'M.Sc. (C.S)- 08

@M varoHAMAN MAHAVEER OPEN UNIVERSITY, KOTA

et
L

- COMPARATIVE STUDY OF 8085, 8086 & 8086

COMPUTER ARCHITECTURE
AND MICRO PROCESSOR
 Unit Number = Unit Name Page Number |
1. PROCESSOR BASICS 1-13
2 ORGANIZATION AND ARCHITECTURE 1425
3. DATAPATH DESIGN © 26:37
4. - PROCESSOR ORGANIZATION | - 38-54
5. REDUCED INSTRUCTION SET COMPUTER 55.72
6. CONTROL DESIGN 73-86
7. MEMORY ORGANIZATION - 87-103
8. SYSTEM ORGANIZATION 104-117
9, INTRODUCTION TO MICRO COMPUTER SYSTEM 118-131
10. l'NTRODUCTION TO MICRO COMPUTER SYSTEMS 132-158
1. PERIPHERALS & THEIR INTERFACING WITH 8085 159-176
177-196

- Unit-1
Procéssor basics

Structure of unit

1.0 Objective

1.1 - TIntroduction -

12 CPU organization

1.2.1 Fundamentals

1.2.2 Additional Features

1.2.3 Selflearning Exercises -

1.3 Datarepresentation -

1.3.1 - BasicFormats =~

1.32 Fixed point numbers

1.3.3 Floating Point numbers

1.3.4 Selfleaming Exercises =

1.4 Instrictionsets

1.4.1 - Instruction Formats

1.42 Instruction types

1.43 Programmingconsideration

1.4.4 Selfleaming Exercises

16 Glossary -
1.7 Further Readings -

1.8 AnswertoSelf Learning Exercise. - - -

1.9 UnitEnd Questions .

1.0 Objective - y - o

This wnit is concerned with computer’s CPU and its related topics. The components of CPU and their
functions are discussed. Instruction set and formats explained. Different ways of storage of data are
discussed. o - '

1.1 Introduction. | . S

The part of computex that perform the bulk of data processing is called the Central Processing Unit(CPU).
The CPU fetches one instruction of program from the memory, decode it and thenexecute it. After decoding
the _inétruction the CPU comes to know what operation is to be performed and whether the datato be
processed is in memory or register of CPU. After executing one instruction it fetches the next instruction for
execution till the end of program reached. The result is placed in the memory or sent to an output device
according to the instruction given in the program. Besides executing the program, the CPU also control
input and output devices and other component of the computet. R

The main function of CPU is to execute sequence of instructions that is program. Steps involved in program
executionby CPUisas follows:- . . L o
L. The CPU transfers instruction and when necessary their input data (operands) from main memory
to registers of CPU. ' ' '
2. CPU executes the instruction in their stored sequence except when execution sequence is explicitly
altered by branch instruction. - I o
When necessary, the CPU transfers output data(results) from CPU registersto mainmemory.

1.2 CPU Organization L
Internal structure of CPU having three major parts as shown in figure 1.1

Al

Status Flags ——t »
-] Registers

i

Complementer

Arithmelic and
Boolean Logic

Control Unit

|

Figure 1.1 The internal Structure of CPU

1.1.1 Fundamentals |

Register Set stores intermediate dataused during the execution of the instruction, . . _
The Arithmetic Logic Unit(ALU) perform arithmetic and logic operations such as addition, subtraction,
multiplication , division AND, OR, NOT, Ex-OR, Left or Right Shift, Clear. Other mathematical operations
such as exponentiation, logarithmic, trigonometric and floating point operations are not performed by
ALU. These operations are performed by special purpose math processor called Floating Point
Unit(FPU). They are either sofiware or employ a math processor IC in micro processor based system. The
use of software for such operation makes execution slow, math processor speed up program execution
and reduce programuming complexity. The choice depends on actual requirement and costinvolved in a
particular application, - R

The Control Unit supervises the transfer of information among the registers and instructs the ALU asto -
‘which operdtion to perform. It control entire operation and other devices such as memory, input and output
devices of camputer. It fetches instruction from memory, decode the instruction, interprets the instruction -
to know what tasks are to be performed and send suitable control signals to other components to perform
further necessary steps to execute the instruction. L T :
For fetching and executing an instruction the following steps are performed-

1. .. Theaddress of the memory location where instruction lies, is placed on
theaddressbus. . . S o a

2. instraction is read from memory. _

3. instruction is sent to the decoding circuitry for decoding, S
4. - addresses and data required for the execution for the instruction are read from memory. -~ -
5. th_és_ed'e__itéf_addi‘é‘ssés’ are séh't‘t&i"t:he'o'thérSet':tioﬁ-fb'r'ﬁrocessing."- ' e IR
6. thie results are sent to the themory orkept in some register, . - . R
7. necéssary stéps aré taken to fetch next instruction. Fot this the content of program counter is

E B Y

incrementéd. B | SRR . o
- Three different types of bus uséd to interconneet the CPU, memory and I/O devices

- Control bus (bidirectional)-carties the necessary commands and control signals to the various parts of
Address bus (unidirectionaly-specifies the address of the memory wordor 7
1/0 device that the CPU wants to communicate. T _
Data bus (bidirectionaly-carries the data transmitted between CPU, memory and IO devices.
Registers.. o | | Co
A CPU contains anumber of registers to sfore data temporarily during the execution ofa program, Registers
areclassifiedas follows: L o o
Accumulator is register which hold one of the operands prior to the execution ofan instruction, and
receives the result of most of the arithmetic and logical operation. o :
General Purpose Registers store data and intermediate results during execution of a program. They are
accessible to users through instruction if the user s are working in assembly language.

Special Purpose Registers All CPU do not contains all of these special purpose registers, A powerful CPU
contains most of them, The brief description of these registers are as follows- _
Program Counter(PC) holds address of the memory location which contains the next lnstructlon to be
fetched from memory.
- Stack Pointers(SP) holds the address of last oocupled memory locauon of the stack. Thus it 1nd1cate upto
* what memory locations the stack is already filled up. '
Status Registerholds 1 -bit flags to indicate certain.conditions that anse during anthmetlc and loglcal
operation. The important indications shown by computer are : =
Carry —it indicates whether there is overflow or not.
Zero — it indicates whether the result is zero or nonzero.
Sign—itindicates whether the result is plus or minus. o :
 Parity - it indicates whether the result contains odd number of 1s or even number of ls S
Instruction Register hold an instruction until it is decoded. - :
“Index Register are used for addressing. The addressof an operand is the sum of the contents of the mdex
register and a constant. Instructions involves index register contain constant. The constant is adcled to
~ content of index register to form the effective address, i.e. address of operands. : ‘_
Memiory Address Register(MAR) hold address of the' instriiction or data to be fetched from the memory.. :
The CPU transfers the address of the next instruction from program counter to the memory address :
register. From MAR it is sent to the memory through addréss bus. - -
Meniory Buffer Register(MBR) or Data Register(DR) hold the instruction code or data mcelved ftom or-
sent to memory. The data wl'nch are vmtten into the memory are hf:ld in thlS reglster until the wntc eperanon -
iscompleted. . Lo
External communication of CPU - - - :
As in figure 1.2 if no cache memory is available CPU communicate directly with main memory. CPU is
significantly faster than main memory. It can read from or write to registers perhaps 5 to 10 times faster
than it can read from or write to main memory. To increase the processor main memory speed disparity
cache memory come introduced between CPU and main memory. Cache memory if smaller and faster
than main memory and in some system wholly or in patt it reside in CPU chip. Using cache memory, CPU
can perform memory load or store instruction in single clock cycle. Where as in a system does not have
cache require many cycles for these operation. Cache is designed such that it is transparent to CPU
 instruction that is cache and main memory forms a single seamless memory space that is called external
memoty.

Insteuction

Main
CPt) o . - memory

-

Iata

Aty i

= — "_'I' Gl | | i C
“oru Aoy

Inin

L vt mbunary
Ty 1L 13wt Consinineson

The CPU communicates with 10 devices in the same way as it communicates wnh external memory.-

1.2.2 Additional features

Architecture extensions - The basic design of accumulator based CPU can be xmproved Following
architécture extensions improve their performance and ease of programrmng -

1) Multipurpose register set for storing data address

These will replace accumulator AC and Auxiliary registers DR and AR of our basnc CPU resultmg CPU
has 32 such reglstcrs

2) Additional data, instruction and address types

Most CPl have instructions to handle data and address add and subtract instruction, llttle extra circuitry is

required for (fixed point) multiply and divide instruction, which simplify many programming tasks, CALL

and RETURN instruction also simplify program design. _

3) Register to indicate computation status ' !

Status register indicate user and supervise states and exceptional conditions resulting from the instruction

execution. Conditional branch instruction can test the status reglster which sxmphﬁes the programmmg of

conditional actions. :

4) Program Control stack

Various special registers and instruction facilitate the transfer of oontrol among program dueto proccdune

calling or external interrupts, Many CPU use a flexible scheme for program control transfer. The stack

memory is intended for solving key information about an interrupted program. CPU address register called

a stack pointer automatically keeps track of the stack’s entry point.. - o

5) Pipelining : : :

Modern CPUs employ a variety of speed up techmques including cache memories and several forms of

instruction level parallelism. These features add to CPU *s complexity. If some activity do not share a

resource such as the system bus, they can be carried out at the same time. By merging the execution part

of each instruction cycle with the fetch part of the following instruction cycle. We can reduce the overall

execution time from six clock cycle to four. this overlapping of instruction fetching and execution is an

example of instruction pipelining, which is an important speed up feature Fig 1.3 illustrate graphically the

~ two stage pipelining. Each instruction can be thought of as passing through. Two consecutive stages of
processing : afeich stage implement mainly by PCU(Program Control Unit and execution stage implemented

by DPU(Data Processing Umt) S _

Instruction 1 |_Fetcl1 I ' I Execute_|

| Feich [I Exocule-l

Instruction 2

Instrnction 3 = N -
. | Feloh - | | Execuie |

Clock 1 . 2 3 4

Figure 1.3 Pipelining

Twao instruction can be processed simultaneously in every CPU clock cycle, with one completing its fetch
phase and the other completing its execution phase. A two stage pipelining can therefore double the CPU’s
performance from one instruction every two clock cycles to one instruction every clock cycle.

1.2.3 Selflearning Exercises -

True/ False

a. Databus is unidirectional. . .

b. Control bus carries the necessary commands and control SIgnals to the various parts of the system.
Fill in the blanks

Cu trvecvrrreriennes is register which hold one of the operands priot to the executlon ofan instruction, and
receives the result of most of the arithmetic and logical operation,
s IO s a technique used in modern CPUs to speed up processing,

1.2 Data Representatlon |
The manner in which the data is expressed symbolically by binary digit in a computer is known as data

representation.
" 4

Following are some type of numbers to be represent-
/%mary is a number system using only ones and zeros (or two states)

" “Decimal is a number system based on ten digits (including zero).
Hexadecimal is a number system based on sixteen digits (including zero).
Octal is a number system based on eight digits (including zero).
Duodecimal is a number system based on twelve digits (including zero).

Figure 1.4 show fundamental division of information into instruction and data. Data can be further subdmded
into numerical and non numerical.

Rinary

. Fixesd Paint <:
Insttuction / Devimnal
]nrbtmatinn<:~ Number e)
T Doy : Floating _.-—% Binury
: © Paint i.

Hon Numerical daia Pecunal

Figure 1.4 Division of instructon und duta

In'selecting a number representation to be used in computer, the following factor should be taken into
-account : ' '

%) The number type to be represented; for example integer or real numbers
0 The range of values likely to be encountered.
@ Theprecision of the number, which refers to the maximum accuracy of the representanon

There are two types of arithmetic operations available in computer. These are :

1. Integer(Number without fractional part) arithmetic

2 Real(number that contain 4 fractional part) arithmetic
therefore are two type of numbers exists integer and real numbers and computer have to have representatlon
technique for both of them. _

1.3.1 Basic Formats

Integer representations

Sign-magnitude is the simplest method for representmg sngned binary numbers One bit (by universal
convention, the highest order or leftmost bit) is the sign bit, mdlcatmg posmve or negative, and the 1ema1mng :

-~ bits are the absolute value of the binary integer.

In one’s complement representation, positive numbers are represented in the “normal manner (same as-
unsigned integers with a zero sign bit), while negative numbers are represented by complementing all of the
bits of the absolute value of the number.
In two’s complement representation, positive numbers are represented inthe “norma.l” manner (same as
unsigned integers with a zero sign bit), while negative numbers are represented by oomplementmg all of the
bits of the absolute value of the number and adding one.
Inunsigned representation, only positive numbers are represented. Instead ofthe hlgh order bit belng
interpreted as the sign of the integer, the high order bit is part of the number. An unsigned number has one
power of two greater range than a signed number (any representation) of the same number of bits. -
'Real Representation | |
There are two methods of representing real numbers
Fixed point representation
Floating Point representation.

1.3. 2 Fixed Point Number

Computers are designed such that each location(all known as word) in memory stores only a finite number
of digits. That’s why operands in arithmetic operatlon have only a finite iumber of digits.

5

The number, in which decimal point is always fixed in one position is known as Fixed point number and
representation technique is called Fixed Point Representation, In this representation decimal point is not
actually present, but its presence is only assumed (see figurel. 5)

‘One ey focalion :
l R !SI“ |

Assnlnn. | 1ecimat Pain

Figure 1.5 Fisod point represeniation

Fixed point formats allow a limited range of values and have relatively snmple hardware reqmrements So
this representation is generally used when hardware cost, speed, or complexity is important

Floating point number, on the other hand allow a much larger range of values but require either costly
processing hardware or lengthy software implementation.

1.3.3 Floating point Number
There is no fixed number of digits before and after decimal point; that is the decimal point can float in
floating point number. Floating point representation has two parts: first part resent a signed fixed point
number called mantissa. The second part designates position of decimal point is called exponent. The fixed
part mantissa can be fraction or integer.
For example deciral number 4172.123 is represented in floating pomt as follows -

‘Mantissa - Exponent

- +.4172123 +04

Decimal shown above is an assumed decimal point, It is not physu:ally indicated in reglster Ifweuse
integer system of representation for mantissa the number 4112. 123 will be repvesented as shown below

Mantissa _ Exponent

+4112123 -02
In this representation sign of exponent has been shown negative to indicate the actual posmon of decunal
point lies two decimal position to the left of the assumed decimal pomt :

Value of exponent indicate actual position of decimal point is four position to the right of the indicated
decitnal point fraction. This representation is equivalent to the scientific notation +.41 72123 X 10“I -
F loatmg pomt is always interpreted to represent a number into followmg form— :
Floating point representatlon uses a second register to store a mumber that designate the position ofthe -
decimal pointin first register. Only the mantissa and exponent are physically stored in rcglster(mcludmg
their mgns) Theradix R and radix point position of the mantissa are always assumed.

Floating point bmary number is represented in similar manner except that it uses base 2 for the exponent.
For example bmary number+10011.11 is represented with 8-bit fmctlon and 6-b1ts exponent as foIlows-

Fraction = Exponent

- 01001110 - 000100 e
Left most zero in fraction part denote positive sign. The floating pomt number is equwalent to—
' M X 2E = +(.1001110) X 2 '

Anormalize floating point number provide maximum possible precision. A floating point numberis sald to
be normalized it the most significant digit of the mantissa is non zero. For example 350 and 11010 are
normalized but 000350and 00011010 are not normalized. The number can be normalized by shifting three "
position to left and discard leading zeros to obtainl 1010000 three shift multiply the number by 2°=§, to -
keep same value for the Floating point number exponent must be subtracted by 3. The mantlssa and
exponent will have thelr own independent signs.

For example 75.14 X 10°, is represented in our computef as.7514ES as given in following figure.

+ mantissa sign -+ exponent sign
715 1 4 0 8
- > 1'
Mantissa
Exponent

Implied Decimal Point

Since leading zeros serves only to locate the decimal point therefore for that number shifting of the mantissa
till its most significant digit is non zero performed. So the mantissa contains maximum possible number of
 significant digits. We can not normalize a zero, since it does not have non zero digits. It is represented in
floating point by all zeros in the mantissa and exponent.
-For example .004854 will be stored as —

+ mantissasien - exponent sien

7 3 1 4 0 g
) Y)
I Mantissa
Exponent-

{mplied Decimal Point

Fixed point format require simple hardware but the range of values it allows is very limited whereas
Floating point format allow a wide range of values but require expensive hardware or large software
Floating point number Can'mpr&sent'mjustiappmxﬂnations. So floating point represented are less accurate
and slower. ' o - S ' S
In floating point representation some number can be represented in many ways for example 3.0 X 10",
0.3 X 10%and 0.03 X 10'® represent same number. ’ S -
4.4.4 Self learning Exercises

True/ False : : _ : o
€. Floa_t_ingf_oint representation cover higher range of numbers that can be stbred compared to fixed Point
representation. ' '

f. Floating Point numbers provide high accuracy.

Fill in the blanks L :

g. The manner in which the data is expressed symbolically by binary digit in a computer is known as

h. In Floating point representation number has two parts and .oooens
1.4 Instruction set :

The essential elements of a computer instruction are opcode and operand. opcode specified operation to -

be performed which can be either arithmetic and lo gical operation: movement of data between two register,
register and memory, or two memory location ; /O and contro). Operand reference specify aregister or

memory. lB‘cat_ion of operand data. The type of data may be address, number, character or logical data.

Elements of Machine Instruction :- - ‘

Operation code : specifies the operation to be performed (eg. ADD, SUB)

Source operand reference : operand that are input for the operation.

Result operand reference : The operand may produce a result.

Next instruction referefice : This tells the CPU where to fetch the next instruction after the execution of this

. instruction is complete.

Instruction representation :

During instruction execution, an instruction is read into an instruction register (IR) in CPU. The CPU must
be able to extract the data from the various instruction fields to perform the required operation. Simple
instruction format is given below —

Opcode Operand Reference Operatd Reference

4bits & bits 6 bits

Figure 1.6 A Simple Instruction Format

The large number of instruction of a given computer, gives the flexibility for the user and the programuier to

carry out various computational task, The instruction set provide mechanism to decide location of operand

mechanism of locating an operand are decided by the mode of addressing, " '

The instruction of a computer broadly classified into following categories -

1. Arithmetic Instruction

2. Logical Instruction

3. Shift Instruction

4 Data Movement Instruction -

3. Program control Instruction

Arithmetic Instruction

The Instruction include operation of addition, subtraction, multlphcatlon, and d1v1sion Simple proccssor

do nothave hardware circuitry for multiplication and division. So they perforn by programming technique
 which takes larger tlme But all advanced processor have hardware solution for multiplication and division

operation. _

Brief description of these instruction are as s follows - _

ADD : This instruction is used to add two values. This instruction is used as

ADD destination, Source
content of source and destination is added and result stored in destination,

' SUB : This Instruction is used similar to ADD Instruction éxcept that subtracﬁon is perfonned mstead of

addition.
MUL : MUL Instruction is used to multiply and used as -
* MUL Destination, Source
product of source and destination evaluated and result stored in destination -
DIV : perform division operation. and used as follows
DIV destination, source
means destination divide by content of source.

Logical Instruction

There are some logical instruction, some of them are of two operand and some are of one. Some of them

are explained below -
AND AND destination, source perform the loglcal AND operatlon between content of reglster ot
memory specified as destination and source in instruction and result store in destination. -

OR OR destination, source . this instruction is similar to AND except that mstead of logical AN _D it

perform logical OR operation.

XOR XOR destination, source perform exclusive OR between content of source and destmatlon and
result stored in destination. _ :

NEG/NOT used fornegating the operand

CLR/SET used for clearing and setting the one hit flip flop usually flag register

{0 zero or one,
; 8

Shift instruction
Some of shift instruction are listed below -
SHL/SHR - used to shift the content of specified register Left and right respectively,

ROR/ROL - this instruction rotate all the bits in a specified word to the right / left some number position.

RCL/RCR - this instruction rotate all the bits in a specified register some number
of bits positions to left/ right.
SAR - this instruction shift each bit in the specified register some number of blt position to nght
Data Movement Instruction
These instruction moves the data from one location to another without modifying data in the process. some
of them are
MOV - - MOV destination, source instruction moves the data from source to destination.
STORE - This Instruction stores the content of an impled register usually accumulator, into specified
memory location.
LOAD -This Instruction copies the content of specified location into register specifiedin the instruction.
- Program Control Instruction
 These instructions are used for controlling the sequence of program execution. Smoe many situation program
is not executed in sequence therefore some widely use instruction for deviation of execution of progmn in
sequence are described briefly below-

CALL This Instruction is used to transfer execution to subroutine, ot a procedure. When this. hlstructlon

executed control of execution is transferred to procedure use after all relevant data is moved to stack as

soon as execution of procedure completed control return to location where it hasleft. :

IMP used to deviaté from the usual sequence of execution. We can also associate condition withi mstructlon

to transfer execution control when condition is specified. :
RETURN itis last executed Instruction of procedure. it restore all relevant data stored in stack at the tlme

of entering the procedure.

IN used to enter data from peripheral dev1ce nto computer.

OUT used to transfer the data from computer into peripheral device.

HLT is an instruction used to stop further execution of computer instruction.

1.4.1 Instruction Format

Instruction format contains number of parts like opcode, mode bit address fields(s), register ﬁeId ete, The
instruction format specifies that given operand and/or mentioned in the opcode is executed on a data
whose location is specified by the coutents of the address field and mode bits. An instruction format is
normally stored in one word of memory. However, it is possible that an instruction format can not
accommodated in one memory word in this case it is stored in number of consecutive memory location. A
computer has a large variety of instruction formats of Vanable length and the control unit decode the
instruction and facilitate the execution ofthei instruction. '

F irst part of instruction format is operation ¢ode which specifies the operatlon tobe performecl by the

computer.
Second part mode bits gives the mechanism of calculating the addless of operand
~ Third part contains address of operands- .

Instraction format may have zero, one, two, three fields to specify an address. Instructions are labeled as
zero address instruction, one address instruction, two address instruction or three address i instruction
depends on number of arguments in instruction. -
There are three basic types of CPU organization.

1. The single accumulator organization uses an implied accumulatorregster and the i mstmctton format uses
one address such asADD AX.

- 2. General register organization instruction format require three register address ﬁelds to identify the two
operands and the result operand for example ADD AX, BX, CX in which content of Bx and CX added
.and stored in AX. Number of registers reduced to two if result is stored in one of the source register.

9

3. Instack oriented organization address of operand is always implied hence does not use any address
field, such as ADD implied that content of top two location of stack removed into registers, content added
and resuit is stored in the new top of the stack. _

Instruction in stack organization uses no address that’s why lengthofi mstructlon is smallest where as in
register oriented instruction with three address is largest. While writing program in assembly stack oriented
program have large number of instruction where as register oriented program have small number of
instructions, - :

Three Address Inst1 uctions : :
Instruction formats use three address fields to specifies the location of two source operands and the result
operand. These address can be memory or registers. Program to evaluate Z= (P + Q) * (R-8)/(T+

V) using three address scheme in computer which have four registers AX, BX, CX, DX to hold intermediate

data is given below :-

ADDDX, P, Q

SUBCX,R,S

ADDBx, T,V

MUL AX, CX, DX
DIVZ,BX,AX
* The three address format provnde short length program, . But length of i mstmctlon format reglsters three
address hence fairy long,

Two Address Instruction

The instruction which are of the source behave asa dest]natlon alsoi is requxred only.two address is known :

as Two address instruction. In this scheme program for evaluation of Z=(P+ Q) * (R-8)/ (T + V) will
‘be as follows - . . o o
MOV DX, P
ADDDX, Q
MOV CX,R
SUBCX, S
MOVBX, T
ADDBX,V
MULCX, DX
“DIVCX,BX -
-MOV Z, ’C'X '

MOV instruction transfer the operand from memory to register or from reglster to memory

One address Instructions:”
These instructions use implied register, accumulator for data mampulatlon Proglam is wntten neglectmg
the second register and assuming that accurnulator is long enough to take care of the mu]tlpllcatlon and
division operation. Program for i instruction Z=(P+ Q) * (R-8)/(T+V)is given below-
LOAD P _ .
ADD Q
STOREM
LOAD R
SUBS
MULM
STOREM
LOADT
.ADDV
DIVM
STOREZ

10

Itis assumed that all the operations are performed between accumulator and memory operand.

Zero Address Instructions: .

A computer organized using only stack does not use any address. However the PUSH and POP instruction
require one address fields to specify the operand that from/ to the top of the stack. Arithmetic expression
- are evaluated using top two content of stack and the result is stored on the top of the stack. Program for Z
=P +Q) * (R-S)/(T+V)will be as follows in zero address instructions - '

PUSHP
PUSHQ
ADD
PUSHR
PUSHS
SUB -
MUL
PUSHT
"PUSHV
DIV
POP 7 . . | L
The zero-address machine needs more instructions than the 3-address machine, butthey are shorter
instructions so the 0-address machine does not necessarily have a performance disadvantage, and the 3-
address machine does not necessarily have a performance advantage '

1.4.2 Instruction Type - |
. Letan instruction Y=X +Y, add valueof X and Y and put the resultin Y, Let us assume that variable X
and Y correspond to location 114 and 214. This operation could be accomplished as follows - -
1. Load register with value of location 114. :
2.Addthe vql{le of location 214 to the register.
3. Store the content of register in the memory location 114. :
So you can see that single high level language instruction require three machine language instruction. High
level language express operation in a concise algebraic from using variable where as machine language
express operation inbasic from which involve movement of data to/from register, .
-Acomputer should have a set of instruction that allows the user to formulate any data processing task. Any
program written in high level language must be translated into machine language to be executed. Thus set of
machine instruction must be sufficient to express any of the instruction from a high level language. We can
categorize instruction type as follows - - : o SR :
Data processing : - - Arithmetic and logical instruction -

Data Storage - . Memory instruction
Data Movement o - [/Oinstiuction -
Control - ~~ : - Testand branch mstruction,

- Arithmetic instruction provide computational capabilities for processing numeric data, -
Logic(Boolean) instruction operate on the bits of word as bits rather than as number, -
Memory instruction for moving data between memory and registers. . _
VO instruction are used to test the value of data word or the status of a computation,
Branch instruction are used to branch to different set of instruction depending on the decision made,

1.4.3 Programming consideration
Data processing operations require three operands such that

X:=A+B thatisaddition require X, A and B . o

Each instruction involve set of low level instructions which actually run at the time of execution of single high -
level instruction. Forexample above addition instructions consists following low level instructions to run-
AC =M (A) | _. RS

11

.

DR =AC.

AC:=M(B)

AC =AC+DR

M(X) =AC . : _ :
Single address instructions (i.e. instruction with one address explicit memory address) can implement by -
‘sequence of instruction. '

For example set of instructions for addition with single addressing will be as follows -

LOAD A _ Load A from M into accumulator

MOVE DR AC Move content of accumulator to data register

LOADB Load B from M into accumulator

ADD Add contents of DR to AC

STORE X Store content of AC in M.)

Above program fragment use only load and store instruction to access memory a feature called load/ store
 architecture. Memory referencing ADD B instruction take longer time than ADD instruction that reference
only CPU register and memory reference complicate the instruction decoding logit in the CPU.

'1.1.1 Selflearning Exercises

True/ False : B

i Instruction set allows the user to formulate any data processing task.
- MOV instruction transfer the operand from memory to register or from register to memory.
Fill in the blanks : o - - . _

k. During instruction éxecution, an instruction is read into an reveessenenenesanase I CPUL

1 Theessential elements of a computer instruction are and :

1.2 Summary |

The main task of CPU is to fetch instruction from an external memory and execute them:. This task require
program counter to keep track of the active instruction and registers to store the instruction and data.

The simplest CPU consists central data registers, accumulator with ALU capable of addition, subtraction
and logic operations. Most CPU consists 32 or more general purpose registers replaces the accumulator,

The arithmetic capabilities of simpler processor are limited to the fixed point(inter also) instruction. More

powerful CPU have built-in hardware to execute floating point instruction.

* . Computer store and process information in various formats, two major formats are fixed point and floating’ |
point. The two most common binary number representation are signed magnitude and two’s complement. -

Each representation simplifies the implementation of addition and subtraction.

Floating pointnumbers is a pair of fixed point called Mantissa(M) and exponent(E) and represent number
M x BE where B is implicit base. Floatiig point number greatly increase the numerical range obtainable
using given word size. but require complex arithmetic circuit than fixed point. - >

The function performed by a CPU are defined by instruction set. An instruction consists of an opcode and
a set of operands an address fields, Various techniques called instruction formats are used to specify

 operands. An instruction set should be complete, efficient and easy to use in some broad sense
1.6 Glossary . |
Arithmetic Logic Unit(ALU)) - ' _

- APartofacomputer that perform arithmetic operations, logic operations, and related operations.
Central Processing Unit (CPU) _ |
That portion of a computer that fetches and executes instructions. It consists ALU, control Unit and
registers. _ '- "

. Control Unit -
The part of CPU that control CPU operations, including ALU operations, the movement of data within
CPU, and the exchange of data and control signals across external interfaces. '
Fixed Point Representation - -
A radix numeration system in which the radix point is implicitly fixed in the series of digital places by some

12

convention upon which agreement has been reachecI
Floating Point Representation
A numeration system in which a real number is represented by a pair of distinct numerals the real number "
being the product of the fixed point part, one of the numeral, and a value obtained by ralsmg the imylicit
floating point base to a power denoted by the exponent in the floating point representatlon, mdlcated by
second numeral. - _ 0
_. I_nstructlon . . T R
An instruction that can be recogmzed by the processing unit ofthe computel for whlch 1t 1s de51gned
Instruction Set SR
A complete set of the 0pe1 atom ofthe i mstructlons ofa computer together w1th a descrlptlon of the typee of -
meaning that can be attributed to their operands. T
~ Instruction Formats |
The layout of a computer instruction as a sequence of bits. The format clmdes thei mstrucuon into ﬁelds,
corresponding to the constituent elements of the instruction.(e.g. operand, opcode) 3

1.7 Further Readings

J.P.Hayes: Computer-Architecture and Organization, McGraw-Hill In’tématlonal -
- Williarh Stallings: Computer Organization & Architecture, Pearson Educatlon S
“MMorrisMano: -~ Computer System Architecture, Prentlce Hall of [nc;ha~ -

1.8 Answer to self learning Exercises

'Question No.. Answer Question No, Answer

A False G Data representation T

B True __|H | Mantissa, Exponent |. .. |

C Accumulator I [Tree . | =/

D Pipelining J True A .

E True K Instruction Register | ., . |
F False L Opcode , Operand | . . . Oy

1.9 Unit End Questions
Why are transfer of control instruction needed.?
What are the typical elements of a Machinie i instriction.?
What is the need of floating Point representatlon?)
Write use of each components of CPU...
Describe Instruction set and Instruction fonnats.

Vs W N

13

Unit-2
Organization and architecture

Structure of unit
2.0 Objective
2.1 - Introduction
2.2 Buses

2.2.1 System Buses

2.2.2 Selfleaming Exercises

2.3 Computer Components

2.3.1 The Control Logic gates

2.3.2 .. Adder and Logic Circuit

2.3..3 Selfleaming Exercises

2.4 Computer Function

2.5 Interconnection Structure

2.5.1 Time Shared Common bus
2.5.2 Multiport Memory

2.5.3 Crossbar Switch

2.54 Multistage Smtchmg Network
2.5.5 Hypercube Interconnection
2.5.6 Selfleaming Exércises

26 Bus Imeroonnoction

2.6.1 SingleBus S

2.6.2 Multiple Bus Hlemrchles

2,63 SelfLearning Exercise . -
2.8 PCI(Peripheral Component Interconnect)
2.9 Input/Output—External Devices.
2.10 Summay -

211 Glossaty .

2.12 Further Readings

2.13 Answer to Self Learning Exermse
2.14 UnitEnd Questions

2.0 Objective

This unit is concerned with computer’s Buses and its interconmection. Various computer components and
computer functions are also discussed. In last PCI (Peripheral Component Interoonnect) and Input/
Output External device are explained bneﬂy .\

2.1 Introduction
Computer architecturein wmputer engineering is the oonceptual design and fundamental operational structure

ofacomputer system. It isa blueprint and functional description of requirements and designimplementations ~ |
for the various parts of a computer, focusing largely on the way by which the central processing unit (CPU). o

performs internally and aceesses addresses in' memory. It may also be defined as the science and art of

selecting and i interconnecting hardware components to create computers that meet functional, performance

and cost goals. / :

Computer architecture refers to those attribiutes of'a system visible to a programmer, or put another way,
those attributes that have a direct impact on the logical execution of'a program. Computer organization
refers to the operational units and their interconnection that realize the architecture specification.
Examples of architecture attributes include the instruction set, the number of bit to represent various data .
types (e.g.., numbers, and characters), I/O mechanisms, and technique for addressing memory, Orgamzatlon '
attributes include those hardware details transparent to the programmer, such as control signals, mtcrfaces .
between the computer and penpherals and the memory technology usod :

14

Asanexample, itis an architectural design issue whether a computer will have a multiply instruction. It isan
organizational issue whether that instruction will be implemented by a special multiply unit or by 2 mechanism

that makes repeated use of the add unit of the system. The organization decision may be bases on the
anticipated frequency of use of the multiply instruction, the relative speed of the two approaches, and the
“cost and physical size of a special multiply unit. o . =
2.2 Buses - | |

Abusis communication pathway connecting two or more devices is known
 Address bus- identify source or destination '
Data bus — carries data or instruction : : .
Control Bus— control and timing information such as memory read/write, interrupt request, clock

as bus,

signal | , .
Bus can have following characteristics — . :

Dedicated - a line is permanently assigned either to one function or to a physical subsét of computer
components, . ' - ' _ : -

Time multiplexed -using the same lines for multiple purposes (different purposes at different times)
Physical dedication - the use of multiple buses, each of which connects to only a subset of modules, with an
adapter module to connect buses and resolve contention at the higher level o L
Centralized - a single hardware device called the bus controlier or arbiter allocates time on the bus, .

- Distributed - each module contains access control logic and the modules act together to share the bus,
Coniputer system contain a number of buses at various levels to facilitate the transfer of information between
- components. The CPU contains a number of internal buses for transferring information between processor
registerand ALU, Some of themare as follows- =~ 7o+ 00 e e

A memory bus consists of lines for transferring data address and read/write information, o

AY/O busis used to transfer information to and from input and output devices. * L
system bus A bus connects major components(CPU, [/O, memory) in a multiprocessor system.

The processor in a shared memory multiprocessor system request access to common memory or other
common resources through the system bus. If no other processor is currently utilizing the bus, the requesting
processor may be granted access immediately. But requesting processor must wait if another processor is
 currently utilizing the system bus. And other processor may request the system busat the same time.
Atbitration must be performed to resolve this multiple contention for the shared resources. The arbitration
logic would be part of the system bus controller placed between the local bus and the system bus,

221 8ystemBus o | D
- Atypical system bus consists of approximately 100 signal lines. these lines are divided into three functional
" groups data address and control. In addition there are power distribution lines that supply power to

. number of data lines are usually multiple of 8, with 16 and 32 being most common, _ ,
. Theaddress lines are used to identify memory address or any other source or destination such as input or
- output ports. The number of address lines determine, the maximum possible memory capacity in.the

system. For example an address of 24 lines can access up to 224(superscript 16 mega) words of memory.
Address lines are unidirectional from processor to memory and data lines are bidirectional, allowing the
_ transfer of data in either direction. ' o :

- Data transfer over system bus can be either synchronous or asynchronous. In synchronous bus each data
item is transferred during a time slice known in advance to both source and destination units. Synchronization
achieved by driving both units from a common clock or to have separate clocks of approximately the same
frequency ineach unit. Synchronization signals are transmitted periodically in order to keep all clocks in the
- system in step each other. : : E E -

_ Inasynchronous bus each data item being transferred is accompanied by handshaking control signals to

The data lines provide a path for the transfer of data between processors and comhio_ri mémory.' The

15

" comporients. For example the IEEE standard 796 multibus system has 16 data lines, 24 address lines, 26 :
- control lines and 20 power lines for total of 86 lines. o

i—

-indicate when the data are transferred from the source and received by the destination.

N The control linesprovide stgnals for controlling the information transfer between units. Timing signals indicate
. the validity of data and address information. Command signal specify operation to be performed. Typical
control lines include transfer signals such as memory read and write, acknowledge of transfer, interrupt
' "tequest, bus control srgnals such as bus request and bus grant, and 51gnals for atbitration procedures.
Typical physical arrangement of a system bus

A number of paraltel electrical conductors

Each system coimponent (usually on one or more boards) taps mto some or all of the bus lines
(usually with a slotted connector)

System can be expanded by adding more boards

- "A bad component can be replaced by replacing the- board where it resrdes

2.2.2 Selflearning Exercises

‘True/Falsse. - o
A. Thedatalines provu:le a path for the transfer of data between processors and common memory.

- B. . InAsynchronous bus each data 1tem 1s transferred during a time slice known inadvance to both

+.+. source and deéstination units - -

Fill In the Blanks _ S
C.. . The.. are used to 1dent1fy memniory address or any other source or destination

Do I ... each data item being transferred is accompanied by handshaking control srgnals
* to indicate when the data dre transferred from the source and recewed by the destmatlon

2.3 Computer Components

The basic computer consists of the following hardware components

1 A meinory unit with 4096 words of 16 bits each.

2 Nine Regtsters AR,PC,DR, AC IR, TR, OUTR, INPR, and SC
3. Seventlipflops: I, S, E, R, IEN, FGL and FGO -

4, "_"'Two decoder: a3 x'8 operation decoder anda 4% 16 timing decoder
5" - “Al6-bitcommonbus

6. _'_Conttol Loglc gates

Adder and logic circuit connected to thei mput of AC

o 3 1 The Control Logic gates :- - | I
The block dlag,ram of control logic gates are shown in Fi ig 2 1. The inputs o this circuit come from the two

- decoders, the I flip-flop. and bits 0 through 11 of IR. The other inputs to the control logic gates are : AC
bits 0 through 15 to checlif. AC=0andto de_tect the sign bit in AC(15); DR bits 0. through 15 to check

- ifDR=0;and the values of seven flip-flops.”

" The o.utput of the control logic circuit are :
. Signals to control the inputs of the nine reg1sters _
Signals to con’trol the read and write mputs of memory
Signalsto set, clear, or complement the flip- flops” -
‘Signals for S2, S1, and S0 to select aregister forthe bus.
Signals to control the AC adder and logic ¢ircuit. -

b W =

Figure 2.1 Control Logic gates -
16

2.3.2 Adder and Logic Circuit:

Adder and logic circuit has three set of inputs. One set of 16 mputs comes from the outputs of AC Anotlwr
set of 16 inputs comes from data register (DR). Athird set of eight inputs comes from the input register
“INPR. The outputs of adder and logic circuit provide the data inputs for the register. In addition, it is
necessary to include logic gates for controlling the LD, [NR and CLR in the register and for controlllng the
operation of the adder and logic circuit.
The adder and logic circuit can be divided into 16 stages with. each stage correspondmg to one bit of AC.
' Each stage has a JK flip-flop, two OR gates and two AND gates, The load(LD) input is connected to the -
_inputs of the AND gates. One stage of adder and loglc circuit conststs of seven AND gatcs one OR gate
and a ful l-adder . _

Adder and ' Agcumulator

B I -
10 Layic " —_— seastent AC) »
[Cirewits . T
—
A brawg S0 . . T Clock
11z
. CLR
MR
" Conirgl
Ganes

| Figure 2.2 Adderand Logic Circuits
2.2.3 Selflearning Exercises
True/ False

E. Abasic computer consists 4 flip-flops.

F. Adder and logic circuit has three set of1 mputs

Fill in the blanks-

G A basic computer consists registers. :
"H, In Adder and Logic circuit one set of 16 inputs comes from Another set of 16 inputs
-comes from A third set of eight inputs comes from the input register

2.4 Computer Functions
In general terms, there are four main functions of a computer:
~ Gather Data :
Data processing
Data storage
~-DPatamovement

Control
Gather Data All computers, no matter what their size, must gather data before they can process the data.”
‘data can be gathered— manually, automatically, or a combination.of both, In manually a operator or -
techmcxan will input the data to the computer. Automatically gathering data means the computer receives -
data from another system, subsystem, or equipment, Many computer systems are designed to gatherdata :
using a combination of both the manual and automatic methods. L ;
The oomputer of course, must be ableto process data. The data may takea w1de vanety of forms, and the
range of processing requirements is broad. : .
Itis also essential that a computer store data. Event ifthe computer is processing data on the fly (1 €., clata
come in and get processed, and the results go right out), the computer must temporarily store at least those
pieces of data that are being worked on at any given moment. Thus, there is at least a short-term data
storage function, Files of data are stored on the computer for subsequent retrieval and update.
The compuier must be able to move data between itselfand the outside world. The computer S operatlng

17

environment consists of devices that serve as either sources or destinations of data. When data are received
from or delivered to a device that is directly connected to the computer, the process id known as input-
oufput (/O), and the device is referred to as a peripheral. When data are moved over longer distances, fo
or from a remote device. the process is known as data communications, _ '
Finally, there must be control of there three functions, Ultimately, this control is exercised by the individual
who provides the computer with instructions. Within the computer system, a control unit manages the
computer’s resources and orchestrates the performance of its functional parts in response to those
instructions. . : -
2.5 Thelnterconriection Structures | o
The components that form a muliiprocessor systemare CPUs, I0Ps connected to input-output devices
and amemory units that may be partitioned into a number of separate modules The interconnection bétween
the components can have different physical configuration, depending on the number of transfer paths that
- arcavailable between the processor and memory in shared mermory system. Some of these schemes are -
presented below. - S - '

2.5.1 Time Shared Common bus
A common bus multiprocessor system consist of a number of processors connected through a common
path to a memory unit. Only one processor can communicate with memaory or other processor at any given
time. Transfer operation are conducted by processor in control of the bus, Any other processor want to.
transfer must first check availability of bus, and as it become available processor can address destination
to initiate transfer. A command is issued to inform destination what operation is to be performed, The
- Teceiving unit recognize its address in bus and responds to the control signal from sender, after that transfer
isinitiated, ' o . o
Advantages and Disadvantages : _,
-I. . Since one common bus is shared by all processors, transfer conflict can be resolved easily, These

. conflict must resolved by incorporating a bus controller that establishes priorities among requesting units.
2. A single common bus system is restricted to one transfer at a time, therefore total overall transfer

rate within system limited by speed of single path. _

Memory Unit

Figure 2.3 Time-shared Common Bus -

2.5.2 Multiport Memory : B
A multiport system employ separate buses between each memory module and each CPU. For 4-CPU and
* 4-memory modules(MMs) are shown in Fig. 2.4 . Each processor bus is connected to each memory -
module and it consists address, data and control lines required to communicate with memory, The memory
module have 4-ports and each port accommodates one of the buses. The module have internal control
logic to determine which port will have access to memory at given time. Memory access conflicts are
resolved by assigning fixed priorities to each memory port. The priority for memory access associated with
each processor may be established by the physical port position that its bus occupies in each module.
Advantages and Disadvantages o
L. " Ithavehigh transfer rate that can be achieved due to multiple paths between processor and memory.
2. Ttrequires expensive memory control logic. e S

18

3. It require large number of cables and connectors.
‘4. Thisis usually appropriate with small number of processors.

|w| | [z |~ [Fmas] [wmaa]

lt;l’Ul }
|CPl12
NP |

CPL A

- Figure 2.4 Multiport M_emofy_

2.5.3 Crossbar SW1tch
The crossbar switch organization consists of a number of cross points that are placed at mtersectlon
between processor bus and memory module paths Crossbar switch i interconnection 4-CPU and 4-memory
modules is shown in Figure 2.5

1. The small square in each cross pointisa sw1tch that cletermmes the path from a processor to a
memory module,
2. Each switch point has control logic to set up the transfer path between a processor and memory.

3. Iltexamine theaddress that is placed in the bus to determine whether its particular module is being

addressed,
4, Italso resolve multiple requests for access to the same memory module on a predetenmned

priority basis,

Since there is separate path associated with each module therefore crossbar swrcch orgamzatlon support N

simultaneous transfer from all memory modules. . -
The harclware requlred to implement the sw1tch can becomc qunte large and complex

|MMI| [Mmzl [M\d [[MW'I

I

Figure 2.5 Crosshar swiich

 —1

]—E
j_

1
L

2.54 Multlstage Switching Network

The basic component of a multistage network is atwo—mput two—output interchange switch asshown in
Fig 2.6 The 2 x 2 switch has two-inputs, labeled A and B and two outputs Jabeled 0 and 1. There are
control signals associated with the switch that establish the interconnection between the input and output
terminals. The switch has capability of connecting input A to either of the outputs, Terminal B of the switch

behaves in a similar fashion. The switch also has the capability to arbitrate between conflicting requests. If

input A and B both request the same output terminal, only one of them will be connected; other will be
- blocked. '

S 19

J R

e i o :[\]:

A cimwole o 0 A inntecaond 4 |

o B el B I

B usmneeil to [B ewmeicd 1a | .

Figure 2.6 two-input, two-output interchange switch’ .

Using the 2 x 2 switch asa building block it is possible to build a multistage network to control communication
between a number of sources and destinations. One of the arrangement is shown in Fig 2.7. The two
processors P, and P, are connected through switches to eight memory modules marked in binary from
000 through 111, ' : : _

The path of source to destination is determined from binary bits of the destination. The first second, third
bits specifies switch output in first, second and third level respectively. For example to connect P, to -
memory 101, itis necessary to form a from P, to output I'in first level, output 0 in second level and output

1 in third level.

LN

Fig 2.7 Bliary Troe vt 2% 2 swindios

2.5.5 Hypercube Interconnection | |
The hypercube or binary n-cube multiprocessor structure is loosely coupled system composed of N = 2
processors interconnected in n-dimensional binary cube. Each processor forma node of cube. Althongh it
is customary to refer to each node as having a processor, ineffect it contains not only a CPU but also local
memory and VO interface, Each processor has direct communication path to n other neighbor processors.
These path correspond edge of the cube, There are 2 distinet n-bit binary addresses that can be assigned
~to the processors. Each processor address differs from that of each of its n nei ghbors by exactly one bit
position, o o '
Fig 2.8 8hows the hypercube structure for n= 1,2 and 3. A one-cube structure hasn=1and2"=2 A
two-cube structure has n=2 and 2" = 4 that means four nodes interconnected as a square. A three cube
structure has eight node interconnected as a cube. Each node as assigned a binary address in such a way
that the address of two neighbors differ in exactly one bit position. For example the three neighbors of the
node with address 100 in a three cube structure are 000, 110 and 101. Each of these binary numbers
differs from address 100 by one bit value. - ' ' L -

0 o:_,__"J D b
| | oo'[___,l—:,_. o

_ 'Figure 2.8 The hypérbulie structure

20

2.5.6 Self learning Exercises

. True/False
L. The interconnection between the components can have same physical configuration.
J. Crossbar switch organization support simultaneous transfer from all memory modules
Fill in the blanks
K. A multiport system employ separate.............. between each memory module and each CPU.
L. Thereare... .. assoctated with the switch that establish the i mterconnectlon between
the input and output texmmals

2,6 Bus Intcrconneeuon
2.6.1 Single Bus

If two or more devices connect with single bus then signal transmitted by one of the device is available for
reception by all other devices attached to the bus. But if two devices transmit during the same time their
signals will overlap and become garbled. Therefore single bus raise following problem.

Single device can successfully transmit.

Lots of devices on one bus leads to propagation delay.

Bus may become bottleneck of the system.

2.6.2 Multiple Bus Hierarchies

Since if a great number of devices are connected to single bus, perfomlance will suffer therefore most

system use multiple buses, generaly laid out in a hierarchy,

traditional structure is given below-

There is alocal bus connecting CPU to cache and that may also support one or more local devices. Cache

i also dannected to system bus which connect main memory to cache. Now with this structure VO transfer
to and from the main memory across the system bus do not interfere with the processor activity,

1 Fenmspns __"_“‘:"_"f'____i_('in'lu_]
-

Loend 1) :

wroodler | :

i

I Hanlan

| e s

Figure - 2.9 Traditional bus architecture

This traditional bus architecture is reasonably efﬁcnent but begins to break down as higher and h1 gher _
performance is seen in /O devices. Inresponse to these growing demands a common approach isused to
build a high speed bus that is closely integrated with the rest of the system, requiring only a bridge between
the processor sbus and hi gh speed bus. Typxcal example of this arrangement is shown in— '

. Czche/ Bridge
rpmm— Svstom Bus

B @@mp

| .) H:gh speedbus

Figure 2.10 Multiple Bus architecture
Where SCSI : small computer syéterﬁ interface to support local dlskdrlves,CD-ROMS,and other

21

peripherais .
Serial: serial port to support a printer or scanner _ _
The high speed bus brings high demand devices closer integration with the processor and at the
same time is ihdcpendcnl of the processor, _
© Changesin processor architecture do not affect the high speed bus and vice versa,
Itis possibleto connect /O controllers directly onto the system bus, Amore efficient solution s to
make use of one or more expansion buses for this purpose ' S - :
Allows system to support wide variety of /O devices
Insulates memory-to-process traffic from /O traffic
2.6.3 SelfLearning Exercise
True/ False '
M. Iftwo or more devices connect with single bus then signal transmitted by one device at a time.

N. SCSI stands for small computer system interface,

Fill in the blanks. _ _ o
O.. Letsofdeviceson one busleadsto
P. . Twotypesofbus interconnectionare................ and.

2.7 PCI(Peripheral Component Interconnect) -

Currently by far the most popular local /O bus, the Peripheral Component Interconnect (PCI) bus was
developed by Intel and introduced in 1993. It is geared specifically to fifth- and sixth-generation systoms,
although the latest generation 486 motherboards use PCI as well. |

I Micn.amwm])]
i X F = " MEn
|cpu I Icm-r | o Meowry Morey
b3 : -
[POl daved ks

’ - I - [
Gruptiies Yiden , SCS Conpraller ‘ Contoller [Looyl
“Ferminal M b
i : o netaark

Hard disk s

- F'ig 2.11 Computer system organized around PC] bus
PCI (Peripheral Component Inferconnect) is a type of computer bus for attaching or inserting peripheral
devices into a computer, ' . _ _
PCI (Peripheral Comparient Interconnéct) is an interconneetion system between a migropracessor and
attached devices in which expansion slots are spaced closely for high speed operation. Using PCI, a
computer can support both new PCJ cards whils continuing to support Industry Standard Architecture
(ISA) expansion cards, However, PCI 2.0 is no longer a local bus and is designed tg be independent of
microprocessor design. PClis designed to be synchronized with the clock speed of the microprocessor,
PClisnow installed on most new desktop computers, not only those based on Intel’s Pentium processor
but also those based on the PowerPC. PCI transmits 32 bits at a time in a 124-pin cgnnection (the extra
pinsare for power supply and grounding) and 64 bitsina 188-pin connection inan expanded implementation,
PCl uses all active paths to transmit both address and data si gnals, sending the address on one clock cycle
and dataonthenext, _ : _
The PCI specifications define two different card lengths, The full-size PCI form factor is 3 12 millimeters
long; short PCIs range from 11910 167 millimetersin length to fit into smaller slots where space Is an issue,
Like the full-size PCI, the short PCI is a high-performance I/O bus that can be configured dynamically for
use in devices with high bandwidth requirements. ' .
PCl s described as high-bandwidth and processor-independent data path between the CPU and high-

. f

speed peripherals. The PCI spec allows for the capability to transfer up to 132 megabytes per second at
abusclack speed of 33 MHz (although the current rates being claimed by manufacturers are more commonly
in the 30 Mb/sec range). This speed makes it especially suitable for high data rate applications like digital
audio and video. PCI slots are found in the current generations of both PC and Macintosh personal
computers. '

Technically, PC1 is not a bus but a bridge or mezzanine. It includes buffers to decouple the CPU from

- relatively slow peripherals and allow them to operate asynchronously.

PCI Bus Performance

" The PClbus pr_ovid;%s superior performance to the VESA local bus; in fact, PClis the highe'st performance

Y

general /0 bus currently used on PCs. This is due to several factars: |

Burst Mode; The PCI bus can transfer information in a burst mode, where after an initial address
is provided multiple sets of data can be trapsmitted in a row S o

Bus Mastering: bus mastering is the capability of devices on the PCI to take control of the bus and
perform transfers directly. PCT supports full bus mastering, which leads to improved performance,
4 High Bandwidth Options: The PCI bus specification version 2.1 calls for expandability to 64 bits
and 66 MHz speed;. o ' ' ' B

The speed of the PCI bus can be set synchronously or asynchronously, depending on the chipset
and motherboard, In a synchronized setup (used by most PCs), the PCI bus runs at half the memory bus
speed; sinee the memory bus is usually 50, 60 or 66 MHz, the PCTbus would run at 25, 30 or 33MHz
respectively. In an asynchronous setup the speed of the PCI bus can be set independently of the memory
bus speed. This is normally controlled through jumpers on the motherboard, or BIOS settings,
. Qverclogking refersto changing the settings of a computer system so that the hardware runs at a
faster speed than the manufacturer rated it for. Every piece of hardware in a computer system is tested and
is supposed to be rated fo runat a particular clock speed. When you overclock, you change the settings of
the hardware so that it rups faster than what the manufacturer originally intended. Overclocking the system
bus on a PC that useg gynchronous PCI will cause PCI peripherals to be overclocked as well, often .
leading to system stability problems, - . : -

2.8 Input/Output Devices (Externals) | .
Input and output devices are similar in operation but perform appesite fnctions. It is through the use of
these devices that the computer is able to communicate wi th the outside world. Input data may be in any
one of three forms; -

' Manual inputs from g keyboard or console

' Analog inputs from instruments or sensors - ' _ S
‘ Inputs from & source on or in which dats has previously been stored in a form intelligible to the
computer, - . - K
Computers can process hundreds of thousands of computer words or characters per second. Thus, a -
study of the first method (manual input) reflects the inability of human-operated keyboards or keypunches

tosupply data at a speed that matches the speed of digifal computers. Ahigh average speed for keyboard

operation is two or three characters per second, that, when coded to form computer words, would reduce
the data input rate to the computer to less than a computer word per second. Since mainframe computers
are capable of reading several thousand times this amount of information per second, it is clear that manual
inputs shoyld be minimized fo make more efficient use pi computer time. However, as arule, the keyboard

- is the normal input medja for microcomputers.

Input data that has previoysly been recorded on paper tapes, magnetictapes, magnetic disks, or floppy
disks in a form understood by the program may also be entered into the computer. These are much faster
methods than entering data manually from a keyboard. The mast commonly used input devices in this
category are magnetic tape units, magnetic disk drive units, and floppy disk drive units.
Output information is also made available in three forms: |

Displayed information: codes, numbers, words, or symbols presented on adisplay device like a
cathode-ray sereen -

23

Control signals; information that operates a control device, such as a lever, aileron, or actuator
- Recordings: information that is stored in a machine language or human language on tapes, disks, or
rinted media | _
Devices that display, store, or read information include magnetic tape units, magnetic disk drive units,
loppy disk drive units, printers, and display devices.

2.9 Summary

[he difficulty in transferring information among the units of computers largely depends on the physxcal :

listances separating them, Communication within signal computer system involves information transfer
wer distances of less than a meter is primarily implemented by groups of electrical wires called buses. .
system Bus consists of electrical pathways, which mbve mformatlon between basic components of the
notherboard, including between RAM and the CPU. _ . :

viain components of computer that compute all the operation are memory, registers, cm:mts buses,
ontrol.

vIain functions of a computer are Gathel Ddta Data processmg, Data storage, Data movement, Control .
"he interconnection between the components can have different physical configuration, depending on the
wmber of transfer paths that are available between the processor and memory in shared memory system
3us interconnection is the scheme of connecting various devices, There are two ways single bus in ‘which
levices are connected through one bus but due to propagation delay lies in this scheme since only one
levice can communicate at a time multiple bus interconnection is used.

*CI (Peripheral Component Interconnect) is atype of computer bus for attachmg penpheral devices into
 computer, _

.11 Glossary
\ddress Bus

That portion of a system bus used for the transfer of an address. Typically the address identifies amain

nemory location or an IO devices

3us _ o

\ shared communicatipn path consisting of one or a collection of lines.

3us interconnection

Jus interconnection is the scheme of connecting various devices

nput-Output : :

ertaining to either input or output or both. Refers to the movement of data between a computer and a
irectly attached peripheral. :

nterconnection Structure

he interconnection between the components can have different physical configuration, depending on the
umber of transfer paths that are available between the processor and memory in shared memory system
eripheral Component Iriterconnect(PCI)

‘eripheral Component Interconnect is a type of computer bus for attacmng peripheral devices | mto a2
omputer. :

yystem Bus

A bus used to interconnect major computer components.

'.12 Further Readings
JP.Hayes: Computer Architecture and Orgamzauon McGraw-Hill Intematlonal
WilliamStallings: =~ Computer Organization & Architecture, Pearson Education.
_ . M.Motris Mano; Computer System Architecture, Prentice Hall of India.
.13 Answer to Self Learning Exercise
Juestion No. Answer Question No, - Answer
A True I False

24

2.14

B False J True

C Address Line . - K - Buses :

D Asynchronous Bus L Control Signals

E False M True

F True N True

G Nine O Propagation Delay

H AC, DR, INPR Single and Multiple Buses
Unit End Questions -

What is the purpose of System Bus?.
Write short notes on the following

PCI

Interconiection Structure

Computer Functions _
What are benefits of using multiple bus architecture compared to single bus architecture,

25

~ Unit-3
DataPath Design

Structure of unit

3.0 Objective

3.1 Introduction

3.2 Datapath Design

3.3 Fixed Pointarithmetic
3.3.1 Addition and Subtraction
3.3.2 Multiplication and Division
3.3.3 Selfleaming Exercises

3.4 Floating Point Arithmetic
3.4.1 Addition and Subtraction
3.4.2 Multiplication and Division
3.4.3 Selfleaming Exercises

3.5 Arithmetic Logic Unit
3.5.1 Combinational ALU

3.5.2 Sequential ALU

- 3.5.3 SelfLearning Exercises
3.6 Summary

3.7 Glossary

3.8 Further Readings

3.9 Answerto Self Learning Exercise

3.10 « UnitEnd Questions

3.0 Objective S

This vnit is concerned with computer’s ALU and its arithmetic operations. ALU and its combinational and
sequential implementation are discussed. There are two types o numbers — fixed point and Floating Point
numbers. Integers are comes in fixed point where decimal is fixed at after last digit. Technique of arithmetic
operations perform is different in two numbers, These techniques and its implementation are explained.

