maintainability evaluation. These metrics are of various types & measure soft-
ware textual complexity, data flow complexity & also inheritance complexity for object oriented languages. .

The metrics used to evaluate maintainability could be the following:
* cyclomatic number
* number of statements
» ‘cornments rate
+ calling proof
Changeability:
+ number of jump
. number of nested levels
* average size of statement.

+ numberof variables

. nmnbér of parameters referenced
« numberof global variables
+ number of parameters changed
» numberofcalled relationships
Testability:
* number of non-cyclic path
. nﬁmber ofnested levels
= cyclomaticnumber
. number of call-paths
The actual implementation of each metric depends on the programming language.

11.2 QUALITY ASSURANCE

Quality assurance, or QA for short, refers to a program for the systematic monitoring and evaluation of the
140 '

various aspects of a project, service, or facility to ensu e that standards of quality are being met.

1t is important to realize also that quality is determined by the program sponsor. QA cannot absolutely
guarantee the production of quality produots unfortunately, but makes this more likely. R

Two key principles characterise QA.: "fit for purpose” (the product should be suitable for the intended
purpose) and "right first time" (mistakes should be eliminated). QA includes regulation of the quality of raw
materials, assemblies, products and componenis; services related to production; and management, pro-
duction and inspection processes. :

It is important to realize also that quality is determined by the intended users, clients or customers, not by
society in general: it is not the same as 'expensive' or ‘high quality’. Even goods with low pnces canbe
considered quality items if they meet a market need.

Quality assurance versus quality control

Quality control emphasizes testing of products to uncover defects, and reporting to management who
make the decision to allow or deny the release, whereas quality assurance attempts to improve and stabi-
tize production, and associated processes, to avoid, or at least minimize, issues that led to the defectsin the

first place.

To prevent mistakes from arising, several QA methodologies are used. However, QA does not eliminate
the need for QC: some product parameters are so critical that testing is still essential. QC activities are
treated as an one of the overall QA processes.

Failure testing

A valuable process to perform ona whole consumer product is failure t&stmg or stress testing. In mecham-
cal terms this is the operation of a product until it fails, often under stresses such as increasing vibration,
_ temperature, and humidity. This exposes many unanﬁcnpated weaknesses in a product, and the data are
used to drive engineering and manufacturing process improvements. Often qulte simple changes can dra-
matically improve product service. :

Statistical control

Many organizations use statistical process control to bring the organization to Six Sigma levels of quality so
that the likelihood of an unexpected failure is confined to six standard deviations on the normal distribution.
This probability is less than four one-miltionths. Items controlled often include clerical tasks such as order-
entry as well as conventional manufacturing tasks.

Traditional statistical process controls in manufacturing operations usually proceed by randomly sampling
and testing a fraction of the output, Variances in critical tolerances are continuously tracked and where
necessary corrected before poor quality components ate produced.

Total gquality management

The Quality of output is directly dependent upon that of the participating constituents, some of which are
sustainably and effectively controlled while others are not. The fluid state spells lack of Quality control, and
the process(es) which are properly managed for Quality such that Quality is assured, pertain to Total
Quality Management. ' '

The major characteristics to needed to ensume effective quality management are, Reliability, Maintainabil-
ity, Safety, and Strength.

11.3 QA IN SOFTWARE DEVELOPMENT

The following are examples of' QA models relating to the software devel:)pment process.

141

Models and Standards

- IS0 17025 is an international standard that specifies the general requirements for the competence to carry
out tests and or calibrations. There are 15 management requirements and 10 technical requirements. These
requirements outline what a laboratory must do to become accredited. Management system refers to the
organization's structure for managing its processes or activities that transform inputs of resources into a

_ product or service which meets the organization's objectives, such as satisfying the customer's quality
requirements, complying with regulations, or meeting envmnmtal objectives.

The CMMI (Capability Maturity Model Integration) model is widely used to implement QuahtyAsswanoe
(PPQAYin an organization. The CMMI maturity levels can be divided in to 5 steps, whicha oompany can
achieve by performing specific activities within the organization.

The company-wide quality approach places an emphasis on three aspects :

1. Elements such as controls, job management, defined and well managed processes, perfonnance
o and mtegnty criteria, and identification of records

_ 2; : Competence, such as knowledge, skills, experience, and qualifications-

3. Soft elements, such as personnel integrity, oonﬁdmce, organizational culiure, motwatlon, team
. Spixit, and quality relatlonshlps

The quality of the outputs is at risk if any of these three aspects is deficient in anyway

In the context of softwase engineering, software quality measures how well software is designed (quality of
- design), and how well the software conforms to that design (quality of conformance), although there are
several different definitions inchading,

") Oneofthe challenges of Software Quality is that "everyone feels theyunderstand it",

ii) A definition in Steve McConnell's Code Complete divides software into two pieces: intemal and
external quality characteristics. External quality characteristics are those parts of a product that
face its users, where internal quality characteristics are those that do not.

