1)) VARDHAMAN MAHAVEER OPEN UNIVERSITY, KOTA

Data Structures and Algorithms'_ |

Unit Number © Unit Name - ' o -_ Pége-Numbér
Unit -1 | I_N_'III”RODIUCTION TO DATA S'IRUCTURE.S. - .1_-1_8
UNIT-IT ARRAYS T 190
UNIT-IH LK LIST - | S .41_-86.'
UNITIV. STACK DATA STRUCTURE, . _ 87-106
UNILV . QUEUE DATA STRUCTURE ./ 107-129
UNIT-VI ~ TREE DATA STRUCTURE, | | - 130-157
UNIEVII ADVANCEDTREE . . - O issetl
'UNILVII GRAPHTHEORY FUNDAMENTALS «/ o ma
UNILIX GRAPH THEORY ALGORITHMS 230-243
UNIEX GRAPH THEORY APPLICATIONS 244-272
UNILXI ~ SORTING ALGORITHMS S | - 27‘3-2:97
UNITXIT ALGORITHM DESIGN TECHNIQUES 208313
UNIT-XIII DYNAMICPROGRAMMING 314336

UNILXIV ~ PROBLEMCLASSES 337354

“M.Se. (C.S.)- 07

UNIT -1

INTRODUCTION TO DATA STRUCTURES

STRUCTURE OF THE UNIT /.

/

10 Objective
1.1 Introduction
_ 1_.1.1Data&lnfonnation
12 Definition & Need of Data Structures
1.2.1 Definitionof Data Structure
122 Need of Data Structure
13 Classification of Datatypes. .
131 PrimitiveDatatypes
1.3.2 Composite Data types
1.33 Abstract Datatypes
1.4 Implementationof Datatypes
‘ 14,1 Amays
142 Address Calculation in 1-D Array
1.5 - Classificationof Data Structures
1.5.1 Simple Data Streucture
152 Compound Data Structure
153 LinearDataStructure
154 NonLinear Data Structure
1.6 Algorithmwritingdeonvention
1.6.1 Writinganalgorithm
1.62 Algorithm Conventions
1.6.3 Characteristics of algorithm
L7 'Analysis&EﬂiciencyofAlgOﬁﬂnm '
1.7.1 Timeand space complexity of algorithms
1.7.2 A'lgoritiﬁn'complexityandordernotaﬁons
1.8 Summary
1.9 Glossary |
1.10 Further Readings
1.11 AnswerstotheSelfleamingexercises
1.12

Unit -End Questions

1.0 Objectives : -
After reading this unit you will be able to understand the following concepts:
.+ Definition & Need of Data Structures '
Classification of Data types
Implementation of data types
Classification of Data Structure
Various Operations on Data Structure
Algorithm complexity and order notations
Time and space complexities

1.1 Introduction

A computer is a machine thaf manipulates information. The study of Computer Science
includes the study of how information is organized ina Computer; how it can be manipulated and
how it can be utilised. Thus, it is important to uriderstand the concept of information organization
and manipulation, _

- Computer Science can be defined as the study of the data, its representation and .
transformation by a digital computer machine.
1.1.1 Data & Information: . .
We know that the data are simply values or sets of values. A data item refers to a single unit of

‘values. Data items that are divided into sub items are called group items; those which are not)

called elementary items. : g
Raw data is of little value in its present form unless it is organized into a meaningful format, if'we
organise or process data so that it reflects some meaning then this meaningful or processed data
is called Information, - |
For example: -
Ifwesay 12 pens’ of course it is data but it carries no useful meaning. But if we add a little and
say ‘I have 12 pens’ then this statement is meaningful and is called information. o

1.2 Definition & Need of Data Structure

1.2.1 Definition of Data Structure:

Data may be organized in many different ways; the logical or mathematical model of a
particular organization of data iscalled ‘Data Structure’. The choice of a particular data mode!
dependsontwo considerations:- . '_

- It must be rich enough in structure to reflect the actual relationships of the data in the real world.
- The structure should be simple enough that one effectively processes the data when necessary,
A data structure is defined as — : '

“A data structure is named group of data of different data types which can be processed
as a single unit. A data structure has well-defined operations, behaviour and properties”,

Arrays & Records are the examples of data structures, '

1.2.2 Need of Data Structures: o

Computer systems need data structures to solve complex mathematical operations, Also,
once the type of problem that must be solved is determined, the appropriate data structure can
be applied ufing already existing data types.

_ While designing data structures, one must determine the logical picture of t_ﬁe dataina
particular program, choose the reptesentation of the data, and develop the operations that will
be.applied on. ' _ I
‘We will consider data structures from three different perspectives:- L
1. Application (or user) Level: Away of modeling real-life data in a specific context.
2. Abstract (or logical) Level: An abstract collection of elements and its mnespondﬁig sef.
of accessing operations. S ' :

3. Implementation Level: A specific representation of the structure and its accessing‘ '

operations in_aprogramming language.

1.3 Classification of Data types
A data type may be classified into Primitive Data Types, Non-Primitive (or Composite)
Data Types and Abstract Data Types. Here we will discuss one by one in detail.

1.3.1 Primitive Data Types : o o -
Primitive data types are those data types, which are not composed of other data types.

Primitive data types are basic datatypes of any language. In most computers these are native to |

the machine’s hardware.
Some Primitive data types are: _ _ .
< Infeger . ~
_ Character ' ' -
Real Number
Logical PR
Pointers L .

1.3.1.1 Integer Primitive Data types :- g o
A quantity representing objects that are discrete in nature can be represented by an integer.
For examples: 2,0,-56,89998 etc. are integers : . '
For examples; 34.89, -3.98, abe, uii**1kd889 are not integers

1.3.1.2 Character Primitive Data types :

Information is not always interpreted numerically. Ttems su'c'h_:as names, 5013, addresé etc. must)

also be represented in some fashion within a computer. .

Character is a literal expression of some element selected from an alphabet. A wide variety"o_f .
character sets (or alphabets) are handled by the most popular computers. Two of the largestand -

" most widely used character sets are represented by EBDIC and ASCIL

Forexamples: ‘A’, ‘b, ¢/, ¥, ¢57 efc. are characters
Forexamples: 23,45.5, “AJHTHA”, 7&"&* are not characters

1.3.1.3 Real Number Primitive Data types : . _

The usual method used by computers to represent real nun bers is floating-point notation. There
are many varieties of floating point aotation and each has individual characteristics. The key
concept is that areal number is represented by a number, called amantissa, times abase raised
to aninteger power called an exponent. The base is usually fixed, and the mantissa and exponent
vary to represent different real numbets. ')
For example: - '

L3.L.5 Pointery Primitive Data types ;

Aspecial data type pointer data type has been introduced by some Programming languages, A
tru

pointer is areference ty g data structyye, As pointer jg single fixed-sjze data item, j¢ Provides 3
homogenegys method of referencmg any data structure, regardless of the Structyre’s type or

For Examples: R | |

Intx; herexis an integer type while pjs 4 Ppointer to integer type,

Int *p; _ -

P=&sx; Pointer Ppoints to x, _ _

1.3.2 Non- Primitive (Composite) Data Types .

Non-Primitives dat, types are those dagy types which are composed of primitive data types,
Nopna[ly, these are deﬁned by the users that are why; theses are some timeg called user-defined
data types. Examples of on-primitive dagq typesin C++ are: Array, structure, class, Clumeration,
union efc,) T

1.3.3 Abstract Data Types »

3

Example#i; Integeris an abstraction of numerical quantity which i awhole number and e
- be positive Or negative, ST

l.3.3¥] Atomic Type :

Itisavalye (constant op variable), which is treated as Elngleenmy only and cannog be subdivided,

' Integers, real, characters type of data cannot e broken further jng,, any simpler datq types,
refore, these are atomic type, : .

It is aset of values, which has twolingredients:
“Hismadeupof COMPONENT elements. _
i) Thete s a stracture, i.€. 2 set of rules for putting the componeits togethet.

Exlmmple#I: : _ : o
Addressisa structured type data: ithas components—house No., Street No., City etc.
Example#2:

" Date of birthisa structured data: it has day, moth and year data items.

1.3.3.3 Refinement Stages :
Stages from any mathematical concept to its implementation as application are showninthe
figure as follows:- . : .

o NE R ETIERT TOEY

. hhstrm:t Draan :Typc

gre =:--.Dm.mm_mm-- :

|y plementation

Aplinaticn

- EXAMPLE#1:

Atray With Connter o Maywmﬂng E
Neoon maliios

14 Implementation of Data Types

1.4.1 Arrays:

An array is aset of similar values stored under onc tag being referredtoasa
subscripted variable. Different values ave stored accordingly into different cells being

" referenced as acell. S

The doncept ofarrays is similarto that of any other high-level progl‘ammm§ _lmgtmge such ag
BASIC, coBoL ete. ' : I '

There are following types of arrays:-
" One orSingle DimensionalArray
Two or Double Dimensional Array
Multi Dimensiona] Amay .

One-Dimensiona] Array : .
The single or one dimensional array comprises of| storage of values in the form of rows. The
declaration of a single dimensional array ha the Tollowing format:

type array-namein]; .
Where type depicts the type or the hature of the array being defined, array name is the
hame of the subscript variabje and n stands for the subscript value or the size (mumber of
elements), . B

cout<<age[5] s
where the pointed valye s that of the 6™ cell of the array age,

(i) The base address B)
(i) . Thesize (in bytes), of each element in the array (8),
For one-dimensional array, the address calculations may be performed by using the
Relation given below: -
Ai=B+S*(I—L) _ '
Where, Ai =Address of the ith element of the array (to be computed)
B =Base Address of the atray, “
S =Size of each atray element (in bytes), '
I=Subscript of the particular element (whose address is 1o be computed),
L =Lower bound of the artay (or minimum subscript of the array) : |
(The arvay size for all the elements same but may differ on the nature of thearray, i ¢, it maybe - |
2 bytes for integer, 4 bytes for floating point etc, accordingly. by default)]

For example: S :
Find the address of the 7thelement in a floating point areay srl {20), whose base addressis 1592,

Solution:._--.-'_ . : !
Assuming the array elements to be

The subsenpted ‘?th elements will be srl [6].
I=6and L=0
Base Address (B) = 1592 (given)
Size of tloating point array =4 bytes (Standard)
Therefore, the address of the 7th element =B +S (I-L)
. = 1592 + 4 (6-0)
= 1616.

1.5 Classification of Data Structures

We know that the Data Structures play an important role in a computer system, They
combine various different data types in groups and allow userto process them as asingle unit. A
data structure can be classified into following categories:~
1.5.1 .. Simple Data Structures :

These data structures are normally built from prumt:ve data types like Integers Real,
Charactcrs Boolean, Following data structures canbe termed as sunple data structures:

Array

Structure
1.5.2 Compound Data Structures:

Simple data structures can be combined in various ways to form more complex structures

called compound data structures.
. Compound data structures are also classified into follomng two categoneS’-
1.5.3 Linear Data Structures:
 These data structures are single level data sh'uctm'es A data structure is said to be linear
ifits elements form a sequence. Following are the examples of linear data structures:

Stack -

Quene

Link List
1.5.4 Non-linear Data Structures: _

These data structures are multilevel data structures. A data structure is said to be non-
linear if its data items are not arranged in a lmear ‘sequence. Graph, Tree are the examples ofa
non-linear data structure.

Fellowing figure shows the classification of: all. different data structures:-

s Dﬂ‘“si;“mm I
Simple Dalo Struotires -~ - - Copoind Detd Structires. -

.

1.6 Algorithm writing and Convention

An Introductmn to Algorithm :

An alﬁgpnthm is a well-defined list of steps for solving a particular problem. In other]

words an algorithm is a finite list of well-defined instructions for solving a particular problem.
These instructions, when executed in the specified order, solve a problem, which the algorithm

mtcndsfomsc;l#\;éd'ﬂﬁléalgonﬂ]m musst be expressed ina fanguage thatlsunderstoodbyﬁleproblem

o You have learnt, in your school days, many such algorithms. Like Euclid’s algorithm, to
compute the H.C.F of two given positive integers.
According to this algorithm:-

“Divide the greater of the two given numbers bythe other one. In next step divisor of the
previous step by the remainder. Repeat this until the remainder becomes 0. The divisor at this

step is the required H.C.F™.

1.6.1 Writing an algorithm :

' " Analgorithm has three execution —sequences:

1. Sequence Logic or Sequential Logic

2. Selection or Conditional logic

3. Iteration or Repetitive Logic

In “Sequence Logic” unless instructions are given to the contrary, the modules are
executed in the obvious sequence. The sequence may be presented explicitly, by means of mmbered
steps, or implicitly, by the order in which the modules are written.

“Selection Logic” employs a number of' condmons, whichleadtoa selection of oneoutof several

alternative modules.
“Tteration Logic” unless refers to either of the two types of structures involving loops. Each type
begins with a Repeat statement and is followed by amodule, called the body of the loop.
1.6.2 Algorithm Conventions :

~ We will use the following conventions in wntmg analgorithm :

1. Analgorithm begins witha START instruction.

2. Ttends witha STOP instruction. -

3. One instruction is written on one line, _

4. Eachline is numbered sequentially foridentification.

5. The instructions used are well understood by the problem~solver who will useit.

6. A container of a value (known as variable) is represented by any wordthat does
not have language specific meaninge.g. A, B, Cete.

7. A6 means: store 6 in the variable named A.

8. AA-+lmeans: add 1 tothe value contained in the variable A and store the result
“back into it. Similarly AB*C would mean multiply values in B and C and store the

_ resultintoA.

9. Standard arithmetic and logical operators may be employed with their respective
meaning as follows:
Arithmetic Operator g Logical Operator
Add ' + _ Equal to = -
Subiract - Notequalto <
Multiply * Less than <

Divide / ~ Greaterthan >

. =

Remainder % Greater than or equal to>=

Note: - Assignment Operatormeans stote the right hand value into left hand variable.

10.

~

11

Input-output instructions: Simple verbs like PRINT is used to output value(s) to
the user and READ for reading input value(s) from the user.

Conditional instruction: A conditionisan expression that evaluates to eithet-
TRUE or FALSE. For example: A>5 is a condition expression. AnIf instruction is
written as — IF(<condition™>) then <action> '

" IF (A>4) THEN 5 ELSEPRINT 10

12.

ihe condition is false then again execute step 2, step 3,...... step10. Check the
~ condition again. Repeat this process. Execution stops when the condition (A<5)
 becomestrue. - '

- Example: - ' _
An Algorithm to print all even numbers from 2 to 16 on the screen using selection
and iteration. ' '
STEP1. : START
STEP 2. Al
STEP 3. - IR (A%2=0) THEN

- PRINT A :
STEP 4. AA+]
STEPS. - IF(A<=16) THEN GOTO3

Loop instruction : . SR ‘

. A GOTO instruction takes the execttion sequence control to the specified
instruction No.

GOTO 200 N

A Do-While instruction executes & given set of instructions repeatedly as log
as the given condition is true. Exécution stops when the condition becomes
false. - ie. - _ '

: DO(STEP2TO 10) WHILE(A<S) o -

Tt means, execute step 2, step 3,....step10. Then check the condition (A<5).

If the condition is true then again execute step 2, step 3,......stepl 0. Check the

condition again. Repeat this process. Execution stops when the condition (A<5)

tg‘:gtomes false. The instructions enclosed within the loops are executed once, at

least. _ .

. A WHILE-DO instruction executes a given set of instructions repeatedly as

log as the given condition is true. Execution stops when the condition becomes

false. ie. S T

WHILE(A<5) DO (STEP2TO 10) '

' Jt means, check the condition (A%3). I the condition is true then execute step

2, step 3,......stepl0. Again check the condition, If the condition is true then

again execute step 2, step 3,....step10, Check the condition again. Repeat this

process. Stops when the condition (A<5) becomes false. - _

. Loopinstruction: REPEAT — UNTIL instruction executes agiven setof
instrucﬁonsrépeatedlymtilthcgivenoondiﬁonbeoomes false. :
REPEAT (STEP2TO 10) UNTIL(A<5) ' o

Tt means, execute step 2, step 3,..-.-- step10. Then check the condition (A<5). If

STEP 6. STOP ' ' !

1.6.3 Characteristics of Algorithm :
-~ Algorithm must satisfy the following criteria;- :
Input: . Thesearezeroor more quantities which are externally supplied.
Output: At least one quantity is produced. '
~ Definiteness: Each instruction must be clearand unambiguous i.e. having one and only meaning,
~ Finiteness: Ifwetrace outthe instructions of an algorithm, then for all cases the algorithm
must terminate after a finite number of steps. A program does not satisfy this condition necessarily,

Effectiveness: E\?ely instruction must be sufficiently basic and also feasible as far as execution is
concerned., ‘

1.7 Analysis & Efficiency of Algorithm

The analysis of algorithms is a major task in Computer Science. In order to.compare
algorithms, we must have some criteria to measure the efficiency of our algorithms,

The correctness of an algorithm in solving a problem is of paramount importance. A
algorithm giving incorrect solutions no better than no algorithm at all, _
Besides, an algorithm may solve a problem but the method may not be cost effective, The cost
that incurs in executing an algorithm is in terms of how much space and how much time is required
in its execution. Each variable requires space and each instruction takes some time to execute, -

. So that, Analysis of algorithms for their correctness and space and time requirementsisa major

task in algorithm design. ' ' _

1.7.1 Time and space complexity of Algorithms: :
- Inorder to compare correct algorithm thes two bases of space and time are taken into
consideration. |
To determine the execution time the following information is required ;-
Time taken by the execution of the algorithm to read one instruction,
Time taken to understand and interpret the instruction,
Time taken to execute the instruction, B
The actual time is not easy to determine because each executor of the algorithm takes its own
time. The time taken to execute an instruction also depends on instructions themselves. Some
instructions take more time to execute than others. Another approach called Frequency Count
Method also exists. In this method numbers of operations are counted, The actual time will be
proportional to this count and can be computed by suitably multiplying by some factor, The
higher order of frequency count variable in the total time expression is known as Order of the
complexity denoted by O (). Less the order of complexity, miore efficient the algorithm is, -
The space requirement can be calculated by maximum number of variables used by the algorithm
in some arbitrary space unit for the purpose of comparison. ' '

“These meas/urements may be different in different situations, but in case, a comptter executes the

SR algorithm, these values may be found out more accurately.

Here, we will consider the following example:

Consider the algorithm to print character “A” N square times.
1. START
2 I _ N

10

3 IF(I>N) THEN GOTO 11 :
4 J1 _ ¥
5. IF(J>N) THEN.GOTO9 :
6. PRINT “A”
7 IJ+1 _
8 GOTO 5
9. I 1+1

10. GOTO3

11. STOP ' :
Let us count the number of times operations are executed. Assume that START takes 1 unit of
time, assignment() takes one unit of time, comparisons(>=) takes two units of time, arithmetic.
operation () takes one unit of time, GOTO and STOP takes one unit of time each.

1.7.2 Algorithm complexity and order notations :
Let us compute the frequency count of above given algorithm:

1. START : 1 unit
2. 11 » 1 unit
3. IF(I>N) THEN GOTO 11 : (2+1=3) units
4. J1 - : (1*N) units
5. IF(J>N) THEN GOTO 9 : (2+1)*N units
6. XX+ :(N*N)*1 units
7. JI+t : (N*N)*1 units
8. GOTO 5 : (1*N) units
9. T1+1 1 (1*N) units
10. GOTO3 : {(1*N) units _
- 11. STOP : 1 unit o
Total units of time taken= 1+ 143 +N+3*NAN*NAN*N+HN+N+N+1
= S+TFNH2*¥N?
The order of complexity highest order of the frequency count variable
L = 2
= O(N?)
T

Also, we will consider the following examples:

Example#l: :
Consider a program segment:
for(i=1; i<n; i++)
for(j=1; j<n; j+t)
X+
Frequency count n*n
_ _ . = B
The order of complexity = - highestorder of the frequency count variable
= 2

The order of complexity

1

Example#l
- Consider a program segment
for(i=1;i<n; i++)
for(=1; j<n; j++)
for(k=1; k<n; k++)

X+
Frequency Count for Ist for loop - = n-1
Frequency Countforllnd forloop = - (n-1)(n-1) _
Frequency Count for ITlrd for loop =« (o-D(@-1n-1
Total Frequency Count for Instruction x-++; . _
: = (@-1)(n-1)(n-1)

: = n’-3n’+3n-1. Ans.

The Order of complexity = 3 o LT T

‘Q’ Notation: | \
The order of complexity of an algorithm may also be expressed in terms of O notation.
~ Iff(n) and g(n) are functions defined over “+ve’ integers then

f(n) =o(g(m))
{Read f(n)is order of g(n)} means that these exists a constant ¢ such that,
|fn)| clgm){ - foralln . .
Wheére number n is a sufficiently large “+ve’integer, :
Example: _ B
" Let - fm)=3n5, gh)=p*n 9
For n=1: fn)=-2, - gn)=0 '
' n=2: fm=1gm)=2
n=3: fn)=4gn)=6
n=4 fm)=7gn)=12 -
Wc can see that for n=2,3 and 4;¢=1,1.5and 12/7 respectwely
|f)] clg)|

Self Learning Exercises -

Q1. = State whetherTtrue or False ;.

@ - Rawdataare facts relating to some event. o
- (i) Data structure contains a set of data of different types.

- (i) Anarraycontams similar elements.
(ivy) Alldatastructures are arrays.
" (v) Bubblesortis faster than selection sort.

(i) Adataitem refers to a single unit of values, '
(i) Raw datais oflittle value in its present form unless it is orgamzed intoa meanmgﬁll

format.
(viif) Chamctcr isnot one the anmve data type.
() in“Sequence Logic” unless instructions are given to the contrary the modules are not

executed in the obvious sequence.

12

!

(1;) «Gelection Logic” employsa number of conditions, which lead toaselectionof one out

of several altemative modules.

Q2. Fill inthe blanks : \ _ _
@) __are simply values or sets of values.
(b) Meaningful or processed data s called

~ (¢) Datamay be organized in many different ways; the logical or mathematical model of

. particular or zation of datais called - . -
(d) Adding anew record to the structure is known as
©A____ is a reference to a data structure.
Q3. Define Data structures. B
Q4. List four major opetations on finear data structare? - -
Q5. Whatis meant by base address of anarray?

Q6. Find the address of ary [S] and ary [-5] which are array eleaents of achararrayary "

[-10...10}, with base address 0f 792. '

Q8. Suppose A, B, Carearrays of integers of sizesm, 1 and m-+n respectively. The number

in array A appears in ascending order. In array B, the number appears in descending
order. Write an algorithm 10 produce a third array C, containing all the data arrays Aand

B in ascending order using Sorting while mergimng technique.

Q9. Whatare the preconditions for Binary search to be performed onaone dimensional

- Q10, Which of the fo_llowing sorting: selection sort, bubble sort and insertion sortis more

efficient.

1.8 Summary:

Data may be organized inmany different ways; the logical or mathematical model ofa
partic\ﬂarorganizéﬁonofdatais called “Data Structure™ o
Data Structure which displays ihe relationship of adjacency between elementsis said to
be “Linear”. S o

It mustberich enough in structure to reflect the actual relationships of the data in thereal

world. _ _
| Imgmmﬁn&mvemmgﬁMIeﬁmRiglﬁ,Reuievalofwelemeﬁt,stonnganyelemen;,_

deleting any element are the main operations which canbe performed onany linear Data

Structure. . - :

.M Arrays areone of the Linear Data Structures. o

m Single Dimensional as well as Multidimensional Atrays are represented in memory as
one dimension AITay. -

e ——
1.9 Glossary

e

A pamed listof a finite number of similar data elements.
Data item A single unit of values of certaintype:
Pata Structure Named group of data of any one datatype.
Data type Named group of data with similar characteristics and behavious.

13

Data Raw facts relating to some event. o
Linear Data Structure Single-level data structure representing linear refationship among

Merging Combining elements of two data structures to form a new data structure.

Non-linear Data Structures Multi-level data structures representing hierarchical relationship
among data, |

Non-primitive data types Data types which are composed of primitive data types.

Primitive data types Data types which are not composed of other data types Sometlmes
also called standard data types.

Simple Data Structures Data structures normally built from primitive data types.

Sorting Arranging elopements of a data structure in some order (ascending or descending)

Traversal Processing each and every element of a data structure.

1.10 Further Readings

1.

Data structures, Algorithms andApphcatlons in C++ by S.Sahni, Umversny press (India)
pvt ltd/ Orient Longman pvt.Itd., 2nd edition

Data Structures and Algorithm Analysis in C+-+ by Mark Allen Welss, Pearson Education,
Second Edition

Data structures and Algorithms in C++by Michael T.Goodrich, R.Tamassm and D Mount,
Wiley Student Edition, John Wiley and Sons

Data structures vsing C and C++ by Langsam, Augenstein and Tanenbaum, PI-]I/Pearson
Education.

Data Structures and Algorithms in C++by Adam Drozdek, Vikas Pubhshmg House/

‘Thomson International Student Edmon Second Edition

1.11 Answer to Self Learning Exercises

ANS 1. True or False :

@ ° Tue
() False
@) True
(iv) - False -
V) False '
() Toue
vi) Tie
(viii) False
(ix) False
5:4) Tre
ANS 2. Fill in the blanks:
(a) Data
(b) Information
(¢) Data Structures
(d) Tnserting
(e) Pointer

T

14

Ans 3. A data structure is a named group of datﬁ of different data types which can be

" processedasa single unit.
Ans 4. Four miajor operations performed on linear data structures are : =
(i) Searching (ii) Sorting ‘(ji)) Traversing (iv) Insexting

Ans 5. The starting address of the very first element of an array is known as base address.
Ans 6. Selution: _ ' :
The array elements are _
ary [-10}, ary [-9].....ary [9], ary [10}
Base address (B) =792 (given) _
Size of an element (S) =1 (standard for char) (
Lower bound of the array (L) =-10 and I=5
There fore, the address of the element

. ary[3) = B+S(L)
‘ = ; 792+1(5-(-10)

‘ = / 807
* and the address of ary [-5] s/ 792 +1(-5-(-10)
' =797

Ans 7. Soluation:

// Finding name of a person from a list of N Names.

#include <iostream.h>

#include <stringh>

#include < process.h>

void main ()

{

void arrange (int a, char b [50] [200));
inti,N; '

char names [50] [200], name1 {501 ;

cout << *’Input the no. of names:” ;

cin>> N; .:: .
cout << “*input the names one by one : \n”;
for(i=0;i<N;i++)

¢ _

cin>>names [i] ;

arrange (n, names);

cout << *’Input the name to be searched : *;
cin>>namel;

cout <<*“\n”} o~

int mid, pos, min, max, ¢=0;

min = 0, max = N, pos =-1,mid=0;
while (¢! =N) && (pos ==~-1)

mid =(min+max)/2;

if (stremp (names [mid] , namel)==0)
pos =mid ; :

else

if (stremp (names [mid], name) < 0)

15

min=mid+1;

c=ctl;
-}
if(pos==-1)
cout<<“Search Unsuccessful “;
else
cout<<“The position” <<pos+ 1 <<“\n”;
return O;
} | '
void arrange (int a, charb [50] [200])
; _
char temp [50] ;
for (int d =0; d <a; d++)
for (intu=d; u<a; u++)
{
if stremp (b [d]), blu]) > 0)
. strepy (femp, b[d]);
strepy (b{d], b[u]);
strepy (b [u], temp) ;
}
A }
}
b
Ans 8. Solution :
CountA=0;
countB =n-1;
- countC =0; - _
. while (count A <m and countB <)
do ‘ :
{
if (A [count A] <=B [countB])
{ _
CleountC] =A[countA];
countA =countA+1;
©countC =count C+1 ;
‘}
';’?e |
/ C{countC] =B [countB] ;
~ countB =countB-1 ;
' countC =countC+1;
}
if(countA= =M)
i '

16

) | ©while (countB >=0) : _ -

o
C[countC) =B (countB);
countB=countB-1;
countC == count C+1;

}
} .
if (countB>0)

{
while (countA <M)

{ _
~ C(countC)=A [countA];
counta=countA+1;
countC =countC+1;
Y
¥ _ ' T ' /
Ans9. For binary search: o - -
® the list must be sorted,
@ lowerbound anduppes bound of the list must be known.
Ans 10.

Insertion sort is generally preferred for small number of elements. The programming effort in
this technique is trivial. However the sorting does depend upon the distribution of element
values. ' '

~ Selection sort is easy to use but performs more transfers and comparisons compared to
bubble sort; Also the memory requirement of selection sort is more compared to insertion
and bubble sort. Withlesser memory available insertion and bubble sort proves useful.