3.1 Introduction

Arithmetic instruction in digital computer mampulate data to produce results necessary for the solution of

computational problems. These instructions perform arithmetic operations and are responsible for bulk of
“activity involved in processing data in a computer. Four basic operations are addition, subtraction,
.multiplication and division. It is possible to formulate other arithmetic functions using these basic operations.

An arithmetic instruction may specify binary or decimal data. Each data may be fixed-point or floating

point number. The collection of state elements, mputatlon elements, and interconnections that together
- provide a conduit for the flow and transformatign of data in the processor during execution is called data

path .Data path or data processing part of CRU is respansible foe executing arithmetic and logical

(nonnumeric) instruction on various operand. Dedigner of data path must be familiar with sequence of steps
in particular operations that should carried out to achieve correct result. Well defined procedure steps for

solution of problem is known as an algorithm,:

Algorithm for addition of two fixed point pin‘nbers when negative number is in signed 2°s complement

representation is simple and require parallel binary adder. If negative number is in signed magnitude

representation algorithm is more complf:x and require circuitry to add, subtract and to compare sign and

magnitude of number.

3.2 DataPath Design

A datapath is a collection of functlonal units, such as ALUsor multipliers, that perfonn data processmg

“operations.
Elements of data path.

26

ALUs are just one datapath building block

Computational Elements

Combination Circuits

Outputs follow inputs

Example - ALU

State Elements -

Sequential Circuits o

Outputs change on clock edge

Example- Register .
: Control : _
The component of the processor that commands the datapath, memory, and I/O devices according to the
instructions of the program.” : . ' '
Two principal concerns for computer arithmeticare
- way in which number represent _ o
- Algorithin used for basic arithmetic operations. . .
Integer Arithmetic Operations | | | |
The addition of two binary numbers is computed in the same way as we compute the sum of two decimal
numbers. Using the relation 0+0=0, 0+1=1+0=1 and 1+1=10, we can easily compute the sum of two
binary numbers, . | |
The subtraction of two binary numbers is computed in the same way as we compute the sum of two
decimal numbers, Using the telation 0 — 0 = 0,0-1=1 (borrow) 1 —0=1and1-1= 0, we can easily
compute the subtraction of two binary numbers, : R

3.3 Fixed point arithmetic

Fixed-point numbers are useful for representing fractional values, usually in base 2 or base 10, when the
executing processor has no floating point unit (FPU) or if fixed-point provides improved performance or
accuracy for the application at hand. Most low-cost embedded microprocessors and microcontrollers do
not have an FPU, : B _ '
However, if you don’t have a floating-point co-processor, this sort of arithmetic can be slow. If you’re
prepared to lose the wide range of numbers that floating-point gives, you can speed things up by fixing the
position of the decimal point and using integer arithmetic operations. This is called fixed-point arithmetic

range representable,

-3.3.1 Fixed Point Addition and subtraction -

Thete are three ways of representing negative fixed point binary number signed representation, one’s and
two’s complement. Most of the computers uses two’s complement method, -

Addition and subtraction with signed representation of data :-

Following example shows how addition and subtraction perform -

| 100000110 (+6) | - 11111010 (-6)
+ 00001101 (+13) - 00001101 (+13)

27

00010011 '(+19) £ 00000111 (+7)

Let two numbers are represented by a and b: If number is represented with : sign then there are eight -

different cases which are givenbelow—
Table : Addition and subtraction of signed magnitude numbers

Oparakon A?IMM Suht‘aclh;agnlma

whanash whena<h whenash
{+a) + (Y +ia+h .
(+a) + (b} . s{a-by |rw-@ +{a-0)
(- + (4b) ~tash |+ (b-a +{a-b)
IR (ot B)
(4mp - (4 [a-b -_[h-a? *.fa-h}
[SCUREE- +(a+p)
(-4 - (4 -{a+n}

first column represent eight COI]thlOIlS I_ast column to prevent from negatlve zero and other oolumns show
actual operation performed.. '
Steps included in addition and subtractlon are givenbelow
Algorithm ; SR
1. if any one operand is zero then operatlon termmate with non zero as a result.
: 2 Check sign of two numbers.
3.ifboth have identical sign : R
: -Add the number and attach s1gn of any one to ‘result '
4, if both have different sign o
Compare the magnitudes .
if both have different magnitude then
subtract smaller from large humber. -
Attach sign-of large number.
ifboth have same magnitude then
Subtraet'them and attach positive sign to result.”

- Hardware Implementanon require following - o =
1. Two registers to hold magnitude of two numbers sayA a.nd B

2. Two flip flops As, Bs for sign of both numbers. - - - Lo

-3.. parallel adder is needed to perform micro operatlon A+B
4. acomparator circuit to find A>B,A=Band A<B
5. Two parallel subtractor circuits for micro operationA-B: ..
6. exclusive - OR gate to.determine sign between As, Bs 1.+ .
Addition and Subtraction with 2°s complement data :- - i e -
In signed representation lefimost bit of binary number is zero for posmve and one for negatwe So +3 3 and
-33 are represented by 00100001 and 1010001 respectively. But in 2’s complement data -33 is represented
as 11011111 and +33 is represented similarly as above.
Subtraction is done by adding 2°s complement of second operand and add overﬂow carry if generated
Hardware implementation is shown in Figure 3.1 _ :

28

BR register

Y

Complementer and
v parallel Adder

_Jl

Overflow

k4

AC register

Flgure3 1 Hardware for signed 2’s complement addltlons and subtractlon '

Sum is obtained by addmg content of register AC and BR(mcludmg sign bit also) Overﬂow blt V set if
carry generated by addition of most significant bits otherwise V setto 0, B

Subtraction operation is accomplished by adding content of AC and 2’s complement of BR register. ‘The
Overflow must be checked during this operation because the two number added could have same sign.
It is much simpler to add and subtract numbers if negative number is maintained in signed 2°s complement
representation compared to signed magnitude addition and subtraction. - -

3.3.2 Mutiplication and Division

Muitiplication involves the generation of partial product, one for each digitin the mulnpher These parhal
products are summed to produce the final product. -

The partial products are easily defined when multlpller blt is zero partlal product is zero When multlpher is

one the partial product is multiplicand.

The total product is produced by summing the partial product. For this operatlon, cach suocesswe pamal
product is shifted one position toleft relative to proceeding partial product

The multiplication of two n-bit binary integers result in product of upto 2n bitin length.

Product of two ﬁxed point number in signed representahon is evaluated as follows-

' 0110 0.75 = S

X 1.110 -0.25

0000 _

0110 partial Products
0110 ' :
1010

1110100 -0.1875

If least significant bit of multiplier is 1 then multiplicand is copied. otherwise zeros are copied down. The
number copied in successive fines are shified one position to left from previous number. Finally all numbers
are added. and result is find sum the sign of product is positive if both multiplicand and multiplier are of
same sign otherwise attach negative sign to product,

" Hardware implementation
Some points should keep in mind while evaluating product-

29

1. Itisconvenient to provide an adder for summation ofonly two binary numbers and successively accumulate
the partial product in a register. _

2. Instead of shifting the multiplicand to the left, partial product is shifted to the right, When corresponding
bit of multiplier is zero, there is no need to add all zeros to partial product since it will not alter the value,
Hardware requirement is shown in Figure 3.2

I Hcgisier - I-‘imp.-m::_mnm- r

l Comnphagenler and |
pminlbel adder
M | A Teiaer ' | -) egster [

Figure 3.2 Hardware implementation of Multiplication

Initially multiplicand is in register B and multiplier in Q. The Sum of A and B form a partial product which
is h‘ansferred-to-,the_-EA register. Both partial product and multiplier are shifted to right. This shift will
denoted by statement shr EAQ designate right shift. The least significant bit of A is shifted into the most
significant position of Q, the bit from E is shified into the most significant position of A, and zero is shifted
into E. After the shift one bit of the partial product is shifted into Q, pushing the multiplier bits one position

Algorithm = . e L .
1. Initially multiplicand is in B and multiplier in Q and Sign of multiplicand and multiplieris
Bs, Qs respectively, o ' o S

2. Signs are compared.)

3. - Register Aand E are cleared. _

4, Sequence counter SC is set to number of bits of multiplier. o

5., Afterinitialization, the low order bit of multiplier in Q, istested. - o

6. Ifitis one multiplicand in B is added to the present partial productin A.

7. Ifit is a zero, do nothing,. o _ _ _
8. Register EAQis then shifted once to the right to form the new partial . product.-

9. The process stops when sc =0 _ : - -
Division

Binary divisionis simpler than decimal division since quotient digits are either O or 1. Example of division is
given below in Figure 3.3 L _ '

b}

-
b 5
o o} G
O =
R

[
e

By
ek

-

Hardware implementation of division is same as muitiplication see figure 3.2,

30

-> EAQ register is shifted to left with zero inserted into Q and the previous value of E lost.

-> divisor is stored in B register and the double length dividend is stored i inregister A and B.

-> dividend is shifted to the left and the division is subtracted.

-> IfE=1 thenitsays A> B, quotient bit 1 is inserted into Q, and partial remainder is shifted to the
left to repeat the process.

-> if E=0 it says A <B quotient in Q, remains zero.

-> the value of B is then added to restore the partial remainder in A to its previous value.

-> partial remainder is shifted to the left and the process is repeated again until all five quotient bits are
formed.

> if sign of both are same, sign of quotient is plus.

-> If they are of differ ent sign quotient sign is minus, sign of remamder is same as 51gn of the dmdend

Algorithm

1. DividendisinA and q and Divisorin B. R . : _—
2. Sign of result is transferred into Qs. . o ' :
3. A constant is set into sequence counter SC to speci ty the number of bits in the quotient,
4. If A>=B Divide over—ﬂow bit is set and operation terminated. :
5. IfA<Bno divide overflow occur so value of dividend is restored by addlng Bto A -
6. division of the magnitude starts by shlﬁ:mg the dividend 1nAQ to the left with hlgh order blt Shlﬁcd
into E,
7. IfE=1then EA will be greater than EA conmsts 1 followed by n-I bits whlle B consnsts of only
-1 bits,
8, Evaluate EA - B and insert 1 into Q .
9. ' Ifshiftleft operation insert 0 into E, d1v1sor subtracted by adding its 2’s complement value and
carry transfetred into E.

10 IfE =0it says A < B and original number isrestored by adding B to A othermse leave 0in Q
11. This processrepeat with register A holding partial remainder.

12, Aftern-1times quotient is formed in register Q and remamder isin reglsterA sxgn of quonent inQ,
and sign of remainder in As.

3.3.3 Self learning Exercises

True/ False
A, Thereare three ways of repnesentmg negative fixed pomt bmary number
B. Bma:y division is snmplerthan decimal division

Fill in the blanks |
C. Multlphcatlon involves the generatlon of "
D. . Saturation.isaway of handling the _

3.4 Floating Point Arithmetic e - -
Floating point arithmetic can be implemented by two loosely connected ﬁxed pomt data path clrcmts An
exponent unit and mantissa unit.

A generic fixed point arithmetic circuit can implemented as - :

‘Mantissa unit is responsible for addition, subtraction, multiplication and division of mantissa. - :
Exponent Unit can be implemented by simple circuit for addition, subtraction and comparison of exponents.
Exponent comparison can be done by a comparator or by subtractlng the exponent. Datapath of floating
point unit is given as follows-

31

Tl 4Jaly

Figure 3.4 Datapath of FPU

Exponent of two number put inregister E1 and E2 respectively, Adder take content of those register and
compute E1 +E2 and put in register E. And mantissa is stored in AC and DR registers and adder compute
sum of both of them.

All computers with floating point instruction also have fixed pomt instruction so itis expected to designa
single ALU to execute both fixed and floating point arithmetic. This design takes the form of a fixed point
arithmetic unit in which registers and adder can be partitioned into exponent and mantissa when floating
point operation are being performed. Inrecent years it has become mote commonto unplement fixed point
and floating point unit, This separaflon makes it pOSSJbIe for fixed pomt and ﬂoatmg pomt mstructlon tobe
“executed inparallel. :

3.4.1 Floating Point Addmon and Subtraction

“In many high level language Floatmg pomt number speCIfy by real declaratlon and ﬁxed pomt number
specify by integer declaration statement. Computer which have compiler of theses high level language
should provide provision of floating point operation. One option for this is hardware for these operations,
but ifno hardware is available for these operations compiler must have package of ﬂoatmg point softwate.
Hardware solution is costly than software solution. _

Arithmetic operation with floating point number are more eompllcated and take more tlme than ﬁxed point
number. Floating point operations requu‘e complex hardware :

Addition or Subtraction
Addition and subtraction operation involves following phases- :

1. Zero Check : A floating point number that 1s zero can not be normalize. If ZEerois used result may
also be zero. We check for zero at the beginning and terminate the process if necessary.

Addition and subtraction identical to chieck for zero, If cither operand iszero other is reported asthe result.
2. Significant Alignment: for alignment exponent make equal by shifting larger miantissa to left and
increase exponent and smaller mantissa shift to right (decrement exponent) Iti is better to Sh]_ﬁ mantissa of
smaller number. This shifting will repeat til} exponent are equal. L

3. Addition : Now two adjusted mantissa are added because the sign may dlffer the resuli may be
zero. There is also possibility of mantissa overflow by one digit. If'so, mantissa shifted right-and exponent

-is incremented An exponent everflow could occur as a result. This will be reported and operation halted.
‘4. Normalization : The final step is normalize result. Normalization is doné byishifting mantissaleft
until most significant digit is non zero. Each shift cause a decrement of exponent asa result of thls exponent
can underflow. Finally result is rounded and reported e SRR
For example two numbers are - .
S oo 4241500 X 16 -2

1280000 X 10 -1

Before addition/ subtraction there exponents have to made equal for this requirement. Alignment of mantissa
is done by shifting one mantissa and exponent is adjusted until it is equal to the other exponent. To equalize
exponent either first number shift three position left or shift second number three position right. Since
shitting to right involve loss of most significant digits and shifling to left involve loss of least significant digits
so shifting to left is most preferable. It only reduce accuracy where is shifting to left may cause an error.

32

Commonly mantissa of lesser exponent is shifted to right by the number of place equal to difference
between the exponents. As soon as exponent become equal, mantissa are added after summation sum
may contain overflow digit which can be corrected by shifling sum to right by single place and increment
exponent. '

for example if we get sum 1.9654 X 105

after normalization sum will be .19634 X 10 6 o : _

But in case of subtraction result may have most significant zeros as given in following example

A287 X 105
- 4232 X 105

0055X 105

for full utilization of storage cells we require to store all mgmﬁcant digits. But in this case leading zeros are
insignificant digits(since they are just to display position of decimal) so solution is to shift mantissa to rlght '
till most significant digit after decimal become non zero, For this normalize mantissa by shlﬁmg mantissato :-
left and decrement the exponent until non zero dlglt appear in first pos1t10n

Detail algorithm is given below-

For addition of mantissa first exponent are compared and shlﬂmg of mantissa required. and due to shifting
.exponent either incremented or decremented by one. Once mannssa align but mantissa added.

Algorithm (For addition)

1. If both arguments are zero then retum ZEro
2 if First argument is zero then return second argument
3. if second argument is zero then return first argument -
4. . Ifbotharguments are not zero then

if exponents are equal then

add mantissa and store resultant mantissa
if resultant mantissa is zero then

refutnzero - o
otherwtse .
if mantlssa overﬂow then
. Shiftmantissato tight.
Increment exponent
~if exponent overﬂow then o
report overflow and retum

otherwise (if exponents are not equal) ' g
align the mantissa (multiply and divide mantissa by ten)by shiftingone of them untll the d:fference '
between exponent reduced to zero. :
5. if no mantissa overflow and no exponent overﬂow then
ifresult normalizedthen '
Round resultant mantissa and net‘um
otherwise
repeat followmg stepstill resultot nonnahze o
shift mantissa [eft '
decrementexponent
if exponent underflow then
report under‘low and return-
otherwise o
report result and retum.

33

Algorithm (For Subtraction)
1) Ifbotharguments are zero then
S return zero
2) if First argument is zero then
' return second argument with minus sign

3) if second argument is zero then
_ return first argument
4) If both arguments are not zero then
' if exponents are equal then

Subtract mantissa and store resultant mantissa
if resultant mantissa is zero then

retuarn zero
otherwise
if mantissa is not zero and normalized then. -
Round resultant mantissa and return.
otherwise - e R . .
repeat following steps till result normalize
shift mantissaleft
~ decrement exponent
- ifexponent underflow then
report underflow and return
otherwise :

report result and return.

otherwise (if exponents are not equal) ' i
- align the mantissa (multiply and divide mantissa by ten)by shifting one of them until the difference between
exponent reduced to zero. - '

3.4.2 Multiplication and Division
Multiplication and division do not require alignment of mantissa. Product calculated by multiplication of
mantissa and addition of exponents. Division is calculated by dividing mantissa and subtiacting exponents.
Operation performed with mantissa are same as in fixed point numbers, So two can share the registers and
circuits and operation with exponent are compare, increment, décrement, added and subtracted 50 exponent
can be represented either signed representation, one’s and two's complement. ‘
Algorithm (For Multiplication of two normalize F loating point Number)
It single or both arguments is zero then
Return zero
I ~ “otherwise -
Add exponents
Ifexponent overflow then _
Report Overflowand Return
Ifexponentunderflowthen
Report Underflow and Retun
Multiply mantissa
Normalize product mantissa(shift mantissa and update exponent),
Round normalize mantissa and return,
- Algorithm (Fer Division of two normalize Floating point Number)
If both arguments is zero then :

Return zero

34

Iffirst argument is zero then
Return zero
If second argument is zero then
Return error : divide by zero
otherwise :
Subtract exponents
If exponent overflow then ' -
Report Overflow and Return
if exponent underflow then _
Report Underflow and Return
otherwise
Divide mantissa
Normahze product mantlssa(s}uﬂ mantissa and-update exponent)
: Round normalize mantlssa and retum.

3. 4 3 Self learnmg Exercises

True/False -
E. FPU is responsible for floating point operation.
F. Floating Point operations are more complex and time consuming than F 1xecl-p01nt operatlons
Fill in the blanks .
G Muttiplication and division do not reunre of mantissa
H. Shifting mantissa left until most significant digit i is non zero isknownas .,
3.5 ALU

Combination of various circuits used 0 execute dataprocessmg 1nstruct10n 1sAnthmetlc Loglc Umt(ALU)
The complexity of an ALU is determined by the way in which its arithmetic instruction are realized. Two
- type of circuits that can be used to design ALU are given below- : : -
Combinational Circuits: Circuits whose outputs depend only on the cturent

inputs; hence they appear to combine the inputs in some way to produce the

outputs. '

Sequential Circuits: Circuits whose outputs depend on the both the current and

past inputs; hence they use the sequence of inputs over time to determiné the :
output. For example, memory circuits are inherently sequential, and a circuit which takes two bmary
numbers, adds them, and outputs the sum, would be combinational,

A Combinational circuit is a special case ofa sequentlal circuit that does not have a storage capablhty
Synonymous with combinational circuit, o

1Combinational circuits can realize ALU which perform mmple ﬁxod pomt addmon, subtmohon and word
based logical operation. Much more extensive data processing and control logic is necessary-to implement
floating point arithmetic in hardware. Some processor having fixed point ALU employs special purpose
auxiliary unit called arithmetic processor to perfonn ﬂoatmg point and other oomplex numencal functlon

'3.5.1 Combinational AL U

The ALU is a combinational logic circuit. This means it can be clescnbed usmg atruth table, and it can be
implemented using a functionally complete set of logic gates.

Combinational ALU implement most of the CPU’s fixed point operatlon It combme fu.mctlons of twos
complement adder — subtractor with those of circuit and generates word based logic function of the form
f(x,y) for example AND, XOR and NOT They can thus rmplement most of CPU’s f' xed pomt data I
pmoessmg instructions. - '

3.52 Sequentlal ALU

Combmatlonal logiccan Jmplement multrphcatlon and division but 1t is generally nnpractlcal to merge these_ .'
operations with addition and subtraction into a single combinational ALU reason is as follows-

35

- Combinational mulhphcahonanddmmonare costlyi mtem:ls of hardware.

- They also slower than addition and subtraction circuits due to many logic levels. Since n bits
combinational multiplication and division composed of n or more levels of addition and subtraction logic,
therefore multiplication and division n times slower than addition or subtraction.

- number of gates in multiplication and division is also greater by factor ofn,

Structure of basic sequential ALU are given below-

Figure 3.5 Structure of a basic sequentlal ALU _

Itis intended to implement multiplication and dmsmn using one of the sequentlal digitby d1g1t shiftand addf
subtract algorithm. There are word registers are used for operand storage ' : .
Accumulator AC.
Multiplier —quotient register MQ
Data Register (DR)
Accumulator mostly used to hold one of the operand of operation and result.
Multiplier — Quotient register store multlpher incase of multtphcatlon operatlon and quotient
in case of division operation.
Data register store multiplicand or divisor. S ' '
AC and MQ capable of left and right shifting. Additional data processing is provided by combinational

ALU which can perform addltIOIl, subtractlon and log1ca1 opemtlons Whlch accepts its 1npui fnomAC and
DR.and Placesresult in AC. -
Role of all above registers in dlffenent operatlon is given below—

Addition : AC=AC+DR .
Subtraction AC=AC-DR .
Multiplication ACMQ =DR *MQ
Division ACMQ =MQ/DR
AND AC:=ACandDR " .
OR. . . AC:=ACorDR
ex-OR AC=ACxorDR
NOT. AC=not{AC).

DR can serve asa memory register to store data addressed by an mstructlon address ﬁeld(ADR) then DR
can be réplaced by m(ADR). R

3.5.3 SelfLearning Exermses

True/F alse

L Output ofa sequen‘aal cirouit depends only on current input.

J. Number of gates in multlpllcatlon and dIVlSIOIl 18 also greaxer by factor of f.

Fillinthe blanks o
K. Combination of various circuits used to execute data processmg ISHUCHON IS .vvreomrs s S
L. - Circuits whose outputs depend only on the current inputsis known as .. SO
3.6 ° Summaxy |

Datapath or data processing part of CPU is responsible for executlng arithmetic and logical (non-numencad
)instruction on various operation types, including fixed point and floating point numbers. The arithmetic
functions of simple machine may be limited to the addition and subtraction of fixed point numbers. Most
powerful processors 1ncorporatc multlply and divide instruction and in many cases haye the hardware

36

needed to process fleating point instruction as well.
Fixed point adder and subtractors are easily constructed from combinational logic. Fixed point multiplication
and division can be implemented by shift and add/subtract algorithms that resemble manual methods. The
product or quotient of two km-bit numbers is found in k sequential steps. Where each step involves an m-
bit shift and possibly km-bit addition or subtraction. Division is inherently more difficult then multiplication
due to problem of determining quotient digits, Both multiplier and divider can be implemented by
combinational logic array circuit but at a substantial increase in amount of hardware required.
Floating point operations can be implemented by an autonomous execution unit within CPU. ‘Afloating
point processor is typically composed of a pair of fixed point ALUs. One of them process exponent and
other to process mantissas. Special circuits are need to normalization and in case of addition and subtraction
This special circuit will also perform exponents comparison and mantissa aligned,
3.7 Glossary
Algorithm |
Well defined steps for solution of ptoblem is known as an algorithm.

- Combinational Circuit
A logic device whose output values, at any given mstant depends only on input values at that tlme
Datapath
Adatapath is a collection of functional units, such as ALUs or multipliers, that perform data processing
operations.
Fixed-point number
Fixed-point number is number that has a fixed number of digits after the radlx point;
Saturation
Saturation is a way of handling the overflow (and underﬂow)
Sequential Circuit
A digital logic circuit whose output depends on the current 1nput plus state of circuit, Sequentlal circuit thus
posses the attribute of memory.

3.8 Further Readings
JPHayes: Computer Architecture and Organization, McGraw~Hlll International.

William Stallings: .Computer Organization & Archltecture, Pearson Education.
M.Morris Mano: Computer System Architecture, Prentice Hall of India.
3.9 Answerto Self Learning Exercise -
Question No. Answer Question No. ~ Answer .
A - Tue G Alignment
B True H Normalization
- C Partial Product 1 False -
D _ . Underflow 0 . True
E . True K ALY
F

True L Combinational Circuit -

3.10 Unit End Questions

1. - Whatare the essential elements of a number in floating point notations.?
2. How floating point operations perform.? :

3. Wiiteanalgorithm for fixed point operations.» :]
4 Describe combinational and sequential ALU in brief, -

37

| Unit-4
i Processor Organization

Structur Of The Unit

4.0 Objective

4.1 Introduction '

4.2 CpuStructure And Function
4.3 Basic Processor Organization
4,3.1. Type OfRegisterd

44 General Register Or Gamzat.lon
4,5 Stack Organization

4.6 Instruction Format

4.7 Addressing Mode

4.8 Type Of Instructions

4,9 Instruction Cycle

4.10 The Pentiumn Processor

4.12 The Prowerpc Procerssor

4,13 Summary

4.14 Glossary

4.15 . Further Readings

4.16 Answers To Self Learning Exepceses
4.17 UnitAnd Questions :

4.0 OBJECTIVE:

In this ymit you ate able to learn CPU operations how they work and different registers of CPU. Different
phase of instruction cycle, mode of addressing and computer instruction types. Pentium processor pri-
mary operating modes, RISC microprocessor architecture Evaluation of Pentium processor and PowerPC.

4.1 INTRODUCTION:

The central processing unit or CPU for short is the brain ofa computer It reads and executes program
instructions, performs calculations, and makeg decisions. The CPU is responsible for storing and retrieving
information on disks and other media. It also handles information on from one part of the computer to
another like a central switching station that directs the flow of traffic throughout the oomputer system

42 CPUSTRUCTUREAND FUNCTION

The part of a computer that perform bulk of data processing operation is called CPU . The primary
function of a processor, such as the CPU of a computer, is to execute sequence of instructions stored in
main memory, which is external to the CPU.
The CPU must first fetch the instruction from this memory before it can be executed. The sequence of
operations involved in processing and instruction constitutés an instruction cycle the instruction cycle can
' be sub divided into two major phases the fetch cycle and the execute cycle the instruction is obtain from the
main memory during the fetch cycle. '
The execute cycle includes decoding the instruction, fetching any required operands, and performing the
operations specified by the instruction operation code (opcode). The behavior of the CPU-during the
instruction cycle is defined by sequence of microoperations . An operation performed in reglster is catled
microoperation.
The time tcpu required for the shortest well defined CPU mlcrooperatlon is deﬁned to be the CPU cycle
time and is the basic unit of the time for majoring all the CPU actions the reciprocal of tcpu is the CPU .
clock rate and generally major in megahertz. '
In addition to execute programs the CPU supervise other system components by spcc1al control lines. The .
- CPU directly or indirectly controls IO operations such as data transfer between IO device and main
Memory. ; :

~ -

38

Inan interrupt the CPU suspend the execution of the program that it is executing and transfer the control to
the appropriate interrupt-handling program.
4.3 BASICPROCESSOR ORGANIZATION:

o _ Simplified view of a CPU
o Arithmetic and logic unit — perform computation or processing of data |
© Control unit - controls the movement of data instructions in and out of the CPU, and controls the
operation of the ALU, '
0 Registers - Is small amount of internal memory,
Despiie the great improvement in the circuit technology over the years, almost all CPU design based on the
following factors— '
1.~ The CPU should be fast(measured by the CPU cycle time tcpu).
2. The main memory of large capacity is needed to store program and data required by the CPU,
The MM(main memory) speed is measured by memory cycle time t,- which is the minimum time elapse
between two successive read or write operations. The ratio ty/tepy 15 typically ranges . _
- from 1 to 10. The CPU consist storage devices called register, The program execution is implemented as
follows: . ' o
L Fetch the instruction from the memory.

2. Decodetheinstruction.

3. Readtheeffective address from the memory .
4. Executive the instruction, '
Selflearning exercise

1. What are the main components of CPU?
2. Whatis BUS? '
3. What is Micro operation?

43.1 TYPEOF REGISTERS

1. Dataregisters (DR) _

Used only to hold data and cannot be used in the calfculation of the operand address.

2. Address registers (ADR)

Hold the address of the instruction. May be somewhat general-purpose, or may be devoted to a particular
addressing mode. - '

Control and Status Registers , _

There are a variety of CPU registers that are used to coritrol the operation of the CPU. -

‘Most of these, on most machines, are not visible to the user. F our registers are essential to instruction
execution: ' o : h ' A
Program counter (PC): contains the address of an instruction to be fetched.
Instruction register (IR): contains the instruction mostrecently fetched,

39

Memory address register (MAR): contains the address of a location in memory.
Memmory buffer register (MBR): contains a word of data to be written to memory or the word most . -
recently read. : ; _ -
Program Counter (PC): keeps track of'the instruction in the program stored in memory. PC holds the
address of the instruction to be executed next and in incremented each time an instruction is fetched from
- memory. All CPU designs include a register or set of registers, often known as the program status word
(PSW). The PSW typically contains condition codes plus other status information.
Common flags include the following: ' '
. Sign
Zero
Carry
Equal
Overflow
Interrupt enable/disable
Supervisor _
It is common to dedicate the lowest few hundred or thousand words of memory for control purposes. The
designer must decide how much control information should be in registers and how much in memory. The
usual trade-off of cost vs. speed arises. CPU design and operating system design are closely linked. If the
CPU designer has a functional understanding of the operating system to be used, than the register
organization can be tailored to the operating system. o o '

SRR : Figure 2: Different types of register organization
4.4 GENERAL REGISTER ORGANIZATION: |
Generally memory location are needed for storing pointers, return address, temporary $esults and partial
product during multiplication. Having to refer to memory locations for such applications s a time consum-
ing because memory assess is such a time consuming process. 50 it is ihore convenient and efficient to
store this intermediate value in processor registers. . - T
When a large number of registers are included in the CPU, it is most efficient to connect them through a
common bus system. The registers communicate with each other not only for direct data trasfers, butalso
while performing various micro-operations. Hence it is necessary to provide a common unit that can
perform all the arithmetic, logic and shift micro-operation in the processor. - o
A Bus organization for seven CPU registers: —

Figure 3: General register organization based CPU. :
In the general register organization based CPU most of the operation are performed in general purpose
register. In this organization we use 7 general purpose register R1to R7 . one external input . The output
of each register isconnected to true multiplexer (MUX) to form the two buses A & B. The selection lines
in each multiplexer select one register or the input data for the particular bus. The A and Bbuses forms the
input to a common ALU., The operation selected in the ALU defermines the arithmetic or logic micro-
operation that is to be performed. The result of the micro-operation is available for output and also goes

40

into the inputs of the registers. A decoder selects the register that receives the information from the output

bus. The decoder activates one of the register load inputs, thus providing a transfer both between the data

in the output bus and the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information flow through the registers and

ALU by selecting the various components in the systems. :

Rl-® R2 + R3) : |

(1) MUX A selection (SEC A): to place the content of R2 into bus A

(2) MUX B selection (sec B): to place the content of R3 into bus B :

(3)ALU operation selection (OPR): to provide the arithmetic addition (A+B)

(4) Decoder destination selection (SEC D): to transfer the content of the output bus into R |

These form the control selection variables are generated in the control unit and must be available at the

beginning of a clock cycle. The data from the two source registers propagate through the gates in the

multiplexer and the ALU, to the outputbus, and into the destination registers, all during‘the clock cycle

Control Word: - _ | S

There are 14 bit binary selection inputs in the units, and their combined value specified a control word. It

consists of four fields three fields contain three bits each, and one field has five bits. The three bits of SEL

Aselecta source register {or the A input of the ALU. The three bits of SEL B select a source register for the

. Binputofthe ALU. The three bit of SEC D select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The 14-bit control word when

“applied to the selection inputs specifies a particular micro-operation.

Symbolic Designation

Miera Operation| SECA l SECB | SELD | OPR | Conrrel Word

“Table: Encoding of Register selection fields.

‘Binary - Code SELA " SELB SELD -
000 Input Input None .
001 R, - - :
01 - R S - S
100 R, A A
101 R, M M
110 R, E E
111 R, o
. Table: Encoding of ALU operation
OPR & elect Operation ~ Symbol
00000 - Transfer A TSFA:
00001 IncrementA INCA
00010 AddA+B ADD
00101 Subtract A-B SUB
00110 Decrement A DECA
01000 ANDA and B AND
01010 ORAand B OR...
01100 XORAandB XOR
01110 Complement A - COMA
10000 - Shift right A SHRA

41

11000 Shiftleft A SHLA
Examples of Micro-operation for the CPU - .
R, R SUB 010 011 001 00101

Rl ® Rz -R, Rz |

R,®R, VR, R, R- R, OR 100 101 100 0101
R,®R +1 R, - R, MCA 110 000 110 00001
R, ®R, R, - R, TSFA 001 000 111 00000
Output ® R, R, - None. TSFA 010 000 000 00000
Output ® Input Input - - None TSFA 000 000 000 00000
R, ® SHL R4 R, - R, SHLA 100 000 100 - 11000
R, ®0 R, R R, XOR 101 101 101 01100

4.5 STACK ORGANIZATION

Auseful feature that is included in the CPU of most computers is a stack or last-m first out (LIFO)list. A
stack is a storage device that stores information in such a manner that the item stored last is the firstitem
retrieved. The operation a stack can be companied to a stack of trays.

* The stack in Digital Computer is essentially a memory unit with an address register that can count only
(after an initial value is loaded into it.) The register that holds the address for the stack iscalleda Stack
Pointer (SP) because its values always points at the top item in the stack.

‘Thetwo operations ~ — PUSH (insert)

' -POP(delete)

Figure 4: Stack organization based CPU
Register Stack:- A stack can be placed in a portion of a large memory as it can be orgamzecl as a
collection of a finite number of memory words as register. :
In a 64- word stack, the stack pointer contains 6 bits because 2° = 64.
The one bit register FULL is set to 1 when the stack is full, and the one-bit register EMTY is setto 1 when
the stack is empty. DR is the data register that holes the bmary data to be written into on read out of the
stack.
Initially, SPis decide to 0, EMTY is set to I, FULL =0, so that SP points to the word at address 0 and the
stack is masked empty and not full.

PUSH SP® SP + 1 increment stack pointer
‘ M [SP] ® DR unit item on top of the Stack

1t (SP = 0) then (FULL ® 1) check it stack is full
EMTY®0 mask the stack not empty.

POP DR ® {SP] read item trans the top of stack
SP ® SP -1 decrement SP :
It (SP=0) then (EMTY ® 1) check it stack is empty
FULL®0 mask the stack not full

4.6 INSTRUCTION FORMATS:

The most common fields found in instruction format are: - '

(1) Anoperation code field that specified the operation to be performed _

(2) Anaddress field that designates a memory address or a processor registers.

(3) Amode field that specifies the way the operand or the effective address is determined.

RN
42

| Opeedt ':‘dn& I Rt |

instroedan fanuar whil uned ¢ (el

- Computers may have instructions of several different lengths containing varying number of addresses. The
number of address field in the instruction format of a computer depends on the internal organization of its
registers. Most computers fall into one of three types of CPU organization.

(1) Single Accumulator organization Example: ADD X AC ® AC + M [%]

(2) General Register Organization Example:ADDRI,R2,R3R®R2+R3

(3) Stack Organization Example : PUSH X and POP X '

Three address Instruction

Computer with three addresses instruction format can use each address field to specify elther processor
register are memory operand.

To Evaluate following expression using. Three address 1nstruct10n use fol]owmg step

X=(A+B)}*(C+A)

ADD R,A,B -~ A®M[A]+M[B]

ADD RQ,C,D R.2®M[C]t~M[B]

MULX,R,R,M[X]} "R *R, ' '
The advantage of the three address formats is that it results in short program when evaluating arithmetic
expression. The disadvantage is that the bmary-ooded mstructlons reqmre too many bitsto spemfy three
addresses. _
Two Address Instruction - L
Most common in commercial computers. Each address fi eld can speclfy elther a processes regtster ona
memory word, -
To evaluate following expression using two address instruction use following step

X=(A+B)*(C+A)

MOV R,A - R ®MIA]
ADD'© R,B R/®R, +M][B]
MOV R, C R, ®M [C]
ADD R,D R, ®R,+M[D]
MUL R,R, = R,®R *R,
MOV X R, M[X] R,

* Itused an implied accumulator (AC) register for ali data manipulation. For multiplication/division, there is
aneed for a second register. All operations are done between the AC register and amemory operand. It’s
the address of a temporary memory location required for storing the intermediate result.

To Evaluate follomng expressmn usmg One address mstructlon use followmg step

e

X = (A+B)* «© +A)

LOAD . A = AC®MIA]
ADD © B AC®AC+MIB)
STORE. T M[T]®AC
LOAD C AC®M(Q)

ADD D AC®AC+M®D)
ML T AC®AC+M(T)
STORE X MI[X] AC

Zero — Address Instruction
Astack-organized computer does not use an address field for the instruction ADD and MUL. The PUSH
& POP instruction, however, need an address field to spemfy the operand that commumcates with the

stack (TOS ® top of the stack)
To Evaluate following expression using Zero address instruction use following step '

43

X=(A+B)*(C+A)

PUSH A TOS ® A
PUSH B TOS®B

‘ADD TOS ®(A+B)

PUSH C TOS® C

PUSH D TOS®D

ADD TOS ® (C + D)

MUL - TOS®(C+D)* (A+B)
POP X M[X] TOS

4.7 ADDRESSING MODES

The operation field of an instruction specifies the operation to be performed This operation must be
executed on some data stored in computer register as memory words. The way the operands are chosen
during program execution is dependent on the addressing mode of the instruction. The addressing mode
specifies a rule for interpreting or modifying the address field of the instruction between the operand is
activity referenced. Computer use addressing mode techmque for the purpose of accommodatlng one or
both of the following provisions. _

(D To give programming Versatlllty to the uses by providing such faclhtles as pointer to memory,
counters for top control, indexing of data, and program relocation. :

(2) .- Toreduce the number of bits in the addressing fields of the instruction.

There are following types of addressing mode techniques are used —

1. Implied mode : In this mode the address field is not required in the instruction format .

2. Immediate mode : operand are implicitty use in the definition so.no need of address field ,stack
operatron are the example of'this type of mode . :

3. Registermode : operand are reside in the register and directly use from the regrster SO also no

address field is use .

4, Register indirect mode: the value of the register gives the address of the operand.

5. Direct Address mode : The address part of the instruction format give the address of the operand
~ where it reside in the memory .

6. Indirect Address mode : the address part of the instruction format give address where the address

is store .
7. Auto increment/ Auto decrementmode : this modeis similar to register indirect mode but register
~ valueis increment in case of auto increment after operation and incase of auto decrement register value is

decrement after operation
Similarly other modes are Relative Address mode, Indexed Addressing mode in whlch PC value isup-

dated .

Relative Address: The content of PC is added to the address part of the instruction in orde1 to obtam
the effective address Ex :-PC=825+1+24

Indexed addressing Mode:- The content of index register is added to the address part of the
instruction in order to obtain the effective address.

Base Register Addressing Mode:-The content of a base register is added to the address bank of
the instruction to obtain the effective address.

Self learning exercise

4, What are the different type of addressing mode 7

4.8 TYPE OF INSTRUCTIONS

Computer provides an extensive set of instructions to give the user the ﬂex1b111ty to carryout various com-
putational task. Most computer instruction can be classified into three categories.
(1) Datatransfer instruction
(2) Datamanipulation instruction
(3) Program control instruction
44

Data transfer instruction cause Uansferred data from one location to another w1thout changmg the bmary
instruction ¢ontent. Data manipulation instructions are those that perform arithmetic logic, and shift opera-
tions. Program control instructions provide decision-making capabilities and change the path taken by the
program when executed in the computer. N
(1) Data Transfer Instruction : :
Data transfer instruction move data from one place in the computer to another w1thout changlng the data
content. The most common transfers are between memory and processes registers, between processes
register & input or output, and between processes register themselves.
S (Typical data transfer mstructlon)
Name

Mneronic

Load = LD

Store ST

Move MOV
Exchange - XCH
Input IN
Qutput OUT
Push PUSH
‘Pop - POP

(2) Data Mampulatlon Instruction
It performs operations on data and provides the computational capabilities for the computer The data
manipulation instructions in a typical computer are usually divided iito three basrc types ' &

(a) Arithmetic Instruction
(b) Logical bitmanipulation Instruction
(¢) = ShiftInstruction. -
(a) Arithmetic Instructlon
Name - Minemonic
Increment INC
Decrement DEC
Add Add
. Subtract - Sub.
Multiply MUL
. Divide . DIV . .
Add with Carry ADDC
Subtract with Basses .SUBB .
(b) Logical & Bit Manipulation Instruction
Name Muemonic -
Clear CLR
Complement COM
AND AND
OR : OR
Exclusive-Or XOR
Clear Carry CLRC
Set Carry SETC
ComplementCarry COMC
Enable Interrupt ET
(c) Shlﬁ Instruction

Instructions to shift the content of an operand are qulte useful and cne often provrded in several vanatlons
Shifts are operation in which the bits of a word are moved to the left or right. The bit-shifted in at the and

45

of the word determines the type of shift used. Shift instruction rhay spécify either logical shift, arithmetic | ;

shifts, or rotate type shifts.

Name - - : Mnemonic

- Logical Shift right SHR
Logical Shift left SHIL,
Arithmetic shift right - SHRA
Arithmetic shift left . SHLA
Rotate right ~ ROR
Rotate left . ROL .

Rotate mgmt throughcarry ~ RORC

Rotate left through carry "ROLC
(3) Program control instruction: .
Program control type instruction include jump, branch, test compare types instructions in which program
counter value updated . _ o
Inthe given diagram immediate ,register to register and Jump instruction format is shown .
T

g r
- BT e U Vi E e
F ¥ r ey T e e

4.9INSTRUCTION CYCLE

An instruction cycle includes the following sub cycles: B

1. Fetch: read the next instruction from memory into the CPU,

2. Execute: interpret the opcode and perform the indicated operation.

3. Interrupt: if interrupts are enable and in interrupt has oceurred: save the current

process state and service the interrupt. The instruction cycle will riow be elaborated upon,

The Indirect Cycle ' ' '

The execution of an instruction may involve one or mote operands in memotry, _

each of which requires a memory access. Further, if indirect addressing is used (effective address =
- [memory)), the additional memory accesses are required. We can think of fetching indirect addresses as

one more instruction subcycle the main ling of activity consists of alternating instruction fetch and instruction

execute activities. After an instruction is fetched, it is examined to see if any indirect addressing is involved.

If's0, the required operands are fetched using indirect addressing. - o :

Foliowing execution, an interrupt may be processed before the next instruction fetch.

1. Once an instruction is fetched, its operand specifiers must be identified,

2. Each input operand in memory is then fetched, and this process may require indirect addressing,
3. Register based operands need not be fetched. : L

4. Once the opcode is executed, a similar process may be needed to store the

result in memory. T .

Data Flow) STE
The exact sequence of events during an instruction cycle depends on the design of the CPU.
Assume that a CPU employsa memory address register (MAR), a memory buffer register (MBR), a

46

program counter (PC), and an instruction register (IR). Instruction Fetch C}fcle an mstructlon is read ﬁ'om ;

memory. - : :)

PC contains address of next mstrucnon tobe fetched

This address moved to MAR

Address placed on address bus

Contro! unit requests a memory read

Result placed on the data bus, copied to MBR, and then moved to IR

PC is incremented by 1, preparing for next fetch :

Once the instruction fetch cycle is over, the control unit examines the contents of the IR

to determine if it contains an operand speclﬁes using indixect addressing. If so, an .

indirect cycle is performed.

Indirect Cycle

~ Therightmost N bits of MBR, which contains the memory reference portlon of the mstrucucn, are trans-
ferred to the MAR. The control unit requests a memory read. Result (the address of operand) moved to

e o

Execute Cycle ,

The fetchand indirect cycles are simple and predictable, The execute cycle takes many for:ms, because the
- formsdepends on which of the various machine instructions is in the IR. This cycle may involve hansferrmg .
data between registers, read or write from memory of I/O and/or the mvocatmn of the ALU S
Interrupt Cycle

Like the fetch and indirect cycles, the i mterrupt cycle is snmple and predlctable Current contents of PC
saved to allow resumption after interrupt. Thus, contents of PC are transferred to MBR to be written to
memnory. The special memory location reserved for this purpose is loaded info the MAR fr0m the control
unit (i.e. stack pointer).

PC isloaded with the address of the interrupt routine. Next instruction wnlI be. at begmmng of mterrupt
routine. o o

4,10 THE PENTIUMPROCESSORS | R T
The Péntium series is an excellent example of Complex Instrucnon Set Computer (CISC) “design. The
PowerPC is a direct descendant of IBM 801 one of the best cleSIgned RISC systems onthe market

Pentiwmn
Intel has ranked the number one maker of microprocessors for decades

8080: . The first’s general purpose mlcmprccessor this is 8 blt machme wnth an 8 blt data path in
memory.
8086: A far more powerful 16-bit machme In addition to wide data path ancl larger registers, the 8086
supported an instruction cache ,or queue ,that perfected a few instructions before they are executed. .
80286 The extension of 8086 enabled addressing a 16-Mbit memory ingtead of) JUSt leyte

‘1A-32 80386 Processor
Eight 32-bit register mark with (R0~ R7) are general purpose reglster dtisusedto hold operand
Architecture based on memory model. Different area combination in memory is called segment Code

47

Segment (CS)
—Hold program instruction ,Stack Segment (SS)
- —Contains processor stack, Data Segment (DS)
~To hold operand data. Processor used segment reglster CS8,S8, DS and ES to fetch code stack and two
data segment. _ _
80386 and 80486 Processor
1.1'80386 is the first processor which unplement 1A-32 archltecture .
80386 is the first processor which implement IA-32 architecture .80486 contains 1nteger processing unit
and floating point .80486 memory support is similar to 80386 : :
80486 allows parallelism and pipelining
1~ 486contains integer processing unit and floating point
1 80486 memory support is similar to 80386
1 80486 allows parallelwm and pzpelmmg
Pentium Processor

Upgraded 80486
. The poweris twice 80486 CISC architecture which achieved high performance by using RISC character-
istic processor, two instruction be executed in one clock cycle
Use simple dynamic branch prediction form Select direction either to choose last branch executed Ma;o—
‘mum instruction number can be executed in one cycle 18 twwe : S
I Thepoweristwice 80486 EREI
Petitium Pro Processor . - : :
Increase super scalar and the ability to execute instruction w1thout sequennal Super scalar factor 1salso
known as maximum instruction can be execute in one clock cycle isin Pentium Pro Processor
- Super scalar operation is supported by many execution unit meluding for integer operation and floating
point unit, Ability io execute instruction in different sequence w1th data stated in program is fetch from
SMEMOLY, o _ . _ _ _
Pentium Pro to beused in multlprocessor system
 Pentium Il and I Processor .
Pentium I Processor add MMXi 1nstruct10n MMX mstructlon prepare processor as parallel in multimedia
operation towards pixel which describe graphical data. - -
Pentium IIT Processor introduce vector mstrucﬂon (SIMD) Is an mstruct:lon to process vector operatlon
“at ﬂoatmg poinit data
Pentium 4 Processor
I Clock rate between 1.3t0 1.5GHz
] 1A-32 instruetion set fully supported including MMX and SSE mstructlon
i - Cache instruction to hold path segment execution, decoded instruction known as trace
1 Trace can be more than one branch in original program
1 Ifthe path is repeated, execution will be much faster
I - Testwill be done to ensure that the same branch is fetched when trace is repeated
1 CISC architecture which achieved high performance by using RISC characteristic processor
It include additionat floating point and other enhancements for multimedia.
Ttanium : The néw generation Intel Processor make use of 64 bit organization with the 1A —64 architecture
Data type of Pentium
General - byte (8), word ¢! 6), doubleword (32), and quadword (64) signed i mtegers arein2’s
'complementrepresentanon Pentium uses little endianstyle representation.
. Floating point - single precision (32), double precision (64); extended double prec1snon (80)
Registers Pentium
_ General - - Eight 32 bit general purpose registers - EAX EBX, ECX EDX, ESP, EBP, ECI, and
EDL The low 16 bits of each of these registers actas 16 bit registers - AX, BX, CX, DX, SP, BP, Cl, and

48

DI. The lower and higher 8 bits of each of these 16 bit registers are also identified as registers - AL, BL,
CL, DL, AH, BH, CH, and DH.
Floating Point - Eight registers of 64 bit floating point numbers FPOto FP7.
Multimedia - Eight 64 bit multimedia registers MMO0 to MM7.
Segment - Six 16 bit segmerit selectors that index into segment tables - CS, $S, DS, ES, FS, and.
GS. CS register references the segment containing the instruction being executed. SS register references
the segment containing the a user-visible stack. The remaining segment registers enable the user to refer-
ence upto four separate data segments at a time,
Flags register contains condition codes and various mode bits.
Instruction Pointer (IP) - address of the current instruction
Addressing mode of Pentium
. Immediate: Operand=A
Register operand: LA=R
Displacement; LA=(SR)+A
BRase: LA=(SR)+(B)
Bage with displacement: LA=(SR)+(B)+A
Scaled 1|ndex with displacement: LA=(SR)+ () x S+A
Base with index and displacement LA=(SRY+(B)+(D+A
Base with scaled index and dlsplacement LA=SR)+DHxS+(B)+A
Relative: LA=(PC)+a .
~where
LA =linear address
- {(X)=contents of X
. SR =segment register
PC = program counter
A =contents of an address field in the instruction
R =register
B =base register
I=1index register
S = scaling factor
Instruction Format
Pentium
This is 2 two address ISA, which means one of the source operands:in some operatlons is also the -
destination. The length of the instruction s not fixed. [t has a variable number of bytes.
Instruction Prefix: Each instruction.can have zero to four prefixes. The preﬁx overrides the ususal -
interpretation of the instruction. : L .
Opcode - one or two bytes .~ ' '
_ ModR/m: This byte provide addressmg mformatmn The ModR/m byte speclhes whether an op-
erand is in a registeror in memory.
SIB: SIB byte spemﬁes the ﬁ111 addressing mode. The SIB byte consists of three ﬂelds The Scale :
field (2 bits) specifies the scale factor; the Index field (3 blts) specifies the index reglster the Base ﬁeld (3
bits) specifies the base register. '
. Displacement: If the ModR/M specifies that the address calculation requires a dISplacement the
one, two, or four bytes is contained in the instruction. _
Immediate: Provides the value of an 8, 16, 32 bit operand.
Figure. .. Pentium numeric data formats-

49

§ b
B . -

F s T
.

R A S S A MR

- Operations Pentium
Data Movement N o |)
‘ MOV: Move operand between registers or between register and memory
PUSH: Push operand onto stack
PUSHA.: Push all registers on stack
MOVSX: Move byte, word, dword, si gn extended
LEA: Load effective address
. IN,OUT: Input, output operand from /O space
“Arithmetic®
- ADD: Add operands
SUB: Subtract operands
- . MUL: Unsigned integer multiplication
IDIV: Divide operands
Logical
‘ AND: And operands . '
604.: Intended for dgsktop computer computers and low end servers . again itis 32 bit machine but it use
much more advance super- scale design technique to achieve greater performance , _ N
620: Intended for high end servers. the first member of PowerPC family to implement a full 64 bit archi-
tecture ,including 64 bit registers and data path. : '
740/750 (G3): This processor integrate two levels of cache In the main processor chip, providing signifi-
cant performance improvement over a comparable machine with off chip cache organization, .
G4 and G5 : Increase parallelism ad internal speed of processor chip. A complete description of the
PowerPCISA can be obtained from the IBM site.
And other Exainples are MIPS, and SPARC.
Data Types of powerPC - - | |
- General - byte (8), halfword (16), word (32), and double word (64). PowerPC can operate in
little endian or big endian mode. _ : : _
Floating point - single precision (32), double precision (64)
- Byte string - 0 to 128 bytesin length :
Registers
PowerPC
General: Thirty two 64 bit general purpose registers ROto R31.

50

Exception Register (XER): Reports exceptlons in mteger arithmetic operatlons .
General: Th1rty two 64 b1t general purpose reglsters for all floating pomt operatlons FPRO to
. FPR31.
Floating point status and control reglste1 (FPSCR): 32-b1t reglster that control the operatlon of
ﬂoatmg point quantities.
Condition register: Consists of eight 4-bit condition code ﬁelds
Link register: Used in conditional branch instruction and for call / return.
- Count: Used to control an iteration loop
Addressing Modes
Load/Store Addressing
Indirect: EA=(BR)+D _
Indirect indexed: EA = (BR)+ (IR)
Branch Addressing "
Absolute EA=1
Relative: EA =(PC)+1
~ Indirect: EA=(L/CR)
 Fixed-point Computation
_ Register: EA=GPR
- Immediate: Operand 1
F loatmg Point Computation
- Register; EA=FPR
EA = effective address
(X)=contents of X
BR = base register -
IR =index register
L/CR =link or count register-
GPR = general purpose register
FPR =floating point register
D =displacement :
. I=immediate value
PC=program counter
Instruction format : : ' o
Allinstructions in the PowerPC are 32 b1ts long and follow a regular format The ﬁrst 6 bltS of an instruction
specify the operation to be performed. For all load/store, arithmetic, and logical instructions, the opcocle is
followed by two 5-bit register references, enabling 32 general purpose registers to be-used. o
Operations of PowerPC S

Data Movement = :

iwzu: Load word and zero extend to left update source reglster

1d; Load double word- - o
2. bl branchto target address and place effective address of i instruction followmg the branch 1nt0 the
Link Register _
3. be: Branch conditional on Count Register and’or on blt in Condition Regnster o
4. sc: System call to invoke an opetating system service '
3. trap: Compare two operands and invoke system trap handler if specified condltlons arc met

4.12 SUMMARY:

Processor organizations are three type, accumulator base CPU, general register organization and'stack

organization, The main register of accumulator based CPUY is accumulator (AC), i in case of general regis-
tration all the operation perform in general purpose registers. stack organization use memory Stack.
Instruction cycle uses general two phases fetch cycle and execute cycle. In fetch cycle instruction are fetch

51

from memory and in execute cycle instruction are executed.

4.13 GLOSSARY: |
Accumulator - A special storage register associated with the arithmetic logic unit for storing the results of
steps in a calculation or data transfer,. _ '
Arithmetic Liogic Unit (AL:U) - The part of the CPU where arithmetic and logic operations are performed.
Sometimes called the arithmetic unit. - : o
Arithmetic Operator - The arithmetical signs of addition, subtraction, division and multiplication as used by
agiven programming language. _' o o '
Central Processing Unit (CPU) - The main part of the computer, its *brain’, consisting of the central
memory, arithmetic logic unit and control unit, Also called the central processor,. -
Chip - An alternative name for an integrated circuit.
Clock - A special circuit that sends pulses of current to the CPU and other computer components,
Control Unit (CU) - That part of the computer which accesses instructions in sequence, hiterpmﬁg them
- and then directs their implementation. ' S
Fetch-Execute Cycle - Refers to the process whereby the control unit must first fetch an instruction from
main memory before it can execute (interpret) that instruction. - ' o
Instruction Decoder - Complex circuitry in the CU designed to decode (interpret) any instruction in the
computer’s machine code repertoire. _ _
Instruction Register (IR) - A special register in the CPU that holds the bit pattern cotresponding to the next
instruction to be performed within the CPU. The Control Unit accesses this register to decide which
circuits need to be activated. : e B
Instruction Set - A set of assembly language mnemonics which represent the machine code of 2 particular
computer. _ _ ‘
Logical Operator - Name given to the logical symbols for “greater than”, “less than”, etc., as used by a
particular high-level language. Also calied relational operators,
Memory Address Register (MAR) - When another instruction is needed inthe IR, or a value is to be
loaded into the accumulator, or an operand is needed to perform some arithmetic or logic instruction, this
register contains the memory address where the desired information can be found. It also serves as a
pointer to the location in memory where the contents of some CPU register is to be stored.
Memory Buffer Register (MBR) - This register serves as an interface between the CPU and main memory.
Anything needed by the CPU (instruction or data) is first placed here before it goes to its final destination
- (such as the accumulator, IR, PC or other registers). Also, anything in the CPU that is to be stored in main
memory comes here first before being copied into the main memory at the location specified by the ad-
dress containd inthe MAR. - ' : -
Memory Unit - Part of the computer where data and instructions are held. (Also known as main memory,
main store, central memory, immediate access memory.) ' . .
Program Counter (PC) - This CPU register always contains the memoty address where the next instrug-
tion to be performed by the CPU can be found. Its contents is copied into the MAR before an instruction'
is fetched from the main memory. While the instruction is being fetched, the Control Unit updates the

contents of the PC so that it will again point to the next instruction to be performed.

Register - A special location, which is sometimes protected, used for specific purposes only. Example:
accumulator, program counter. P ' o "

4.14 FURTURE READING - |

J. P. Hayes, Computer Architecture and Organization, McGraw-Hill, New York, 1 998.

W. Stallings, Computer Organization and Architectire: Designing for Performance, NJ, 1996,

Morris mano ; Computer system Architecture - i '

4.15 ANSWERS TO SELF LEARNING EXERCISES

1. “Themaincomponent of CPU are ALU, CU and register set . _

2. . Busisagroup of wire use to transfer data from one component to another. -

52

3. operation perform in register is called microoperation .
4. . direct,indirect, immediate ,implied ,register direct Jegister indirect, auto increment auto decre-
ment are the different addressing mode .