i) Another definition by Dr. Tom DeMarco says "a product's quality is a function of how muchit
changes the world for the better™, This can be interpreted as meaning that user satisfaction is

more unportantman myﬂnngmdeterrmmng soﬂware qualrty "’“‘
Source code quality

A computer has no concept of "well-written" source code. However, from a human point of view source
code can be written in a way that has an effect on the effort needed to comprehend its behavior. Many
source code programming style guides, which often stress readability and usually language-specific con-
ventions are aimed at reducing the cost of source code maintenance. Someofﬂlewmthataffectcode

quahtymduder
* Readibily |
~ + Easeofmaintenancs,testing, debugging, fixing, modification and portability
* Lowoomplexity
. Lowmamcecmsmnpﬁon:memory,CPU
* Number of compilation or lint warmnings
* Robustinput validation and exror handling, established by software fault injection
Software Reliability |

Soﬂwarerehabihtylsmmpodantfacetofsoﬁwmequahly Ttis defined as “ﬂlepmhabihtyoffaiime-ﬁee

operation of a computer program in a specified environment for a specified time".
142

~
“

One of reliability's distinguishing characteristics is that it *s objective, measurable, and can be estimated,
whereas much of software quality is subjective criteria. This distinction is especially important in the disci-
pline of Software Quality Assurance. These measured criteria are typically catled software metrics.

The Goal of Reliability

The need for a means to objectively determine software quality comes from the desire to apply the tech-
niques of contemporary engineering fields to the development of software. That desire is aresult of the
common observation, by both lay-persons and specialists, that computer software does not work the way
itought to. In other words, software is seen to exhibit undesirable behaviour, up to and including outright
failure, with consequences for the data which is processed, the machinery on which the software runs, and
by extension the people and materials which those machines might negatively affect. The more critical the
application of the software to economic and production processes, or to life-sustaining systems, the more
important is the need to assess the software's reliability.

Regardless of the criticality of any single software application, it is also more and more frequently observed
that software has penetrated deeply into most every aspect of modem life through the technology we use.
Tt is only expected that this infiltration will continue, along with an accompanying dependency on the
software by the systems which maintain our society. As software becomes more and more crucial to the
operation of the systems on which we depend, the argument goes, it only follows that the software should
offer a'‘concomitant level of dependability. In other words, the software should behave in the way it is
intended, or even better, in the way it should. g)

' The Challenge of Reliability | |

The circular logic of the preceding sentence is not accidental-itis meant to illustrate a fandamental problem
in the issue of measuring software reliability, which is the difficulty of determining, in advance, exactly how
the software is intended to operate. The problem seems to stem from a common conceptual error in the
consideration of software, which is that software in some sense takes on a role which would otheswise be
filled by a human being. This is a problem on two levels, Firstly, most modern software performs work
which 2 human could never perform, especially at the high level of refiability that is often expected from
software in comparison to humans. Secondly, software is fundamentally incapable of most of the mental
capabilities of humans which separate them from mere mechanisins: qualities such as adaptability, general- -
purpose knowledge, a sense of conceptual and functional context, and common sense. -

Nevertheless, most software programs could safely be considered to have a particular, even singular
purpose. If the possibility can be allowed that said purpose can be well or even completely defined, it
should present a means for at least considering objectively whether the software is, in fact, reliable, by
comparing the expecied outcome to the actual outcome of ranning the software in a given eavironment,
with given data. Unfortunately, it is still not known whether it is possible to exhaustively determine cither the
expected outcome or the actual outcome of the entire set of possible environment and input data to a given
program, without which itis probably impossibleto determine the program's reliability with any certainty.
However, various sitempts are in the works te attempt to rein in the vastness of the space of software's
environmental and input variables, both for actual programs and theoretical descriptions of programs.
Such attempts to improve software reliability can be applied at different stages of a program’s develop-
ment, in the case of real software, These stages principally include: requirements, design, programming,
testing, and runtime evaluation. The study of theoretical software reliabilityis predominantly concemed
with the concept of comrectness, a mathematical field of computer science which is an cutgrowth of lan-
guage and automata theory. '

Reliability in program Development
The reliability factors be considered in the Software Development process are,
a) Requirements

A program cannot be expected to work as desired if the developers of the program donot, in
43

fact, know the program's desired behaviourin advance, or if they cannot at feast determine its
desired behaviour in parallel with development, in sufficient detail. What level of detail is consid-
ered sufficient is hotly debated. The idea of perfect detail is atiractive, but may be impractical, if
notactually impossible, in practice. This is because the desired behaviour tends to change as the
possibie range of the behaviour is determined through actual attemapts, or more accurately, failed
attempts, to achieve it.

Whether a program's desired behaviour can be successfully specified in advance is amoot point
if the behaviour cannot be specified at all, and this is the focus of attempts to formalize the
process of creating requirements for new software projects. In situ with the formalization effort
15 an attempt to help inform non-specialists, particularly non-programmers, who commission

software projects without sufficient knowledge of what computer software is in fact capable.