1.12 Unit- End Questions :

Ql. - Difi’qrentiatc between data type and data structure.

Q2. Whyweneed datastructures inprogramming? .

Q3. Whatare the various operations which performed on data structure?

Q4. Whywe consider data structures from three different perspectives?

Q5. Whatismeant by the term base address? -

Q6. Definethe following terms:

' a) Linear datastructure ' ' "\
b) Non-linear data siructure
¢) Abstractdatatypes

Q7. Whatarethe different criteria to satisfy the algotithm?

Q8. Explainthe following :
a) Analysisof algorithm
b) Time & Space Complexity
¢) ‘O’ notation with suitable example

Q9. State whether True or False :

1. Accessing each record exactly once so that certain items in the record may be processed

}

17

= . 2. Searching is finding the location of the record with a given key value, or finding the”
locations of all records, which satisfy one or more conditions.
3. Character is a literal expression of some element selected from an alphabet.
4. Float is also one of the primary data type.

Q10. Fillinthe blanks : _
1. A logical data item is a primitive data type that can assume the values of elther
or
2. ' isaliteral expresmon of some element selected from an alphabet -
. Two of the largest and most widely used character set are represented by
and . -
4. Some primitive data types are , RS __,and

b.)

5. A well-definedlist ofs:tepfyforsolving a particular problem is called

Feede

ot vl e

18

| UNIT-II |
ARRAYS

STRUCTURE OF THE UNIT

20 Objectives |

71 Introduction
2.1.1 Two-dimenisional Array

2.2 RepresentaﬁonofAnays in Memory
221 Memory R ion of Two-Dimensional Array
2,22 Memory Representation of Three-Dimensional ATTay
2.2.3 Memory chrcsentation of Multi—Dimensional Artay

53 AddressCalculationusing Column & Row Major Order

-~ 3.1 Multi-Dimensional Array

2.3.1 RowMajor Storage Tmplementation-
532 Column Major Storage Tmplementation

24 SirnpleMatrixMulﬁpﬁcaiionAlgodﬂunS&theiroomplea(iﬁ&s
2.4.1 Multiplication of two Marices
2 4.2 Algorithm for Multiplication of Two Matrices

n5 SparseMatrices

251 Different Forms of Sparse Matrices
252 Araybased Represertation of Spasse Matrix

2.6 Summary |

27 Glossary

_ 2.8 Fm‘ther.RcadiﬂgS o
99 T Auswerstothe SelfLearning Exetcises
2.10 Unit-End Questions

‘Matrix muliplication Algorifhm

Repfeécntation of Sparse Matrix a8 anArraY |

19

2.1 Introduction
2.1:1 -Two-dimensional Array :

A two-dimensional array is a collection of similar data elements where each element is referenced -

by the two subscripts. It is appropriate for table processing and matrix manipulation. A matrix
can be represented in the form of a two-dimensional array. Hence, these arrays are also termed
as Matrix Arrays. _

8 4 7 3
11 0 5 16 3x4

Here, we consider the matrix is shown as above, The matrix M has 3 rows and 4 columns; it
contains 12 elements. The array required for stonng such a matrix should be capable of storing
12 elements in arow-column style. .

MAT[3][4]i is atwo-dimensional array with two wbscnpts w1th the first and second subscripts
varying from 0 to 2 and 0 to 3, respectively. Themah‘txMcanbestorcdmﬂwtwo»dlmenﬂonal
| -anayMATasshownmthcﬁguregrveﬁbelow :) '

MATIO}O]
2 8 9 1
8 a 7 3
11 | o 5 i8
- m.a.nzus;

. -._.-;,-;-Lngiml represcntanon of a tm&dnnemwml array MAT{&]{&]

There are two ways of traversing a two-dimensional array, oW by row or column by column.
- The first way of traversing an array is known as the row -major arder and second as the
column —magjor order :

2.2 Representation of Arrays in Memory

2.2.1 Memory Representation of Two-Dimensional Arrays : .

We can say that multi-dimensional arrays are provided as standard data objectm most
~ ofthe high level languages, it is interesting to see how they are represented in memory. Memory
may be regarded as one- dimensional with words numbered from 1 tom. ’Ihcrefore, we are
concerned with representing n dimensional atrayin one - dimensional memory.

Atwo —dimensional *mx n’ array A isa collection of m.n data elements such élement is
speclﬁed by a pair mtegers (suchasj, k), called subscripts; with property that is glven by

lcj<mandlck < n
20

1

T element of A with first subscript j and second subscript k will bedenotedby A, , or ADLK].

Two-dimensional arrays are called matrices in mthematlcs and tables in Business Appllcatlons

- For Example ;
| | Columns _
1 AL 1] A[1,2] A[L3)
2A12,1] Al2,2) Al2,3]
3 A[3,1] ' CAB2ZY - ABS3]
o | _ 2-Dimensional 3x3 Array A

We know that the programming language stores the afray in either of the two ways:
i Row Major Order ' " ' o

it} Column Major Order _ :
InRow Major Orderelementsof i* Row are stored ﬁrstm hmar order and memme elements
of next Row and so on. /
Tn Column Major Order elements of 1% column are stored ﬁrst in lmearly and then comes
* elements of next column.

" When the above matrix is stored inmemory using Row Major Order form.
Thenthe representatlon for this purpose is shownin afigure 2.1 below

“Tin oy
"" L8 ZJ[Row }
st PR

@ny .
laa prowz
e, 7

gl

Figure : 21" _
Therepwsentahon w1th Column Major form is shownmaﬁgmeZ 2 below

3| AR N R

% :

g2,y }-‘C@lmﬁ 2

W J

0,3 '

@Y }Colnmna ;

3.5) -

Figure: 2.2

‘Number of elements in any two- dimensional array can be givenby: "

No. of elements = (UB-LB +1)*(UB,-LB,+1)
where, UB, is upper bound of 1 dimension |

LB, is lower bound of 1* dimension UB, and LB, are upper and lower bounds of 274
dlmcnswns. .

8, o,

LB,

A A TVETS I P

U,

. Figure : 2.3
H'we want to calculate the number of elements tifl Ist row then
" No. of elements = (UB,-LB,+1)* (1-1+1)
Or - No.of elements = UB,-LB,+1

No. of elements in (j-1) Rows =(j -1) (UB, - LB,+1).

If o be the size of data typ@s of array elements then memory space mquxred of stormg i-1 rows
will be:

Space Required = (UB,-LB,+1) (i-1)*s
If & be the address of A [LB, LB,] then Address of A (i, LB,) will be:
Add= @+ (UB,-LB,+1) (i-1)*S
Address of A[i, j] will be _
Address of A[i,j]= +[(UB2-LB +1) (1-1) +(G-D)*S
This is Address Scheme for Row Major Order Form.
We can write for Column Major Order:
Address of A[i, j]= a +[(UB,-LB,+1) (-1} + (i-D]*S
For example: | .

Consider atwo dlmenaonal matrix of ﬁgune glven bclow Suppose address cofA11 is 2000 and
this two-dunensmnal array contains elements of 4-bytes each, we want to calculate the address

OfAzs

Figure 2.4
Here, we will use the following formula ;
22

. Example#L:

Lower bound of the row (thelstrow npumber) -
Lower bound of the column (tlm 1st column number)

. For an array of real numbers Realarr [20] [20), find the address of Realarr [10] [12], if
Realarr [1]{1] is stored in location 1000. Assume cach real number requires 4 bytes.

Solution : Using,

B
S
L,
. Lz
in the formal |
[Afplal
We get _
| A[101012}
Example#2:

= 1000,

= 4 bytes,
= 1, -
= 1’)

B +8(n (p-Ly) HarLy)

1

= 1000 +4 (20(10-1)+(12-1)

]

1000 +4 (180+11)
= 1000+764
= 1764

A2-D array defined as Al4.7,1.3] requires 2 words of storage space for eacli clement.
- ofthearrayis stored in Row - major form, calculate the address of A [6,2], given the
. baseaddressas 100 (one hundred). . ' '

. Solution:

' Here, Bascaddress @)= 100,

Elementsize(S) =

, L.

L, =

p =

. -

No of columns (11} =

* Addressof A(.D) =

 Address foA(6,2) =

2’. : ' .
u,-L,+1 =3 +1
B+S (@@-L+@-Ta)
100-H2(5(6-4)+2(-¢-1)
100+2 (10+3)

100 +26

126

b ! . '-’f_ltholumn Major Storage Implementation:

25

In this method, stotages of elements are implemented column wise. In the linearization process,
first the elements of the first column, next the elements of the second, third and subsequent-. '
column elements are given entries. This arrangement isshownas:

e e -

{!'Mlﬂl -

f:nlumn-Maim @tm‘age nf 2!3‘~Array

The computer keeps track only of the base address. The address of any element, say [p.qlth
element, can be calculate by using the formula:

address in column major order of [p,q]th element=B+S(p-L,)+ m(q-L,)),

Where B = Base address
8 = elementsize,
L, = Lower bound of the rows (1t row number)
L, = Lower bound of the columns (2nd row number)
m = Numberofrows.
" Inabove example #2. the row major address of A{6,2] is 126.
But, thecolumnmgjoraddress = 100 +2 (6-4) +4(2-(-1))
= 100+28
= 128
asnmnberofrows (m) = u -L +1=7-4+1=4
This shows that the addresses of row major order and row colurhn order are not always same,

Example#1:

Each element of an array, DATA [20] [S0] requires 4 bytes of storage. Base address of
DATA is 2000. Determine the location of DATA [10] [10] when the array is stored as

@ Row major
® Columnmajor

Solution:
Here, B = 2000, . _ -
S = 4bytes,
m = 20,
n = 50,
DATA{10]110]

@ Row-majoraddress .~
26

= 20004 (50 (10-1) + (10-1))

= 2000+4(50x9+9) .

= 2000+1836

= 3836
(i) Column major address _

= 2000+ (4 (10-1)+20 (10-1)

= 2000+4(189) |

= 2000+756

= 2756

-

Example#2:

Each element of an array A [-15 ...20, 20...45] require one byte of storage. If the arrajf
is stored in column major order beginning location 1000, determine the location of A
[0, 40]. -

- Solution:
Here, Base address (B) = 10000
Elementsize () =1 (byte)
No of rows (m)=u, -L+1
= 20-(-15)+
=36

Therefore, the address of A [0, 40] in column major order
| =B +5((q-Ly) +m @-Ly) |
= 1000+ 1 x ((0-(-15)+ 36 (42-20))
=1000 + (15 + 720)
=1735

2.4 Simple Matrix Multiplication Algorithms & their complexities

Two-dimensional arrays sometimes known as matrices are used to perform various
mathematical operations on a rectangular set of elements. There are some important operations
of 2-Dimensional arrays such as - traversal, addition, subtraction, multiplication and others. Here
we will discuss the multiplication of two matrices and algorithm for this purpose: -

2.4.1 Multiplication of two Mairices :

‘The multiplication of two matrices is also possible but it isnot similar to the addition or subtraction
of matrices. Itis possible only when the number of columns of first matrix are equal to the number
of rows of another matrix or number of rows of first matrix are similar to the number of columns
of another matrix, i.e. when the two matrices are comparable.

27

- For Example: There are two matrices A[3][3] and Bf3][3] that have the Jollowing
Dositions of elements:

1 2 3 4 6
A= 4 5 6 B= 3 5 7
7 8 9 7 9

Then the product of these two marices will be :

© PR BB 4B Ted 4 2B BT A s ﬁx?,.,. .
4B xR + 83 +6na . AL EAS BN A 4 5x‘z’ e

|7 e 0B a0xd P iBMBaB? Pese 8x? « G20

- e._ashs-t- 1-3 A2104 21 -34-144-'27‘ '
EEE TS B4 m+2’5+4§ zq+as+ﬂ CF

14+m+3ﬁ 281-40+68 A w58+ 1
35 +7. .

¥ 47 &B% ’Ha

[131: 1‘?9

2.4.2 Algorithm for Multiplication of Two Matrices:
Using multiplication by taking column of first matrix into rows of second mafrix.
Suppose, therefore two matrices A[MJ[N] and B[N][O] and product is to go a third matrix
CIM][O]
STEP1: SET I=0, J==0,K=O //Mnitializing counters LJ, K with 0
STEP2: Repeat step 3 to 9 While(I<row)
STEP3: Repeat step 4 to 8 While(J<column)

STEP4: C[I][J] =) //Imt]ahnngOtoﬂ:leelementsofnewmam :
- STEP3: RepeatstepSto?Whﬂe(KQolumn)

STEP6: CMD]= CH)i] +A[MK]*BIK][)

STEP7: : K=K+1 - /{end of mostinner foopK

STEP8: .~ J=J+1 // end of inner loop J

STEPY: I=I+1 // end of outer loop I

STEP10: EXIT)

7/ C+H Implemen?&ﬁon of Algorithm for Matrix Multiplication

Write a program fo find the mulnphcanon of two matrices using 2-D arrays.
#include< 1osiream.h>
#include<conio.h>

28

void main() _
{ | '~.
chrser();
int A [3](3], B [3][3], CI3,3k;
intijk; .
cout<<*“Values for first matrix\n:”; -
for (i=0;1<3;i++)
for (=0;j<3;j+1)
Al G
cout<<*Values for second matrixin:”;
for (i=03i<3;i++)
for (j=05j<35++)
cin>>B[i] {jk
/* multiplication of the elements of 2 matrices */
for (i=0;i<3;i++)
for =0,j<3;j++) .
{ .
Clil 51=0; | Jiitialization to the clements of new matrix
- for (k=03k<3 k++)

C[i) [j] = CHi] (i1 +Alil k] * BIK][j];
}

cout<<“n First matrix\n:"; /{First matrix printing
for (i=03i<3;i++) -
{
for (j=0;j<33j+1)
cout<<A [i] << %
cout<<endl;
} - -
cout<<*n Second matrix\n:”; //Second matrix printing
for (i=0;i<3;i++) '
{
for (=0;<3:3+)
cout<<B [{] [j]<<* %5
cout<<endl;
} |
cout<<“4n New matrix afler multiplication \n:"; // pew matrix printing

29

~ for (i=0;i<3;i+)

Y

{
for (=0;j<3;j++)
cout<<C [i} [j]<<* %
cout<<endl;
}
} -
OUTPUT:
Values for first matrix:
1
2
3
4
5
6
7
8
9 _
Values for second matrix:
5 _
.
6
3
5
7
4
7
9
Firstmatrix:
1 2 3
5 6
7 8 9
Second matrix:
2 4 6
'3 5 7
9

4 7 .

30

New matrix after multiplication:
20 35 47

47 83 113
74 131 197

2.5 Sparse Matrices

We know that the “matrix”isa _
 they are analogous. A matrix with the same number
matrix or n-square matrix.
The following section discusses efficient ways of storing cextain types of matrices are known as
sparse matrices.
Therefore we can Say that — ‘If a lot of elem
this matrix is called Sparse matrix’,
There is no exact definition of sparse matrix, but itis a concept that canbe recognized intuitively
in all, If a matrix is sparse then we must consider an altenative way of representing it rather than
major arrangement. This is because if majority of elements of

the normal row major o column

the matrix are 0, then an alternative through which we can store only the non-zero elements and

keep intact the functionality of the matrix can save a lot of memory space.
The given figure is representing a sparse mairix of 7x7 dimensions. '

mathematical term that refers to coliection of numbers
(n) of rows and columns is called Square

ents from a mairix have a value 0 (zero) then

o| 1§ 21 2 &} " §

! (sl ojoejelcl® N

+ o L3 & i L] L T

pow 2 1-° el o ef{siel]@

. 2o l® s F abtsjlal @
: ati o1 230 "SR
N s oloelotbelei® =Y
h e jototejejet 8100

S apnenioBon O spars pISi of oo 7 T -

Figure Representation of Sparse Matrix of dimension 77 _
The way of Tepresentation of non-zero clements in a sparse matrix is known as the 3-
wuple forms. This way is commonly used in a sparse matrix. In this way each non-zero
element is stored inarow, with the 1# and 2 element, of thisrow consisting therow and

- column in which the element ispresentinthe original matrix. The 34 elementin thisrow
stores the actual value of the non-zero element. o '
FOREXAMPLE:
The 3-tuple representation of the sparse matrix is givenby -
ot sparmat[10] [3]= { -

1,19,

0,3,-5,

31

1,14,
1,67,
249,
3,13,
332,
40,11,
422,
6,2,8,
}

Hence, we can say the information of a 3-tuple representation of a Sparse matrix can be stored
using two ways — : N
, Amays
Linked List _ . :
The information about the non-zero elements is stored in these representations, whenever the

number of non-zero elements can be varied in a sparse matrix. It is more convenient to use a
linked list for the representation of a sparse matrix, - - ' - o

2.5.1 Different Forms of Sparse Matrices : _ |
There are different forms of sparse matrices which are commonly used —
- . Diagonal Sparse Matrix: |

Itis represented as — |

4 0 0 0

0 1 0 0

0 0 9 ¢

0 0 o0 12

Tri-diagonal Sparse Matrix

It is represented as — - \ -

0 3 o0 o

0 0 8 o

0 0 0 5

0 0 o .o .

Lower Trial_lgulai'r Sparse Matrix

Itisrepresentedds— = =

0 o 0 0

13 0 ¢ 0

9 2 0 o

6 0 12 0

Upper Triangular Sparse Matrix

32

Ttis repfesmed as—

o 4 O 3
g 0 1 0
o 0 O 9

o © 0 0

Here we will discuss 2 pro
containing 3-uples of no

2.5.2 Array based Re%resentaﬁoﬁ of Sparse Matyix

/Crt demonstration of sparse matrix as an array

int *ps;
int YoWs
¥
yoid initspar (struct spar*);
void create_asray (struct spar*);
_ yoid display (struct spar);
int count (struct spar); a
<oid create_tupple (60t spar*, struct spe);
void display_,mpple (struct spar);
yoid delspar (struct spA *)
voidmainQ

¢
" struct spas s} 52

intc; .

chrscr();

smitspar (&s1);

initspar (852);

create_array (&sl);

cort<<n Flements in sparse maitix’;
* isplay(sD)

c=count(s1);

33

that accepts {he clements of asparse
o elements presentinthe Spmsematﬁx

matﬁxandcrealesanarray

34

3 -

int count(struct sparp) //counts the no of nonzero elements
¢ _
int ct=0,i;

for(i=0;i<Max1*Max2;it++)

¢

if(*(p.psH)!=0)

ot '

}

return ct;

} .
//Creates an array that stores information about non-zero elements
void create_tupple (struct spar *p, struct spa s)

("

intr=0,c=1,1=1,,

p->row=c01int(s)+l;

p->ps=(int*) malloc (p->row* 3*sizeof(int));
*(p->ps+0)y=Maxl;

*p->pst1)=Max2;

*(p->pst2)=p->row-1;

1=2;

for(i=0;i<Max1*Max2;i++)

{

¢k

if((i%Max2)y==0)&8(i!=0))

{

s

. ¢=0;

} .

ift*(s.pst!=0)

{

I+

*p->pst)Ts

H+;

*p->pstlye;

_ _l-H-;

35

B

(p->psHy=(s.ps+l);
| }
- }
| - | o

void display_tupple (struct spar p) //displays the contents _
_ ' ffof 3-tupple
{inti;
for(i=0;i<p.row*3;i++)
{ .
if{i%3=0
cout<<endl;
cout<<*t”, *(p.psH);
}
y .
.void delspar (struct spar*p) //deallocation of memory
f .
if(p->ps);

}

Enter element no.0: 0
Enterelementno. 1 :2
Enter elementno.2: 0
Enterelementno.3:9
Enter element o, 4 : 0
Enter elementno. 5 : 1
Enterelementno. 6:0
Enterelementno. 7: 0
Enter element no. 8 : -4

Elements in Sparse Matrix:

| 2 1
9 1 o
1 1 4
Number of non-zero elements ; 4
‘Array of non-zero elements :
3 3 4

36

Q7. ¥l in the biankS: :
1. A“datastructure” whichdisplaysthérelaﬁonslﬁp ofadjacencybetweenelemmis
gide tobe 5 o . L S

- SingleDimexlsiohalaswcn asM\ﬂﬁdimensiOnalAﬁays:atc conted inmemory as one
@ Elements of any MtﬂtidimmOmlArraY canbe storedint\i\'o fothRowmzéormwmn
majot‘ : .

B Two dimensional arvays are implenoented b allocaﬁngthém aroW-major of column-mAHOF

m jpalot of elements from a matrix have avalue'.O (zeto)thenthis matrixiscalled 5P arse

31 .

2.7 Glossary

e —

2-D array: ftis asetof similar data elements where each element is referenced by thetwo
subseripts, - ' o

Sparse Matrix: Ifalotof elements from a matrix have avalue 0 (zero) then this matrix is called
. sparse matriX-

Row Major Qrder elements th—ralﬁrst nrhnear orderﬂandﬂmenmmcﬁb l
of next Row and so on. i

|

l

In Columnp Major Order elements of 1* column are stored first in linearly and then comes
elements of next column. . _ _

Memory I ocations: The elements of the Array are stored respectively in successive storage
place. -

. 2.8 Further Readings
1. Data styycures, Algorithms and Applications mCH-byS Sahni, Universitypress (India) . ":
pvtltd/ OrientLongman pvt1td., 2nd edition ' ; '

2. Data Strycpiresand AlgonthmAnalys:s inCH by Mark Allen Welss, Pearson Education, _
Second Editior .

3. Data sguctires andAlgonthms inC+t+by Mchael T. Goodnch, R.Tamassia and DMount,
Wiley Studer Edition, John Wiley and Sons

4. Data syyires using C and C++ by Langsam, Augenstcm and Tanenbaum PHIcharson
_. Edllcah()n,

5. Data Siires énd Algonthms in C++ by Adam Drozdek, V)kas Pubhslung House /
Thomson pernational Student Edltlon., Second Edmon

2.9 Ajgvers to the Self learnmg exerclses

ANS. 1 ~ Therearctwo ways of linearization of two chmensmual arrays: -
o G} - owMajorOrder @) - ColumnMajorOrdc _
ANS. 2 ”Ihealgonﬂn:n formultlphcatlonof two matrices is as follows: -
STEP | SETIF0,J=0K=0 - //itializing counters LI K with0
STEP>9; - Repeatstep.- 3109 While(I<row)
STER 3 Repeatstep4t08Whlle(J<column) . .
coSTEPps cmpl=o - IMahnngOtotheclemenisofrowmatm(
STE=Ps: Repeat step 5t07 Whlle(K<column)
sTezps CHIUI= C[I][J] FAMKI*BIKID

STESPY: K=K+l // end of most inner loop K |
Tazpy FH ©Jfendofinnerloop] '
= = . end of outer Joop L
wp EXIT

38

ANS3.
' The sparse matrix is defined as—

If alot of elements from a matnx have a value 0 (zero) then this matrix is called | sparse
matrix,

ANS 4. | | |
The different forms of sparse matrix are given below: |
|. DiagonalMatix
2. Tri-diagonal Matrix
3. Lower Triangular Matrix
4. Upper Triangular Matrix

— — .

ANS 5.

e

g

Max=MAT0][0]
Min=MATT[0][0]
=0
While(I<M) repeat steps Sto 8
" While(J<N)repeat steps 7 and 8
IfMax<MATI [J) -
Max=MATTI] {J];
8. IEMin>MATHI] [J])
Min=MAT[I] [J];
9. Display Max and Min
10. STOP

N s W N

ANS 6. State whether true or false:
1. Te '
2. Te
3. Te
4, Tie
ANS 7. Fillin the blanks:
1. Linear
2 Array.
3. memory locations
4 Row major, column major

39

24

2.10 Unit End Questions

Q1. Whatare2-dimensional arrays? Give an example. :

Q2. mmareﬂletwowaysmwhichapmgrmnﬁnglanguagestoresthemay? .
Explain withexample.

Q3. Writeaprogram, which gives an example of multidimensional array.

Q4. Whatis meant by the term Sparse Matrix? Give one example.

Q5. S Describe the different forms of Sparse Matrix with suitable examples.

40

-

41

o - LINKLISTS
STRUCTURE OF THE UNIT o
30 Objectives ' '
3.1 Introduction h - ¥, ' : (A i ‘,d,//.ﬂ:l..ﬁ.f--"-‘-'
3.1 Definition of Linked List — =-ti.-«*£¢}ff-';./«r.f POy S
3.12 Need for Linked Lists
3.1.3 MemoryAllocation
 3.1.3.1 Static Memory Allocation
3.1.3.2 Dynamic Memory Allocation
3.14 Advantages of Linked Lists over Arrays
32 TypesofLinkedLists |
33 Representation of LinkedListin Memory
3.4 Implementation of Linked List
3.4.1 Creation of Linked List
3.4.2 Insertion in Linked List -
3.4.3 Deletion in Linked List
3.4.4 Traversal of Linked List
 3.4.5 Searching in Linked List
35 DoublyLinkedList -..~
' 36 CircularLinkedList &~
"3 LinkedListRepresentation of Sparse Matrix
3.8 Summary '
39 Glossary
3,10 Further Readings |
3.11 Answers fo the Self Learning Exercises
3,12 Unit-EndQuestions
- '_ fasioad, finee Faty gk
3.0 Objectives C e o N
After going through this unit youwillbe ina positionto: b
Learn the concept of Linked lists SR
Identify the types of Linked lists
Describe the Static and Dynamic Memory Allocation
Define Linear Linkedlist |
Describe Representation of Linked List

Explain the Implementation of Linked List
Understand the Concatenation of Linked List
Identify Splitting of Linked List
Explain the Reversing of Linked List

. Desctibe Doubly Linked Lists & Circular linked List

3.1 Iatroduction N

Lists are a collection of data which has been arranged sequentially. Sequential data collections
can be created and managed in a number of ways. One possibility is to use atrays or structures
which we have covered in the previous unit. Recall that the linear relationship between the data
elements of array is reflected by the physical relationship of the data in the memory (i.e. sequential
allocation) not by any information contained in the data elements themselves. However, a list can
also be stored as having data elements pointing to the next in the sequence (i.e. linked atlocation)
i.e. alinked list.

Linked lists are data structures that allow the handhng ofmulhple elements of the same data type.

They are self-referential and dynamic and therefore, unlike arrays, are not limited to a pre-
defined number of contained elements. Which means that an element (member) of linked list not
only contains the assigned value of the element but also a pointer connection (link) to the next
element of the list. These list elements are called Nodes structures.

3.1.1 Definition of Linked List

A Linked List is a linear collection of data elements called nodes pomtmg to the next nodcs by
means of pointers.

Each node divided into two parts: the first part containing the mfonnatlon ofthe element, andﬂle :
second part called the link or next pointer eomammg the address of the next node in the list.

To understand the concept of Linked list, let us talk about this situation:~

~ Inacity, Children-Film-Festival is going on. A class teacher decides to take herclass-students to
watch amovie, She plans this visit well in advance and thus, calls up the cinema-hall’s manager to
book tickets for 30 students of the class. The cinema-hall’s manager books an entire row for the
- students. On the scheduled day, teacher takes her students to the cinema-hall. But she hasa
problem. She'has to go out for some time because of an urgent work. After this, she will come
back to take her students back to the school. In order to remember where her students are
seated, she just notes down the row number and seat number of the first student in the row and
~ goes out for her work. Later she comes back, goes to the noted down row number and set
number, counts 30 students this seat onwards, and takes her students back to the school.

Anyear later, the same festival is being held in the city. This time also the teacher decides to take
her thirty students to watch a movie. But this is very last day of the festival. She calls up the
cinema-hall to find out whether 30 tickets available but all the seats are not in the row, In fact the
seats are here and there in the hall. She takes her students to cinema hall and seats them on these
scattered empty seats. This time also she has an urgent work to do and has to go out. How will
she remember the student’s seat numbers this time? Last time all of them were seated in single
row next to one another. So that all that was required, was to remember the seat number of the
firs student. Rest of the seat numbers could be easily determined as students were seated next-
to-one another. What about this time?