- 4.16 UNIT END QUESTIONS

1. Solve the following Expression using one address ,two address ,three address JZero address
X~(A*BYHC*D)*E | -
2. Explain different type of registers.
3. Explaindifferent types of addressing mode , Explain each with example.
4. . Explain General register organization based CPU.
5. What is instruction cycle? Explain different stages of instriction cycle.
6. Explain power PC and Pentium processor. Give example of each type of processor.
7. What are the different types of CPU organization?
8. What is micro operation? Explain logical micro operations.
9. How we represent number in fixed point and floating-point numbers.
. BTS: Bit test and set. The instruction copies the current value of a bit to flag CF and sets the
original bitto 1 . _ _ X
BSF: Bit scan forward.Scans a word or dword for a 1-bit and stores the number of the first 1-bit
into aregister ' ' B '

SHL/SHR: Shift logical left or right

SAL/SAR: Shift arithmetic left or right

ROL/ROR: Rotate left or right :

- 8ETec: Sets a byte to zero or one depending on any of'the 16 conditions defined by status flags

Control Transfer . :

JMP: Unconditional jump :

CALL: Transfer control to another location. The address of the next instruction following the
" CALLisplacedonthestack . | -

- JE/JZ: Jump if equal / zero '

LOOPE/LOOPZ: Loops if equal / zero. Conditional jump using a value stored in register ECX.

The instruction first decrements ECX before testing ECX for the branch condition
- INT/INTO: Interrupt / Interrupt if overflow. Transfer control to an interrupt service routine

String Operations o

MOVS: Move byte, word, dword string. The instruction operates on one element of a string,
indexed by registers ESI and EDI Afier each string operation, the registers are automatically incremented -
or decremented to point to the next element of the string. . :
Load byte, word, dword 6f string (1 byte per digit) and packed (1 byte per 2 digits) representation.
4.11 THE POWERPC PROCESSOR: | .
- In 1975, IBM started the 801-minicomputer project that launched the RISC movement. In 1986, IBM
developed a RISC workstation, the RT PC, which was not a commercial success. In 1 990, introduced the
IBM RISC/6000 was a RISC like super scale machine and marketed that as a high performance worksta-
tion, IBM began to refer to.this as the POWER architecture. _ .
IBM then entered into an alliance with Motorola the developer of the 68000 series for Apple computers.
The result of this alliance was the series of microprocessors that implement the PowerPC architecture.
This architecture derive as a power architecture . The resulting power PC architecture isa super scalar
RISC system . The processors in the series were;
601 : 1t isa 32 bit machine , ,
603 : Intended for low end desktop and portable computer s. it is also 32 bit machine ,compatible in
performance with 601 , but low cost and more efficient implementation .

Imw: Load multipte word; load consecutive words into contiguous registers from the target register
. through general purpose register

53

Iswx: Load a string of bytes into registers beginning with target register; 4 bytes per register; wrap

around from register 31 to register0
Anthmetlc '
add: Add contents of two registers and place in third register -
subf: Subtract contents of two registers and place in third register
mullw: Multiply low order 32 bit contents of two registers and place 64 b1t product in third register
divd: Divide 64-bit contents of two registers and place in quotient in third register
. Ifs: Load 32 bit floating point nurnber from memory, convert to 64 bit format, and store in floating
point register
fadd: Add contents of two registers and place in third register

register
fompu: Compare two floating point oerands and set condition bits

Logical : _ o

cmp: Compare two operands and set four condition bits in the specified

crand: Condition register AND: two bits of the Condition Register are ANDed and the resut

placed in one of the two bit positions
and: AND contents of two registers and place in third rcgistcr

entlzd: Count number of consecutive 0 bits starting at bit zero in source register and place countin

destination register
rldic: Rotate left doubleword register, AND with mask, and store in destination reglster
sld: Shift left bits in source register and store in destination register

Control
1. b: Unconditional branch

4.16 UNIT END QUESTIONS

1. Solve the following Expressi.on using one address ,two address ,three address ,Zero address
X=(A*ByHC*D)*E '

Explain different type of registers.

Explain different types of addressing mode . Explain each wu‘h example.

Explain General register organization based CPU.

What is instruction cycle? Explain different stages of instruction cycle,

Explain power PC and Pentium processor. Give example of each type of processor,
~What are the different types of CPU organization?

What is micro operation? Explain logical micro operations.
- How we represent number in fixed point and ﬂoatmg-pomt numbers,
0. Evaluate expression X=(A*B)+ (C*D) using
TWO ADDRESS INSTRUCTION

ONE ADDERSS INSTRUCTIONS
Explain the main operation of a stack.
What is the main function of SP,PC,MBR;MAR.

FF OO0 ®NSNAWN

—
—_— .
e

54

fmadd: Multiply contents of two registers, add the contents of athird, and place resull in fourth

UNIT-5
Reduced Instruction Set Computer

Structure Of The Unit |

50 Objective '

5.1, Introduction 3

5.2, Risc/Cisc Evolution Cycle

5.3.. RisesDesign Principles

3.4, RiscCharacteristics

3.5, Overlapped Register Windows

3.6. Instruction Execution

5.7. RiscPipelining '

5.8. Riscs Vs Ciscs

5.9. RiscArchitecture .And Cisc Architecture

59.1 Sparc . '

5.9.2 - Mips -

59.3 MipsR4000

59.4 Powerpe

5.9.5 Pentium

510. Summary

311, Glossary _

5.12. Further Readings

5.13. Answers To Self Learning Exercises

5.14. UnitEnd Questions

2.0 Objective: |
- In this unit-we study reduced instruction set computers (RISCs). These machines represent a noticeable

shift in computer architecture paradigm This paradigm promotes simplicity rather than complexity, The

RISC approach is substantiated by a number of studies indicating that assignment statement, conditional

branching, and procedure calls/return represent, These studies showed also that among all operations,

procedure calls/return are the most time-consuming. Based on such results, the RISC approach calls for

enhancing architectures with the resources needed to make the execution of the most frequent and the

most time-consuming pperations most efficient. '

5.1 - INTRODUCTION: |

In the 50 years since the development of the first electronic computer, the architecture of computers the

structure of the machine’s hardware and software and the interactions between the two and with the world
. hasevolved. Computer designers have worked with the available technology and information theory to

create ever faster, ever more capable machines. These machines represent a noticeable shift in computer
architecture paradigm. This paradigm promotes simplicity rather than complexity. The RISC approachis
substantiated by a number of studies indicating that assignment statements, conditional branching, and
- procedure calls/return represent more than 90% and that complex operations such as long division repre-
sent only about 2% of the operations performedina typical set of benchmark programs. These studies
showed also that among all operations, procedure calls/return are the most time-consuming, Based on
such results, the RISC approach calls for enhancing architectures with the resources needed to make the
execution of the most frequent and the most time-consuming operations most efficient. The seed for the
RISC approach started as early as the mid- 1970s, Its real-life manifestation appeared in the Berkeley
RISC-I and the Stanford MIPS machines, which were introduced in the mid-1980s.

5.2 RISC/CISCEVOLUTION CYCLE

[n the mid-1970%s advances in semiconductor technology began to reduce the difference in speed between
main memory and processor chips. As memory speed increased, and high-level languages displaced as- -

65

sembly language, the major reasons for CISC (complex instruction set computet) began to disappear, and

computer designers began to look at ways computer performance could be optimized beyond just making -

faster hardware. One of their key realizations was that a sequence of simple instructions produces the
same results as a sequence of complex instructions, but can be implemented with a simpler (and faster)
hardware design.

A RISC (reduced instruction set computer) is a microprocessor that is demg,ned to perform a smaller
number of types of computer instruction so that it can operate at a higher speed ¢million of instructions per
second). Since each instruction type that a computer must perform requires additional transistors and
circuitry, a larger list or set of computer instructions tends to make the microprocessor more complicated
and slower in operation.

John Cocke of IBM Research in Yorktown, New York, originated the RISC concept in 1974 by proving

that about 20% of theinstructions in a computer did 80% of the work. The first computer to benefit from
this discovery was IBM’s PC/XT in 1980. Later, IBM’s RISC System/6000, made use of the idea. The
term itself (RISC) is credited to David Patterson, a teacher at the University of California in Berkeley, The

concept was used in Sun Microsystems’ SPARC microprocessors and led to the founding of what is now

MIPS Technologies, part of Silicon Graphics. DEC s Alpha mLCI'OChlp also uses RISC technology.

The RISC concept has led to a more thoughtful design of the microprocessor. Among design consider-
ations are how well an instruction can be mapped to the clock speed of the microprocessor (ideally, an
instruction can be performed in one clock cycle); how “simple” an architecture is required; and how much.

work can be done by the microchip itself without resorting to software help. Besides performance im-

provement, some advantages of RISC and related design improvements are: A newnncroprocessor can
be developed and tested more quickly if one of'its aims is to be less complicated.

Operating system and application programmers who use the microprocessor’s instructions will find it
easter to develop code with a smaller instruction set.

The simplicity of RISC allows more freedom to choose how to use the space ora nucroprocessor

5.3 RISC DESIGN PRINCIPLES

A computer with the minimum number of instructions has the disadvantage that a large number of
instructions will have to be executed in realizing even a simple function. This will result in a speed

disadvantage. On the other hand, a computer with large number of instructions has the disadvantage of

complex decoding and hence a speed disadvantage. It is then natural to believe that a computer with a

carefully selected reduced set of instructions should strike a balance between the above two design alter-

natives. The question then becomes what constitutes a carefully selected reduced set of instructions? In
order to arrive at an answer to this question, it is necessary to conduct in-depth studies on a number of
aspects of computation. These aspects should include (a) operations that are most frequently performed
during execution of typical (benchmark) programs, (b) operations that are most time consuming, and (¢)
the type of operands that are most frequently used. A number of early studies were conducted in order to
find out the typical break down of operations that are performed in executing benchmark programs, The

estimated distribution of operations is shown in Table 1, careful look at the estimated percentage of opera-
tions performed reveals that assignment statements, conditional branches, and procedure calls constitute
about 90% of the total operations performed, while other operations, however complex they may be,
make up the remaining 10%.

TABLE | 1 Estawded Distriimtion of Operstions

Operilmns Eistwmated praeniage

Aamipriment shdcaenis
Lawips

Procedme cufls
Cenctitiomaf hegrebres
blnconditemst brashes
{Mhers

o B E e

56

The studies on time-performance characteristics of operations revealed that among all operations, proce-
dure calls/return are the most time-consuming. With regards to the type of operands used during typical
computation, it was noticed that the majority of references (no less than 60%) are made to simple scalar
variables and that no less than 80% of scalars are local variables (to procedures).

The above observations about typical program behavior have led to the following conclusions:

1. Simple movement of data (represented by assignment statements), rather than complex operations, are
substantial and should be optimized, _

2. Conditional branches are predominant and therefore careful attention should be paid to the sequencing
of instructions. This is pacticularly true when it is known that pipelining is indispensable touse.

3. Procedure calls/return are the most time-consuming operations and therefore a mechanism should be
devised to make the cominunication of parameters among the cailing and the called procedures cause the
least number of instructions to execute, -

5.4 RISC CHARACTERISTICS

1. Simple instruction set. :

Ina RISC machine, the instruction set contains simple, basic instructions, from which more complex |

instructions can be composed.

2. Same length instructions.

Each instruction is the same length, so that it may be fetched in a single operation:
3. Machine-cycle instructions.

One instruction per clock cycle. Most instructions complete in one machine cycle, which allows the pro-

cessor to handle several instructions at the same time. This pipelining isa key technique used to speed up
RISC machines.

4. Fixed-length instructions,

5. Limited number of instructions (128 or less). : ' _

6. Limited set of simple addressing modes (minimum of two: indexed and PC-relative).

7. All operations are performed on registers; no memory operations. Only two memory operations:
Load and Store, . '

8. Pipelinedinstruction execution, : ' :

9. ‘Large number of general-purpose registers or the use of advanced compiler technology to opti-
mize register usage. ' ' C

10. Hardwired control unit design rather than microprogramming,
11 RISC use Ovetlapped registered window. ' :

Selflearning exercise o
.~ Whatdo you mearn by hardwired control?

2. what is the difference between hardwired control and micro-program control 7
3. Whatis microprogram? h ;

5.5 OVERLAPPED REGISTER WINDOWS

The main idea behind the use of register windows is to minimize memory accesses .In ofder to achieve that;
alarge number of CPU registers are needed. For example, the number of CPU general- Se registers

available in the original SPARC machine (one of the earliest RISCs) was 120. However, it is desirable to”

have only a subset of these registers visible at any given time and tohave them addressed as if they were
the only set of registers available. Therefore, CPU registers are divided into multiple small sets, each
assigned to a different procedure. Aprocedure call will automatically switch the CPU to use a different,
Fixed-size window of registers. In order to minimize the actual movement of parameters between the
calling and the called procedures, sach set of registers is divided into three subsets: parameter registers,

movement of data (Fig. 1).

Fapswss [Foaesd I towparae §Eanlsd
F Feamiers [meghewsy | Repbews JAPue
[= o)
il 12T Il
¥Fhgarye i eghiteadndmne somalnppdeg

Operation of Circular Buffer: :

When a call is made, a current window pointer is moved to show the currently active register window Jfall
windows are in use, an interrupt is generated and the oldest window (the one furthest back in the call
nesting) is saved to memory. A saved window pointer indicates where the next saved windows should
restore.

TABLE 2 fferent Regisie Windows Characteristics
Nunbee & Mty af pogides

Architeelnge wins oy wiodew
Horkeley RISC.E $ R
Fyrunids 1 iz

SPARL 23 n

L S
/K‘ v
Qg
Foan

In addition, a set of a fixed number of CPU registers is identified as global registers and isavailable to all
procedures. For example, references to registers 0 through 7 in the SPARC architecture refer to unique
global registers, and references to registers 8 through 31 indicate registers in the current window. The.
current window is pointed to using what is normally called the cutrent window pointer (CWP). Upon
having all windows filled, the register window wraps around, thus acting like a “circular buffer.” Table .2
shows the number of windows and the window size for a number of architectures. It should be noted that
a study was conducted in 1985 to find out the impact of using register window on the performance of the
Berkeley RISC. In this study, two versions of the machine were studied. The rest is design with register
windows and the second was a hypothetical Berkeley RISC implemented without windows. The results of
the study indicated a decrease by a factor of 2 to 4 (depending On specified benchmark) in the memory
traffic due to the use of register windows. _ S '-
Example: Suppose a system has total 74 registers RO to R7 are global registers _
Rest 64 registers are divided in 4 windows to accommodate procedure A, B, C, D each register window
consist 10 local registers twq.*_set of 6 register are common to adjacent window. The common overlap
register permit parameters to be passed without the actual movement . And only one register window is
activated at a time. With a pointer indicating current window. Each procedure call is activated by incrementing
the pointer. the high register of calling procedure called the low register of calling procedure . There fore the

' parameter automatically transferred from calling procedure to called procedure If procedure A call proce-
dure Bithen register R26 through R31 ar¢ common to both procedures procedure use local R32 to R41
register for local variable storage . ' '
So for each procedure total 32 registers are available.
Whichis 10 global +10 local -+6 low +6 high =32

Ingeneral : .

58

suppose global register= G

number of local register are =1,

number of common register are =C

number of window are =W

then number of available register are calculated as follows
Window size = L+2C+G- '

The total number of register need in the processor (register file)
Register file=I+C)W+G

IfG=10 ,L=10, C=6 and W=4 then

Register file =(10+6)X4 +10=74

Window size =L +2C +G = 10+12+10=32 -

Regist Cache:
egisters v, Cache:
PEGITER CACEE
1mzedeainer Fie
Allsed scalows ooty ied bagn] sz alms
Indl it vaisales ’ Elocks of momany
| Compeber avagred akobal veriables 2 eoomty: e ylokal yowiables
Savkreuoe Bkl on pocdme SarbTesat Based en cashing Aporithy -
B
Py dddresung Men ey sdes sring

Referencing a Scalar - Window Based Register File

Referencing-é Scalar — Cache:

In cache memory address is divided into two parts tag and index. so in case of 15 bit memory address n
- Thenk bit index and n-k bit tag field. Each word in cache consist of data word and its associated tag. The
CPU generate a request, the index field is used for the address to access the cache .the tag field of the
CPU address is compared with the tag in the word read from the cache , iftwo tag match a hit and the

- desired word is in the cache .

5.6 INSTRUCTION EXECUTION |
Instruction and the assembly language definition are givenin the given table

59

5.7 RISCPIPELINING:

Pipelining is a technology of decomposing a sequential process into sub-process with each sub-process is

executed in a special dedicated segment that operates concurrent with all other segments.

In RISC most instructions are register to register so no need to calculate the effective address of operand

ot fetching the operand from memory the instruction cycle is divided into three phases

I: Instruction fetch
E: Execute '

A: ALU operation with register input Iand output For load and store

I: Instruction fetch

E: Execute Calculate memory address

D: Memory Register to memory or memory to register operation
Normal and delayed branch

| Address Novpat Bofayed | Optinized |

100 LOAD XA | LOAD XA | LOAD XA

1t ADD LA LADD LA | JUMP 108

1oz JUMP 105 | JUMP 205 [ABD LA

103 ADD AR | NOOP ADB AB
BRG] SUBC,E (ADDAB [SUBCE

105 STOREAZ | SUBCH SYORE AZ

106 STORE A2

60

Table 3 Assembity Longuage Defiritton for RISCT :
Froptr, T Sperands . Garssrrseiby |
ADD R, S8 Rd ik o Ry oo SE i ey bk i
AR | B=.90 80 B Ry o ST~ worry el sy CerTy
Stip e, B R Kok e B~ S8 St gy suliract 1
§ SR B, 52, 5 | B e iy - S22 - eoowy sub¥eaot Stk ourTy
Ly A Be 52 Rd Bk v B2~ B5 weleger subtrost
FUpoR R 52, 0d R S8 R - ey SUBBPUDY WAl sy %
ANEX Ro S8 Bk e 5 o F2 Eapriciied ASFEF !
oR | Re B2 A B~ Re | 82 togient OR
X 1 Bxsefd bt e B movr S2 Eogioat EXCLUSIVE OR *
BT § R, 52, Tk B~ By shifted by 52 st B st !
=R R T8 RL R~ Ry shfted by 572 BAYY T fogiaad -
SRA £, 5, fod. g o Fe ahirtsd by 58 mh gwithyre it
L8 . 1 (B= 58, Rd B o M RS2} tond fong
LoSU RS2 Rd B H Por5E] tond short wnsigned
LaSs (Rzlfd. fd Bt~ MLRa+ S8} alood_ah.cmﬁ stgpnad.
L R IS8, Fk ol -~ m*m Lok Gyrie samatgrroct
ROBS £ R W08, ok Hoilh + JIE Rre 56} Favecd Gprbe megmedd
=TL R NED, Ben o fae SEY - Bem stowe long
sre (RBRSE R | W EerSEl o fm. stoTe byks
JALE CON, 82000 | 86 » Hoi- 32 _ comatitton
JTEER [R 3 i PR - : cornditidersod valoxtdoe
CRE L Sy, fd CWP -~ B - gt Tt Gl reg. trugaped.
: | po w Rew 38 anid charge window
Sl LR v Rk T CEP- < R e e nat coall ralmtiue
: ' e o o ¥ _ amed ehaegee window
REY (Ralise B e e Sdd, o O raterns, shange window
HETINT | [F2XER o 4 e 52 ek CFIAw gl enabis tnterTumnts
CARLLINT o4 § OWPe « Bk lemd po ol divalkls tniarmgts
LDHE T BB L 18 v X7 B] B0 O 2ovrch Srrarue dite Frigh

v
1

1}
LTI AT TR
13

s ApA |
1}

»

MENCOHE & |

LAY, A |
A A
AN b
IFTOE
IMEHRE A, 2

DA G [
i JUB L0
1BLADDLA

h
N
'
1
.
v
!

HWAFLOAR A%

{¢) Heveemd Innitec tiat

Lésoit
Loud
Al

Stone

CBrack X }

Loasd A M {I]

Load B M
Add € A+B
Stlﬂl\!. M:' f‘ '
Boamch X
NOOF

tood K
Load
NOOP
Add
Stire
Draack
NOOP
NOCHP

tdy Vour-way pipetined Liming

61

There is a problem called data dependency arise if it may caused by degradation of performance in
instruction pipeline due to the collision of data and instructions.

A data dependency occurs if an instruction is needed data and data is not yet avaﬂable Similarly if an
instruction is needed address and address is not yet available

Delayed branch and use of NOP (no operation to resolve pipeline.conflict).

sorn ||t Pronsm | soe § {ioser | [roome | [semay
Stage 4 Anigmmeni B Sope B Sioge FH Reae Sige [Slage
S8 | ISeesa | 18 S 1 fspses| |sm | |8

Figured 'The 20254 insiruction pipeling

5.8 RISCV,CISC

The choice of RISC versus CISC depends totally on the factors that must be considered by a computer
designer. These factors include size, complexity, and speed. RISC architecture has to execute more in-
structions to perform the same function performed by CISC architecture. To compensate for this draw-
back, RISC architectures must use the chip area saved by not using complex instruction decoders in
providing a large number of CPU registers, additional execution units, and instruction caches, The use of
these resources leads to a reduction in the traffic between the processor and the memory. On the other
hand, CISC architecture with richer and more complex instructions will require a smaller number of in-
structions than its RISC counterpart. However, CISC architecture requires a complex decoding scheme
and hence is subject to logic delays. It is therefore réasonable to consider that the RISC and CISC

paradigms differ primarily in the strategy used to trade off different design factors. There is very little
reason to believe that an idea that improves performance for RISC architecture will fail to do the same
thing in CISC architecture and vice versa. For example, one key issue in RISC development is the use of
optimizing the compiler to reduce the complexity of the hardware and to optimize the use of CPU registers.
These same ideas should be applicable to CISC compilers.

' . TABLE £ IR Verap U9 Peefornma

ARG 9T WAK £ L9 fatration
Application ERES) Ry raske yinkios .
Splce 2016 v KA 444 =AY
B af B FiE o 2344 4.5 Ex?
Masa 7 L S _ FE % LY il b 14
{prosso 06 ’ % 0 200 1.7

Increasing the number of CPU registers could very much improve the performance of a CISC machine.
This could be the reason behind not. Finding a pure commercially available RISC (or CISC) machine. Itis
‘not unusual to see a RISC machine with complex floating-point instructions (see the details of the SPARC
architecture in the next section). It is equally expected to see CISC machines making use of the register

62

windows RISC idea. In fact there have been studies indicating that a CISC machine such as the Motorola
680xx with a register window will achieve a 2 to 4 times decrease in the memory traffic. This is the same
factor that can be achieved by RISC architecture, such as the Berkeley RISC, due to the use of a register
window. It should, however, be noted that most processor developers (except for Intel and its associates)
have opted for RISC processors. Computer system manufacturers such as Sun Microsystems are using
RISC processors in their products. However, for compatibility with the PC-based market, such compa-
nies are still producing CISC-based products. Tables.4 and 5 show a limited comparison between an
example RISC and CISC machine in terms of performance and characteristics ,respectively. An elaborate
- comparison among a number of commercially available RISC and CISC machmes

5.9 RISC AND CISCARCH]TECTURES

5.9.1 SPARC

Sun SPARC(scalable processor architecture) the SPARC make use of register windows. .
SPARC is a RISC architecture with some unusual quirks such as register windows. The architecture is
open but its main use if by its originators Sun Microsystems in their Sparcstation line. Thus it is the architec-
ture of the 3rd year laboratory machme Pompeii.

Memory and data types :

SPARC isa 32-bit architecture, The general purpose registers are 32 blts as are memory addresses Thus
2732 bytes can be addressed. In addition, instructions are all 32 bits long. SPARC instructions support a
variety of integer data types from single bytes to double words (eight bytes) and a variety of different

precision floating-point types. Each of these values can only be accessed when aligned to a memory
address, which is a multiple of its size, Integer values are stored in twos—complement representatlon and.

floating-point values are encoded using the IEEE standard.
‘Registers _
- Most of the instruction are register to register

Ra raors

R, and-R are register references S, are register ora 13 bit immediate operand :

At anypomt dunng execution the SPARC has provides access to 32 general purpose mteger reglsters (8
global registers and 24 register window registers) and 32 general purpose floating-point registers. The
integer registers are numbered 0-31 and the follomng aliases are used to d15tmgulsh the different purposes
of different registers. : _ \ _

regs 0-7 Y%g0-%g7 ! global registers
regs 8-15 %00-%07 P output registers
regs16-23 -~ %I0-%I17 - ! local registers

|

- regs24-31 - %i0-%i7 - !hlputregisters

The floating-point regtsters are also numbered 0-3 1 and are referred to as %fO-%fEnl

The global registers refer to the same set of physical registers in all procedures. The other registers are
stored in a register stack that provides the ability to manipulate register windows. The local registers are
only accessible to the current procedure.

The architecture constrains %g0 to always be 0. When used as a source reglster it will always retum O
when used as aresult destination the result will be thrown away. Register 15 (%07) is used by the call
instruction to hold the return address during procedure calls, .

The other output registers are used to pass parameters and return values from procedures When a
procedure is called, parameters are passed in the out registers and the register window is shifted 16

63

registers f further into the reglster stack. This makes the inptit reglsters of the called procedure the same as
the output registers of the calling procedure. Thus the parameters are accessed in the called procedure via
its in registers. Alse, word values to be returned by the procedure canbe leftin the in reglsters When the
proeedure returns the caller can access the returned values in its out registers.

.-Rcmder i s
e e e b -
calling: | Locab. _ Dissction Gilobals
pocediee’ o= - - - of m . i I
' Rems\u [stk
""""" windew giomth
Lecaks for
.......... cailed
; ecedore
Bt pree

Fi gure 4 Overlap register in SPARC . o
The detail of SPARC register window operation is not important for the Obr oompller becaiise Obr has no
procedures and we only make use of procedure calls to utilize C run-time routines. The parameters we
pass to these toutines will be passed in the out registers %00 and %01, and the refuirn value (if any) will be
avaJIable in %00 when the routine returns. Local régisters will be used to store the address of the variable
‘memory block and to hold t temporary values oomputed in expressmns We wnll not use the in reglsters

Instructlon set

For our purposes the SPARC archltecture has mstruetlons that can be categorlsod as follows
load/store (memory access)
- integer/floating-point arithmetic and conversion
control transfer

Load/store instructions are the only i mstructlons that access memory The Id and st instructions load and
store word/single quantities from/to integer and floating-point registers.

ldmem,reg ! Load word from address mem into reg.

streg, mem ! Store contentsof reg to address mem. : s T
The memoty address can be specified either by two registers or by one register and a 13- b1t 1mmed1ate
value (which ¢an be omitted if zero). Indirect: addressmg is indicated by square brackets. The followmg
examples load from various addressesinto %l1: - -~ - . SR .
1d [%10], %11 1Load fromthe address stored in %I0.

1d [%10+4], %11 ! Load the word from a four byte offset from the

! address stored in %10
1d [%10+%14), %11 ! Load from the address that is the sum of the
- Tcontents of %10 and %0l4. :

Most arithmetic instructions operate on two source reglsters and write theirresulttoa reglster (Wthh
may be one of the source registers). One of the registers can be replaced with an immediate integer
operand The Obr compiler makes use of the following integer operations: add, sub, smul, and sdiv. The °s’
_ inthe last two instruction names ifidicates ‘signed’ multiplication and division. The fo]lowmg smgle-preel-
sion floating-point: operatlons aré used: fadds, fsubs, finuls, and fdivs: . NI _

" -add %I1; %12, %I3 ! Add the word valueés in %11 and %12 and put result in%I3...

add %14, 4, %i4 ! Increment %ol4 by four, S i
The neg and not mteger arithmetic mstructlons implement integer negatlon and complemenL They operate
‘'on a singlé source register and write their result-to a register (which may be the same as the source

register). Similarly, fnegs negates single-precision floating-point values.’ - :
‘neg%l1,%I2 ! Negate the word value in %} and put result input %12. r

“The iév and set instructions can be used to transfer values between registers, to load llteral values into

registers, or to load symbolic addresses into registers.
" 64

mov %l1, %00 ! Copy the value in %l 1 to %o00.
mov 1, %2 - !'Put the value 1 in %2,

setifmt, %l4 ! Put the address of the symbolic constant ifint in %14,
Loading literal floating-point values into registers is harder because floating-point values cannot be imme-
diate instruction operands. Thus it is necessary to encode the value in memory and

load it from there. The following fragment illustrates a typlcal sequence The operand of the word pseuclOa
op encodes the floating-point value. .

seg “data”
L29: :

word 0x40133333

seg “ext”
set L29, %00

il [%e00], %f2 : :

Conversion of word integer values to/from single-precision floatlngupomt valuesis achleved usmg the fitos
and fstoi instructions, A gotcha is that the i Integer value to be converted or produced as aresult of conver-
sion must reside in a floating-point regrstel There isnp way to transfer drrectly from the ﬂoatmg-pomt
registers to/from the integer registers so memory must be used as an mtertmedmry if the value is needed
subsequently or comes from elsewhere. The following code shows a sequence convertmg the'i mteger value
lto aﬂoanng-pomt value via a temiporary memory address '
mov 1,%l1
st %l1, [%l0+12]

Id [%l0+12], %f1
fitos %fl, Y%fl

C'ontro! rransfer mstructrons alter the: program counter Thcy are usod to 1mp1ement source-level control
statements, procedure calls. The SPARC has delayed branches so in most cases we will msert nop (no.
operation) instructions in the delay slots of branches. - _

Theba (branch always) mstmct:lon isan uncondltlonal transfer of control

baLl ! Transfer control tolabel LI,
nop .. !Donothingin the delay stot. -

Condmonal transfers are 1mp1emented w1th the a1d of aset. of condzrzon codes that are set by the cmp,
fcmps and tst mstructlons : :

cmp %12,15%15 o Compare the values of %I2 and %15 and set condrtlon codes :
tst%l3 ! COmpare %13 to zero and set condmon codes

Once the condition codes have been set, branch insfructions can be used to transfer control if partlcular-
condition code bits are set. The Obr compiler uses the following branch instructions: be (branch equal)
bne (branch not equal), bg (branch greater than), and bl (branch less than). -

cmp %l1, %14 ! Compare the values of %11 and %14 and set condition codes.
bgl2 I'Branch to label L2 if %l1 > %14
nop ! Do nothing in the delay slot.

Although Obr has no procedures or functions, our compiler must generate procedure calls and returns in
order to be able to interface properly with the C run-time library. The following

instructions are used: call (call subroutine), ret (return from subroutme) save, (save register window), and
restore (restore register window). :

6‘5f

Modulus operations

The SPARC does not have an instruction that can perform a modulus (remainder) operation. To generate
code for the MOD operation in the Obr compiler we make use of a C run-time routine called .rem. A
modulus operation %I1 MOD %I2 leaving the result in %I3 is implemented as follows. -

mov %l1,%00 ! Pass value in %1 as first parameter,
mov %l2, %o! ! Pass value in %12 as first parameter.

call .rem ! Call the .rem run-time routine.

nop ! Do nothing in the delay slof.

mov %00, %13 I Move the return value from %00 to %l3.
Self learning exercise

1. Give the example of RISC and CISC.

2. What does the SPARC mean?

5.9.2 MIPS (Microprocessor without interlocked pipeline stages)

‘The first commercial RISC chip developed by MIPS technology. _

Series of MIPS are MIPS2000, MIPS3000, and MIPS4000and MIP 86000

Thie MIPS4000 uses 32 registers of 64 bits registers

MIPS is a 32-bit pipelined LOAD/STORE machine. It uses a five-stage plpelme consmtmg of Instriction
Fetch (IF), Instruction Decode (ID), Operand Decode

* L2
| T E Fubrwion dapb o !

Wigure 5 Ehr iy i sl Tetadioe e b LLESET

(OD), Operand Store/Execution (OS/EX), and Operand Fetch (OF). The first three stages perform re-
spectively i instruction fetch, instruction decode, and operand fetch. The OS/EX stage sends operand to
memory in the case of a store instruction or use the ALU in case of instruction execution. The OF stage
receives the operand in case of a load instruction. MIPS uses 2 mechanism called pipeline intetlock in
order to prevent an instruction from continuing until the needed operand is available, Unlike the Berkeley
RISC, MIPS have a single set of sixteen 32-bit general-purpose registers. The MIPS compiler optlrmzes
 the use of registers in whatever way is best for the program currently being
purpose registers, MIPS provided four additional registers in order to hold the four prev1ous PC'values (to
support backtracking and restart in case of a fault). A register is used to hold the future PC value (to
support branch instructions). Four addressing modes are used in MIPS. These are immediate, indexed,
based with offset, and base shifted. Four instruction groups were identified in MIPS. These are ALU,
Load/Store, Control, and Special instructions. A total of 13 ALU instructions were provided. These in-
clude all register-to-register two- or three operand formats. (Fig. 6). A total of 10 LOAD/STORE instruc-
tions were provided. They use 16 or 32 bits. Inthe latter case, adding a 16-bit signed constant to aregister
using the second format uses indexed addressmg Atotal of six control ﬂow mstmctlons were provided.

-These mclude

6 R 5 S %

| wrEads E RRETL | SR P ODST 3 SEay Fanction

& 3 3]

Optide | Nu¢ | bwr fmamehie Cousiait

Figire € Fmeeopersnd instemctiom wod in MEPS

: !

I Rk l. : [T v— I

Ehgike A Imiep wnm e boaveas anedd m MAPR

66

Jumps, relative jumps, and compare instructions. They support procedure and interrupt linkage. Some
examples of MIPS instructions are:
1. ALU: Add srel, src2, dst; dst srcl b sre2
2. Load/Store: Ld [srel b src2], dst; dst M[srel p scm]
3. Control: Jmp dst; PC dst
- 4. Special Function: SavePC A; M[A]PC

5.9.3 MIPS R4000 |
General Purpose registers: R0 - R31, 64 bits. RO is constant 0, R31 isa link register for link and
_ Jump instructions.
: Multiply and divide High/Low registers — 64 bitseach. .
Program Counter (64 bits) -

Floating Point registers: FPR0 - FPR3 1 (32 or 64 blt)
Control/Status register (32 bit) : -
* Implementation/Revision register (32 bit) :
: - Control Coprocessor registere 32 named registers, each 32 bits. Cache and MMU control ex-
cephon processing, debugging. - : :
The MIPS family has four addressmg modes
" Base+ immediate offset {loads and stores)
Register direct (anthmetlc)
Immediate (jumps) -
+ PCrelative (branches) : S =
Memory accesses in the MIPS archlteetme are to any multlpIe between i ancl 8 bytes e

T -

Fhure T AR oo

T

5 94 POWERPC

In 1975, IBM started the 801 minicomputer project that launched the RISC movement. In 1986, IBM
developed aRISC workstation, the RT PC, which was not a commercial success, In 1990, introduced the
RISC/6000 and marketed that as a high performance workstation. IBM began to refer to this as the
POWER architecture.

- IBM then entered into an alliance with Motorola the cleveloper of the 68000 series for Apple computers,
The result of this alliance was the series of microprocessors that implement the PowerPC architecture. The
processors in the series were: 601, 603, 604, 620, 740/750 (G3), G4, and GS5. A complete description of
the PowerPC ISA can be obtained from the IBM site.

Example of CISC

5.9.5 PENTIUM

The Pentium senes isan excellent example of Complex Instructlon Set Computer (CISC) desngn The
PowerPC is a direct descendant of IBM 801, one of the best des1gned RISC systems on the market '

67

Figiw - Pertium procestor blotk dageasn,

The most important enhancements over the 486 are the separate instruction and data caches, the dual
integer pipelines (the U-pipeline and the V-pipeline, as Intel calls them), branch prediction using the branch
target buffer (BTB), the pipelined floating-point unit, and the 64-bit external data bus, Even-parity check-
ing is implemented for the data bus and the internal RAM arrays (caches and TLBs).

As for new functions, there are only a few; nearly all the enhancements in Pentium are included to improve
performance, and there are only a handful of new instructions. Pentiumis the first high-performance micro-
processor to include a system management mode like those found on power-miserly processors for note-
books and other battery-based applications; Intel is holding to its promise to include SMM on all new
CPUs. Pentium uses about 3 million transistors on a huge 294 mm 2 (456k mils 2). The caches plus TLBs
use only about 30% of the die. At about 17 mm on a side, Pentium is one of the largest microprocessors
ever fabricated and probably pushes Intel’s production equipment to its limits. The integer data path is in
the middle, while the floating-point data path is on the side opposite the data cache. In contrast to other
superscalar designs, such as SuperSPARC, Pentium’s integer data path is actually bigger than its FP data
path. Thisis an indication of the extra logic associated with complex instruction support. Intel estimates
about 30% of the transistors were devoted to compatibility with the x86 architecture. Much of this over-
head is probably in the microcode ROM, instructioh decode and control unit, and the adders in the two
address generators, but there are other effécts of the complex instruction set. For example, the higher
frequency of memory references in x86 programs compared to RISC code led to the implementation of
the dual-ac. j - :

Register set | o | _

The purpose of the Register is to hold temporary results, and control the execution of the progrant, Gen-
eral-purpose registers in Pentium are EAX, ECX, EDX, EBX, ESP, EBP,ES], or EDIL

84 bk

Fifars - Penthom prodessir Block dipglamn. . -

The most important enhancements over the 486 are the separate instruction and data caches, the dual
integer pipelines (the U-pipeline and the V-pipeline, as Intel calls them), branch prediction using the branch
target buffer (BTB), the pipelinied floating-point unit, and the 64-bit external data bus. Even-patity checking
is implemented for the data bus and the intemal RAM arrays (caches and TLBs). B

As for new functions, there are only a few; nearly all the enhancements in Pentium are included to improve -
performance, and there are only ahandful of new instructions. Pentium is the first high-performance micro-
processor to include a system management mode like those found on power-miserly processors for
notebooks and other battery-based applications; Intel is holding to its promise to include SMM onallnew

CPUs. Pentium uses about 3 million transistors on a huge 294 mm 2 (456k mils 2). The caches plus TLBs
. 68 “

use only about 30% of the die. At about 17 mm on a side, Pentium is one of the largest microprocessors
ever fabricated and probably pushes Intel’s production equipment to its limits. The integer data path is in
the middle, while the floating-point data path is on the side opposite the data cache. In contrast io other
superscalar designs, such as SuperSPARC, Pentium’s integer data path is actually bigger than its FP data
path. This is an indication of the extra logic associated with complex instruction support. Intel estimates
about 30% of the transistors were devoted to compatibility with the x86 architecture. Much of this overhead
is probably in the microcode ROM, instruction decode and control unit, and the adders in the two address
generators, but there are other effects of the complex instruction set. For example, the higher frequency of
memory references in x86 programs compared to RISC code led to the implementation of the dual-ac.

Register set :)
The purpose of the Register is to hold temporary results, and control the execution ofthe program. General-

 purpose registers in Pentium are EAX, ECX, EDX, EBX, ESP, EBP,ESI, or EDL - B
The 32-bit registers are named with prefix E, EAX, etc, and the least 16 bits 0-15 of these registers can be
accessed with names such as AX, ST Similarly the lower eight bits (0~7) can be accessed with names such
as AL & BL. The higher eight bits (8-15) with names such as AH & BH. The instruction pointer EAP
known as program counter(PC) in 8-bit
microprocessor, is a 32-bit register to handle 32-bit memory addresses, and the lower 16 bt segment [P
isused for 16-bi memory address. '

- The flag register is a 32-bit register , however 14-bits are being used at present for 13 different tasks; these
flags are upward compatible with those of the 8086 and 80286. The comparison of the available flags in
16-bit and 32-bit microprocessor is may provide some clues related to capabilities of these processors.
The 8086 has 9 flags, the 80286 has 11 flags, and the 80286 has 13 flags. All of these flag registers include
6 flags related to data conditions (sign, zero, carry, auxiliary, catry , overflow, and parity) and three flags
related to machine operations.(interrupts, Single-step and Strings). The 80286 has two additional ; /Q
Privilege and Nested Task, The I/0 Privilege uses two bits in protected mode to determine which I/O
instructions can be used, and the nested task is used to show a link between two tasks. N
The processor also includes control registers and system address registers , debug and test registers for
system and debugging operations. : ' -

{& Addressing mode & Types of instructions o

Instruction set is divided into 9 categories of operations and has 11 addressing modes. In addition to

commonly available instructions in a 8 bit mjcroprocessor and this set includes operations such as bit

manipulation and string operations, high level language support and operating system support. An instruction
may have 0-3 operands and the opierand can be 8, 16, or 32- bits long. The 80386 handles various types

of data such as Single bit, string of hits , signed and unsigned $-, 16-, 32- and 64- bit data, ASCH

character and BCD numbers. ‘ ‘

Intel has ranked the number one maker of microprocessors for decades,
1985 - JA-32 80386 Processor '
1989 - TA-32 80486 Processor -
- 1993 - - Pentium
1995 - Pentium Pro
1997 - Pentium IT
1999 - Pentium III
2000 - Pentium 4
2001 - 1A-64 Ttanium

2002 - current - [tanium 2

69

Transistds coenr of semee precesmors

- gl

MEEMG

7 REAEHE
It §OIGE

Since CISC machines perform complex actions with a single instruction, where RISC machines may
require multiple instructions for the same action, code expansion can be a problem

: m-:rn "'.

PROGHAM

Code expansionrefers to the increase in size that you get when you take a program that had been compiled
for a CISC machine and re-compile it for a RISC machine. The exact expansion depends primarily on the
quality of the compiler and the nature of the machine’s ‘instruction set.
Fortunately for us, the code expansion between a 68K processor used in the non-PowerPC Macintoshes
and the PowerPC seems to be only 30-50% on the average, although size-optimized PowerPC code can
be the same size {or smaller) than corresponding 68K code. C

5.10 SUMMARY: o | |
Both RISCs and CISCs ty to solve the same problem: to cover the semantic gap. They doitin different
ways. CISCs are going the traditional way of implementing more and more complex instructions, RESCs
try to simplify the instruction set. ' S - -

« Innovations in RISC architectures are based on a close analysis of a large set of widely used programs.
« The main features of RISC architectures are: reduced number of simple inistructions, few addressing -
modes, load-store architecture, instructions are of fixed length and format, a large number of registers is
available, o a ' ' R R
« One of the main concems of RISC designers was to maximize the efficiency of pipelining.

» Present architectures often include both RISC and CISC features. - :

5.11 GLOSSARY |

Addressing mode :Addressing modes are an aspect of the instruction set architecture in most central
processing unit (CPU) designs.
CISC : complex instruction set computer.

Instruction Set : The set of machine instructions that a particular CPU can execute; the conesponding set
of assembly language mnemonics

MIPS : Microprocessor without interlocked pipeline stages.
Register : Register are the group of flip flop .

RISC : Reduce instruction set computer.

SPARC : Scalable processor architecture.

70

5.12. FURTHER READINGS . _

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann:; San Mateo, San Francisco, CA, 1996. : :

D. Pattersonand R. Ditzel, The case for the reduced instruction set computer, Comput, Architecture
A. Tanenbaum, Structured Computer Organization, 3rd ed., Prentice-Hall: Englewood Cliffts

5.13 ANSWERS TO SELF LEARNING EXERCISES
1. Hard wired control contain fixed logical circuit .

2, microprogram control unit is constructed by microinstruction use control memory which is costly
and hardwired control unitis a fixed logical circuit, '
3. microprogram is a set of instructions,

4, SPARC,PowerPC MIPS are example of RISC and Pentium processor are example of CISC ,
5. scalable processor architecture. '

5.14 UNIT END QUESTIONS . -
1. Contrast the two approaches (the software and the hardware) used in RISC machines to minimize
mMemory operations. '

2 What are the main principles used to construct a RISC machine?

3. Explain, with examples, the concept of register window and window overlapping. _
Suggest a different approach to achieve the same results as those achieved using register

window and window overlapping,

4. Explain overlap register window. _

5. Whatdo RISC and CISC stand for and what are the differences in practice?

6. Some instruction sets use a register file and others use an operand stack for intermediate storage,

How does the code density compare between these two approaches ?

7. Early computers used just an accumulator rather than a register file or stack. How does the code

density compare between accurnulator and stack machines? :

. 8. - Compact RISC instruction sets typically use a fixed 16-bit instruction size. If three operands are
to be specified, each of n bits, then (16 - 3 x n) bits are left for the opcode. If n= 3 then we cannot access
enough registers and if n = 4 we do not have enough opcode bits, In practice we usually need 5 bits for the
opcode leaving 11 bits to specify three registers, Using 11 bits to store three operands, how many registers
can be specified and how might these three operands be decoded? o

71

UNIT 6

Control Design

Structure Of The Unit
6.0 Objective
6.1. Introduction
6.2. Basic Conoept
6.3. DesignControl Unit
6.3.1. Hardwired Control Unit
6.3.1.1.Classical Method
- 6.3.1.2.0ne Hot Method
6.3.2. Microprogramuned Control”
6.4. Parallelism In Microinstructions
6.5. Horizontal Versus Vertical
6.6. Advantages & Applications Of Microprogramming
6.7. Multiplier Contro! Unit ' S
6.8. Summary
6.9. Glossary
6.10. Further Readings |
6.11. Unit End Questions

6.0 Objective: | |

In this unit we study register level design of control part of instruction set processor .

we design the control unit which is two type hardwired control and micro programmed

control. K :

6.1 INTRODUCTION: | o |

Aprocessor is composed of data path (data processing) and control unit. The data path is a network of
functional and storage units capable of performing certain microoperation on data word. Data path of a
processor is the execution unit such as ALU, shifter, registers and their interconnects. Control unit is
considered to be the most complex part of a processor. The purpose of control unit is to issue control
signals to the data path or its function isto control various units in the data path. These control signals enter
the datapath at “control points” where they select the function Control unit realizes the behavior of a
processor as specified by its micro operations.

6.2 BASIC CONCEPTS: |

ACPU’s datapath contains circuits to perform arithmetic and logical operations on words such as fixed-
point or floating-point numbers. “It contains a register file (RF) for temporaty storage of operands, two
functional units F,and F, responsibie for data processing, and multiplexers to allow the data to be steered
through DP. Typical functional units are an ALU performing addition, subtraction, and logical operations; a
shifter; or a multiplier. The control unit CU receives external instructions or commands, which it converts
into a sequence of control signals that the CU applies to DP to implement a sequence of register-transfer

operations.

Figure: 1 Processor with control unit and datapath unit

72

The control signals that implement an addition instruction of the form ADD A,B, which we write as:A ;=
A+B; in our HDL notation. Assume that this operation can be executed in a single clock cycle, whose
timing details are not of concern at this level of abstraction. The input variables A and B are obtained from
registers of the same name in RF, and the result is stored back into register A, Observe that the registers of
RF permit their contents to be read from and written into in the same clock cycle, a basic property of the
(edge-triggered) flip-flops from which such registers are constructed. RF is configured with one input and

_two output ports to support operations like with two or three addresses. Besides selecting the data regis-

ters to be used, the control unit CU must also select the operation to be performed on the data, in this case,
functional unit F1 perform ADD operation. Finally the necessary logical connections for the data to flow
through DP must be established by applying appropriate control signals to the multiplexers.

o Figure2 : Implement the ADD operation (A:=A+B)
“Thus we see that CU must activate the following three types of control signals during the clock cycle in
“which the ADD A B instruction is executed. o - -
Functionselect: Add. - S

* Storage control: Read A, Read B, Write A_

*D ata routhig: Selectp-. Seléct u-is; Selectv-x. , I S
There is usually somé feedback of control information from DP to CU to indicate excéptional conditions
encountered during instruction execution, In the above given example the functional unit F, performing the
- addition sends an overflow signal to CU whenever the sum A + B exceeds the normal word size.

Crele [Funetho Sivrage cantol Data ronting
selegr . - F R :
i Add Reed A Read B, Select gt Select awe
Write & Halect vx
H Add wilh Read A Rzad B, Select pr Select
catry Write 4 Selectwx

point and floating point numbers

6.3 DESIGN CONTROL UNIT : o
To generate the control signal in proper, a wide variety of techniques exist, Most of these techniques,
however, fall into one of the two categories. - ' '

a. Hardwired control unit

b. Microprogramed control ‘ o
Control unit can be implemented by hardwired or by microprogram. Computer engineering strives to
optimize three aspects of control unit design:;

1. The complexity (hence cost) of the control unit

2. The speed of control unit

3. The engineering cost of the design (time, correctness efc)

6.3.1 HARDWIRED CONTROL, UNIT

Inthe past, hardwired control unit is very difficult to design hence its engineering cost is very high. Pres-
ently, the emphasis of computer design is the performance therefore hardwired is the choice. Also the
CAD tool for logic design has improved to the point that a complex design can be mostly automated.
Therefore almost all processors of today use hardwired control unit.

73

ACPU’s data path contains circuit to perform arithmetic and logic microoperations on words suchi as fixed

The behavioral description of the control unit, shown by State diagram .Most states are simply dnven by
clock and only transition to next state.

event ! go to next state _
event goto state 1 or state 2 depends on conditionals
event branch to many states by decoding

Design method: The control unit design involves various factors like the amount of hardware used, speed
of operation, cost of design process. We consider two systematic methods to des1gn the hardwired con-
trollers.
1. Method 1 : The classical method of the sequential circuit design . It attempt to minimize the amount
of hardware in particular, by using [log p] flip flops to realize a P-state circuit.
2. Method 2: An approach that use one flip flop per state and is known as one hot method thleJ '
expensive in terms of flip flops, this method simplifies CU design and debugging.
State table: The most general approach to hardwired control unit design is based on the state table method.
In the state table method, the design of a hardwired control unit is just like the design of other sequential
circuits. The first step is to construct a state table that describes the behavior of the control unit. The state
table is actually a more detailed state transition and control signal activation d% ”rlptlon than the control

_ flow graph. The Moore machine model is usually more desirable than the Mealy*‘maehme model because
the control signals generated are independent of the input of the present cycle. This allows the control unit
state to directly determine the control signals. Eliminating input condition SIg;nals from the path that delivers
control signals often improves the operation speed of the control unit.
The tows of the state table correspond to the set of internal states {S }.these states are determme by the
information stored in the machine at discrete points of time (clock cycle) let X and Z denote the inpuf and
output variables. The cotumn correspond to the combination of the X signals that canbe applied to the
machine afid denoted by { I, } .The entry in row Si and column Jj has the form Si,j,041,j where Si,j is the
next state of machine that result from the application of input combination Jj and Oi,j denote the output
signal that appear on Z whenever the machine is in state Si with input Ij applied .If output value depend only
on current state and independent of input combination . Ifall the output of this type the circuit is call Moore
machine.
GCD processor using Classical method rgedis greatest commeon divisor gcd(X,Y) of two posmve
integer that divide exactly into both X and Y . for example ged(12,18) =6
ged(in: X,Y jout: Z);
registe XR, YR , TEMPR;

XR:=X; YR=Y; (INPUT THE DATA)

While XR>0 do begin :
If XR<=YR then begin (SWAP XR AND YR)
TEMPR:=YR;YR=XR;

XR:=TEMPR ; end }

XKR=XR-YR; " (SUBTRACT YRFROM XR)
End
Z:=YR; (OUTPUT THE RESULT)

End ged;

Figure 3: control unit for ged processor

74

We can identify the set of state of control unit by examining the behavior definition .A start state SOis
entered when Reset become 1; this state also load X and Y in to DP registers. The subsequent action of
ged processor are swap and subtract ,for which we define the states S1and S2 respectively. A final state is
S3isentered when ged(X,Y) has been computed, 5

If'the input control signal (XR>0)=0, indicate that the while loop should be skipped , a transaction state So
t0 83 If(XR>0)=1 the while loop is entered , and a transaction state is made to S1 to perform a swap if
(XR>=YR)=0; other wise perform subtraction . the later case defines third entry in the state table ,whose
mput combination is (XR>0)XR>=YR)=11.because subtraction is always followed by swap so the sec-
ond row entries are S2. '

~ Inpwm Cuput

CRAXRo=YRy . . .
Sture [i 11 Subtad Swap Seex Load Loat YR

XY xR

Sibegms] & S 9 a 1 1 1
_EBawnan) N 54 -] 1 { | 1
Symublac) 5 S S 1 & 1 1 H
S:Fad) & 5: S5 3 i3 g & [N

' Fig: State table. deﬁm’rig the control unit of the GCD processor. _
6.3.1.1 CLASSICAL METHOD: The major steps of classical method are as follows:

1. Construct a P-row state table that defines desire input output behavior.

2. Select the minimum number p of D-type flip-flops and assign 4 —bit binary code to each state .
3. Design acombinational circuit C that generate the primary output signals{zi} and S the secondary
outputs {Di} that must be applied to flip flops. S /
We use this method to design control unit, Since there are four states , we require two flip flops, whose
outputs D, D, =YY, define control unit “sinternal state . we assign the binary patterns to the four states
in the following way: ' ' a o C

S, =00, 5,=01,8,=10,8 =11 g '

The D flip flop characteristic equation Di* (t+1) =Di(t) define the inputs D *and D "tothe flip flops. CU’s
combinational logic C and be derived from the excitation table using any manual and automatic method .
Suppose two level Sum of products(SOP) minimization .It is easily checked that C is define by the
following SOP equations . All the AND-OR- SOP circuit can be changed to NAND s to produce
NAND-NAND realization of original function, ' - '

D1 = (XR>0) +(XR >=YR) + Dy

Dy"=D) Do+ (XR »=TR). Dy +&E>0) Py
Subtract - D; By

Swap =D7. Dy

se‘lect XY =DyDy

Load XR.I5; +1,

Load YR.-D;

75

FIGURE 4: all NAND classical design for the control unit of the ged Processor

6.3.1.2. ONEHOT METHOD::

An alternative approach that simplifies the design processes and gives C aregular and predictable struc-
ture ,is the one hot method , so called because its binary state assignment always contains a single 1 the hot
bit while all the remaining bits while all the remaining bits are 0. Thus the state assignment for a four-state
machine like the ged processor takes the following form: ' _ :

S,=0001, 5 ,=0010, 8,=0100, S,=1000 in general p flip flops are need to represent P states ,so the-one
hot method is restricted to fairly small values of P. Suppose that state S, ina one hot design has the hot
variable Di. further ,suppose that1, X, 1, denote all. input combinations that causes the state
transitions to Sj to Si . then each AND combinations that causes transitions to Si. we can write '

LA

Dit =D, (1 +1,,+....... L) +D 0+, e o)t
‘This immediate yield the SOP form : _ .
Di*t =D,1 ,+ DI ,+....e. DI,)+D, 0, +D L, D,1,,) ... :

Which is practical implicated with AND ZOR and NAND-NAND circnit. for ged processor’s CU .
State S, as next state only for S, and S, ,in each case with the input combination

(MR>0} (KR >=YR).

The entire state of next state and the output equation obtained by applying to god processor’s CU follows

IS T s el e e R

- It FERSE GET e TR pren sy webpap b STROUS W
wvact v St Bee ane bt meadant ver o el B B § bunhigy
ey e powel BV 0, o B oot By :

CpeDnetiinzt . D L

Thkg M- brepela

NG WS TR R CEW 2T

T pedparorinss sonn gekped Beal Fhe b Mmmm
Perpdhaz — :

Fnd PRl v By 48 1R

LR
e
w

T W EE Vi Ty (BB T iRy
T = (R TR I M TR 1 R S

T e Peddeeds i R Ml
Srdrms = By

o DA

Tosgd Bl T ¢ D Ly

Lt Th=Dy + 0

76

L i S,

L])
R o T R ey Bt
b o # # 3 H M
& £ z i £ & i E 1
3 & 5 I H
2
:

I:
i
e mm o e .

- Excitation table for the control unit of GCD processor® |

The steps of the one hot method for moore machine can be Summarize as follows

1. Construct a P-row state table that defines the desired input—output behavior, _

2. Associate a separate D-type flip-flop D, with each state Si, and assi gni the P-bit one hot binary
code D[I,DI,,,,_,:.,...,.‘,.Di-I,Di, Dm DDI-__.O’O"“IO’I’ 010 8i. y ., o o .