Communicating this knowledge is made more difficult by the fact that, as hinted above, even
programmers cannot always know in advance what is actually possnble for software in advance

of trying.
Design

While requirements are meant to specify what a program should do, design is meant, at least at
ahigh level, to specify how the program should do it. The usefulness of design is also questioned
by some, but those who look to formalize the process of ensuring reliability often oﬁ'er—good
software design processes as the most significant means to accomplish it. Software design usu-
ally involves the use of more abstract and general means of specifying the parts of the software
and what they do. As such, it can be seen as a way to break a large program down into many

- smaller programs, such that those smaller pieces together do the work of the whole program.
‘The purposes of high-level design are as follows. It separates what are considered to be prob-

lems of architecture, or overall program concept and structure, from problems of actual coding,
which solve problems of actual data processing. It applies additional constraints to the develop-
ment process by narrowing the scope of the smaller software components, and thereby-it is
hoped-removing variables which could increase the likelihood of programiming errors. It pro-
vides a program template, including the specification of interfaces, which can be shared by
different teams of developers working on disparate parts, such that they can know in advance
how each of their contributions will interface with those of the other teams. Finatly, and perhaps
most controvessially, it specifies the program independently of the implementation language or

~ languages, thereby removing language-specific biases and limitations which would otherwise

: 0

creep into the design, perhaps unwittingly on the part of programmer-designers.
: . .
'The history of computer programming language development can often be best understood in

- thelight of attempts to master the complexity of compurter programs, which otherwise becomes

more difficult to understand in proportion (perhaps exponentially) to the size of the programs.

- (Another way of looking at the evolution of programming languages is simply as a way of getting

) ... thecomputer to do more and more of the work, but this may be a different way of saying the

same thing.) Lack of understanding of a program's overall structure and functionality is a sure

. wayto fail to detect errors in the program, and thus the use of better languages should, con-
. versely, reduce the number of errors by enabling a better understanding,

' hnprovements in languages tend to provide incrementally what software design has attempted to

doin one fell swoop: consider the software at ever greater levels of abstraction. Such inventions
as statement, sub-routine, file, class, template, library, component and more have allowed the
arrangement of a program's patts to be specified using abstractions such as layers, hierarchies
and modules, which provide structure at different granularities, so that from any point of view the
program's code can be imagined to be orderly and comprehensible,

144

In addition, improvements in languages have enabled more exact control over the shape and use
of data elements; culminating in the abstract data type. These data types can be specifiedtoa
very fine degree, including how and when they are accessed, and even the state of the data
before and after it is accessed..

d) Software Build and Deployment |

. Many programming languages such as C and Java require the program "source code" to be
translated in to a form that can be executed by a computer. This translation is done by a program
called a compiler. Additional operations may be involved to associate, bind, link or package files

" together in order to create a usable runtime configuration of the software application, The totality
of the compiling and assembly process is generically called "building" the software.

The software build is critical to software quality because if any of the generated files are incorrect
the software build is likely to fail. And, if the incorrect version of a program is madvertentlyused
then testing can lead to false results.

Software builds are typically done in work area unrelated to the runtime area, such as the appli-
cation server, For this reason, a deployment step is needed to physically transfer the software
build products to the runtime area. The deployment procedure may atso involve technical pa-
rameters, which, if set incorrectly, can also prevent software testing from beginning, For ex-

ample, a Java application server may have options for parent-first or parent-last class loading, .. .

Using the incorrect parameter can cause the application to fail to execute on the application
server. '

The technical activities supporting software quality including build, deployment, change control
and reporting are collectively known as Software configuration management. A number of soft-
ware tools have arisen to help meet the challenges of configuration management including file
control tools and build control tools. '

e.)” Testing _
* Software testing, when done correctly, can increase overall software qﬁality of conformance by
testing that the product conforms to its requirements. Testing includes, but is not limited to:

1. UnitTesting
2. Functional Testing
3. RegressionTesting
‘4. Performance Testing
5. FailoverTesting

6. UsabilityTesting -

A number of agile methodologies use testing earty in the development cycle to ensure quality in
their products. For example, the test-driven development practice, where tests are written be-
fore the code they will test, is used in Extreme Programming to ensure quality.

11.4 SOFTWARE QUALITY FACTORS

A software quality factor is a non-functional requirement for a software program which is not called up by
the customer's contract, but nevertheless is a desirable requirement which enhances the quality of the
software program. Note that none of these factors are binary; that is, they are not"either you have it or you
don't" traits. Rather, they are characteristics that one seeks to maximize in one's software to optimize its
quality. So rather than asking whether a software product "has" factor s, ask instead the degree to which it

does {ordoesnot).
= 145

Some software quality factors are listed here

i Understandablhty-clanty of purpose. This goes further than justa statement of; purpose; all
of the design and user documentation must be clearly written so that it is easily understandable,
This is obviously subjective in that the user context must be taken into account: forinstance, ifthe
software product is to be used by software engineers it is not required to be understandable to
the layman. -

Completeness-presence of all constituent parts, with each part fully developed. This means
_ thatifthe code calls a subroutine from an external library, the software package must provide
: reference to that library and all required parameters must be passed. All required input data must
also be available.

iii Conciseness-minimization of excessive or redundant information or processing. This is impor-
tant where memeory capacity is limited, and it is generally considered good practice to keep lines
of code to aminimum. ¥ can be improved by replacing repeated functionality by one subroutine
or function which achieves that functionality, It also applies to docaments.

iv_Portability-ability to berun well and easily on multiple computer configurations. Portability can
mean both between different hardware-such as running on a PC as well as a smartphone-and
between different operating systems-such as running on both Mac OS X and GNU/Linux.

v Consistency-uniformity in notation, symbology, appearance, and terminology within itself,

vi Maintainability-propensity to facilitate updates to satisfy new requirements. Thus the software
product that is maintainable should be well-documented, should not be complex, and should
have spare capacity for memory, storage and processor utilization and other resources.

vii Testability-disposition to“support acceptance criteria and evaluation of performance, Sucha
characteristic must be built-in during the design phase if the product is to be easily testable; a
complex design leads to poor testability. _