0

w

" But the teacher is very smart. She takes out some paper slips and hands over one slip eé.ch,- toall
ke students. Then she notes down one student’s row number and seat number

on aslip and keeps that with her. The she asks the student (whose seat number, the tcacher has
noted down) to note down the row number, seat number, of the next stadenton his slip, and so
on. This way she makes her students carry aslip that has the seat number of a student sitting
. some whereelse. - - : ' '

After her work, she comes back and goes to the seat-number noted on her slip to take the
- student seated on this seat. The she reads the seat-number noted on student’s slip, goes to the
 setanumber to take this student. She repeats this process to take all her students with her. This
situating gives you a fair idea of arrays and linked lists. _

Which are represented in the figure given below:

i Lucilatkiuai s

- nﬁml,mmﬁ,a_v.. a—

" Whien the students were seated in a row, it was in the form of arrays. In atrays, all the elements
are stored in contiguous locations. Here in above situation, we can say the students aselements
and seat-numbers as memory addresses. When the students were seated here and there, then -
each student was also aslipthatwasstoringtheseatnwnberoffollowingsuldcnt."[his

;s referred as Linked List. Each element also stores the address of following element. All thatis
needed to process siich as a list is its beginning address, which the teacher did by keeping aslip
having the seat number of first student. The slip of last student does not have a seat-number as
there is no student left whose seat number is to be remembered. '

3.1.2 Need for Linked Lists

The simplest one of data stricture i.e. an. array can be used only when its number of elements
along with element sizes are predeterniined, since the memory is reserved before processing for
this reason, arays are called dense lists or static data structures. [-

Al

Now consider asituation where exact number of elements is not known. In such case, estimates
may go wrong. Also during processing i.e. either more memory is required or extra free spaces
lieintheatray. . | ' :

Another problem associated with arrays is complexity involved in insertions and deletionsof

43

3.1.3 Meinory Allocation
" Eachdatarélement, stored in the memory, is given some memory. This process of giving memory

is called Memory allocation. The memory can be allocated in two manners: dynamically and

statically. They will be discussed here.
3.1.3.1 Static Memory Allocation

This memory allocation technique reserves fixed amount of memory before actual processing
takes place, therefore, number of elements to be stored must be predetermined. Such type of
memory allocation is called static memory allocation. Arrays are allocated memory using this
technique only.

In other words we can say that, in static memory allocation memory is allocated at compile time,
If'we declare a stack through an array of 100 elements (all integers) then the statemeént is given

by:

int stk[100];
This declaration would typically be used if 100 records are to be stored in memory. The moment
we make this declaration 200 bytes are reserved in memory for storing 100 integers in it. However
it may so happen that when we actually run the program we may be interested in storing only 60
integers, even in this case 200 bytes would get reserved in memory which would result in wastage

of memory. There may be cases when we need to store more than 100 records, in thlS case array
would fall short in size. N

3.1.3.2 Dynamic Memory Allocatlon

 This memory allocation technique facilitates allocatlon of memory during the program execution
_ by tself, as and when required. This technique of memory allocation is called dynamic memory
allocation. This facilitates release of memory, if memory is not required any more. Linked lists
and Trees are allocated memory usmg this techmque only. -

“We can overcome the problems faced in static memory allocation by allocatmg memory at ran
e(mstead of compile time); this is called d)ﬁiaimfimemmy allocation.

It 1s\done by using Standard lerary Functions malloc() and calloc()
\\ Syntax for allocating through malloc () : -

| P=(datatype*) malloc (n*size of (<datatype>));
For ezé\ample. ' |
P (int*) malloc (n*2);
The °XP}‘3551011 (int*) is used to typecast the address béing tetirned as thc address of an mteger

\
The callo¢() function is exactly mm:lar to malloc{) except for the fact that it needs twn arguments

as againstthe one argument required by malloc() .
For example'
int T p
= "gim*) calloc (100,2);

b R

b Here 2 indicates that we want to allocate memory or storing integers, since an integer is
a2 byte entity, and 100 indicates that we want to reserve space for storing 100 integers. -3 -

' Another difference between malloc() and calloc() functionsis that, by default the memory allocated
by malloc() contains garbage values, whereas that allocated by calloc() contains all zeros.
3.1.4 Advantages of Linked Lists ovér Arrays

With reference to the practical application of linked lists, there are two main advahtages of
linked lists over arrays:-

~ (a) tisnotrequired to know the number of elements and allocation of memory for linked -

lists. It is done accordingly as and when required. |
: (b) Itallows insertion and deletion of the list of elements without restructuring the list.
3.2 Types of Linked Lists ' : K

There are different kinds of linked lists, the main will be discussed here :

3.2.1 Linear Link Lists - Where each clement refers to its successor. Such a list of two
types:- _ :
(a) Singly (Simple) linked lists —are also cailed one-way lists. -STngl(}inked lists contain
node with single pointer pointing to the next node in sequence. '
(b) Doubly linked lists — are also called two-way lists. Doubly linked lists contain node

' with two pointers, one pointing to previous node and other to the next node in sequence.

3.2.2 Circular Linked Lists - In which the last node, instead of having a NULL pointer.
Points to the node at the beginning of the list. ' : '
Linked lists can also be used to create a number of different data structures like Stacks,
Queues, 'a_ndTrees etc. You will learn these concepts in next units.

- 3.2.1 Linear Linked List : _ |
We have seen in the previous unit how static representation of linear ordered list through
Array leads to wastage of mémory and in some cases overflows. S

Now we don’t want to assign memory to any linear list in advance instead we want to allocate
memory to the elements as they are inserted in list. .

and it can be achieved by using malloc() or calloc()

This requires Dynamic Allocation of memory

But memory assigned to elements wilk not be contiguous, that is a requirement for linear ordered
list, and was provided by array representation, FlGWwe could achieve this? We have to consider
a)logical ordered list, i.e. elements are stored in different memory locations but they are linked to
each other and form a logical list as in Figure given below: ' _

L] X A

Figure: Logical List

45

Suppose there is a list of 8 friends, X1, X2....... X8. Each friend resides at different
locations of the city. X1 knows the address of X3 and so on ... X7 has the address of X8. If one
wants to go to the house of X8 and he does not know the address he will go to X2 and so on.
Which is represented in the figure given below:

l“ I .’.W"’f"’ I'_“’[.i{' Addafy, i““"i i"si I:“—*b“m verdel X

The concept of linked list is like a family despaired, but still bound together.

From the above discuésion itis clear that Link list is a collection of elements called nodes, each
of which stores two items of information: »

§ Anelementofthe list

§ Alink oraddress of another node

Link can be provided through a pointer that indicates the location of the node contmmng the
fsuocessor of this list element,

The NULL inthe lastnodemdlcatwthattlnsmthelastnodemﬂle list.

~ 3.3 Representation of Linked List in Memory

Alinked list requires two contiguous arrdys to store in memory. The first array stores the data
value and the second array stores the next pointer storage. And also a variable FIRST is required
which is always pointing to the first node of the list, Because in order to access the listwe usedto
know the address of the first node. Also another variable AVAIL is required '

which is useful at the time of insertion in the linked list. The AVAILis pomttoﬁlenextunusedor
free memory cell and is called free-storage or free pool. -

A free-storage is allocated with the help of new operator. |
Suppose these are the values of different variables:

FIRST=3 DATA[3]“”Cyan and L]NK[3]—2.
DATA[2]="Brown” LINK[2]=4
DATA[4f"Green” LINK{4]=6
DATA[6]="Mauve” - LINK[6]=9
DATA[9]="Blue” LINK[9]=7
DATA[7T}F"Red” LH\]K[7]=5
DATA[S"White” LINK[7]=0
So that in the memory it would look like asin figure :
mem L[- ?
o 2 5
Al M .!;" .
X White L
¢ Tamie. —
: . -
% _ ™8 _
B3k B . ki .

46

* Now, if we have to insert an element in linked list, then we have to maintaina fistofunused cell
that is pointing to be Avail. Now if we want to insert on the above linked list, then we should
Inow the next fiee location, Let us suppose the next free location s 8. So, the value of Avail=8. 4

* The following figure shows the Avail position as:

1 -
g :
- . E
. 4 Giten_ {
I & Wihirs }
cooegd Mg)
Jvait f;..,_._m_ 3
gl D 7

Ifwe insert “Violet” it will place at the location 8 and the value of Avail becomes 1 because next
free location in the above list is 1. The following figure shows as: -

1 5
fist 5 Cyag 4
4 | EER g
5 White Q
6 | e bipuve 2
Avil 7 ferdods 2
(53] 8 Viphet 1
g Blue 7

3.4 Implementation of Linked Lists
A linked list is a dynamic data structure. So, it should be created during run-time.

" Declaration of Linked List -

A linked list contains two different parts, itis declared with the help of structure. The declaration
isas follows: ‘ '

struct node
|
data-type data; | |
node * link; | ' T
} | |
node * list;

Link is a pointer of struct node type i.e. it canhold the address of variable of struct node type.
Pointers permit the referencing of structures ina uniform way, regardless of the organization of
the structure being referenced. Pointers are capable of representing a much more complex
relationship between elements of a structure than a linear order. _

The various operations performed on linked listare : creation, insertion, deletion, traversal, serac

47 -

* 3.4.1 Creation of Linked List
The creation of linked list is very simple. Let us write an algorithm to create a linked list.
Algorithm for creating a linked list : - '

In this algorithm a linked list consisting of n nodes is created. Avail is the next ava:lable memory
of the computer. The first node of the list is pointing by a pointer First and the last node of the list
points to NULL. Each node of the list has two parts. DATA and LINK. The new opcrator is
used for the dynamic allocation of node.

Step 1. If Avail =NULL
- Print “Overflow” go 10 step 13

Step 2. ~ Firstnewnode

Step 3. Avail=Avail->LINK

Step 4. First->DATA=Val

Step S. FIRST->LINK=NULL

Step6. = Temp=First

Step 7. For i=1 to n-1 repeat step 8 to 12
Step8. . Lastnewnode " .
‘Step9. - Last->DATA=Val

Step10. = Last->DATA=NULL o - .

Step 11. Temp->LINK=Last o,

Step 12. Temp=Last |

" Step 13. END - - . , _
In the above algorithm the First pointer is used to point to the first node, and Temp pointer is
storing the current node. Let us illustrate the above algorithm diagrammatically. '

Suppose, we have to create a linked list of 3 integers. First of all the memory is allocated with the
help of the new as in the step 2 of above algorithm. The following figure shows the first node as:

R B =gl

K3

Let us assume the data value of first node is 3. The inserted value is shown i m the ﬁgure given
below:

First

Now, store the address of first node in another variable called Temp. That is shown in the figure
givenbelow:

Fitst (:{;_]_____’ .- -
Tepmx) e

h

/
43

e

Then it allocate the memory for another variable as in the step8 of above algorithm called Last.
Let us assume the data value of Lastis 5, which is shown in the figure below

Fiyst E:g,,_._, . _ -
N

Now, two nodes are created . We have to create the link between the two nodes. Therefore,

—pointtcrthe-HNléparboffI-‘éiﬁp-to_Lastasiustepll . That is shown in the figure below:

A link list of 2 nodes is created. Now, we store the address of Last in Temp as in step12, Which
is shown in the figure below: . '

Now, allocate the memory of another node and name it as Last and suppose its Data value is 7.
The shifted location is shown in the figure below: -

Again point the link part ofTémp to Last and store the address of Last in Temp. Which is shown
inthe figure below: |

Fist

* S0 that here, a linked list of three nodes is created in which the first node is pointed by First and
the Last node is pointed to NULL.

49

3.4.2 Insertionin Link List

Welmowthatmseruonm)ddelenonareveryeasymhnkedhst Inserhonmthehnkedhstlsdone
inthree ways: R

Insertion of a node at the beginning
Insertion of a node after a specified node(in between)
Insertion of a node at the end

Here we will discuss all of three one by one.

3.4.2.1 Insertion of a Node at the Beginning

To insert anode in the beginning of the linked listis very simple. Flrst of all create anew node -
and point its Link part to the First node of the List. Now, new node will become the Flrst node
of'the list. Let us consider a linked listis shoyn in figure below: _

" 0 ST

~ Suppose, we have to insert anode with data value 1 in the above list. So, createancwnodeand
place 1 intheir data part, That is shown in figure below:

= S ST T EEE

T

e 1=

b

Now, point the link of new node to the first node of the list and new node becomes the first |
node as shown in figure given below:

B = Sy o= Sy Wy - W _l]_

-
Analgorithm for insertion of anode at the beginning is given below:

Algorithm for Insertion at the beginning :

50

Inthxsalgonﬂ:mwemsertanewmdecaﬂedTempmﬂwbegmmngofthzhnkedhst
¢ Stepl. ~IfAvail=NULL

. Print “Qverflow” goto step 6
Step2. Temp=new node p
“Siep3. AvaiFAvaillink -
Stepd. Read(Val),
StepS. IfFirst=NULL)then
| First->DATA=Val
’ Fust->Lmk—"Fn'st
- Temp->DATA=Val
 Temp->Link=First
,-First=Temp
Step 6. - " END

stepswechecklansr-NULLmemsthat1f[astlsemptyﬂ1m,ﬂ1enewnodewxllbethz
firstnode of the list. :

Letuswritea general function C++ for inserting an element at the beginmng of the
linked list.

//Insettmthebegmnmgofthehnkedhst.

‘node *addfitst(node*first, data_type value) -
node*temp
temp=new node;
-temp->data=value;

 temp->link=first
fast<temp;
retum (first);

0

51

__3.4.2.2 Insertion of a Node in Between

To insert a node in between of the linked list we sho_uld know after whiéh node inséi‘tmn is
required. Here we will consider the linked list which is shown in the figure below

W__Qiziﬂsl-i—alﬂ-l—qu| h

=

- Suppose, we have to insert into 7 after the node having data value 5. Fustly copy the address of
ﬁxst node mTemp as shown in the figure below:

i] -+—4 ¥ | = W] '_LL

b= ol

Now compare the data value of Temp node with 5, if it is not equal then move Temp to next
node as in figure below: '

Fi esl Q" _ : _ _ ; .
. eI i
== -
Again, comapre the contents of Temp node with 5, you see it-is equal to 5, sothat we have to
insert a new node after this node, Create new node with data value 7 as shown in the figure
below:

G5

w

n

Now, point the link part of new node to the node, which is pointing, by the node after which new
node is to be inserted as in the figure below:

3.i N 5

R

£ .
Fermp [T 7
. | L-E__E:j New Node

Now, point the link part of node in the data value 5 to the new shown as figure given below

- 52

I = -] 3 s _ 9 ' :
3 | . rl' _ 1
. I L s v

___.‘W-;_

Hence, anewnode is mserted inthe linked list. An algontl'lm te insert a node in between linked
listisas fo]lows

Algorithm for Insertlon in Between

In this algorithm we insert a new node affer anode with data value egual to Val.
Step 1. If Avail =NULL

Print “Overflow” goto step 9

Step 2. Temp=new node

Step 3. Avail=Avail-Link

Step 4. Read(Val)

" Step 5. Templ=First

Step 6. Mnle(TemplONULL)repeat step7to 8
Step 7. If{ Temp->DATA=Val)
Temp->DATA=Val

Temp->Link=Templ->Link
Temp1->Link=Temp

Step 8. Templ=Templ->Link

Step9.END. ° "

// C++ Implementation of Algorithm for Insertion in between the linked list.
Let us write a general function in C++ for inserting an element in between the linked list.
// Tnsert in between the linked list.

* node *addbetween(node* first, data_type value, data_type val)

{

node*temp;
node*temp];
temp=new node;
temp->data=value;
templ=first;
while(temp1!=NULL)

53

| if (temp1->data==val)
{ _ .

finke=templ->link;

templ->link=témp;

break;

}

templ=templ->link;

} .

retun (fist);

}

3.4.2.3 Insertion of a Node at End

. To insert a node in the last of the linked Iist, we have to traverse the list until end of the list
emotmwandthenponnﬂlehnkpmtoflastnodetothcnewmde Here we consider thelinked

hstlsslmwnmtheﬁgmebelaw

.3 '.- iy

s

-

. ..r'—'J

,| I

f

n

-

Suppose, we have to insert a new node with data vale 13 at the end of the above linked list, So,
traverse the list until the end of the linked list as shown in figure below

o S 1 . N Bl
| S T = NewNekS
:and point the link of last node to the new node as shown in figure below:
3] 5 w 7| ~f—v M . -
_[E

]

- So, anodelsmsenedatthemdofhnkedhst. AnAlgont}nntomsettanewnodeattlwendofﬂle

linked list.

54

Algontlnn for Insertion atEnd :
In this algorithm we insert anode atthe endofthe linked list.

Step 1. If Avail =NULL -

Print “Overflow” gotostep 11 4
§tep2 Temp=newriode |

Step 3. Avail=Avail-Link

Step 4. Rﬁad(Val) _

Step 5. Temp1=First

 Step 6. Whlle(TemploNULL)repeatstep'/
Step 7. Templ=Templ->Link

Step 8. TemploDKFA—Vai

~ Step 9. Templ->Link=Temp

~ Step 10. Temp->Link=NULL

Step 11 END

O+ Implementanan of Algorithm for mserting at last of the linked list
Letus write a general function for inserting an element at last of thie linked list.

[/ Tnsertin the last of the linked list

node *addlast(niode*firs, date,_type value)
(-

node*temp;

node*temp1,*back;

temp=new node;

}

55

34.3 Deletion in Link Lists
" Similarto insertion, deletion is also possible on the same ways of insertionas :
Deletion in the linked list is done in three ways:
 Atthebeginning E
In between
At the end
3.4.3.1 Deletion at the Beginning

To delete a node from the beginning of the linked list firstly, copy the first node to some temporary
node and move the pointer of first to node next to first. That is shown in figure given below:

First - '
[::Q-n'. 3 . - ¥ 5 - £ . '? Wm.-m-j 9

First] - .
= 3| = 5T F—[7] F— -

Now, break the link between first and second node by starting Temp-> Link=NULL.
The following figure shows as: |

So that the first node is deleted from the linked list, Now, remove the deleted node from the
memory by using delete () function, - _
Algorithm for Deletion from beginning ; o o o
In this algorithm we delete the first node of linked list,
Stepl. If (First=NULL
Print “List Empty” go to step 6 : -
Step2. Temp=First | \
Step3. First=First->Link |
" Stepd. Temp->Link=First
~ Step5. Delete Temp '
Step6. END

56

/f C++ Implementation of Algorithm to delete an element fro’rm the beginning of
linked list

Letus write a general function in C++ to delete an element from the begmnmg of linked hst '
/i Deletion from the beginning of tinked list
node *delfirst(node*irst, data,_type &value)
¢
node*temp;
tempr=first;
If{first"NULL)
{ cout <<*“n\t List Empty”;
value=-1; S - N
3
else
{
value=temp->data;
first = first -> link;
first >link= NULL;
deleteftep);
)
retum (first);
}.
3432 Deletion in Between
To delete anode from between the linked List, we should know which node istobe deleted.
Here we consider the linked list as shown in figure below:

. -

Suppose, we have to delete a node with data 7. Now oopy the address of first nodein
temporary variable say Temp as shownas :

.57

Now, we compare the data value of the node Temp with value to be deleted. So that 3 is not
equal to 7, move to the next node by Temp=Temp->Link. Before moving Temp to the nkxt

- node, store the address of Temp in another variable say back which will always follow Temp
node and shown in figure given below: ' '

T
L

T e |

Again, compare the data value of Temp with 7, ifitis not equal then copy the address of
TempnodcinBackandnmveTcmptothenextnode'asshowninﬁguregivenbelow:

- Now, the content of Temp node is equﬂ to 7. So that we have to delete this node. To delete
this node simply point the pointer of its previous node (i.e. Back) to the node next to this node
and as shown in figure below:

Fiest | -- - i | |

Em [::m . - oo | "ﬂ'

Now, remove the link of Temp node from the linked list and remove the Temp node from the
memory using delete() ﬁmctionasshownin figure given below: -

iﬁ]gorithm for Deletion in Between : - | o
- Inthisalgorithm we delete a node with data value Val from the finked list. -

— e,

.-/ :

s

e CE R

| Stepl. M(First=NULL)
Print “List Empty* goto step 6
Step2. Back=First
Step3. Temp=First->Link
Step 4. Wle(TempONUIL)repeatS |
Step 5. If.(Temp->DATA=Val) _
Back->Link =Temp->L ink
'Delcte Temp
else
Back=Temp

node "‘delbetween(node*ﬁrst, data_type &value, data_type val)
{

node*temp, *templ, *back:

back=temp;

* tompfrst->link;
Iftfirst=NULL)

{ cout <<*\n '\t List Empty”;
value<l;
}

else

{ |
while(temp!=NULL)

{ |
if{temp->data==val)

{ |
back->link=temp->link:

- temp->link=NULL;
value=temp-z>data;
delete(temp);
break;

}

59

back=temp;

} .
}
retum (first);

3.4.3.3 Deletion at End ' _ | SR

To delete a node from the end of the linked list, we have to traverse the node until end of the
linked list. To delete a node from the end we need two variables. One is Temp, which will point
to the second node of the list, and other in Back, which will always follow Temp node. Here we
consider the linked list as givenin figure below: ' o '

_ S
Bock [Tem

T

Now traverse the link until Temp becomes NULIsand follows the Temp by Back. Where the
Temp reaches end of list, which is looked like as shown in figure below:

Now, simply assign the link pointer to NULL shown in figure given below: ~

So that, anode is deleted from the linked list.
Algorithm for Deletion at End:
In this algorithm we delete anode from the end of the linked list.
‘Stepl. If(First=NULL) _ -
Print “List Empty” go to step 9 N

60 -

Step2. Back=First .
~Step3. Temp=First->Link |
~ Step4. While(Temp<>NULL)repeat 5to 8 | | |
Step S. BackﬁTemp
Step 6. Temp=Temp->Link
Step7. Back->Link=NULL
Step8. Delete Temp
Step9. END
// C++ Implementation of Algorithm to deletc an element at the end of the linked list
Let us write a general function to delete an element at the end of the linked list.
// Deletion from the last of linked list.
node *deﬂast(nodc*ﬁrst, data_type &value)
{ | |
node *temp, *templ;
node *back;
temp=first;
if(first==NULL)
{ _
- cout <<*\n\t List Empty”;
value=-1; : . :
else -
{ o |
while(temp->link!=NULL}) ‘
{ '
back=temp; ' C
temp=temp->link;
} | | o
back->link=NULL; ' :
value =temp->data;
delete(temp);
}
retum (first);
v
3.4.4 Traversal of Linked List

Traversal of a linked list means processing all the nodes of the hst one by one. For example, print
the list, count the nodes, change the data value of nodes etc.

61

A]gorithm for Traversal of a linked list is given below :

Inthis algorithm printing the contents present in the DATA part of the list traverses a link list. The
First node of the list is pointing by First and the traversing is stop when NULL is encountered,

Step 1, iffirst=NULL
Print “List is Empty” goto step 6
~ Step2. Temp=First
-Step3, While(Temp<>NULL) repeat4to 5
Stepd4. Print(Temp->DATA)
StepS. Temp=Temp->Link
Step 6. ~ END | _ | _
Let us illustrate the above algorithm, suppose , alinked list is given in figure given below:

/

In first étep copy the address of first into the variable Temp shown is figure given below:

Fls, .
ey] e - '

Travel the list till end of list is encounter. First print the content of TEMP->DATA. Thenmoveﬂie
Temp tonext node by using Temp=Temp->Link as shown in figure given below:

Again, print (Temp->DATA) and move to the next node by using Temp=Temp->Link as shown
in figure given below:

1 3 *—"“““'"“"'5 I)

s E _.Tcmp
For Example:

Write a program to create and traverse the linked list. The linked kst contains data of type
infeger.

/I C++ Implementation of Algorithm to create and traverse the Jinked list
#include <iostream.h> -

include <sidio 1>

#include <conio.h>

#include <stdlib.h>

//Create a linked data structure

struct node

{

int data;

node*link;

[| |

/MMain programming logic
- void main{)

(

node *first, *temp, *last;

intni; - |

clrser(); |

cout<<*“\n\n Enter how many nodes to create in the linked list :”*;
//Creation of linked list
- firsst=newnode; - // Allocating memory for first node
‘cout<<“n\tEnter the data value of node 1:”;
cin>>first->data;
 first->link=NULL;
terp=first;
- for(ELi<nsit)

e |

last=newnode; _
cout<<“nt Enter the data value of node’ B Sl o
cin>>last->data; -
last->link=NULL;

temp>Tmk=last; — - //Creatinglink between the nodes
temp=last;

) _

//Traversing of linked list

temp=first;

chrscr(); _

cout<<“n\t The Linked list values are:\n”;

63 -

while(temp!=NULL)

{ _
IOOUt<<‘°\ﬂ”<<temp_>dam_;

}- | _ |
getch(); ™ //ForPressanykey
y _

3.4.5 Searching in Linked List |
Searching is a process in which a given item is searched in the given linked list. To search a

desired Item we have to compare the Item with the DATA part of every node of the List, until end
of the list is encountered. _

Algorithm for Searching a linked list :

Inthis a]gontlnn we traverse the linked list to search an element called Item, If element is found,
search is stopped, otherwise search will continue until end of the 11st is encountered

Step 1.

Step 2. .
Step 3.

Step 4.
Step S.

Step 6.
‘Step 7.

~Step 8.

If Flrst NULL Then
Print “List Empty” go to step 8

Temp=First
Read(Ttem) -
While(Temp<>NULL) and (F oundealse) repeat step 5 "
If(Temp->DATA—Item)
Found=True

| else
Temp=Temp->Link
IRFound=True)
Print” Element Found”

- IfFound=False)

Print” Element not Founcl” _
END -

Let us considera linked list shown in ﬁgure given below:

Fmtc‘lﬂsl—HSI—il—i?Iv-}—i9l—lel y

Suppose we have to search an Item 7 in the linked list. We store the address of first node in
variable Temp and compare the DATA part of Temp with Item i.e. 3 #7,

= = N = B = RS BTN R

| Temp | |

So, Temp is moved to the next node by starting Temp=Temp->Link.
Now, the Temp is at second node:

==

N I L o 0 I e BN e g BTV

them.

N = o AT

—
1y

Contents of node with Itemi.e. 7=7. Therefore element is found and stop searching and print
~ appropriate message. '

1C+H Implémentation of Algorithm to create a linked list and search

- ForExample: | ' ' |
Write a C++ program to create & Jinked list and search a particular data value of integer data

// The linked list contains data of type integer -

#include Zjostream B> R

' #include <stdioh>

#include <conio.h>

#include <stdlib.bh>

//Linked data structure

struct node

{ .

int data;

node*link;

¥ .

/fMain programming logic

void main()

{

node *first, *temp, *last; J/Creates three pointers nodes

intn,i,ftem,flag; |

- clrser();

65

Again the contents of Temp with Item i.e., 5#7. So that move Temp to the next node and compare

-

cout<<“in\n Enter how many nodes in the Tinked list O
cin>>n; //Number of nodes in the linked list
//Creation of linked list
fist=newnode; //Allocating memory for first node
cout<<“\n\t Enter the data value of node:”;
cin>>first->data;
first:>linl=NULL;
temp=first;
for(i=15i<a;i++)
{ last=newnode;
cout<<“\n\t Enter the data value of the node:”;
cin>>last->data;
last->link=NULL; : .
temp->link=last; ' /[Creating link between the nodes
temp=last;
¥ |
/fTraversing of linked list
temp=first;
clrser();
cout<<*“in\t The Linked list values are:\n”;
while(temp!=NULL) -
{ N
cout<<“\n"<<temp->data;
temp=temp->link;
}
//Searching in the linked list
flag=0;
cout<<*\n\n't The data value of node o be searched”:
cin>>ltem; | o

temp=first;
while(temp!=NULL)
{

itemp->data==item)

66

| tenﬁefnp—ﬂink;
. |
if (flag=1)
cout_<<‘°\n\t Search is successful”;
clse . _ =
cout<<\n \t Search is unsuccess
getch(); - /f For Press any key
3
Stepd4. While (N ewarst < NULL) repeat step 5to8
Step 5. Back="Temp - '

Step 6. Temp =NewFirst |

Step7. New First=NewFirst->Link

‘Step8. Temp -> Link =Back N
" Step9. First=Temp

Step 10. End

HC+ Implementatlon of Algorlthm for Reverse of a lmked list -

- For Example :

Write a C++ program 1o create alinked list and reverse the linked list.

// this program create alinked list and printing in reversal order. -
// the linked list contains data of type integer.
#include<iostream.h>>
include<stdio.h>
-#include <conio.h>
#include <stdlib.h>
structnode..
R
intdata ;
node *link;
Yy
node * create(} ; * .
void traverse (node *ﬁrst)h; _'
void main O -
node *firstl, *temyp, *back ;

67

node *neWﬁxst;
intval ;

clrser) ;

firstl = create();

3.5 Doubly Linked List
A double linked list is defined as -

Alinked list that has two links in each of its nodes, with one link pointing to the preceding node
and the other pointing to the succeeding node is called doubly linked list. -~

Therefore, we can traverse the doubly linked list either in forward direction or in backward
direction. There is noneed to know the address of first node to traverse a list.