3. Design a combinational circuit ¢ that generates the primary and secondary outpnt signals { D, }-

and {Z,} , respectively. D define bylog‘ic?llequatioh_ T

P
S 1 VRS PR
=

Wherel, ,T,,,.......1,, denotes all the input combinations that causes transition ftom Sjto Si . 1fZ,

=] (active) oh:ly in!'rows khforh=1.2,... .m, then Z’k'is'_d_elﬁne by

Lp* D1+ Dy Dy «Di g = (D w1 DDy

6.3.2 MICRO PROGRAMMED-CONTROL UNIT

The idea of: microprogrammed control units was introduced by M., V., Wilkes in the”

The reason for microprogrammin g - o
Microcode was originally developed as a simpler method of developing the control logic fora computer.
Initially CPU instruction sets were “hard wired”. Each step needed to fotch, decode and execute the
machine instructions (including any operand addiess calewlations, reads and writes) was controlled directly
by combinatorial logic and rather minimal sequential state machine circuitry. While very efficiént, the need |
for powerful instruction sets with multi-step addressing and complex operations (see below) made such '
“hard-wired” processors difficult to design and debnig; highly encoded and varied-length instriictions can J
contribute to this as well, especially when very irregular encodings are used. - R

- Microcode simplified the job by allowing much of the processor’s behaviour and programining model be
defined via microprogram routines rather than by dedicated circuitry, Ever late in the design process;,
microcode could easily be changed, whereas hard wiréd CPU designs were very cumbersome to change,
so this greatly facilitated CPU design, ' o B h -

77

Architectures with instruction sets implemented by complex microprograms included the IBM System/360
and Digital Equipmen Corporation VAX. The approach of increasingly complex microcode-implemented
instruction sets was later called CISC. A middle way, used in many microprocessors , istouse PLAs and/
or ROMs (instead of combinatorial logic) mainly for instruction decoding, and let a simple state machine
(without much, or any, microcode) do most of the sequencing. The various practical uses of microcode
and related techniques (such as®LAs) have been numerous over the years, as well as approaches to
where, and to which extent, it should be used. It is still used in modern CPU designs. '

Other benefits. o o
A processot’s microprograms operate on a more primitive, totally different and much more hardware-

oriented architecture than the assembly instructions visible to normal programmers. In coordination with
the hardware, the microcode implements the programmer-visible architecture. The underlying hardware
need not have a fixed relationship to the visible architecture. This makes it possible to implement a given
nstruction set architecture on a wide variety of underlying hardware micro-architectures. N '
Doing so is important if binary program compatibility is a priority. That way previously existing programs
can run on totally new hardware without requiring revision and recompilation. However there may be a
performance penalty for this approach. The tradeoffs between application backward compatibility vs
CPU performance are hotly debated by CPU designengineers. . - -, ' o
The IBM System/360 has a 32-bit architecture with 16 general-purpose registers, but most ofthe System/
360 implementations actuaily use hardware that implemented a much simpler underlying microarchitecture;
for example, the System/360 Model 30 had 8-bit data paths to the arithmeti logic unit (ALU)and main-
memory and implemented the general-purpose registers in a special unit of higher-speed core memory,
and the Systen/360 Model 40 had 8-bit data paths to the ALU and 16-bit data paths to main memory and
also implemented the general-purpose registers in aspecial unit of higher-speed core memory. The Model
50 and Model 65 had full 32-bit data paths and implemented the general-purpose registers in faster
iransistor circuits. In this way, microprogramming enabled 1BM to design many System/360 models with
substantially different hardware and spanning a wide range of cost and performance, while making themall
architecturally compatible. This dramatically reduced the amount of unique system software thathad tobe
written for eachmodel. - _ . o : o S _
Asimilar approach was used by Digital Equipment Corporation in their VAX family of computers. Initially
a 32-bit TTL processor in conjunction with supporting microcode implemented the programmer-visible:
architectire, Later VAX versions used different microarchitectures, yet the pro grammer-visible architec-
mredidn’tchange. - '

.

Mic;dprogranumng'aléo reduced the cost of field changes to correct defects (bugs) in the processor; abug _
could often'be fixed by replacing a portion of the microprogram rather than by changes being madeto -
hardwarelogicand wiring. . o D :
Examplés of microprogrammed systems - - - o
‘Most models of the IBM System/360 series were microprogrammed: - . : .
‘ The Model 25 was unique among System/360 models in using the top 16k bytes of core storage
to hold the control storage for the microprogram. The 2025.used a 16-bit microarchitecture with seven
' control words (or microinstructions). At power up, or full system reset, the microcode was loaded from.

the card reader. The IBM 1410 emulation for this model was loaded this way. . e

" The Model 30, the slowest model in the ling, used an 8-bit microarchitecture with only a few

hardware registers; everything that the programmer saw was emulated by the microprogrart. The micro-

code for this model was also held on special punched cards, which were stored inside themachine ina

dedicated reader per card, called “CROS” units (Capacitor Read-Only Storage). Asecond CROS reader

* was installed for machines ordered with 1620 emulation, - o e
The Model 40 used 56-bit ‘Gontrol words. The 2040 box implements both the System/360 main-

processor and the ‘mul'ti}_)_lex channel (the I/O processor). This model used “TROS” dedicated readers
similar to“CROS” units, but with an inductive pickup (Transformer Read-only Store). -

*

The Model 50 had two internal datapaths which operated in parallel: a 32-bit datapath used for
78

arithmetic operations, and an 8-bit data path used in some logical operations. The control store used 90-

bit microinstructions.

The Model 85 had separate instruction fetch (I-unit) and execution (E-unit) to provide high perfor- -

mance. The I-unit is hardware controlled. The E-unit is microprogrammed with 108-bit control words.”

The Digital Equipment Corporation PDP-11 processors, with the exception of the PDP-11/20, .

were microprogramimed, -

The Burroughs B700 “microprocessor” executed application-level opcodes using 'seﬁuences' of

16-bit microinstructions stored in main memo , each of these was either a register-load operation or
mapped to a single 56-bit “nanocode” instruction stored in read-only memory. This allowed comparatively-

simple hardware to act either as a mainframe peripheral controller or to be packaged asa standalone - -

computer.

able main memory but had a similar multi-layer organisation.

The NCR 315 was microprogrammed with hand wired .ferrite' cbféé (a RQM) pulsed by é se-.

quencer with conditional execution. Wires routed through the cores were enables for various data and
logic elements in the processor. '

- - Incommon with many other complex mechanical devices Charles Babbage’s analytical engine
used banks of cams to control each operation, i.e. it had a read-only control store. Assuchit deservesto -
be recognised as the first microprogrammed computer to be designed, evenifit has not yet been realised

in hardware, N '

The VU0 and VU1 vector units in the Sony Playstation 2 are micro progfamm‘able; in faét;VL}l was only -

accessible via microcode for the first several generations of the SDK. ..

PR LATUT 0 A MICROPRCGRAMNED CONTROL

MICROPROGRANMMED CONTROL LIMIT WITH A
MG RO P RO G RO COUNTER {(bFPG)

Microcode isa layer of lowest-level instructions involved in the implementation of machine code instruc-
tions in many computers and other processors; it resides in a special high-speed memory and translates
machine instructions into sequences of detailed circuit-level operations. It helps separate the machine
instructions from the underlying electronics so that instructions can be designed and altered more freely. It
also makes it feasible to build complex multi-step instructions while still reducing the complexity of the

electronic circuitry compared to other methods. Writing microcode is called microprogramming and the

microcode fora given processor is often called a microprogram. . _

The microcode is normally written by the CPU engineer during the design phase. It is generally not meant
- tobe visible or changeable by a normal programmer, nor even an assembly programmer. Unlike machine
79

The Burroughs B1700 was implemented with radically different hardwage including bit-address-

code which often retains backwards compatibility, microcode only runs on the exact CPU model for which
it’s designed. Microcode can be used to letone mictoarchitecture emulate another, usually more powerful,
architecture; . ' : ' o - e

Some hardware vendors, especially IBM, also use the term microcode as a synonym for firmware,
whether or not it actually implements the microprogramming of a processor. Even simple firmware, such as
the one used in a hard drive, is sometimes described as microcode. Such use is not discussed here.
MICROCODE EXECUTION : o T E

1. Op-code is decoded. - ' : - | .

2 Mictoinstructions dre retrieved from conirol ‘memory (control address register and the decoder serve as
the address register and selection mechanism or control unit). -~ o S

3. The control address register locates the microinstruction to be retrieved from control memory.

4. Thie microinstruction register holds the retrieved ticroiiistruction - micro opcode and address of the
next microinstruction inthe control memory ~~ "+ o R T
5. Curent mictoinistruction isexecuted. ' o |

6 The address of theé next microinstruction is entered itifo the control memory to retrieve the next micro-
7 £ all microinstructions wete executed, then store next op-code of conventional instruction in the control
address register; if not, execute remaining microinstruction. - - ER B

8. Conditional jumps are implemented by letting the states of some conditional flip-flops modify the ad-
dress of the next microinstruction to be retrieved. T
Conitrol umit ofganization: A microinstruction has two parts a control field that specify the control signals
and address field that contain address in CM_ of the next instruction to be execuited. Maurice V. Wilkes, the
 inveritor of microprogramming , each bit Ki ofa control field correspondingtoa distinct control line C,.
When K. =1 in the current microinstruction , C, is activated other wise Ci remain inactive . AROM
implements the control memory CM. The left part of ROM decodes an address obtained from a control
memory address register (CMAR). Each address select a particular row in the right part (OR plane) of the
ROM IT contain Gbit control field and three bit address . When address 000 is selected the control signals
C,C,C, areactivated, as indicated by Xs in the control field . Atthe same time content of a,a,a, =001
are sent to CMAR, Where they are stored the address of the next instruction to be executed. CMAR is
loaded from external source as well as from the address from the address field of the microinstruction..
The external source provide the starting address of micro program in CM. Many modifications to the
preceding design have been proposed over the year. Amajor area of concern is the microinstruction word
length. The microinstruction word length is determined by three factors :

1, The maximum number of simultaneous micro operation that must be specified that is the degree of
parallelism required at the micro operationlevel. -

2. The way in which control information is represented or encode .

3. The way in which next microinstruction address is specified.

I e
w

e
P s

Figure 5 ; Basic structure of a microprogramied control unit,

The control memory are usually ROM . so their content are cannot be _chél_ige -So there is o n’eed to

80

_ -'»._;%""

change the CM except to correct the design error to make minor enhancements to the system. The CM
could be RAM (read ~write memory). Wilkes observe that such a device called a write able control
memory. (WCM). A processor with WCM s said dynamically micro programmablé because the coritrol
memory content can be changed . I o .

6.4 PARALLELISM IN MICROIN STRUCTIONS o

- Microinstruction formats take advantage of the fact that; at the microprogramming, many opera-
tions can be performed in parallel. : o -

- Ifall useful combinations of paralle! microoperations were specified by asingle opcode,the num-
ber of opcodes would, in most cases, be enormous, . . o S . R
- Anopeode decoder of considerable complexity would be needed. To avoid these difficulties, it is
usual to divide the microoperation specification part ofa microinstruction into k disjoint control fields,

- Each control field handles a limited set of'microoperations,any one of which can be performed

simultaneously with the microoperations specified by the remaining coritrol fields, - ..

- Acontrol field often specifies the control-line values for asingle device such asan adder, arégis_:_ter,

or a bus. - L P S
- There is a 1 -bit control field for every control line in the system. .

- The scheme with a control field for every control signal is wasteful of control memory space
because most of the possible combinations of control signals are neverysed.! .. - o

- Consider, for instance, the register R which can be loaded from any of four independent sources under the
control of the four separate signals ¢0,¢1,c2,c3, as indicated.

A straightforward implementation of the associated control points using an encoder and a mult_iplexér L

Suppose that the ci’s are derived from a microinstruction control field in which there is 1.bit for each
conirol signal. This results in the 4-bit control field . e
Only the five control-field patterns ,since any other pattern will create a conflict by attempting to-load R
from two or more independent sources simultaneously. '
The uuencoded format fig (a), has the advantage that all the co
can be obtained directly from, the mictoinstruction. - - o - -
The encoded control signals k k k, of fig.(b) must be passed through a decoder if we wish to extract the
four original contro! signals CyCpsCyCyr L) . R
Ofien we can use the encoded control signals directly so that no decoding is needed.’
Example: We can connect the two signalsk .k, of fig.(b) directly to the select inputs S of the multiple>gér in
fig.(b),thereby eliminating the priority encoder.

The complemented control signal k,can then be connected directly to the LOAD input of the registet R to
complete the design. _ -

ntro] signals are individually identified in, and

¥

: . » 5
. S
.¢, . ,(") _.(‘} (3
[

S T A

[eposee?

e

Fig . Control field for the circuit of (a) unencoded format and (bjencoded format

i . : . : .
RN LIS S Bl - fe B,
' HETT: et B i k=,
[B, B el
" Wos g, : I hax,
. z,q}.&.? 8 Laige

- 81

6.5 HORIZONTAL VERSUS VERTICAL

Microinstrictions can be classified as horizontal or vertical. Individual bits in horizontal microipstructions
cotrespond to individual control lines.
Horizontal microinstructions have the following characteristic :
1. Long formats . S
2. Ability to express high degree of parallelism
3. Each bit controls a single control line.
4. - Littleencoding of control information.
Vertical microinstructions have following characteristic : -
1. . . Shortformats. R : '
2. Little ability to express parallelism.
3. Little encodingof control information
control lines are coded into specific fields withina . .
_ microinstruction, Decoders are needed to map a field of k bits to 2k possible combinations
of control lines. For example, a 3-bit field in a microinstruction could be _
used to specify any one of eight possible lines. Because of the encoding, vertical
microinstructions are much shorter than horizontal ones. Control lines encoded
i the same field cannot be activated simultaneously. Therefore, vertical microinstructions
allow only limited parallelism. It should be noted that no decoding -
is needed in herizontal microinstructions while decoding is necessary in the
vertical case. : o

Definition based on the degree of encoding: : - o _ _
.. Ahorizonta! microinstruction format allows no encoding of control information, whereas a vertical
format does. o .

" Definition based on degree of parallelism:

. Advertical microinstruction can specify only one ‘microoperation(no paralielism). |

" These definitions are not independent, since a large amount of parallelism impliés little encoding, and vice

_versa. . . - _
Example: The format of fig.6(a)is horizontal and that of fig.6(¢) is vertical under both of the preceding

6.6 ADVANTAGES & APPLICATIONS OFMICROPROGRAMMING
1) THE SYSTEMATIZATION OF CONTROL '
2) IMPROVEMENT IN PERFORMANCE

a) a high degree of parallelism in data paths e.g., multiple bit microinstructions are

performed in one cycle _

b) a high degree of decision logic (in table search and sorting routines)
3) COMPUTER-SERIES COMPATIBILITY

Compatibility of instruction sets between smaller and larger machines of a series,

e.g., Intel286, 386, Pentium, IBM Systems/309x, Motorola 68000 series.

4)EMULATION -
82

Emulation is the combined software/hardware interpretation of the machine instruction.of. one machine
by another. Target‘s machine architecture is mapped onto the host machine. o
EMULATOR -a set of microprograms that interpret a particular instruction set or language
L1. Computer C1 emulates computer C2 if it can interpret machine language 1.2,
5) MICRODIAGNOSTICS . . _ _ -
Microprogramming diagnostic routines have allowed refinements and increased the speed of detecﬁng
and localizing fauits,including error detection and correction of microstorage itself, o
a) software diagnostics ' ' o
b) hardware diagnostics (test generation methods)
¢) microdiagnostics
6) SOFTWARE SUPPORT: eases programming
'7) SPECIAL-PURPOSE DEVICES
€.g, special processors for data communication, data aquisition, device controllers
8) DYNAMIC MICROPROGRAMMIN G
This allows routines to be easily microprogrammed. Computer can be restructured to
represent any instruction vocabulary by use of writable control memory (WCM), Ttallows
the instruction set of the machine to be changed and be TAILORED to specific
6.7 MULTIPLIER CONTROL UNIT

Fixed-point multiplication mduirf;a__sub_stantiallymoge hardwarc than fixed-point addition. Multiplication is

usually implemented by some fotm of repeated addition. Asimple but slow method to compute ¥ x Yisto
add the multiplicand Yitselfto X times, where Xis multiplier. The multiplication of 2s-compltement num-
bers presents some more difficulties, The Figure-1 shows flow of data of 2s-complement multiplier, The
HDL description of the multiplier for 8-bit 2s-complement numbers are given , ' ' '
The block diagram of the multiplier’s data path unit shown in F igure redrawn in expanded form in Figure-
7 to show a set of control points, which represent abstractly the control signals and associated logic gates
needed tolink CU and DP. Thesé control signalsare derived from the multiplication algorithm in Figure-9.
The statement labeled BEGIN in F igure-9, for instance, requires the register A, COUNT, and Fto be
reset simultaneously to the all-zero state, A single control signal ¢ 1018 therefore provided for this putpose,
it can be connected directly to the CLEAR inputs of the three registers in question, and so no additional
logic is needed to implement the ¢ 1o control point. Control signal ¢, and ¢, transfer a data
word from the input bus INBUS to register Q and M, respectively, and are shown in the corresponding
data paths of Figure-9; these signals may be connected to the registers’ LOAD inputs. Figure-10 intro-
duces a control signal called COUNT?7, which is set to ' when COUNT =11 1, andissetto 0 bthenyise.
COUNT?7, the right-most bit Q[0] of multiplier register Q and the external BEGIN signal serve as the
primatyinputsto CU,: - ' o
The flowchart resembles a state transition graph that describes the behavior of both the control and datapath
units. To obtain a state table for the control unit CU, we associate a state S, with évery operation block in
Figure-10, leading to the seven states labeled S :S.. Anadditional state S, represents the reset or waiting
condition of the control unit. CU has three primary inputs signals—RBEGIN, Q[0], and COUNT?7; hence
there are eight possible input combination. Figure-10 shows a eight-state state table, which is derived
directly from Figure-9 : R .
CU can be directly implemented from the state table of F igure-10, or, equally easily, from the flowchart of
Figure-7 by the one-hot method. Eight flip-flops are needed to accommodate CU’s eight states Sy:S,. The
next state equations are S
Dy = Dy . BEGIN + D-

&

DF = D,. BEGIN

=D '
0¥ = D..Qi0k+ By 2. ﬁwss.sr
o} = 0, QU+ Dyt D 10 CCTNT
p? = D,. Qlo].COUNT? o
Bf = D+ D, .G[0) . COUNTT

T = D -

F

Fxgure ’7 Twos-oomplementmtﬂnpher ~with- aset of control points
The output equations are - .
== &1=Da
Cg-— g = i’:@— ﬁg“l‘ D_ .

& =03 = Dy
END = Do

Control Slgnal Operatlon contro]led

¢, Set sign bitofAto F.

c; Right-shift register-pairA.Q.

c, Transfer adder outputto A.

¢, Transfer A to left input of adder.

¢, Tyansfer M to right input of adder. -

¢y Perform subfraction (correction). Clear Q[O].
¢, Transfer Ato outputbus. '
c, Transfer Q to output bus. -

C, Transfer word on input bus to Q.

¢, - Transfer word oninputbusto M.

c Clear A, COUNT, and ¥ registers.

<=

¢, Increment COUNT.
END Completion signal (CU idle).
Contro! signals for two’s complement multiplier

84

Glpeb ‘

Stk . 1F e D B O & & & &1 & ip en END
§ L I D - T [T R (T T/ T S|
5 &R BH K &5 & G0N oo 006 00 (1 0 o
g5 K K 5 & & 5 00 0 000001 G § a o
K 5 &K % 5 & & & 00 L1 1 000000 0 o
i &% % 8 5 &5 805 & 1.0 00 06 000 0 ¢ 1 g
& &% &L S N R & 8 5 D0 L4t 10 D8 ¢ A p o0
F 3 & . 5 H & & 00D OO)L 0D 6 D O O
H 5 & S &K 5 &5 & 00000061 6 B8 0 g 0

Figues ;10 Stale table For multiplisr contret uuil

Figure 11: AIINAND classical design for multiplier control unit :
Fig : 11 show the NAND circuit is implement by the output equations, Despite having more flip-flop ,one
hot method which is show in Fig 12 is better in many ways than the classical design one hot design has
generally smaller umber of gates .the hot design is easy to design and understand .

Figure 12: AHNAND one hot design for multiplier control unit

85

6.8 SUMMARY -

The CPU is the part of acomputer that interprets and carries out the instructions contained in the programs
we write, The CPU’s main components are the register .file, ALU, and the control unit, The register file
contains general-purpose and special registers ‘General-purpose registers may be used to hold operands
and intermediate results. The special registers may be used for memory access, sequencing, status infor-

"mation, or to hold the fetched instruction during decoding and execution. Arithmetic and logical operations

are performed in the ALU. Internal to the CPU,

data may move from one register 10 another or between registers and ALU. Data may also move between
the CPU and external components such as memory aud 1/0. The control unit is the component that
controls the state of the instruction cycle. As long as there ate instructions to execute, the next instruction is
fetched from main memory. The instruction is executed based on the operation speci.ed in the op-code
eld of the instruction. The control unit generates signals that control the ‘ow of data within the CPU and
between the CPU and external units such as memory and 1/Q. The control unit canbe implemented using
hardwired or microprogramming technicues. '

6.9 GLOSSARY :

Control Unit (CU) - That part of the computer which accesses instructions in sequence, interprets them
and then directs their implementation. ' : R
Memory Unit - Part of the computer where data and instructions are held. (Also known as main memory,
main store, central memory, immediate access memory.)

Hard wired control : hardwired control unit contain fixed logical circuit .

* Miicroprogram control unit: Microprogram control unit is constructed by microinstruction use control

memory which s costly. _
6.10 FURTHERREADINGS |
1. P. Hayes, Computer Architecture and Organization, McGraw-Hill, New York, 1998.

~ W. Stallings, Computer Organization and Architecture: Designing for Performence, NJ, 1996.
6.11 UNIT END QUESTIONS:

1. Design a hardwired control unit to perform A-B operation.
2. Designahardwired control unitto find GCD(greatest common factor).
3. What are the main differences between the following pairs? -

.~ (a) Vertical and horizontal microinstructions L

(b) Microprogramming and hardwired control - o

4. Using the single-bus architecture, generate the necessary control signals, in the proper order (with
minimum aumber of micro-instructions), for conditional branch instruction. ' :
5. Write a micro-program for the fetch instriction using the one-bus datapath and the two-bus
datapath. o t o . o

. 86,

Unit-07
Memory Organization
Structure of the Unit
7.0 Objectives
7.1 Introduction
7.2 Memory Technology
72.1 Memory Device Characteristics
7.2.2 Random-Access Memories
723 Serial-Access Memories
7.3 Memory Systems
7.3.1 Multilevel Memories
7.32 Address Translation
7.3.3 Memory Allocation
7.4 Computer Memory
74.1 Internal Memory
7.4.1.1 Computer Memory System Overview
7.4.1.2 Semi Conductor Main Memory
7.4.1.3 Cache Memory
7.4.1.3.1 Main Features
- 7.4.1.3.2 Address Mapping
7.4.1.3.3 Structure versus Performance
7.4.1.4 Advanced Dram Organization
742 External Memory -
~ 7.4.2.1 Magnetic Disk
7.4.2.2 RAID '
7.4.2.3 Optical Memory
7.4.2.4 Magnetic Tape
7.5 Summary

7.6 Glossary
17 Further Readings

7.8 Answerto Self Learning Exercise,
7.9 UnitEnd Questions

of the most important storage-device technologies are discussed. The behaviorand management of multileve]

hierarchical memory System are explained. Different types of memories are also explained.

7.1 Introduction S o y

From the previous unit we have learned the basic concepts of control design with des; gn examples. We

have also discussed concepts of micro programmed control. We have discussed micro control unit a well

asCPU control unit, - :

7.2 Memory Technology | |

Every computer contains several types of devices to store the instructions and data required for its operation,

These storage devices plus the algorithms implemented by hardware and/or software-needed te manage
- the stored information form the memory system of the computer, ' - '

7.2.1 Memory Device Characteristics) -

A CPU should have sapid, uninterrupted access to the external memories where its Pprograms and the data

théy process are stored so that the CPU can operate af or near its maximum speed. Unfortunately, memories

that operate at speeds comparable to processor speeds are expensive, and generally only very small

87

systems can afford to employ a single memory using just one type of technology. Instead, the stored
information is distributed, often in complex fashion, over various memory units that have very different
performance and cost.
Memory types The information-storage components of a computer can be placed in four groups.
. CPU registers- These hi gh-speed registers in the.CPU setve as the working memory for temporary
storage of instruction and data. They usually form a general purpose register file for storing data asitis
processed. A capacity of 32 data words is typical of a register file, and each register can be accessed, that
is read from or written into withina single clock cycle (a few nanosecond) .
- Main (primary) memory This large, fairly fast external memory stores programs and data that are in active
use. Storage location in main memory are addressed directly by the CPU’s load and store instruction..
Access times of five or more clock cycles are usual. _ _
- Secondary memory. This memory type is much larger in capacity but also much slower than main memory.
Secondary memory stores system programs, large data files, and the like that are not continually required
by the CPU. Italsoactsas .an overflow memoty when the capacity of main memory is exceeded. Information
in secondary storage is considered to be on-line but is accessed indirectly via inpqt/output programs that
transfer information between main and secondary memory. -
- Cache The cache is much faster than main memory because some or all of it can reside on the same IC as
the CPU. Unlike the three other memory types, caches are normally transparent to the programmer.
Together, a computer’s caches and main memory implement the external memory M addressed directly by
CPU instructions. ') _

Performance and cost The most meaningful measure of the cost of a memory device is the purchase price
1o the user of a complete unit. The price should include not only the cost of the information storage medium
itself but also the cost of the peripheral equipment: (access cirouitry) needed to operate the memory. LetC
be the price in dollars of a complete memory System with S bits of storage capacity. We define the cost¢

of the memoty as follows: .
¢=C/S dollars/bit

The performance of an individual memory device is primarily determined by the rate at which information
can be read from or written into the memory. Abasie performance measure is the average time toread a
fixed amount of information, for instance, one word, from the memoty. This parameter is called the reard
access time, or simply the access time, of the memory and is denoted by t,, The write access time is
defined similatly; itis ofien, but not always, equal to the read access time. The access time depends on the

- physical nature of the storage medium and on the access mechanisms used. It is calculated from the time

the memory teceives aread request to the time at vhich the requested information becomes available at
the memory’s output terminals. S S o
Clearly, low cost and short access time are desirable memory characteristics; unfortunately, they also tend
to be incompatible. Memory units with fast access are expensive, while low-cost memoties are SIOW. -

Accessmodes A fundamental characteristic of a memory is the order or sequence in which information can
be accessed. If storage locations can be accessed in any order and access time is independent of the
location being accessed. _ _ _
Each storage location in a RAM can be accessed independently of the other locations. In serial memories
the access mechanism is shared by storage locations and must be assignéd to different locations at different
times by moving the stored information, the read-write head or both. B
In serial access memories however, the time required to brihg the desired location into correspondence
with a read-wirite head increases the effective access time, so serial access tends to be slower than random

- access. Thus the type of access mode contributes significantly to the inverse relationship between cost and
access fime. o R ' o

88

Memory devices such as magnetic hard disks and CD-ROMs contain many rotating storage tracks, If
each track has its own read-write head, the tracks can be accessed randomly, but access within each track
is serial in such cases access mode is semirandom, : ' ' :

on-line- if they can be altered a all- are read-only memories (ROMs). AROM is therefore a nonerasable
storage device, ROMs are widely used to store control Programs such as microprograms. Compact Disk
(CD)ROMs are a class of nonerasable secondaty memory devices, Lt o
Semiconductor ROMs whose contents can be changed off-line-and with some difficulty-are called
programmable read only memories (PROMs). . - L : :
Memories in which reading or writing can be done with impunity on-line are called read-write memories to

data have nondestructive read(NRDO), _ o . o - :
Another physical process that can destroy'the contents of a memory is the removal or failure of its power
supply. Amemory is volatile if the loss of power destroys the stored information. Information can be stored
indefinitely in a volatile memory by providing battery backup or other means to maintain a continuous
supply of power. Most IC- memories are volatile, while most magnetic and optic memories are nonvolatile
Figure 7.1 summarizes these characteristics for some important contemporary memory technologies.

- Py Typfosl
Technobgy |Storage mau | ARaratilly [Pumanence |accens
| medfum fime TA,
Bipoiar S :
Rande- |Readwn- |HDRO,
Bamioondustor Elac_illw.: m s Pviing T_Ons
Wetal Codds | . ORO or
Samiaonduator : Elscironky | ando- [Readii ty 60 ng
1 MOs) m ts HGRO,
o volakie
Magnen: ’
. [Ma Sarke [ReadWit [HORD, .
(hary Cdek [Megnsie [ndom - aonvoktle 11 ma
Magneto-optiear | - . [Seniuas |Repanr. NBRO,
disk . Optioed fdoen [ia [nonvolatee |30 e
Compact ik Semis- [Rend [iDARO,
ROM N i L o e
I""‘"“m "0 |ngnato 8aa) ﬁ’m.ﬁiﬂi’w 1s J

~ Figwe 7.1 Characteristics of some common memory technologies

L

Finally we mention reliability, which is measured by the mean time before failure (MTBF). In general

cotrecting codes can Increase the reliability of any memory

7.2.2 Random-Access Memories |

RAMs mé_distingﬁished by the fact that each storage Tocation can be accessed independently with fixed
-access and cycle times that are independent of the position of the accessed location. . ' o

Organization The main componentsofa RAM device is DRAM IC. Atits heart is a storage unit composed

of alarge number (2m) of addressable locations, each of which stores a w-bit word, Individual bits are not

directly addressable unless w=1. A RAM of this sort is referred to ag a 2m Xw-bit or 2m-word memory.

The RAM operates as follows: First the address of the target location to be accessed is transferred via the

address bus to the RAM’s address buffer. The address is then processed by the address decoder, which
89

selects the required location in the storage cell unit. A control line indicates the type of accesstobe

performed. If aread operation (load) is requested, the contents of the addressed location are transferred

from the storage cell unit fo the data buffer and from there fo the data bus. Ifa write (store) is requested; '

the word fo be stored is transferred from the data bus to the selected location in the storage unit.
The storage unit is made up of many identical 1-bit memory cells and their- interconnections. The actual

number of lines connected fo the cell and their functions depend on the memory technology and the

addressing scheme in use. Each cell is connected to a set of data, address, and control signals. One
physical line often has several logical functions; for example, it can serve as both an address and data line.
In each line connected fo the storage cell unit, we can expect fo find a driver that acts as either an amplifier

or a transducer of physical signals. The drivers, decoders, and control circuits form the access circuitry '

of the RAM and can have a significant impact on the total size and cost of the memory.

ARAM’s storage cells are physically arranged into regular arréys fo reduce the cost of the connections
between the cells and the access circuitry. The memory address is partitioned into d components so that
the address 4; of cell C, becomes a d-dimensional vector (A4, , .. 4,) = A Each of the d parts of the

address word goes fo a separate address decoder and a separate set of address drivers. A cellis selected

by simultaneously activating all d ofits address lines, Amemory unit with this kind of addressing is said fo
be d-dimensional. - ' _ | o
The most common RAM organization is the two-dimensional (2-D) or row- column scheme,In this
scheme m-bit address word is divided into two parts, X and ¥, consisting of m_and m, bits, respectively.
The cells are arranged ina rectangular artay of N 2", rows and N < 2y columns, so the total number of

cellsisN=NN, A cell is selected by the coincidence of signals applied toits X and Y address lines. The -
2-D organization requires much less access circuitry than a 1-D organization for the saine storage capacity.

For example, it N,= N, = “N, the number of address drivers needed is 2”N.

Semiconductor RAMs Semiconductor memories in which the storage cells are small transistor circuits
have been used for high-speed CPU registers since the 1950s. It was not until the development of VLSlin
the 1970s that producing large RAM ICs suitable for main-memory and cache applications became
economical. Single-chip RAMs canbe manufactured in sizes ranging from a few hundred bitsto 1 Gbor
- more. Both bipolar and MOS transistor circuits are used in RAMs, but MOS is the dominant circuif

technology for large RAMs semiconductor memories fall into two categories- SRAMs and DRAMs- |

whose data-retention methods are static and dynamic, respectively. SRAMs consist of memory cells that
resembles the flip-flops used in processor design. SRAM cells differ from flip-flops primarily in the methods
used to address the cells and transfer data to and from them. Multifunction lines minimize storage-cell
complexity and the number of cell connections, thereby facilitating the manufacture of very large 2-D
atrays of storage cells. -
In DRAM cell the 1 and O states correspond to the presence and absence of 2 stored charge in acapacitor
- controlled by a transistor switching circuit. Since a DRAM cell can be constructed around a single transistor,
whereas a static cell requires up to six transistors, higher storage density is achieved with DRAMSs.

7.2.3 Serial-Access Memories | | |
The data in a sefial-access memory must be accessed in a predetermined ordet via read-write ¢ircuitry

that is shared by different Storage locations. Large Serial memories typically store information ina fixed set.

of tracks, each consisting of a sequence of I-bit storage cells. A track has one or more access points at

which a read-write “head” can transfer information to or from the track. A stored item is accessed by

moving either the stored information or the read —write heads or both. Functionally, a storage trackina

serial memory resembles a shift register, so data transfer to and from atrack is essentially serial.
Serial-access memories find their main application as secondary computer memories because of their low
cost per bit and cost is achieved by using very simple and small storage cells. Long access time is due to
several factors: ' . _

* Theread-write head positioning time.

90

The relatively slow speed at which the tracks move,
The fact that data transfer to and from the memoty is serial rather than parallel., _ :
“Access methods Serial memories such as magnetic hard disks can be divide into those where each track

has one or more whose read-write heads are shared among differ read-write heads, the need to move the |
heads between tracks introduces adelay. The average time to move a head from another is the seek time
t of the memory. Once the head is in position, the desired cel] may be in the wrong part of the moving
storage track. Some time is required for this cell treach the cead-write head so that data transfer can begin.
The averag time for this movernent to take place is the latency t, of the memory. In memories where
information rotates around a closed track, t iscalled the rotational Latency. 4
Each storage cell in a track stores a single bit. A w-bit word may be stored in two different ways. It can
consist of w consecutive bits along a single track. Alternatively, w tracks may be used to store the word,
with each track storing a different bit, By synchronizing the w tracks and providing a separate read-write
head for each track, all w bits can be accessed simultaneously. In either case it i inefficient to read or write
just one word per serial access, since the seek time and the rotational latency consume so much time,

the storage density along the track. The speed at which data can be transferred continuously to ot from
track under these circumstances is the data-trarisfer rate, If a track has a storage density of T bits/cm and
moves ata velocity of V cro/s past the read-write head, then and 2 data-transfer rate is TV bits/s.

The time t, needed to access a block of data in a serial-access memory canbe estimated as follows, Let
each track have a fixed (average) capacity of N words and rotate af 1 revolutions per second. Let n be the
number of words per block. The data-transfer rate of the memory is then rN words/s. Once the read-write
head is positioned at the start of the destred block, its data can be transferred in approximately /(N)
seconds. The average latency is 1/42r) seconds, which is the time needed for halfarevolution. Ifts is the -
average seek time, then an appropriate a formula fort, is : o

=t + 120N

To determine when this condition occurs, a track-position indicator generates the address of block that is
currently passing the read-write head, The generated address is compared with the block address produced
by the address decoder. When they match, the selected head is enabled and data transfer between the
buffer registers begins. The read-write head is disabled when a complete block of information has been
transterred,

91

S ~ Figure 7.2 Organization of serial-access memory unit
7.2 4 Self Learning Exercise |
True/False _ _) P
A. © ACPU should have rapid, uninterrupted access to the external memories where its program and .
the data they process are stored. -

'B. Storage locations in main memory aré addressed directly by the CPU’s load and store instructions.

Fill In the Blanks

C.. . L | méhi_ory stores system programs and large data files. o

D. _ storage cells are physically arranged into regular arrays 10 reduce the cost of
connection between cells and the access circuitry. = a '
E. . Serial access memories store information on that behave like shift registers. .

7.3 Memory Systems |

This section examines the general characteristics of memory systems that have a multilevel, hierarchical
organization. Two key design issues ate considered in detail automatic transtation of addresses and dynamic
relocation of data. .
7.3.1 Multilevel Memories | |
A computer’s memoty units form a hierarchy of different memory types in which each member is in some
sense subordinate to the next-highest member of the hierarchy. The object of this organization is to'achieve
' a good trade-off betwéen cost, storage capacity and performance for the memory system asa whole.
General characteristics Typical technologies used in these hierarchies are semiconductor SRAMs for cache
memory, semiconductor DRAMs for main memory, and magnetic-disk units for secondary memory. I-
cache has separate areas for storing instructions and D-cache stores the data. The following relations

normally hold be’tWeén adjacent memory levels M, and M, ina memory hierarchy:

Costperbit = | Ci.> Ca
Accesstime ot <ti+l.
Storage capacity 8, < 8.,

The differences in cost, access time, and capacity between M, and M, can be several orders of magnitude.
Considerable system resources arc devoted to shielding the CPU from these differences, so it almost
always seems a very large and inexpensive memory space and rarely seems dn access time greater than
that of M, the first (highest) level of the memory hierarchy.

92

The CPU and other processors can communicate diqubtly with M, only, M, can communicate with M,,
and so on. Consequently, for the CPU to read informiation held in some memory level M, requires a
sequence of i data transfers of the form . _ . »

M, =M M,, =M, ; M, =M_; .M, =M;; CPU =M, | o R
An exception is allowed in the case of caches; the CPU is designed to bypass the cache level(syand go - ~
 directly to main memory, as we will see later. In genetal;all the information stored.in M; at any time is also o
stored in M., , but not vice versa. | e T '-
During program execution the CPU produces a steady stream of memory addresses. At any time these

addresses are distributed in some fashion throughout the mermory hierarchy. If an address is generated that
is currently assigned only to M, where i°1, the address must be reassigned to M, the level of the memory .

hierarchy that the CPU can access directly. This relocation of addresses involves the transfer of data,
between levels M, and M, -a relatively slow process. For amemory hierarchy to work efficiently, the
~ addresses generated by the CPU should bgfound in M, as often as possible. This approach requires that
future addresses be to some extent predictable so that information can be transferred to M, beforeitis
actually referenced by the CPU. If the desired data cannot be found in M, then the program originating the
memory request must be suspended until an appropriate reallocation of storage is made. D
Cache and Virtual memory The various parts of a memory hierarchy are controlled in vary different fashions.
Cache and main memory form a distinct sub hierarchy whose design objective is to support CPU aggess
withaminimumofdelay .~ ° . S el
Main and secondary memory form another distinct two leve) sub hierarchy, This interaction is managed by
operating system, however so is not transparent to system software although it is sernewhat tranSparent to
" user code. The term virtual memory is applied when the main and secondary memiories appear to a user
program like a single, large and directly addressable memory. Traditionally there are three reasons for
using virtual memory. ' : o B S
To free Uisér programs fronn the need tcarry out storage aliocationand to permit efficient sharing——
of the available memory space among different users. S : o S
To make programs independent of the configuration and capacity of the physical memory present -
for their execution; for example, to allow seamless overflow into secondary memory when the capacity of
main memory is exceeded. o : -
' “To achieve the very low access time and cost per bit that are possible witha memory hierarchy.

7.3.2 Address Translation | -

The set of abstract locations that a program Q can reference is Q' s virtual address space V. Such addresses
can be explicitly or implicitly named by identifiers that a programmer assigns to data variables, instruction
labels, and so forth. The addresses can also be constructed or modified by the system software that
controls Q. To execute Q on a particular computet, its virtual addresses m 15t be mapped onto the real’ -
address space R, defined by the addressable (external) memory M that is physically present in the computet. - . - :
‘This process is called address translation or address mapping. - |

Address translaﬁoﬁ can be viewed abstractly as a function f: V ->R.

A compiler transfornis the symbolic identifiers of a program into binary addresses. Ifthe program is sufficiently
simple, the compiler can completely map virtual addresses to real addresses. Address translation canalso
be completed when the program is first loaded for execution. This processis called static translation, since
the real address space of the program is fixed for the duration of its execution, It is often desirable tovary !
the virtual space of a program dynamically during execution; this process is dynamic translation. For
example, arecursive procedure one that calls itself is typically controlled by a stack containing the linkage
between successive calls. The size of this stack cannot be predicted in advance because it depends onthe
number of times the procedure is called; therefore, it is desirable to allocate stack addresses on thefly.
Hardwaire-implemented memory management units (MMUs) havetome into widespread use for rin-time

93 e

address franslation. . o o .- :
Base Addressing An exeéut__abl_e program comprises a set of instruction and data blocks each of whichisa
sequence of words to be stored in consecutive memory : : :
locations during execution. A word W within a block has its own effective address A ., which the CPU
must know to access W. (For the moment, we will igriore the distinction between the real and virtual
address spaces.) W is also specified by the address B; called the base address, of the block that contains
it, along with W's relative address or displacement D (also called an offset or index) within the block
often the address is designed so that B supplies the high-order bits of A . while D.applies the [ow-order bits
thus: o e B S
T | A=BD ' :
rowA_.is formed simply by concatenating B and D, a process that does not i gnificantly increase the time
foraddress gemeration. . v o B e _ }
A simple way to'implement static and dynamic addrese mapping is to put base addresses in 2 memory map

- ormemoty address table controlled by the memory management systen. The table can be stored-n
memory, it CPU registers, orin both. The address-generation logic of the CPU computes an eftective - -

addressA by combining the displacemient D 'with the corresponding base addiess B,- ST I

Blocks are easily relocated in memory by manipulating their base addresses. Suppose that two blocks are
allocated to main memory M It is desired to load a third block K, into M; however, a contiguous empty
space, or hole of sufficient size is unavailable. A solution to this problem is to move block K, by assigning

it a new base address B, and reloading it into memory. This creates a gap into which block K,canbe

- loaded by assigning to it appropriate base address; B .
- With dynamic memory allocation, we must control the references made by a block to locations ouiside the

memory area currently assigned to it. The block can be permitted to read from certain locations, but -

writing outside its assigned area must be prevented. A common way of doing this is by specifying the

highest address L, called the limit address; that the block cahaccess: Equivalently, the size of the block -

may be specified. The base address B. and the limit address L/ are stored in the memory map. Every real
address A generated by the block is compared to Band L ; thememory access is completed if and only
ifthe condition following is satisfied. . : = 2 '
C : _ Bl.d”Al;_d’?Ll.

Transtation look-aside buffer The input address 4, is'a virtual address conisisting of a (virtual) base address |
B, concatenated with a displacement D. 4, contains an effective address computed in accordance with
some progra.m-deﬁnec_i_ addressing mode (direct, indirect, indexed, and so on) for the memory item being

accessed. It also can contain specific control information-a segment address. The real address B,<fiB) .

assigned to 8B, is stored in a memory map somewhere in the memory system; this map can be quite large.
To speed up the Mapping process, part (or occasionally all) of the memory map is placed in a small high

speed memory in the CPU called a rransiation look-aside buffer (TLB). The TLB’s input is thus the |
base-address part B of 4, its output is the corresponding address 2, This address is then concatenated

with the I part of 4, to obtain the full physical address 4,

Ifthe virtual address B, is not currently assigned to the TLB, then the part ofthe memory map that dontains

B, is first transferred from the external memory into the TLB. Hence the TLB itself forms a cache like level, -

referred to as an address cache.

Segments The basic unit of information for SWapping pmpoéés ina multilevel memory is afixed-size block

called a page. Pages are allocél_téd to page-sized storage regions (page frames), whose fixed size and

address formats make paging System easy to iiil_plement, Pages are convenient blocks for the physical
parfitioning swapping of the information stored tn a multilevel memory, It is often desirable to have higher-

94

within a multilevel address 'storage system for memory maps. For this reason, the TLB is somc_'_t_i_mes' N

level information biocks, termed segments, that correspond to logical entities such as programs or data -

sets. Segments facilitate the mapping of individual programs, as well as the assi gnment and checking of
different storage properties. For example, write operations may not be permitted into certain region of the-
virtual address space in order to protect critical items. It is easier to protect information in question by
making itaread-only segment S, rather than assigning access restrictions.to the possibly large number of

pages that compose S. Formally, a segment is a set of logically related, contiguous words, Aword ina -

segment to by specifying a base address-the segment address and a displacement within the segment. A
program and its data can be viewed as a collection of linked segments. The links arise from the fact that a

program segment uses, ot calls, other segthents. Some computers have a menory management technique
that allocates main memory by M, segments alone, When a segment not cturently resident in M is required, -
the entire segment is transferred from secondary memory M,. The Physical addresses assigned to the -
segments are kept in a memory map called segment table (which can itself be a relocatable segment).

Pages A‘p_agé:_ig a ﬁxed-lengl:h bldék that can be assigned'tp'ﬁxed:fégiqﬁs of physical i.némbiy'_'c‘a;l_led-pagg_ B
frames, The chief advantage of paging is that data transfer between memory levels is simplified: anincoming -

page can be assigned to , available page frame. Ina pure paging system, each virtual address consistsof

two parts: a page address and a displacement. The memory map, now referred to as page table, Each

(virtual) page address has a corresponding (real) address of a page frame in main orsecondary memory.

When the presence bit P= 1, the page in question is present in memory, and the page table containsthe - ':

.......

base address of the page frame to which the page has been assigned. If P = 0, a page faultoccursanda

page swap epsues. The change bit C indicates whether or not the page has been changed since it was last”

loaded into main memory. If a change has oceufred (C = 1); the page must be copied-onto secondary

memory whenl it i preempted. The page table can also coniain memory protection data that specifiesthe

access rights of the current program to read from, write into, or execute the page in question. Page tables
differ from segment tables primarily in the fact that they contain no block size information.

7.3.3 Memory Allocation

Various Jevels of a nemory system a_re._di_ﬁric_le_d into sets ;Q_f 00an guous.lbcati_c.)ﬁ_s, véribﬁsly' callecl n:__gi_ons,' .

segments, or pages, which store blocks of data. Blocks are swapped automatically among the levels in
order to minimize the access time seen by the processor. Swapping generally occurs in response to processor
requests (demand swapping), However, to avoid making a processor wait while a requested item is being
moved to the fastest level of memory M, some kind of antictpatory swapping must be implemented, which
implies transferring blocks to M, inanticipation that they will be required soon, Good short-range prediction
of access-request patterns is possible because of locality of reference. ' ' o

The placement of blocks of information in & memory system is called memory allocation. The :mc.'t'hocll of -

selecting the part of M, in which an incoming block K is to be placed is the replacement policy, Simple
replacement policies assign K to M, only when an unoccupied or inactive region of sufficient size is

available. More aggressive policies preempt occupied blocks to make room for K. In general, successful -
memory allocation methods result in a high hit ratio and a low average access time. If the hitratioislow,an -

excessive amount of swapping between memory levels occurs, a phenomenon known as thrashing; Good
memory allocation also minimizes the amount of unused or underused space in M|, IR

Nonpreemptive allocation Suppose a block K, ofn, words is to be transferred from MjtoM .If rio_ne of
the blocks already occupying M, can be preempted (overwritten or moved) by K, then it is necessarytor: ¢

find or create an “available” religion of n,, or more words to accommodate K, This procéss i§terthed a5 =~

preemptive allocation. -

Two widely used algorithms for nonpreemptive allocatior of v’&ﬁableisiZed'bIO'clﬁséunpafged segirieiits, for 1
>xample-are first fit and best fit. The first-fit method scans the memory map sequentially until aii available -

egion R of n. or more words is found; where 1, is the'size of the incoming block K. Ttthen allocates K

1 . 2 . S ae .
f 1 e+, words such that n-1is minimized. - -

reemmptive aflocation Noripreemptive alloéation eannot make efficientuseof memoryinall situatioris

95

oR. The best-fit appro;a;ch:fequjresr'séarching the memory fnap-'qomp-let_e-!y'aﬁdﬂ'assig_ni-ng K-toa rag’aiéﬁl-'--

- e

‘Memory overﬂow, that is, rejectlon of a memory allocatlon requpst due to msuffiment space, can bé
expected to ocour with M| only partially full. Much mote eﬁicneﬁtl;lse of the available memory space is
possible if the occupied Spaoe canbe rea]located to make room for i mcommg blocks Reallocation may be
done intwo ways:
The blocks: already inM, canbe nelocated wnhm M to create a gap large enough for the incoming
block.
' One or more occupied regions can be made available by deallocatlng the blocks they contain. This ~
method requires a rule-a replacement policy-for selecting blocks to be deallocated and replaced.

7.3.4 Self Learning Exercise
True/ False Lo :
F. ' Dynamic alloca‘uon means determmmg the regions of memory a551gned to program before the
execution. :
G Swapping generally occurs m response to proccsscn requests is known as clemand swappmg
Fillinthe Blanks
H. A isa flxed length block that can be asmgned to fixed reglons of physical memory called
page frames.
L The memory units of a computer are orghmzed as hlerarchy

L A transforms the symbohc 1dent1flers of a program into binary addresses
7.4 Computer memory o

7.4.1 Internal memory B
7. 4 1.1 Computér memory System Overwew

) rwum}f. i
- Sharega

Figure 7.3 Computer Memory System Overview

2.2.2.2 SemlconductorMamMemory

" Semiconductor random access memory, or RAM, as it is often referred to, is used in all types of
computers, RAM is also called a read/write memory or a scratch-pad memory. Semiconductor
RAM refers to semiconductor IC memories that can be used in aread mode as well as a write mode.

Semiconductor memories use either a read cycle or a write cycle depending on the type of request,
independent of each other. The read cycle is normally a shorter time period than the write cycle.
Semiconductor memories are normally nondestructive readout and volatile memories. In a

" nondestructive readout memory, the data stored in memory is not destroyed by the procedure used to read
the data from the memory cells. Volatile memories require electrical power to maintain storage. If the
power goes away for some reason, the data stored in the memory cells is lost. For this reason, an
uninterruptible power supply (UPS) and a battery backup system are used in many semiconductor
memory applications to maintain constant power and prevent loss of information because of
power fluctuations or failures. This is espeaally important in microcomputers where configuration data is
~ maintained in special devices such as a complementary metaloxide semiconductor (CMOS). The

96

battery backup and a filter capacitor provide the required power when the microcomputer has been
powered down. Computers that use an UPS system have an established time in which data will be
setained for momentary power losses. The term random access memory (RAM) is consistently used for
read/write devices. Although RAM only desctibes one characteristic of read/write devices, itisused and
“understood by most people to mean read/ write devices, RAM means random addresses can be presented
to the memory which means data can be written and read in any desired order from any location.
Note: The term RAM is not used for read-only memories (ROM), although a ROM can aiso be random
aACCess. _Semicoﬁ'ductor RAM itself is made up of variable numbers of these RAM chips. Each chip
“contains large numbers of memory cells and the logic to support them. Each memory cellisan electronic
circuit with at least two stable states. With the advent of large and very large scale integration (LSI/VLS),
literally thousands or hundreds of thousands of memory cell circuits can b?fplaced-on-a—sing-le-eh-i-p.
Fach of the two-state memory cell circuits is capable of storing single binary digit orbit (0.or 1).
* These chips aremounted on logic boards or circuit card assemblies insome sort of memory array,
also called gate arrays, based on the memoty capabilities required or desired by the equipment designer,

_ The capabilities of individual chips determine the array organization for the memory capabilities desired. -

On RAM chips, memory cells are organized based on two factors, the number of memory words

or addresses and the number of bits per word. Most memory logic chips are rated by these values. For
instance, a 4K by 16 chip would provide 4,096 16-bit memory addresses. This 4K by 16 chip will not
support a 32-bit word for 4,096 addresses. S

2223 CacheMemory

" The term cache refers to a fast intermediate memary within a larger memory system Caches directly
address the von Neumann bottlene¢k by providing the CPU with fast, single-cycle access 10 ite external
memory. They also providé an efficient way to place a small portion of memory on the same chipasa
miCroprocessor. '

A cache servesas a buffer bet_weeﬁ_ aCPU and its main memory. The translation look-aside buffers

(TLBs) used within memory management system are specialized caches that petmit very fast translationof -

memory addresses. Data buffers built into high speed secondary memory device suchas hard disk drives
are also called caches. | : . - '

2.2.2.3.1 MainFeatures _ |

Cache Organization: Memory words are stored in a cache data memory and are grouped into small pages

called cache blocks or fines. The contents of the cache’s data memory are thus copies of aset of main-

.memory blocks. Each.cache block is marked with its block address, referred to as a tag, so the cache
knows what part of memory space the block belongs. The collection of tag addresses currently assigned to
the cachie, which can be non-contiguous, is stored ina special memory, the cache tag memory or directory.

| Two-level hierarchy , " IMaln- sedondary
Lo, M (C_:ar;h&%ﬂaln memory memory .
_ ' (M2 M3)
Typical access time =] 81]
ratios tARAK1 ' 100011
Memory Management hl;‘laltr:;yr'du\‘l:{;;imented Mainiy' implemented by
System SR y A software
Typlcalpagesize |88 . 4KB
Access of processor to Pméessor has direcl Alt' access fo M3 via
segand fevel Mi access o M2 - M2

Figure 7.4 Major Differences between cache and main-secondary memory hierarchies -

|
iE
1
i

|

~ Cache opcfétion In 4 bytes Iong cache block each memory address is 12 bits long, so the 10 high-order
- bits from the fag or block address, and 2 low-order bits define a displacement address within the block.
- Whenablock is assigned to M, ’s data memory, its tag is also placed in M ;'8 tag memory. To read the
" word, its address is sént to M,, which compares A’stagpart to its stored tags and finds a match (hif). The
" stored tag pinpoints the corresponding block in M,’s data memory, and the 2-bit displacement is used to
output the target word to the CPU. ' _ :
A Cache write operation employs the same addressing technique. The tag part of the target address M, is
 again presented’to M;, along with the data word to be stoted. When a hit occurs, the new data is stored at
* the location pointed to by A, in the datamemory of M,. Now a new problem arises: The data in M, with
. address A, differs from the data in M, with the same address. A temporary inconsistency of this sort is
" acceptablé‘asTong as no device-another processot, for instance-attempts to read the old or stale data.
Preventing the improper use of stale data is the cache coherence or cache consistency problem.
" When 2 -bl-bgk’ with' C = l'is replaced, its data contents are then written back to main memory M, This
_technique isreferred to as write-back or copy-back, : o
©2.2.2.3.2 . Address Mapping o
- When atag address i presented to the cache, it must be quickly compared to the stored tags to de*ermine
. whethera matching tag is curtently assigned to the cache. The obvious approach of scanning all the tags in
.- sequence is unacceptably stow. The fastest technique for implementing tag comparison is associative or
. conteny, addfgssﬁng_which permits the input tag to be compared simultaneously to all tags in cache tag
memory.o - - R \
- Associative addiessing Inan associative memory any stored itern can be accessed by using the contents
- of thé item in question, generally some specified subfield as an address. Associative memories are also

S connnonly known as content-addressable-memories (CAMs). The subfield chosen to address the memory

- s called:fhie kéy: Hertis sfored in an associative memory can viewed as having the two- field format
~ 'Where thekey is the stored address and DATA. isthe information to be accessed; =
* . Anassociative cache eniploys-atag, that is, a block address, as the key. Atthe start of memory access, the
- incoming tag is compared simultaneously to all the tags stored in the cache’s tag memory. If a match (cache
hit) oceurs; a match-indicating signal triggers the cache o service the requested memory access. A no-
.- match signal identifies a cache miss, and the memory access requested is forwarded to main memory for

-+ service. Acache block containing the target address is then sent from main memory to the cache, and at the _

- sametime, a data word js sent to the CPU or frans;fen'cd from the CPU to the cache, in response to the

- Agsoelativé memory Figure 7.5 shows the general structure of an dssociative memory. Each unit of stored
-+ information is a fixed-length word. Any subfield of the word can be chosen as the key. The current key is
£ ~compéred simultaneously with all stored words those that match the key output a match signal, which
- entersaselect circuit, which enables the data field to be accessed. If several entries have the same key,
- thenthe select circuit-detem;ine_s- which data field isto beread out. ' '
- 2.2.2.3.3 + Structure versus Performance -
* Cache types Cachies ate distinguished by the kinds of information they store. An instruction or I-cache
stores instfucti'(ms-mﬂy, while a data or D-cache stores data only. Separating the stored data in this way
 recognizesthe different access behavior pattems of instructions and data. Caches are also classified by the
- level they occupy inthe memory hierarchy. Alevel | (L1) or primary cache is an efficient way to implement
an gn_:ghip'mpmﬂry, gdditiopal memory level canbe intro_g:l_qced via.an off-chip, level 2 (L2) or secondary

S Pcrforrnancé.The cache is the faétest-component in the memory hierarchy so itis desirable tomake the
average memory access time t 4 seen by the CPU as close as possible to access time t ,, 0f the cache, To
achieve this goal, M, should satisfy.a very high percentage of all memory references; that is, the cache hit
ratio H should be almost one. - T ' '

98 =

Design process The parameters like the block replacement and write pohcles influence the cache’s hit
-ratio H in ways that are hard to quantify because they depend on the workloads used with the cache. Such
workloads, in tum, are application dependent. As‘a result, potential cache designs are evaluated by extensive
trace-driven simulation experiments with address traces derived from representatlve programs or benchmarks
for the target applications, Expenments invelving billions of smulated addmess references are often carried
out in the design of the caches fora new mlcroprocessor : :

7.1.4 Advanced DRAM Otganization

One of the most critical system bettlenecks when using hi gh~performanoe processors isthe mtezface to
main‘internal memory. This interface is the most important pathway in the entire computer system. The
basic building block of main memory remains the DRAM chip, as it has for decades; until recently, there
had been no significant changes in DRAM architecture since the early 1 970s. ‘The t:radmonal DRAM c'lnp
is constrained both by its internal architecture and by its 1nterfaoe to the processor’s memory bus. -

One attack on the performance problem of DRAM main memory has been to insert one or more levels of

high-speed SRAM cache between the DRAM main memory and the processor. But SRAM is much

costlier than DRAM, and expandmg cache size beyond a certain point yields diminishing returns.

~ Inrecentyears, a numbu of enhancements to the basic DRAM architecture have been explored and
some of these are now on the market. The two schemes that currently dominate the market are SDRAM
and RDRAM. CDRAM has also recewed conmderable attention, We examine each of these appl oaches
1n this section. . :

Synchronous DRAM :One of the most widely used forms of DRAM s the synchronous DRAM (SDRAM)

. Unlike the traditional DRAM, which is asynchronous, the SDRAM exchanges data with the processor
synchronized to an external clock 31gnal and running at the full speed of the prooessor/memory bus w1thout .
imposing wait states. N
Ina typical I DRAM, the processor presents addresses and control levels to the memory, mdlcatmg thata .
set of data at a particular location in memory should be either read from or written into the DRAM : After
adelay, the access time, the DRAM either writes or reads the data. During the access-time delay, the
DRAM performs.various internal functions, suchas activating the high capacitance of the row and column
lines, sensing the data, and routing the data out through the output buffers. The prooessor must snnply wait

: through this del ay, slowing system perforimance,

With synchronous access, the DRAM moves.data in and out under control of the system clock. The

processor or other master issues the instruction and address information, which is latched by the DRAM.

- The DRAM then responds after a set number of clock cycles. Meanwhﬂe the master can safely do other

- tasks while the SDRAM is processing the request. et
The SDRAM eniploys a burst made to eliminate .the address setup tlme and row and column hne preeharge
time after the first access. In burst mode, a series of data bits can be clocked out rapidly after the first bit
has been accessed. This mode is useful when all the bits to be accessed are in sequence and in the same
row of the array as the inttial access. In addition, the SDRAM has a multiple-bank internal architecture that
improves opportunities for on-chip parallelism,

The mode register and assoctated control logic is anothel key fedture d1fferent1atlng SDRAMs from

conventional DRAMS. It provides a mechanism to custornize the SDRAM to suit specific system needs.