- viii Usability-convenience and practicality of use. This is affected by such things as the human-
computer interface. The component of the software that has most impact on this is the user
interface (UI), which for best usability is usually graphical (i.e. a GUI).

ix Reliability-ability to be expected to perform its intended functions satisfactorily. This implies a
time factor in that a reliable product is expected to perform correctly over a period of time. It
also encompasses environmental considerations in that the product is required to perform cor-
rectly in whatever conditions it finds ifself

x Structuredness-organisation of constituent parts in a definite pattern, A software product writ-
ten in a block-structured language such as Pascal will satis{y this characteristic,

xi Efficiency-fulfillment of purpose without waste of resources, such as memory, space and pro-
cessor utilization, network bandwidth, time, etc.
xii Security-ability to protect data against unauthorized access and to withstand malicious or inad-
vertent interference with its operations. Besides the presence of appropriate security mecha-
- nisms such as authentication, access control and encryption, security also implies resilience in the
face of malicions, intelligent and adaptive attackers.

11.5 SOFTWARE VERIFICATION AND VALIDATION

ISVV stands for Independent Software Verification and Validation. ISVV is targeted at safety-critical
software systems and aiins to increase the quality of software products, thereby reducing risks and costs
through the operational life of the software. ISVV provides assurance that software performs to the speci-

146

fied level of confidence and within its designed parameters and defined requirements.

ISVV activities are performed by independent engineering teams, not involved in the software develop-
ment process, to assess the processes and theresulting products. The ISVV team independency is per-
formed at three different levels: financial, managerial and technical.

ISVV goes far beyond "traditional” verification and validation techniques, applied by development teamns.
While the latter aim to'ensure that the sofiware performs well against the nominal requirements, ISVV is
focused onnon-functional réquirements such as robustness and retiability, and on conditions that can lead -
the software to fail. ISVV results and findings are fed back to the development tearns for correction and
improvement. : ' .

11.6 SOFTWARE MAINTENANCE

Software maintenance in software engineeﬁng is the modification of a software product after deliveryio
correct faults, to improve performance or other attributes, or to adapt the product to a modified environ-
ment. . S

The key software maintenance issues are both managerial and technical. Key management issues are:
alignment with customer priorities, staffing, which organization does maintenance, estimating costs. Key
technical issues are; limited understanding, impact analysis, testing, maintainability measurement.

11.7 SOFTWARE CONFIGURATION MANAGEMENT (SCM)

In software engineering, software configuration management (SCM) is the task of tracking and controlling
changes in the software. Configuration management practices include revision control and the establish-
ment of baselines. ' '

SCM concerns itselfwith answering the question "Somebody did something, how canone reproduce it?"
Often the problem involves not reproducing "it" identically, but with controlied, incrementai changes. An~
swering the question thus becomes a matter of comparing different results and of analysing their differ-
ences. Traditional configuration management typically focused on controlled creation of relatively simple
products. Now, implementers of SCM face the challenge of dealing with relatively minor increments under
 theirown control, in the context of the complex system being developed. :
Purposes . '
The goals of SCM generally are: o o
Configurationidentification - Identifying configurations, configuration itemns and baselines.
» Configuration control - Implementing a controlled change process. This isusnally achieved by
setting up a change control board whose primary function is to approve or reject ail change
requests that are sent against any baseline.

» Configuration status accounting - Recording and reporting all the necessary infonmation on the
status of the development process.

« Configuration auditing - Ensuring that configurations contain all their intended parts and are
sotnd withrespect o their specifying documents, including requirements, architectural specifi-
cations and user manuals. :

» Build management - Managing the process and tools used for builds.
+ Process management - Ensuring adherence to the organization's development process.
« Environment management - Managing the software and hardware that host our system.

147

Teamwork - Facilitate team interactions related to the process.

Defect tracking - Making sure every defect has traceability back to the source.

11.8 SUMMARY

J
I
i
. _ . -
Quality Management (QM) focuses not only of the product quality but afso on the means to \
achieve t,

QM has three major components, namely, quality control, quality assurance and quality im-
provement.

Quality oontrol 13 the process ofrevision of the quality of afl factors involved in production.

Quality assurance (QA) refers to a set of steps for systematic moﬁitbring_ & evaluation of various
aspects of a Software project ot ensure that standards of quality are met.

Quality improvement includes product improvement & process improvement

Software quality Assurance consists of ameans 6fmonjtorh1g the software engineeting process
& methods used to ensure quality.

Software Configuration Management (SCM) is the task of tracking & controlling changes inthe
software.

11.9 UNIT-END QUESTIONS

1

11.10

Isit possible to assess the quality of software if the customer keeps changmg what it is supposed
to do? .

Quality and rehablllty arerelated oonoepts but are fundamentally different in anumber of ways.
Discuss them. .

- Can a program be correct and still not bérel_iable? Explain.

Can aprogram be correct and still not exhibit good quality? Explain.

Why is the First Law of System Engineering true? How does it affect our perception of software
engineering paradigms. _

Assume that you're the manager of a small project. What baselines would you define for the
project and how would yom;pptml them?

Do some research on object-oriénted databases and write a paper that describes how they can
beused in the context of SCM.