The double linked listis shown in the figure given below:

Implementation of Doubly Linked List:
Structure of a node of Doubly Linked List can be defined as:

struct node
{ —
- data_typedata ; |
 node % rtlink, iink ;
}s
node *current, *tail;

Algorithm to ereate a Doubly Linked List :

In this algorithm a doubly linked list containing of n nodes is created. Avail is the next available -
memory of the computer. Each node of the list has two parts DATA and LINK. The new operator -
is used for the dynamic allocation of node. -

Stepl. IfAvail=NULL |
print “Overflow” go to step 14
Step2. current=new code -
Step3. current ->data=Val
Step4. current ->rtlink=NULL
StepS. current -> Itlink = NULL
Step6. tail =current

68

Step7. fori=1ton -1 repeat step 8 to 13
Step8. current=new node '
Step9. current ->data= Val

Step10. current > rtlink =NULL
Stepll. current -> Itlink = tail
Stepl2. tail => rilink = current
Step13. tail=current
Stepld. END

/] C++ Implementation of Algorithm to create a doubly Linked List
For Example: '
Write a program to create a doubly linked list of integer.
// this program creates a doubly linked list.
//the linked list contains data of type integer.
#include<iostream.h>
#include<stdio.b>
#include<conio.h>
#include<stdlib.h>
Jlcreate a doubly linked data structure
structnode
{ -
intdata; _
node *rtlink, *1tlink ;
3
// Main programming logic
void main() '
£
node *current, *tail ; -
 clrser();
 cout<<*\n\t Enter how many nodes to creates in the doubly linked list:;
cin>>n; J/ Number of nodes in the linked list
// Creation of linked list
cun:ent'= newnode; // Allocating memory for first node
cout <<*“\n\t Enter the data value of nodel >
cin>>current > data ; -

6

. current -> rtlink = NULL ;
current ->[tlink=NULL ;

tail = current ; T
for(i=1;i<n;i++) - '

' /
{ ' S

current = new node ;

cout <<“n\t\ Enter the data value of node” <<i +] << >« :
cin>> current -> data ; |

current -> rilink =NULL ;

current -> Itlink =tail ;

tail -> rtlink = current ;

tail =current ;
} |
J// taversing of inked list o
while (current ->Itlink ! =NULL) // Move the current
. current=current -> Klink ; - //pointer to the beginning of the list
e _

cout << “The doubly Linked list values are : \n “;
', while (current ! =NULL)

g |
| cout <<*“\n"<<current ->> data ;
current = current -> rtlink ;
} .
- geteh();
._}

3.6 Circular Link List

. Itisdefined as— : _

- Alinked listin which the last node is pointing to the first node of the list instead of point to NULL
isknownascircular linked list. - | |

' Thisisshown infigure given below:

Algorithm for creating a circnlar Linked list

70

In this algorithm' a circular linked list consisting of n nodes is created. Avail is the next

available memory of the computer.

The first node of the list is pointed by

pointer First and the last node of the list points to

first node. Bach node of the list hastwo parts DATAand LINK. The new operator is used for

the dynamic allocation of node.
Stepl. IfAvail=NULL

print “Overflow * gotostep 13.

| Step2. First=newnode

Step3. Avail = Avail > LINK
Step4. First->DATA=Val
Step5. First->Link=NULL

Step 6. Temp=TFirst

Step7. Fori=lton-l repeat step 8 to 12

Step8. last=newnode

Step9. last->DATA=Val

Step 10. last -> LINK = first

Step11. Temp -> LINK =last |

Step 12. Temp=last
Step 13. END ‘

NGt Tmplementation of _A]gorithm. to create a Circular List .

" ForExample:

Whitea program to create acircular linked Yist of integer data type.

/Imhmomnmmacﬁcﬂmﬁnkedﬁst
Jithe linked list contains data of type integer.

#include <iostream.h>
includé\<stdio >
#include <conio h>
#include <stdlib-h>

Jicreate a doubly linked data structure
/fcreate a circular linked data structure

i

struct node
] intdata;
node * link ;
s

//Main programming logic

!

void main ()
{
node *first, *temp, *last ;
intn, i; - '
cirser) ;
cout << “in\n Enter how many nodes to create in the circular linked list:” ;
cin>>n;)
//Creation of circular linked list
first=newnode ; | // Allocating memory for fist node
cout <<“\n\t Enter the data value of node1:”; "
-¢in>> first >data ;
first -> link =NULL;
temp = first;
for(i=1;i<n;i+H)
{ |
last=newnode ; .
cout <<*“\n\t Enter the data value of node” <<i+1 <<“.>%,
¢in>> last -> data ; _
last -> link -> = first ; / creating link between last and first nodes
temp ->link =last;’ // creating link between thc_node
o = st _ | . -
) R
/ traversing of circular linked fist
temp =first;
clrser(); _
couf<<“The Circular Linked list values are : \n “ ;
do - o .
{ .
cout <<*“in” << temp -> data ;
- temp=temp->link;
}
while (temp! = first);
getch ();
3.7 Link List Representation of Sparse Matrix .
| We have learnt in the previous unit, the representation of a sparse matrix as an array of -
‘3-tuples suffers from one important drawback, This is removed by using the linked list

L | 7n | ‘

. . . l

-=wpmehwﬁon of a sparse matrix. In the linked liét, representation of a sparse mduixaseparate
ist is maintained for each column as well as each row of the mairix. Suppose, thereis amatrixis
of size 3x3, then there will be 3 lists for 3 columns and 3 lists for 3 rows. :

A node ina list always stores the information of non-zero element of the sparse matrix. The head
* node for a column list stores the column number, a pointer to the node, which comes first in the
column, and a pointer to the next column head node.

Therefore, the structure for column head node is given by :

struct cheadnode I_ ,.

{ 3

struct node *down;

int colno;

struct cheadnode *next;

b

A head node for a row list stores, a pointer to the node, which comes first in the row list, and 2
pointer to the next row head node. ' o

'So that, the structure for row head node is given by :
struct theadnode '

{

struct theadnode *next;

introwno;

struct node *right;

IH

In other words, a node stores the row number, column aumber and the value of the non-zero |
element of the sparse matrix, Italso stores a pointer to the node that is immediately to the right of
the node in the row list as well as a pointer to the node that is immediately below thenode in the
columnn list, '

Thus the structure for anode will be :

struct node '

{

int row;

intcol;

int val;

struct node *down;

struct node *right; - C
b . '

" Besides it, there is a special node is used to store the total number of rows, total number of
columns, a pointer to the first row head node and pointer to the first column head node. The

information storedin it used fortraversing the list. _

'Ihusthesu'uctm'eformisspecia]nodeisgivenby:

{ .

struct theadnode *firstrow;

intnoofrows;

int noofeols;

struct cheadnode *firstcol;

b]

Ifa particular column list is empty then the field down of the column head node will be NULL.

Similarly, if a row list is empty then the field right of the row head node will be empty. Ifanode is
the last node in a particular column fist or a particular row list then the field down or the field right
~of the node will be NULL. ‘ ,
The diagrammatic representation of linked list of a sparse matrix (size of matrix 3x3)is shown in
figure given below:

— -

Hem,\;e will discuss the exampleé program which stores sparse matrix in the linked Hst
Hinclude<stdioh>

#include<conioh> j

#include<alloch> \

#define MAXI1 3

#defineMAX23

//stracture for col head node

struct cheadnode

{

int colno;

74

struct node *down;

stract cheadnode *next;

1

/fstructure for row head node
struct theadnode

{

int rowno;

struct node *right;

struct theadnode *next;

5

Jlstructure for node to store element
struct node

int val;

struct node *right;
struct node *down;
|5

{/structure for special head node
. struct spmat

{

struct theadnode *firstrow;
struct theadnode *firstcol; -
intnoofrows;

intnoofcols;

B |

struct sparse

{

int *sp;

int row;

struct spmat *smat;

struct cheadnode *chead[MAX2];

struct theadnode *thead[MAX1];
structnode *nd;
b

75

void initsparse (struct spasre®);
“void créatc_array (struct spasre*);
void display (struct spasre);
void count {struct sparse);
void create_triplet(struct spasre*, struct sparse);
void create_list (struct spasre*);
void insert (strﬁct spasre*, struct spmat*, int, int, int);
void show_list(struct spasre); -
void cesparse (struct spasre*);

voidmain()
struct sparse s1,s2;
clrser();
initsparse (&s1);
initsparse (&s2);
create_array(&sl);
cout<<n Elements in Sparse Matrix :”; : -
display(s1); '
create triplet{&s2,s51);
create_list(&s2);
cout<<*n \n Information stored in liked list :”;
show_Hst(s2);
delsparse(&sl);
- delsparse(&s2);
getch();
1
// Tnitialization of structure elements
void initsparse (struct sparse *p)
(_
inti; |
/fcreate row head nodes
for(i=0;i<MAX1;i++) . .
p->rhead[i]=(struct rheadnode *) malloc (sizeof (struct theadnode));
/fnitialize and link row head nodes together o
for(i=0;i<MAX1-1;i++)
- p->thead[i}->next=p->rhead[i+1];

76

p->thead[i]->right=NULL- ~
p>theadfil->rowno=i;
} _
p~>thead[i]->right=NULL;
p->thead[i]->next=NULL;
f/create column head nodes
for(iF0;i<MAX1;i++)

p->chead[i]=(struct cheadnode *) malloc (sizeof (struct cheadnode));

/nitialize and link col head nodestogether
for(i=0;i<MAX2-1;i++)
p-_>chead[i]->next=p->chead[i+1 1;
p->chead[i]->down=NULL '
p->chead[i]->colon=i;
Yo
p->chead[i]->down=NULL;
p->chead[i}->next=NULL;
 /fCreate and initialize special head node
p->smat=(struct spmat *) malloc (sizeof (struct spmat));
 p>smat->firstool=p->chead[0]; '
p->smat->firstrow=p->thead[0];
p->sn131->noofcols=MAX2; -
p->smat->noofrows=MAX1;
// Creates, dynamically the matrix of size MAX1 x MAX2
void create_atray (struct sparse *p)
{
- intng; | |
p->sp=(int *)malloc (MAX1* MAX2* sizeof(int));
//Get the element and store it
 for(i=0;i<MAXI*MAXZ;i+t)
{ _
cout<<“Enter element no. ‘i<
pSsprir
y _
}

~—
—

7

//Display the content of the matrix. ~
Void display (struct sparse s))
{

inti;

~ [*traverse the entire matrix*/
for(iFO;i<MAX1*MAX2;i++H)

{

iRi%MAX2=0)

cout<<n’;

cout<<4”, *(s.spH);

}

}

- {{Counts the number of non-zero elements
int connt(struct sparse s) ‘
{
int cnt=0,i; _
for(i=0;i<MAX1*MAX2;i++)
{
if{(*(s.sp+i)!=0)

ont+;

}

- retumcnt;

}
//Creates an array of triplet containing iformation about non-zero elements

void create_triplet (struct sparse *p, struct sparse s)°
{

intr=0,c=-1,l=1,i;

p->row=count(s);

p->sp=(int *) malloc (p->row*3*sizeof(int));
for(i=0;i<MAX 1 *MAX2:i++)

{

o+

2

H(%MAX2)=0) && (i1=0))

78

/*Checks for non-zero element Row, colui:nn'and non-zero element value is assigned to tﬁg

hatrix*/
if(*(sspti)!=0)
{
| L oA
*(p->spleT;
H+;
*p>spH=c;
bt |
(p->spH)=(s-sp+i)
} .
¥
} | _
// Stores information of triplet in a linked list form
void create_list(struct sparse *p)
{
intj=0,i;
for(i=0;i<p->row;it+j+=3)
insert (p,p->smat, *(p->Sptj), *(E->spHi+1), *@->spHit2));
} .
//Insert element to the list
void insert (struct sparse *p, struct spat *smat, int1, int <, intv)
{
Struct node *templ, *temp2;
Struct rheadnode *rh;
Struct cheadnode *ch;
intij;
J/Allocate and initialize memory forthenode
p>nd=(structnode *) malloc (sizeof{struct node));
p->nd->col=¢;
p->nd->Tow=T;
p->nd-=>vai=v;
/iget the first row head node
th=smat->firstrow;
/I get the proper row head node
for(i=05i<c;it)

79

templ=rh->right;
/Ifno element added in a row
Ifitémpl=NULL)
{
th->right =p->nd,;
p->nd->right =NULL;
}
else
{ _
_ //Add element at proper position
while (temp1!=NULL) && (temp1->col<c))
{
temp2=templ;
templ=templ->right;
L
temp2->tight=p->nd;
r p->nd->right=NULL;
{/Link proper col head node with the node
ch=p->smat ->firstcol;
for(=0;j<c;jt+)
ch=ch->next;
templ=ch—>d0\;?vn_;
/fif col not pointing to any node
Hfitempl—NULL)
{ |
ch->down=p->nd;
p~>nd->down=NULL;
}
else
’
{
//Link previous node in column with nextnode in same column
while (temp1!=NULL) && (temp1->row<))
{ |
temp2=templ;
temp=temp1->down;
}
/ ' 80

temp2->down=p->nd;
p->nd->down=NULL;

h

}

void show list (struct spaste §)
t

struct node *temp;

f*get the first row head node
int r=s.smat->noofrows;
inti;

cut<<#n”;

for (i=_0; i<r; i++)

{

temp =s.thead[ij->right;
if(temp!=NULL)
while(temp->tight!=NULL)

¢

cout<<“Row : Col ; Val : \n” <<temp->row, temp->col, temp->val;
temp=temp->right; '

}

If (temp->row==i) -

cout<<“Row : Col : Val : \n” <<temp->row, temp->col, temp->val;
} | |
}

H

/IDeallocates memory

Void delsparse (struct sparse *p)
{

int r=p->smat->noofrows;

struct theadnode *rh;

struct node *templ, *temp2;
inti,c; /ideallocate memory of nodes by fraversing rowwise
for(i=r-1;i>=0ji--) -
{ | . =

81

rlr—“p->rhead_[i];
templ=rh->right;
while (femp1!=NULL)
temp2=temp1->right;
free (templ);
templ=temp2;

y

)

_ for(i=r-1;>=0;i--)

- free(p->rhead[i]);
c=p->smat->noofcols;
for(i~c-1; i>=0; i—)

- free(p->chead[i]);
L |

4

Output:

Enter element no. 0:2
Enter elementno. 1:0
Enter element no. 2:7
Enter element no. 3:11
Enter element no. 4:0
Enter element no. 5:0
Enter element no. 6:0
Enterelementno. 7:0
Enter element no. 8:0

//deallocate memory of row head nodes

/deallocate memory of columns head nodes

Enter elements in sparse matrix ;

2 0 7
11 0 0
0 0 0

" Information stored in linked list

Row:0Col:0Val ;2
Row:_OCol:2Val:7

Row:1Col:0Val: 11

.82

~ Self Learning Exercises

- Q1. Declare a linked list havingtwo data members name (char 20) and rollno
| (integer). ' ' B '
Q2. Give two merits and demerits of linear hst
Q3. * Give twomerits and demerits of linked list.
Q4 Give one merit and demerit of Circular lists.
QS. Let LIST be a linked list in the memory, write a function that finds the average
MEAN of the valuesinthe list,.

Q6. State whether True or False:)
1. calloc() takes three arguments.

2. Almkedhstoocupmmomspaccthanmanayhawngsamenumberandtypeof
elements.

3. Thelengthofthenulllist()is 1.
4. Thelengthofthe list((5, 6),00(9,6,3,5))is 3.
5. ThelengthoflistA=(a,A,a) is Infinite. -

38 Summary

« Alinked listis a way to represent a list pfitems in such a way that each element of the list
points to the next element. .

* AlLinkedlistis a dynamic data structure.

+ Linked Listhas several Advantages over Array because of Dynarnic Memory Allocation.
Linked List doesn’t face the problems like overflow and Memory Wastage due to Static Memory
Allocation,

- » Two Lists canbe Merged and Concatenated by lmk mampulatlon.
- _- Each node of a Linked List contains address of its successor Node.

' The various operations performed on linked list are: creation, traversal, i msettlon, deletlon
and search.

o Linearor Single Linked List can not be traversed in reversed, this drawbac.k is rcmoved in
doubly and Circular Linked List.

. Adoublyhnkedhstma]mkedhstmwhcheachmdemntamstwohnks,ombﬁeprwe&ng |
node and the other to the next node in the list.

. InbnculaerkedLlsthnkpomwtoﬂastnode ofLmkedLlstpomtsto ﬁrstnodcofLmkﬁd
List instead of pointing to NULL.

. “In Double Linked List each node contains address of its prevmus nodemaddmonto the
address of next node. This provides two way traversing.
3.9 Glossary '

Linked List: Awaytorepwsenﬂahstofltemssotbateachelementofﬂnehstpomtsmmenaxt
element.

83

Node: Each item in the list is called Node and oontams two fields, an mfonnauon field and anext
address filed. -

Circular Linked List: A linked list in which the last node, instead of having aNULL pointer,
points to the node at the beginning of the list.

Overflow: If you try to insert anode, when there isno memory available, itis called Overflow.
Traversal: Traversal of alinked list means processing all thenodes of the list one by one.

Free Storage List (Free Pool): A list keepmg account of available free memory. Sometimes
called AVAIL List.

Free Storage Pool: The pool ofunallocated heap memory.
Garbage Collection: Method of addmg released memory (through adeletion) in the fiee pool

3.10 Further Readings

1, Data structures, Algorithms and Applications in C+ by S.Sahni, University press (India)
pvt td/ Orient Longman pvt.ltd., 2nd edition

2. Data Structuresand Algorithm Analysis in C++ by Mark Allen Weiss, Pearso.: Education,

Second Edition
3, Data structures and Algorithms in C++ by Michael T.Goodrich, R Tamasma andD Mount,
Wiley Student Edition, John Wiley and S.ns

‘4. Data structures usmg C and C++ by Langsam, Augenstein and Tanenbaum, PI—]]lPearson

Education.

5.Data Stmctures and Algorithms in C++ by Adam Drozdek, Vlkas Pubhshmg House /
Thomson International Student Edition., Second Edltlon

3.11 Answers to the Self Learning Exercises
ANS. 1 o - |

introllno;
char name [20];

- node*LINK; -

¥

ANS.2

i

Merits:-
(@ Implementation iseasy
/@) Betterforfixedelements
]femerits:— . ; o
O Insertion & deletion is difficult
@) Thereiswastage of memory
- 84

ANS. ¥
Merits:-
@ Insertion & deletion is easy.
i Thereisnomemory waste.
Demerits:-
@ Implementation is complicated.
@ Run-timememoryallocationis difficult to trap the error.
ANS. 4 '
Merits:-
@ Incircularlist, we can move in the list from the last node to the first node.
Demerits:- - o _
@ Front & Rear should be managed properly, otherwise over writing chance is possible.

ANS. 5 .

/Traversing the linked list for Mean
int average(node* first) / function prototype . . =
{ | o
int total=0;
.. intmean=0,n=0; .

node*temp;
temp=first;
clrsex();
cout<<“The Linked List values are :\n”;
while (tcmp!r-NULL)'
{
total=total+temp->data;
o
}
mean=total/n;
refurn mean;
}
ANS 6.

1. False

2. True)

85 . . ./'J

3. Falss,
4. Tree
5. True

3.12 Unit-End Questions

Q1. Explain the linked list with suitable example.

Q2. Howto concatenate a linked list? Show it through an example.

Q3. Giveanexampleto add or delete a node from linked list from the beginning

of the list. :

Q4. Whatisdoubly linked lists? How is it different from simple linked list?-

Q5. Whatis Circular lmked list? How is it different from doublyhnked list?
Q6. Flllmthe blanks: . -

L A computer program 1sanalgor1thm written in . _

2 Each Node of a linked List contains address of its Node.

3. Anode of a linked list is allocated épace from memory.
4

Linear or Single Linked List cannotbetraversedmteversedlrechon,ﬂnschawback
isremoved in and Linked Lists.

LA L S22 1]

86

' UNIm-Iv
STACK DATASTRUCTURE

STRUCTURE OF TI-IE UNIT

4.0 Objective

4.1 ' Infroduction .

42 Operations on STACK _

4.3 Implementationof STACK =~

" 43.1 Staticimplementation of STACK
4.3.2 Dynamic implementation df\STACK

44 Applications of STACK L

4.5 Summay . | e L

46 Glossary -

47 Further Readings _

4.8~ Answersto the Selflearning exercises

- 49 . Unit-End Questions '

4.0 Objective B
 After copletion of this unit you will learn

X What is Stack ?

. What are the basic Operations on STACK

. Static and Dynamic Implementatlon of STACK-
« . Applications of STACK -

| 4.1 Introductlon

A stack is a special type of list, Where only the element atone end can be accessed. Items canbe
“pushed” onto one end of the stack structure. New items are inserted before the others, as each
old element moves down one position. The first element is referred to as the “top” item, and isthe -
only item that may be accessed at any time. In order to access items that are further down the _
stack, they must be moved to the top by “popping” the appropriate number of items. Popping
refers to removmg the top element of a stack. Th.lS is referred to as aLIFO stmcture “LastIn,
First Out”,

These rules make stacks very restricted in use, h_Owever they are very efficient and much easier
to implement than lists. The uses of stacks vary from programming a simple card game, to -
- maintaining the order of operations in 2 complex program. For example, a stack is useful ina
management program where the newest tasks must be executed first. The node of a stack is
usually pligsented with the following structure, which is very similarto that of a list node,

It is {LIFO : Last input first output thJs looks like placmg some copybooks on your desk and
then when you we you want one of them (assume that they are all snmllar Yyou’ veto take the one on the
top first which is the last one was placed :

In the following chapters we will look at some examples of abstract data structures. These struc-

tures stote and access data in different ways which are useful in dlfferent_,apphcamns Inall cases

‘the strugtures follow the principle of data abstraction (the data representation canbe
N L |

" inspected and updated only by the abstract data type’s operations). Also, the algorithms used to

implement the operations o not depend on the type of data to be stored.A stack is a limited -

version of an array. New elements, or nodes as they are often called, can be added to a stack
and removed from a stack only from one end. For this reason, a stack is referred to as a LIFO
structure (Last-In First-Out).

Stacks have many applications. For example, as processor executes a program, when a ﬁmctlon

call is made, the called function must know how to return back to the program, so the current

address of program execution is pushed onto a stack. Once the function is finished, the address

that was saved is removed from the stack, and execution of the program resumes. If a series of-
function calls occur, the successive return vatues are pushed onto the stack in LIFO order so that

each function can return back to calling program. Stacks support recursive function calls in the

same manner as conventional nonrecursive calls.

Stacks are also used by compilers in the process of evaluating expressions and generating ma-
chine language code. They are also used to store return addresses in a chain of method calls

during execution of a program.
4.2 Operations on STACK

An abstract data type (ADT) consists of a data structure and a set of pmmtlve operatlons The
main primitives of a stack are known as:

Push adds a new node

Pop removes a node
Additional primitives can be defined:

IsEmpty reports whether the stack is empty

IsFull reports whether the stack is full

Initialise creates/initialises the stack

Destroy deletes the contents of the stack (may be implemented by ne—lmtlahsmg

the stack)

Initialise Creates the structure — i.e. ensures that the structure exists but contains no

k elements _ : /

e.g. Initialise(S) creates a new empty stack named S

Push :
e.g. Push(X,S) adds the value X to the TOP of stack S

88

[

Pop : S :
" e.g. Pop(S) removes the TOP node and returns its value

b3
Exanqale-_
- C
B 1 1B |B:
A : A - A A
s.push(AT; s.push(‘BY; s push{CY; © s.popd);
_ L returns ©

We could try the same example with actual values for A, B and C.
A=1B=2C=3 o . .-

4.3 - Implementation of STACK

The Java Collections Framework includes a set of ready made data structure classes, includ-
ing a Stack class. However, you will create your own stack class inorder to learn how a stack
isimplemented. Your class will be a bit simpler than the Collections Framework one but it will
_doessentiallythesamejob. . - o : o

Static and dynamic data structures
A stack can be stored in: :
- a static data structure
OR '
- adynamic data structure

4.3.1 Static data structures

These define collections of data which are fixed in size when the program is compiled.

An array is a static data structure. The array implementation ofa stack is more interesting, and -
can be faster on many different types of machines. The array implementation has a counter called
astack pointer that denotes the position of the array where a value was last insert3d. Assuming
that the array a is one-dimensional and has indices ranging from 1 to some large value N, let the
stackpointer be denoted by j. This means that the 1ast push() operation stored value afj].

If another push operationis specified, then we need to perform the following steps: = - « o

39 -

- 1.Check to see if i=N. If so, the stack is full and we cannot execute push() and must notify
the user of stack overﬂow :

2.Ifj <N, then increment j and store the value v in push(v) as afjl=v.
In contrast, ifa pop operation is specified, then we need to perfoﬁn the following steps:

1. Check to see if j > 0. If not, the stack is empty and we cannot execute pop() and must
notify the user of stack underflow.

2.1fj> 0, then decrement j and return the value vata[j].

3. Asan optional step, store a sentinel value that indicates a null value inalj]. 'I'hJs 1suseful in
case the staekpomter is lost, cmrupted, or destroyed :

The peek operation is implemented as return(a[1]).

a1y | a2 - afx]
~y I‘*
w ¥ x
After many
T push{) ops

staclqmmu [aackpmnm- aclrpm
j=n
wull

Before pushj[Altor push J Stack F

|ll°ll()|

v | ¥

X
rd
- .

After many
pop{) ops ,_1
stackpointer mckpmmu
j=10 j= 3
Stack Empty | [Alter pop J Before pop |

43. 2Dy1iam1c data structures

) These define collections of data which are variable in size and structure. They are created as the
~ program executes, and grow and shrink to accommodate the data being stored. As discussed in
the UNIT I, in linked list if we insert at the beginning aid delete from beginning only then linked
list will act as an Stack data structure.an important property of stacks is that items are only
pushed and popped at one end (the top of the stack). If we implement a stack using a linked list;*
we can choose which end of the list corresponds to the top of the stack. It is easiest and most
efficient to add and remove items at the front of a linked list, therefore, we will choose the front
of the list as the top of the stack (i.e., the items field will be a pointerto the node that contains the
top-of-stack item). Below is a picture of a stack represented using a linked list; in this case, items
have been pushed in alphabetical order, so "cc" is at the top of the stack:
90

fome F=13 T= 3=

III.I"IWS

Notice that, inthe pictﬁife the top of stack isto the left (at the front of the list), while for the array

implementation, the top of stack was to the right (attheend of the array).

| Let's considef how to write the pop mefhbd. Tt-will need to perform the following steps: -

1.Check whether thc.staCk is empty; if so, throw an EmptyStackException.
2. Remove the first node from the list by setting items = items.next.

3. Decrement numltems. o

4. Return the value that wasn the firstmiode inthe lst.

‘Note that by the time we getto the last step (returning the top-of-stack value), the first node has
already been removed from the list, s0 we need to save its value in order to return it (we'll call
that step 2(a)). Here's the code, and an illustration of what happens when pop is called fora
stack contalmn.g o™, "bb", "ag" (Wlth et atthe tDp) . o . o

 public Object pop() throws EmptyStackException {

L if (empty()) throw new Empty_StackExc_;ept_ion(); /istepl - '
Object tnip= it_e;ms.getData(); /Istep2(@)
jtems = items.getN_éxt() </ step 2(b)

 pumltems-; 7 step 3

© return tmp; /stepd

!