The mode register specifies the burst length, which is the number of separate units of data synchronously

fed onto the bus. The register also allows the programmer to adjust the Iatency between receiptofa read

request and the beginning of data transfer. .

The SDRAM performs best when it is transfering large blocks of data senally, suoh as for apphcanons like

word processing, spreadsheets, and multimedia.

'Rambus DRAM : RDRAM, developed by Rambus [FARMOZ, CRJS97] has been ‘adopted by Intel for
its Pentium and Ttanium processors. Ithas bécome the main competitor to SDRAM. RDRAM chips are
vertical packages, with all pins onone side. The chip exchanges ddta with the; processor over 28 wires no
more than 12 centimeters long. The bus can address up to 320 RDRAM chips and is rated at 1.6 Gbps.
The special RDRAM bus delivers address and control information using an asynchronous block-oriented

99

: \pro"tocol. After an initial 430 nsaccess time, this produces the 1.6 GBps data rate. What makes this speed
- possible is the'bus itself, which defines impedances, clocking, and signals very precisely. An RDRAM gets
amemory request over the high-speed bus, This request contains the desired address, the type of operation,
and the number of bytes in the operation. _ o '
The configuration of SDRAM consists of a controller and 2 number of RDRAM modules connected
together via a common bus. The controller is at one end of the configuration, and the far end of the bus is
a parallel termination of the bus lines. The bus includes 18 data lines (16 actual data, two parity) cycling at

twice theclock rate; that is, one bit is sent af the leading and following edge of each clock signal, This

results in & signal rate on each data line of 800 Mbps. There is a separate set of 8 lines (RC)used for

~ address and control signals, There is also a clock signal that starts at the far end from the controller
~ propagates to the controlier end and then loops back. A RDRAM module ends data to the controller
synchronously to the clock to master, and the controller sends data to an RDRAM synchronously with the
clock signal in the opposite direction. The remaining bus lines include a reference voltage, ground, and

- . powersource.

' Cache DRAM : Cache DRAM (CDRAM), developed by Mitsubishi, integrates 2 small SRAM cache

. (16Kb) ontoageneric DRAM chip. The SRAM on the CDRAM can be used in two ways. First, it can be -

“used as a true cache, consisgng of a number of 64-bit lines. The cache mode of the CDRAM is effective
for ordinary random access to memory. The SRAM on the CDRAM can also be used as a buffer to
-support the serial access of a block of data. For example, to refresh a bit-mapped screen, the CDRAM
can prefetch the data from the DRAM inito the SRAM buffer. Subsequent accesses to the chip result in
- accesses solely to the SRAM. :
7.4.2 External Memory
'7.4.2:1Magnetic disks

. Fhe magnetic disks ate the foundation of external memory qﬁ virtually all computer system, Both removable

and fixed disk or hal‘d"-i:_liSk-are used in computer system from personal computer to mainframe or
. ‘Supercomputer. R

. Pﬁi"ii:ipl(_:: Thee disk is a metal or plastic platter coated with magnetizable material. Datd is recorded onto
' and later read from the disk using a conducting coil. Data is organized into concentric rings, called tracks,

. track isa constant. The data density is higher on the inner tracks. Logical data transfer unit is the sector.
- Sectors are identified on each track during the formatting process. '

. Disk charactéristics: Each platter has its own read/write head. Fixed head has a head per track. Movable |

head uses one head perplatter, Removable platter can be removed from disk drive for storage of transfer
Dataaccessing times: "~ | L
Seek fitie : position the head over the correct track S

Rotational latency : wait for the desired sector to come under the head

- Access time : seek time plus rotational latency - o

‘Block transfer time : time to read the block (sector) off of the disk and
transfer it to main memory. ' - _

7.4.2.2RAID Technology

The RAID (Redundant Array of Independent Disk) technology can obtain greater performance and higher

: avaﬂgt?il_ity. RAID refers to a family of techniques for using multiple disks as a parallel array of data storage
L dey joes withi redundant built in to compensate for disk failure, Disk drive performance hasnot kept pace

Within rovements in other parts of the system It is limited in many cases by the electromechanical transport .
s. Its:capacity is of a high performance disk drive can be duplicated by operating many (much
* .cheaper) disks in paralle] with simultineous access. Data is distributed across all disks with many paralle]

means. t
disks opefati_qg_ asifthey werea single unit, redundancy technicues can be used to guard against data loss
in the unit (due to aggregate failure rate b@in_g;higher) ' .

. “onthe platter. Tracks are separated by gap. Disk rotates at a constant speed. The number of data bits per

7.4.2.3 Optical Memory

In Optical Memory, data is-stored on an optical medium (i.e., CD-ROM or DVD), and read with a laser
beam. While not currently practical for use in computer processing, optical memory is an ideal solution for
storing large quantities of data very inexpensively, and more importantly, transporting that data between
computer devices,

7.4.2.4 Magnetic Tape

.

This is the first kind of secondary memory. And still widely used. It is very cheap and very slow and has
sequential access, In this data is organized as records with physical air gaps between records. one word is
stored across the width of the tape and read using multiple read/write heads.

7.4.3.Self Learning Exercise

True/ False
K. Thel-cachestores instructions only g
L. To reduce the speed disparity between CPU and main memory, one ormore intermediate memories

called caches are used.

Fill inthe Blanks

'M, The optical memory read with beam.

N. The RAID stands for .

0. The memory is much faster than main memory. _

P. Inan____ memory any stored item can be accessed by using the contents of the item jn\
guestion L .

‘7.5 Summary = .

In this unit we have discussed that main memory is of the random-access type where the access time of
every location is constant. DRAMs are based on single transistor cells. Secondary memories require a
lower cost per bit and a higher storage density. We can achieve these goals by using serial access memory
technelogies that share access mechanism and have access times that vary with location. To reduce the
speed disparity between CPU and main memory, one or more intermediate memories called caches are

used.
7.6 Glossary

101

ftis the process by which the virtual address'maps on
to real address, defined by addressable memoyy that
s physically present on the computer.

Address Translation/
Address mapping

It is a fast intermediate memory which serves as

|Cache mamory buffer between a CPU and its main memgory,

Lynamic Random-Access Memory, is the medium that
15 used for the temporary storage of information by

DRAM today's personal computers and mainframes,

A memory device, such as a floppy disk, a hard disk,
or a removable cartridge, that is covered with
magnetic coating on which digital information is stored
in the form of microscopically small, magnetized
needles, '

Magnetic Disk

Itis a medium far magnetic recording generally
consisting of a thin magnetizable coating on a long
Magnetic tape and narrow strip of plastic.

The placement of blocks of information in memory
Memory allocation system is called memory allocation.

In Optical Memory, data is stored on an optical
medium {ie., CD-ROM or DVD) , and read with a

Optical memory laser beam.

A memory that stores binary information during the
operation of computer. This memory is used as a
wiiting pad to wiite user programs and data. The

RAM information stored in this memory can be read and

These are the memories which store the information

Serial Access on tracks that behave like shift registers.

Memories

7.7 Further Readings
J.PHayes: Computer Architecture and Organization, McGraw-Hill International
R.S.Goarkar: Microprocessor Architecture, Programming and Applications with the 8085/8080,
2 Edition, New Age International Publishers Limited, ISBN-81-224-0710-2. '
K.L.Short: Microprocessors and Programmed Logic, 2 Edition, Prentice Hall of India Pvt. Lid.
1988, ISBN-0-07-100462-9. :

102

lalteredeasily. .

7.8 Answer to self learning Exercises

Question No, Answer. Question No. Answer
A True i Muttilevel
B True) Compiler
C Secondary K True
D RAM L True
E- Tracks M Laser
F False - ‘N Redundant Array of Independent Disk
G True O Cache
H Page P Associative
7.9Unit End Questions:
I. What should be the characteristics of memory devices?
2. Write short note on
a. Magnetic tape memories
b. - Optical memories
C. Magnetic disk memories
d. Cache memories '
3. What do you understand by address translation? Explain the structure of dynamic address translation
system _ .
4, ‘State the difference between Non pre-emptive and pre-emptive memory allocation?

5. Whatiscache? Explam its features.

e

103

Unit-08

. System Organization
~ Structure of the Unit

8.0 Objectives

8.1 Introduction

8.2 System Organization

8.3 10 and System Conirol
8.3.1 Programmed IO

8.3.2 DMA and Interrupts

8.3.3 10O Processors

8.4 Parallel Processing

8.4.1 Processor-Level-Parallelism
8.4.2 Multiprocessors '

8.5 Pipeline Control

8.5.1" Instructions Pipelines

8.5.2 Arithmetic Pipelines

8.5.3 Pipeline Performance
8.5.4 Super-Scalar Processing
‘8.6 Summary '

8.7 Glossary . .

8.8 Further Readings -

8.9 Answerto Sel Leanung Exercise
8.10 Unit End Questions

8.0 Objectives

This unit explains about the interconnection of computel and its major components. It explains their
management at processor level or system level. It discusses the vise of multiprocessor to achieve high
performance. Pipeline control and super scalar processmg are also dlscussed in detail.

8.1 Introduction - -

In the previous unit we have studied the memory organization, its technology and the characteristics of
memory devices. We have an overview of different types of computer memories i.e, Internal and external
memory. We have also discussed address mapping and advanced DRAM organization.

8.3 10 and System Control

The main data-processing functions of a computer mvolve its CPU and external (cache-main) memory M.
The CPU fetches instructions and data from M, processes them, and eventually stores the results back in
M. The other system components-sécondary memory, userinterface devices, and so on“constltute the
1nput-output (I0) system.

10 control methods

Input-output operations are distinguished by the extent to which the CPU is involved in their execution.

(Unless otherwise stated, IO operation refers to a data transfer between an IO device and M, or between -

an 10 device and the CPU). If such operations are completely controlled by the CPU, that is, the CPU
executes programs that initiate, direct and terminate the 10 Operations; the computer is said to be using
programmed 10. This type of IO control can be implemented with little or no special hardware, but
causes the CPU to spend a lot of time performing relatively trivial [O-related functions. One such function
is testing the status of IO devices to determine if they require servicing by the CPU.
A modest increase in hardware enables an IO device to transfer a block of information to or from M
without CPU intervention. This task requires the IQ device to generate memory addresses and transfer
data to or from the bus (system or local) connecting it to M via its interface controller.

The DMA controller can also be prowded with circuits enabling it to request service from the CPU, that is

104

.......

 execution ofa specific program to service an I0 device, This type of request called an interrupted, and it

frees the CPU from the task of periodically testing the status of IO device. Unlike a DMA request, which
metrely requests tempc)rary access to the system bus, an interrupt request causes the CPU to switch

"programs by saving its previous program state.and transferring control to anew interrupt-handling program.

. After the interrupt has been serviced, the CPU can resume execution of the interrupted program.
DMA controller has partial control of IO operations. Essentially complete control of IO operations can be
relinquished by the CPU if an 10 processor (IOP) is introduced. Like a DMA controller, an IOP has direct
access to main memory and can interrupt the CPU; however, an [OP can also execute programs directly.
These programs, called IO programs, may employ an instruction set different from the CPU’s one that i is
oriented toward IO operations. It is common for larger systems to use general-purpose microprocessors
as JOPs.An 10P can perform several independent data transfers between main memory and one or more

IO devices recourse to the CPU. Usually the IOP is connected to the dewces it controls by a separate bus
system, the 10O bus. : -

-8.3.1 Programmed 10

A method included in évery computer for controlhng 10 operations. It ismost useful in small, low-speed
systems where hardware cost must be minimized. Programmed IO requires that all IO operations be
executed under the direct control of the CPU; in other words, every data-transfer operation involving an
10 device requires the execution of an instruction by the CPU, Typically the transfer is between two
programmable registers: one a CPU: register and the other attached to the IO device. The IO device does
“not have direct access to main memory M. A data transfer from the 10 device to M requires the CPU to

execute several instructions, including an input instruction to transfer a word from the IO device to the.

CPU and a store instruction to transfer the word from CPU to M. One or two additional instructions may.
be needed for address computation and data-word counting.

IO addressing

In systems employing programmed IQ, the CPU, M, and IO usually communicate via the system bus. The |

address lines of the system bus that are used to select memory locations can also be used to select IO
_devices. An IO device,is connected to the bus via an IO port, which, from the CPU’s perspective, is an

addressable data register, thus making it little different from a main memory location.

This technique is called memory mapped I0. A memory referencing instruction that causes data to be

fetched from or stored at address X automatically becomes an 10 instruction, if X is made the address of

- anIO port. The usual memqry load and store instructions are used to transfer data words to or from IO

ports, no special IO instructions are needed, .

The control lines READ and WRITE, which are activated by the CPU when processing amemory reference

instruction, are used to initiaté either amemory access cycle oran 10 transfer .

In the organization of 10-mapped 0, the memory and [0 address spaces are separate. This scheme is

used, for example, in the Inte] 80X86 microprocessor series. A memory-referencing instruction activates

the READ M or WRITE M control line which does not affect the IO devices. The CPU must execute

separate IO instructions to activate the READ JO and WRITE IO lines, which cause a Word to be transferred

between the addressed IO port and the CPU. An IO device and a memory location can have the same

address bit pattern without conflict. :

10 instructions :

As few as two instructions can implement programmed IO For example, members of intel 80X86 series
~have two IO instructions called IN and QUT. The instruction IN X causes a word to be transferred from

10 port X to the 80X86’s accumulator register A, The instruction OUT X transfers a word from the A

register to 10 port X,

- When the CPU executes an IO instruction such as IN or OUT, the addressed IO port is expected to be

ready to respond to the instruction, Therefore, the IO device must transfer data to or from the CPU-IO
data bus within a specified period. To prevent loss of information or an indefinitely long 10 instruction
execution time, the CPU must know the IO device status so that the transfer is carried out only when the

105

device is ready. With the programmed IO the CPU can be programmed to test the IO device’s status
before initiating an IO data transfer. Often the status is specified by a single bit of information that the 10
device make available on a continuous basis.

T'he CPU must perform the following steps to determine the status of an IO device:

. Read the IO device’s status bit. '

2. Testthe status bit to determine if the device is ready to begin transferring data.

3. If notready, return to step 1; otherwise, proceed with the data transfer. :
fprogrammed IO is the primary method of input-output control in a computer, additional 10 instructions
“an be provided to augment the IN and OUT instructions.

A common IO programming task is the transfer of a block of words between an 1O device and a connguous
egion of memory. :

O interface circuits

[he task of connecting an IO device to a computer system is greatly eased by the use of standard ICs
rariousty known as IO interface circuits, peripheral interface adapters, and the like. These circuits allow
he 10 devices of widely different characteristics to be connected to a standard bus with a minimum special-
urpose hardware or software. The simplest interface circuit is a one-word, addressable register that
erves as an IO port. The major microprocessor families contain various general-purpose and special-
urpose [0 interface circuits, They are called programmable if they can be modified under program control
o match the characteristics of different 10 devices.

\mong the most basic IO interface circuits are programmable circuits intended to act as serial or parallel
orts. Serial ports accommodate many types of slow peripheral devices ranging from secondary memory
nits to network connections, Paraliel ports are designed to interface with 10 devices employing multlblt
i-directional data paths.

.3.2 DMA and Interrupts: ’

he programmed 10 method section has two limitations:
The speed with which the CPU can test and service IO devices limits IO data transfer rates.
The time that the CPU spends testmg 10 device status dnd execunng 10 data transfers can oﬂen

e better spent on other tasks.
he influence of the CPU on IO transfer rates is twofold.
irst, a delay occurs while an 10 device needing service waits to be tested by the (‘PU Ifthere are many
J devices in the system, each device may be tested infrequently. - '
econd, programmed IO transmits dafa through the CPU rather than allowing it to be passed directly from
1ain memory to the JO device, and vice-versa.
IMA and Interrupt circuits increase the speed of IO operations by eliminating most of the role played by
e CPU in such operations. In each case special control lines, to which we assign the géneric names DMA.
EQUEST and INTERRUPT REQUEST, connect the IO devices to the CPU. Signals on these lines
ause the CPU to suspend its current activities at appropriate breakpoints and attend to the DMA or
iterrupt request. Thus these special request lines eliminate the need for the CPU to execute routines that
ctermine O device status. DMA further allows IO data transfer to take place without the executlon of 10
struction by the CPU,
'DMA request by an IO device only requires the CPU to grant control of the memory (system) bus to the
questing device. The CPU can yield control at the end of any transactions involving the use of this bus.
he instruction cycle is composed of anumber of CPU cycles, several of which require use of the system
15, A common technique is to allow the machine to respond to a DMA request at the end of any CPU

ock cycle. Thus during the instruction cycle there are five points in time (breakpoints) when the CPU can
spond to a DMA request. When such arequest is received by the CPU, it waits until the next breakpoint,
leases the system bus, ancl s1gnals the requesting IO device by actlvatmg a DMAACKNOWLEDGE
nirol line.
ferrupts are requested and acknowledgcd innuch the same way as DMArequests However, an interrupt

106

isnot a request for bus control; rather, it asks the CPU 1o begin executing an interrupt service program.
The interrupt program performs tasks such as initiating an IO operation orresponding 1o an error encountered
by the I0 device. The CPU transfors control to this program in essentially the same way it transfers contro)
to a subroutine. The CPU responds to interrupts only between instruction cycles,
- Direct Memory Access
The 10 device 10 connected to the system bus via a special interface circutt, a DMA controller, which
contains a data butfer register IODR, as in programmed 10 case; it also controls an address register [OAR
and a data count register DC, These registers enable the DMA controller to transfer datato or from a

4, IfDC has not yet reached zero but the 10 device is not ready to send or receive the next batch of

By reducing the CPU’s need to access main memory, a cache can greatly reduce conflicts between CPU
and IO data transfers, High performance microprocessors often have separate cache-CPU and [0 main-
memory access paths, which means that a DMA transfer involving main memory can proceed in parallel
with CPU cache operations. DMA operations use the PCl local bus, while the CPU communicates with
the cache via the system bus, Only when the CPU needs access to main memory in response to a cache
miss; for example -does it come into conflict with DMA controllers; such conflicts are resolved by the PCI
bridge unit. 107

Interrupts .)
The word interrupt is used in a broad sense for any infrequent or exceptional event that causes a CPU to
temporarily transfer control from its current program to another program-an interrupt bandler-that services
the event in question, Interrupts are the primary means by which IO devices obtain the services of the
CPU. They significantly improve a computer’s 1O performance by giving 10 devices direct and rapid
access to the CPU and by freeing the CPU from the need to check the status of its IO devices.
The basic method of interrupting the CPU is by activating a conirol line with the generic name INTERRUPT
REQUEST that connects the interrupt source to the CPU. An Interrupt indicator is then storedina CPU -
" register that the CPU tests periodically, usually at theend of every instruction cycle. _ N
Interrupt selection _ '
The problem of selecting one IO device to service from several that have generated interrupts strongly
resembles the arbitration process for bus control. Some interrupt methods require that interrupting device
- be given control of the system bus. The techniques employed for bus arbitration-daisy chaining, polling,
and independent requesting can all be readily adapted to interrupt handling and can be realized by software,
hardware, or a combination of both. : : _
The interrupt selection method requiring the least hardware is the single-line method. All 10 ports share a
single INTERRUPT REQUEST line. On responding to a single interrupt request, the CPU must scan all
the 10 devices to determine the source of the interrupt. This procedurg requires activating an INTERRUPT
ACKNOWLEDGE line (corresponding to BUS GRANT) that is corinected in daisy-chain fashion to all
IO devices. The connection sequence of this line determines the interrupt priority of each device.
Vectored Interrupts : _
The most flexible response to interrupts is obtained when an interrupt request from a particular device
causes a direct, hardware-implemented transition to the correct interrupt-handling program. The interrupting
‘device must then supply the CPU with the starting address or interrupt vector of that program.
Fach interrupt request line generates a unique fixed address, which is used to modify the CPU’s program
counter PC. Interrupt requiests are stored on receipt in an interrupt register. The interrupt mask register can
disable any or all of the interrupt request lines under program control. By setting bit i of the register to 1(0),
interrupt request line i is disabled (enabled). The k masked interrupt signals are fed into a priority encoder -
that produces a %log, k% -bit address, which is then transferred into PC. '
- PCl interrupts -
The PCl local bus provides general support for interrupt handling details such as the vectoring method
used are architecture specific and depend on the particular devices using bus. The PCI bus has four
interrupt request lines named INTA:D among its optional lines. A single-function 10 device with interrupt
capability must use INTA , as its interrupt request line; multifunction IO devices can use all four lines. A
particular pattern on the PCIbus’s command lines denotes interrupt acknowledge. Together, the INTx
interrupt request lines and the interrupt acknowledge command can implement the request-acknowledge
signal exchange needed during an i interrupt transaction over the PCI bus. :
Every PCl-compatible device must have a standard set of addressable configuration registers CR that
' jdentify the device and its communication needs. When the system is powered up, the system controller
(operating system) reads the CR registersto determine, among other things, the device’s interrupt connections.
Tts 8-bit “interrupt pin” register in CR tells the system controller which interrupt request line INTx the IO
device is using. A second 8-bit register in CR called the “interrupt line” register specifies the system controller’s
input line that is connected to INTx so that the routing of the interrupt request lizies is pro grammable. The
system controller can use this fact to determine the 10 device’s interrupt request priority and to access its
interrupt vectors. The CR registers form a small address space that is separate from the main-memory and
- 10 address spaces, as indicated by the existence of configuration read and configuration write in the
command set specified for the PCI bus. '
Pipeline interrupt - _
After an intetrupt occurs, the controlling CPU must be able to identify the interrupting instruction and the

108

register contents needed for any corrective actions, This is not a problem when instructions are executed in
sequence and only one is active at any time. However in a pipelined processor with several instructions in
process concurrently, it is possible for instructions to finish out of sequence; that is, an instruction can finish-
sooner than another instruction that was issued earlier. where three floating-point instructions, a 7-cycle
multiply and two 4-cycle adds, are being processed by one ot more pipelined units: Assuming no hazards
occur due to data dependencies, this completion order is acceptable as far as the main computation is
concerned. We can solve the imprecise-interrupt problem in several ways. The most direct is to make all
interrupts precise by forcing all instructions to complete in the order in which they are issued. '

- The undesirable result of this forced, in-order execution method is that the combined processing time for
the three instructions increases from seven to nine cycles, so some of the performance benefit of pipelining
is lost.

8.3.3. IO Processors - .

The 10 processor (IOP) is a logical extension of the IO control methods considered so far. In the systems

with programmed IO, peripheral devices are controlled directly by the CPU. The DMA concept extends

limited control over data transfer to IO devices. An IOP has the ability to execute instructions, which gives

it fairly complete control over JO operations. Like a CPU, an IOP is an instruction set processor, but it has

amore restricted instruction set. IOPs are primarily communication control units designed to link 10

devices to acomputer. They have also been peripheral processmg units (PPUs) to empha512e their sub81d1ary :
role with respect to the central processing umt(CPU)

10 instruction types
Inacomputer with an IOP, the CPU does not normal ly execute IO data-transfer instruction, Such Instructlons \‘I
are contained in 1O programs that are stored in M and are fetched and executed by the IOP. The CPU'
does execute a few 10 instructions that allow it to initiate and terminate the execution of IO programs v1a;_)
the IOP and also to test the status of the IO system. The IO instructions executed by the IOP are primiarily -
associated with data-transfer operations. A typical IO operation has the form: READ(WRITE) a block of -
nwords from (to) device X to (from) memory region Y, the IOPis provided with direct access to M(DMA)
and so can control the memory bus when the CPU does not require that bus. Other instructions types such -
as arithmetic, logical and branch are included in the TOP’s instruction set to facilitate the calculation of
addrésses, 10 device priorities and so on. The third category of 10 instructions are those executed by 10
devices, These instruction control functions suchas REWIND, SEEK ADDRESS or PRINT PAGE.
Instruction of this type are fetched by the [OP as data and passed on to the appropnate 10 device for
“execution. '
The instructions executed by the IOP are called channel command words (CCW). They are of three types
- Data-transfer instructions These include input (read), output (write), and sense (read status). They cause
 the number of bytes in the data count field to be transferred between the specified memory region and the
previously selected IQ device. |
- Branch Instruction These cause the IOP to fetch the next CCW from the specified memory address '
rather than from the next sequential location. '_
- IO device control instruction These are transmntted tothe IO devnee and specify functions peculiar to that '
device
The opcode of a data-transfer instruction can be transmltted directly to the IO device as the “command”
byte while the IO operation is being set up. Ifthe IO device requires more control mformailon, itis supplled '
via an output data transfer. '
The flag field of the CCW modifies the operatlon specified by the opcode. For example, aprogram oontrol :
flag PCI can be set to instruct the IOP to generate an 10 interrupt and make the current IOP status-
available to the CPU. Another flag specifies command chaining,, which means that the current CCW is
followed by another CCW that is to be executed immediately. If this flag is not set the IOP ceases IO
program execution after executing the current CCW, .
IOP organization The IOP and CPU share access to 2 common memory M via the system bus., M stores
separate programs for execution by the CPU and the IOP; it also contains a communication region IOCR.
109

fot passinig information it the form of tnessages between the two processors. The CPU can place there the -
parameters of an 10 task, for example, the addresses of the O programs to be executed, and the identity
of 10 devices to be used. The CPU and TUOP also communicate with each other directly via control lines.
Standard DMA or bus grant/acknowledge lines are used for arbitration of the system bus between the two
processors: The CPU can attract the IOP’s attention, for instance, when executing an [O instruction like
STARTIO, by activating the ATTENTION line. In response the IOP begins execution of an IOP program
whose specification have been placed in the IOCR communication area. '

8.3.4 Self Learning Exercises
True/False | -

A. IOdevices have direct access to main memory.
Fill In the Blanks ' _
B. The use of CPU programs to control all phases of an IO operations is called
C. Thetechnique to assign a part of mainmemory address space to IO ports is called as
33393’ D.The__~ isalogical extension ofthe IO control methods,
- E. Theinstructions executed by the IOP are called o '
8.4 Parallel processing o L | |
Computer performance can be increased by executing many instructions simultaneously or in parallel, This
section desctibes processor-level parallelism in computers, focusing on the use of multiple CPUs to achieve
very high throughput and fault tolerance.
Processor-Level Parallelism - L S
Performance has increased steadily thanks to faster hardware technologies or designs, many important
computational problems remain beyond the capabilities of the fastest current machines. Some computer
desi'g_ners believe that processor and memory technologies are approaching physical limits on their size and
speed, Size 1'*e'duc_t_ion$ and speed increases well beyond present levels are feasible, but their cost may not
be acceptable. One way to address these issues is to exploit processor-level-parallelism, for example, by -
building computers containing large numbers- perhaps hundreds or thousands-of low-cost processors that
can work in parallel on common tasks, _ - _ e :
A further advantage of processor-level-parallelism is tolerance of hardware and software faults. While
faiture of its CPU is almost always fatal to a sequential computer, a parallel computer can be designed to
continue functioning, perhaps at a reduced performance level, in the presence of defective CPU.
Dependencies The main benefit of paralle] processing is faster computation. A price is paid, however, in the
need for a significant amount of extra hardware. We can say that increasing the number of processors by
afactor of nmakes an n-foid increase in computing performance, This maximun: speed up is rarely achieved.
because it is difficult to keep all the members of a set of parallel processors continually working at their
maximum rates. Dependencies among sub tasks can force a processor to wait until other processors. -
supply results that it needs.In the parallel summation algorithm for the linear processors amray, the processors
must wait for data from their left neighbors. The processors in aparallel computer often share resources
- such as memory banks, IO devices or operating system routines which can be used by only one processor
ata time. A major issue in designing and programming parallel systems is to avoid conflicts in the use of .
shared resources. The extent to which all processors can kept busy dependson the computer architecture,
the tasks being performed , and the.way in which the tasks are programmed. SO
Classification methods — | . |
A processor such as CPU operates by fetching instructions and operand from memory M(main memory or
cache), executing the instructions and placing the final results in M. The instructions from an instruction
streamn flowing. from M to the processor, while the operands from another stream, the data stream, flowing.
to and from the processor. : - ' T : e
Flynn’s qualification divides computers into four broad groups based on the values of m, and m; associated
with their CPUs. _ S _ -
- Single instruction stream single data stream (SISD) m, =m, =1. Conventional machines witha

110

single CPU capable only of scalar arithmetic fall into this category. SISD computers and sequential computers
are Synonymous. ' '

Single instruction stream multiple data stream (SIMD) m =1, m_ > 1. This category includes such
early parallel computers as ILLIAC IV that have asingle program—eontrol unit and many mdependent
execution units.

Multiple instruction stream single data stream (MISD)m, >1,m_ = 1. Few parallel computers fit
well in this class, Fault tolerant computers whefe several CPUs process the same data using different
programs are MISD.

Multiple instruction stream Multiple data stream (MIMD) m, >1, my > 1. This category covers
multiprocessors, which are computers with more than one CPU and the abllny ’oo execute several programs
simultaneously.

8.4.2 Multiprocessors

A multiprocessor is an MIMD computer containing two or more CPUs that cooperate on common

computational tasks. Multiprocessors are distinguished from multicomputers and computer networks, which

are systems with multiple CPUs operating largely independently on separate tasks. The various processors >
making up a multiprocessor typically share resources such as communication facilities, 10 dev1ees program .
libraries and databases and are controlled by a common operating system.
Motivation
The main reasons for including multiple CPUs in a computer system to improve performance and rellabﬂlty
Performance is improved either by dlstrlbutmg the computation of a large task among several CPUsor by
performing many small tasks in parallel using separate CPUs. A multiprocessor withn 1dent1cal processors
can, in principle, prov1de n times the performance of a comparable SISD system or uniprocessor. A major
goal, therefore, in designing an n-CPU multiprocessor i is to achieve a speedup S(n) as close to nas_
possible. By enabling such resources as secondary memoty to be shared, a multiprocessor can reduce
overall system costs. Many muluprocessors also have the advantage of scalability; that is,the system size
can be increased incrementally by adding processors to meet growing computation needs. Scalability is -
facilitated by making all CPUs identical and allowing each to execute either operating system (kemel) or
user code; multiprocessors with these properties are said to be symmetric. Finally, system rehab111ty is
improved by the fact that the failure of one CPU need not cause the entire system to fail. The functions of
the faulty CPU can be taken over by the other CPUs consequently, multiprocessors enable fault tolerance
to be incorporated into the system
Shared-memory and distributed-memory multlprocessors are sometimes referred toas t1ght1y coupied
and loosely coupled, respectively, reflecting the speed and ease with which they can mteract 0N COmInon
tasks. Multiprocessors are also classified by the number of processors they contain: Masswely parallel
machines can contain thousands of processors. Most multiprocessors, however, are modestly parallel
containing from 2 to about 30 processors such multlprocessors have exnsted since the 1960.
Shared-bus systems
Most commercial multiprocessors have been bullt arouncl a smgle shared system bus B because of B’s
relative simplicity and low cost. The CPUs, memory, and IO units are attached directly to B and time-
share its communication facilities. Only one pair of units can use B at a time, either for CPU- memory ot
I0-memory communication. The memory units and IO devices on B are global to all the processors; -
hence single-bus multiprocessors are of the shared memory class. If the access time to the shared memory
is the same for each processor the multiprocessor is said to be of the uniform-memory access (UMA)
_The global bus Bis clearly a communication bottleneck in shared-bus multiprocessor, leading to contention
and delay whenever two or more units request access to main memory. In practice, memory contention
limits to about 30 the number of CPUs that can be included in the system without an unacceptable degradation. -
in performance
Consider a situation in which two CPUs share a region R of global memory where A mutual exclusmn

'

111

applies; that is, only one processor should have access to the shared region at a time. Access to R is
conveniently controlled by semaphore (flag) F that indicates whether R is currently being used by some
other process (F=1) or is available for use by a new process (F = 0), Before it attempts to access R, a
CPU first reads F, which must be stored in global memory. If F=0, the CPU then changes F tol and
proceeds to use R, If it finds that F is already 1, then it does not attempt to use R. The mutual exclusion
requirement can be violated if it is possible fortwo CPUs to independently access the semaphore at the
same.time and find F=0. This violation can occur if a second processor CPU, canread F after the first
processor CPU, has read it, but before CPU| has changed F to 1.The problem in the factthat semaphore
flag test-and-set mstructlons tssued by the CPUs can be broken down into interleaved bus.cycles as

Global btls cycle R Actlon

1 CPU, fetches semaphore F=0
o i_+__1_ L _‘CPU fetches semaphore F”*O
R 37 "'""_"_CPU setsFto__l_

1

Atlitie i +4, both, CPU and CPU assume they have excluswe control over the crltlcal reglon R WIth
potentially catastrophic consequences TN
Cache coherence

In shared—bus mtﬂnprocessors llke the Symmahy,;caches play a, vntal role m reducmg the contentton for the .

1mpratlcal Typrcally, each CPU has a prtvate one or two—level cache, which forms alocal 1 memory and

- allows the CPU to access data and mstructlons without using the system bus. thh an mdependent cache
in each CPU, the poss1b1]1ty exists for two or imore caches to contain chfferent (mconsrstent) versions of the
‘samie inforimation’, that is the cache-coherence problem. This problem causes both the cache and main
(global) memory to be updated whenever a memory write operation occurs, Suppose for example, that
one CPU updates variable X i in both its cache and the global memory. If another CPU then changes X, the
new value of X will be written into main memory, but the two caches will contain different values for X.
Subsequent reads from these caches can lead to inconsistent results. Thus to ensure coherence we need
amechanism that informs each cache about changes 16 shared information stored in other caches.

We can solve the cache-coherence problem with either hardware or software, One software-based solution
isto mark (tag) information during program compilation as either cacheable or noncacheable Allwritable
shared items are marked as noncacheable, meaning they can be accessed directly only from main memory.
A write-through policy that requires a processor to mark a shared cache item X as invalid, or to be
deallocated, whenever the processor writes into X can then ensure cache coherence. When the processor
refererices X again, it is forced to bypass the cache and access main memory, thereby always acquiring the
mostrecent version of X. This approach can significantly degrade system performance.
Hardware-based methods of maintaining cache coherence offer the advantages oflugher speed and program
transparency, but they tend to be exPenswe One p0531ble approach is for a processor to broadcast its
write operahon to all'the caches and the global memory via the shared bus Every cache controllerin the
system then exaniines its a5s1g;ned addresses to see if the broadcast itemis presently allocated o it. Ifitis,
the cachie block (Hne) in questton is either updated or markéd as dirty (modified). The drawback of this
techmque is thiat every cache’ erte forces all caches to check the broadcast data maklng the caches
unavailable for normal processing; T T e :

Arelated, but less costly, hardware-based method known as cache snooping equips each CPU with -
cucmnyto contmuously monitor or “snoop” on system-bus activity iri order to detect references by other
processors to memory addresses currently inits cache. The CPU canalso signal'other CPUs that ithasa
copy of the referenced item and, when hecessary, modify or delay the other CPUs’ main-memory accesses.
HCPU, attempts to read (write) memory data with an address that is currently assigned to CPU s cacke,
CPU detects this attempt in what is called a snioop read (write) hit by CPU,.On makmg a snoop hit,

112

CPU, determines whether actual or potentlal incoherence exrsts and then takes gqu
. ULF R AR
it.

Message~pass:ng computers

during th o%0s ushered 10_pOW§rfu.,lleqpe-ch1pj 5
andmemory (RAM)cthsm}‘h capacmes mthem aﬂbecgyme feasible o ul
-Muluprqr;qssgr arghn@au s with

T R AT

Wl}ere mterpmp;sgor e_
,cen;ent;qn g:n’a:)l:-}.e;n&,2 :,)nherem,m the use _o{ smgle sh

wingeniaarl peiem s

AT o ’w'a‘-l- 3o
Various static and. dynarmc mterconnectlon structures have been. propose - ¢]g Paral,lel
multiprocessors. Static structures like hy;percubes ahd trees are easier ta bulld and conﬁ_.rol en m,a,ny
processors are lnvolved Dedlcated buses or K) cemmufn Cation 11nes typica]ly s'erve eis Ififérjii*o‘céésor

in some class of apphcanons The hypercqbe strucmre aehxevw a gaood balance between these parameters,
Ann- dnmensmnal hypercube eoﬂ}pﬁei is charaetenied by Lhr]bresence of 2" nodes, each consmtmg of a
these links form the edges of the hypercube Aset of 2" chstmct n-bit binary addresses can be assigned to
_the processorin sucha way thalP #4 address éﬁﬁt’rs froieachof rtérrelghbors in exactly 1 b1t]I-Typercubes
."‘:i’}have V3 B i : EROIT TR uEen e sl el oo
A hypéreub Canbe expaﬁded Of*scale‘ci dp wWhile fﬂéinfaiﬂmg a'geo& bafai‘i 'Bé’t\a/een*thé ni’dﬁber
i co8t G interabde e*tiin;l_iy}_ri cﬁtlon a§’11 1$~1n0rémi=:nfed Hy’one,‘-""
¥ Id Bies ‘but tﬁe hode de fod Ahid the Tk ” ¢e bot il

e S| 'uu ISP A O gt bl
\1) i ¢ :

g Ahypercube is homogenequs i in that the system appears the safhehw ed fromi‘an
338%5 S feltiné Smplifics prodianiming ‘usea}fhoﬁécéﬁeﬁfeetrteS%hiesmﬁ pl‘e
"";aamﬁeﬂabumaﬁgaa’a‘cafﬁ}ﬁﬁﬁm A e e e
! Wc Shtvernbedd offier STt inteed nhécﬁ‘on"sﬁ’acfi%e’ snfelféérh‘ng”éhﬂ nﬁ&hes"éﬁ‘i‘diéhffy iithe
= i‘n pen:ube We stq# that (@rh%hj Giisé ibeddhiﬁléilﬁ AP Al 1ffevé‘i'y°rfé§d’e*1ﬂ Gfeﬂn'be naphid ihto
£ adlsﬁ;iéf HSHETh T SGER THAP 1 isles that Aré B NbOF ey AHOATRD hefghbisfstn B nbthér word) G
. isembeddable mH if we can find an exact (isomorphic) copy of G inside H, Lebuas b ud ot 2]
» ”"_ f‘““j"‘%‘f‘”* *’h%’éf ‘“815%’&% ﬁpbﬂﬁ%{ﬂmb’lé%ﬁé‘hﬁé&ﬁ et ithreAb User pralgain assightd o a
rivaic ehilbe l{jfpef ‘ﬁ‘lﬁ“’ betst IS diGomtER G TSEES” SUbEHBRS P eikiitiplé in a
o *ﬁ‘“"“ onathfﬁeiéﬁ Et5 SHé‘subéﬁBééaaﬂﬁe RETHEIwo Gserssatidan éigmﬂﬁodemeéﬁbe

;:v‘u A1 Lot e(ff fiir éér . ”U SRR ;f;"s‘;"m S " therd el ’}f;i’kitfé'"lix,,'.aﬂ} ric b i’"
ol By Y\r Py YR LU A EGEIT O BT 1'\291 P Tl Dl j"p’w’i\,. {“ FE AT 't?.;a't’ + E) il !\}ifj\‘\r‘ i
§4.3 S arnmg’Exermses R sl e
VI 'i‘“‘iolt.,;x()u
True/False anilacid absendi A C
F. ‘Computer performance can be increased byexecumlgman mst)rufc?o ssunultaneo {y orm
ALy i B T{
G Iftheaccesstime to the shared memory is same for each Erof:e <Sor th J ittt Ki%‘f)mdééﬁﬁf fs }s'ald
(g v seetinf) = fsog natisel g
- to be of the uniform-memory access (UMA) type.

2 oa e
Fill In the Blanks ot "f’“f"i "
H. Acomputer containing more than one CPUisa e r: x; ;}(%, HF
I. Amultiprocessoris an computer containing two or niere éP ﬂ;at o}perate on
common computational tasks, :

SHNE ﬂi“"ﬁﬂ'i 3 ?“*sii f;z HELE
ftﬂgg }ﬁm.zi mi;j; U T T T ity f*glrf‘ifi} “vﬁwm emart sl e sduesmigtiag : uim; S
!' 'l

4.!@”13;1&\ ,1},9 sy e T {19 "f,,auz,,;r;ﬁ ik yaig v dnoly Yo i {2 IR Bronas
Plpelmmg provides abasic way to speed up,a;a’tbnge’gl@f perations as well as is also used to implement the

entire instruction-processing behavior of thh-performance CPUs.
1 13

Instruction Pipelines-

During program execution, instructions pass throngh a sequence of processing steps that lend themselves

naturally to pipelining. Consequently, a CPU can be organized as one or more pipelines, whose various
stages fetch opeodes and operands, execute insiruction, and store results in local registers or external
 memory. In general, an instruction pipeline is a multifunction, reconfigurable pipeline designed to speed up
acomputer’s performance by efficiently overlapping the processing of instructions. An instruction pipeline -
is normally invisible to programmers and managed automatically by program compilers and the CPU’s
internal program-control unit. Instruction pipelines were first used in IBM 7030 (also known as Stretch)
and a few other computers of the 1960s. They reemerged in the 1980s as key confributors to the high
performance achieved by RISCs, Instruction pipelining has also been successfully incorporated into CISCs
such as the 80X86/Pentium series, begmmng with the 80486 microprocessor in 1989.

Pipeline structure |
The general structure of a pipeline of m stages S,.S, S appearsin |

| Cemtrotlva) |

- . I) B) "

Shee? St o S,

N Figure 8.1 Structure of m—stage pipeline
When 8, bas comput@cl its results, it passes them, along with any unproeessed input operands, t0.S,, , for
further p1 ocessing, and 8, receives a new set of operands from S, | Thus the pipeline can contain up to m
independent data sets, all in different stages of computation. Buffer registers and other synchronization
logic are placed between stages a0 the stages donot interfere with one another, The performance speedup
of an ingtruction pipeline derives from the fact that up to m independent instruction be in progress
“simulfaneously in the m stages.
The simplest instruction pipeline breaks instruction pr ocessmg into two parts: a fetch stage 8, and an
execute stage 8,. Thus a two-stage pipeline increases throughput by overlapping instruction fetchmg and
instruction execuuon While instruction], with address A, is bemg executed by stage 82, the instruction . ,
- withnext consecutive address A, is fetched from memory by stage S, . I onexeeuting LinS, is detemuned
~ thatabranch must be made to a ‘onconsecutive address ALBL, then the prefetched i instruction L,in8,
has to be discarded
‘Muliistage pipeline An m-stage msiructmn pipehne can overlap the processing of up to m mstructlons, so it
is desirable to use more than two stages to maximize instruetion throughput, The value of m depends on the
. maximum number of stages into which instruction processing canbe efficiently broken, This number in furn
depends on the complexity of the instruction set, the organization of the external memory M, and the way
in which the CPU’s datapath is implemented, In practice the number of pipeline stages ranges from three to
a dozen or more, |
- 8.5.2 Arithmetic Pipeline
Itisusedin floating point operations
' Floating point = (mantissa, exponent)
X=(m, e J=m *2¢
Y*(m, ¢)"“m *2"
_ Floatmg polnt sum
X +Y""(mx*2cx sy+my)*2‘ey
8.5.3 Pipeline Performance -
A Pipeline performance can be measured by its throughput in terms of millions of instruction executed per
second (MIPS) or nmnber of clock cycle per instruction (CPI) These quanutles are related by the equatlon
- CPI"f/MIPS

114

Where fis the pipeline’s clock frequency in MHZ, and the values of CP1and MIPS are average figures
that can be determined expenmcntally by processing svits of representatwc programs, The maximum valve
“of CPI for a single program is one, making the pipeline’s maximum posgible throughput equal fo £, this
throughput is attained only when the pipeline is supplied with a continuous stream of instructions that keep
all its stages busy, Superscalar machines reduce CPl below one by executing s¢veral instruction streams
simultaneously using multiple pipelines, A space diagram for an mestage pipeline has the form of anmx n
grid, where nis the number of clock eycle to complete the processing of some wcquence ofN mstructlons
of interest.

Another general meagure of pipeline performance is the speedup S(m) def ned by

S(my=T(1yT(m) o

Where T (m) is the execution time for some target workload on an m-stage plpelme and

T(1) is the execution time for same workload on a similar non-pipelined processor, -~ -

It is reasonable 10 assume that T(1) £ mT(m), in which case S(m) £m., A pipeline’s eﬁwlency and speedup
arerelated as follows ' _

S(mFmx E(m)
Aneasy way to 1mpmve a plpelme s performance is to increase the number of stages m, Thas assumes that
the pipeline’s processing tasks can be subdivided in a useful way and that the cost of doing so is acceptable.
Each new stage S, introduces some new hardware cost and delay due to its buffers register R and asseclated
control Jogic, In partlcular, we will determine the pipeline's performarice/cost Fatio PC'R definedas
PCR={IK

Where fis pipeline's clock Eraquen@y and K isits hardware cost,

Contro] Scheme - o

An glegant way to control a pipeline. fer collislon-free operation s by computing colllsion vectors, A
eollision vectar CV for areservation table R at time t is a binary veetor ¢ (e Gy Cy Whiare the ith bit
C is1ifi mltmtmg apipeline instruction at #+/ results in a collision; C,is 0 othermse An initial collosion
“vetor CV s obtained from the forbidden list 7 of R as follows. Rlement C of CV, dgsetto 1 if/inin
and C s set to O otherwise, fori= 1,2,...,M, where M is the maximum element in A convenient way to
store CV is ina shift register CR=CR,:CR,, called a collision regisier. By inspecting CR-, attime, we
can determine whether issuing a new instruction in the next clock cyele 7+ 1 will result in a collision. A
simple left shift of CR, with the right-most bit CR, set to 0 prepares CR, for inspection in the next clock
cycle. If we decide to initiate a new instruction at t-+1 then CR isleft shxftecl and its contents are replaced
by CR or CV, isthe initial collision vector obtained from F ns specified above and or denotes the bitwise
OR operations These actions ensure that CR defines all the collision possibilities due either to ongoing
pipeline operations or to the newly initiated one,

The progress of an instruction stream through a pipeline can be delayed by various unfavorable dependency
relationships among instructions and their data operands, which are collectively referred as hazards,

8.5.4 Superscalar Processing
Microprocessor that reach performance levels greater than one instruction percycleby fetclung, decoding
- andexecuting several instructions concurrently. This mode of operation is called superscalar. A superscalar
computer hasa smgle CPU that attempts to exploit the pm alleli&m that is 1mplic1t in ardumry computer
programs,
Characteristics
Supemalar operation requires a processor to d@tect and @xplcnt mslruotlon-level parallel sm hidden in the
programs it éxeoutes, A super sealar CPU has multiple sxeoution unita (B-tnits), each of which is usually
pipelined, so that they constitute a set of independent instruetion pipelines, The CPU's control unit PCU s
dcmgned to feteh and decode several instructions coneurrently, It can Isswe or diapateh up to kinstruetions
simultaneously to the various E-units where k, the instruetlon-1ssue degree, can be six or more using
current technelogy, The need to process so mary Instructions simultaneously without performance-degrading
conflicts greatly complicates the design of the PCU, The PCU of a superscalar machine Is responsible for
determining when each instruction can be executed and for providing it with access to the resources it

118

needs, such as memory operands, E-units, and CPU registers, in a prompt and efficient manner. To do so,
itmust take the following factors into account

. Instruction type. For example, a floating-point add mstructlon has to be issued to a floating-point
E-unit and not to an integer E-unit.
-+ . E-unitavailability: An instruction can be Issued to a pipelined E-unit only ifno OOHISIOHS will result,
. as determined by the pipeline’s reservation table,
~ .~ Datadependencies. To avoid conflicting use of registers, data—dependency constraints among the
operands of the active instructions must be satisfied,
. Control dependencies: Tomaintgin high. perfonnance levels, techmques are needed to reduce the

impact of branch instructions on pipeline efficiency.: -
" Programgrder:insuctions must eveantuallyproduce results.in the order specified by the program
bemg executed. The nestdts may&hwevcr, e mmputqd eut-ofmrder mtem&lly te sl,mlamvc tha CPU’
B (e TS DR, PR ¥ e AR A
8.5.5 Self Learning Exerc1ses
True/False O
"I Aiktihe S pettoitltios i beteabir iyt gy
U’A{éﬁbér Sl S5t jju%é’ ‘_‘ﬁ s h‘ifrﬁﬁi 1e€'PUmataﬁemp‘ﬁ% ,
~~1ﬁﬂﬁﬁ'fhé’¥3 [afyfeds #oethue 24 ab ool sl b e e
M. ‘A Sipescalar CPU h“aé‘ﬁmmple |
Input~output systems are dlsnngulshed by the extent of CPU mvolvement in IO oper@,gt(pns Iheuse ef
P programsto cqnml Allphases.of an. 1O operation iscalled pro rammed 10, By providing 10 deviges
ngh];}Mﬁ,qn,d IO mterrugt co,ntrq]?, data Iaransfepcw be. 1mplem¢n;cd 1pdepen;lently of the CPU
M m Tr}oggggorgha% heg J;lademgne

SEHES Yend wrog
EREsi SN _ra\mex S e |
L IR g «
: RTINS e St RIS

inslru: a
e L
1OPescossr n.a.uawmﬂmm

ik i m‘mﬁg‘ 11}

¥ ".'?’332?"& R IRG
of, mare:CPUs that) P
o tniry 25’..35,5.5..{'2.&9:@ “1" m 33 R HIC H]
Fupersalar processing Iwﬂ:pmorampm cpnqm,u'

Fy vy
£ ; fu b ;‘\]
3’5-} ,ifilgw 3"1 i FE‘\':-I‘ ‘.."I\ﬁﬁ‘;’?}

whith bas 2 angle CF11 Ayt -
e:qlodl the ||zﬁ]ldlwn. e

gathansh yeidowd wd viss oy ROt 800 ety

ngﬁF i ﬁéﬁ]ﬁé\pﬂdr e ‘ﬂi Ho i “:i‘!ﬁ, a(f",ﬂ tl‘)iljf‘jﬂ '-‘f .;_ A _T'i“lg‘.ij ‘i‘ti I{::“i‘ ;“”P D' I

e !° iﬁa jes Ofﬁﬁ e hArchl‘Eecture and Orzé;mzaﬁoﬁ ii/fcéi:aw—ﬁﬁlllntemaﬁéhgl
. R.S. Goankar Microprocessor Architecture, Programming and Applications with the go
2m Edition, New Age Infernational Publishers Limited, ISBN—8 1-224-0710-2. - e
’:i* BLAsER & iibt‘l)‘iﬁ}ﬁ@r‘ céééd"s Kt Hﬂoé? Wi }?{ﬁ' thHEdls[84 Pl\léiﬁit}i:: R Cf‘“

{i%SIETS'BNﬁ ’6’?1’()046’2”? S bt otiER e aifp Taerivasr) | TR ii!!&;a 1»3124 RN

-’ F A _s it :N"?; P ia ._.I“{f Tasly ps *;f_i.’“ 45*" [11 Hol

vhese ones derfi mrastougonald

shnogulsi 1o e

IR O u‘?;u; {k.,;;oi;ni;‘é‘i' ¥
"iTilr"é‘ﬂ"*ﬁuiilE{jf DTVGITS (8 BRI d;a.u.,srf-mfl ABHE TS

L
e s o LI el T U8 el o nyushs add:

v;r‘ BT :"‘ ::‘;s”-ji;r*"éiw'-_

HEMIRY o i s g mlanes

¥ ansipors sl of zesnos (Hay 17 gaibivory wdt hig batuosan sd aes goiinent dous ot o
16
Li1

8.9 Answer to Self Leamning Exercises

Question Answer =~ . Question Answer
A Falgs H Multiprocessar
B programmed IO) MIMD
C memorymapped 10 I multistaze irderconnection
networks
D 10 processor QUP) K True
E channel com mand wordg(CCW) | L Falsge _
-|F True I ex eculion units (E-unitd)
-6 True

| 8 10 Unit End Questions:

a.~
b.
c.

Define Each of the following IO control methods.

Programmed 10
DMA Controllers
10 Processors.

width and interface hardware costs.

What do you understand by parallel processing? Ex plain the terms, SIS

2.

with reference to it.

3. Write short note on followm
a, Multiprocessor

b. Processor-level-parallelism
C. OP organization

d. Instruction pipeline

Sy i mi”"i[r dx s f‘IJIE'xH

s b [

el Lo winigs

List the-advantages and disadvartages of each method with respect to program design compquxty Io band

A

) SEIMDW.‘M]SD MIMD

RS IURCI 1o

1
e
GG P

Unit-09
Introduction to Micro Computer Systems

Structure of the Unit
9.0 Objectives

9.1 Introduction

92 Microprocessors
9.2,1 BinaryDigits _ _
9.2.2 Memiory : S
9.2.3 Input/Output :
9.2.4 Microprocessor as a CPUMPU)

- 9.2.5 Organization of a Microprocessor-Based System

9.3 Microcontrollers

9.4 Microcomputer Devices

9.4.1 Microprocessor

9.4.2 Memory

9.4.3 Input

9.44 Output

9.5 Machine Language

9.6 Asgsembly Language

9.6,1 Advantage of assembly langnage

9.6,2 ' Difference between machine language and assembly language
97 BusConcept

97,1 Address Bus

9,7.2 DataBus !

9.7.3 Conirol Bus

9.8 Architecture of 8085SA

9.8.1 Pinoutof BO85A

99 Summary

910 Clossary

9.11 Further Readings :

9,12 Answerto Self Learning Exercise

9,13 UnitEnd Questions

9.0 Objectives

. Objective of this unit is to draw a block diagram of a microprocessor based system and explain the
funetions of each component: microprocessor, memory and I/O and their lines of commtinication (the bus),
Architectuire and pinout of 8085A is also discussed.

9.1 Introduction

We have studied the organization of system in previous unit whcre we have discussed different modes of
transfer i.e. programmed [0, DMA and Interrupts etc. We have also discussed different features and types
of pipelines,

9.2 Microprocessor

A microprocessor is a multipurpose, programmable elock-driven, register-based electronie device that
reads binary instructions from a storage device called memory, accepts binary-data as input and processes
data according to those instructions, and provides results as output,

A typical programmable machine can be represented with four components: microprocessor, memory,
input, and output. These four compenents work togethet or interact with each other to perform a given
task; thus, they comprise a system. The physical components of this system are called hardware. A set of
instructions written for the microprocessor to perform a task is called a program, and a group of progrdms
is called software, 18

The microprocessor applications are classified primarily in two categories: reprogrammable systems and
embedded systems In Teprogr ammable systems, such as microcomputels the microprocessor is used for
eomputing and data processing, In embedded systems, the microprocessorisa part of afinal productand
is not available for reprogramming to end use,

9.2.1 Binary Digits

The microprocessor operates in binary digits, 0 and 1, also known as bits. Bit is an abbreviation for the
term binary digit, These digits are represented in terms of efectrical voltages in the machine, Generally, 0
represents one voltage, level, and 1 represents another. The digits 0 and 1 are also synonymous with fow
and high, respectively. Each microprocessor recognizes and processes a group of bits called the word,
and micnoprocessors are classified according to their word length. For example, a processor with an 8-bit
word is known as 8-bit microprocessor and a processor with an 32-brt word is known as 32»b1t
microprocessor,

Microprocessor is designed to understand and execute many mstrucuons Tt is multipurpose machlne i
can be used to perform various sophisticated finctions, as well as simple tasks such as turning devices on
or off, A programmer can select appropriate instructions and ask the mwroprocessm to perform various
tasks on given setof data.

9.2.2 Memory

Memuory is like the pages of notebook with space for a fixed number of binary numbers on each line.
However, these pages are generally made of semiconductor material. Typically, each line is an 8-bit register
that can store eight binary bits and several of these registers are arranged in a sequence called memory,
These registers are always grouped together in powers of twe, For example, a group of 1024(21%) 8-bit
registers on a semiconductor chip is known as 1K byte of memory, The user writes the necessary instruetions
and data in memory through an input device, and asks the micraprocessor to perform the given task and -

. find an answer. The answeris general ly displayed at an output device or stored in memory, -

9.2.3 Input/Output

- The user can enter instructions and data into memory through devices suchas keyboard or simple switches,
These devices are called input devices. The microprocessor reads the instructions from the memoryand

- processes the data according to those instructions. The result can be displayed by a device such as seven -

segments LEDs (Light Emitting Diodes) or printed by a printer. These devices are called output devices.

924 MlcrOprocessor As A CPU (MPL))

We can also view the mieroprocessor as a primary component of a computer. Computer has four components:
memory, input, output and the central processing unit (CPU), which consists of the arithmetic/logic unit

(ALLU) and the control unit. The CPU contains various registers to store data, ALU to perform arithmetic
and logical operations, instruction decoders, counters, and conirol lings, The CPU reads instructions from
the memory and performs the tasks specified. It communicates with input/output devices either to accept -
orto send data, These devices are known as peripherals, The CPU is the primary and central playerin -
communicating with devices such as memory, input, and output. However, the timing ofthe. communication
process is controlled by the group of eirenits called the control unit.
A computel witha microprocussm asits CPUisknownasa microeomputer The terms micropmcessor
with the necessary control signals. Because of the Hmited n L.mber ofavailable pins ona microprocessor
package, some of the signals (such as confrol and mulnp!exed signals) need to be generated by using
discrete devices to make the microprocessor acomplete functional unit or MPU.,
A semiconductor fabrication technology became more, advanced, manufacturers were able to place not -
only MPU but also memory and I/O interfacing cireuits on a single chip; this is known as a microcontroller
or microcontroller unit (MCU). A microcontroller is essentially an entire computer on a single chip.