FURTHER READINGS

. www.wikipedia.org

www.cse.dcu.ie/essiscope.sm2/charact html

143

12.3
12.4
12.3
12.6
12.7

12.8

UNIT - XIX

PROCESS IMPROVEMENT AND

MEASUREMENT
Structure of the Unit
12.0 Objective
12.1 Introduction .
12.2 Process and Product Quality Improvement

12.2.1 Process Attributes
12.2.2 Process and Product Quality

© 12.2.3 Benefits of Process Improvement

Process Classification

Process Measurement

Process Analysis and Modeling

Process Change

CMMI Process Improvement Framework.

12.7.1 Capability Maturity Model

12.7.2 Structure of CMM

12.7.3 Levels of the CMM

12.7.4 CMMI Benefits

Glossary of Product and Process Quality Improvement Terms

12.9 Summary
12.10 Unit-End Questions

12.11 Further Readings

12.0 OBJECTIVE
After completing this unit students will be able to explain

*

how software processes can be improved to produce better software

understand the principles of software prbcess improvement and why process improvement is
worthwhile :

understand how software process factors influence software quality and the productivity of

software developers;

+ beableto develop snmple models of software process;

« understand the notions of process capability and process maturity and the general form of the

CMMI model for process improvement.

12.1 INTRODUCTION

Software engineering orgamzat:ons awoffexed several different methods for process improvement. These
include the Capability Maturity Model — Integration (CMMI), Six Sigma, Lean, and ISO Standard 15939
(SPICE). However, there is very less guidance about the relative advantages of the different methods or
critenia for selecting among them. This unit will provide an overview and comparison of these approaches,
thenfowsonﬂ'neCNMappmach inmoredetail as a general framework for integrating the other approaches.

Most orgmuzahonsiqulmuted resources for investment in process improvement. Itis therefore necessary
for themto apprec:ate)ﬁe importance of process imporvment & then to invest wisely and improve their
return on investroent.

12.2 PROCESS AND PRODUCT QUALITY MPROVEMENT

Software processes are complex and involve a very large number of activities. Like products, processes
also have attributes or characteristics as shown in figure. It is not possible to make process improvement
that optimizes all process attributes simultaneously. For example, if the aim is to have a RAD (rapid
application development process) then one may have to reduce the process visibility. Making a process
visible means producing documents at reguiar intervais. This, slows down the process.

‘Process improvement does not simply mean adopting particular methods or tools or using somemodel of
a process that has been used elsewhere. Although organizations that develop the same type of software
clearlyhave much in common, there are always local organizational factors, procedures and standards that
influence the process. One will rarely be successful in introducing process improvements if one simply

attempts to change the process to one that is used somewhere else. Process improvement shoutd always -

be seen as specific to an organization or 2 part of a larger organization.

Process improvementis a cyclical activity, as shown in figure 12.1. It involves three principal stages. These
stages are:

1 Process measurement: Attributes of the current project or the product are measured. The aim
is to improve the measure according to the goals of the organization involved in process
mmprovement. '

2 Process analysis: The current process is assessed, and process weaknesses and bottlenecks
are indentified. Process models that describe the process are usually developed during this

stage,)
3 Process change: Changes to the process that have been indentified during analysis are
infroduced. -
© 12.2.1 Process attributes
The attributes of a process that goven its effectiveness & results are described here.
Process characteristic Description
* Understandability To what extent is the process explicitly defined and how

easyis it to understand the process definition.

150

Visibility | Do the process activities culminate in clear results so that
' the progress is externally visible?

Supportability - To what extent can CASE tools be used to support the
process activities?
Acceptability Is the defined process acceptable to and usable by the
‘ _ engineers responsible for producing the software product?
Reliability Is the process designed in such a way that process errors
are avoided or trapped before they result in product error?
Robustness ' Can the process evolve to reflect changing organizational
' requirements or identified process improvements?
Rapidity | How fast can the process of delivering a system from a
given specification be completed?

Figure 12.1: The Process Change cycle

12.2.2 Process and product quality

Process 1mpr0vement isbased on the assumption that the quahty ofthe product development
process is critical to product quality. The notion of process improvement was given by W.E.
Deming. _

Deming and others introduced the idea of statistical quality control. This is based on measuring
the number of product defects and relating these defects to the process. The aim isio reduce the
mumber of product defects by improving the process until it is repeatable. That is, theresults of
the process are predictable and the mmnber of defects reduced. The process is then standardized
and a further improvement cycle begins.

For small projects however where there are only a few team members, the quality of the
- development team is more important than the development process used. If the team has a high
level of ability and experience the quality of the product is likely to be high. If the team is
inexperienced and unskilled a good process may limit the damage but will not lead to high-
quality software.
‘Where teams are small, good development technology is particularly important. A small team
cannot devote a log of time to tedious administrative procedures. The team members spend
nmuch oftheir productivity. For large projects, abasic level of development technology is essential
for information management. Paradoxically, sophisticated CASE tools are often less important
lavge projects. Team members spend a smaller proportion of their time in development activities
and more time communicating and understanding other parts of the system, This is the dominant
factor affecting their productivity. Development tools make no difference to this. -

15%

12.2.3 Benefits of Process Improvement
The following are some of the benefits and business reasons forimplementing process improvement:

The quality of a system is highly influenced by the quallty of the process used to acquire,
develop, and maintain it.

Process improvement increases pioduct and service quality as organizations apply it io
achieve their business objectives. .

Process improvement objectives are aligned with business objectives.