91

E P | " [e T~
lll.ll'llﬂ'l.:

-
attor lep 2s- - Ld.—-—l_m.l—_l—.-l_bb l""l—"'L“—mf--_. |

e Y e N

C-E
RS G—@—#*I—J—H-N
oumiorne: [2 |
e | o0

Now let's consider the push method. Here are before and after plctm'es, ﬂlustranng the eﬁ‘ect .

ofacalltopushwhenthestacklsnnplementedumngahnkedhst:

_Bairepmlm: Hams: - oo kb » Ay N
numtiens: | 3

ABer pushidd): tawe: | Hnl aa | Jm e | 2 bb | — ..N
numfems: | 4 -

92

The steps that need to be pei*fonned are:

1. Create a new node whose data field contains the object to be pushed and ;\ivho'se next field-
contains a pointer to the first node in the list (o nullif the listis empty). Note that the value for the -
next field of the new node is the value in the Stack's items field, '

2. Change items to point to the new node.
3, Increment numltems. |
_ l!Folléwin_g is the program to show stack operations push and pop
#include<iostream.b> | -
#include<stdlib.h>
#include<asserth>
/# To use assertion in the programme */ o o
—constint MaxStackSize=100; R
typedefint StackElemType ; ' ' s
/* Define a new variable type called StackElemType */
class Stack { ' ' -
Public:
Stack() ;
void Push(StackElemType) ;
StackElemType Pop();
StackElemType Top(') ;
int ISEmpty(); '
intIsEnll();
Private’ : _ |
- StackElemType Stack Array[MaxStackSize] ;.
int Topindex ; '
B
Stack::Stack() {
“TopIndex = -1;
o |

/* Constructor : done when the class is called in the main */

/* Back to the class */ | ~

void Stack::Push(StackElemType elem) {

if (TopIndex < MaxStackSize-1) { '

Stack Array[++TopIndex] =elem; } :

/* We may use : assert(TopIndex < MaxStackSize-1) in stead of the if condition, where the
programme will continue if it’s true,, and it will terminate otherwise */ "
* We can do the “StackArray[-++TopIndex] = elem ; “ ontwo steps -

step one : “++Toplndex ; “ note the position of the “++.

93

| step two : “Stack Array[TopIndex] =elem ; “ */
¥ Backto the class */ -

StackEl’em’Iype Stack: Pop() £
if (TopIndex > -1) {

—Toplndex ; .

return StackArray[TopIndex+1] ;
}

}
/¥ Also “asset(TopIndex > -1)” can be used instead of the if */

/* Back to the class */

StackElemType Stack::Top() {
if (TopIndex>-1)

return StackArray[TopIndex] ;
} _ _

/* Back to the class */

int Stack::IsEmpty() {
return TopIndex ==-1 ;
}

/* Back to the class */ |

~ intStack::IsFull() { -
return TopIndex == MaxStackSize -1 ;
)
/* Back to the class */ _
Stack is known as Pushing and deleting data from the stack is known as Popping.
cpp g |
#include <iostream>
" using namespace std;
- #defineMAX 10 // MAXIMUM STACK CONTENT
class stack '
{ .
private:
intar[MAX]; /ContainsalltheData -
inttop; //Contains location of Topmost Data pushed onto Stack
public: ' '
stack() /[Constructor
(o

}

void push(int a) // Push ie. Add Value Function

'\\..

top=-1; //Sets the Top Location to -1 indicating an empty stack -

topt++; | // inc.rement toby 1
ifttop<MAX)
-] 94

arr[top]=a; //1f Stack is Vacant store Value in Array

b
else
{ | |
. cout<<“STACK FULL!!"<<end};
topee |
-y
~ int pop() // Delete Item. Returns the deleted item
if(top==-1) -
1.
' cout<<“STACK IS EMPTY' ””<<endl
X : retumNULL
b
else
{ . .
int data=arr[top]; //Set Topmost Value in data
arf[top]=NULL; //Set Original Location to NULL
_ top—; - // Decrement top by 1
o returndata; //Return deleted item
)
B
int main()
{
stacka;
a.push(3);
cout<<*3 is Pushed\n”;
a.push(10);
cout<<*“10is Pushed\n”;
apush(l); |

cout<<“1 is Pushed\n "’

cout<<&pop()<<“ is Popped\n”; -

cout<<a.pop()<<“is Poppedin”;

cout<<a.pop()<<"is Popped\n”;
return §;

N
OUTPUT:
3isPushed
10is Pushed
11s Pushed

95

1is Popped - o
10is Popped - |
3isPopped

Clearly we can see that the last data pushed is the first one io be popped out. That’swhy a
Stack is also known as a LIFO Data Structure which stands for “Last In,First Out” and [
guess youknow why. :

Let us see how we implemented the stack. We first created a variable called top that points to
the top of the stack. B

; \ .
It s initialised to -1 to indicate that
the stack is empty. As Data is entered, the value in top increments itself and
data is stored into an array arr. Now there’s one drawback to this Data
Structure. Here we state the Maximum number of elements as 10. What if we need

more than 10 Data Elements? In that case we combine a Stack along with a Linked
List which will be explained later.

Self learmng exercises

1. Convert the following infix expression mto prefix and postfix fonn
(a+b)*c

atb*c

.4 Applications. of STACK

In this section we will discuss some problems which can be solved using Stack data structure
They are ‘

. Tower of Hanoi

. ‘ Paranthesis Checking

The Tower of Hanoi or Towers of Hanoi is a mathematical game or puzzle. It consists of three
rods, and anumber of disks of different sizes which can slide onto any rod. The puzzle starts with
the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making
a conical shape.

The objective of the puzzle is to move the entire stack to another rod, obeymg thexfollowmg rules:

* Only one disk may be moved at a time.

* Bach move consists of taking the upper disk from one of the rods and sliding it onto another
rod, on top of the other disks that may already be present on that rod.

* No disk may be placed on top of a smaller disk.

Tower of Hanoi Program
#include <iostream.h>

96

~ fladisk witha value , which is an elément of the stack fower in this case
 class Disk | |
{
. public:

~intvalue;
. Disk*next; -
yiclassDisk

class Tower //a stack data structure representing a tower
{ _

- public:

int size;

Disk* current;
 Tower()

{

- size=0;
current=NULL; ’
}idefault constructor

im peep(); '

bool push(int); ——"
bool pop();

bool isEmpty();

“int getTowerSize();

 void printTowerSize(); -
void panOWel‘Disks(),
voidpriﬁtTowerMén W,
h |

huToWer::pepr
q{ |
return this->current->value;
} _ |
- bool Tower::push(int ele)

B

Disk* temp; o _
temp=pewDisk; - - | \

if{current—=NULL)

temp->next=NULL;

temp->next-urret;

} |

temp->valub=ele;
this->current=temp;
size+t;

return false;

}

bool Tower::pop()

(

ifisEmpty())

{

. cout<<"‘nTower is Empty\n™;

return false;

V.

clse

{

current=current->next;

ie=size—;

}

return true;

}

- bool Tower::isEmpty()

{ iffgetTowerSize(==0)
return frue;
retum false;

} .

int Tower::getTowerSize()

{
return size;

98

Y Jreturns size of the Tower
void Tower::printTowerSize)
o

cout<<nThe Size of the Towerf*_«siig«“\n”;

y//print the Tower size

~ void Towen:printToWetDisks()

{ _
ifithis->isEmpty()
R _
cout<<“f_—'——\n”;
cout<< wc<endl;
- cout<<e—n;

“returm;

[

- Disk *ourr2;
- curr2=ﬂ1is->current;' _

cout<<e—n"
cout<<“Toweru”;
cout<———a - "
inti0; |

- whilefom2 FNULLD)
ifi>4)

break;
T . . _ |
cout<<’ l”<¢mr2’-_>value<<“i\n”;
o m2?¢w2-?neit; L
| }_. _
}// print the Tower -

~ void creaicSourceTOWer(Towet *gource,int numberOfDisks) N

' o 'for(irﬁimmnbetOﬂ)isks;iw;i—'—) .
an -
source->push(i);

3

99

i ——

void moveDisk(Tower *sowoe,Towér *dest) // movnmg adisk from soume.to destionation
{ | o
- dest->push(source->mn‘rent—>value %
source->pop();
}

vo1d hanoi(int N, 'I‘ower *source, Tower *dest,Tower *aux) // move N disks from source to
destination '

{
ifN>0)
{

hanoi(N - 1, source, aux, dest); //move n-1 disks from source to auxxilary (sub.

problem)
moveDisk(source,dest); /fmove nTH disk from source to destination
hanoi(N - 1, aux, dest, source); //moven-1 disks from auxillary to destination (sub

probiem) |

s}

}

void main()

{ \ .

Tower *sbmt:e,*d&sﬁnaﬁon,*aw:il]my'

/fTowers required for the 3 towers source destination and anxillary

source=new Tower;

destination=new Tower;

anxillary=new Towet;

/ftake number of disks from user

int rumberOfDisks;

eout<<“Enter number of Disks in the source Tower”;
-'//mseningﬂaedisksintothesometower |
createSourceTower(source,numberOfDisks); .

cout<= ' ==="<<endl;
cout<<“Tnitial Scenatio of the Towers “<<endl; - '
cont<s#Source”<<endl;

source->printTowerDisks ();

cout<<“Auxillary”<<endl;

axillary->printTowetDisks ();

100

e e —— ——

* (See C++code to do this in Main & Savitch, p. 312,

What items do we push onto the stack? If we are just interested in kndwing if the expressionis
balanced, it does not matter. For clarity, we might choose a stack of characters, pushing “(“ onto
the stack for each left parenthesis.

- Wecando more. We can match multiple types of delimiters. For exaniplc, we might want to
match (), [], and {}. In that case we can push the leﬁdchnnterontomestack,and,whenwepop,
do a check, as in the pseudocode:

if (next character is aright dehmlter) then {
if (stack is empty) then
return false
else {
pop the stack
if (right delimiter is corresponding version
of what was popped off the stack) then
continue processing /
else '
~ return false
}. .
}
Other variations on parenthesas matching mclude
valid prefix: return frue if the expression is a valid prefix for a balanced parentheses

expression, for example “((3-+4)+” is a valid prefix. Same idea, but we canreturn true aslong as -

there is no attempt to pop an empty stack.

identifying matches: it is often useful to not only 1mowthatanexpwssionisbalanwd, but
to see which pair corréspond. For example, in some editors (like Emacs), when youtype aright -

paren the corresponding left paren is momentarily hnghhghied. Think about how you nught adapt
a paren matching function to do this.

Memory management issues for stacks

Warning; It is undefined in C-++to copy or assign static arrays. For example,
int a[20]; -

int b{20];

a=b;
is implementation dependent. Some compilers may refuse to compile this. Others may take no
action, Still others (at least appear to) copy the elements of b to a. Therefore, whenever objects
have static array members (as in our static array implementation of stacks), proper copy con-
~ structors and assignment operators should be defined to avoid ambiguity. Such a copy construc-
tor and assignment operator for our static array implementation of stacks can be found here.

For stacks v‘mth static arrays, we don’t need to worry about the destructor. (The array will be
destroyed automatically when the object is). Nor need we wotry about destoying items that are

102

desﬁﬁaﬁon&pﬁntTOWGrDisks 0,
hahoi(numberOfDislﬁ,souroe, destination, auxittary) o ,
cout<< == - = _re<endh;
ui<<“Final Soenatio _ofthe’l‘owers“<~<end'1; - |
oout<i<“Souroe”<4endl; | a
SOurce->pr1I1tTowétDisksO,
cout<< Auxittary’ secendl;
mmm-y.>pﬁnfrowe:mskso,
cout<eT s o <<endl '
desunaﬁonépﬁrd’foweﬁ)isks Vo ' o S
cout<< = : = - ' *“"-""”4_4_611(11;. '
Y o
Parentheses Matching o
hcanonsof Jeal Wi detertrﬂrﬁngvm aninputs ot ﬁle,orseqﬁence of
bols) is a1l £ context—freelanguage (Forafo al in ction 10 context-free
tangoages), taks Computet gelence 520.) Many P Amin janguages are ntext
free. Also X y sinph _languages. a . o
a;nexample,conmdetthﬂanguage of balan heses ceof symbolsmvolmng
% and INLCE ,18 said v havebalanced—-p thesesif eachﬂghtparenmes1s g coITe™ .
spOndinglcﬁparenthesi that oooursbefotgit.l‘ texaﬁ'iple:Th expr oﬁshavebalanced
a1 parens - still palanced
(143) o
((2f16)+1)*(44+m+9))
These expressions donot
@38
) uaﬁgmparenwithmleﬁ
(ss+(1.2*11) J} missinga) - -
How dowetell if a sequence of characters represents abalanoed-parenmeses expression‘? Use
gtacks. 1dea: S S B
gtart with an empty stack. |
For eachleﬁparenmesis,push
For eachtightparenﬁlesis, pop.
For eaohnon—parenmésis charactet; 40 nothing: o
. The expression s patanced if ihe-stack s empty and there 8re o mote char
I is-notbalanoed if either afterthel + chatacte o stack'is not empty (too MY et
ack is empty andaﬁghtparenis encountered (8 ght without alefl).

parens), or if the st
' - 101

—— e

" Void Stack<Jtem,cap>::push(const lem& i6))
N | -
; a_ssfm(!isFull()_);

-~ pappoed offthe stack. Consider the code forpush and pop: | _
':""teih_pl_ate%lass_ltem,siz'e_;tcap?- . S | b

S

-

_ copy constructor, assignent operator and destructor, then .-~
- data[count]=it - R -

~ datafcount] = it;
count+t,
Yo
template<class Item, size_tcap>
Item S_tack<Item,cap>::pop0 '
 assert(lisEmpty(Q));

count—;

Y }éunn(data[cqunt]);'

‘The space occupied by data[count] that is no longer needed_aﬂcrpop'réwms that item, will be
reused by the next assignment (L.e- the next push). Assuming that Item has a properly functioning

—

invokes ftem’s assignment operator so memory management for the Item is taken care of there. *

" Our docmentation states (effectively a precondition for the whole class template) that the “tem-

~ plate parameter, Item, is the data type of the items in the Stack. It may be any of the C++ built-

" for a Stack class to be implemented properly we have to trust that the I

intypes (int, char, etc.), oraclass with acopy constructor, assigniment operator, and destructor.”
Unlike other forms of preconditions, we cannot check this at compile time ot run-time. In order .
em class has been

implemented properly as well.

Forastack class template that uses linked lists, we need to wrlte an expl'icit copy oonstxllcfor, .
assignment operator, and destructor because memoty is allocated dynamically. However, if we

. reuse the List template, these become trivial, because all the dynamic memory allocation takes

place within that template’s jmplementation (not the stack implementation): The copy construc-

tor, assignment operator, and destructor for stack will automatically call the corresponding mem-
berﬁmction for the stack’s sole member variable, a list. S

. Run-time complexity of stack operations

For all the standard stack operations (push, pop, isEmpty, size), the worst-case run-time com-

~ plexity.canbe O(1). We say can and not is because it is always possible to implement stacks with
_anunderlying representation that is inefficient. However, with the representations we hayve looked

“at (staticarray and a reasonable linked list) these operations take constant time. It’s obvious that
size and isEmpty constant-time operations. push and pop are also O(1) because they only work

-~ with one end of the data structure - the top of the stack. The upshot of all this is that stacks can

103

and should be implemented easily and efficiently, _ _ N
The copy constructor and assignment operator are O(n), where n is the number of items on the
stack. This is clear becanse each item has to be copied (and copying one item takes cohstant
time). The destructor takes linear time (O(n)) when linked lists ate used - the underlying list has
to be traversed and each item released (releasing the memory of each item is constant in terms of
the number of items on the whole list). Destructors for arrays take constant time since contiguous
chunks of memory can be freed in one fell swoop.
Other Stack Applications

Calculators - see Main and Savitch, Chapter Seven

Infix arithmetic expressions can be computed using two stacks:

° ((23)*7) evaluatesio 35
0 Polish postfix using one stack:
0 23+7# evaluatesto 35 '

Push each number onto the stack; for each operator encountered, pop two numbers off the
stack, push the result back on, '

e

o Infix expressions can be converted to Polish postfix (or prefix) using one stack:
o ((2+3)*7) becomes 23+7* -

momt_hanonedirection;pushallblitoncoftheopﬁonsontothestackandthengointhcd&ecﬁon
youdidn’t push. Whenyourun'intq_ adead end, walk backwards to your last option (i.e. pop the

4.5 Summary

'+ StackisaLIFO data structure -

'+ Stackoanbeimplemented as satic amay or dynamic linked Jist o

e Stackhasmanyappli'(:aﬁonseg. tower of hanoi problem, palindrome checking,
- pareothesischeckingete, - ..

UNIT-V

of the queue while removals are made

QUEUE DATA STRUCTURE
' STRUCTURE OF THE UNIT
50 Objective
5.1 Introduction
5.2 Operations on Queue
53 Implementation of Queue
5.3.1 Staticimplementation of Queue
53.2 Dynamic implementationof Queve
54 Other Types of Queue
5.4.1 Circular Quene
54.2 Deque
5.4.3 Priority Queue
‘5.5 Applications of Queue
56 Summary
57 Glossary
5.8 FurtherReadings _
59 Answersto the Selflearning exercise
5.10 Unit-End Questions
5.0 Objective -
After reding this module yon will be able to understand
. ‘What is Queue Data Structure
. Operations on Queue
. Static & Dynamic implementation of Queue
s ... Applications of Queue
5.1; Introduction . |
The queue data structure is characterised by the fact that additions are made at the end, or fail,

stack is referred to as a FIFO structure (First-In First-Out).

Queues occur naturally in

exceed the rate at which these services can be supplied. For example, in

operating system with a GUL appl

are placed in message queues until they can be handled.

5.2

Operations on Queue

The main primitive operations of aqueue are known as: -
\&A{trd adds anew node
—

-~

107

from the front, or head, of the queue. For this reason, a

situations where the rate at which clients’ demand for services can
anetwork where many
computers share only a few printers, the print jobs may accumulate in a print queue. Inan -
ications and windows communicate using messages, which

N
Remove removes a node

. Additional primitives can be defined:
- /ISEmptyreports whetherthe queueis empty

LR

sFull reports whether the queue is full
)niﬁaﬁse creates/initialises the queue
|)wtmy deletes the contents of the queue (may be implemented by re-initialising
the queue) _ . :
__Anitialise Creates the structure —i.e. ensures that the structure exists but contains no

elements . _ . S
e.g. Initialise(Q) creates a new empty queue named Q
Add
&.g. Add(X,0) adds the value X to the tail of Q.

Q X

then, Add(Y,Q) adds the value Yto the tﬁil of Q.

Q X Y

Remove _
e.g. Remove(Q) removes the head node and returns its value

al ¥

Example o
Action Contents of queue Q-after operation Return value
nitialise(Q) empty
Add(A,Q A -
" Add(B,Q)AB-
Add(C,Q)ABC-
Remove(Q)BCA
AJAFQBCF-
Remove(Q)CFB
Remove(Q)FC
Remove(Q) empty F

108

... Storing a qlfme in a static data structure

This implementation stores the queue inan array. The array indices at which the head and tail of
the queue are currently stored must be maintained. The head of the queue is not necessarily at
index 0. The array can be a “circular array” —the queue “wraps round” if the last index of the

array is reached. :

Example --storing a queue in an array of length 5

H;ad: 4]

AAkAS) Tait0 y
Add(D, G} ?;;n;:o

- Add(Z,Q) ?:iiga

| Ramoveld) f;;gdéf‘l

e s

e
Add(F.0) Heack 2

| Storing a queue in a dyhamic data structure

As inthe case of the stack, each node ina dynamnc data structure contains data AND a
reference to the next node.

A queue also needs a reference to the héad node AND a neference to the tail node.

The following diagram describes the storage of a queue called Queue. Each node
consists of data (Datalrem) and areference (NextNode).

109

GQueue:Head Dataltern Nexthods - Detallem.. NextNode GCitisus. Tail

- The first node is accessed using the name Queune.Head.

- Its data is accessed using Queue.Head. Dataltem

+ The second node is accessed using Quewe. Head.NextNode
- The last node is accessed using Queue. Tail -
Adding a node (Add) '

The new node is to be added at the tail of the queue. The reference Queue. Tail should
point to the new node, and the Ne_xtNode reference of thié node previously at the tail of
the queue should point to the Dataltem of the new node.

3

GQuoveHead Datattom NexiNods Detaftom NeviNode . QueveTal .

QuoueHead Dalallem NextNooe Detaiem NexiNode Queve. Tal

. HewMode NextNada

Removing a node (Remove)

The value of Queue. Head Dataltem is returned. Atempora:y reference Tempis declarecl
and set to point to head node in the queve (Temp = Queue. Head). Queue. Head is then
set to point to the second node instead of the top node. The only reference to the

original head node is now Zemp and the memory used by this node can then be freed.

- 110

QueusMead Datatem NextNode Dataliem NexiNode Gureuo. Tl
%

Temp

#inclu%e <jostrearn™>
using namespace std;
#define MAX 5 /i MAXIMUM CONTENTS IN QUEUE
class queve |
{
private: -
inttMAX];
intal; //Addition End
_ intdl; //DeletionEnd
public:
queue()
{
dl=-1;
_ al=-1;
}
* void del()
{ —
int tmp;
if(dl==-1)
{
cout<<“Queue is Empty™;
} o
else
{
for(int j=0;j<=alj++)
{
- if{(+1)<=ab)
{

111

! tmp=tfj+1; -

t[ij]=tmp;
3
else
{
al—;
iffal=-1)
- di=1
else
d=0;
}
_ |
}
3
void add(int item)
{
- ifldl=1 &&al=1)
,‘{ | :
ol
al++;
}
else
{ |
al-H—;
iffal=MAX)
{ .

- cout<<*Queuge is Full\n”;
al—; '
refurn;

}
}
tfal}itern; n
} o
void display()

' 112 .

|
|
1;
i
|

ifdi=1)

};--

{
for(int iter=0 ; iter<=al ; iter++)
cout<<t[iter]<<**;
}
else
cout<<“EMPTY™;
}
intmain()
{
quenca;
int dataf5]={32,23,45,99,24}; |
cout<<“Queue before adding Elements: “ Ly
a.display(;
cout<<endl<<endl;
for(int iter= 0 ; iter <5 ; iter++) h
{
a-add(data[ltcr]),
cout<<“Addition Number : “<<(1ter+1)<<“ %
a.display(); '
cout<<endl;
y
cout<<endl;
cmﬁ:«“Queue after adding Elements:*;
-a.display();
cout<<endi<<endl;

for(iter=0; iter <5 ; iter++) ™

{ .

a.del();

cout<<“Deletion Number : “<<(iter+1)<<“:%;
adisplay(); o
cout<<endl; | '
return 0; o
7113

L
OUTPUT: -
Queue before adding Elements; EMPTY

Addition Number: 1:32

Addition Number : 2 : 32 23

Addition Number: 3 : 3223 45
Addition Number : 4 : 3223 4599
Addition Number:5:3223 459924

Queue after adding Elements: 32 23 45 99 24

Deletion Number : 1 : 23 45 9924
Deletion Number : 2 : 45 99 24
Deletion Number ; 3 : 9924
Deletion Number: 4 : 24
Deletion Number : 5 : EMPTY

5.3 Implementation of Queue

As discussed before also like Stack, queue can also be implemented in two ways wiz. static and

dynamic which are discussed below:

5.3.1 Static implementation of Queue _
Simple array implementation of enqueue and dequeue operations
Analysis; _ _
Consider the following structure: int Num[MAX_SIZE];
- We need to have two integer variables that teli:
- the index of the front element
- theindex of therearelement
We also need an integer variable that tells:
- the total number of data in the queue
int Front=-]1 Rear=-1;
int QueueSize=0;
To enqueue data to the queue
0 checkif'there is space in the queue
Rear<MAX_SIZE-1?
Yes: - Increment Rear
- Store the data in Numn[Rear]
- Increment QueueSize
Front==-1?

114

g f ‘Yes: - Increment Front
‘No: -Queue Overflow
" To dequeue data from the queue
"' o checkifthere is datain the queue
~ QueueSize>0 {7 '
Ym“:‘ -'Copy the data in Num[Front]
" - Increment Front
- Decrement QueueSize
No: -Queue Undgfﬂow
Implementation: :
.constint MAX_SIZE=100;-
int Front=-1, Rear=-1;
int QueueSize =0;

void enqueue(int x)
{ .
iﬁR&uKMAX;SIZE—I).
{ |
Rear++; |
. QueneSizeth,
| if(Front==-1)
_ Front++;
)
else

cout<<‘Queue Ovei'ﬂoW’;

}
intdeq
{ -
. intx;
iQueueSize>0)
L
 x=Num[Frontl; -
Front++;
QubueSize—;

115

3
else
- cout<<“Queue Underflow™;
- retumn(x);
} |

5.3.2 Dynamic implenentation of Quene
Queues are similar to stacks in that a queue consists of a sequence of items, and there are
restrictions about how items can be added to and removed fromi the list. However, a queue has
two ends, called the front and the back of the queue, Items are always added to the queue at the
back and removed from the queue at the front. The operations of adding and removing items are .
called enqueue and dequeue. An item that is added to the back of the queue will remain on the
- queue until all the itemns in front of it have been removed. This should sound familiar. A quene is
like a "line" or "queue" of customers waiting for service, Customers are serviced in the order in
which they arrive on the queue.

In a queue, all operations take place at one
end of the queue or the other. The “"enquens”
operation adds an item to the "back”™ of the
queue. The "dequeue™ operation removes the
itam at the "front” of the queue and returns it.

Front | '~ Back
< |45 |125] 8 | 22|17 | =

items enter queue at back and leave frem frent.

125| 8 | 22 | 17
After dequeus()

125! 8 | 22| 17| 83

Aftar enqueue(8d)

A queue can hold items of any type.Fora queué of ints, the enqueue and dequeue operations
can be implemented as instance methods ina "QueueOfInts™ class We also need an instance
method for checking whether the queue is empty ' _

void enqueue(int N) -- Add N to the back of the queue.

K | | 116

int dequeue() -- Remove the item at the front and return it,
boolean isEmpty() -- Return true if the queue is empty.

Aqueue can be implemented as a linked list or as an array. An efficient array implementation isa
litte trickier than the array implementation of a stack, so I won't give it here, In the linked List
implementation, the first item of the list s the front of the queue, Dequeueing an item from the
front of the queue is just like popping an item offa stack. The back of the queue is at the end of
thelist. Enqueucing an item involves setting a pointer in the last node on the current list to point to
anew node that contains the item. To do this, we'll need a command like "tail.next = newNode;",
where tail is a pointer to the last node in the list. Ifhead is a pointer to the first node of the list, it
would always be possible to get a pointer to the last node of the list by saying; '

Node tail; // This will point to the last node in the list.
~ tail=head; // Start at the first node.
Wwhile (tail.next !=null) {
tail =tailnext;
3
// At this point, tail.next is null, so tail pointsto-
. // the last node in the list.

However, it would be very inefficient to do this over and over every time an item is enqueued.
For the sake of efficiency, we'll keep a pointer to the last node in an instance variable, We just
have to be careful to update the value of this variable whenever a new node is added to the end
of the list. Given all this, uqiﬁngtheQueueOﬂntsclassismtvgrydiﬁiCIﬂt: o

public class QueueOfints §

private static class Node {
// An objeet of type Node holds one of the items
//inthe linked list that represents the quene,
int item; >
Node next;
) _

‘private Node head=null; // Points to first Node in the queve. e ;
' // The queue is empty when head is null. _ i

i : -

117

-~ private Node tail = null; // Points to last Node in the queue.

void enqueuve(int N) {
~ // Add N to the back of the queue.
Node newTail =new Node(); // ANode to hold the new item.
‘pewTail.item =N; :
if (hoad ==null) {
/] The queue was empty ’I'he new Node becomes
//the only node in the list. Sinceitis both
 {/ the first and last node, both head and tail
/" pomt to 1t o
head = newTa:l,
tail = newTail;
N _
else {
// The new node becomes the new tail of the list,
// (The head of the list is unaffected.)
tall.ncxt =newTail; -
tail = newTail;
y
3

: intdéqueueO'{' : o
// Remove and return the front item in the queve.
//'Note that this can throw a NullPointerException.
int firstltem = head. item;
head =head.next; // The previous second item is now first,
if (head =null) {
// The queue has become empty. The Node that was
1/ deleted was the tail as well as the head of the
/1 list, so now there is no tail. (Actually, the
// class would work fine without this step.).
tail = null;
}
return firstltem;
) _

118

boolean isEmpty() {
{/ Return true if the queue is empty.
return ¢head == null);

}

} // end class QueueQfTts

Comparison of Array and Linked-List Implementations

The advantages and disadvantages of the two implementations are essentially the same as the
advantages and disadvantages in the case of the List class:

* In the linked-list implementation, one pointer must be stored for every item in the stack/
queue, while the array stores only the items themselves.

* On the other hand, the space used for a linked list is always proportlonal to the number of
items in the list. This is not necessarily true for the array implementation as described: ifalotof
. items are added to a stack/queue and then removed, the size of the array can be arbitrarily -
greater than the number of items in the stack/queue. However, we could fix this problem by

modifying the pop/dequeue operations to shnnkthe array when it becomes too empty.

* For the array unplementatlon, the worst-case times for the push and enqueve methods are
O(N), for a stack/queue with N items. This is because when the arary is full, a new array must
be allocated and the values must be copied. For the linked-list nnplementatlon, push and
- enqueue are always O(1).