9.2.5 Organization of a Microprocessor-Based System
A microcomputer is one among many microprocessor-based systems. It includes three components:

microprocessor; [/O.(input/output) and memory (read/write m. emory and read-only memory), These :
' 119

i

components are organized around a common communication path called a bus. The entire group of -
components is also referred to as a system or a microcomputer System, and the components themselves
are referred to as sub-systems. At the outset, it is necessary to differentiate between the terms
microprocessor and microcomputer because of the common misuse of these terms in popular literature.
The microprocessor is one component of the microcontroller. On the other hand, themicrocomputer is a
complete computer, similar to any other computer, except that CPU functions of the microcomputer are
performed by the micreprocessor. Similarly, the term peripheral is used for input/output dev1ce,s

9.3 Microcontroller | S et
A microcentroller (also MCU or uC) is a functional compuler system ona Ghlp It contams a p1 0Cessor

core, memory;and programmable input/output peripherals,. .- . L D R
-Miereeontrotlers inctudeian integrated:CRU,; memory: (alsm&ll aAmvunt of RAM program memwyg ‘or
both) and peripherals capable of input and output. S RIS

it Itamiphasizeshight integration in ‘contrastteamicroprocessor thhanly contans a CPEL: In a@dmém’ to
theusuat apithmetic dndlegie:elernents of aigeneralipuirpose microprogessar; the: microcontrollerintegrates
«:additional tlementssuchagread-writememory fordata storage;veadeonly mewtory: fonprograrh Sorage,
Flash memory for permanent data storage, peripherals, and input/output interfaces:Ateloockispeedsiefias
little as 32Kz, microcontroliers often operate at very lou upeed compared to mic:opr@qggﬁqﬂs,{bﬁi t.liis

n TPt . I aek (
gnakmg, them n:leal foﬁow power z;,nd long lastmg ba,ttcry apphcatlons
Mig gseq in automatlca.uy pontrolled ppeduqts

\ Iscparate m cmprocessor,srpemory anc;l mgut/
output devices, Mncrocontrollem make it econonucal to electromcal Iy control \many {npxg pl;qpesses. 2
A mlcrocourroller risa smgle_mtegrated cucmt, commonly \Mth thq_followmg fea\)

SR re”feci’ion bf’tf‘f_e'féglé th dividial
pﬁékégébh‘i HiE A sy DT EERHY .. s g D e f

setial input/output such as setial ports (UARES} "}i‘ J Az Aessomnoonid LY

PG fethembnaitommnn}cano;asanﬁerfaees lilges[2€ Serial Perlphevai iﬂte:;fameand Conrmilm Avea

1 Neﬂmﬂd@r‘syé@emmomecb fdoirfwr G FV DT seraey aine ift D peglue hegst ooaoms
SHLY :_penpht:r@ls»suohasﬁmemsy event a:eunterﬁ“PWM generators hnti wmhdag

ﬂsi;’ji‘ L6 e

srerieei mamy mt:litdesamalngetmdngtalréomrsem B 0N
in-circuit programming and debuggingsuppdreiis: - : 53 3l
wPhisintpgrationdrastical [y redyces theiumber of chipsiand’ thaamomnt wamng*a;md c"trcurteberafd space :
s that ot be nbdded toprotuce éqiivalént systems using sepatate:cliips Furthormore;andion ot pin
eouaydevises ipartivylin:dach pin nady-intérface to severat intethall perintieralsy with the:pin farietion
sselected binsoftware Thisallows:a parttobe used is & wider variety vflapplications than ifpinshad
dedicated functions. Mict bﬁ:omfollers hmee prcwehbtﬁ behighty pepalan in &tﬁh&dﬁi&d}*‘gy&mm@srﬁ%tmlr

ke mfmdcgc‘p;og{n thed9F0gudisnerm ooy e s wonsod ¢ wctowrdosd oounsirlel wisubaootnes 4
128onig micvevontrolersiises Hzmu&ld arcmtentuve: sepanata memény busesfopdnstructiong ddd:data,
allowingdcoessestotake placeconeurrentlys Where aHariardarehitéotorE isabed; instiuctionswerdsfor

the processor may bea d1 ffelwﬁ bip sgch: han i Iength o,f;mgml rqqxﬁo; y)anc}rgggste.ggafemgﬁmﬁpkﬁ: §2-

7t ‘r’n_'s 1ol ‘Lui 8] J“i.J P J

'-"LN Rt ‘-{ HALE G 'ai}." L B ERITy: gleie SR

The decision of which peripheral to integrate is often difficult. The microcontroller vendors often trade
aperating frequencies and system design flexibility against time-to-market requirements from their customers

and overall lower system cost. Manufacturers have to balance the need to minimize the chip size against

. additional functionality.
Microcontroller architectures vary widely. Some designs include general-purpose microprocessor cores,
with one or more ROM, RAM or I/O functions integrated onto the package. Other designs are purpose
built for control applications. A microcontrotler instruction set usually has many instructions intended for
bit-wise operations to make control programs more compact, For example, a general purpose processor
might require several instructions to testa bit in a register and branch ifthe bit is set, where a microcontroller
could have a single instruction that would provide that commonly-required function.
Microcontrollers typically do not have a math COPIOCESSOL, SO ﬂoatmg point multlphcailon and division are
carried out using a standard library.
Microcontrollers are sometimes called embedded microcontrollers, which just means that they are part
of an embedded system —— that is, one part of a larger dewce Or system.
A microcontroller differs from a microprocessor, which is a general-purpose chip that is used to create a
mult-function computer or device and requires multiple chips to handle various tasks. Amicroeohu'oller is
meant to be more self-contained and mdependent and functions as atiny, dedicated computer.
The great advantage of riiicidcontrollers, as opposed to using larger microprocessors, is that the parts-
count and design costs of the item being controlled can be kept to a minimum. They are typically designed
using CMOS (complementary metal oxide semiconductor) technology, dn efficient fabrication technique
that uses less power and is more immune to power spikes than other techniques.
There are also multiple architectures used, but the predominant architecture is CISC (Complex Instruction
Set Computer), which allows the microcontrolier to contain multiple control instructions that can be executed
with a single macro instruction. Some use a RISC (Reduced Instruction Set Computer) architecture, which
. implements fewer instructions, but delivers greater simplicity and lower power consumption.
Early controllers were typically built from logic components and were usually quite large. Later,
microprocessors were used, and controllers were able to fit onto a circuit board, Microcontrollers now
place all of the needed components onto a single chip. Because they control a single function, some
complex devices contain multiple microprocessors.
Microcontrollers have become common in many areas and can be found in home appliances, computer
equipment, and instrumentation. They are often used in automobiles, and have many industrial uses as well
and have become a central part of industrial robotics. Because they are usually used to control a single
process and execute simple instructions, microcontrollers do not require significant processing power.
The automotive market has been a major driver of microcontrollers, many of which have been developed
for automotive applications. Because automotive microcontrollers have to withstand harsh environmental
conditions, they must be highly reliable and durable. Nonetheless, automotive microcontrollers, like their
counterparts, are very inexpensive and are able to deliver powerful features that would otherwise be
impossible, or too costly to implement.
9.4 Microcomputer Devices -
In addition to the microprocessor and memory, we need various input and output devices. The system
- needs a temperature sensor as an input device to sense. room temperatures and three output devices-a
fan, a heater, and an LCD panel for dig
9.4.1 Microprocessor L
The processor will read the binary instricti ; 1d exetiife those instructions continuously.
It Will read the temperature, d1splay lt at the LCD dlsplay panel and turn on/off the fan and the heater
based on the temperature
9.4.2 Memory -
" The system includes two types of memory. ROM (read only memory) will be used to store the program,
called the monitor program, that is responsible for providing the necessary instructions to the processor to

124

Lei
b

monttor the system. This will be a permanent program stored in ROM and will not be altered. The R/W
(read-write) memory is needed for temporary storage of data.

9.4.3 Input

Inthis system, we need a device that can translate temperature (measurement of heat) into an equlvalent
electrical signal; a device that translates one form of energy into another form is called a transducer. For
example amicrophoneis a transducer that converts sound energy into an electrical signal, and a thermocouple
is atransducer that converts heat into an electrical signal. These days temperature sensors are available as
integrated circuits. A temperature sensor is a three-terminal semiconductor electronic device that generates
avoltage signal that is proportional to the temperature, However, this is an analog signal and our processor
is capable of handling only binary bits. Therefore, this signal must be converted into digital bits. The analog-
to-digital (A/D) converter performs that function. The A/D converter is also an electronic semiconductor
chip that converts an input analog signal into the equivalent eight binary output signals. In microprocessor
based systems, devices that provide binary inputs(data) are connected to the processor using devices such
as buffers called input ports. This A/D converter is an input port, and it will be assigned a binary number
called an address. The microprocessor reads this digital signal from the input port

9.4.4 Output

There are three output devices: fan, heater and liquid crystal dlsplay (LCD). These devices are connected
to the processor using latches called output ports.

Fan: This is an output device, identified as portl, that is turned on by the processor when the temperature
reaches a set higher limit,

Heater: This is also an output device, identified as port2, that is turned on by the processor. when the
- temperature reaches a set lower limit,

Liquid Crystal Display (LCD): This display is made of crystal materlal placed between two plates in form
of dot matrix or segments. It can display letters, decimal digits or graphic characters. The LCD is used to
display temperatures,

9.4.5 Self Learning Exer01se

True/False :

A. A microprocessorisa mLthipmpose, programmable clock-driven, register-based electronic device

that reads binary instructions from a storage device calléd memory.
B. A microcontroller (also MCU or pC) is a functional computer system on multiple chips

.

C. Microcontrollers are used in automatically control]ed products and devices.

Fill In the Blanks

D. The microprocessor operates in binary digits, 0 and 1, also known as

E. Computer has four components: , input, output and the central processmg wnit (CPU).
F. Microcontroller contains a processor core, memory, and programmable .___peripherals.
G Three micro computer output devices areQa fan, a ,and an LCD panel for display.
9.5 Machine language

Figure 9.1 Arrangement of different languages
| 122 p 122

itis the lowest-level programming language (except for computers that utilize programmable microcode)
Machine languages are the only languages understood by computers. While easily understood by computers,
machine laiiguages are almost impossible for humans to use because they consist entirely of numbers,
Programmers, therefore, use either a high-level programming language or an assembly language. An assembly
language contains the same instructions as 2 machine language but the instructions and variables have
names instead of being just numbers.

Programs written in high-level languages are translated into assembly language or machme language by a
compiler. Assembly language programs are translated into machine language by a program called an
assembler. - :

Every CPU has its own unique machme Ianguage Programs must be rewritten or récompiled, therefore, to
run on different types of computers. Sometimes referred to as machine code or object code, machine
language is a collection of binary digitsor bits that the computer reads and intérprets. Machine language is
the only language a computer is capable of understanding. _

9.6 Assembly Language — ———

Assembly language, commonly referred to as assembly, is a more human readable form of machine

language. Every computer architecture uses its own assembly language thus processors using an architecture

based on the x86, PowerPC, or TI DSP will each use their own language. Machine language is the
pattern of bits encochng a processor’s operations. Assembly will replace those raw bits with a more
readable symbols call mremonics.
For example, the following code s a single operation in machine language.

. 00011106010000110 _ - :
For practical reasons, a programmer would rather use the equivalent assembly representat1on for the
previous operation, : : :

ADD R6,R2,.R6 ;Add $R2 to $R6 store in $R6 _
This is a typical line of assembly. The op code ADD instructs the processor to add the operands R2 and
R6, which are the contents of register R2 to register R6, and store the results in register R6. The “7
indicates that everything after that point is a comment, and is notused by the system.

Assembly has a one-to-one mapping to machine language. Therefore, each line of assembly corresponds
to an operation that can be completed by the processor. This is not the case with high-level languags. The
assembler is responsible for the translatlon from assembly to machine language. The reverse operation is
completed by the dissasembler. o

Assembly instructions are very simple, unlike high-level languages. Often they only accomplish a smgle
operation. Functions that are more complex must be built up out of smaller ones.

The following are common types of i mstructlons

Moves:
0 Set aregister to a fixed constant value
0 Move data from a memory location to a register (a load) or move data from aregister to a memory

location (a store). All data must be fetched from memory before a computation may be performed. Similarly,
results must be stored in memory after results have been calculated.
0 Read and write data from hardware devices and péripherals

Computatlon
0 Add, subtract, multiply, or divide. Typically, the values of two registers are used as parameters and
results are placed in a register

0 Perform bitwise operations, taking the COH_]LII}CUOII/CIIS_]UHCUOI‘I (and/or) of corresponding bits in a
pair of registers, or the negation (not) of each bit in a register
0 Compare two values in registers (>, <, >=, or <=)
~ Control Flow:
0 Jump to another ocation in the program and execute instructions there
0 Jump (branch) to another location if a certain condition holds
0 Jump to another location, but save the location of the next instruction as a point to return to (acall)

123

|
|
|
|

9.6.1 Advantages of Assembly

The greatest advantage of assembly programming is raw speed. A diligent programmer should beableto
optimize a piece of code to the minimum number of operations required. Less waste will be produced by
extraneous instructions. However, in most cases, it takes an in-depth knowledge of the processor’s instruction
set in order to produce better code than the compiler writer does. Compilers are written in order to
optimized your code as much as possible, and in general, it is hard to write more efficient code than it.
Low-level programming is simply easier to do with assembly. Some system-dependent tasks performed
by operating systems simply cannot be expressed in high-level languages. Assembly is often used in writing
device drivers, the low level code that is responsxble for the interaction between the operating system and
the hardware,

Processors in embedded space, such as the ez430, have the potential for the greatest gain in using assembly.
These systems have very limited computational resources and assembly allows the maximum functionality
from these processors, However, as technology advances, even the lowest power microcontroller is able
to become more powerful for the same low cost. '

9.6.2 Difference between machine language and assembly language

Machine language is the actual bits used to control the processor in the computer, usually viewed as a
sequence of hexadecimal numbers (typically bytes). The processor reads these bits in from program memory,
and the bits represent “instructions™ as to what to do next. Thus machine language provides a way of
entering instructions into a computer (whether through switches, punched tape, or a binary file}.
Assembly language is a more human readable view of machine language. Instead of representing the
machine language as numbers, the instructions and registers are given names (typicalty abbreviated words,
or mnemonics, eg Id means “load”). Unlike a high level language, assembler is very close to the machine
language. The main abstractions (apart from the mnemonics) are the use of labels mstead of fixed memory
addresses, and comments,

An assembly language program (ie a text file) is translated to machine language by an assembler. A
disassembler performs the reverse function (although the comments and the names of 1abels will have
been discarded in the assembler process).

9.6.3 Self Learning Exercxse

True/False
H. Machine languages are the only languages understood by computers.

L Assembly language programs are translated into programmmg language by a program called an
assembler,
IR Computation means Compare two values in registers (>, <,>=, or <=)
K. Adisassembler performsthe same function as assembler.
Fill In the Blanks _
L. Assembly language is a more human readable form of ____language.
M. Assemblyhasa mapping to machine language.
N. is used to set a register to a fixed constant value . .
0. Machine language is the actual bits used to control the in the computer.
9.7 Bus

A setof parallel conductors, which allow devices attached to it to communicate with the CPU is called as -
Bus :
The bus consists of three main parts:

.............

Figure 9.2 Device Attachment to a generic bus
124

- Control lines :

These allow the CPU to control which operations the devices attached should perform, i.e. read or wnte
- Address lines

Allows the CPU to reference certain (Memory) locations within the device.
- Data lines

The meaningful data which is to be sent or retrieved from a device is placed on to these lines.

The Bus is set to run at a specified speed Wthl'l is measured in MHz

9.7.1 Address Bus

In this information transfer takes place in only one direction, from the microprocessor to the memory or D’
O elements, there this called a unidirectional bus. For 8-bit microprocessors, this busis typically 16 bits
long. The CPU can generate 2 = 65536 different possible addresse on this bus. Amemory location or an
J/0 element can be represented by each one of these addresses. For example an §-bit data word can be
stored in address 2000 : : -
‘When the microprocessor wants to transfer mformatlon between itself and a certain memory location or I/
O device, it generates the 16-bit address from an internal register on its 16 address pins a0-al5, which
then appears on the address bus. These 16 address bits are decoded to determine the desired memory
Tocation or I/O device. This decoding process normally reqmres hardware. .

9.7.2 Data Bus

In this data can flow in both directions, to or fromthe microprocessor, therefore this isa bidirectional bus.
Insome mxcroprocessor the datapins are used to send other information such as bits in addition to data.
This means the data pins are time-shared or multiplexed. The inte] 8085 microprocessor, used as the CPU
in the intel SDK-85 mlcrocomputer is an example where the lower 8 bits of the address are multlplexed on
the data bus.

9.7.3 Contro! Bus

The bus consists of a number of signals that are used to synchromze the operation of the 1nd1v1dual
microcomputer elements. The microprocessor sends some of these control signals to the other elements to
indicate the type of operation being performed. Each microcomputer has a unique set of control signals.
However, there are some control signals that are common to most MICIOProcessor.

9.7.4 Self Learning Exercise

True/False
P. Address Busiscalled as umdlrec'uonal bus, ' :
Q. Address lines allow the CPU to reference certain (Memory) locanons \mthin the devnce

Fill In the Blanks-
R. The bus consists of three main parts: control lmes address lines and

S. In data can flow in both directions, to or from the microprocessor, therefore thisisa
bidirectional bus.

9.8 Architecture of the 8085A
The internal architecture of the 8085 A contains a register array with both dedicated and general purpose
“fegisters. : : : '

A 16 bit program counter (PC)

A 16 bit stack pointer (SP)

Six 8-bit general purpose registers arranged in pairs: BC, DE, HL

A temporary register pair: WZ
A 16-bit program counter addresses instructions in anyone 0f 63,536 possible memory locations. When
the RESET IN pin of the 8085A is made logic 0, the program counter is reset to zero; when the RESET
IN pin is returned to logic 1, the control unit transfers the contents of the PC to the address latch, providing
the address of the first instruction to be executed. Thus, program execution in the 8085A begms with the

instruction in memory location zero.
125

8085A Istructions are 1 to 3 bytesin length. The first byte always contains the operation code {OP code).
During the instruction fetch, the first byte is transferred from the memory by way of the external data bus
through the data bus buffer latch into the instruction register. The PC is automatically incremented so i
contains the address of the next instruction if the instruction contains only 1 byte, or the address of the next
~ byte of the present instruction if the instruction consists of 2 or 3 bytes.
In case of a multibyte instruction, the timing and control section provides additional operations toread in
the additional bytes. The timing and control section uses the instruction decoder output and external control
signals to generate the state and cycle timing signals and signals for the contro] of external devices. After all
the bytes of an instruction have been fetched into the microprocessor, the instruction is executed. Execution
may require transfer of data between the microprocessor and memory or an /O device. For these
-transfers, the memory or I/O device address placed in the address latch comes from the instruction which
‘was fetched or from one of the register pairs used as a data pointer: HL, BC, or DE. '
Six general purpose tegisters in the register array can be used as single 8-bit registers or as 16-bit register

paits. The temporary register pair, WZ, is not program addressable and is only used by the control unit for

the internal execution of instructions. For example, to address an external register for a data transfer, WZ
is used to temporarily hold the address from an instructionread into the microprocessor until the address
istransferred to the address and address/data latch, T

The 16-bit stack pointer, SP, maintains apointer to the top of the stack allocated in external
stack, as previously indicated, primarily supports interrupt and subroutine programmirig.

The 8085A%. arithmetic logic unit performs arithmetic and logic operations on data, The operands are
stored in two registers associated with the ALU: the 8-bit accumulator and the 8-bit femporary register
The accumulator is loaded from the internal bus and can transfer data to the internal bus, Thus, it serves
both as a destination and source register for data. The temporary register temporarily holds one of the
operands during a binary operation. For example, if the contents of register B are to be added to the
contents of the accumulator and the result left in the accumutator, the temporary register holds acopy ofthe
contents of register B while the arithmetic operation is taking place. o o

- Associated withthe ALU is the 5-bit flag register, F, which indicates conditions associated with the results

memory. The

of arithmetic or logic operations, The flags indicate zero, a carry out of the high order bit, the sign (most——

significant bit), parity, and auxiliary carry (carry out of the fourth bit). | _
8085A’s internal data bus is 8 bits wide and transfers instructions and data among the various internal
registers or to external devices through the multiplexed address/ data bus buffer latch. The bidirectional,
three-state address/data bus buffer latch isolates the microprocessor’s internal data bus from the external
system address/data bus. In the output mode, the information on the internal bus is loaded into the 8-bit
data latch that drives the address/data bus output buffer. The output buffers are floated during input or
nontransfer operations. During thé input mode, data from the external data bus is transferred over the
internal data bus to an internal register, :

9.8.1 Pinout of 8085A

. Figure 9.3 8085A microprocessor pin configuration B
The 8085A is an 8-bit microprocessor suitable for a wide range of applications. It is a single chip, NMOS.
device implemented with approximately 6200 transistors ona 164 X 222 mil chip contained in a 40-pin
dual-in-line package. The package pins their configuration are shown in Figure 9.3. The instruction set of
the 8085 Aconists of 74 instructions. _ :
The 8085A operates on asingle 5 V power supply connected at Vec; power supply ground is connected

126

to Vss. The frequency of the internal clock generator, which synchronizes the operation of the 8085A, 1s
determined by a crystal or RC network connected at pins X, and X,,. The internal clock generator
oscillates at twice the basic microprocessor frequency. A 50 pement duty cycle two phase, nonoverlapping
clock is derived from oscillator, A 6.25 MHz crystal provides a 3.125 MHz internal clock frequency. A
TTL level clock output, CLK(OUT),derived from one phase of the internal clock, provides a clock
signal that can be used for synchronizing external devices. Instead of a crystal or RC network, an
external clock can be connected to X . The remaining package pins provide the address, data, and
control signals.
Intel’s later version of the 8085A, the 8085AH, uses an NMOS technology called HMOS. This
implementation of the 8085A has improved electrical characteristics, including 20 percent lower power
consumption, wider voltage margins, and higher speed versions. CMOS implementations of the 8085A,
such as OKI Semiconductor’s MSMS0C85A, are also available. Architecturally and functionally, these
implementations of the 8085A are identical. Where the distinction is not important, the'various
implementations will simply be referred to generically as the 8085A. Detailed timing calculations in this
text use the parameters for the 8085AH. ,
An8085A microcomputer system can be constructcd wnth standard ROM and RWM or with specially
designed ICs that contain memory and I/O ports. Figure 9.4 shows a microcomputer system using
standard ROM and RWM. The 8085A is capable of directly addressing up to 64 K memory locations
with its 16-bit address. Eight of the 16 bits, A,-A , are provided directly on the three-state address pins,
A-A .. The other eight bits AAO A_ are provided on the bidirectional, three-state address/data pins,
AD -AD The address/data pins are time multiplexed: at times carrying addresses, at other times carrying

_ datzL Address information is provided on the address/data pins by the 8085A at the beginning of each
memory reference, and is externaily laiched and held during the remainder of the memory reference to
provide address bits A -A.. The 8-bit latch in Figure 9.4 latches the address information from the
address/data pins when clocked by the address latch enable signal, ALE. The 8085A generates this
signal at the appropriate time when providing address information on its address/data pins. At other
times during a memory reference, a byte of data is transferred to or from the memory on the address/
data pins. The 8085A generates two control pulses to indicate whether it is reading, RD or writing, WR,
an external register. Time multiplexing of the address and data reduces the number of pins on the
microprocessor package,
I/O ports are basically external registers. They can be interfaced as memory and written to and read
from by any instruction that references memory. Alternatively, special instructions can read or write an I/
O port. The 8085A directly addresses up to 256 input and 256 output ports, using special I/O instructions
with an 8-bit address. This 8-bit address is repeated on pins AD -AD, and A,-A , when an /O device
is addressed, and, therefore, the /O device need only decode one set of these identical address bits.
Another control signal, IO/M, generated by the 8085A indicates whether the microprocessor wants to
read or write memory or O. When this signal is logic 0, memory is being referenced; whenitislogic 1,
I/Q is being referenced, The signals RD, WR, and I0/M are used together in the system design to
control the reading and writing of external memory and I/O ports. Table 9.1 summarizes the functions of
the 8085A pins discussed in this sectlon :

Figure 9.4 8085 A microprocessor system using standard ROM and R/'WM
127

5 ymbol

Agedis

ADgr.

. Type

Hame mwl Functions

Adidress Bus The most significant & bits of the
memaory adidress or the § bits of the LIO- address,
3-dated during Hald and Hait modes and during
RESET.

WMultiplexed Address /Data Bus: Lower 8 btz of
memory address(or 110 address) appesr on the
kug during the first clock cyde. It then becomes
the Deta bus during the second and third cvcles.

RD

Adldress Latch Enable; It ocours during the . rst

| clock stete of & maching cyclé and enables the

address o get fatched irto the oni- chip latch of
peripheralz, The felling edge of ALE is set to
guarantee sétup and hold times for the address
informetion. The faling edoe of ALE can also be
used 1o strobe the status |nforrnatlnn ALE is
never 3-stefed.

Read Covdrol: ‘2 low level on RD mdwates tha
zelected memory or 1D device is to be read and
that the Data bus is availabilz for the data trarsfer,

Sestatesd during Ho!d and Halt modes and dunng '
| RESET. '

R

SaS1and 1IOM

X2

Ao ao

Write Lontrol A Inw level on WR mdicates the
datz op the Data Bus iz to be witten into the

1 selected mem ory or WO Iocation, Dste is set up st

the tralling adge of wiR. 3-stated during Hold and
Hait modes and during RESET. :
Machine Cyele Stitis:

W4 8, 5, Staus

M em ory Wriite
Memeryread
WO vwite
G read
Opcbds fetch -
Opcode fetch
Irterrupted
Acknowledge

0 a Halt

* x X Hold

* ® X Resat

i N = Y Y

| * = 3-state {high im pedanoe)
%= unspeciiied

5, can also be used as an advanced RMY status.

:IO.IM Spand S becom e valid ot the baginning of

am achme cycle and remain sable throughout the
cycle. The faling edge of ALE may he uzed to
lstch the state-ofthess lines.

X;-and X are connected to @ crystal, LC or RC

nebaork tu drive the intermal clock genserator. X1
can @leo he an external dock input from a ogic
gate. The input frequency is divided by 2 to give
the processor's internal opereting fequency,

CLK

Voo

Llochk: clock butput for use as a system ciock,
The period of CLK istwite the X |, X input period.
Powers +5 volt supply.

Vsas

Growund seference

Table 9.1 Description of some 8085A pins

128

|
|
|
|

Addtegs Bus

ALU

& goup of lnes At are used 10 send a

mermcory address or a device address from

the WMPU 1o the memory location or the
eripheral. The 8035 mucroprocessor has
f addresslines.

‘The group of cdircuits that performs

arithimetic and logic opeations. The ALU
is a part of the CFLI,

sserbly Language

Bus

& medium OF commnunicaion with a

| eotnputer in which programs are writien in

mnemonics. An asseohly languege is
specifictoa given cotnputer.

A group of Hnes used to transfer bits
between the microprocessor and other
compenients of the computer system.

onitrol Bus

Tifigle lines el are geeraied by the MPU
t0 grovide timing of various operations.

CFJ

The Central Procéssing Unit. The group of
circuits that processes. data and provides
control st%nﬁ and timing. B includes the
atithmeticlogic unit, regsters, instruction
decoder, and the cortral unit. - :

oi4g

The group of circuils thal pn;mdes‘umx_ng
and signals to &l opemtions in the
crrpputer and cordrols data flow,

Data Bus

Irput

A group of ti-drecional lines used to

ransfer data between the MPU anid
peripherals (or memary). The 8085

microprocessor has sight data lines. o
4 device that transfers infornation. fom

outside world to the computer.

Instruction

IMachine Language

A corrnand 1n binary that 18 teCogrizZen
and exeouted by the cumputer - io

accomyplish a task. Some insiructions are

designed with one word, and some require

raalfiple words,

The bitary medium of comvunication with

a tompuier ihrough a designed set of
instructions specificto each uther:

FINOLY

B medivo At stores bitary infommation

{ingtructions and data)

Ticrocontroller

Microprocessor

Outgiut

& device that includes rracruprocessot,
memary, and 170 sigrat lines on a single
chip, fibricated using VL 81 technotogy.
A serniconductor dewice (integrated circuit)
manufactred by using the L31 technigue.
I incdludes the ALU, regster an_?gs and
control circuits en a single chip. The temn
@PU) is also syonymous with the
1 CHpIn CRssOr. _
A device that transfers information from
coihputer 1o the ontside world,

Z memory thal stores birary information
during the operation of computer. This
memery is used as a waiting pad to wite
user programs and data. The information

129

9.8.2 Self Learning Exercise

True/Faise

T. In case of amultibyte instruction, the timing and control section provides additional operations to
read in the additional bytes.

U The unidirectional, three-state address/data bus buffer latch isolates the microprocessor’s internal
data bus from the external system address/data bus. ' :

Fill In the Blanks :

V. The 8085A’s - unit performs arithmetic and logic operations on data.

W. The register holds a copy of the contents of a register while the arithmetic operation
is taking place. ' ' ' '

X. During the input mode, data from the external data bus is transferred over the data bus
to an infernal register. R

Y. The instruction set of the 8085A contsts of ____ instructions.

9.9Summary o _ _

In this unit we have discussed various terms like CPU, ALU, CU, memory, Input and Qutput. The
microprocessor reads the instructions from main memory and communicates with all peripherals using the
system bus. The various components of microprocessor are memory, I/O devices and bus. In machine

language instructions are written in form of Os and 1s where asin assembly language English like words are

used to present binary instructions. We have also discussed Bus concept and architecture and pinout of
8085 A. : :

9.10 Glossary
9.11 Further Readings '
J.PHayes: Computer Architecture and Organization, McGraw-Hill International
R.S.Goankar: Microprocessor Architecture, Programming and Applications with the 8085/8080,
2" Edition, New Age International Publishers Limited, ISBN-81-224-0710-2.
: K.L.Short: Microprocessors and Programmed Logic, 2* Edition, Prentice Hall of India Pvt. Ltd.
1988, ISBN-0-07-1 00462-9, : ' ' '

9.12 Answer to Self Learning Exercises

- Question Answer - " Question - - Answer

A Tiue - N Moves
B False 0 - Processor
C True - P “True
D Bits Q True
E Memory R Data lines
F Input/output S Data bus
G Heater T True
H -True - U False
| False \' - Arithmetic logic
J Tiue W Temporary
K False X [nternal
L Machine Y 74
M One-to-one . Z 74

9.13 Unit End Questions

1. Write short note on

a. Microprocessor

b, Microcontroller

130

Microcomputer devices
State the difference between Machine
Explain the architecture of 8085A.

Language and Assembly Language

131

_ Unit-10
Introduction to Micro Computer Systems
- Assembly Language And Programming In 8085

- Structure Of The Unit

10.0 Objective

10.1 Introduction

10.1.1 What is an Assembler?

10.1.2 What the Assembler does?

10.2 Programming model of 8085 microprocessor
10.3 Addressing modes ' '
10.4 Instruction setclassification

10.4.1 Data Transfer (Copy) Operations
10.4,2 Arithmetic Operations

10.4.3 Logical Operations

10.4.4 Branching Operations

10.4.5 Machine Control Operations

10.5 Instructionformat

10.6 Conditional Assembly

14.7 Subroutines

10.7.1 Transferring data to subroutines
10.8 MACROS

10.8.1 Why use Macros?

10.8.2 What is a Macro?

10.8.3 Macre Vs Subroutine

10.8.4 Using Macros

10.9 Interrupts

10.9.1 Interrupt Concepts

10.9.2 Writing Interrupt Subroutines

10.10 Summary -

10.11 Glossary

10.12 Further Readings _
10.13 Answers to Self Learning Exercises
10.14 Unit End Questions

10.0 Objective
After studying this unit, you will learn
Instruction set of 8083
Program structures of 8085
Macros and subroutines, Stack, Counter and timing delay
Interrupt structure and its programming.

10.1 Introduction

Almost every line of source coding in an assembly language source program translates directly into a
machine instruction for a particular processor. Therefore, the assembly language programmer must be
familiar with both the assembly language and the processor for which he is programming,

Before moving to assembly language programming of 8085, We will start with the assembly language
programming and assembler concept to better understand 8085 programming.

10.1.1 What is an Assembler ?

Anassembler is a software tool - 2 program - designed to simplify the task of writing computer programs.
If you have ever written a computer program directly in a machine-recognizable form such as binary or

132

hexadecimal code, you will appreciate the advantages of programming in a symbolic assembly language.

Assembly language operation codes (opcodes) are easily remembered (MOV for move instructions, IMP
for jump). You can also symbolically express addresses and values referenced in the operand field of
instructions. Since you assign these names, you can make them as meaningful as the mnemeonics for the
instructions. For example, if your program mis-manipulates a date as data, you can assign it the symbolic
name DATE. [f your program contains a set of instructions used as a timing loop (a set of instructions
executed repeatedly until a specific amount of time has passed), you can name the instruction group
TIMER.

10.1.2 What the Assembler Does ?

To use the assembler, you first need a source program. The source program consists of programmer-
written assembly language instructions. These instructions are written using mnemonic opcodes and labels
as described previously. Assembly language source programs must be in a machine-readable form when
passed to the assembler. The Intellect development system includes atext editor that will help you maintain
source programs as paper tape files or diskette files. You can then pass the resulting source program file to
the assembler, The assembler program performs the clerical task of translating symbolic code into object
code which can be executed by the 8080 and 8085 microprocessors, Assembler output consists of three
possible files: the object file containing your program translated into object code; the list file printout of
your source code, the assembler generated object code, and the symbol table; and the symbol-cross-
reference file, a listing of the symbol-cross-reference records. :

ORIECY FILL
KULTRCR ASSEMB]LER PROCGILAM
FROGRAM FILE FROCRAM 1 EIRTING .

LY .
\ TS REFERLNC
LISTING

Figure 10.1 : Structure of Assembler

Object Code

For most microcomputer applications, you probably will eventually load the object program into some
form of read only memory, However, do not forget that the Intellect development system is an 8080
microcomputer system with random aceess memory. In most cases you can load and execute your object
program on the development system for testing and debugging. This allows you to test your program
before your prototype application system is fully developed. :
A special feature of this assembler is that it allows you to request object code in a relocatable format. This
frees the programmer from worrying about the eventual mix of read only and random access memory in the
application system; individual portions of the program can be relocated as needed when the application -
design s final. Also a large program can be broken into a number of separately assembled modules, Such
modules are both easier to code and to teat.

Program Listing

The program Listing provides a permanent record of both the source program and the object code. The
assembler also provides diagnostic messages for common programming errors in the program listing. For
example, if you specify a 16-hi value for an instruction that can use only an 8-bit value, the assembler tells "
you that the value exceeds the permissible range.

Symbol-Cross-Reference Listing

The symbol-cross-reference listing is the diagnostic tools provided by the assembler. Assume, for examplc
that'your program manipulates a data field named DATE, and that testing reveals a program logic error in
the handling of this data, The symbol-cross-reference listing simplifies debuggmg this error because it
points you to each i mstructlon that references the symbol DATE. '

133

10.2 Programming Model of 8085 Microprocessor

The 8085 programming model includes six registers, one accumulator, and one flag register, as shown in
Figure. In addition, it has two 16-bit registers: the stack pomu.r and the program counter. They are described
briefly as follows,

R T T | I:‘ITT{"ﬁJTl:I
pt L
T . :

_ Figure 10.2: 8085 Programming Model
Registers

The 8085 has six general-purpose registers to store 8-bit data; these are 1dent1fled as B,C,D,EH, and L as

shown in the figure. They can be combined as register pairs - BC, DE, and HL - to perform some 16-bit
operations. The programmer can use these registers to store or copy data info the registers by using data
- copy instructions.

'Accumulator

The accumulator is an 8-bit register thatis a part of arithmetic/logic unit (ALU). This register is used to
store 8-bit data and to perform arithmetic and logical operations, The result of an operation is stored in the
accumulator. The accumulator is also identified as register A.

Flags _

The ALU includes five flip-flops, which are set or reset after an operation according to data conditions of
the result in the accumulator and other registers. They are called Zero(Z), Carry (CY), Sign(S), Parity (P),
and Auxiliary Carry (AC) flags; their bit positions in the flag register are shown in the Figure below. The
most commonly used flags are Zero, Carry, and Sign. The microprocessor uses these flags to test data
conditions.

s e Iaa 1 £ Far [L]

= 3 AL r _ (Y

For exampie, after an addition of two numbsers, if the sum in the accumulator id larger than eight bits, the
flip-flop uses to indicate a carry — called the Carry flag (CY) — is set to one. When an arithmetic

operation results in zero, the flip-flop called the Zero(Z) flag is set to one, The first Figure shows an 8-bit

register, called the flag register, adjacent to the accumulator. However, it is not used as a register; five bit -

positions out of eight are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit
register so that the programmer can examine these flags (data conditions) by accessmg the register through
an instruction.

These flags have critical importance in the decision-making process of the microprocessor. The conditions
(set or reset) of the flags are tested through the software instructions. For example, the instruction JC
(Jump on Carry) is implemented to change the sequence of a program when CY flag is set. The thorough
understanding of flag is essential in writing assembly language programs.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is amemmy pomter
Memory locations have 16-bit addresses, and that is why this isa 16-bit register.

The microprocessor uses this register to sequence the execution of the instructions. The function of the”

program counter is to point to the memory address from which the next byte is to be fetched. When a byte
(machine code) is being fetched, the program counter is incremented by one to point to the next memory

134

location
Stack Pointer (SP)
The stack pointer is also a 16-bit register used as amemory pointer, It points to a memory location in R/W
memory, called the stack. The beginning of the stack is defined by loading 16-bit address in the stack
pointer.
This programming model will be used in subsequent tutorials to examine how these registers are affected
after the execution of an instruction.
Self Learning Exercises
1. What are the various flags used in 8085 9
2. What is Stack Pointer?
3. . In8085 name the 16 bit registers?
4. What is Program counter?

10.3 Addressing Modes
The instructions MOV B, Aor MVI A, 82H are to copy data from a source into a destination. In these
instructions the source can be a register, an input port, or an 8-bit number (O0H to FFH). Similarly, a
destination can be a register or an output port. The sources and destination are operands. The various
formats for specifying operands are called the ADDRESSING MODES. For 30835, they are:

1. Immediate addressing, ' '
2. Register addressing.
3. Direct addressing. -
4. Indirect addressing,
Immediate addressing
Data is present in the instruction. Load the immediate data to the destination provided. Example: MVI
R,data | | |
Register addressing
Data is provided through the régisters,

- Example: MOV Rd, Rs
Direct addressing _ .
Used to accept data from outside devices to store in the accumulator or send the data stored in the
accumulator to the outside device. Accept the data from the port 00H and store them into the accumulator
or Send the data from the accumulator to the port _ :
01H.

- Example: IN 00H or QUT 01H
Indirect Addressing _ o _ _
This means that the Effcctive Addressis calculuted by the processor. And the contents of the address
(and the one following) is used to form a second address. The second address is where the data is stored.
Note that this requires several memory accesses; two accesses to retrieve the 16-bit address and a further
access (or accesses) to retrieve the data which is to be loaded into the register.

10.4 Instruction Set Classification

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The

entire group of instructions, called the instruction set, determines what functions the IMICTOProcessor

can perform. These instructions can be classified into the following five functional categories: data
transfer (copy) operations, arithmetic operations, logical operations, branching operations, and
machine-control operations. '
10.4.1 Data Transfer (Copy) Operations

This group of instructions copy data from a location called a sovree to another location called a destination,
without modifying the contents of the source. In technical manuals, the term data transfer is used for this
copying function. However, the term transfer is misleading; it creates the impression that the contents of the

135

source are destroyed when, in fact, the contents are retained without any modification. The various types

of data transfer (copy) are listed below together with examples of each type:

Tyi}es Examples

1. Between Registers 1. Copy the contents of the

register B into register D.

2. Specific data byte to a register or a | 2. Load register B with the data byte
memaory Jocation, 32H.

3. Between a memory location and a | 3. From a memory location ZOOOH to |
register. B. register

4. Between an 1/0 device and the | 4From an input keyboard to the
accumulator. accumulator.

10.4.2 Arithmetic Operauons

_ These instructions perform arithmetic operations such as addition, subtraction, increment, and
decrement.
Addition - Any 8-bit number, or the contents of a register or the contents of a memory location can be
added to the contents of the accumulator and the sum is stored in the accumulator. No two other 8-bit
registers can be added directly (e.g., the contents of register B cannot be added directly to the contents of
the register C). The instruction DAD is an exception; it adds 16-bit data directly in register pairs,
Subtraction - Any 8-bit number, or the contents of aregister, or the contents of a memory location can be
subtracted from the contents of the accumulator and the results stored in the accumulator. The subtraction
is performed in 2’s compliment, and the results if negative, are expressed in 2’s complement. No two other
registers can be subtracted directly. '
Increment/Decrement - The 8-bit contents of a register or a memory location can be incremented or
decrement by 1. Similarly, the 16-bit contents of a register pair (such as BC) can be incremented or
decrement by 1, These increment and decrement operations differ from addition and subtraction i inan
important way; i.e., they can be performed in any one of the registers or in a memory locatlon

10.4.3 1 ogical Operations

" These instructions perform various logical operations with the contents of the accumulator. -

AND, OR Exclusive-OR - Any 8-bit number, or the contents of aregistet, or ofa memory]_oca‘uon can
be logically ANDed, Ored, or Exclusive-ORed with the contents of the accumulator. The results are

stored in the accumulator.
Rotate- Each bit in the accumulator can be shified either left or right to the next position.

Compare- Any 8-bit number, or the contents of a register, or amemory location can be compared for

equality, greater than, or less than, with the contents of the accumulator.
Complement - The contents of the accumulator can be complemented. All Os are replaced by 1sand all 1s
are replaced by Os. :

1044 Branching Operatlons

This group of instructions alters the sequence of program execution either conditionally or
unconditionally. ' o
Jump- Conditional jumps are an important aspect of the decision-making process in the programming,
These instructions test for a certain conditions (e.g., Zero or Carry flag) and alter the program sequence
when the condition is met. In addition, the instruction set includes an instruction called unconditional jump.
Call, Return, and Restart - These instructions change the sequence of a program either by calling a subroutine

136

- orreturning from a subroutine. The conditional Call and Return instructions also can test condition flags.

10.4.5 Machine Control Operations

These instructions control machine functions such as Halt, Interrupt, or do nothing,
The microprocessor operations related to data manipulation can be summarized in four functions:
1. copying data
2. performing arithmetic operations
3. performing iogical operations
4. testing for a given condition and alerting the program sequence
Some important aspects of the instruction set are noted below:
1. In data transfer, the contents of the source are not destroyed; only the contents of the destination are
changed. The data copy instructions do not affect the flags.
2. Arithmetic and Logical operations are performed with the contents of the accumulator, and the
results are stored in the accumulator (with some expectations). The flags are affected according to the
results.
3. Any register including the memory can be used for increment and decrement.
4. A program sequence can be changed either eonditionally or by testing fora given data condition.

10.5 Instruction Format

An instruction is a command to the microprocessor to perform a given task on a specified data, Each
instruction has two parts: one is task to be performed, called the operation code (opcode), and the second
is the data to be operated on, called the operand. The operand {or data) can be specified in various ways.
It may include 8-bit (or 16-bit) data, an internal register, a memory location, or 8-bit {or 16-bit) address.
In some instructions, the operand is implicit.

Instruction word size

The 8085 instruction set is classified into the following three groups according to word size:

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

In the 8085, “byte” and “word” are synonymous because it is an 8-bit MICrOpProcessor.

However, instructions are commonly referred to in terms of bytes rathér than words.

One-Byte Instructions |

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s) are internal register
and are coded into the instruction. |

Forexample:

| Task] Op Opersindt | Binary fiex

Bl . cade _ Code [Code |
Uops the contents of the acetmudaior n [MOV [4 MOk 1111 | 4P
the rogister O :
Add e confents of tepisier B e B [ADD [B TR 60 | §oh1

* | stmtngs ol ke poctmaialr,
Tryert compliment) gach b i de | O8A e LU | 3FH
ayeunalasior, :

These instructions are 1-byte instructions performing three different tasks. In the first instruction, both
operand registers are specified. In the second instruction, the operand B is specified and the accurnulator
is assumed, Similarly, in the third instruction, the accumulator is assumed to be the implicit operand. These
instructions are stored in 8-bit binary format in memory; each requires one memory location. MOV rd, rs
rd <—rs copies contents of rs into rd. '

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers which is the destination of the
data, sss is the code of the source register.

137

Example: MOV A,B

Coded as 01111000=78H =170 octal (octal was usecl extensively in instruction desngn of such processors).
ADDr

A<—A+r

Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte specifies the
operand. Source operand is a data byte immediately following the opcode. For example:

Taxk Opewde | Dpevand | Bvary Hex Code

Cale

Tewd an 8-hs dum | MVE A Diatir, 3 it M

) G511 H i : :

Myl i s .

Accamulaor Lz Sevoml Bre
DATA

Assume that the data byte is 32H. The assembly language instruction is written as

Mncoponics Fhox vode

A IO | RTMRYLS

The mstruction would require two memory locations to store in memory.

MVIr,data

r <— data

Example: MVIA,30H coded as 3EH 30H as two contiguous bytes. This is an example of immediate

addressing.

ADI data

A <—A+data

OUT port

where port is an 8-bit device address. (Port) <—A. Since the byte is not the data but

points directly to where it is located this is called direct addressing.

Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes specify the 16~
“bit address. Note that the second byte is the low-order address and the third byte is the hlgh-order

address.

opcode + data byte + clata byte

Tash | Opeode - | Operand Binsry code | 1ex Code
Tramstor the | IMP A i3 Fiest te

. 'l;{ugmm iGN LR
GUCTIe B : - R3 Second Byt
the wwIinory 1 i
Tegation 1 10 Gt 23 Third Etwie
208318 *

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

LXIrp, datal6

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data
bytes are 16-bit data in L H order of significance. :

rp <—datal6

Example:LXI H,0520H coded as 21H 20H 50H in three bytes This is also immediate

addressing,
LDA addrA <— (addr) Addr isa 16-bitaddressin LH order. Example LDA2134H coded as 3AH 34H

138

21}, This is also an example of direct addressing,) B}
Lets see the use of the above defined instructions with the help of some programs
Example-1 Write an assembly program to add two numbers

MVI D, 8BH

MVI C. 6FH

MOV _A.C
ADD D
- QUT _ PORTI

HLT
Example-2Write an assembly program to find greatest between two numbers Program

MVI B,30H

MVI C,40H

MOV A,B

CMP C

OUT PORT!

HLT JZEQU

JC GRT

OUT PORT1

HLT EQU: MVIA,0IH

OUT PORTI

HLT

GRT: MOV A, C
OUT PORTI
HET

10.6 Conditional Assembly

The IF, ELSE. and ENDIF directives enable you to assemble portions of your program conditionally, that
is, only if certain conditions that you specify are satisfied.

Conditional assembly is especially useful when your application requires custom programs for anumber of
common options. As an example, assume that a basic control program requires customizing to accept input
from one of six diffrent sensing devices and to drive one of five different control devices. Raiher than code
some thirty separate programs to account for all the possibilities, you can code a single program. The
conditional directives must enclose the code for the individual sensors and drivers. When you need to
generate a custom program, you can insert SET directives near the beginning ofthe source program to
select the desired sensor and driver routine.

10.6.1 IF, ELSE, ENDIF Directives

Because these directives are used in conjunction, they are described together here

Label Opcode Opevand
nationg fF & XS5 N
tEbional ELSE - |
Dpl.".lmuﬁ: ENDHITF '

The assembler evaluates the expression in the operand field of the IF directive. Ifbit 0 of the resulting value
is one (TRUE), instructions between the IF directive and the next ELSE or ENDIF directive are as-
sembled. When bit 0 1s zero (FALSE) these instructions are ignored. (A TRUE expression evaluates to
OFFFFH and FALSE to OH; only bit zero need be tested.} All statements included between an IF

139

directive and its required associated ENDIF directive are defined as an [F-ENDIF block. The ELSE
directive is optional, and only one ELSE directive may appear in an IF-ENDIF block. When included,
ELSE is the converse of IF. When bit 0 of the expression in the IF directive is zero, all statements between
'ELSE and the next ENDIF are assembled. If bit 0 is one, these statements are ignored. '
Operands are not allowed with the ELSE and ENDIF directives. An IF-ENDIF block may appear within
another IF-ENDIF block. These blocks can be nested to eight levels, Macro definitions may appear
within an [F-ENDIF block. Conversely, IF-ENDIF blocks may appear within macro definitions. In either
case, you must be certain to terminate the macro definition or IF-ENDIF block so that it can be assembled
completely, For example, when a macro definition begins in an IF block but terminates after an ELSE
directive, only aportion of the macro can be assembled. Similarly, an IF- ENDIF block begun within a
magcro definition must terminate within that samemacro definition.

Exampie 1, Simple FF-ENDIF Block:
CONDY i EYPE E O

ASSEARLED IE PYPE = O°
18 TRYE

EMNDIF

Example 2. 1FELSEEROF Shck
CONGYE IF TYPEEQ G .
- ASMEMELED IF 'TYPE = §'
15 TRGE
(AR
ASSEMBLED IF "TYPE « &
TS FAISE

EHDIF

10.7 Subroutines

Suppose a program consists of several separate routines, any of which may be executed depending upon
some initial condition (such as a number passed in a register). One way to code this would be to check
each condition sequentially and branch to the routines accordingly as follows:

CONDITION = CONDITION +?
W YES BRANCH TO ROUTENET
CONDITION = CONDITION 22
IE ¥YES BRANCH TO ROUTINE 2

BRANCH TO ROUTINE N

A sequence as above is inefficient, and can be improveld by using a branch table.
The logic at the beginning of the branch table program loads the starting address of the branch table into the
H and L registers. The branch table itself consists of a list of starting addresses for the routines to be

branched to. Using the H and L registers as a pointer, the branch table program loads the selected routme s

starting address into the program counter, thus effecting a jump to the desired routine. For e ple

consider a program that executes one of eight routines depending on which bit of the-accumulator is set:

140

fump to rowting 1 f the zecumutator holds QUOODMD:

S U " S el £
L " LG DE
L U T " T BNGGT
S O " R b
o s g " L+ VRS THE
s L B L o a10M0G
" i b 3 # H o 1[}060‘0{)9

A program that provides such logic follows. The program is termed a ‘pseudo-subroutine’ because
it is treated as a subroutine by the programmer (i.e., it appears just once in memory), but is entered viaa
regular JUMP instruction rather than viaa CALL instruction,

141

O

Lobef Cogle Oireraned

START kX1 M4,BTHL REGISTERS M AND L WILL
POINT TO BRANCH TABLE
GTRIT: RAK _
e GETAD . _
IBEX H . AH LY H LI TO :
X H - AOINT TO NEXT ADBRESS
_ I BRANCH TABLE
e GTRIT
GETAD: MY E 4 BIT FOUND
RS H LOAD JLUMP ADDRESS
, _ HNTO D AND F REGISTERS
MY 0.M -
XOHG EXCHANGE O AND £ ‘
WETH H AND &
FCME UM YO ROUTINE
ADDRESS '
BYBL; DWW ROUTT BRANCH TABLE. EACH
DW ROUT? ENTRY IS & TWO-RYTE
oW RCITS CADDRESS
B ROUTH HELD LEAST SIGNIFICANT
DW ROUTS - BYTE FIRST
DAY ROUTS
D ROUT?
[y ROWTE

The control routine at START uses the H and L registers as a pointer into the branch table (BTBL)
corresponding to the bit of the accumulator that is set. The routine at GETAD then transfers the address
held in the corresponding branch table entry to the Hand L registers viathe D and E registers, and then
uses a PCHL instruction, thus transferring control to the selected routine.

10.7.1 TRANSFERRING DATATO SUBROQUTINES

A subroutine typically requires data to perform its operations. In the simplest case, this data may be
transferred in one or more registers. : _
Sometimes it is more convenient and economnical to let the subroutine load its own registers. One way to
- dothis is to place a list of the required data (called a parameter list) in some data area of memory, and pass
the address of this list to the subroutine in the Hand L registers. '

For example, the subroutine ADSUB expects the address of a three-byte parameter list in the Hand L
-registers. It adds the first and second bytes of the list, and stores the resultin the third byte of the list:

142

Lubel Code Doerond Comenint

LX1 HPLIST #DAD H AND L WITH

ADDRESSES OF THE PARAM-
ETER LIST
CaLL ABSUR TALL THE SURROIUTING
REYL:
AIET: e & : FIRET NUMBER TO BE ADDED
R R BECOND NUMSER TO BE
ADBED o
o% 1 RESULT WILL BE STORED HERE
EXI T MLISTE LOAD H AND 1. REGISTERS
CALL ADSLB FOR ANOTHER CALL TO ADSUB
RETZ.
ST DA W
D8 38
s :
28U MoV AN GET FIRST PARAMETER
INX H ANCREMENT MEMORY
: ABDRESS
MoV . BM GET SECOND PARAMETER.
ABD B ADD FIRST TO SECOND
INX H AMCREMENT MEMDRY
ADDRESS '
OV Wt A STORE BESULT AT THIRD
PARAMETER STORE
RET RETURN UNCONDETIONALLY

The first time ADSUB is called, it loads the A and B registers from PLIST and PLIST+1 respectively, adds
them, and stores tFe result in PLIST+2, Return is then made to the instruction at RET1.

First call to ADSUB:

Al

PEIST

PLIET

P2

second time ADSUB is called, the H and L registers point to the parameter list LIST2. The A and B
registers are loaded with 10 and 35 respectively, and the sum is stored at LIST2+2, Return is then made
tothe instruction at RET?2,

Note that the parameter lists PLIST and LIQTZ could appear anywhere in memory without altering the
results produced by ADSUB.

- This approach does have its limitations, however. As coded, ADSUB must recetve a list of two and only
two numbers to be added, and they must be contiguous in memory. Suppose we wanted a subroutine
(GENAD) which would add an arbitrary number of bytes located anywhere in memory, and leave the sum
in the accumulator,

This can be done by passing the subroutine a parameter list which is a list of addresses of parameters
rather than the parameters themselves, and signifying the end of the parameter list be a number whose first

143

byteis FFH (assuming that no parameters will be stored above address FFOOR).
Callto GENAD:

[EET]
FARMY

ARz

PhRM?

As implemented below, GENAD saves the current sum {beginning with zero) in the C register. It then loads
the address of the first parameter into the D and E registers, If this address is greater than or equal to
FFOOH,it reloads the accumulator with the sum held in the C register and returns to the calling
routine. Otherwise, it loads the parameter into the accumulator and adds the sum in the C register to the
accumulator. The routine then loops back to pick up the remaining parameters. '

Laker Coule Operire Camppnd
LXi H.PLIST A0AD ADDRESS OF _
CALL GENAD FARAMETER ADDRESS LISY
HALY
FLIST, bW PARMT . LiST OF PARAMETER ADDRESSES
oW PAaRK? :
DW PARMI -
BW . PARM4 —
oW T OFFFRM L TERMINATOR
PaR AT 13 6
FARRMA: [7:3 5
FARME: o 13
EARM2: - bR 87
CENAD. XRA A ELEAR SCCUMBLATIR
LGP MGy (o BAVE CHRRENT TOTAL W ©
MOV M- GET LOW OROER ADDRESS BYTE
OF FIRST PARAMETER
1% H . :
ROV T OAM GET HIGH GROER ADORESS RYTE B
LF FIRST PARAMETER,
crl atra LOMPARE TO FEX
1z BACK - AF EQUAL, ROUTINE IS COMPLETE
C MOV D4 B AND E NOw ADDRESS PARAMETER
CLDAX T D " LOAD ACTUMULATOR WITH PARAMETER
DT [AL PREVICUS TOTAL
Inx H HNCREMENT b a0 L TO POINT
' : - TG HEXT PARAMETER AGDRESS
1aaE LGP HET NEXT PARAMETER
BACK, MOV AL ROVTING UME - RESTORE TOTAL
_ REY RETURK TO UALLING ROUTINE
END i

Note that GEND could add any combination of the parameters with no change to the parameters themselves.
The sequence - : : _ o

—

144

1X] HPLIST
CALL GENAR

PLIST: o PAIR N
oW FARMY
oW OFFFEH

would cause PARAM]1 and PARAM4 to be added, no matierwhere in memory they might b_e loca_ted
{excluding address above OFFFFH).
Many variations of parameter passing are p0351ble For example, if it is necessary to aliow) pammetcrb
to be stored at any address, a calling program can pass the total number of parameters as the first parameter;
- the subroutine then loads this first parameter into aregister and uses it as a counter to determine when all
parameters had been accepted

10.8 MACROS
10.8.1 Why Use Macros?

Amacro is essentially a facility for replacing one set of parameters with another In develcpmg your
program, you will frequently find that many instruction sequences are repeated several times with only
certain parameterschanged. As anexample, suppose that you code a routine that moves five bytes of

- data from one memory location to another. A little later, you find yourself coding another foutine to move
four bytes from a different source field to a different destination field, If the two routines use the same
coding techniques, you will find that they are idéntical except for three parameters: the character count, the
source field starting address, and the field starting address. Certainly it would be handy if there were some

" way to regenerate that original routine substituting the new parameters rather than rewrite that code yourself,
The macro facility provides this capability and offers several other advantages over writing code repetmously

The tedium of frequent rewrite (and the probability of error) is reduced.