12.3 PROCESS CLASSIFICATION

The process can be observed in all organizations from smali industry to large multinational corpany.
These processes are of different types depending on the degree of the formality of the process,
the size of product and the size of the company and so on. There are four classes of processes.
Figure 12.2 illustrates examples of these: :

1. Informal Processes; When there is no strictly defined model, the development team selects the
process that they will use. Informal processes may use formal procedures such as configuration
management , but the procedure and the relationships between procedures are defined as the
required by development team.

2. Managed Processes: A defined process model is used te drive the development process. The
process model defines the procedures, their scheduling and the relationships between the
procedures.

3. Methodical process : When some defined development method or methods are used, these
processes benefit from CASE tool support for design and analysis processes.

4. Improving Processes: Processes that have inharit improvement objectives have a specific
budget for improvements and procedures for introducing such lmprovements As part of this,
quantitative process measurement may be 1ntroduoed

. Frolotypes
Informat - i:'ljoll-"l hft.tlme systems
cess -
- Slnalvmochum-sm
systems
Mann gad - Larpe systems
Process : T} Long-lifetime pr oducts
.
Methodical o altundestood
cess il
o Roog iwer adgsems

Figure 12.2 :Process Applicability

12.4 PROCESS MEASUREMENTS

Process measurements are quantitative data about the software process, measurements of process and
product attributes is essential for process improvement. Process measurement can be used to access
whether the efficiency of a process has been improved. For example the effort and time devoted to testing
can be monitored. Effective improvements to the testing process should reduce the effort, testing time or
both.

152

Process measurement can be used to improve the quality of a pro. .ct. The product quality data should
also be collected and related to the process activity.

Three classes of process metrics can be collected:

1.

The time taken for a particﬁlar process to be completed : thiscanbe a total time devoted
to the process ,calendar time , the time spend on the process by particular engineers and so on.

The resources required for a particular process: The resources might include total effortin
person-days, travel cost and computer change.

The member of occurrences of 2 particular event : The event might be monitored include
the number of defects discovered code mspectlon the number of lmes of code modified in
response to arequirement change.

12.5 PROCESS ANALYSIS AND MODELING

Process analysis and modeling involves studying existing processes and developing an abstract model of
these processes that captures their key characters. These models help in understanding the processes and
communicating that understanding to others. .

Process analysis is concerned with studying existing process in order to know the relationships between
- part and process.

Following are the technigues of process analysis.

1.

Questionnaires and Interviews: The engineers working on the project are questioned about
what actually goes on. The answers to formal questionnaires are refined during personal interviews
with those involved in the process. The discussion can be structured around a version of the
process model that is refined as new information becomes available.

E.thnographic studies : This kind of study can used to know the nature of software development
as a human activity. Such analysis reveals subtleties and complexities that may be discovered.

using other techniques.

12.6 PROCESS CHANGE

Process change involves making modification to the existing process. It may include mtmducmg new
practices, methods or tools and changes in the process activities.

There are five key stages in the process change process.

1.

Improvement Identification: This stage is concerned with using the result of the process analysis
to identify quality, schedule or cost bottlenecks where process factor might adversely influence
the product quality. Process improvement should focus on loosening these bottlenecks by
proposing new procedures, methods and tools to address the problems.

Improvement Prioritisation: This stage is concerned with assessing the possible changes and
prioritizing them into implementation. When many possible changes have been identified, itis
usually impossible to introduced them all at once.

Process Change Introduction: Process change introduction means putting new procedure,

" methods and tools into place, and integrating them with other process activities.

Process Change Training: Without training, it is not possible to gain the full benefits from
process changes. Process managers and software engineers may simply refuse to accept the
new process. '

153

5. Change Tuning: Proposed changes will never be completely effective as soon as they are
infroduced. Tuning is need at the phase where minor problems are discovered and modifications
to the process are proposed and are introduced. This tuning phase should last for several months
until the development engineers are happy with the new process.

Once a change has been introduced, the improvement process can iterate with farther analysis used to

 identify process problems, propose improvements, and so on. It is however, impractical to introduc too
many changes. Introducing too many changes makes it impossible to access the effect of each change on
the process.

12.7 CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

Capability Maturity Model Integration (CMM]I) is a process improvement approach that provides
organizations with the essential elements of effective processes. It canbe used to guide process improvement
across a project, a division, or an entire organization, CMMI helps integrate traditionally separate
organizational functions, set process improvement goals and priorities, provide guidance for quality processes,
and provide a point of reference for appraising current processes.

12.7.1 Capability Matunty Model

The Capability Maturity Model (CMM) is a process capablhtymatuntymodel Wthh aids in the
definition and understanding of an organisation’s processes,

The CMM was originally described in the book Managing the Software Process (Addison
Wesley Professional, Massachusetts, 1989) by Watts Humphrey. The CMM was conceived by
Watts Humphrey, who based it on the earlier work of Phil Crosby. Active development of the
model by the SEI{US Dept. of Defence Software Engineering Institute) began in 1986.

The CMM was originaily intended as a tool for objectively assessing the ability of government
contractors' processes to perform a contracted software project. Though it comes from the area

of software development, it can be applied as a generally applicable model to assist in- -

understanding the process capability maturity of organisations in diverse areas. For example,
software engineering, system engineering, project management, risk management, system
acquisition, information technology (IT), personnel management. It has been used extcnsxvely
for avionics software and government projects around the world.