5.4 Other types of Queue

In this section we will discuss diffferent types of queue, namely: circular queue, dequeue and -
pnomy queue '

5.4.1. Circular array implementation of enqueue and dequeue operations

A problem with simple arrays is we run out of space even if the queue never reaches the size
of the array. Thus, simulated circular arrays (in which freed spaces are re-used to store data)
can be used to solve this problem.

Example: Consider a queue with MAX_SIZE=4
The circular array implementation of a queue with MAX_SIZE can be simulated as follows:
Analysis: | '
Consider the following structure: int Num[MAX_SIZE];
We need to have two integer variables that tell:
- = theindex of the front element
- theindex of the rear element
We also need an integer variable that tells:
L. the total number of data in the queue
int Front=-1,Rear=-1; - |

119 .

A

To enqueue data to the queue T
o checkifthere is space in the queue
QueueSize<MAX SIZE ?
Yes: -Increment Rear
Rear==MAX SIZE?
Yes: Rear=10
- Store the data in Num[Rear]
- Increment QueueSize
Front==-1? _
Yes: - Increment Front
No: -Queue Overflow '
To dequeue data from the queue
-0 checkifthere is d:itaihth_e queue.
QueueSize>0? '
Yes: - Copy the data in Num([Front]
- Increment Front
~ Front==MAX_SIZE?
_ _ Yes: Front=0
- Decrement QueueSize
. No: -Queue Underflow
Implementation:
constint MAX SIZE=100;
int Front =-1, Rear=-1;
int QueuneSize =0;
- void enqueue(int x)
¢ |
iffQueueSize<MAX_SIZE)
{ |
Rear++;
if(Rear==MAX_SIZE)
Rear=0;
Num[Rear}=x;
QueueSize++;
~ if(Front==-1)

120

Front++;

3 _ o
else | -
| cout<<“Queue Overflow”;
}
1int dequeue()
{ |
intx;
iffQueneSize>0)
R
x=Num[Front];
Front++;
iffFront==MAX_SIZE)
Front=0;
QueueSize—;
) _
else
cout<<“Queue Underflow”;
‘ retumn(x); |
}
5.4.2. Deque (pronounced as Deck)
-isa Double Ended Queue
- insertion and deletion can occur at either end
- has the following basic operations

EnqueieFront —inserts data at the front of the list
DequeucFront - delefes data at the front of the st
EnqueneRear— inserts data at the end of the list
DequeueRear —deletes data at the end of the list A
- implementation is similar to that of queue |
-is best implemented using doubly linked List
5.4.3, Priority Queue _ o - o N
~ is a queue where each data has an associated key that is provided at the time of insertion.
- Dequeue operation deletes data having highest priority in the list | 3
- One of the previously used dequieus or enqueue operations has to be modified

Example: Consider the following queue of persons where females have higher pﬁoﬁty
than males (gender is the key to give priority). _ '

DequeueO'-dgletesAstcr
T - o 121

Iy

Dequeue()- deletes Meron .
Now 1he queue has data having equal priority and dequeue operation deletes the front element
like ini the case of ordinary queues.

Dequeue()- deletes Abebe

Dequeuve()- deletes Alemu
Thus, in the above example the implementation of the dequeue opcratlon need to be modified.

Demerging Queunes

- * istheprocess of creating two or more queues from a single queue.

- used to give priority for some groups of data

Example: The following two queues can be created from the above priority queue.

Algorithm: |

create empty females and males queue

while (PriorityQueue is not empty)

{ | -
Data=DequeuePriorityQueue(); // delete data at the front
if(gender of Data is Female)

EnqueucFemale(Data);
else /
. EnqueucMale(Data);
} | |
Merging Queues

~is the process of creating a priority queue from two or more queues.

- the ordinary dequeue implementation can be used to delete data in the newly created priotity

queue.
Example: The following two queues (females queue has higher pnontythanthemales
queuc) can be merged to create a pnonty queue.
create an empty priority queue
while(FemalesQueue is not empty)
EnqueuePriorityQueue(DequeucFemalesQueue();
while(MalesQueue is not empty) -
EnqueuPriorityQueuc(DequeveMalesQueuc();
Itis also possible to merge two ormore priority queues. '
Example: Consider the following priority queues and Suppose large numbers represent
high priorities. S
Thus, the two queues canbe merged to give the followmg pnonty queue.

{ .
' 122

Self Learning Exercises

State True or False _ _

1. Queue is a First In First Out Data Structure.
2. Circular Queue and priority queue are same.

3. Insertion can be done at both the ends but deletion can be done from one end only in
deque.

4.Queue is used by Operating System,

5. Queue is a linear data structure,

5.5 Applications of Queues

i Print server- maintains a queue of print jobs
Print() -
{ -
EnquenePrintQuete(Document)
}
EndOfPrint()
{
DequeuePrintQueue()
3
i Disk Driver- maintains a queue of disk input/output requests -
i Task scheduler in multiprocessing system- maintains priority queues of; promses:
i " Telephone calls in a busy environment ~maintains a queve of telephone calls |
v Simulation of waiting line- maintains a queue of persons

One apphcatlon of the queue data structure is in the implementation of pnonty queues required
to be maintained by the scheduler of an operating system. It is a queue in which each element
has a priority value and the elements are required to be inserted in the queue in decreasing
‘order of priority. This requires a change in the function that is used for insertion of an element
into the queue. No change is required in the delete fumction.
~ Program ' _ -
A complete C program implementing a priority queue is shown here:
#include <stdioh>
#include <stdlib.h>
structnode .

int data; | - |

int priotity;

struct node *link;

123

15
void insert(struct node **front, struct node **pear, int value, int priority)
{ | |
struct node *temp, *templ1;
temp=(struct node *)malloc(sizeof(struct node));
/* creates new node using data value
passed as parameter */
if{ttemp==NULL)
{ :
printf{“No Memory available Error\n”);
exit(0);
}
temp->data = value;
temp->priority = priority;
temp->link=NULL; |
if(*rear ==NULL) /* This is the first node */
{ |
*rear = temp;
*front = *rear;
}
else
if{(*front)->priority < priority)
/* the element to be inserted has
highest priority hence should
. bethe ﬁrst ciement*/
| ¢ | _
temp->link = *front;
 *front=temp;
Sy
else .
if(("‘rear)->priority > priority)
/* the element to be inserted has
" lowest priority hence should
be the last element®/ |

.

124

(*rear)->link = temp;
“*rear = temp;

“else

temp] = *front;
while((temp1->link)->priority >= priority)
/* find the position and insert the new element */
-~ templ=templ->link;
temp->link =temp1->link;
templ >link = temp;

}
3 |
void delete(struct node **front, struct node **rear, int *value, int *priority)
¢
struct node *temp;
if{(*front = *rear) && (*rear==NULL))
{ o |
printf(** The queue is empty cannot delete Error\n™);
exit(0);
}

* #yalue= (*front)->data;

- *priority = (*front)->priority;
temp = *front;
*front=(*front)->link; .
if(*reér ==temp)

*rear = (*rear)->link;
free(temp);
}
void main()
{
struct node *front=NULL,*rear=NULL;
intn,value, priority;
do
|
do

125

{

.~ printf(“Enter the element to be inserted and its priority\n”);

scanf{“%d %d”,&value,&priority);
insert(&front,8rear,value,priority);
printf{(“Enter 1 to continue\n”);
scanf(*“%d”,&n);

} while(n==1);

printf(“Enter 1 to delete an element\n™);

scanf{(“%d”,&n);
while(n==1) '
{

delete(&front,&rear,&value, &priority);

printf(“The value deleted is %d\ and its prlonty is %d \n”,

value,priority);
printf(“Enter 1 to delete an elementin”);
scanf(“%d”,&n);
y o
printf{“Enter 1 to delete an element\n”™);)
scanf(*“%d”,&n);
} while(n==1)

Example

Input and Output

Enter the element to be inserted and its pnonty
1090

Enter 1 to continue

1

Enter the element to be inserted and its priority
538 _
Enter 1 to continue

: _

Enter the element to be inserted and its priority
11 60

Enter 1 to continue

1 .
Enter the element to be inserted and its priority

126

1275

Enter 1 to continue

! Enter the element to be inserted and its priority
1310

Enter 1 to continue

|

Enter the element to be inserted and its priority
146 -

Enter ! to continue

0 -

Enter | to delete an element

1 - '
The value deleted is 10 and its priority is 90

Enter 1 to delete an element

The value deleted is 12 and its priority is 75

Enter 1 to delete an element

1 .

The value deleted is 11 and its priority is 60 Enter 1 to deléte an element
The value deleted is 13 and its priority is 10 Enter 1 to delete an element
The value deleted is 5 and its priority is 8

Enter 1 to delete an element

1 -

The value deleted is 14 and its priority is 6 -

Enter 1 to delete an element

The quéue is empty cannot delete Error

5.6 Summary

. Aqueueisalso a list with insertions penmtted from one end, called rear, and déletions
permitted from the other end, called front. So it isa data siructure that exhibits the FIFO

property.
. ‘The operations that are permitted on a queue are insert and delete.

« Acircular queue is a queve in which the element next to the last element is the first
element._ ~

"\.\

127

. ‘When the size of the stack/qucue is known beforehmd, the array nnplementanoncan |
~ beused and is more efficient. '

. “When the size of the stack/queue is not known beforehand, then the lmked represen-
tation is used. It provides more flexibility. -

5.7 Glossary

Bounded Queue: An implementation of a bounded queue using an array.
Circular quene : An implementation ofa bounded queue using an array.

Dequene : A data structure in which items may be added to or deleted from the head or the
tail Also known as doubly-ended queue.

Priority Queue ; An abstract data type to eﬁicwntly support finding the item with the hlghest
priority across a series of operations, The basic operations are: insert, find-minimum (or
maxinmum), and delete-minimum (or maximum). Some implementations also efficiently support
join two priority queues (meld), delete an arbitrary item, and increase the priority of aitem
{(decrease-key). _
"Queue: A collection of items in which only the earliest added jtem may be accc_ssed. Basic
operations are add (to the tail) or enqueue and delete (from the head) or dequeue. Delete
~ returns the item removed. Also known as "first-in, first-out" or FIFO. .

5.8 Further Readings
1. Data structures, Algorithms and Applications in C-++ by S.Sahni, Umvemty press (India)pvt
Itd/ Orient Longman pvt.Itd., 2nd edition _
2. Data Structures and Algorithm Analysxs in C++by Mark Allen Weiss, Pearson Educatxon,' '
Second Edition

3. Data structures and Algorithris in C+ by Michael T.Goodrich, R.Tamassna andD Mount,
Wiley Student Edition, John Wiley and Sons _
4, Data structures using C and C++by Langsam, Augenstcm and Tanenbaum PHI/Pearson
Education. :

5. Data Structures and Algorithms in C++ by Adam Drozdek, Vikas Publlshmg House / Thomson
Intermational Student Edition., Second Edition

6. DonaldKnuﬂLTheArtofCompuherProgrammmg,Volumel FundamentalAlgonﬂ:ms,’[hnd
Edition. Addison-Wesley, 1997. ISBN 0-201-89683-4. Section 2.2.1: Stacks Queues, and

Deques, pp 238243,

5.9 Answers to self learning exercises

1.True

2, False

3. False - - - BN
4.True o
5. True

128

5.10 Unit End Questions.

2. What is Queue? Explain basic operations on Queue.

3. Describe different applications of Queue

" 4, Compare static and dynamic implementation of Queue.

5. What are the problems of queue which are solved by circular queue.
6. Compare different types of queue.

7 What would the state of a queue bé after the following operations:
' create queue .

Insert A onto queue _
Insert F onto queue : o j
Insert X onto queue k
delete item from quene
Insert B onto qucue
delete item from queue
delete item from queue

8. .Write a C program to implement a double-ended queue, which is a queue in which inser-
 tions and deletions may be performed at either end. Use a linked representation.

129

UNIT VI

Tree Data Structure

Structure of the Unit

6.0
6.1

62

Objective
Introduction
Introduction to Tree
6.2.1 Binary tree

6.3 Binary Tree Traversal

6.3.1 InorderTraversal
6.3.2 Preorder traversal
6.3.3 Postorder traversal

6.4 Operations on Binary Tree .

6.4.1 Searching
6.4.2 Insertion

-6.4.3 ' Deletion

o 6.4.4_ Sort ,
6.5 ' Applications of Tree |
© 6.5.1 Arithmetic expressions evaluation.
6.6 Some Operations on Tree '
6.6.1 Counting the no of nodes in a Binary tree
6.6.2 Swaping of left and right subtree of a given Binary tree
6.6.3 Searching For a target key in a Binary search tree
6.7 Summary '
6.8 Glossary
6.9 Further Readings
6.10 Answers to self learning exercises
6.11 Unit End Questions
6.0 Objectives

After completing this unit you will learn

Application of tree etc.

About Tree data structure, types of tree
Binary tree, Binary tree search
Traversal in tree, preorder sInorder, postorder

130

6.1 Introduction

Tree structures support various basic dynamic set operations including Search, Predecessor,

Successor, Minimum, Maximum, Insert, and Delete in time proportional to the height of the tree.
Ideally, a tree will be balanced and the height will be log n where n is the number of nodes in the
tree. To ensure that the height of the tree is as small as possible and therefore provide the best
running time, a balanced tree stracture like a red-black tree, AVL tree, or b-tree must be used.

- When working with large sets of data, it is often not possible or desirable to maintain the entire
structure in primary storage (RAM). Instead, a relatively small portion of the data structure is
maintained in primary storage, and additional data is read from secondary storage as needed.
Unfortunately, a magnetic disk, the most common form of secondary storage, is significantly
slower than random access memory (RAM). In fact, the system often spends more time retriev-
ing data thanactually processing data. In such cases primary key of the data can be stored intree
structure (in RAM) and for accessing, insertion, deletion etc. tree data structure can be used.

6.2 Introduction to Tree |

A tree is a finite set of nodes havmg a dlstmct node called rootand all other nodes again form the
. tree.Binary Tree is a tree which is either empty or has at most two subtrees, each of the subtrees

also being a binary tree. Itmeanseachnodemabmarytree canhave 0, 1 or 2 subtrees. A left or
right subtree can be empty. v -

Types of binary tree
A binary tree is arooted tree in which every node has at most two childfcn.-‘

A full binary treeis atree in which every node has zero or two children. .

A perfect binary tree is a complete binary tree in which leaves (vertices with zero children)
are at the same depth (distance from the root, also called height),

Sometimes the perfect binary tree is called the complete binary tree. Some others define a
complete bmary tree to be a full binary tree in which al leaves arg at depth norn-1 for '
SOmE 1.

Abinary tree is made of nodes, where each node contains a “left” pointer, a “right” pomter, and
adata element. The “root” pointer points to the topmost node in the tree. The left and right
pointers point to smaller “subtrees” on either side. A null pointer represents a binary tree with no
elements — the empty tree. The formal recursive definition is: a binary tree is ¢ither empty
(represented by a nutl pointer), or is made of a single node, where the left and right pointers
(recursive definition ahead) each pointto a binary tree.

The ﬁgure shown below is abmaxy free.

R R &

Ithas a distinct node called root wh:chhasnoparentandandevmyothernodehas eltherO l or
2 children. So it is a binary tree as every node has a maximum of 2 children,

IfAis the root of a binary tree and B the root of its left or right subtree, then A is the parent or
faﬂlerofBandBlsﬂleleﬁornghtcluldofA. ThosenodeshavmgnochﬂdrenamleafmdmAny

- node say Ais the ancestor of node B and B is the descendant of Aif A s either the fatherof Bor

the father of some ancestor of B. Two nodes having same father ate called brothers or siblings.
Going from leaves to root is called cllmbmg the tree & going from root to leaves is called de-
scending the tree.
Abmmytmemwhmhcvexynonleafnodehasnonenmtyleﬂ&nghtsubt‘eeslscalleda
strictly binary free. The tree shown below is a strictly binary tree.

The no. of children a node has is called its degree. The level of root is 0 & the level of any
node is one more than its father. In the strictly binary tree shown above Ais 4t level 0, B& C.
atlevel ,D&Eatlevel2&F & gatlevel 3.

Thedepﬂmfabmarylreelsthe lengthofthelongestpaﬂlfromthcrootto any leaf. In the
above tree, depthis 3.

The other topics that will be covered rcgardmg binary tree are listed below
Representation of binary tree
Operations on a binary tree

Travetsal of a binary tree
SR

132

621 Binary tree |
Representation of binary tree

The structure of each node of a binary tree contains one data field and two pointers, each for the.
right & left child. Each child being a node has also the same structure.

The structure of a_ﬁode is shown below.

'I'hestructlmdeﬁninganodeofbinarytreeinCisanollows.

_ value

leff | right
N i
Struct node -
{ _
struct node *ic ; /* points to the left child */
int data; /*.data field */
struct node *re; /* points to the right child */
y

There are two ways for representation of binary tree.
§ Arayrepresentation of a Binary tree
§ - Linked Listrepresentation of aBinary tree

Array represehiatioh of binary tree
Asmglearraycanbeusedtorepresentabmaryu'ee

For these nodes are numbered / indexed according to a scheme giving 0 to root. Then all the -
nodes are numbered from left to right level by level from top to bottom. Empty nodes are also
-numbered.Theneachnodehavinganindex’iisputhltomean'ayasitsithelement
Intheﬁgureshownbelowthenodesofbinaxyh‘eearenmnberedaccordingtothegiven

manmmmmﬂmmu o008

“ 23 & 58 7 881041 1313141& A ﬂﬂl

133

The figure shows how a binary tree is représeﬁtcd as an array. The root 3 is the 0 th element
while its leftchild 5 is the 1 st element of the array. Node 6 does not have any child so its children
ie 7 th & 8 th element of the array are shown as a Null value.

Itisfound that if n is the number or index of anode, then its left child occurs at (2n+ Dyth position
& right child at (2n +2) th position of the array. If any node does not have any of'its child, then
null value is stored at the corresponding index of the array.

The following program implements the above binary tree in an array form. And then traverses the
tree in inorder traversal.(for traversal see Traversal, Inorder traversal)

Struct node

{

struct node * Ic;

int data;

struct node * rc;

Lo

struct node * buildtree(int);/* builds the tree*/

void inorder(struet node *);/* Traverses the tree in inorder*/
im .

a[]={3,5,9,6,8,20,1 0,/0,/0,9,/0,/0,/0,/0,/0,/0,/0,/0,/0,/0,/0};

- voidmain()
{

struct node * root;

root=buildtree(0);

printf{An Inorder Traversal?);

inorder(root);

§et°h()3

struct node * bmldtree(mt n);
{

strict node * temp=NULL
if{ a[n] t=NULL) |
temp = (struct node *) malloc(sizeof{struct node));
temp-> lc=buildtree(2n + 1);

temp-> data=a[n];

temp-> rc—bwldtree(zn:l- 2);

}

return temp;

o

void inorder(struct node * root);
{
iffroot !=NULL)

{ _
if{root!=NULL)

134

4
inorder(roo->Ic);
printf(?%ed\t?,root->data);
inorder(root->re);
}
}

Linked List represe=tation of a Binary tree

Binary trees can be represented by links where each node contains the address of the left child
and the right child. If any node has its left or right child empty then it will have in its respective link -
field, anull value. A leaf node has null value in bothi of its links.

' The structure defining a node of binary tree in Cisas follows.
Struct node
- |
struct node *lc ; /* points to the left child */
int data; /* data field */
struct node *rc; /* points to the right child */
y
6.3 Binary éee Traversal

Traversal of abinary tree means to visit each node inthe tree exactly once. The tree traversal
isusedin all the applications of it.

In a linear list nodes are visited from first to last, but a tree being a non linear one we need definite
rules. There are different ways to traverse a tree. All of them differ only in the order in which they
visit the nodes. '

The three main methods of traversing a tree are: |
§ Inorder Traversal - -

§ Preorder Traversal

§ Postorder Traversal

In all of them we do not require to do anything to traverse an empty tree. All the traversal
methods are based on recursive functions since a binary tree is itself recursive as every child of a

135

node in a binary tree i3 itself a binary tree.

6.3.1 Inorder Traversal

To traverse a non empty tree in inorder the following steps are followed recursively.
§ Traverse the left subtree '

§ Visit the Root

§ Traversetheright subtree

The inorder traversal of the tree shown below s as follows.

Inorder: 8, 16, 20, 30, 36, 43, &0, 61, 70, 82

Algorithm

The algorithm for inorder traversal is as follows.
Struct node

1

structnode * Ic;
intdata;

struct node * rc; _
B L
void inorder(struct node * root);
¥ - : ‘ :
if{lroot I=NULL T
4 L :

inorder(roo->Ic); - L
printf{*%ed\t” root->data); TN
inorder(root->rc);

}

}

" So the function calls itself recursively and carries on the haversal

136 .. L

6.3.2 Preorder Traversal ‘

To traverse a non empty tree in preorder the following steps are followed recursively.
§ Visit the Root ' '

- § Traverse the left subtree

§ Traverse the right subtree

The preorder traversal of the tree shown above is

43158302035 61 508270

Algorithm

The algorithm for preorder traversal is as follows.

Struct node

{

struct node * Ic;
int data;
structnode ¥rc;
b

void preorder(struct node * root);

{
. if{root =NULL)

{
printf(“%d\”,root->data);
preorder(roo->Ic});
preorder(root->1c);

}] Y
} :

So the fimction calls itself recursively and carvies on the traversal,

633 Postorder Traversal
" Totraverse anon empty tree in postorder the following steps are followed recursively.
§ Traverse the left subtree
- § Traverse the right subtree

'§ VisittheRoot
The postorder traversal of the tree shown before is
8 20 35 30 15 50 70 82 60 43
The algorithm for postorder traversal is as follows.

Struct node

{
structnode * Ic;

int data;
struct node * rc;

}:
137

void postorder(struct node * root);

(- >

if(root I=NULL)

{

postorder(roo-> Ic);

postorder{root->rc); -
printf(*%6d\t”,root->data);)
}

}

So the function calls itself recursively and carries on the traversal, | -._

6.4 Operations on Binary Tree

There are many operations which can be performed on binary tree. Some are cxplamed below:
Operations on Binary Tree are follows

Searching

Insertion

Deletion

Sort

6.4. \Searchmg

Searc ng a binary tree for a specific value is a process that can be performed recursively be— !
cause 9f the order in which values are stored. At first examining the root. Ifthe value isequalsthe
root, value exists in the tree. If it is less than the root, then it must be in the left subtree, so we
recursively search the left subtree in the same manner. Similarly, if it is greater thantheroot, then |
it must be in the right subtree, so we recursively search the right subtree: If we reachaleafand |
* have not found the value, then the item does not lie mthetreeatall ' '

* Hereisthe search algorithm
search tme(node, key):
ifnodeis None:
return None // key not found
_Afkey <noge key: _ _
return h_btree(node.left, key)
else ifkey = node.key:. .
return sealcﬁrbtree(node.ﬁghn key)
else : // key is equal to node key '
* return node.value // found key
6.4.2 Insertion

Insertion in a binary tree can be done in any order but for the operations wiz _searchii]g,'
sorting etc. binary search tree should be designed and insertion will be done in following se-
quence: '

138

The way to insert a new node in the tree, its value is first compared with the value of the root. If
its value'is less than the root’s, it is then compared with the value of the root’s left child. Ifits value
- is greater, it is compared with the root’s right child. This process continues, until the new node is
compared with a leaf node, and then it is added as this node’s right or left child, depending on its
value.

Another way is examine the root and recursively insert thenew nodeto the left subtree if the new -
value is less than or equal to the root, or the right subtree if the new value is greater than the root.

6.4.3 Deletion

There are several cases to be considered: |

case -1 ; Deleting a leaf: If the key to be deleted has an empty left or right subtree, Deleting the
key is easy, we can simply remove it from thetree.

case-II Deleting a node with one child: Delete the key and fill up this place with its child. |
case-TII: Deleting a node with two children; Suppose the key to be deleted is called K . We
replace the key K with either its in-order successor (the left-most child ofthe right subtree) ot the
in-order ssor (the right-most child of the left subtree). we find either the in-order succes-
soror or, swap it with K, and then delete it. Since either of these nodes must have less
than two children (otherwise it cannot be the in-order successor or predecessor), it can be
deleted using the previous two cases. : :

6.4.4 Sort

Abinary tree can be used to implerment a simple but inefficient sorting algorithm. We insertall
the values we wish to sort-into a new ordered data structure. You can observe that inorder
travesing always give sorted output.

s

6.5 Applications of Tree

Tree structure has many applications such as expression evaluation, dictionary search etc. Here
we will discuss one important application. - o '

6.5.1 Arithmetic expressions evaluation. |
Trees arc often used in and of themselves to store data directly, however they are also oftenused
as the underlying implementation for other types of data structures such as [Hash Tables}],

[Sets and Maps] and other associative containers. _

Specifically, the C++ Standard Template Library uses special red/black trees as the underlying

implementation for sets and maps, as well as multisets and multimaps. .

_ Binary Expression Tre¢ ™ | _
Abinary tree may be used to represent a binary expreSsion. A binary expression is made of

S 139

operands on which binary operation may be performed,

~Asweknow,a bmary tree may have at most two children , we can therefore represent a
simple bmaly expression where the root node contain the operator and Ihe two children contain
the two operands. For examples, A+B may be represent figure. -

8%

We can represent more a more complicated expression using a blnary tree. for example, the
expression (A-B) * (A+b) may be represented in next ﬁgurc

- When we use a binary tree to represcnt an expression , we do not need parentheses to indicate
the precedence. It is the level of the nodes in the tree which indicate the relative precedencc

6.6 Some Operations on Tree

6.6.1 Counting the no of nodes in a Bmary tree

To count the number of nodesina given binary tree, the tree is reqwred tobe traversad recur-

sively until a leafnode is encountered, When aleafnode is encountered, a count of 1 is returned.

toits previous activation (which is an activation for its parent), which takes the count returned

from both the children’s activation, adds 1 to it, and returns this value to the activation of'its -

parent, This way, when the activation for the root of the tree returns, it returns the count\of the
i total number of the nodes in the tree.

L

- 140

A complete C program to count the number of nodes is as follows:
#include <stdio.h>
#include <stdlib.b>
struct tnode
{
int data;
struct tnode *Ichild, *rehild;
5
int count(structtnode *p)
{ _
if{ p==NULL)
return(0);
else
if{ p->Ichild == NULL && p->rchild == NULL) T
refurn(l); N -
else : .
return(1 + (count(p->1child) + count(p->rchild)));

}.

struct tnode *insert(struct tnode *p,int val)
¢ - -
struct tnode *temp1, *temp2; o
iffp=NULL)
(- o - .
p = (struct tnode *) malloc(sizeof{struct tnode)); /* insert the new node as root node*/
if{p == NULL) | ‘
{
~ printf{(“Cannot allocate\n”);
exit(0);
3
p->data = val;_ -
p->Ichild=p->rchild=NULL; \ '
3 | | |

else

141

{ .
templ = p;

/* traverse the tree to get a pointer to that node whose child will be the newly created |
node*/ : '

while(temp1 !=NULL)
{
temp2 = templ;
if(temp1 ->data > val)
~ templ = temp1->Ichild;
else
templ = temp1->rchild;
) .
if(temp2->data > val)
{ -
temp2->child = (struct thode*)malloc(sizeof(struct tnode)); /
*inserts the newly created node
as left child*/
temp2 = temp2->Ichild;
if(temp2 = NULL)
{ -.
printf{*Cannot allocate\n”);
exit(0);
y
temp2->data = val;
temp2->Ichild=temp2->rchild = NULL;
3 _
" else
R

temp2->rchild= (strucf tnode*)malloc(sizeof{struct thode));/ *inserts the newly created
node ' ' '

as left child*/
temp2 = temp2->rchild;
if(temp2 =NULL) .
printf{“‘Cannot allocate\n™);
exit(0); '
Yoo

142

temp2->data = val;
temp2->Ichild=temp2->rchild =NULL;
}
¥
return(p);
;
/* a function to binary tree in inorder */
void inorder(struct tnode *p)
{ _
if(p I=NULL)
{
inorder(p->Ichild);
printf(*“%d\t”,p->data);
inorder(p->tchild);
v
-
void main()
{
struct tnode *root=NULL;
intnx;
printf(“Enter the number of nodes\n”);
scanf(*%d”,&n);
while(n—> 0)
{ _
printf{“Enter the data value\n™);
8 “vod”,&x); |
root = insert(root,x);
}
inorder(root);
printf(“\nThe number of nodes in tree are :Yd\n”,count(root));

}

Explanation
Input: 1. The number of nodes that the tree to be created should have

2. The data values of each node in the tree to be created

. Output: 1. The data value of the nodes of thetree in inorder

2. The count of number of node in a tree.

143

Example
Input: 1. The number of nodes the created tree should have =5

9 The data values of the nodes in the tree to be created are: 10,20, 5,9, 8

. Output: 1.5891020
2. The number of nodes in the tree is 5

6.6.2 Swaping of left and right subtree of a given Binary tree

Anelegant method of swapping the left and right subtrees of a given binary tree makes useofa
recursive algorithm, which recursively swaps the left and right subtrees, startmg from the root.