Symbols used in macros can be restricted so that they have meaning only within the macro Itself
Therefore, as you code your program, you need not worry that you will accidentally duplicate a symbol
used in a macro. Also, amacro can be used any number of times in the same program mthcut dupllcatmg
any of its own symbols, :

- Anerror detected in a macro nccd be corrected only once regardless of how | many times the
macro appears in the program, This reduces debugging time. -

- Duplication of effort between programmers can be reduced Useful functions can bc collcctcd ina
library to allow macros to be copied into different programs. '

 In addition, macros can be used to improve program rcadablhty and o create structured programs,
Using macros to segment code blocks provides clear program notation and simplifies tracing the flow of
the program. ' o
10.8.2 -~ Whatls AMacro? :

" A macro can be describedasa routine defined in a formal sequence of prototype instructions that,
when called within a program, results in the replacement of cach such call w1th acode expansnon conmstmg

ofthe actual instructions represented.
The concepts of macro definition, call, and expansion can be 111ustrated by atyplcal business form letter
where the prototype instructions consist of preset text. For example, we ¢ould define a macro CNFIRM
with the text S

- Air Flight welcomes you as a passcngcr

Your Flight number FNO leaves at DTIME and artives in DEST at ATIME

This macro has four dummy parameters to be replaced, when the macro is called, by the actual ﬂlght

number, departure time destination, and arrival time. Thus the macro call might look llke

145

CNFIRM 123, ’10:45', ‘Ontario’,11:52" _
- A second macro, CAR, could be called if the passenger has requested that a rental car be reserved

at the destination airport. This macro might have thétext _ |

Your automobile reservation has been confirmed with MAKE rent-a-car agency,

Finally, amacro GREET could be defined ic specify the passenger name.

DearNAME: : .

The entire text of the business letter (source file) would then look like

GREET ‘Ms. Scannel’

CNFIRM 123, °10:45', *Ontario’, *11:52"

CAR ‘Blotz’

We trust you will enjoy your flight.

Sincerely, - _

When this source file is passed through a macro proeessor, the macro calls are expanded to produce the

following letter. : ' :

Dear Ms. Scannel: -

Air Flight welcomes you as passenger. Your flight number 1 23 leaves at 10:45 and arrives in

Ontarioat 1 1 . 52. Your automobile reservation has been confirmed with Bloty.
rent-a-caragency. | | | :

- We trust you will enjoy your flight,
Sincerely,

While this example illustrates the substitution of parameters in a macro, it overlooks the relationship of the
" macro processor and the assembler. The purpose of the macro processor is to generate source code
which is then assembled. | o -
10.8.3 . Macros Vs. Subroutines | -
At this point, you may be wondering how macros differ from subroutines invoked by the CALL instruction.
Both aid program structuring and reduce the coding of frequently executed routines. One distinction
between the two is that subroutines necessarily branch to another part of your program while macros
generate in-line code. Thus, a program contains only one version of a given subroutine, but contains as
many versions of a given macro as there are calls for that macro. e
Notice the emphasis on ‘versions’ in the previous sentence, for this is a major difference between macros
and subroutines. A macro does not necessarily generate the same source code each time it is called. By
changing the parameters in a macro call, you can change the source code the macro generates. In addition,
macro parameters can be tested at assembly-time by the conditional assembly directives. These two tools
enable a general-purpose macro definition to generate customized source code fora particular programming
situation, Notice that macro expansion and any code customization occur at assembly-time and at the
source code level. By contrast, a generalized subroutine resides in your program and requires execution
It is usually possible to obtain similar results using either a macro or a subroutine. Determining which of
these facilities to use is not always an obvious decision. In some cases, using a single subroutine rather than
multiple in-line macros can reduce the overall program size, In situations involving a large number of
parameters, the use of macros may be more efficient, Also, notice that macros can call subroutines, and
- subroutines can contain macros, ' '
10.8.4 . Using Macros
The assembler recognizes the following macro operations;
‘ MACRO directive -
- ENDM directive
LOCAL directive
REPT directive
IRP directive
146

IRPC directive

EXITM directive

Magcro call
All of the directives listed above are related to macro definition. The macro call initiates the parameter
substitution (macro expansion) process.

| - Macro Definition

Macros must be defined in your program before they can be used. A macro definition is mxtlated d by the
MACRO assembler directive, which lists the name by which the macro can later be called, and the dummy
parameters to be replaced during macro expansion. The macro definition is terminated by the ENDM
directive. The prototype instructions bounded by the MACRO and ENDM directives are cailcd the macro
. body.

When label symbols used in a macro body have global’ scope, mu[tlply»deﬁned symbol errors result if the
macro is called more than once. A label can be given limited scope using the LOCAL directive. This
directive assigns a unique value :0 the symbol each time the macro is called and expanded. Dummy
parameters also have limited ~ scope. Occasionally you may wish to duplicate a block of code several
times, either within a macro or in line with other source :ode. This can be accomplished with minimal coding
effort using the REPT (repeat block) IRP (indefinite repeat), and IRPC (mdeﬁmte repeat character)
directives. Like the MACRO directive, these directives are terminated by ENDM. S

The EXITM directive provides an alternate exit from a macto, When encountered, it terminates thc current
macro just as if ENCM had been encountered.

Macro Definition Directives
MACRO Dire tive
Label Upcode Operong

Aime MACRO optional dammiy pa’fammx{s‘
’ [
The name in the label field speclﬁes the name of the macro body being defined. Any valid user-defined
symbol name can be used as a macro name, Note that this name must be present and must not be terininated
__byacolon. dummy parameter can be any valid user-defined symbol name or'can be null, When multlple
parameters are listed, - they must be separated by commas, The scope of'a dummy parameter is limited
to its specific macro definition. Ifa reserved symbolis used as a dummy parameter, its reserved value
is notrecognized. For example, if you code A.B,C as a dummy parameter list, substitutions will oecur
properly. However, you cannot use the accumulator or the B and registers within the maero. Because of
“the fimited scope of dummy parameters, the use of these registets is not affected outside the macro definition.
Dummy parameters in a comment are not recognized. No substitution occurs for such parameters.
Dummy parameters may appear in a character string. I-Iowcvcr thc dummy parameter must be ad]acentto
an ampersand character (&) . - '

- Anymachine instruction or applicable assembler directive can be included in the macro body. The
distinguishing feature of macro prototype text is that parts of it can bé made variable by placmg substitutable
dummy parameters in instruction fields. These dummy parameters are the sdme as thc symbols in the

_operand fieldofthe MACRO directive, : '
Example:
Define macro MAC with dummy parameters G1, G2, and G3

147

CMACT MACRO - G1,GIG3 MACRO DIRECTIVE

MOVES: LHLD Gt MACRD BODY
MOV AM
LHLD G2
MOV BM
LHLE G3
MOV CM _
ENDM CENDM DIRECTIVE
ENDM Directive
Lakei B £ &pmﬁd

e ~ENDM e

The ENDM directive is required to terminate a macro definition and follows the last prototype instruction.
Itis also required to terminate code repetition blocks defined by the REPT, IRP, and IRPC directives.
Any data appearing in the label or operand fields of an ENDM directive causes an error .
LOCAL Directive |

- B T Cocoade Dparang

- LOCAL labet namels]

The specified label names are defined to have meaning only within the current macro expansion, Eachtime
‘the macro is called and expanded, the assembler assi gns each local symbol a unique symbol in the
form ??nnnn. The assembler assigns 770001 to the first local symbol, 270002 to the second, and so on.
The most recent symbol name generated always indicates the total number of symbols created for all
macro expansions. The assembler never duplicates these symbols. The user should avoid coding symbols
in the form ??nnnn so that there will not be a conflict with these assembler-generated symbols.
Dumnmy parameters included in a macro call cannot be operands ofa LOCAL directive. The scope of a
dummy parameter is always local to its own macro definition. Local symbois can be defined only within
amacro definition. Any number of LOCAL direct ves may appear in a macro definition, but they must all
follow the macro call and must precede the first line of prototype code. A LOCAL directive appearing
outside a macro definition causes an error. Also, a name appearing in the label field of a LOCAL directive .
CaUSEs an error, . : E i
Example: . o : -.
The definition of MAC1 (used as an example in the description of the MACRO directive) contains a
potential error because the symbol MOVES has not been declared local. This is a potential error since no
error occuys if MAC]Hs called only once in the program, and the program itself does not use MOVES as
-asymbol. However, if MACT is called more than once, or if the program uses the symbol MOVES,
MOVES is a multiply-defined symbol. This potential error is avoided by naming MOVES in the operand
field of a LOCAL directive: _ -

MACI, MACRO 61,0103
y LOCAL MOVES

MOVES: LHLD Gl
MoV A
LHLD G2
MOV B,
LHLD G3
OY om
v ENDM

148

Assume that MAC is the only macro in the program and that it is called twice. The first time MAC1 is
expanded, MOVES is replaced with the symbol 220001 ; the second time, MOVES is replaced with
?70002. Because the assembler encounters only these special replacement symbols, the program may
contain the symbol MOVES without causing a multiple definition.

REPT Directive

Lot Chmsndly Clperamy

oo REFY X PRERSE

The REPT directive causes a sequence of source code lines to be repeated ‘expression’ times. All lines -
appearing between the REPT directive and a subsequent ENDM directive constitute the block to be
repeated. When ‘expression’ contains symbolic names, the assembler must encounter the definition of he
symbol prior to encountering the expression. The insertion of repeat blocks is performed in-line when the
assembler encounters the REPT directive. No explicit call is required to cause the code insertion since the
defimition is an implied call for expansion.
Example 1: .
Rotate accumudator right six times.

ROTR&: REPT ¢

RiEG
ENDR

Example 2; _ ' _ , -
fhe following REPT directive generates the source code for a routine that fills a five-byte field withthe
haracter stored in the accumulator: :

PROGRAM CODE -GENERATED CODING
LHLD ONTRI LHLD CMTHR
" REPT 5 MOV M,A
MOV M4 X H
iNX - H MOV M.A
ENDIE - , Ehe Mo
E : Hov M
X - H
MOV M.
INX H
MOV M4
INX - o

ample3: -

:following example illustrates the use of REPT to generate a muitiplication routine. The multiplication is
omplished through a series of shifts. Ifthis technique is _

amiliar, refer to the example of multiplication in Chapter 6. The example in Chapter 6 usesa program |
p for the multiplication. This example replaces the loop with seven repetitions of the four instructions -
losed by the REPT-ENDM directives. Notice that the expansion specified by this REPT directive
ses the label SKIPAD to be generated seven times. Therefore, SKIPAD must be declared local to this
10 .

149

FSTMUL: MV Y FAST MULTIPLY ROUTINE

Lxi HE MULTHALY B9A - 16817 RESULY
: S HEL o

REPT 7 . '

LOCAL BKIPAD

REC SGET MEXT MULTIPLIER BIT

e SKEFAD SCON'E ADE I BIT = 0

DPAD D HADD MULTIPLICAND INTO ANSWER
SKiPa: - DAD H .

ENDM

RLE

BRC

DAL D

RET '

This exémple illustrates a classic pi'ogramming trade-off: speed versus memory

J{R P {Mrective
Latel Do Operaind

optitnal: IRp durney pazamy, disty

The operand field for the IRP (indefinite repeat) directive must contain one macro dummy parameter

.~ followed by a list of actual parameters enclosed in angle brackets. IRP expands its associated macro
* prototype code substituting the fist actual parameter for each occurrence of the dummy parameter. IRP
then expands the proto type code again substlmtlng the second actual parameter from the list. This process
continues until the list is exhaunsted. ~

The list of actual parameters to be substituted for the dummy parameter must be enclosed in angle brackets
(<>). Individual iterns in the list must be separated by commas. The number of actual parameters inthe list
controls the number of times the macro body is repeated; a list of n items causes n repetitions. An empty list
*(one with no) parameters coded) specifies a null operand list. IRP generates one copy of the macro body
substituting a null for each occurrence of the dummy parameter. Also, two commas with no mtervcnmg
character create anull parameter within the list.

Example:

The following code sequence gathers bytes of data from different areas of memory and then stores them i in

consecutive bytes beginning at the address of STORIT:

PROGRAM EODE - GENERATED CODING
B HSTORIT [HATORIT
RE <FEDIIEMLEL DD WA R
LA X L3t Ha
Y KA IHX H
MK H LA - 3E°NH
ENDM e - MA
’ [ELES H
JLeA FLDR
WOV A
Comx H
IRPC Directive
Label Opcode " Operanet
pprional: IRPC . Gummy geramlext

The IRPC (indefinite repeat character) directive causes a sequence of macro prototype instructions to be
repeated for each text character of the actual parameter specified. If the text string is enclosed in optional
angle brackets, any delimiters appearing in the text string are treated simply as text to be substituted i into
the prototype code. -

150

The assembler generates one iteration of the prototype code for each character in the text string.
For each iteration, the assembler substitutes the next character from the string for each occurrence of the
dummy parameter. A list of n text characters generates n repetitions of the IRPC macro body, An empty
string specifies a null actual operand. IRPC generates one copy of the macro body substituting a

null for each occurrence of the dummy parameter.

Example:
PROGRAM CODE " GEMERA FED COLNG
LHLD DatEd LMLE BATE-}
MVOATE: 1RES W,i977 . X 3] :
X H MV 1,1
TNV MX : X [
INDM Hyt a9
: 1NX W
wve MF
IMX 3

v M7

~ .

IRPC provides the capability to treat each character of a string individually; concatenation provides the
capability for building text strings from individual characters, S
EXITM Directive :

' Labet Opcade - Operand

. hpts'cmi : EXiTM ' s

EXITM provides an alternate method for terminating a macro expansion or the repetition of a REPT, IRP,
or IRPC code sequence. When EXITM is encountered, the assembler ignores all macro prototype
mstructions located between the EXTTM and ENDM directive for this macro. Notice that EXITM may be
used in addition to ENDM, but not in place of ENDM. When used in nested macros, EXITM causes an
exit to the previous level of macro expansion. An EXITM within a REPT, IRP, or IRPC terminates not only
the current expansion, but all subsequent iterations as well. Any data appearing in the operand field of an
EXITM directive causes an error.
Example: ‘ - : ' o _

- EXITM istypically used to suppress unwanted macro expansion. In the following example; macro
expansion is terminated when the EXITM directive is assembled because the condition X EQ 0 istrue.

MACH MACRO XYy

I# % €0 0
EXITH

ENDW

MACRO CALLS

Once amacro has been defined, it can be called any number of times in the program. The call consists of
the macro name and any actual parameters that are to replace dummy parameters during macro
expansion. During assembly, each macro call is replaced by the macro definition code; dummy parameters
are replaced by actual parameters.

Macro Call Format

151

Lbal Opeods Clerering

aptional: THRLTG: NS opticone actual
paramateris}

The assembler must encounter the macro definition before the first call for that macro. Otherwise, the
macro call is assumed to be an illegal opcode. The assemblerinserts the macro body identified by the
macro name each time it encounters a call to a previously defined macro in your program.
The positioning of actual parameters in a macro call is critical since the substitution of parameters is based
_solely on position. The first-listed actual parameier replaces each occurrence of the first-listed dummy
parameter; the second actual parameter replaces the second dummy parameter, and so on, When coding
amactro call, you must be certain to list actual parameters in the appropriate sequence for the macro.
Notice that blanks are usually treated as delimiters. Therefore, when an actual parameter contains blanks
(passing the instruction MOV A M, for example) the parameter must be enclosed in angle brackets. This
is also true for any other delimiter that is to be passed as part of an actual parameter. Carriage returns
cannot be passed as actual parameters.
Ifa macro call specifies more actual parameters than are listed in the macro definition, the extra parameters
are ignored. If fewer parameters appear in the call than in the definition, a null replaces each missing

parameter.
. Example;,.
. The following example shows two calls for the macro LOAD. LOAD is deﬁned as follows:
LOAD - MACRO G162
: LOCAL MOVES

MOVES: LHLD &
MOV M
LHED G2
MOV oM
LD G3
Moy CM
ENDM

'LOAD simply loads the accumulator with a byte of data from the location specified by the first actual
parameter, the B register with a byie from the second parameter, and the C register with a byte from the
third parameter. -

The first time LOAD is called, it is used as part of a routine that inverts tl)é order of threc by’tes in memory.
~ The second time LOAD is called, it is part of a routine that adds the contents of the B register to the
accumulator and then compares the result with the contents of the C register ' '

N | 152

MAIN PROGRAM SUESITTLOION

LT

12 FEXY iz KEXT
LA FADFLD= FLD4+2 OLeT LHELD LD
WOV MA INVERT BYFES MOV AN
Bex M LELD FRO)
MOV MB MOY B
X H : . LkLD FLOs2
MOV M.C MOV OM
OAL SEOHLBY TE.CHELSK MOY MA AMVERT BYTES
Ap 8 LMECK BGIT DEE M
[1 L o8 MOV OMB
CNE DGTRAD ’ UK M

MOV MG

Hipn LHLE 3GOH

MOV aM

LHLD BYTE

CNOY BM

LYLD CHECK

M G

AR 8 AHECK DIGIT

[# I

ChE BETEAD

Nested Macro Calls

Macro calls (inchuding any combination of nested IRP, IRPC, and REPT construets) can be nested within
macro definitions up to eight levels. The macro being called need not be defined when the enclosing macro
is defined; however, it mist be defined before the enclosing macro is called.

A macro definition can also contain nested calls to itself (récursive macro ca//s) up to eight levels, as long
as the recursive macro expansions can be terminated eventually, This operation can be controlled using the
conditional assembly directives described in Chapter 4 (IF, ELSE, ENDIF),

Example: :

Have amacro call itself five times after it is called from elsewhere in the program.

EARAMT SET 5
RECALL MACRD

I# FARAME NE 0

PARANMI SET PARAME-~]
RECALL RECLASIVE CALL
GHDIF

EMDN ' -

Macro Expansion | |
When a macro is called, the actual parameters to be substituted into the prototype code can be passed in
one of twomodes. Normally, the substitution of actual parameters for dummy parameters is simply a text
substitution. The parameters are not evaluated until the macro is expanded,

If a percent sign (%) precedes the actual parameter in the macro call, however, the parameter isevaluated
immediately, before expansion oceurs, and is passed as a decimal number representing the value of the
parameter. Inthe case of | RPC, a ‘%’ preceding the actual parameter causes the entire text string to be
treated as a single parameter. One IRPC iteration oceurs for each digit in the decimal string passed as the
result of immediate evaluation of the text string,

The normal mechanism for passing actual parameters is adequate for most applications. Using the percent -

sign topre-evaluate parameters is necessary only when the value of the parameter is different within the
local context of the macro definition as compared to its global value outside the macro definition.
Example:

The macro shown in this example generates a number of rotate instructions. The parameterspassed inthe

153

macro call determine the number of positions the agcumulator is to be rotated and whether rotate right or
rotate left instructions are to be generated. Some typlcal calls for this macro are as follows:

REHFTR '‘RA3
SHIFTR LABCOUNT -1

The second cal! shows an expression used as a parameter. This expression is to be evaluated immediately
rather than passed simply as text.

~ The definition of the SHIFTR macro is shown below. This macro uses the conditional IF directive to test
the validity of the first parameter. Also, the REPT macro directive is nested within the SHIFTR macro.

SHIFTR MACRG Xy
IF X B} R
EEPT ¥
RAR
EMIIM
ENDIF
F X NE L
EXITM
ELSE
REPT ¥
aal
CENDM
. EMDF
ENDil

The indentation shown in the definition of the SHIFTR macro graphically illustrates the relationships of the
IF, ELSE, ENDIF directives and the REPT, ENDM directives. Such mdentatmn 1snot requlrecl inyour
program, but may be desirable as documentation.

The SHIFTR macro generatgs nothing if'the first parameter is neither R nor L. Therefore, the following
calls produce no code. The result in the object program is as though the SHIFTR macro does not
appear in the source program.

SHIFTR 3
SHIFTR ‘w2

The following call to the SHIFTR macro generates three RAR instructions

SHIFTR ‘B3

Assume that SET directive elsewhere in the source program has given COUNT the value 6. The following
- call generates five RAL instructions

SHIFTR A RQOUNT -1

The following is aredefinition of the SHIFTR macro. In this definition, notice that concatenation isused To
- form the RAF: or RAL operation code. Ifa call to the SHIFTR macro specifies a character other than R -
or L, illegal operation codes are generated. The assembler flags all illegal operation codes as errors .

SHIFTR MACRD Y
- REPT ¥
RAdMN
EnDM
EnER

NULL MACROS _
A macro may legally comprise only the MACRO and ENDM directives. Thus the followmg isa legal
macro definition

NADA MACRQ P1.P2.P3,P4
ENTH

154

A call to this macro produces no source code and therefore has no effect on the program.

Although these is no reason to write sucha macro, the null (or empty) macro body hasa practical application.
For example, all the macro prototype instructions might be enclosed with IF-ENDIF conditional directives.
When none of the specified conditions is satisfied, all that remains of the macro is the MACRO directive
and the ENDM directive '

10.9 INTERRUPTS

10.9.1Interrupt Concepts |
The following is a general description of interrupt handling and applies to both the 8080 and 8085 Processors.
However, the 8085 processor has some additional hardware features for interrupt handling.
Often, events occur external to the central processing unit which require immediate action by the CPU, For
example, suppose a device is sending a string of 80 characters to the CPU, one at a time, at fixed intervals.
There are two ways to handle such a situation: _ '
A A program could be written which accepts the first character, waits until the next character is
ready (e.g., executes a timeout by incrementing a sufficiently large counter), then accepts the next character,
and proceeds in this fashion until the entire 80 character string has been received. This method is referred
to as programmed Input/Qutput, _
B. - Thedevice controller could interrupt the CPU when a character is ready to be input, forcing a
branch from the executing program to 2 special interrupt service routine. The interrupt sequence may be
ilhustrated as follows: '

PEFERRUMT
Mo Veoyrim

Progrem Fxenumion
Eastation Lathnes

Erbarrupt Shoige
Hareltbe

- L.Theinstruction currently being executed is completed,
2.The interrupt enable bit, INTE, is reset = 0.
3.The interrupting device supplies, via hardware, one instruction which the CPU executes. This instruction
does not appear anywhere in memory, and the programmer ha$ no control over it, since it is a function of
the interrupting device’s controller design. The program counter is not incremented before this instruction. ‘
The instruction supplied by the interrupting device is normally an RST instruction since this is an
efficient one byte call to one of 8 e ght-byte subroutines located in the first 64 words of memory. For
instance, the device may supply the instruction: -
RST OH ‘ :
with each input interrupt. Then the subroutine which processes data transmitted fom the device to the
CPU will be called into execution via an ei ght-byte instruction sequence at memory locations OOOOH
to 0007H. ' - -
A digital input device may supply the instruction:
RST IH _ _
Then the subroutine that processes the digjtal input signals will be called via a sequence of instructions -

occupying memory locations 0008H to 000FH.

155

VAR Transbers 5
I Device control G Y Be;;_lnlm_as ol
-~ 00 sobrouting far
. supriie . RET OH ogo7 devees 97
M
ween e e N
Device B’ sontiol T _ } Beginnlng of
: e DU 3 sabroanine for
‘ sypadiv, R8T Y CODOGR j tavice ‘b’
Trarsfers Y Begieming of
] r
Foy bt Liad
Diwice % contial to DAL e subiouting For
supplics RST 7H GHiF dervice 'x’

Note that any Qf these S—byte subroutines rriay in turn call lbnger subroutines to proceSs the interrupt, if

necessary.
Any device may supply an RST instruction (and indeed may supply any one—by‘[e 8080 instruction). The

following is an example of an Interrupt sequence:

ARBIFRARY

MHESOS Y ADBHRESS I\‘.\.FPUL‘Q‘O,V Ly
cen Ky OB ...____..__< bt upl. nom Derke 1 LI
proieriem AL #y L, A\
"wf Gevlen | aupplies
RET OH
Progrute Cipucer =
2000 ounbled oot B
he adenh,
Conkrol ranslomod 1o
by G0
/ .
LELL LT T %
L Lesetitzes 2
’et 3
Briex poppod inwe -
OGN ciunte !

~ Device 1 signals an interrupt as the CPU is executing the instruction at 3COB. This instruction is completed.

The program counter remains set to 3000, and the instruction RST OH supplied by device 1 is executed.

Since this is a call to location zero, 3000 is pushed onto the stack and program control is transferred to
location OOOOH. (This subroutine may perform jumps, calls, or any other operation.) When the RETURN
is executed, address 3000 is popped off the stack and replaces the contents of the program counter,
causing execution to continue at this point. : :

10.9.2 Writing Interrupt Subroutines

In general, and registers or condition bits changed by an interrupt subroutine must be restored before
returning to the interrupted program, or errors will occur. :

For example, suppose a program is interrupted just prior to the instruction:

JC LOC ' | _

and the carry)it equals 1, [f the interrupt subroutine happens to reset the carry bit before returning to the

interrupted pr)gram, the jump to LOC which should have occurred will not, causing the mterruptecl :

program to produce erroneous results.
Like any other subroutine then, any interrupt subroutine should save at least the condition bits and restore
them before performing a RETURN operation. (The obvious and most convenient way to do this is to save

r.

156

o
, the data in the stack, using PUSH and POP operations.) :

! Further, the interrupt enable system is automatically disabled whenever an interrupt is acknowiedged
/ Except in special cases, therefore, an interrupt subroutine should include an El instruction somewhere to
permit detection and handling the future interrupts. One instruction after an El is executed, the i interrupt -
subroutine may itself be interrupted. This process may continue to any level, but as long as all pertinent
data are saved and restored, correct program execution will continue automatically

A typical interrupt subroutine, then, could appear as follows:

Code Qpetand Conment

PUSH PSW SAVE CONDITION BITS AND AGCUMULATOR .

El REENABLE INTI ERRUPTS .

J"ER'I'QRN MNECESSARY ACTHRS TO SERVICE
THE INTERRUPT

POP pew RESTORE MACHINE STATUS

RET RETURN TO INTERRUPTED PROGRAM
Self learning exercises

-1 Define interrupt. o
-2, Which interrupt has the highest pnonty?
3. How many interrupts are there in 80857

10.10 Summary i
In this module we have discussed the assembly language of 8085 Mlcroprocessor _

An Assembler is a software tool or program , design to simplify the task of writing computer
programs.

The 8085 programming model includes six registers, one accumulator, and one flag reglste; In
addition, it has two 16-bit registers: the stack pointer and the program counter,

The various formats for specifying operands are called addressmg ‘modes. For 8085 they are '

Immediate Addressing, Register addressmg Direct Addressmg and Indirect Addressing, |

'The instruction set of 8085 are class1ﬁed into these categones Anﬂamehc Loglcal Braiichmg and ‘

Machine Control Operations.

Describing different instruction mc]udmg conditional assembly Subroutmes Macros and Intenupts _'

10.11 Glossary

AssemblyLanguage :Assembly Languageisalow level programming language usmgthehuman readable
instructions of the CPU. .

Addressmg Mode : Addressing modes are an aspect of the i instruction set archltecture in most central -

processing unit (CPU) designs. ...

Instruction Set : The set of machme instructions that a partlcuial CPU can execute; the corresponding set

of assembly language mnemonics.
Macro :asingle computer instruction that results in a series of i instructions in machme language
Subroutine : A portion of a program that performs a spec1ﬁc task.

10.12 Further Readings -

1. Ramesh S.Gaonkar, “Microprocessor Architecture, Programming and Applications with the 8085”, .

- 4th edition, Penram International Publishing (India) Pvt. Ltd., 1999, _
2, Yu-cheng Liv and Glenn A.Gibson, “Microcomputer Systems: The 8086/8088 Family Archltecture,

157

Programming & Design”, 2nd Edition, Prentice Hall of India Pvt. Ltd., 2001.

3. Barry B Brey, “The Intel Microprocessors — 8086/8088, 801 86 286, 386, 486, Peritium and Pentium
Pro processor”, Prentice Hall of India Pvt. Ltd., 1998. _
4. Douglas V. Hall, “Microprocessors and Interfacmg” Tata McGraw Hill, 1999,

5. Peter Abel, “IBM PC Assembly Language and Programmmg” Prentice Hall of India anate Limited,
1998,

6. B. Ram,” Fundamentals of Microprocessors and Microcomputere”, 5" rev ed.2001,Dhanpat Rai, New
Delhi _
7. webphysics.davidson.edu/faculty/dmb/py310/8085.pdf

10.13 ~ Answersto Self Learning Exercises

1. Sign flag, Zero flag, Auxiliary flag, Parity flag, Carry flag.

2, Stack pointer is a special purpose 16-bit register in the Microprocessor, which holds the address
. of the top of the stack.

3. Stack pointer and Program counter all have 16 bits

4. Program counter holds the address of either the first byte of the next instruction to be '
5. fetched for execution or the address of the next byte of a multi byte i instruction, which has not been
completely fetched. In both the cases it gets incremented automatically one by one as the i instruction bytes
get fetched. Also Program register keeps the address of the next instruction,

6. External devices or internal abnormal conditions can interrupt the normal program execution of a

MiICrOProcessor.
7. TRAP
8. 12

10.14 Unit End Questions
1. (a)Specify the contents of the registers and the flag status as the following instructions are executed.
i. MVIA, 00H
ii. MVIB, FSH
. MOV C,A
iv.MOVD,B
v.HLT
(b)Wnte instructions to load the hexadecimal number 65H in register C and 92H in
accumulator A. Display the number 65H at PORTO and 92H at PORTI. '
2. Draw and explain the block diagram of a microprocessor 8085.
3. (a)Why the lower order address bus is multlplexed with data bus? How they wﬂl be de-multlplexed‘?
- (b)Differentiate between maskable and non-maskable ; interrupts,
4. Write an 8085 assembly language program using minimum number of i instructions to add the 16 b1t no.
in BC, DE & HL. Store the 16 bit result in DE pair.
b (a)Exp]am in detail the following instructions:-
(1) ADC (ii) LHLD (iii) RLC (iv) DI
(b) Define & explain the term addressing modes.

158

| UNIT 11
Peripherals And Their Interfacing With 8085

Structure Of The Unit

11.0 Objective

11.1 Introduction

11.2 ~ Address Space Partitioning

11.2.1 Memory Mapped /O Scheme

11.2.2 I/O Mapped I/0 Scheme

11.3 - Memory and /O Interfacing

11.3.1 Memory Interfacing

11.3.2 O Interfacing

11.4. DataTransfer Schemes

11.4.1 Synchronous data transfer

11.42 Asynchronous Data Transfer

11.4.3 Interrupt Driven Data Transfer

11.4.4 Muitiple Interrupts

11,5 Interrupts = '

11.5.1 "The 8085 Intetrupts R

11.6 Interfacing Devices and I/0 Devices

11.6.1 Generation of Control Signals for Memory and /O Devices: -

11.7 T/OPorts . . : ' - R

11.8 Programrnable DMA Controller

11.8.1 Intel 8257 :

11.9 Sample Program /O Interfacing

11.10 Summary : _

11.11 Glossary. .

11.12 Further Readings S

11.13 Answers to Self Leamning Exercises

“11.14 Unit End Questions

- 11.0 Objective o _

After studying this unit, you will learn -

- . Peripherals and their interfacing with 8085 -
Memery Interfacing : ,
Interfacing 'O ports =~ = _ S
Data transfer schemes (Synchronous, asynchronous, interrupt driven),
Architecture & interfacing of- DMA controller 8257.

.11.1 Introduction

‘A microprocessor combined with memory and input/output devices, forms a microcomputer. The
microprocessor is the heart of a microcomputer. Memories and input/output devices are interfaced to
microprocessor to form a microcomputer. In case of large and minicomputers the memories and input/
output devices are interfaced to CPU by the manufacturer, In a microprocessor-based system the designer
has to select suitable memories and input/output devices for his task and interface them o the MICIOProcessor.
The selected memories and input/output devices should be compatible with microprocessor. If a particular
device is not compatible, an additional electronic circuit has to be designed through which the device may
be interfaced to the CPU. '

11.2 Address Space Partitioning ._
The Intel 8085 uses a 16-bit wide address bus for addressing memories and I/O devices. Using 16-bit
wide address bus it can access 2'¢ =64 K bytes of memory and /O devices. The 64 K addresses are to

159 .

be assigned to memories and I/O devices for their addressing. There are two schemes for the allocation of
addresses to memories and input/output devices: :

1. Memory mapped I/O scheme

2. 1/O Mapped I/O scheme

11.2.1 Memory Mapped I/O Scheme

In memory mapped /O scheme there is only one address space. Addness space is defined as the set of all
possible. addresses that a microprocessor can generate. Some addresses are assigned to mgmones and
some addresses to /O devices. An /O device is also treated as a memory location and one address is
assigned to it. Suppose that memory locations are assigned the.addresses 2000 to 24FF. One address is
assigned to each memory location. Any one of these addresses ot be assigned to an I/O device. The
addresses for I/O devices are different from the addres\ses which hiave been assigned to memories. The
addresses which have not been assigned to memories m&%i;mgne o I/O devices. For example, 2500,

2501, 2502 etc. may be assigned to I/O devices. One adiress is ass gned to each I/O device. In this
scheme all the data transfer instructions of the microprocessol can b used for both memory as well as I/
O devices. For example, MOV A, M will be valid for data trai r}’n\the memory location or /O
devnce whose address is in H-L pair. If the H-L pair contains the ad ss of axmemory location, data will

-be erred from the memory location to the accumulator, If'the H-Lpalr contains the address of an /'O
device, data will be moved from the /O device to the accumulator. The memory mapped 1/O scheme is
suitable for a small system. : :

11.2.2 1/O Mapped I/0 Scheme

In this scheme the addresses assigned to memory locations can also be assigned to /O devices. Since the
' same address may be assigned to'a memory location or an I/O device, the microprocessor must issue a
to distinguish whether the address on the address bus is for a memory location ot an /O device. The
Intel 8085 issues an IO/M -signal for this purpose. When this signal is high address on the address bus is
foranl/O device. When this signal is low, the address on the ad bus is fora memory location. Two extra
instructions IN and OUT are used to address I/O device The IN instruction is used to read to data of an
input device. The OUT instruction is used to send to an output device. This scheme is suitable foralarge
system. '
'11.3 Memory and I/0O Interfacing
Several memory chips and I/O devices are connected to a microprocessor. Fig.11.1 shows schematic
diagram to interface memory chips or /O devnces 19 dm croprocessor. An address decoding circuit is
“employed to select the required /O device ot a ifiefitory chip. Fig, 11.2 shows a schematic diagram of a
decoding circuit. IfIO/M is high the decoder 2 is activated and the required /O device is selected. IF 10/

M s low, the decoder 1 is activated and the required memory chip is selected, A few MSBs of the address

lines are applied to the decoder to select a memory chlp oran IfO device.

| e [j tascveg
SO B R
e T
[E— - : H E
: _} ! ‘ i !
‘ [i £
i AODRESE Bl >
& i | ¢
] : H g R
g r/ Sara obh
g —
H o
s N W
Y

Figure 11.1 Schematic Diagram for Memory and I/O Interfacing
| 160

-11.3.1 Memory Interfacing

The address of amemory location or an /O device is sent out by the microprocessor. The corresponding
memory chip or /O device is selected by a decoding circuit. The decoding task can be performed by a
decoder, a comparator, a bipolar PROM or PLA Programmed logic array).

Tn this section the application of 74LS138,a 1 to 8 lines decoder will be illustrated. Fig, 11.3 shows the
interface of memory chips through 74LS138. G1, G2Aand GZB are enable signals. To enable 741.5138,G1
should be high, and G2A and G2B should below. A, B and C are select lines. By applying proper logic to
select lines any one of the outputs can be selected. Y0, Y1 Y7 are 8 output lines. An output line goes low
when it is selected. Other output lines remain high. Table11.1 shows the truth table for 74L.S138. When
C1is lowor G2A is high or (32B is high, all output lines become high. Thus 741.81 acts as decoder only
when G1 is high, and G2A and G2B are low. The memory locations for EPROM 1 will lie in the range
© 0000 to 1FFF. These are the memory locations for ZONE 0 for the memory chip which is connected to
the output line YO of the decoder. Similarly for ZONE 1 is 2000 to 3FFF and for ZONE 7 is EO00 to
FFFF. Table 11.2 shows the memory locations for various zones

P v EROM
HEMDHT t
CHIPF SELECT 4 v Rt | - e inoley PROH
SIGMALL P
s T e RAM

]

S maM

Y]

bt maw

Tor R e ENABLE P B
RESERVER

FOR FUTURE

{;x}m ENABLE by Mo {erut pEVICE

e D WPGT QEYIE
.

- ?...,.. OHEPIR DEVICE

© prcongRy BT w OUTPET BEWICE

] \uNLSED
LBREVLE RESERVED
SELEQ] — FOR FUTURE
. SIBHALS .

JIR— R -

*

) 3 E "-1. i :”- 1 H 2] L3 [33 1t
i i S T T S T LT
e e e S TR A T TR R I

R e B e L T O L
GV e [w e Ja e w IR R
TR T T AT H TR T M e W [M

R R BT I R A I I R O H
e i S T I R IR T B N L

ey wvglananl .

Table 1: Truth Table for 7415138
161

L) b 3FFF
ATEN} i SFFF

SR
feka §
f\‘j*ﬁf &

G008 1o DEFF
o g FREE

Table 2: Membry Locations for various Zones :

Figure 11.3: Interfacing Memory Chips using 7415138
~ The entire memory address (64K for 8085) has been divided into 8 zones. Address linesA15,A14 and
Al3 have been applied to the select lines A, B and C of the 74LS138. The logic applied to these lines

selects a particular memory device, an EPROM or a RAM. Other address lines A0,A1,A2...and A12-

- go directly to memory chip. They decide the address of the memory location within a selected memory
chip. I0/M is connected to G2B. When 10/M goes low for memory read/write operation, G2B goes low,
~ Glisconnected to+5V 1o Supply and G2A is grounded. _

11:3.2 /O Interfacing |

Fig.11.4 shows the interface of 1/ devices through decoder 74L.S138, As the address of an 1O device is
of 8 bits, only A8 — A5 lines of address bus are used for /O addressing. The address lines A8, A9 and
A10 have been applied to select lines A, B and C of the 741.S138. The address lines A11 —A15 are
applied to G2B through a NAND gate. G2B becomes low only when all address lines Al11 —A1S are

high. G2A is grounded. 10/M is connected to G1. When IO/M goes high for I/O read/ write operation, Gl

goes high. Table 11.3 shows the addresses of /O devices connected to 74LS 1 38.

162

tagrial & Ty W»-??w--{ TRPUT DEVEE xi

R 1 DB mur OEVICE a
< Y e s \
g —dul ¢ ¥ a»‘lu«{ WEYT GEVICE 3 j!
ang e : 3’._..{ Wt DEVEE
P
B
Ay wnnd ol GG
PYPRUN & 7415178 - sw'ljw---v[;umm ver 11
AR s ' S "‘J.
bt Y S S—
[’ “““ o a4 € UHYSED
E FOR PURE
L ? EXPANTHN
o fmbooner T '
oA B 131

sttt] \f{;c

B Ll

I.Mﬂls LY Y T A;.) Sc'h;;m _______ w
S : Quinul pondding Daview
Linga Addrass

LA I 1 t C 0 o Yo Fa Input

- . Daica 1
i 1 1 1 t 06 ¥4 Fd [/
et 3 eanis s s e e e — ... Devee 2 i -
H] 1 H i 1] 1 [§] Yu FA it |

o Table 3: Address of /O Devices connected to 741.S138
11.4 Data Transfer Scheme o | | |
In a microprocessor-based system or in a computer data transfer takes place between two devices such
as microprocessor and memory, microprocessor and /O devices, and memory and I/O device. Usually,
semiconductor memories are compatible with microprocessor because the same technology is employed
inthe manufacturing of both semiconductor memories and microprocessors. Hence, there is less problem
associated with the interfacing of memory. A wide variety of /O devices having wide range of speed and
other different characteristics are available, They use different manufacturing technology such as electronic,
electrical, mechanical, electro-mechanical optical ete. Due to these reasons designers face difficulties in
interfacing IO devices with microprocessor. Special interfacing circuitries have to be designed for the

purpose. Amicroprocessor-based system or a computer may have several /O devices of different speed.

A slow I/O device can not transfer data when microprocessor issues instruction for the same because it
takes some time to get ready. To solve the problem of speed mismatch between a microprocessor and I/
O devices a number of data transfer techniques have been developed. The data transfer schemes are
classified into the following two broad categories. : '

- 1. Programmed data transfer schemes -

163

~ 2. DMA (Direct Memory Access) data transfer scheme.

Programmed Data Transfer Schemes
Programmed data transfer schemes are controlled by the CPU, Data are transferred from én /O, device
to the CPU (or to the memory through the CPU) or vice versa under the control of programs which reside
in the memory. These programs are executed by the CPU when an I/O device is ready tofraiisfer data.-
The microprocessor executes the program to transfer data, Programmed data transfer schemes are employed
- when small amount of data are to be transferred. The programmed data transfer schemes are classified into
 the following three categories.
(1) Synchronous data transfer scheme
(ii} Asynchronous data transfer scheme
(i) Interrupt driven data transfer scheme
These schemes will be discussed in subsequent secuons

DMA Data Transfer Scheme

In DMA data transfer scheme CPU does not participate, Data are directly transferred from an I/Q device
to the memory or vice versa. The data transfer is controlled by the /0 device or a DMA controller, This
scheme is employed when large amount of data are to be transferred. If bulk data are transferred through
the CPU, it takes appreciable time and the process becomes slow. An /O device which wants to send
data using DMA technique, sends the HOLD signal to the CPU. On receiving a HOLD signal from an /O
device the CPU gives up the control of buses as soon as the current machine cycle is completed. The CPU
sends a hold acknowledge signal to the I/O device to indicate that it has received the HOLD request and
it has released the buses. The I/O device fakes over the control of buses and directly transfers data to thc
memory or reads data from the memory,

- DMA data transfer scheme is a faster scheme as compared to programmed data transfer scheme. It is
used to transfer data from mass storage devices such as hard disks, floppy disks etc. It is also used for
high-speed printers. When data transfer is over, the CPU regains the control over the buses.

DMA data transfer schemes are of the following two types:

(1) Burst mode of DMA data transfer -

(i1) Cycle stealing techniques of DMA data transfer,

Burst Mode of DMA Data Transfer. A scheme of DMA data transfer, in which the /O device withdraws

the DMA request only after all the data bytes have been transferred, is called burst mode of data transfer.
* By this technique a block of data is transferred. This technique is employed by magnetic disks drives. In

case of magnetic disks data transfer can not be stopped or slowed down without loss of data. Hence,

block transfer is a must.

Cycle Stealing Technique. In this techmque along block of data is transferred by a sequence of DMA

cycles. In this method after transfemng one byte or several bytes the /O device withdraws DMA request.

This method reduces interference in CPU’s activities. The interference can be eliminated completely by

designing an interfacing circuitry which can steal bus cycle for DMA data transfer only when the CPU i isnot

using the system bus,

In DMA data transfer schemes /O devices control data transfer and hence the I/0 devices must have

registers to store memory addresses and byte count. It must also have electronic circuitry to generate
~ necessary control signals required for DMA operations, Usually, /O devices do not have these facilities.

To solve this problem DMA controllers have been designed and developed. Examples of DMA controller

chips are : Intel 8237A, 8257 etc. which will be discussed in subsequent sections.

11.4.1 Synchronous data transfer
Synchronous means “at the same time.” The device which sends data and the device which receives data
are synchronized with the same clock. When the CPU and I/O devices match in speed, thls technique of
~ the data transfer is employecl The-data transfer with I/O devices is
’ performed executing IN or OUT instructions for /O mapped I/0 devices or using memory read/write
instructions for memory mapped /O devices. The IN instruction is used to read data from an input device -

164

e,

orinput port. The OUT instruction is used to send data from the CPU to an output device or output port,
As the CPU and the /O device match in speed, the VO device is ready to transfer data when IN or QUT
instruction is issued by the CPU. The status of the I/O device i e., whether it is ready or not, is not
examined before data are transferred, as it is not needed.
The I/O devices compatible with microprocessors in speed are usually not available. Hence, this technique
of data transfer is rarely used for 1/O devices. However, memories compatible with microprocessors are
available, and therefore, this technique is invariably used with compatible memory devices, '

11.4.2 Asynchronous Data Transfer

Asynchronous means “at irregular intervals”. In this method data transfer is not based on per- determined
timing pattern. This technique of data transfer is used when the speed of an 170 device does not match the
speed ofthe microprocessor, and the timing characteristic of /O device is not predictable. In this technique
the status of the /O device i.e. whether the device is ready or not, is checked by the microprocessor
before the data are transferred. The microprocessor initiates the I/O device to get ready and then
continuously checks the status of the /O device ill the O device becomes ready to transfer data. When
/O device becomes ready the microprocessor sends instruction to transfer data. This mode of data
transfer is called handshaking mode of data transfer because some signals are exchanged between the I/
O device and microprocessor before the actual data transfer takes place. The microprocessor issues an
initiating signal to the I/O device to get ready (or to start). When I/O device becomes ready it sends signals
to the processor to indicate that it is ready. Such signals are called handshake signals.)

Fig. 11.5 showsa schematic diagram for asynchronous data transfer. Asynchronous data transfer is used
for slow /O devices. This technigue is an inefficient technique because the precisious

o HEERLY

AT RF|MCE B

Figure 11.5 Asynchronous Data Transfer
time of the microprocessor is wasted in waiting, Fig; 11.6. shows a simple example of asynchronous data
transfer. An A/D converter has been interfaced to the microprocessor to transfer data in asynchronous
mode. The microprocessor sends a start of conversion signal, S/Cto the A/D - _
converter. The A/D converter being a slow device as compared to a microprocessor, takes some time to
convert analog signal to digital signal. When conversion is over the A/D converter makes end of conversion
signal, E/C high. The microprocessor goes on checking E/C till it becomes high. When F/C becomes high,
the microprocessor issues instructions for data transfer, Some simple I/O devices may not have status
signal. In such a case the microprocessor goes on checking whether data are available on the port or not.
A keyboard interfaced to a. microprocessor through a port is an example of this type of data transfer
scheme. Asynchronous data transfer discussed so far use software approach. It can also be implemented
by hardware approach employing READY signal. An /O device is interfaced to the microprocessor
through READY signal. I/O device (or memory chip) and microprocessor have READY pins, Whenan I/
O device or memory chip becomes ready to transfer data, it makes READY signal high. 11 microprocessor
checks READY signal before data are transferred, 'READY is low the microprocessor enters a wait
state. The status of the READY signal is sensed by the microprocessor in the T2 state of a machine cycle.
The microprocessor remains in wait state till READY becomes high. This technique is commonly used by
slow memory devices.

165

Fig. 11.6 Asynchronous Data Transter Scheme for an A/D Converter
11.4.3 Interrupt Driven Data Transfer

In this scheme the microprocessor initiates an VO device to getready, and then it executes 1ts main program
instead of remaining in a program loop to check the status of the I/O device. When the I/O device

becomes ready to transfer data, it sends a high signal to the microprocessor through a special input line

called an interrupt line, In other words it interrupts the normal processing sequence of the microprocessor.
On receiving an interrupt the microprocessor completes the current instruction at hand, and then attends
the I/O device. It saves the contents of the program counter on the stack first, and then takes up a
subroutine called ISS (Interrupt Service Subroutine). It executes ISS to transfer data from or to the I/O
~ device, Different ISS are to be provided for different /O devices. After completing the data transfer the
microprocessor returns back to the main program which it was executing before the interrupt occurred.
‘Interrupt driven data transfer is used for slow /O devices.

It is an efficient technique as compared to asynchronous data transfer scheme because precnous time of
the microprocessor is not wasted in waiting while an I/O device is getting ready. Fig. 11.7 show the
interfacing of an A/D converter to transfer data employing interrupt drive data transfer scheme. The
microprocessor sends first the start of conversion signal, S/C to the A/D converter. Thereafter, the
microprocessor gxecutes its main program. A/D converter is a slow device compared to a microprocessor.

Tt takes some time to convert analog signal to its equivalent digit quantity When A/D converter completes

the task of conversion, it makes an end of conversion signal, E/C high. The E/C signal is connected to an
interrupt line of the microprocessor. When interrupt line goes high, the microprocessor takes all necessary
steps to transfer data from the A/D converter. After completing the data transfer the microprocessor
returns back to execute the main program that it was executing prior to the interrupt.

11.4.4 Multiple Interrupts |
In a microcomputer system several /0 devices can useinterrupt driven data transfer scheme. While
interfacing 1/0 devices using in- MIcROPROcE SSORAID CONVERTER interrupts the following situations
may arise:

1. A microprocessor may have only one mtenupt level and several I/O devices are to be connected to it. -
2. A microprocessor may have several mterrupt levels and one /0 device is to be connected to each

interrupt level.
The schemes which are used to tackle such situations are clescnbed inthe following subsect:tons

Flg. 11.7 Interrupt Driven Data Transfer Scheme foran A/D converter
Several I/O Devices Connected to a Single Intermpt Level When several I/O devices are to be connected

166 -

- toasingle interrupt level, they are connected through interrupt controlier, 8259, Up to 81/Odevices can be
connected to the microprocessor through an8259. If more than 8 170 devices are to be connected, more

8259 ICS are used in series. \

Own as vectored interrupt.

-11.5 Interrupts
Interrupt is a process where an external device can get the attention of the microprocessor.
- The process starts from the /O device '
The process is asynchronous.
Classification of Interrupts
Interrupts can be classified into two types:
Maskable Interrupts (Can be delayed or Rejected)
Non-Maskable Interrupts (Can not be delayed or Rejected)
Interrupts can also be classified into: |
Vectored (the address of the service routing is hard-wired) :
Non-vectored (the address of the service routine needs to be supplied externally by
the device)
Aninterrupt is considered to be an emergency signal that may be serviced.
- The Microprocessor may respond to it as soonaspossible, -
What happens when MP is interrupted 7 _ _ _
When the Microprocessor receives an interrupt signal, it suspends the currently executing program and
jumps to an Interrupt Service Routine (ISR) to respond to the incoming interrupt, '
Each interrupt will most probably haveitsownISR. . o
RESPONDING TO INTERRUPTS '
Responding to an interrupt may be immediate or delayed depending on whether the interrupt is maskable
or non-maskable and whether interrupts are being masked or not,
There are two ways of redirecting the execution to the ISR depending on whether the interrupt is vectored
or non-vectored, s o _
Vectored: The address of the subroutine is already known to the Microprocessor
Non Vectored: The device will have to supply the address of the subroutine to the
Microprocessor : '

11.5.1 The 8085 Interrupts | .

. When a device interrupts, it actually wants the MP to give a service which isequivalent fo asking

the MP to call a subroutine, This subroutine is called ISR (Interrupt Service Routine) _

* . The El instructionisa one byte instruction and is used to Enable the non-maskable interrypts,
The ‘DI’ instruction is 2 one byte instruction and is used to Disable the non-maskable interrupts.
The 8085 hasa single Non-Maskable interrupt. .
The non-maskable interrupt is not affected by the value of the Interrupt Enable flip flop.

———— ke

The 8085 has 5 interrupt inputs,

The INTR input. -

The INTR input is the only non-vectored interrupt.

INTR is maskable using the EI/DI instruction pair.

RST 5.5,RST6.5,RST 7.5 are all automatically vectored.
RST5.5,RST 6.5, and RST 7.5 are al] maskable.

167

TRAP is the only non-maskable interrupt in the 8083
TRAP is also automatically vectored

-

Interrupt name Maslable Vectored
INTR Yes No
RST 5.5 Yes N Yes
RST 6.5 Yes Yes
RST 7.5 Yes Yes
| TRAP No Yes

INTERRUPT VECTORS AND THE VECTOR TABLE

An interrupt vector is a pointer to where the ISR is stored in memory. :

Allinterrupts (vectored or otherwise) are mapped onto amemory area called the Interrupt Vector Table
{IvT). | '
: The IVT is usually located in metmory page 00 (0000H - 00FFH).

The purpose of the IVT is to hold the vectors that redirect the microprocessor to the right place
when an interrupt arrives. .

Example: Let , a device interrupts the Microprocessor using the RST 7.5 interrupt line.

Because the RST 7.5 interrupt is vectored, Microprocessor knows , in which memory location it
has to go using acall instruction to get the ISR address. RST7.5 is knows as Call 003Ch to Microprocessor.
Microprocessor goes to 003C location and will get a JMP instruction to the actual ISR address. The
Microprocessor will then, jump to the ISR location .

THE 8085 NON-VECTORED INTERRUPT PROCESS
1. Theinterrupt process should be enabled using the EI instruction.
2. The 8085 checks for an interrupt during the execution of every instruction.

3. IfINTR is high, MP completes current instruction, disables the interrupt and ~ sends

INTA (Interrupt acknowledge) signal to the device that interrupted
4. INTAallowsthe /O device to send a RST instruction through data bus.
5. - Uponteceiving the INTA signal, MP saves the memory location of the next

instruction on the stack and the program is transferred tocall’ location (ISR Call) specified

by the RST instruction

6. Microprocessor Performs the ISR

7. - ISR mustinclude the ‘El’ instructionto enable the further interrupt within the

program. : - _

8, RET instruction at the end of the ISR allows the MP to tetrieve the return address

from the stack and the program is transterred back to where the program was interrupted.

9. The 8085 recognizes 8 RESTART instructions: RSTO - RST7. each of these would send the
execution to a predetermined hard-wired memory location: ' :

ESTART SEQUENCE

The restart sequence is made up of three machine cycles

In the 1st machine cycle:

The microprocessor sends the INTA signal. ,

While INTA is active the microprocessor reads the data lines expecting to receive, from the interrupting

device, the opcode for the specificRST instruction. ‘ '

In the 2nd and 3rd machine cycles: _ _-

the 16-bit address of the next instruction is saved on the stack.

Then the microprocessor jumps to the address associated with the specified RST instruction.

THE 8085 MASKABLE/VECTORED INTERRUPTS

The 8085 has 4 Masked/Vectored interrupt inputs.
 RST5.5,RST6.5,RST7.5

- They are all maskable.

168

They are automatically vectored according to the following table:

The vectors for these interrupt fall in between the vectors for the RST instructions. That’s why they have
names like RST 5.5 (RST 5 and a half). i
MASKING RST 5.5, RST 6.5 AND RST 7.5

These three interrupts are masked at two levels:

Through the Interrupt Enable flip flop and the EI/DI instructions.

The Interrupt Enable flip flop controls the whole maskable interrupt process.

Through individual mask flip flops that control the availability of the individual interrupts,

These flip flops control the interrupts individually.

THE 8085 MASKABLE/VECTORED INTERRUPT PROCESS

1.The interrupt process should be enabled using the El instruction,

2.The 8085 checks for an interrupt during the execution of every instruction.
3Ifthereisan interrupt, and if the interrupt is enabled using the interrupt mask, the ‘microprocessor will
complete the executing instruction, and reset the interrupt flip flop. .

4.The microprocessor then executes a call instruction that sends the execution to the appropriate location
in the interrupt vectortable. :
5.When the microprocessor executes the call instruction, it saves the address of the next instruction on the
stack. ' B

6.The microprocessor jumps to the specific service routine, .

7.The service routine must include the instruction EI to re-cnable the interrupt process.

8.At the end of the service routine, the RET instruction returns the execution to where the program was
interrupted. , -

MANIPULATING THE MASKS ' _

The Interrupt Enable flip flop is manipulated using the VD instructions. o

The individual masks for RST 5:5, RST 6.5 and RST 7.5 are manipulated using the SIM instruction, :
This instruction takes the bit pattern in the Accumulator and applies it to the interrupt mask enablingand -
disabling the specific interrupts. :
Self Learning Exercises y B

1. Can an input port and an output port have the same port address? -
2. How will the port number be affected if we decode the high order address liries A, sAzratherthan A~
;ﬂ Ifhigh order lines are partially decoded, how ¢an one determine whether it is peripheral /O or memory
mapped L/O. " '
4. Ina Memory mapped I/O how does the microprocessor differentiate between an /O and memory? |
_Canan VO have the same address as a memory register? ’
5. Why is a 16 bit address (data) stored in memory in the reverse order- the low order byte first, followed
by the high order byte? ' '

11.6 Interfacing Devices and I/O Devices
To communicate with the outside world microcomputers use peripherals (IO devices). Commonly used '
peripherals are : A/D converter, D/A converter, CRT, printers, hard disks, floppy disks, magnetic tapes
etc. Peripherals are connected to the microcomputer throngh electronic circuits known as interfacing circuits. |
Generally, each I/O device requires a separate interfacing circuit. The interfacing circuit converts the data ;
available from an input device into compatible format for the computer. [he interface associated with the !
- output device converts the output of the microcomputer Into the desired peripheral format. To simplify the J'
work of the designer microprocessor E . i
manufacturers have developed a member of general purpose and special purpose single chip interfacing |
devices. Some of the general purpose devices are: -

(i) /O Port '

(§) Programmable Peripheral Interface (PPI)

189

(iii) DMA Controller

(iv) Interrupt Controller

(v) Communication Interface

Special purpose interfacing devices are designed to interface a particular type of I/O device t the
microprocessor, Examples of such devices are:

(i) CRT Controller.

(i) Floppy Disk Controller.

(iii) Key Board and Display Interface.

A large number of interfacing devices have been developed by various manufacturers. I’lw detailed
description of these devices is beyond the scope of the book. Here we will discuss some important
Memory and I/O devices. '

11.6.1 Generation of Control Signals for Memory and I/O Devices

Inte! 8085 issues control signals RD,WR for read and write operation of memory and /O devices. It also
issues a status signal I0/M to distinguish whether read/write operation is -

to be performed by memory or /O device. Memory and 1/Q dev1ces require control signals in modlﬁed
form shown below:

MEMR - Memory read.

MEMW - Memory write.

IOR—I/Oread.

IOW— 1/0 write

-—These control signals are generated using RD, WR and [O/M using logic gates OR

logic and inverters are used for the purpose as shown in Fig, 11.11.