Though still thus widely used as a general tool, for software development purposes the CMM
has been superseded by CMMI (Capability Maturity Model Integration).

+ MaturityModel
* . Structure of CMM
* Levelsofthe CMM
Maturity Model
Amatmtymodellsashudnredcoﬂechmofelmnmtsﬁmtdwmbemaspeclsofmamnty
in an organization. A maturity model may provide, for example:

a place to start

the benefit of a community’s prior experiences
. aoommmlanguagewﬂashmpdvisim

af k for prioritizing actions |

away to define what improvement means for your organization.

154

A maturity model can be used as a benchmark for assessing Jifferent organizations for equivalent
comparison. The model describes the maturity of thé company based upon the project the
company is handling and the related clients, -

12.7.2 Structure of CMM
The CMM involves the following aspects:

Maturity Levels: It is a layered framework providing a progression to the discipline needed
to engagein continuous improvement an organization develops the ability to assess the impact of
anew practice, technology, ortool on their activity. Detenmining how innovative efforts influence
existing practices is important when improvementis made. This really empowers projects, teams,
and organizations by giving them the foundation to support reasoned choice.

Key Process Areas: AKey Process Area {KPA) identifies acluster of related activities
that, when performed collectively, achieve a set of goals considered important.

- Goals: The goals of a key process area summarize the states that must exist for that key
process area to have been implerented in an effective and lasting way. The extent to which the
goals have been accomplished is an indicator of how much capability the organization has
established at that maturity level. The goals signify the scope, boundaries, and intent of each key
process area.

Common Features: Coramon features include practices that implement and institutionalize
akey process area. The five types of common features include: Commitment to Perform, Ability
to Perform, Activities Performed, Measurement and Analysis, and Verifying Implementation.

Key Practices: Thekey practices describe the elements of infrastrocture and practice that
contribute most effectively to the implementation and institutionalization of the key process areas,

12.7.3 Levels of the CMM

There are five levels of the CMM. According to the SEI, “Predictability, effectiveness, and
control of an organization s software processes are believed to improve as the organization
moves up these five levels. While not rigorous, the empirical evidence to date supports
this belief.”

Level 1 - Initial

At maturity level 1, processes are usually not documented and change based on the user or
event, The organization does not have a stable environment and may not know orunderstand all
of the components that make up the environment. As a resuit, success in these organizations
depends on the institutional knowledge, the competence and heroics of the people in the
organization, and the leve] of effort expended by the team. In spite of this chaotic environment,
maturity level 1 organizations often produce products and services howeves, they frequently
exceed the budget and schedule of their projects. Dueto the lack of formality, level T organizations,
often over-commit, abandon processes during a crisis, and are unable to repeat past successes.
There is very little planning and executive buy-in for projects and process acceptance is limited.
IT organizations at level | are often seen as a service instead of a pariner.

Level 2 - Repeatable

Atmatuiity level 2, some software developiment processes are repeatabile, possibly with consistent
results, The prooesses may not repeat for all the projects in the organization. The organization
may use some basic project management to track cost and schedule.

Process discipline isunlikely to be rigorous, but where it exists it may help to ensure that existing
practices are retained during times of stress. When these practices are in place, projects are

135

performed and managed according to their documented plans.

Project status and the delivery of services are visible to management at defined points, for -

example, at major milestones and at the completion of major tasks.

Basic project management processes are established to track cost, schedule, and functionality.
The minimum process discipline is in place to repeat earlier successes on projects with similar
applications and scope. There is still a significant risk of exceeding cost and time estimates.

Level 3 - Defined

The organization’s set of standard processes, which are the basis for level 3, are established and
subject tp some degree of improvement over time. These standard processes are used to establish
consistency across the organization. Projects establish their defined processes by applying the
organization’s set of standard processes, tailored, if necessary, within similarly standardized
guidelines. .

The organization’s management establishes process objectives for the organization’s set of standard
processes, and ensures that these objectives are appropriately addressed.

A critical distinction between level 2 and level 3 is the scope of standards, process descriptions,
and procedures. At level 2, the standards, process descriptions, and procedures may be quite
different in each specific instance of the process, for example, on each particular project. At level
3, the standards, process descriptions, and procedures for a project are tailored from the
organization’s set of standard processes to suit a particular project or organizational unit.

Level 4 - Managed -

Using process metrics, management can effectively control the process e.g., for software
development. In particular, management can identify ways to adjust and adapt the process to
particular projects without measurable losses of quality or deviations from specifications.

Organizations at this level set quantitative quality goals for both sofiware process and software
maintenance. Subprocesses are selected that significantly contribute to ‘overall process

i

performance. These selected subprocesses are controlled using statistical and other quantitative _

techniques. A critical distinction between maturity level 3 and matunity level 4 is the prediétabil'ity
of process performance. At maturity level 4, the performance of processes is controled using
statistical and other quantitative techniques, and may be quantltatwelypredlctable At matunty
level 3, processes are only qualitatively predictable.

Level 5 - Optimizing

Matunty level 5 focuses on continnally i nnprovmg process performance through both incremental
. and innovative technological improvements. Quantitative process-improvement objectives for
~ the organization are established, continually revised to reflect changing business objectives, and
used as criteria in managing process improvement. The effects of deployed process improvements
are measured and evaluated against the quantitative process-improvement objectives. Both the
defined processes and the organization’s set of standard processes are targets of measurable
improvement activities.