Program |

#include <stdio.h>

#inctude <stdlib.h> : _
struct tnode g
{

~ intdata;

struct tnode *Ichild, *rchild;

|5

struct tnode *insert(struct tnode *p,int val)
{
struct tnode *templ,*temp2;
if{(p==NULL)
{\p=~(struc1_; tnode *) malloc(sizeof(struct tnode)); /* insert the new node as root node*/
ifp==NULL) - -
{
printf(“‘Cannot allocate\n”);
exit(0); - S
y o
p->data=val;
p->Ichild=p->rchild=NULL;
} | .
else
{ .
templ =p;
* traverse the tree to get a pointer to that node whose child will be the newly created

144

~hode/
~ while(temp! I=NULL)
A
temp2 =templ;
if(templ ->data > val)
templ = tempi->Ichild;
else
templ =temp1l->rehild;
}
if{ temp2->data > val)
£ .

temp2->Ichild = (struct tnode* ymalloc(sizeof(struct tnode));/ *inserts the newly created
node '

asleftchild*/
temp2 =temp2->Ichild;
if(temp2 ==NULL
. { | .
__ - printf(*“Cannot allocate\n™);
 exit(0);
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
} o
else
¢ -- - |
temp2->rehild = (struct tnode*)malloc(sizeof{struct tnode));/ *inserts the newly created -
node
as left child*/ S_— - '
temp2 = temp2->r¢hild;
" if(temp2 ==NULL)
{
printf{*‘Cannot allocate\n™);
exit(0); ' '
3
temp2->data = val;
temp2->1child=temp2->rchild =NULL;
}

) | 145

}

return(p);
}
/* afunction to binary tree in inorder */
void ixiorder(struct tmode *p)
A -
ifip '=NULL) -
(
inorder(p->Ichild);
printf{*%d\t”,p->data);
" inorder(p->rohild);

/)
y }
struct tnode *swaptree(struct tnode *p)
{
struct thode *temp!=NULL, *temp2=NULL;
- if(p =NULL)
~ { temp1=swaptree(p->Ichild);
temp2 = swaptree(p->rchild);
p->rehild = templ;
p->Ichild = temp2;
b
return(p);
h

void main(}

{

struct thode *root=NULL;

intn.x;

printf(“Enter the number of nodes\n”);
scanf{(*%d”,&n);

while(n - > 0)

{ -
printf(“Enter the data value\n™);
scanf(*%d”,&x);

o0t = insert(root,x);

146

} - /
printf{*The created tree is :\n”);
inorder(root);
printf{“The tree after swapping is :\n”);
root = swaptree(root);
_ inorder(root);
printf(““nThe original tree is \n”);
root = swaptree(root);
inorder(root);
)
Explanation
;4. “e 'hm:] . |
1. The number of nodes that the tree to be created should have l
.2. The data values of each node in the tree to be created
1.Thedatavalueofthenodwofﬁetreehinorderbefothan@ngtheleﬂmdright '
2 The data value of the nodes of the tree in inorder after interchanging the left and right
subtrees -

Example
Input: _
1. The number of nodes that the created tree should have =35
~ 2.The data values of the nodes in the tree to be created are: 10,20, 5,9, 8
| Output: X
K 1.5891020
2.:2010985

6.6.3 Searching For a target key in a Binary search tree

Data values are given which we call a key and a binary search tree, To search for the key in the
given binary search tree, start with the root node and compare the key with the data value of the
rootnode, I they match, return the root pointer. If the key is less than the data value of the root
node, repeat the process by using the left subtree. Otherwise, repeat the same process with the
right subtree until either a match is found or the subtree under consideration becomes an empty

Program
A complete C program for this search is as follows:

#include <stdio.b>
#include <stdlib.h>
- struct tnode

v , 147

{ | 1

int data;
struct thode *Ichild, *rchild;
b

/* A function to serch for a given data value in a binary search tree*/
struct tnode *search(struct tnode *p,int key)
{ _
struct tnode *temp;
temp = p;
while(temp !=NULL)
{ .
if(temp->data == key)
return(temp);
else '
if(temp->data > key)
femp = temp->Ichild;
else o
temp = témp-ﬁchild;
}
return(NULL);
-}
. _ N
an iterative function to print the binary tree in inorder/
void inorder1(struct tnode *p)
{ o
_struct tnode *stack[100];
| int top;
top=-1;
if(p =NULL)
top++; |
stack[top]= p;
p = p->Ichild;
while(top >=0)
. { P
while (p!=NULL)/* push the left child onto stack*/ .

-

148

w

topt+t;
stack{top] =p;
p = p->Ichild;
}
p = stack{top];
top-;
printf(“%d\t”,p->data);
p = p->rchild;

if (p1=NULL) /* push right child*/
{
 topt+;
stackltop] = p;
“p = p->Ichild;
¥

}
}
/* A function to insert anew node in binary search tree to
getatree created®/ -
struct tnode *insert(struct tnode *p,int val)
{\.
stract tnode *templ,*temp2;
if(p==NULL))
{
p=(struct tnode *) malloc(sizeof(struct tnode)); /* insert the new
if(lp =NULL) | | N
{ ‘
printf(“Cannot allocate\n”);
exit(0);
3
p->data = val;
p->_lchild=p->rchild=NULL;

149

ode as root node*/

}

else

{
templ = p;
/* traverse the tree to get a pointer to that node whose child will be the newly created

node*/ '
while(temp1 I=NULL)
{
temp2 =templ;
if(temp1 ->data> val)
temp] =temp1->Ichild;
else _
tempi =temp 1'->rch'ild;

}
if{ temp2->data > val)

¢ . o
temp2->Ichild = (struct tnode*)malloc(sizeof{struct tmode));/ *inserts the newly created

node :
asleftchild*/
temp2 =temp2->Ichild;
if(temp2 = NULL)
{
printf{“Cannot allocate\n™);
exit(0);
}
temp2->data = val; |
temp2->1child=temp2->rchild=NULL;
}
else
1
temp?2-
as left child*/ _ -
temp?2 = temp2->rchild; '
iftemp2=—=NULL) —
{ .
printf(*‘Cannot allocate\n”);

ild= struct tnode*)malloc(sizeof{struct tnode)); *inserts the newly created

150

exit(0);
ol
temp2->data = val;
temp2->Ichild=temp2->rchild=NULL;
}
}
retorn(p);

4 |
" void mainy)
{

struct tnode *root=NULL, *temp =NULL;
intnx;
pnmf(“Enterthe number of nodes in the tree\n”),
scanf{*%d”,&n);
while(n->0)
(I
M‘Enter the data value\n™);
scanf(*“%d”,&x);
root = insert(root,x);
printf(*“The created tree is :\\n”);
inorder1(root); -
printf{*\n Enter the value ofthe node to be searched\n™);

scanf{(*“%ed”,&n);
temp=search(root,n); -
iftemp!=NULL) = |
printf(“The data value is preSent in the tree \n”);
else : ' |
- printf{(“The data value is not present in the tree \n”);

Explanation

Toput:

. 1.The number of nodes that the tree to be created should have
2. The data values of each node in the tree to be created

A 'Ihekey value

151"

Output
Ifthe key is present and appears in the created tree, then a message
“The data value is present in the tree” appears. Otherwise the message
*The data value is not present in the tree” appears. '

Example

Input:

. 1. The number of nodes that the created tree should have =5

2. Thcdatavaluesofthenodesmthetreetobecreatedare 10,20,5,9,8
3. The key value =9

Output: The data is present in the tree

S;:lf Learning Exercises

Assume the following Binary Search tree and answer the foliowings

rool

I, Describe the steps for preorder traversing of the tree.
2x Describe the steps to search the node with mfonnat:on Guy

3, Describe the steps to insert Meg in the tree.

. Describe the steps to delete Gny
6.7 Summary

. Tree structures support various basic dynamic set operations including Search,Prede-
cessor, Successor, Minimum, Maximum, Insert, and Delete in time pmpomonal tothe heightof
the tree,

Atree is a fimte set of nodes having a distinct node called root.
Binary Tree is a tree which is either empty or has at most two subtrees, each of the subtrees also
being a binary tree. Itmeanseachnodemabmarytreecanhavco 1 or2 subtrees, A left or right -

' su.btveecanbe empty.

152

. The three main methods of traversing a tree are:
- v Inorder Traversal.
¥ Preorder Traversal
N - Postorder Traversal

. Operations on Binary Tree are :
i Searching
v ‘nsertion
v - Deletion
i Sort

A

6.8 Glossary

Tree: A data structure accessed beginning at the root node. Each node is either a leaf or an
internal node. An internal node has one or more child nodes and is called the parent of its child
nodes. All children of the same node are siblings, Contrary to a physical tree, the root is usually
depicted at the top of the stracture, and the leaves are depicted at the bottom. (2) A connected,

undirected, acyclic graph. Itis rooted and ordered unless otherwise spec1ﬁed

Binary tree : A tree with at most two children for each node. _
Complete binary tree : A binary tree in which every level, except possibly the deepest, is
completely filled. At depth n, the height of the iree, all nodes must be as far left as possible.
~ Full binary tree : Abinary tree in which each node has exactly zero or two.children

Perfect binary tree : Abinary tree with all leafnodes at the same depth All internal nodes have
degree 2.
Binary search tree : Abinary tree where every node’s left subtree haskeys less thanthe node S

" key, and every right subtree has keys greater than the node’s key.

- AVLtree : Abalanced binary search tree where the helght of the two subtrees (chnldren) ofa
node differs by at most one, Look-up, insertion, and dcletlon are O(Iog n), where nis the number
of nodes in the tree. '

Balanced binary tree: A binary tree where no leafis more than a certain amount farther from
the root than any other. After inserting or deleting anode, the tree may rebalanced with “rota-
tions,” \
Red-black tree: Anearly—balanced tree that uses an extra bit per node to mmntam balance No
leaf'is more than twnce as far from the rootas any othcr.

6.9 Further Readings

1. Gilles Brassard & Panl Bratley, Algorithmics, Prentice Hall, 1988

2. T.Cormen, C. Leiserson, & R. Rivest, Algorithms, MIT Press, 1990

3. Donald Knuth, The Art of Computer Programmmg (3 vols vanous ed.ltlons, 1973-81),
Addison Wesley

4. Robert Kruse, Data Structures and Program Design , Prentice Hall, 1984

5. Udi Manber, Introduction to Algorithms, Addison Wesley, 1989

153

6.10 Answers to self learning exercises

1. PreOrder traversing
Step 1. Root = Jim
Display Jim then traverse its left subtree (root = Dot) and then its right subtree (root =
Display: Jim
Step 2. Root = Dot (Jim.LeftSubTree)
Display Dot then traverse its left subtree (root = Amy) and then its right subtree (root =
Guy) ‘ |
Display: Jim Dot
Step 3. Root=Amy (Dot.LeftSubTree)
_ DisplayAn:ay_r then traverse its left subtree (root = NULL) and then its right subtree (root =
Dlsplay: Jim Dot Amy
Since the right subtree ofAmy is empty we then move onto the rlght subtree,
Step 4. Root=Ann (Amy.nghtSubTree) _ .
Dlsplay Annthen traverse its left subtree (root = NULL) and then its right subtree (root =
NULL) _
Display: Jim Dot Amy Ann
- Since both of Ann’s subtrees are empty we have finished traversing the tree with Root =
m .
" This completes the traversal of the right subtree of Amy and thus completes Amy,

- The tree with rootAmy is the left subtree of Dot, 50 We now continue with the nght
subtree of Dot (Root Guy)
Step 5. Root = Guy (Dot.RightSubTree) :
Display Guy then traverse its left subtree (root : Eva) and then its nght subtree (root =
Jan) : _
Display: Jim DotAmyAnnGuy N
\Qemammg steps ' -
We display Eva and Jan and thls oompletes the right subtree of Dot, and thus the leﬂ
subtree of Jinr.
Display: Jim DotAmyAnn GuyEva Jan
‘We now traverse the right subtree of Jim in a similar way, gtvmg afinal output of .
Display: Jim Dot Amy Ann Guy Eva JanRon Kay Jon Kim Tim Roy Tom
2. Search Target = Guy
The operation must start at the root Jim and then go through the followmg stages

154

fl Guy < Jim go to left subtree of Jim (root is Dot)
2. Guy > Dot go to right subtree of Dot {root is Guy)
3. Guy = root target found, return data item of node Guy

The target data item is passed by return statéments back to the original operation call,

as shown in the diagram below:

result = Get{Root, Guy)

IF er! [%
IFTasget = mmmxey
Elan It 'rmx Rovst DAL s, Ky
. < .
. Sery=dim, 80 saarch lek
el e, gublrem, i.5, ee with root Lot
Ralm ROt RIGHESTS Trad :
reaul Endi?)
Eize
Ra
Zod If
Gak{Rool, Tavpet] e
1t mu nok ARLL
1 Targat © Kool Datultem. Kay Skl L
Retrn Rood.Datalem
Elie TF Tuirgget « Rool Dataltet Nuy GuprDot, so seandi right
Rehun Get{Roct LeftSuliTiee} suibires, i &, es with root
Raburm datu i=m - : -y
?ry hay uslua, E....lltm Rt RIS Tr =] root
Elss
Retin NULL
Eed If
Ged{Raot, 4 :
Target faund, 1o H Root is m -
ralum data lem T Tratgel = Kook Data Beniaioy-w.
with keyvalue e =" BRI Root. Datulien
Gy Efsa ¥ Targat = Rook Dubalteny Kiy
) Rabuirts Get{Ruot. Lt RuliTres)
ReXuIn GRUROCL RGNSUDTreel
Ewlll.. i
Elss :
Rauien NUXL
Ered I
3. Insert Meg

The Add operation is similar to the Get aperarwn in that you have to recursively
descend the tree until you find the appropriate place to add the new node. For
example, if you want to add a new node with key Meg, the operation must start at

the root Jim and then go through the following srages
1. Meg > Jim go to right subtree of Jim

. 2, Meg <Ron go fo left subtree of Ron

3. Meg >Kay go to right subtree of Kay

155

4. Meg >Kim go fo rzght subtree of Kim which is NULL, therefore add Meg
as aright, child of Kim _

4. Remove Guy :

The remove operation can be rather involved, as n‘ may be necessaty to rearrange
nodes so that the remaining structure is still avalid binary search tree. For example, if
Guy is removed possible new structure would be :

Note that: \
* Evais now the right subtree of Dot, rather than Guy '
« Jan is now the right subiree of Eva, rather than Guy

156

Removing a node with empty subirees, known as a leaf node (e.g. Meg) is -
straightforward as no rearrangement is required, -
- Algorithms to remove a node and change the attachments of other nodes as required
are quite complex, and it can be useful to have a parent reference in each node

. 1

f

- 6.11 Unit End Questions

1. Write a Cprogram to count the number of non-leaf nodes of a binary tree, -
2. Write a C program to delete all the leaf nodes of a binary tree.
3. How many binary trees are possible with three nodes?

4, Write a C program to construct a binary tree with inorder and preorder traversals
Test it for the following inorder and preorder traversals:

"o Inorder: 5,1,3,11,6,8,4,2,7
o Preorder: 6,1, 5,11,3,4,8,7,2

5 .Considcrfoll()w_ingmeemdanswerﬂlefollowings

1. Describe the steps required to search for

] (@) Roy (b) Ian

2. Describe the steps required to add
 (a)Abi (b) Ken () Rik

3. Draw a diagram of a possible tree structure after removing;
(a) Ann(b)Ron '

TR

157

UNIT VII

Advanced Tree

Structure of the Unit

7.0 Objectives

7.1 Introduction

7.2 Threaded Binary Tree

7.3 AVLtree

74 . Multi-way trees

75 Biree |

7.6 B+tree
7.7 Trieand Dictionary /_,f"""

7.8 Summary ! Ve ' g
79 Glossary | | o //

7.10 Further Readings
7.11 Answerstoselfleamning exercises
7.12 UnitEnd Questions

7.0 Objectives
| After completing this unit you will learn
Advanced tree, index binary tree, thareaded binary tree, AVL tree
Multiway tree, B tree ,B+tree :
Forest, tire and dictionary tree, etc.
7.1 Introduction

Aswe know that searching in a binary search tree i is efﬁclentlfthchelghtof the left sub-tree and
right sub-tree is same for a node. But frequent insertion and deletion in the tree affects the
efficiency and makes a binary search tree inefficient, The efficiency of searching will be ideal ifthe

difference in height of left and right sub-tree with respect of a node is at most one, Such a binary -

search tree is called balanced binary tree (sometimes called AVL Tree). Inthis module we will
study advanced tree structures which are more efficient. .

7.2 Threaded Binary Tree

In linked representation of binary tree we can see most of the nodes have NULL value in the left
and right pointer fields in the binary tree will be useful to use the pointer fields to keep some other
information for operations in binary tree. These pointer fields can be used to contain the address
pointer which points to the nodes higher in the tree. Such pointer which keeps the address of the
nodes higher in tree is called thread. A binary tree which 1mplemcnts these pointers is called
threadedbmalyu'ee :

158

-~

' There canbe two types of threaded bmarytree

1) Single Threaded -i.enodes are threaded elther towards its inorder prodecessor or succes-
sor.

2) Double threaded: threhded - L.enodes are threaded towards both the morder predecessor and
suoccssor

' We can have threading corresponding to any of’ the three traversals. There may be two types of
_ inorder threading, one way inorder threading and two way inorder threading. gl

In one way inorder threading;right field of the node will keep the thread pointer which will pomt \
fothe next node in the sequence ofthe morder traversal or we can say right thread wﬂl pointto
the morder successor of the node,

Intwowaythreadlmxﬂlgleﬂ filed of the node will also keepthcthread pointer which w111 pomtto the: ; iR
previous node in the sequence of inorder traversal or we can say left thread will pointto the
inorder predecessor of the node.., '

1f we use right field of node to take the thrcad then this is called right in threaded binary tree.

When we use leﬂﬁeldofnodetotakeﬂlethmadmenthlslscalledleﬁmﬂreadodbmaxymc If
both left and right fields are used for threadmg then it is called fully threaded binary tree orin
threaded binary tree. .

Right- in- threaded binary tree

Inorder traversal DBFEGAC

159

Fully in threaded binary tree

'I‘hestuctltreofanodeinatwowayinthreadedbiharytreewillbeas

160

Typedef enum { thread, link} Boolean;
Structnode
{
structnode *left_ptr; .
Boolean left;
Int info;
Struct node *right_ptr;
Booleanright;
X
Example for Threaded binary tree:
#include<stdio.h>
enum boolean{false, true};
- struct thiree{
 intdate;
‘enum boolean left;
struct thtree *lefichild;
struct thtree *rightchild;
enum boolean right;
FH |
~ typedef struct thiree next;
~void insert(néxt ** int);
void inorder(next *); _ _
int search(next **head, int num, néxt **parent, next ¥ry it *fmmd); .
int delete(next **head, int data); '
main() '
{ |
intindatal;

next *thread;
thread=NULL;
printf“Anenter a limited value™);
. scanf(“%d”,&n); |
for(i=0si<nsi++) {
scanf(*%d”,&datal);
insert(&thread,datal);

161

~ inorder(thread); .
puts(“Enter number to be deleted”);
scanf(“%d” &datal);
delete(&thread,datal);

. inorder(thread);

) .

void insert(next * ¥s,int num)

{

' next *head=*gs,*p,*z; - _

F(next *)maHOO(SlzeOﬁmxt)),

- z=>left=true;
z->right=true;

- z~>data=num;
if(*s=NULL){

head~(next *)malloc(sizeof{pext));

head->lefi=false; {
head->data=-9999;

head->leftchild=z;

head->right=false; -

head->rightchild=head;

*s=head;

z->leftchild=head; /*left thread to head*/

z->rightchild=head;. /*right thread to head*/

)
else {
p=head->lefichild;
~while(p!=head){
ifp->data>num){
ifip->left=true)
pp->lefichild;
else{
z->Jefichild=p->lefichild;
p->lefichild=z;
p>lefi=false;
z=>right=true; _ _ _ﬁ
z->tightchild=p; |

162 - /

E

.
¥
‘\else{

o if(p->data<num)y
ifp->right!=true)
else{

. . z>rightchild=p->rightchild;

Py . p->rightehild=z;

| pright=false; /*indicates alink*/
z->lefi=true;
z->lefichild=p;
retun;
}
}
3
}
}
void inorder(next *root)
{‘ .
next*p;
' proot->lefichild;
while(pl=root){
while(p->left==false)
p=p->lefichild;
printf(“%d ->”,p->data);
while(p->right = true) {
iohtchild:
iftp==root)
break;
printf{“%d-> “,p->data);
}

163 -

p=p->rightchild;

delete(text **head, int data)

int found; _
- mext *parent, *x, *xsucc;

if{*head =NULL){ - _
printf{*“Tree is empty”);

}

parent=x=NULL; -

Seﬂrchﬂlcad,data, &Parent,&x,&found)

ifffound == == false){ .
printf{*Data to be deleted is not fomd\n”);
return; '

}

//Tfanode hastwo children

iftx ->left=false && x ->right = false)

- parent =x;
XSUCC=x ->nghtch11d

while(xsuce -> left==faise){
 parent=xsucc;
Xsuoe =xsuce ->Jefichild;

X ->data = xsucc ->data;
X =Xsucc;

}

// H'node has no child

if(x -> left == true && x ->right =true){
ifiparent ->rightchild ==x){
parent ->right = true; :
parent-\>nghtch1[d x->nghtchlld,

164

else { : _
| patent ->left = true;
parent->lefichild =x <> leftchild;
}
- free(x);
return;
) _
// Ifnodeto be deleted has only right child
if(x -> left = true && x >right = false){
ifparent ->lefichild = x){
' parent ->leftchild = x ->rightchild;
x ->rightchild ~>lefichild = x -> leftchild;
}
else {)
parent ->rightchild=x ->rightchild; -
x ~>rightchild -> leftchild = parent;
} |
free(x); " |
} . .
//Ifnode to be deleted has only left child

if(x -> left==false && x ->right ==true){
if(parent ->lefichild==x){
parent ->lefichild = x ->leftchild;
x ->leftchild -> rightchild = parent;
}

ese{ .
~ parent->rightchild=x ->lefichild; :
- x->lefichild->rightchild=x->rightchild;
free(x);

refurn;

165 ...

intsearch(next **head, int num, next **parent, next **x, int *found)
{

next *g;

q=(*head) ->leftchild;

*found = false;

*parent =NULL;

while(q!=*head && q){
iflq ->data==num){
*found = true;
*x=q;

refuim; 3

if{q -> data> num){
*parent = q;
q=g-> lefichild;

}
else{
*parent =g;
q=q-> rightchild;
-} }
*ound = false;)
return; - -
}
73 AVL Tree
o

In order to represent anode of an AVL Tree, we need four fields :- One for data, two for storing
address of l?ﬂ' and right child anf.l one is required to hold the'balance factor. The balance factor
is cal by subtracting the right sub-tree from the height of left sub - tree. _
The structure of AVL Tree can be represented by : -

Struct AVL
{

struct AVL *]eft;

int data;

struct AVL *right;

int balfact; '

166

¥
DETERMINATION OF BALANCE FACTOR

‘The value of balance factor may be -1, Oorl.
Any value other than these represent that the tree is not an AVL Tree

If the value of balance factor is -1, it shows that the height of right sub-tree is one more than the
height of the left sub-tree with respect to the givennode. .

I the value of balance factor is 0, it shows that the height of right sub-tree is equal to the height
of the left Sub-iree with respect to the givennode.

If the value of balance factor is 1, it shows that the height of right sub-tree is one less than the
height of the left sub-tree with respect to the given node. '

INVENTION AND DEFINITION

It was invented in the year 1962 by two Russian mathematicians named G.M Adclson-Velskn
and E.M. Landis and so named AVL Tree.

It is a binary tree in which difference of height of two sub-trees with respect to a node never
differ by more thanone(l). .

Diagram showing AVL. Tree

INSERTION OF ANODE INAVLTREE

Tnsertion can be done by finding an appropriate place for the node to be inserted. But this can
disturb the balance of the trec if the difference of height of sub-trees with respect to anode
exceeds the value one. If the insertion is done as a child of non-leaf node then it will not affect the

167

dmd

: balance, as the height domn tincrease. Butif the msertlon isdoneasa child of leaf node thenit
can bring the real disturbance in the balance of thc tree.

This depends on whether the node is inserted to the left sub-tree or the right sub-tree, whlch in
" turn changes the balance factor. If the node to be inserted is inserted as a node of a sub-tree of

smaller height then there will be no effect. If the height of both the left and right sub-tree is same

then insertionto any of them doesn’t affect the balance of AVL Tree. Butifitis mserted asa node
* of sub-tree of larger height, then the balance will be disturbed.

To rebalance the tree, the nodes need to be properly adjusted. So, after i msemon ofanew node
the tree is traversed starting from the new node to the node where the balance has been dis-
turbed. The nodes are adjusted in such a way that the balance is regained.

ALGORITHM FOR INSERTION IN AVL TREE
int avl_insert(node *treep, value_;t target) o _ |
{ .
/* insert the target into the tree, returning 1 on success or ¢ 1fxt
* already existed
* node tree = *ireep;
~node *path_top = treep; _
while (tree &&: target 1= tree->value)
{
direction next_step = (target > tree->value);
if ({Balanced(tree)) path_top = treep;
treep = &tree->next[next_step]; |
tree = *treep;
) _
if (tree) return 0; :
tree = malloc(sizeof{ *tree)); - ' - T
tree->next[0] = tree->next[1] = NULL;
tree->longer = NEITHER;
tree->value = target;
*treep = tree;
avl_rebalance(péth_ﬂtop, target);
return l.;‘
} |
ALGORITHM FOR REBALANCINGIN INSERTION
void avl_rebalance _path(node path, value__t ta_lrgg()
{ ‘ |
7* Each node in path is currcntlybalanced Until we find target, mark eachnode aslongermthe |
direction of rget because we know we have inserted target there */ .

168

El

while (path && target != path->value) {
direction next: step = (target > path->value);
path->longer = next_step; e
path = pgtil&next[nemﬁstep];
3 _
)
void avl_rebalance(node *path_top, value_t target)
{ | -
node path = *path_top;
direction first, second, third;
if (Balanced(path)) { |
avl_rebalance_path(path, target);
return; | |
}
first = (target > path->value);
Af (path—>longer !=first} {
/* took the shorter path */
path->longer = NEITHER;
 avI_rebalance_path(path->next[first], target),'
return; |
3
/* took the longer path, need to rotate */
second = (target > path->next[first]->value);
 if(finst == second) {
' /* just a two-point rotate */
" path=avl_rotate_2(path_top, first);
% avl_rebalance_path(path, target);
_ retum, ’

;o

/*fine details of the 3 point rotate depend on the third step. However there may not be a third
stcp,lfthetinrdpoMoftherotatlomsthenewlymsertedpomt mmatcasewereoordtheﬂmﬂ

step as NEITHER */ _
path=path->nextfirst]->next[second);
if (target— path->value) third = NEITHER;
else third = (target > path->value);
path=avl_rotate_3(path_top, first, third);
avl_rebalance_path(path, target);

169

DELETION

“"théaweimetéaarebdmmgwhiehisdonesinmartomatofl‘ma-u'onofamdeinAVLTme.'fhe |
algorithm for deletion and rebalancing is given below: - .