Figure 11.11 Control Signals for Memory I/O Read/Write éperatioﬁ
To get MEMR, use 10/M v RD
visasymbol for logical OR operation. Memory read operation takes place when I0/M and RD both are
low. I0/M and R are applied to an OR gate. The output of the OR
gate is MEMR. When both 10/M and RD are low and MEMR goes low and it activates memory forread
opetation. Similarly, other control signals are obtained as shown below: o .
To get MEMW, use IO/M v WR. — v
I/O read/write operation takes place when I0/M is high, To get IOR and I0W signals
IO/M is inverted and then applied to OR gate
Get IOR using (inverted I'M vRD)
Get lOW using (inverted [0/M v WR)

11.7 T/OPorts

An input device is connected to the microprocessor through an input t port. An input port is a place for
uploading data. Au input device unloads data into the port, The microprocessor reads data from the input
port. Thus data are transferred from the input device to the accumulator via input port. Similarly, an output
device is connected to the microprocessor through an output port. The microprocessor unloads data into
an output port. As output port is connected to the output device, Figure 11.12 shows a schematic connection
of the CPU, I/O port and /O devices. An I/O port may be programmable or non-programmable. A non-
programmable port behaves as an input port if it has been designed and connected in input mode. .Similarly,
a port connected in output mode acts as an output port. But a programmable /O port can be programmed

170

to acteither as an input port or output port; the electrical connections remain same.,

_ Figure 11.12 Interfacing of /O device through /O port
The Intel 8212 is an 8-bit non-programmable I/O port, It can be connected to the microprocessor either
asan input port or an output port, If we require one input port and one output port, two units of 8212 will
be required. One of them will be connected in input mode and the other in the output mode. Figure 11,13
shows the connections of 8212 in input mode and output mode. _'

i

.t D

: - - Figure 11.13 Interfacing of Intel 8212 :
The Intel 8155 is a RAM with /O ports. It contains a 256 byte RAM, 3 /O ports and a 14-bit timer/
- counter. There are three ports A, B and C. The portAand port B are of 8-bits and port C of 6 bits Each
port can be programmed either as an input portoroutput port. The port C may also be programmed as a
control port for the port A and port B, :

11.8 Programmable DMA Controller |
The bulk data transfer from fast /O devices to the memoty or from the memory to 1/O devices through the
accumulator is a time consuming process. For stich a situation the direct memory access (DMA) technique
is preferred. In DMA data transfer scheme, data are directly transferred from an I/O device to RAM or
“from RAM to an VO device. For DMA data transfer, the data and address buses come under the control
of the petipheral device which wants DMA data transfer, The microprocessor has to relinquish the control
of the address and data buses for DMA operation on the request of the /O device, For DMA data
transfer the /O device must have its own registers to store byte count and memory address, It must also
* be able to generate control signals required for DMA data transfer. Generally such facilities are nor
available with I/O devices. Single chip programmable DMA controllers have been developed by several -
manufactures for interfacing of VO devices to the microprocessor for DMA data transfer, Such controllers

provide all the facilities for DMA datatransfer, Intel 8257 is described below, N

-11.8.1 Intel 8257

The Intel 8257 is a programmable DMA controller. Fig. 11.14 shows its schematic diagram. It is a 4-
channel programmable direct memory access (DMA) controler. Itis ina 40 pin L.C., package and requires
asingle+5 V supply for its operation. Four /O devices can be interfaced to the microprocéssor through
this device. It is capable of performing three operations, namely read, write and verify. During the read
operation data are directly transferred from the memory to the I/O device. During the write operation data
are transferred from the I/O device to the memory. On receiving a request from an /O device, the 8257
generates a sequential memory address which allows the /O device to read or write directly to or from the
~memory. Each channel incorporates two 16-bit registers, namely (i) DMA address register and (ii) byte
count register. These registers are initialized before a channel is enabled. Initially, the DMA address register
18 loaded with the address of the first memory location to be accessed, During DMA operation it stores the
next memory location to be accessed in the next DMA cycles. 14-LSBs of the byte count register store the
number of bytes to be transferred, 214 (16384) bytes of data can directly be transferred to the memory
from the /O device or from the memory to the I/O device. 2 MSBs of the byte count register indicate the
operation which will be performed by the controller on that channel. Besides these registers the 8257 also

171

includes amode set register and a status register.

Important pins of Intel 8257 are as follows:

DRQO— DRQ3. These are DMA requeést lines. An I/O device sends its DMA request on one of these
lines. A HIGH status of the line generates a DMA request.

DACK0 — DACK3. These are DMA acknowledge lines. The Intel 8257 sends an acknowledge signal
through one of these lines informing an I/ device that it has been selected for DMA data transfer. A LOW
on the line acknowledges the I/O device.

lines are input lines. The inputs select one of the registers to be read ot programmed. Ad—A7 lmes give
tristated outputs which carry 4 through 7 of the 16-bit memory address generated by the 8257.
A0—A7. These are address lines. AO— A3 are bidirectional lines. In the master mode these lines carry
41.SBs of 16-bit memory address generated by the 8257. In the slave mode these lines are input lines, The
inputs select one of the registers to be read or programmed. A4 — A7 lines give tristated outputs which
carry 4 through 7 of the 16-bit memory address generated by the 8257.

Do— D7 These are data lines. These are bidirectional three-state lines. While programming the conn'oller
the CPU sends data for the DMA address register, the byte count register and the mode set register
through these data lines. During DMA cycle, the 8257 sends the 8 MSBs of the memory'address through
these lines at the beginning of the DMA cycle. These 8 MSBs are then latched in 8212 latch. Thwreafter the
data bus is made available to handle memory data transfer during rest of (he I)M A cycle.

AEN Address latch enable.

Figure 11.14 Schematic diagram of 8257 _
ADSTB AHigh on this line latches the 8MSBs of the address, which are sent on D-bus, into
Inte} 8212 connected for this purpose. ' P
CS T is chip select.
I/OR I/O read. It is a bidirectional line. In output mode it is used to access data from the dewce during the
DMA write cycle.

'TO/W T/O write. It is a bidirectional line. In output mode it allows the transfer of data to the /O device

during the DMA read cycle. Data is transferred from the memory.

MEMR Memory read.

MEMW Memory write.

T Byte count (Terminal count)
MARK Modulo 128 Mark.

CLK Clock

HRQ Hold request

HLDA - Hold acknowledge.

An /O device sends its request for DMA transfer through one of the four DRQ lmes On receiving the
DMA request for DMA data transfer from an /O device, the Intel 8257 sends the hold request hi the CPU
through the HRQ line. The 8257 receives the hold acknowledge signal from the CPU through HLDA lige.

After receiving the hold acknowledge from the CPU, it sends DMA acknowledge to the I/O device
through DACK line, The memory address is sent out on address and data lines. The 8257 sends 8 MSBs
of the memory address over D-Bus. These 8 MSBs of the memory address are latched into 8212 using

172"

__ ADSTB signal. ADSTB is similar to ALE of Intel 8085. For DMA read cycle, in which data are transferred
from memory to I/O devices, two control signals MEMR arid 1/0W are issued by 8257, The MEMR
- enables the addressed memory for readmg data from it, The JOW enables the I/O device to accept data, :
‘Similarly, for DMA write cycle, in which data are transferred from the I/O device to the memory, two
control signals MEMW and VOR are issued by ii controller. The MEMW enables the addressed memory
for writing data to it. The /OR enables the I/O device to output data; The byte countis decremented by
one after the transfer of one byte of data. When byte count becomes zero, TC goes high 1nchcatmg that the
data transfer using DMA. is complete. The four DMA channels are programmed elther ina ﬁxed prrorrty
_mode of operation. READY line is used by slow memory or I/O devices. -

11.9 Sample Program : I/O INTERFACING

~ We shall connect a simple output device that has one buffer register. The microprocessor . .-
~ transfer the data to this buffer and the device consumes. Next byte must be transferred after the earller byte :
is used. To do this called synchronization, we have what is called a device flag which is set when the data
is put in the buffer. In this case microprocessor outputs the data so the flag is set by it and devroe when
consumes it clears the flag. Microprocessor check this 0 (buffer empty) then puts new byte. This is
actually done by a program that reads the flag and waits for flag to become 0. We can eonnect thisflag to
the system. Assume that out flag is connected to LSB of the. 8 bit bus and it is addressed by 8 bit 10
address of say 6 1hex then IN 611 will read the flag in A register with its LSB having the flag value. Assume
that output device buffer address is 60H Then the IN 60 will read the buffer in A register. Program
schematic for outputting N bytes to the device as subroutmg This way of domg 10 is called programmed
IO which involves waiting for flag.
NBYTEOUT:
PUSHB
PUSHD
PUSHH
. PUSHPSW
LDAN
MOV D, A—counterin D
LOOP: MVIH, X — address of X in HL pa.1r
IN 61H
ANI 0] —extract the ﬂag bit (LSB) A— 0if ﬂag —-0 and non zero othermse
INZ WAIT _ .
MOV A, M — Fabyte from X is put in A reg.
OUT 60H —data from A (from X)is put. m IO butfer o
INXH "
DCRD
JNZ LOOP
POP PAW
POPH
POPD
POPB
~.RET—Return to calling program. o
NDB 1 — Defines 1 byte location for N- - REAE AT
Assume that we havea input device connooted to ort ?OH and its. ﬂag at port 71 H e
For input device the data is produced by the device so it sets the flag and CPU consume the data and
clears the ﬂag The program thus will wait for ﬂag to become 1 and then read the byte from’ buﬁ"er
PUSHB - .
PUSHD— stores the program oallmg program state

'PUSHH
173

PUSHPSW
LDAN
MOV D, A-— counter inD . p _
LOOP: ~ MVIH, X — address of X in HI, pair
IN 71H
ANI 01 —extract the flag bit (LSB) A=0Qif ﬂag =0 and non zero othermse
JZ1L.OOP _ .
IN 70H— data is read from buffer
MOV M, A it is moved to locafions X
"INXH
DCRD
JNZ1L.OOP
POP PAW |
POPH - . '
+POPD Restores the callmg program state
POPB- R :
RETReturnto ca]hng program

HARDWARE REQUIRJ:D TO SUPPORT THE ABOVE PROGRAMS s GIVEN BELOW ;

L ophey

Tltw

\—.'-_)
7l
=34

Tkrx

#

LT Pt n
o feab it

A“nncli abharn
T The Fing |

| Piad
Faadty

Al wnlué w0 ikt LSO AN P e]

;gT ! 7 - i . i

Figure: OUTPUT Device Interface Data output porf as 60H and Status port (1 bit input port))éfs 61H.

11.10Summary
The interfacing concept can be summarized as follows
Peripheral-Mapped I/0
‘ The Out is a 2 byte instruction.
A Latch is commonly used to interface output dewces
The IN is a 2 byte instruction.
A tri-state buffer is commonly used to interface i mput devices.

it

To interface an output or input device, the low order address bus A?-AO needs to be decoded to
generate the device address pulse, which must be combined with the control signal IOR (orIOW) to select

the device. . e
Memory. Mapped I/ O g . .
Memory related instructions are used to transfer data.

To interface I/O devices, the entire bus must be decoded to generate the device address pulse,
which must be combined with the control signal MEMR (or MEMW) to generate the I/O select pulse. This'

174

pulse is used to enable the I/O _device and transfer the data.
11.11 Glossary -

CISC - Complex Instruction Set Computer. Describes the architecture of a processor family. CISC
processors generally feature variable-length instructions, multiple addressing formats, and contain onlya
small number of general-purpose registers, Intel’s 80x86 family is the quintessential example of CISC .
Contrast with RISC. o o) S
DMA-Direct memory access; a process in which circuits other than the CPU can read from or write to
memory without processor intervention. Displacement-the amount by which a location differs froma
reference point. When using data tables, the reference point is usually the base address. B
Flag-A flip-flop used to indicate the status of an operation, For example, the zero flag will indicate if an
operation results in zero if it is set, . _ :
Handshaking-The exchange of control and status information between two circuits. Handshaking is used .
to coordinate the transfer of data between circuits, -
Interrupt- An asynchronous electrical signal from a peripheral to the processor. When the peripheral asserts
this signal, an interrupt occurs. When an interrupt occurs, the current state of the processoris saved and an
nterrupt service routine is executed. When the interrupt service routine exits, control of the processoris

‘returned to whatever part of the software was previously running.

Interrupt vector-A special code that identifies the circuit requesting an interrupt.

‘Port-an interface circuit capable of receivinig from or placing information on the bus.

Sdftware Interrupt- An interruption of a program that is initiated by a software instruction. Software interrupts
arg commonly used to implement breakpoints and operating system entry points, Unlike true interrupts,
they occur synchronously with respect to program execution. In other words, software interrupts always
occur at the beginning of an instruction execution cycle.

. 11.12Further Readings : |
LR.S. Goanker,’l’lvlicroproccesorArchitecture, Programming and Applications with the 8085/8080", 2
Edition, New Age International Publishers Limited, ISBN-81-224-0710-2.. :

‘2K.L. Short,” Microprocessors and Programmed Logic”,2% Edition, Prentice Hall of India Pvt.Ltd. 1988,
ISBN-0-07-100462-9 '

" 3.Douglas V. Hall,” Microprocessor and Interfacing”,Mc-Graw Hill Book Company, 1987, ISBN-0-07-
100462-9, § ' : '
4.B. Ram,” Fundamentais of Microprocessors and Microcomputere”, 5™ rev ed.2001 ,Dhanpat Rai, New
11.13 Answers to Self Learning Exercises | . \
1. Yes, They will be differentiated by control signal. - .
2, The port address will remain the same because the /O portaddress is duplicated on both segments of
the address bus. ' i .

3. To recognize the type of /O , examine the control signal. T the control signdl is LOW it must be
peripheral IO and if control signal is MEMW it must be memory mapped I/O.

. 4. Inmemory mapped I/O the microprocessor can not differentiate between an /O and memory: it treats
an I/O as if it is the memory. Therefore, an /O and memory register can not have the same address; the
entire memory map (64K) of the system has to be shared between memory and /O, o
5. This has to do with the design of the 8085 microprocessor. The instruction decoder or the associated -
micro program is designed to recognize the second byte as the low order byte in a three byte instruction.
11.14Unit End Questions. . |
1. Explain what is (a) Memory mapped I/O Scheme (b) I/O Mapped I/O Scheme
2. What is interrupt? Explain enabling, disabling and masking of interrupts. Discuss with suitable example
how to transfer data using interrupts. _ o
3. Discuss Why an Interrupt controller is required.

' 175

. 4. What are I/O ports? What are programmable and nonprogrammable ports.
5. Show interface connection for I/O devices employmg 7415138 and explain how to determine address
for each /O device. : : . :
- 6. Explain what is vectored mterrupt _ :
7. Discuss how memory chips and /O devices are 1nterfaced t0-a MicToprocessor. :
8. If the speed of I/O devices do not match the speed of microprocessor, what type of data transfer
techniques are used? Describe the:m briefly.
9. What is interfacing?
10. Explain the concept of DII‘GC‘[Memory Ar,cess (DMA)
11. Explain the fungtions of Handshake signals. -

176

UNIT-12 |
Comparative Study Of 8085, 8086 & 8088

Structure Of The Unit

12.0 Objective

12.1 Introduction

12.1.1 Evolution from 8080/ 8085 to 8086

12.1.2 Evolution from 8086 to 8088
12.2 8085 Microprocessor
" 12.2.1 Pin diagram of 8085
-12.2.2 Signal group of 8085

12.2.3 Block diagram of 8085 .

12.2.4 Description of 8085

12.3 8086 Microprocessor

12.3.1 Pin diagram of 8086

12.3.2 Signal group of 8086 .

12.3.3 Internal Organization of 8086

12.4 8088 Microprocessor .
12.4.1 The Basic Architecture of 8088 _ . -
12.5 Pentium processor ; B '
12.5.1 BriefHistory of Pentium

12.5.2 Block Diagram of Pentium

12.6 Dual Core processor

12.7 Summary

12.8 Glossary -

12,9 Further Readings

12,10 Answers to Self Learning Exerc1ses

12.11 Unit End Questions

12.0 Objective

After studying this unit, you will learn .
8085 Pinout, internal architecture and block diagram
" 8086 Pinout, internal architecture and block diagram
8088 Pinout, internal architecture and block diagram
Features of Pentium processor

12.1 Introduction
12.1.1 Evolution from 8080/8085 to 8086

Intel introduced 8086 microprocessor in 1978. This 16-bit microprocessor was a major
improvement over the previous generation of 8080/8085 series of microprocessors.

8086 8080/8085

1 megabyte Memory of 64 kllobyte

(20-bit add. bus) - *- - - | (16-bit add. bus) 8-bit data

16-bit Data bus bus -
. Pipelined processor Non-pipelined ppr .

(first singlé-chip ppr)

In a system with pipelining, the data and the address bus are busy n'ansferri_rig data W_hjlg the CPU

177

is processing information.
12.2.2 Evolution from 8086 to 8088

8086 was with 16-bit data bus internally and externally. All registers and the data bus carrying data infout -

of the CPU were 16-bit.
* That time all the peripherals were designed around 8-bit mlcroprocessor

* It was expensive to built PCB with 16-bit data bus.

So Intel introduced 8088, which was;

* Identical to 8086 internally, but externally 8-b1t data bus instead of 16-bit,

» Ithad 1 megabyte of memory like 8086.

IBMs decision to pick up 8088 as their choice of microprocessor in de31gn1ng the IBM PC. -

* 8088-based IBM PC was enormous success, because IBM and Microsofi macle itan open -
system.

¢ This enabled the clomng of this system and resulted a huge growth in both harclware and
software designs based on IBM PC.

~* Incontrast IBMs main competitor Apple computer introduced a closed system and ¢

blocked all attempts of cloning.

Product 8030 | 8085 (8086 8088 | 80286 | 80386 | 8048
- [
Year 1974 (1976 | 1978 11979 [1982 1985 | 1989

Introduced . .
Clock rate 2-3 3-8 5-10 [5-8 [6-16 16-33 [25-
(MHz) 50
No. of 4500 | 6500 | 29,000 [29,000 | 130,00 | 27500 | 1.2
transistors 0 0 milli
O

« | Physieal 64K T 64K M ™M I6M | 4G 4G
memory : '
Internal data | 2 L] 16 16 16 32 32
bus
External data | 8) 16 8 16 32 32
bus e 1 .
Addressbus | 16 16. - 120 20 24 32 |32
Datntype 18 |8 |816 |86 |816 |81632 8.6
bits) : R 132

Table 12.1: Evolution of Intel’s Microprocessors

12,2 8085 Microprocessor |
The salient features of 8085 up are: |

-+ Itisa 8 bit microprocessor.

« It is manufactured with N-MOS technology :

* It has 16-bit address bus and hence can address up to 216=65536 b)]ttes (64KB) memory locations
through A0-A1S5, ,

* The first 8 lines of address bus and 8 lmes of data bus are multlplexed ADO- AD’/’

* Data bus is a group of 8 lines DO —D7.- .

« It supports external interrupt request.

* A 16 bit program counter (PC)

~* A 16 bit stack pointer (SP)

* Six 8-bit general purpose register arranged in pairs; BC, DE, HL.

" e Ttrequiresa signal +5V power supply and operates at 3.2 MHZ single phase

clock,
178 _

- |

« It is enclosed with 40 pins DIP (Dual in line package
12.2.1 PINDIAGRAM OF 8085— . _
Following figure shows the pin diagram of 8085 microprocessor.

0
" —-Pm

1
. S n nnm]—.
z DAA -
: RESR gy M]3 [P b
s 4 i » [~ croUn
Nerin i, wp ignas {5 71 -_ ¢ | ERET IN
. L s Ry
T RST 4 W=y 7 . Y [r——— 10
RT6S H—lp - oo & p—wh
nsu.s-.-___ ¥ 8085 l!x 37 [E
Wi"— " T g e "w';‘
w4 n
an, o] -3 — ALE
o » b
ADy ‘_._ n " Aa
Al o] g 21—
A%] g B = Ay
AN g m bl e)
Ay] " T e Ay
Al g 4y P s T
A, 1y . NN
- ¥y e A 1l o M

Figure 12.1 PIN DIAGRAM OF 8085

1222 SIGNAL GROUP OF 8085
" Following figure displays the signal group of 8085 processor, . -

. H .._*S.I"..-?(iNIJ
ATAL

L] Vo A"-
S5 " High aeder Aires b
‘ sop 4 LAy]
1RAL e Al
RESET 7.5 rervemscm <:::$
RESETAS — .y . Ay L PRE
- HESET 55 e . ’ : —-‘--—-—-pd_ll.if.
) [| S e 5,
REAI . ey
. —* _
H¢H Il——......_.__.._! e ‘ ' ""Ic””
HEDA +—er—— """_""_* Iy
I-—'-_—._.‘“_‘
5T '—-—.—.— R

um*n v oo

F 1gure 12 2 SIGNAL GROUP OF 8085

12.2. 3 BLOCK DIAGRAM OF 8085
Block diagram of 8085 is dlSplayed inthe follovwng ﬁgure

179

| EEHRAL LIV CORTROL.

LAFHRRTTE CORTROL

Tk R | I
- F i)
<y
i)
] AME TR |
RL EAET
u.) CTRAHE REG
" i “- EEGLES T A=Ak
|y ey —
o 4 ML E
5, |LREG LRpi{Es
N34 e .
¥ I INERAS CNFEINTIR T V&)
' L i LAECEE] 16 '
) VEGEG 3 COREIREL . -
e B i LR BAT A/ ADERLESS
CANTHROL. grapngs PAA Wy WEEYFR ¥y -

T REANE TR ALK WAL BRI ;
fur AR TRRSEEY ORI ey

ot TN ET o8 o, T

| ' Tigure 12,3 : BLOCK DIAGRAM OF 8085
The flag registers and general purpose registers of 8085 are shown below .

FLAGREGISTERS
ASBEYiAL s 6 A & B L
GENERAL PURPOSE REGISTERS
1224 Description of 8085 o
Memory - ; e

« Program, data and stack memories ocﬁéﬁﬁy the same memory space. The total addressable memory size
is 64 KB. _ v 1

« Program memory - program can be located anywhere in memory. Jump, branchand call instructions -

use 16-bit addresses, i.e. they can be used to jump/branch anywhere within 64 KB. All jump/branch
instructions use absolute addressing, | L L
«Data memory - the processor always usds 16-bit addressés so that data can be placed anywhere.
- oStack memory is limited only by the sizetof memory. Stack grows-downward First64 bytes inazero "
memory page should be reserved for vettors used by RST instructions. '
Interrupts _ ,
~ «The processor has 5 interrupts. They are presented below in the order of their priority (from lowest to
highest):
+INTR is maskable 8080A compatible interrupt. When the interrupt occurs the processor fetches from
the bus one instruction, usually one of these instructions: _
«One of the 8 RST instructions (RSTO - RST7). The processor saves current program counter into stack
" and branches to memory location N * 8 (where N is a 3-bit number from 0 to 7 supplied with the
RSTinstruction).) :)
«CALL instruction (3 byte instruction). The processor calls the subroutine, address of which is specified in
the second and third bytes of the instruction. .
RSTS.5 isa maskable interrupt. When this interrupt is received the processor saves the contents of the

180

= PCregister into stack and branches to 2CH (hexadecimal) address. -
*RST6.5 isamaskable interrupt. When this interrupt is received the processor saves the contents of the
PC registerinto stack and branches to 34H (hexadecimal) address,
*RST?7.5 isamaskable interrupt. When this interrupt is received the processor saves the contents of the
PC register into stack and branches to 3CH (hexadecimal) address. .
*TRAP is a non-maskable interrupt. When this interrupt is received the processor saves the contents of the
PC register into stack and branches to 24H (hexadecimal) address.
*All maskable interrupts can be enabled or disabled using El and DI 1nstructlons RSTS.5, RST6 5 and
RST?7.5 interrupts can be enabled or disabled individually using SIM instruction.
Reset Signals -
- *RESET IN: When this signal goes low the program counter (PC) is set to Zero, pp is reset and resets the
interrupt enable and HLDA flip-flops.
* The data and address buses and the control lines are 3-stated durmg RESET and because of asynchronous :
nature of RESET, the processor internal registers and flags may be altered by RESET with unpredictable
results.
*RESET INis 2 Schmitt-triggered input, allowing connection to an be keptlow a minimum of three clock
periods. N
Upon power-up, RESET IN must remain low for at least 10 ms after minimumn Vee has been reached
* For proper reset operation after the power - up duratlon RESET IN should be kept low a minimum of .
three clock periods. !
* The CPU is held in the reset condition as long as RESET IN isapplied Typlcal Power-on RE SET RC
values R, = 75K &!, C, =1k
. RESET OUT: This sngnal indicates that up is being reset. This s1gnal canbe used to reset other clevnces
. The signal is synchronized to the processor clock and lasts an integral number of clock periods.
Serial communication Signal
* SID - Serial Input Data Line: The data on thlS line is loaded into accumulator bit 7 whenever a RIM
instructionis executed:
* SOD - Serial Output Data Line: The SIM instruction loads the value of bit 7 of the accumulator i into
SOD latch if bit 6 (SOE) of the accumulator is 1. o
DMA Signals
* HOLD: Indicatés that another master is requestmg the use of the address and data buses. The CPU,
upon receiving the hold request, will relinquish the use of the bus as soon as the completion of the current
bus transfer,
sInternal processing can continue, The processor can regain the bus only after the HOLD s removed.
* When the HOLD is acknowledged, the Address, Data RD, WR and IO/M lines are 3-stated. :
*HLDA: Hold Acknowledge: Indicates that the CPU has received the HOLD request and that it W1II
relinquish the busin the nextclock eycle. -
* HLDA goes low after the Hold request is removed. The CPU takes the bus one half clock cycle aﬁer
HLDA goeslow, L
*READY: This signal Synchronizes the fast CPU and the slow memory, peripherals.
* FREADY is high duringa reacl or write cycle it indicates that the memory or penpheral isready to send
orreceive data,
+ If READY is low, the CPU wﬂl wait an mtegral number of clock cycle\l‘or READY to go hlgh before
completing the read or write cycle. : . _ .
* READY must conform to specified setup and hold times.
Registers
*Accumulator orA register is an 8-bit register used for arithmetic, logic, I/O and load/store operations.
* Flag Register has five 1-bit flags.
» Sign - set if the most significant bit of the result is set,

181

-+ Zero - set if the result is zero. \

-Auxnllary carry - set if there was a carry out from bit 3 to bit4 of the result.

«Parity - set if the parity (the number of set bits in the result) is even.

«Carry - set if there was a carry during addition, or borrow during subtractlon/compansonfrotatlon
General Registers

« 8-bit B and 8-bit C registers can be usecl as one 16-bit BC register pair. When used as a pair the C.
register contains low-order byte. Some instructions may use BC register as 2 data pointer.

« 8-hit D and 8-bit E registers can be used as one 16-bit DE register pair. When used as a pair the E
register contains low-order byte. Some instructions may use DE register as a data pointer.

« 8-bit H and 8-bit L registers can be used as one-16-bit HL register pair. When used as a pair the L
register contains low-order byte. HL reglster usually contains a data pointer used to reference memory

. addresses. . |
. »Stack pointer isalé bit reg1ster This reglster is always decrementedfmcremented by2 dunng push and

pop. b
» Program counter is a 16-bit register i
Instruction Set

+8085 instruction set consists of the following instructions:

* Datamoving instructions. o

* Arithmetic - add, subtract, increment and decrement.

* Logic - AND, OR, XOR and rotate, -

Control transfer - conditional, unconditional, call subroutme, retuen from subroutine and restarts
¢ Input/Output instructions. :

*Other - setting/clearing flag bits, enablmg/dlsablmg intermipts, stack operatlons, etc.

Addressing mode :

» Register - references the data in a register or in aregister pair.. '

*Register indirect - instruction specifies register pair contammg address, where the data is located
«Direct, Immediate - 8 or 16-bit data.

12.3 8086 Microprocesocor

*Itisa 16-bit pp.

+8086 has 220 bit address bus can access up 10220 memory locations (1 MB)

oIt can support up to 64K /O ports.

*It provides 14, 16 -bit registers.

»It has multiplexed address and data bus ADO-AD15 and A16 - Al19.

oIt requires single phase clock with 33% duty cycle to provide internal timing. =

8086 is designed to operate in two modes, Minimum and Maximum.

«It can prefetches upto 6 instruction bytes ﬁommemory and queues them m order to speed up mstmcnon :

execution. :

- sltrequires +5V power supply

+*A 40 pin dual in line package

Minimum and Maximum Modes:

+The minimum mode is selected by applying loglc 1 to the MN /MX1 mput pin. ThlS isa smgle nucropmcessor :

configuration, o

*The maximum mode is selected by applying loglc 0to the MN/MX mput pm ThlS is a multi mlcro

processors configuration. : :

- | 182

12.3.1 Pin diagram of 8086

LD

.
=T

- .
v, =, » in.
Ay, 1y "l emd R
an, Lo et 1Y
Ay, 45 B[A
e P as —
Ab, =7 . 34 [———— IR,
Ay 4—y 8086 ETH .
b LT Y W
] . N [P AT (0.0
an, Py Ty g
a X S
ol R e
UMM b n u 0 B
A ® B '_T’ Wit
b P H = 5 (i)
il o
i B ppan
o & H g

| Figure 12.4 PINDIAGRAM OF 8086
12.3.2 SIGNAL GROUP OF 8086 '

\’1\'." tliﬂl
AT A am,
[T e— |
N —— - AT vLL L
INTERFALE
fT - —— T s
T P — L]
H AT —-—-—-‘_a_',“ .
HERF e N
. e
ALAILHY 8 - ueio
1 - T
LI g By TR L YW
" INTRREACY BT R muee s oy
M.
— [
Bt .
- fryey .
AT AR FAmY
ok

Figure 12.5 SIGNAL GROUP OF 8086

- 12.3.3 : Internal Organization of 8086
Now we will study the internal organization, pipelining and registers of 8086.

Figure 12.6 : Block ciagram o7 8086
Pipelining :
*In the 8085 microprocessor, the CPU could either fetch or execute at a given time, CPU had to fetch an
instruction from the memory, then execute it, then fetch agatn and execute it and so on,

*Pipelining is the simplest form to allow the CPU to fetch and execute at the same time. Note that the fetch
and execute times can be different. '

g ' 183

nopppetived r Feecls l.‘ exeq | l el 2‘ cEey IJ

puo g ROBE)
pipedinct fetehy | |enec l
vz, S
Fetel 2 |vnec2

i‘ﬂc;le exer 3 I

Intel implemented the concept of pipelining by splitting the internal structure of 8088/36 into tWo sections.

«the execution unit (EU)

«the bus interface unit (BIU)

+These two sections work simultaneously. BIU accesses memaory and peripherals while the EU executes
the instructions previously fetched. ' S _ ,

It only works if BIU keeps ahead of EU. Thus BIU has a puffer of queue. (8088 has 4 byte, and 8088
has 6 bytes). o - _ o
«If the execution of any instruction takes to long, the BIU is filled to Its maximum capacity and busses will
stay idle. It starts to fetch again whenever there is 2-byte room in the queue.

. When there isa jump instruction, the microprocessor must flush out the quene. When ajump instruction is
executed BIU starts to fetch information from the new location in the memory, In this situation EU must

wait until the BIU starts to fetch the new instruction. This is known as branch penalty.
Registets of 8086 Microprocessor '

. In the CPU, registers are used store information temporarily. The information can be one or two
bytes of data, or the address of data. v
« In8088/8086 general-purpose registers can be accessed as either] 6-bit or 8-bit registers. All

other registerscanbe accessed as full 16-bit registers.

AX :
16 bit Register
Al ‘ AL
8 bit register 8 hit register

The bits of the registers are numbered in descending order:
8-bit register:

(o7 [b6 (D5 |p4 [p8 [D2 [pt_[p0 |

16-bit register:
\ D1 ’ D1
5 |4

D
5

D

D1 ppoDr D
9

p D | D
3 2 1 0 8 7 6

D‘\DDDD
s 13 12 |1]o

Different registers are used for different functions. Registers will be explained later within the

context of in_struction‘s and their applications.
The first letter cgeach general regjster indicates is use.

« AXis used for the acgumulator.
« BX s used for base addressing register. '
« CXis used for counter loop operations.
« DX is used to point out data in 1/O operations. '
These registers are In described in detail in the following table.

184

Category | Bits | Register Names

General 16 AX, BX, CX, DX

8 AH, AL, BH, BL, CH, CL, DM, DL,

Pointer 16 SP (stack pointer), BP(base pointer)
Endex 16 SI (source index), DI(destination
index) :

Segment 16 CS (code segment), DS(data segment)

Instruction | 16 IP (instruction pointer)

Flag (16 - | FR (flag register)

‘Note: the general registers can be accessed as full 16 bits (such as AX), or as the high byte only (AH) or
low byte only (AL). The others are not!! :

12.4 8088 Microprocessor
Intel 8088 microprocessor was released in 1979, or one year after the Intel 8086 CPU. Both processors
have the same architecture, and the only difference of the 8088 CPU from the 8086 is the external data bus
width - it was reduced from 16 bits to 8 bits. The 8088 CPU uses two consecutive bus cycles to read or
write 16 bit data instead of one bus cycle for the 8086, which makes the 8088 processor to run slower. On
the plus side hardware changes to the 8088 CPU made it compatible with 8080/8085 support chips. This
was an important factor in choosing the 8088 processor for IBM PC line of computers because at that
time 8-bit support chips were cheaper than 16-bit support chips, and there was better selection of 8-bit
chips. D . : ' ' '
The 8088 microprocessor has 1 6-bit registers, 16-bit internal data bus and 20-bit address'bus, which -
allows the processor address up to 1 MB of memory. The 8088 uses the same segmented memory
addressing as the 8086: the processor can address 64 KB ofmemory directly, and to address more than
64 KB of memory the CPU has to break the update into a few parts - update up to 64 KB of memory,
change segment register, update another block of memory, update segment register again, and so on.
Like to 8086, the 8088 microprocessot supports Intel 8087 numeric co-processor. The CPU recogiizes
all Floating-Point (FP) instructions, and, whennecessary, it calculates memory address for FP instruction
operand and does a dummy memory read. The FPU captures the calculated address and, possibly, the
data, and proceeds to execute FP iristruction. The CPU at the same time starts execufing the next instruction,
Thus, both integer and floating-point instructions can be executed concurrently,. - _ o
Original Inte! 8088 microprocessor was manufactured using HMOS technology. There were aiso CHMOS
versions of the chip - 80C88 and 80C88A. These microprocessors had much lower power consumption
and featured standby mode _ ' -
12.4.1 The Basic Architecture of 3088) | |
‘Belowisablock diagram of the organizational layout of the Intel 8088 processor. It includes two main
sections: the Execution Unit (EU) and the Bus Interface Unit (BIU). The EU takes care of the processing
including arithmetic and logic. The BIU controls the passing of information between the procéssorand the
devices outside of the processor such as memory, I/O ports, storage devices, efc. '

185

zww\. sy

Executlen Unit (EU) : Bus Interface Unlt (BIL)

Caneral Remsters g ﬁW&@mﬂ
_E'Ii E‘ - : ’
TH_[CL
i DH DL i ; ¥
g - sk : E : 4 2
] BP G CS - % :
5 1] 553 §
F =] 23 H
W 53 Bus To
i contret |4)
— Titerial logic | i ”‘f;j:‘“

] regielere

Figure 12.7: Basic Archltecture of 8088
The rest of this document will describe the purpose of the different porl:lons ofthe processor wﬂhm these
two units. k
General Reg1sters
The general registers are categorized into two sets: dataand address. The data registers are for calculations;
the address registers contain memory addresses and are used to point to the locations in memory where
data will be retrieved or stored. :
Examlmng the diagram shows that there are four pairs of registers at the top labeled AH, AL, BH, BL, CH,
“ CL, DH, and DL. These are the data registers. Each of these registers is 8 bits long. Each pair, however,
can also operate as a single 16 bit register. AH and AL can operate as a pair referred to as AX. This
~ combining of registers is simply a concatenation, the 8 bits of AL simply tacked to the end of the 8 bits of -
. AH, Forexample, if AH contains 101100002 (B016) and AL contains 010111112 (SFl 6), then the virtual
reglsterAX contains 10110000010111112 (BO5F16). _
Intel has given each of these computational registers aname. These names are llsted below
- AX - Accumulator register -
BX - Base register .
CX - Counter register -
DX - Data register
Below the data registers in the block diagram are the address registers: SP, BP, DI and SL These are
- officially referred to as the pointer (SP and BP) and index registers (DI and SI). These registers are used
with the segment registers to point to specific addresses in the memory space of the processor. We will
address their operation in the section on the segment registers. It is sufficient at this point to say that they act
like pointers in the programming language C or C++, Their basic function is as follows:
SP is the stack pointer and it points to the “top plate” or last piece of data placed on the stack.
BP (base pointer), SI (source index), and DI (destination index) are all pointers that the programmer has-~
for thelr own use,

186

speedometer, tachometer, fuel gauge, and such, are a number of lights informally called “idiot lights”, Each
of these lights hasa unique purpose. One comes on when the fuel is low. Another lights up when the high
beams are on, Another warns the driver of low coolant. There are many more lights, and depending on the

anegative sign, an erroneous overflow, a carry, or a value of zero. Well, that would be four idiot lights: sign,
overflow, carry, and zero, ' _

Each of these idiot lights, otherwise known as flags, can be represented with a single bit, If the resulting
number had a negative si gn, the sign flag would equal 1. If the result was not a negative iumber, (zero or
greater than zero) the sign flag would equal 0. (Side note; Motorola processots more correctly refer to this
flag as the negative flag,)

flags are arranged as shown i the figure below
o . | ;C.o.ntrol fiags : Status flags

Lte [oF [F [oF |52 |2

= Augiliery Cany

Zero

Sign

Overflow

— Interrupi enable .
Direction o

~ Trap

The group of flags in the figure identified as control flags are used to control how the processor runs,
These are typically controlled by the user’s software, The group of flags in the figure identified as status
JSlags are usually set by the previous operation as in our addition example,

Arithmetic Logic Unit

The EU Control System is a set of gates that control the timing, passing of data, and other items within the
execution unit. It’s analogous to a manager in business who doesn’t necessarily know the details of the
operation, but they plan what happens, where it happens, and when it happens,

Instruction Pointer '

You probably noticed that our address registers are 16 bits wide while the address space of the 8088 is 20
- bits. (The memory space of the original 8088 js 22 =1 Meg.) So how does this work? Are four of the

187 '

address lines just ignored since we can only send 16 bits of information from our addressing registers? Of
- course not. _ _ N : _ -
“Next time your Windows operating system throws up an error, look to see ifit gives you the address where
the error occurred. If it does, you should see a number that looks something like: '

3241:A34E l : :
This number is actually the combination of 2 registers: a segment register (the number to the leftof the
colon)and a pointer or index register (the number to the right of the colon). Note that a four digit hexadecimal
number results ina 16 bit binary number. Ttisthe combination of these two 16-bit registers that creates the
20-bit address line. : :
To-do this, take the value inthe segnient r;z/gister and shift if left four places, i.e., add four zerosto the right
_side of the number. In our example above, 324116 = 0011 00100100 00012 becomes 3241016 =0011
0010 0100 0001 00002. This value is then added to the pointer or index register. This makes the value
from our example: : ' N
0011 0010 0100 0001 0000 (hexadecimal 32410) -
L+ 10100011 01001110 (hexadecimal A34E)Y -
0011 1100 0111 0101 1110 (hexadecimal 3C75E)

This computation takes place in the “Address Summing Block” located directly above the segment registers

in1the BIU in the organizational block diagram. ‘

Therefore, the process of trying to access a single locationinthe 8088 processor’s Memory Space takes
© a16-bit segment address contained in one of the segmernt registers;

a 16-bit offset address contained in a pointer or index register; and- .

a20-bit physical address which is the output from the address summing block.

1fwe look at this from the memory space point of view, the segment register shifted left four places so that

four zeros are filled in from the right points to an address somewhere in the memory space. The offset
address is then added to itto point to an address within the 216= 65,535 (64K) locations above where

the segment register is pointing.

Pointer of index 4

- register adds an
offset to the
segment register's

pesition \’
. S - R 1 Meg :
. Segment ——p__._j-———-

resister | R .
points to the
bettom of 2 P :
64K block . 1 . . Lo

L+

v

There are two purp+ 53 for this summation of segment and pointer registers to ak_icess asingle, physical -

memory address. First, it allows the processor to aCcess more address lines (20 in the case of the 8088)
than it has bits in its address registers (16 in the case of the 8088). There is, bowever, a more significant
reason, a reason that allows you o load multiple programs at one time. It is called relocatable code. Let’s
put it this way, if you're joading both Microsoft Word and Netscape at the same time, does it matter which
one you load first? Of course not. - . o

The way this works is that the program itself has conirol of the pointers and index registers. It’s as if they
have a 64K block of memory to jump around in whereverthey want. The opetating system, however, has
control of the segment registérs, That way it can force a program to reside in a specific segment of memory.
As long as the segment value stays the same for that program, and the program only manipulates the
__ pointergnd index registers, then there will be no errors. When something messes up one of these registers
- so that the physical address being pointed tois outside the allowed range for the program, that’s when the

-~ «plue screen of death” appears.
188

. CS - Code Segment - A register pointing to the area of memory where the code isstored

. §S - Stack Segment - A Iegister pointing to the areq of memory where the processor temporarily
stores register values in case they get messed up
. ES -Extra Segment - A register pointing to where ever the user wants it to point

SS:SP— stack segment:stack pointer points to the stack in memory, a temporaty storage place
for data, _ | o
DS:DI— datq Segment:destination index points to the physical address in memory where data
is to be stored us; ng a pointer, _
DS:SI— darg segment. source index points to the physical address in memory where data is 1o
be retrieved using a pointer,
Bus Controj Logic

- The Bus Control Logic is a s"et Of gates that control access io the external bus of the 8088, This
o “_*‘—LR&. ;)
includes qll external menory devices, /O Ports, and other resources that communicate with the
-___-_ﬁ_—"—'—-—_____‘__ B . N T
Processor through the bus.) . . -

Pipelining

execute —executing the instruction - o I o
When examining the architecture of the 8088 processor, you may notice that there are three separate
-~ circuits which perform these three tasks.

The bus contro] logic performs the fetch,

The EU control System performs the decode.-

The ALU performs the execute.

Ifthe bus control logic is done fetching the current instruc tion, what’s to keep it from fetching the next

cycle, and “E” represenis the execute cycle. The subscript after the Jetter indicates the instruction number.)
Processor operation without Pipelining '

189

Process.
F D E F D, E F D g F D E F D E

1

Without pipelining, five instructions take 15 cycles to execute. Now let’s see how fast those same five
instructions are executed using a pipelined architechue.
Processor operation with pipelining

cycle §

process I

Fifleen cycles reduced to seven. That’s quite an 1mprovement If this pipelining thing works it can make the
processor appear a great deal faster. Infact, the following equations represent the dlfference

number of cycles(non-pipelined) =3 * number of instructions :

numberof cycles(pipelined) = 2 + number of instructions

Therefore, if the number of instructions is quite high, the number of cycles requued ofa pipelined architecture

isalmost 1/3 of that of the non-pipelined.

Instruction Queue

The Instruction Queue is the mechanism in the Intel 8088 processor that handles the pipelining finction.
- Self Learning Exercises

. IfCX contains the binary value 0110 1101 0110 1011, what value does CH have? -

2. Assume the flag register is set as shown below after an addmon Using these ﬂags, what can you tell us
about the result? :

IFiOF SF ZF AF PFECFl

3. If you were to add the bmary number 10110101, and 100101 102, how would the flags be set‘7 :

4. What is the difference in the number of cycles requlred to execute 50 instructions between a pxpelmed |

and a non-pipelined processor?
- 12.5 Pentium Processor
- First we will discuss the history of Pent:mm processor and then we will study block dlagram of
Pentium processor and its main features.
12.5.1 Brief History of the Pentium Processor

‘The Pentium family of processors, which has its roots in the Tntel486(TM) processor, uses the Intel486
instruction set (with a few additional instructions). The term “’Pentium processor” refers to a family of

microprocessors that share a common architecture and instruction set. The first Pentium processors (the -

- PS variety) were introduced in 1993, This 5.0-V processor was fabricated in 0.8-micron bipolar
complementary metal oxide semiconductor (BiCMOS) technology. The PS5 processor runs at a clock

190

frequency of either 60 o 66 MHz and has 3.1 million transistors, | |

The next version of the Pentium processor family, the P54¢C Processor, was introduced in 1994, The
P54C processors are fabricated in 3.3-V, 0.6-micron BiCMOS technology. The P54C processor also
has System Management Mode (SMM) for advanced bower management

performance levels to be sustained in cost-effective systems. The application of this advanced technelogy
inthe Intel Pentium processor brings “state of the arg performance and capability to extsting Intel architectype
software as well as new and advanced applications,

12.5.2 Block diagram of the Pentium

. &
insrmation Cacode

As fornew functions, there age only a few; nearly all the enhancements in Pentiym are included to improve

performance, and there are only a handfu] of new instructions. Pentium is the first high-performance micro-
processor to include a system management mode like those found on power-miserly processors for

————

CPUs. Pentium uses about 3 million transistors on a huge 294 mm 2 (456k h‘lils 2). The caches plus T1. Bs
use only about 30% of the die. Atabout 17 mm on a side, Pentium is one of the largest microprocessors
ever fabricated and probably pushes Intel’s production equipment to its limits. The integer data path is in

the middle, while the ﬂoatmg-pq)mt data path is on the side opposite the data cache. In contrast to other’

superscalar designs, such as SuperSPARC, Pentium’s integer data path is actually bigger than its FP data
path. This is an indication of the extra logic associated with complex instruction support. Intel estimates
about 30% of the transistors were devoted to compatlblhty with the x86 architecture. Much of this overhead
is probably in thie microcode ROM, instruction decode and control unit, and the adders in the two address

generators, but there are other effects of the complex instruction set. For example, the higher frequericy of -

memory references in X86 programs compared to RISC code led to the implementation of the dual-ac. -

Reglster set

The purpose ofthe Reglster isto holcl temporary results and control the execution of the program. General-
purpose registers in Pentium are EAX, ECX, EDX, EBX, ESP, EBP,ESI, or EDI.

The 32-bit registers are named with prefix E, EAX, etc, and the least 16 bits 0-15 of these registers can be
accessed with names such as AX, SI Similarly the lower eight bits (0-7) can be accessed with names such
as AL & BL. The higher eight bits (8-15) with names such as AH & BH. The instruction pointer EAP
known as program counter(PC) in 8-bit microprocessor, is a 32-bit register to handle 32-bit memory
addresses, and the lower 16 bit segment IP is used for 16-bi memory address.

The flag register is a 32-bit register , however 14-bits are being used at present for 13 different tasks; these

flags are upward compatible with those of the 8086 and 80286. The comparison of the available flagsin

16-bit and 32-bit microprocessor is may provide some clues related to capabilities of these processors.
The 8086 has 9 flags, the 80286 has 11 flags, and the 80286.has 13 flags. All of these flag registers include
6 flags related to data conditions (sign, zero, carry, auxiliary, carry , overflow, and parity) and three flags
related to machine operations.(interrupts, Single-step and Strings). The 80286 has two-additional ;: /O
- Privilege and Nested Task. The I/O Privilege uses two bits in protected mode to determine which /O
instructions can be used, and the nested task is used to show a [ink between two tasks.
The processor also includes control registers and system address registers , debug and test registers for
system and debugging operations. :
Addressing mode & Types of instructions
Instruction set is divided into 9 categoﬁes of operations and has 11 addressing modes. In addition to
commonly available instructions in a 8 bit microprocessor and this set includes operations such as bit
manipulation and string operations, hiigh level language support and operating system support. An instruction
may have 0-3 operands and the operand can be 8, 16, or 32- bits long. The 80386 handles various types
of data such as Single bit , string of bits , 51gned and un51gned 8-, 16-, 32- and 64- bit data, ASCII
character and BCD numbers,
High level language support group includes instructionssuch as ENTER and LEAVE. The ENTER instruction
is used to ENTER from a high level language and it assigns memory location on the stack for the routine
being entered and manages the stack. On the other hand the LEAVE generates a return procedure for a
high level language. The operating system support group includes several
instructions , such as APRL { Adjust Requested Privilege Level) and the VERR/W (Verify Segment for
Reading or Writing). The APRL is designed to prevent the operating system from gaining acoess to routines
with a higher priority level and the instructions VERR/W venfy whether the spemﬁed memory address can
be reached from the current privilege level.
Operating mode and system management mode of Pentium
The Pentium processor has two primary operating modes and a “system management mode.”
The operating mode determines Wthh mstructlons and arch1tectura1 features are accessible.

These modes are:

Protected Mode : This is the native State of the mlcropmcessor In this mode al! instructions and architectural

features are available, provu:hng the highest performance and capability, This is the recommended mode

that all new apphcatlons and operatmg systems should target. Among the capabilities of protected mode is
192.

theability to directly execute “real-address mode™ 8086 software ina protected, multi-tasking environment.
.. This feature is known as Virtual-8086 “mode” (or “V86 mode”). Virtual-8086 “mode” however, is not
actually a processor “mode,” it is in fact an attribute which can be enabled for any task (with appropriate
software) while in protected mode.
‘Real-Address Mode (also called “real mode”) This mode provides the programnting environment of the

Advanced Features :

The Pentium P54C processor is the product of a marriage between the Pentium processor’s architecture
and Inte!’s 0.6-micron, 3.3-V BiCMOS process The Pentium processor achieves higher performance
than the fastest Intel486 processor by miaking use of the following advanced technologies,

‘Superscalar Execution: The Inteld86 processor can execute only one instruction at a time, With superscalar
execution, the Pentium processor can sometimes execute two instructions simultaneously.

‘Pipeline Architecture: Like the Intel486 processor, the Pentium processor executes instructions in five -

stages. This staging, or pipelining, allows the processor to overlap multiple instructions so that it takes less
time to execute two instructions in a row, Because of'its superscalar architecture, the Pentium processor
- hastwo independent processor pipelines.
‘Branch Target Buffer: The Pentium processor fetches the branch target instruction before it executes the
branch instruction,
*Dual 8-KB On-Chip Caches: The Pentium processor has two separate 8-kilobyte (KB) caches on
chip—one for instructions and one for data—which allows the Pentium processor to fetch data and
instructions from the cache simultaneous]y. :
Write-Back Cache: When data is modified; only the data in the cache is changed. Memory data is
changed only when the Pentium processor replaces the modified data in the cache with g different set of
_data _ -
64-Bit Bus: With its 64-bit-wide external databus (in contrast to the Intel486 processor’s 32-bit-
wide external bus) the Pentium processor can handle up to twice the data load of: the Intel486 processor
at the same clock frequency. _
Instruction Optimization: The Pentium processor has been optimized to run critical instructions in
fewer clock cycles than the Intel486 processor.
Floating-Point Optimization: The Pentium processor executes individual instructions faster through
execution pipelining, which allows multiple floating-point instructions to be executed at the same time,
Pentium Extensions: The Pentium processor has fewer instruction set extensions than the Intel486
processors. The Pentium processor also has a set of extensions for multiprocessor (MP) operation. This
makes a computer with multiple Pentium processors possible, - :
A Pentium system, with its wide, fast buses, advanced write-back cache/memory subsyster, and powerful
processor, will deliver more power for today’s software applications, and also optimize the performance
of advanced 32-bit operating systems (such as Windows 95) and 32-bit software applications,

12.6 Dual Core Processor - v
A dual core processor is a CPU with two Separate cores on the same die, each with its own cache.
It’s the equivalent of getting two MICroprocessors in one.
In a single-core or traditional processor the CPU is fed strings of instructions it must order, execute, then
selectively store in its cache for quick retrieval, When data outside the cache is required, it is retrieved.
193

through the system bus from random access memory (RAM) or from storage devices. Accessing these
slows down performance to the maximum speed the bus, RAM or storage device will allow, which is far
slower than the speed of the CPU. The situation is compounded when multi-tasking. In this case the
processor must switch back and forth between two or more sets of data streams and programs. CPU
resources are depleted and perforinance suffers.
In adual core processor each core handles incoming data strings simultaneously to improve eﬁimency Just
as two heads are better than one, so are two hands. Now when one is executing the other can be accessing
the system bus or executing its own code. Adding to this favorable scenario, both AMD and Intel’s dual-
core flagships are 64-bit.
To utilize a dual core processor, the operating system must be able to recognize multi-threading and the
software must have stmultaneous multi-threading technology (SMT) written into its code. SMT enables
parallel multi-threading wherein the cores are served multi-threaded instructions in paraliel. Without SMT
the software will only recognize one core. Adobe Photoshop is an example of SMT-aware software. SMT
is also used with multi-processor systems common to servers.
A dual core processor is different from a multi-processor system. In the latter there are two separate
CPUs with their own resources. In the former, resources are shared and the cores
reside on the same chip. A multi-processor system is faster than a system with a dval core processor, while
a dual core system is faster than a single-core system, all else being equal.
An attractive value of dual core processors is that they do not require a new motherboard, but can be used
in existing boards that feature the correct socket. For the average user the difference in performance will
be most noticeable in multi-tasking until more software is SMT aware. Servers running multiple dual core
processors will see an appreciable increase in performance.
Multi-core processors are the goal and as technology shrinks, there is more “real-estate” available on the
' die. Inthe fall of 2004 Bill Siu of Intel predicted that current accommodating motherboards would be here
to stay until 4-core CPUs eventually force a changeover to incorporate a new memory controller that will
be required for handling 4 or more cores.

12.7 Summary

- The 8085 is a 8 bit microprocessor , manufactured with N-MOS technology It t has 16-bit

address bus. It supports external inferrupt request. A 16 bit program counter (PC). A 16 bit stack pointer
(SP). Six 8-bit general purpose register arranged in pairs: BC, DE, HL. It requires a signal +5V power
- supply and operates at 3.2 MHZ single phase clock.. 1t is enclosed with 40 pins DIP (Dual in line
package). :

- The 8086 isa 16-bit up. It hasa 20 blt address bus can access up to 220 memory locations (1
MB). It can support up to 64K I/O ports. It provides 14, 16 -bit registers. It has multiplexed address and

data bus AD0O- AD15 and A16 - A19. It requires single phase clock with 33% duty cycle to provide.
internal timing. 8086 is designed to operate in two modes, Minimum and Maximum. }t can prefetchesupto
6 instruction bytes from memory and queues them in order to sneed up instruction execution. It requlres _

+5V power supply. A 40 pin dual in line package -

- The 8088 microprocessor has 16-bit registers, 16-bit internal data bus and 20-bit address bus
which allows the processor address up to 1 MB of memory. The 8088 uses the same segmented memory
addressing as the 8086 the processor can address 64 KB of memory directly, and to address more than
64 KB of memory the CPU has to break the update into a few parts - update up to 64 KB of memory,
change segment register, update another block of memory, update segment register again, and soon. -

- A Pentium system, with its wide, fast buses, advanced write-back cache/memory subsystem, and .
powerful processor, will deliver more power for today’s software applications, and also optimize the -

performance of advanced 32-bit operating systems (such as Windows 95) and 32-bit softwate apphcatlons

12.8 Glossary

Address Bus - A set of electrical lines connected to the processor and all of the peripherals w1th which
itcommunicates. The address bus is used by the processor to select a specific memory location or

194

registerwithin a particular peripheral

Addressing modes-Techniques used by software or hardware in calculating an address,

Index Register-A specia purpose register used by a processor when performing indexed acfclressing.
Thevalue inthe index register is usually the reference location to which a displacement will be added.
VO-Input/output; the process by which the computer communicates with the outside world.
Instruction-A Microprocessor command. :

Instruction Cycle-The time and activities associated with the performance of an instruction,

Instruction Fetch-A machine cycle used by the processor to obtain instructions from memory.
Instruction Register-The part of the CPU that stores the instruction while it is being decoded.,
Instruction Set- Is referred to the set of instructions that the microprocessor can execute. The instruction
set specifies the types of instructions (such as load/store, integer arithmetic, and branch instructions), the
specific instructions, and the enceding used for the instructions. The instruction set definition also
specifies the addressing modes used for accessing memory. _

Interrupt- An asynchronous electrical signal from a peripheral to the processor. When the peripheral
asserts this signal, an interrupt occurs. When an interrupt occurs, the current state of the processor is
saved and an interrupt service routine is executed. When the inferrupt service routine exits, control of the
processor isreturned to whatever part of the software wags previously running.

Physical Address - The actual address that is placed on the address bus when accessing a memory
location or register. The address used to access physically-implemented memory. This address can be
translated from the effective address, When address translation is not used, this address is equal to the
effective address.

12.9 Further Readings

1. Microprocessor, Architecture, Programming and Application with 8085-Gaonkar,

John Wiley Eastern , Ltd, Publication

2. Microprocessors and interfacing-Douglas V Hall, Tata Mc-Graw Hill publication

3. Microcomputer Systems: The 8086/3088 family-Yu-Chen Lin, Glen A Gibson, Prentice
Hall of India Publication .

4. The 8086 Microprocessor : programming and interfacing the PC-Kenneth J Ayala,

Penram publication
. 5. The 8086 family: John Uffenbeck, Prentice Hall of India publication.
12.10 Answers to Self Learning Exercises
1. CH contains 0110 1101,
2. As aresult of the addition, there was no overflow (OF=0), the result is negative (8F=1),itisn’t
zero (ZF=0, but you could’ve also told us that because it is negative), and there was a carry.
3. First, let’s add the two numbers to see what the result is,
10110101
+10010110
101001011

Now just go from lefi to right through the status flags.

1. OF=]1—There wasan overtlow, i.e., adding two negative numbers resulted in a positive number.
SI=0-— The resuit is positive. '

ZF=0—The result does not equal zero.

AF=0—-For now we won’t worry about the auxiliary flag,

PF=0-— For now we won’t worry about the parity flag.

‘ CF=1 — There was a carry.

4, number of cycles(non-pipelined) =3 * 50 =150 cycles

number of cycles(pipelined) =2 + 50 =57 cycles

195

12.11 Unit End Questions -

‘What are important signals of Intel 80867

How many operating modes does 8086 have?
How many functional units does 8086 contain?
What is the function of a segment register in 80867
What are conditional and control flags in 80867
How many interrupt lines does 8086 have?
What physical address is represented by:
(1)4370:561E H (11)) 7A32 : 0028 H

Describe the difference between the instructions:
(iyMOV AL, 0DBH (ii)) MOVAL,DBH

A il S

&=

196