Process improvements to address common causes of process variation and measurably improve
the organization’s processes are identified, evaluated, and deployed.

Optimizing processes that are nimble, adaptable and innovative depends on the participation of
an empowered workforce aligned with the business values and objectives of the organization.
The organization’s ability to rapidly respond to changes and opportumues isenhanced by finding
ways to accelerate and share learning,

A critical distinction between maturity level 4 and maturity level 5 is the type of process variation

addressed. At maturity level 4, processes are concerned with addressing special causes of process
' 156

1

variation and providing statistical predictability of the results, Though processes may pm\duce

predictable results, theresults may be insufficient to achieve the established'objectives. At maturity

fevel 5, processes are concerned with addressing common causes of process variation and

changing the process, that is, shifting the mean of the process performance to improve process

performance, while maintaining statistical probability to achieve the established quantitative
- process-improvement objectives.

12.7.4 CMMI Benefits

" The following are some of the benefits and business reasons forimplementing process improvement:
The CMMI Product Suite is at the forefront of process improvement because it provides the
Jatest best practices for product and service development and maintenance. The CMMI models
improve the best practices of previous models in many important ways. CMMI best practices
enable organizations to do the following:

" more gxpliditly link management and engineering activities to their business objectives
expand the scope of and visibility into the product lifecycle and engineering activities to
ensure that the product or service meets.customer expectations
incorporate lessons learned from additional areas of best practice (e.g., measurement, risk
management, and supplier management)
implement more robust high-maturity practices |
address additional organizational functions critical to their products and services
more fully comply with relevant ISO standards. T

12.8 GLOSSARY OF PRODUCT AND PROCESS QUALITY
IMPROVEMENT TERMS

Common-Cause Variation: Any normal variation inherent in a work process.

Complexity: Unnecessary work; any activity that makes a work pfoceSs more complicated
without adding value to the resulting product or service.

Continuous Improvement Process: The ongoing enhancement of work processes for the
benefit of the customer and the organization; activities devoted to maintaining and improving
work process performance through small and gradual improvements as well as radical innovations.

Control Chart: A line graph that identifies the variation occurring in a work process over time;
helps distinguish between common-cause variation and special-cause vasiation.

- Cost of Quality: A term used by many organizations to quantify the costs associated with
producing quality products. Typical factors taken into account are prevention costs (training,
work process analyses, design reviews, customer surveys), appraisal costs (inspection and
testing), and failure costs (rework, scrap, customer complaints, returns).

Cross Functional: Involving the cooperation of two or more departments within the organi ion
(e.g., Marketing and Product Development). - _

Customer: Any person or group inside or outside the organization who receives a product or
Customer Expectations: The “needs” and “wants” of a customer that define “quality” ina
specified product or service.

Deming Cycle (also known as Shewart’s Wheel): A model that describes the cyclical
157 :

interaction of research, sales, design, and production as a continuous work flow, so that all
fumctions are involved constantly in the effort to provide products and services that satisfy customers
and contribute to improved quality.

Department Improvement Team: Made up of all members of a department and usually chaired
- by the manager or supervisor, department improvement teams function as a vehicle for all
employees to continuously participate in ongoing quality improvement activities.

Executive Steering Committee (or Executive Improvement Team): Includes top executives

and is chaired by the CEO; encourages and participates in a quallty initiative by reviewing,
* d@pproving, and implementing :mprovement activities.

Fitness-For-Use: Juran’s definition of quality suggesting that products and services need to
serve customers’ needs, instead of meeting internal requirements only.

Improving Steering Council (also known as Quality Steering Committee): A group of

people with representation from all functions in the organization, ustally drawn from management

levels, chartered to develop and monitor a quality improvement process in their own functions.

This group is often responsible for deciding which improvement projects or work processes will
- be addressed and in what priority. '

Internal Customer: Anyone in the organization who relies on you for a product or service.
Internal Supplier: Anyone in the organization you rely on for a product or service.

Juran Trilogy: The interrelationship of three basic managerial processes with which to manage
quality, quality control, and quality improvement. . :

Just-In-Time (JIT): Amethod of production and inventory cost control based on delivery of
parts and supplies at the precise time they are needed in a production process..

Kaizen: J apanese term meaning continuous 1mproveme11t involving everyone-mamgers and
employees alike.

Key Expectations; The requlrcments conoermng aspecified product or service that a customer
holds to be most important.

| Quality Circle: A small group of employees organized to solve work-related problems often
voluntarily usually not chaired by a department manager.

Quality Initiative: A formal effort by an organization to improve the quality of its products and
services; usually involves top management development of a mission statement and long-term
strategy. '

Special-Cause Variation: Any violation arising from circumstances that are not a normal part
of the work process.

'- Supplier: Any person or group inside or outside the organization that produces a product or
service. Suppliers improve quality by identifying customer expectations and adjusting work
processes so that products and services meet or exceed those expectations.

Task Force: An ad hoc, cross-functional team formed to resolve a major problem as quickly as
possible usually includes subject matter experts temporarily relieved of their regular duties.

Total Quality Control (TQM): A management approach advocating the involvement of all
- employees in the continuous improvement process-not-just quality control specialists.

Work Partnershlp A mutually beneficial work relationship between internal and external
customers and supphers

Work Process: A series of work steps that produce a particular product or service for the

158