ALGORITHM FOR DELETION IN AVLTREE
intavl_delete(node *treep, value_t target)
{
/* delete the target from the tree, returning 1 on success or 0 if it wasn’t found */
node tree = *{reep;
direction dir;
- node *targetp, targetn;
while(tree) {
dir = (target > value), _
if (target == value) targetp = treep;
if (tree->next[dir] = NULL)
' break;

_ : if (tree->longer == NEITHER {| (tree->longer = 1-dir && tree-
>next[1-dit]->longer==NEITHER)) j

path_top = treep;
~ treep = &tree->next[dir];
tree="*treep;)
3
if (targetp — NULL) return 0; o
targetp = avl_rebalance_del(path_top, target, targetp);

avl_swap_del(targetp, treep, dir);
return 1; '

ALGORITHM FOR REBALAN CINGIN DELETION IN AVL TREE
‘node *avl_rebalance_del(node *treep, value_t target, node *targetp)

{ | : g
node targetn = *targetp;
while(1) {
node tree = *treep;

- direction dir = (target > tree_->value)';

170

if (tree->next[dir] == NULL) |
bre_ak; ' _ o
if (Balanced(tree)) |

tree->longer = 1-dir;
“else if (tree->longer == dir)

tree->longer = NEITHER;

else {
/* a rotation is needed, and targetp might change */
if (tree->next[1-dir]->longer == dir)
avl_rotate_3_shrink(treep, dir);
else '
avl_rotate_2_shrink(treep, dir);
if (tree == targetn)
*targetp = &(*treep)->next[dir];
| } o -

treep = &tree->next[dir]; . -)
)) _ _ |
refurn targetp;
} |
REBALANCING OFAVL. TREE

When we insert a node to the taller sub-tree, four cases arise and we have different rebalancing |
methods to bring it back to a balanced tree form. o

LEFTROTATION

In general if we want to insert a node Reither as left child or right child) to N3 as shownin
figure, Here, as we see the balance factor ofnode P becomes 2. So to rebalance it, we have a
technique called left rotation '

Ri{any one) 3

171

Before Rotation - After Rotation o

EXPLANATION OF EXAMPLE

Inthe given AVL iree when we insertanode 8,it becomes the left child of node 9 and the balance
doesn’t exist, as the balance factor of node 3 becomes -2. So, we try to rebalance it. In order to
‘doso, wedo Jeft rotation at node 3. Now node 5 becomes the left child of the root. Node 9 and
node 3 becomes the right and left child of node 5 respectively. Node 2 and node 4 becomes the
' left and right child of node 3 respectively. Lastly, node 8 becomes the left child ofnode 9. Hence,
the balance is once again attained and we get AVL Tree after the left rotation.

RIGHTROTATION _

~ Ingeneral if we want to inserfa node R(either as left or right child) to N1 as shown in figure.
Here, as we see the balance factor of node P becomes 2. o to rebalance it, we have a technique
called right rotation. : :

R{any bne)

GENERAL DIAGRAM

172

| Example '

Before Rotation

Afier Rotation

EXPLANATION OF EXAMPLE .

In the given AVL tree when we insert a node 7,it becomes the right child of node 5 and the
balance doesn’t exist, as the balance factor of node 20 becomes 2. So, we try to rebalance it. In
order to do so, we do right rotation at node 20. Now node 10 becomes the root. Node 12 and
node 7 becomes the right and left child of root respectively. Node 20 becomes the right child of
node 12. Node 30 becomes the right child of node 20, Lastly, node 5 becomes the left child of
node 7. Hence, the balance is once again attained and we get AVL Tree after the right rotation

173

7.4 'Multi-wﬁy'ﬂem - - 7

AMultiway Search Tree of order n is a tree in which any node can have a maximum of n-1
“values & amax. of n children. B - Trees are a special case of Multiway Search Trees. B Tree of
order n is a Multiway Search Tree of order n with the following characteristics:

- All the non leaf nodes have amax ofnchild nodes & a min ofn/2 child nodes.

Ifaroot is non leaf node, thcmthas amaxofnnonemptychlldnod&s&almnof 2 child
nodes. :

Ifarootnode is aleaf node, thcn it does not have any child node.
A node with n child nodes has n-1 values arranged in ascending order.

All values appearing on the leftmost child of any node are smaller than the left most value
of that node while all values appearing on the nght most child of any node are greater than the
right most value of that node.

~ If x &y are two adjacent values in anode such that x <y, ietheym’etheith&(iﬂ)th
_values in the node respectively, then all values in the (i+1) th child of that node are > xbut<y.

7.5 Btree - . o~
Tree structures support various basic dynal:hic set operations including Search , Insert , and

Delete in time proportional to the height of the tree. Ideally, a tree w111 be balanced and the helght_ .

will be log n where n is the number of nodes in the tree. g

To ensure that the height of the tree is as small as possible and therefore provide the best runnirig
time, a balanced tree structure like AVL tree , 2-3 Tree , Red Black Tree or B-tree must be used.
When working with large sets of data, it is often not possible or desirable to maintainﬂ'lé entire
structure in primary storage (RAM), Instead, a relatively small portion of the data structure is
maintained in primary storage, and additional data is read from secondary storage as needed.
Unfortunately, a magnetic disk, the most common form of secondary storage, is sngmﬁcantly
slower than random access memory (RAM), In fact, the system often spends more time retriev-
ing data than actually processing data. :

Toreduce the time lost in retrieving data from seoondary storage, we need o minimize the no. of
references to the secondary memory. This is possible if a node in a tree contains more no. of
values, then in a single reference to the secondary memory more nodes can be accessed. The
AVL trees orred Black Trees can hold amax. of 1 value only inanode while 2-3 Trees can hold
amax of 2 values per node. To improve the efficiency Multiway Search Trees are used.

OPERATIONS ON B - TREE
F 0!16wing operations can be doneon aB - Tree :
Searching
Insertion -
Deletion
SEARCHING OFAVALUE INAB-TREE L
Searching of avalue k in a B-Tree is ex'acily similar to searching for values in a 2-3 tree. To

174

begif with the value K is compared with the first value key [0] of the root node. Ifthey are sinilar
then the search is complete, Ifk is less than key [0] then the search is done in the ﬁrst child node
or the sub-tree of the root node,

Ifkis greater than key [0] then lt is compared with key [1]. If k is greater than key [0] and
smaller than key [1] then k is searched in the second child node or sub-tree of the root: node. If

k is greater than the last value key [i] of the root node then searching is done in the last childnode -
or sub-tree of the root node. If k is searched in any of the child nodes or sub-tree of the root

- node then the same procedure of searching is repeated for that particular node or sub-tree,

If the value k is found in the tree then the search is successful . The address of the node in which
k is present and the position of the value k in that node is returned. Ifthe value kisnot foundin

the tree, then the search is unsuccessful .
INSERTION OFAVALUE INAB-TREE | :
When inserting an item, first do a search for it in the B-tree, If the item is not already in the
B-tree, this unsuccessful search will end at a leaf. If there is room in this leaf, just insert the new
* item here. Note that this may require that some existing keys be moved one to the right to make
room for the new item. If instead this leaf node is full so that there is noroom to add the new item,
thenthe node must be “split” with about half of the keys going into a new node to the right of this
one. The median (middle) key is moved up into the parent node. (Of course, if that node has no
room, then it may have to be split as well.)

Note that when adding to an internal node, not only might we have to move some keys one

position to the right, but the associated pointers have to be moved right as well. If the root node
is ever split, the median lg.ey moves up into anew root node thus causmg the tree to increase in

height by one. : -
Letstake an example.h]sert the following letters into what is.originally an empW-B—h‘ee of 1

order : CNGAHEKQMFWLTZDPRXYS Order 5 means that a node can have -
amaximum of 5 children and 4 keys. All nodes other than the root must have a munmmn of2 |

keys The first 4 letters get inserted into the same node, resulting in this plcture

-

When we try to insert the H, we find no room in this node, so we split it into 2 nodes, moving the
median item G up into a new root node. Note that in practice we just leave the A and C in the
current node and place the H and N into a new node to the right of the old one.

175

S

.y

InsertmgMmqmresaspht.Notethachappenstobethemedlaukcyandsolsmovedup
into the parent node. _

.
M
1 Xlk
A LC E H K N 0

The letters F, W, L, and T are then added without needing any split.

' | ¢ | M
. '}'I B
'\ l S -

§ lfatecle|r gl |n|aq '_‘r_ W

B A o

WhenZisadded the rightmost leaf must be split. The median item T is moved up into the parent
node. Note that by moving up the median key, the tree is kept fairly balanced, mﬂ12keysmeach

of the resulting nodes

176

—_——

The insertion of D causes the lefimost leaf to be split. D happens to be the median key and so is
the one moved up into the parent node. The letters P, R, X, and Y are then added without any

need of splitting: _

A% A
;\

',/

L

Finélly, when S is added, the node with N.,'P, Q, and R splits, sending the median Qup to the

paremHoweventhepmmtnodeisﬁﬂLsoiwpﬁts,semﬁngthemedianMupto form anewroot

node; Note how the 3 pointers from the old parent node stay in the revised node that contains D -

and G
N
A
L Q| T
/f‘/:\‘ zislx
ac'_zF HI KEi L HIPIIR}ISIIWIX{T]E

177

.} Y

'DELETIONINAB - TREE

Deletion ina B -Tree s sicnilar to insertion. At firstthe node from which a valueis to be defeted i
searched.If found out, then the value is deleted. After deletion the tree is checked ifiit still follows
B - Tree properties.

Letus take an example. THe original B - Tree taken is as follows:

) b
.g’!‘\.
] B T
/IZI NN
A] C E | F HRi K| & N | P E| & Wiy X1 vt 2
O O T T T T T T T

STEPS FOR DELETION INA B-TREE
| \

.

Delete H. first it is found out.Since His ina leaf and the leafhas more than the mnmnum number .
- ofkeys, this is easy. We move the K over where the H had been and the L over where the K had

Next, delete the T. Since T is not in a leaf, we find its successor (the next itent inascending
order), which happens to be W, and move Wup to replace the T, That way, what we really have
‘todoisto delete W from the leaf, which we already know how to do, since this leaf has extra
keys. In ALL cases we reduce deletion to a deletion in a leaf, by using this method

"
v AN
7 RN
o Humnlumnllsne

Next, delete R. Although R is in a leaf, this leaf does not have an extra key; the deletion results in

178

anode with only one key, which is not acceptable for a B-tree of order 5. If the sibling node to
thelmmedmtcleﬂornghthasanextmkey,wecanﬂlenborrowakeyﬁomthepamtandmove
a key up from this sibling. In our specific case, the sibling to the right has an extra key. So, the
~ successor W of S (the last key in the node where the deletion occurred), is moved down from

the parent, and the X is moved up. (Ofcourse,theSwmovedoversoﬂaattheWcanbemserted
inits proper place.)

M. '
ol N
|.,!‘
o| 6 gl x
L 11 ;|\§
,'A £ E F K i] f .8 W i' kA
T T T [T [T (T

f
Finally, let’s delete E. This one causes lots of problems. Although E is in a leaf, the leaf has no
extrakeys, nor do the siblings to the immediate rightor left. In such a case the leafhastobe !
combined with one of these two siblings. This includes moving down the parent’skey thatwas ~ ~

between those of these two leaves, In our example, let’s combine the leaf containing F with the
Ieaf containing A C. We also move down the D

[

Ai e Db} P Kl & M

s | o
b1

Of course, you immediately see that the parent node now centains only one key, G. This is not
acceptable. If this problem node had a sibling to its immediate left or right that had a spare key,
then we would again “borrow” a key. Suppose for the moment that the right sibling (the node -

179

R withQ X)had one more keyin it somewhere to the right of Q. We would then move M down to
the node with too few keys and move the Q up where the M had been. However, the old left
subtree of Q would then have to become the right subtree of M.

In other words, the N P node would be attached via the pointer field to the right of M’s new

" Jocation. Since in our exampléwe have no way to borrow a key from a sibling, we must again

combmemththesnbhng,andmovedovmtheMﬁ'omﬂmeparwt.Inthlscase,ﬂteirwshnnksm
henghtbyone

{
)

1.6 B+ tree

B Trees. B Trees are multi-way trees. That is each node contains a set of keys and pointers.
AB Tree with four keys and five pointers represents the minimum size of a B Tree node. AB
Tree contains only data pages.

B Trecsare dyna:mc That is, the helght of the tree grows and contracis as records are added
and deleted.

B+ Tree combines features of [ISBAM and B Trees. It contains index pages and data pages.
The data pages always appear as leaf nodes in the tree. The root node and intermediate nodes
are always index pages. ThesefeaﬂmaresnnﬂartolSAMUnlﬂceISAMovexﬂowpages
are not used in B+ trees,

The index pages maB+treeateconstructedﬂ§roughthepmcess ofmsertmg and deletmg

“records. Thus, B+ trees grow and contract like their B Tree counterparts. The contents and the
number of index pages vreflects this growth and shrinkage.
B+ Trees and B Trees use a “fill factor” to control the growth and the shrinkage. A 50% fill factor
would be the minimum for any B+ or B tree. As our example we use the smallest page structure.
This means that our B+tree conforms to the following guidelines.

180

Number of Keys/page |4

Number of Pointers/page |5

Fill Factor | 50% |

Minimum Keys in each_page 2

Asthlstable indicates each page musthave aminimum of two keys. Themotpagemayvxolate
thisrule. : .~

'IhcfollovwngtablcshowsaB+ﬂee.Astheexampleﬂlustratesﬂnstwedoes notlmreaﬁlllmdex
page. (Wehaveroomforonemorekeyandpouﬁermﬂlemotpage) In addition, one of the data
pages contains empty slots. '

B+ Tree with four keys-

e

['s ofasfzo] [esfzo] |

Adding Records to a B+ Tree

The key value determines a record’s placement in a B+ tree. Tﬁe leaf pages are maintained in -
~ sequential order AND a doubly linked list (not shown) connects each leaf page with its sibling
page(s). This doubly linked list speeds data movement as the pages grow and confract. We must
consider three scenarios when we add a record to a B+ tree. Each scenario causes a different
actionin the insert algorithm. The scenarios are: S :

181

The insert algorithm for B+ Trees

Index
Page —
| Fun Page FULL
NO NO Place the record in sorted posltlon In the

appropriate leaf page

¢ Split the leaf page
e Place Middie Key In the Index page in
_ sorted order.
~ » Left leaf page contains records with
YES NO ' _keys below the middle key.
' ' « Right leaf page contains records with
keys equal to or greater than the-
- middle key,

T ———— e gt s

« Split the leaf page.

* Records with keys < middle key go to
the left leaf page.

+ Records with keys >= middle key go to
the right leaf page.

« Split the index page.

« Keys < middle key go to the left index

YES . YES page.

¢ Keys > mlddle key go to the right index
page.

s The middle key goes to the next (higher
level) Index.

‘ .

IF the next level index page is full, '
continue splitting the index pages.

Hiustrations of the insert algorithm

The following examples illlustrate each of the insert scenarios. We begin with the simplest sce-
nario: inserting a record into a leaf page that is not full. Since only the leaf node containing 25 and
30 contains expansion room, we’re going to insert a record with akey value of 28 into the B+
tree, The following figures shows the result of this addition,

182

e -

Add Record with Key 28

Adding h record when the leaf page is full but the index page is not

Next, we’re going to insert arecord with a key value of 70 into our B+tree, This record should _
- gointhe leaf page containing 50, 55, 60, and 65. Unfortunatelytlns pageis full. 'Ihlsmcansmat "
" we must split the page as follows: '

Left Leaf Page | Right Leaf Page I
50 55 |60 6570 |

The middle key of 60 is plaéed inthe index page between 50 and 75.
* The following table shows the B+ tree after the addition of 70.

Add Record with Key 70 |

4y

Ta[ts]z0] [5zefae]_|[58[55] | | [|ea[es7n] | [ra[=alss]o0]

Adding a record when both the leaf page and the index page are full

183 | S .

As 6ur last exéinple, we’re going to add a record containing a key value of 95 to our B+ tree.
This record belongs in the page containing 75, 80, 85, and 90. Since this page is full we split it
_ into two pages: o g '

Left Leaf Page |:Right Leaf Page§; |

17580 85 90 95

The middle key, 85, rises to the index page. Unfortunately, the index page is also full, so we split

the index page:

i
s

: Left Index Page Right Index Page New Index Page
| 25 50 ~ |7585 60

The following table illustrates the addition of the record coftaining 95 to the B+ tree.

o Add Record with Key 95 o
5 [¥o]15]26 RN R ECER
[rsfed 1] [essp3s]]

Rotation

Bt trees can incorporate rotation to reduce the numberof page splits. A rotation ocours when a
leaf page is full, but one of its sibling pages is not full. Rather than splitting the leaf page, wemove
arecord to its sibling, adjusting the indices as necessary. Typically, the left sibling is checked first
(ifitexists) and then the right sibling. '

Asanexample, consider the B+ tree before the addition of the record containing akey of 70, As

previously stated this record belongs in the leaf node containing 50 55 60 65, Notice that this _

184

— i L

- . nodeis full, but ts left sibling is not.

| Add Record with _Key 28

[5 Jro]a5]20] [2528]ac

Using rotation we shift the record with the lowest key to its sibling. Since this key appeared in the
index page we also modify the index page. The new B+ tree appears in the following table.

H

Llustration of Rotation

5 eofus]zo] [25[ze]30]50] [s5]60]65] 79| [75[e0fes] s0]

Deleting Keys from a B+tree

We must consider three scenarios when we delete arecord from a B+ tree. Each scenario
causes a different action in the delete algorithm. The scenarios are:

185

n

The delete a{gonthm for B+ Trees
- ! :
| Leaf Page ; I::e: H . T T
Below Fill | o/ S9S .- Action
Factor | BeOW Fill | .
: | Factor
: : % Delete the record from the Ieaf page. i
! Arrange keys in ascending order to fill void.
1NO i NO If the key of the deleted record appears in
i the index page, use the next key to replace y
; it.
3 - Combme the Ieaf page and |ts s;blmg]
YES | NO Change the index page to reflect the
1 B change.
; Combine the leaf page and |ts s:blmg
i Adjust the index page to reflect the
E change.
i« Combine the index page with its
|vES YES [sibling. | |
; | Continue combining index pages until
| - youreach a page with the correct fill
1 factor or you reach the root page.

As our example, we consider the B+ tree after we added 95asa key As a reﬁveshcr this tree is
printed inthe followmg table.

Add Record with Key 95 ' o .*

5 [1o[15]20][25]2e[z0] _|[5elss] 1 _|[eo[e5[70] |

[zs[ee] [] [=sPeoles] 1Y

- 186

¥

Del'&;?‘m‘from the B+Tree -

-

_—

We begm by delet:lﬁg the record with key 70 from the B+ tree. This record isin aleaf page
containing 60, 65 and 70. This page will contain 2 records after the deletion. Since our fill factor
is 50% or (2 records) we simply delete 70 from the leaf node The following table shows the B+
Trec afterthe deletlon

fu

|

N

Delete Record with Key ?\0 '

5 o[s[z0][25[zafz0] | [sa[55] | |[eo[c5M

[Z36e] [| [esfoolss] |

Delete 25 from the B+ tree

Next, we delete the record containing 25 from the B+ tree. This record is found in the leaf
node containing 25, 28, and 30. The fill factor will be 50% after the deleuon, however, 25
appears in the index page. Thus, when we delete 25 we must replace it W1th 28 in the index
 page. The following table shows the B+ tree after this deletion.

Delete Record with Key 25

3 1P | X2 e 0

—

[73E0 1] [es[aolss] :

187

-

Delete 60 from the B+ tree R
As our last example, we’re going to delete 60 from the B+ tree. This deletlofi 1smterestmg for
several resasons: -

1. Theleafpage containing 60 (60 65) will be Below the fill factor after the deletion.
Thus, we must combine leaf pages.

2, Withrecombined] pages, the index page will be reduced by one key. I-Icnce, itwill also
fall below the fill factor, Thus, we must combine index pages.

Sixty appears as the only key in the root index page. Obviously, it will be removed with the
deletion.

The following table shows the B+ tree afier the deletion of 60. Notice that the tree contains a
single index page.

Delete Record W|th Key 60

5fofusfzo][zef30] | |[sofss[es] |[75ae] | | [s5]o0[us

7.7 -Irie and Dictionary L

Amelsamultlway tree structure useful for sorting strings over an alphabet, It has been used to
store large dictionaries of English words in spellmg chac.kmg programs and in naturel-language
understanding program,

A trie of order m is either empty or consisting of an ordered sequence of exactly m tries of order
m. inatrie each node can contain m pointers that correspond to m posiable symbols in each of
the node. If the symbols are numeric then there would be 10 pointers in the node and in case of
alphabate there would be 26 pointers. Each pointer in a node is associated with a particular
symbol value on the basis of its position in the node from lowest symbol value to highest symboi
value. Tries are also known as lexicographic search trees.

Dictionary
Inthe data structure the sets manipulated by algorithms can grow, shrink or may change during
course of time . these types of sets are called dynamic sets.

188

Different types of algorithms réquires several different types of operations to be performed over

the dynamic sets. For example many algorithms requires insertion operation,some deletion op-
-eration , other searching operation-ard i many more. A dynamic set that supports these operations .
 iscalled adictionary. ‘

One example of dictionary is number of dyna:mc sets implemented as part ofthe standard tem-
plate library in c++. In STL we have number of abstract data types like list, vetor, deque , map
etc that supports number of operations that causes them to grow or shrink. Snmlarly agood
collection of dictionaries provided as part of the java that can be used by the programmer while
developing applications.

self learning exercises

1.What are the maximum number of keys that can be stored in a B-tree of height two (the root
plus two additional levels) with a minimum branching factor of t=5007

2. For the following B-tree where =3 show the result when “B” and then “Q” are msertcd
' DGKNYV

/ |

- ACEFHILMOPRST WX

3. Consider the following B-tree where t=2. Show the B-tree that results when deletmg
NOTE: The solution j _;ust shows the final answer. .

P AN

A /\
Q ST

7.8 Summary |
. Threaded Tree, AVL Tree are the trees which can make tree operations more efficient.

. Multiway seamhtrees are used when there is a large amount of datawhlchlsto‘be

processed.
189

7.9 Glossary

Threaded tree: Abmary search tree in which each node uses an othermse-empty left child lmk

‘to refer to the node’s in-order predecessor and an empty right child link to refer to its in-order

SUCCessor.

~ AVLtree: A balanced bmary search tree where the height of the two subtrees (children) of a
- node differs by at most one. Look—up, msertzon, and deletion are O(log n), wherenis the number

qf nodés in the tree. | _

Multlway tree:A trw w1th any number of chlldren for each node.

B-tree Abalanced search tree in which every node has between jm/2J and m children, where -
. i0>1 is a fixed integer. m is the order. The root may have as few as 2 children, Thisisagood
structure if much of the treeis in slowmemory (disk), since the height, and hence the number of

accesses, can be kept small, say one or two, by plckmg a large m.

710 Further Readings |
1. Gilles Brassard & Paul Bratley, Algorithmics, Prentice Hall, 1988 .
2. T. Connen,C I.mserson,&R Rlvest Algorithms, MIT Press, 1990 .

3. Donald Knuth, The Art of Computer Programming (3 vols., various ed/mons, 1973-8 1)y

Addison Wesley
4. RobertKruse, Data Structures and Program Design , Prentwe Hall, 1984
Udi Manber, Introduction to Algorithms, Addison Wesley, 1989 i

7.11 Answers to self learning exercises : . 1

1.To maximize the number of keys stored in a B-tree with t=500, each node will have 39§ keys

and 1000 children. Thus the number of nodes in such a B-tree of height two will be 1+1000+

" 1000”2 = 1,001,001. Thus the number of keys is 999 x 1,001,001 = 999,999,999] |

Vi N

ABC EF HI 1M OPRST WX - ABC EF HI 1M OPQ ST WX

190

3.

Afier deleting W we obtained: -

AN
/I A A gﬂx\z

7.12

Unit End Questions

fa D B

20 ~1 &N th

What is AVL Tree?

Who invented AVL Tree?

How can we determine the balance factor?

Insert anode 3 in the AVL Tree of the tutorial and try to rebalance the tree by any of the
methods?

How an AVL Tree or B - Tree can be better than a Bmary Search Tree? -

How an AVL Tree or B - Tree can be better than a Binary Search Tree?

‘What advantages does a multiway search Tree have over an AVL Tree?

‘What are 5the differences between a multiway search tree & a B - Tree?

—— TR __

191

N

ﬁ’ R
éyl i UNITVII
e GRAPH THEORY FUNDAMENTALS

STRUCTURE OF THE UNIT

8.0 Objectives
8.1 Introduction
8.2 Definitions

8.3 Types of Graphs
8.4 Data Structure for Graph Representation
8.5 Graph Traversal Algorithms ,
8.5.1 Breadth First Traversing
8.5.2 Depth First Traversing
- 8.6 Shortest Path Algorithm
8.6.1 DlijlI'a Single-Source Shortest PathAIgonthm
8.6.2 Bellman-Ford Single-Soutce Shortest Path Algorithm
V 8.6.3 Floyd-Warshall A1l Pair Shortest PathAlgomhm
8.7 Minimum Spanning Tree (MST) -
8.7.1 PrimAlgorithm for MST
8.7.2 Kruskal AlgonﬂunforMST -

838 Summary
8.9 Glossary B
8.10 Further Readings
8.11 ° Answersto selflearning exercises _
812 Unit-end Questions |
8.0 Objectives
This unit provides an overview of
Importance of Graphs and their related definitions
Graph representation formats '
Graph Traversing algorithms ~
Minimum Spanning Tree Algorithms
Shortest Path Algorithms
8.1 Imtroduction

There was a great puzzle in Kénigsberg city (now known as Kaliningrad) of East Prussia in
Russia. The city is built around the River Pregel where it joins another river. An island named
Kniephofis in the middle of where the two rivers join. There are seven bridges that join the
dlﬂ‘erent parts of the clty on both sides of the rivers and the island as shown in Figure 8. I(a)

192

-
1

B

People tried to finda way to walk all seven bri_dg&smwithbut crossing a bridge twice, butnoone -

couldfindawaytodoit. | |
The problem came to the attention of a Swiss mathematician named Leonhard Exler (pronounced
“oiler”). In 1735, Fuler presented the solution to the problem before the Russian Academy. He
explained why crossingall seven bridges without crossing a bridge twice was impossible., While
solving this problem, he developed a new mathematics field called graph theory, which later
served as the basis for another mathematical field called topology. S

8.1: (a) Seven Bridges onriver Pregcl of Konisberg (b) Euler Representation

Euler simplified the bridge problem by representing each Jand mass as apointandeach bridgeas .

aline as shown in Figure 8.1(b). He reasoned that anyone standing on land would have to have
,a way to get on-and off. Thus each land mass would need an even number of bridges. But in
Konigsberg, each land mass had an odd number of bridges. This was why all seven bridges
could not be crossed without crossing one more than once. One walk over the four bridges

- without crossing any bridge more than once is shown in Figure 8.2(a) and its Euler representation

is shown in Figure 8.2(b). o :

The problem could have been solved if ONE bridge was removed or addéd. Which bridge
‘would youremove? Where could youadd a bridge? L .

_ Figure 8.2: (a) Awalk over four Bridges (b) Euler Representation of walk '

193

. Euler went onto generalize this mode of thinking, laying a foundation for graph theory.
~ Buler representation as points and lines was used in solving a large number of real life problems
like telephone network planning, collection of post from post offices by van, VLSI design prob-
lems etc. Buler representation as shown in Figure 8.1(b) and Figure 8.2(b) are known as graph.
The points of graph are known as vertex or node and lines are known as edgesinmodern graph
theory. Standard methods have been developed to solve various graph related problems. Vari-
ous real-life problems can be modeiled as graph and standard methods available in graph theory
can be used to solve these problems. -

This unit describes fundamental definitions of graph theory, types of graphs, their computerized
representations and simple puzzles related to graph. '

8.2 DEFINITIONS

As discussed earlier, a graph is a diagram consisting of points, called vertices or nodes, joined
- together by lines, called edges. Figure 8.3 shows a graph containing u, v, wand z as 4 vertices

joined by {(u, v), (1, w), (v, W), (W, 2)} as4 edges. Formal definition and various typesof graphs

are defined in this section., _ . T

graph an edge can connect one or more vertices (even more than two). This edge is called

hyperedge and the graph containing hyperedge is called hypergraph. '

| Figure 8.3: A Typical Graph G
8.2.1 Notations of Graph : : :
A graph G=(V, E) consists of a (finite) set denoted by V or by V(G) (if one wishes to make cléar
which graph is under consideration) and a collection E, or E(G), of unordered pairs fu, v} of
distinct elements from V. Each element of V is called a vertex or a point or a node, and each
element of E is called an edge or a line or a link. . '
Formally, a graph G is an ordered pair of disjoint sets (V, E), where Ef V x V. Set V is called the
vertex or node set, while set E is the edge set of graph G. The graph shown in' Figure 8.3 consists
of {u, v, w, z} vertices setand {(u, v), (u, w), (v, W), (W, 2)}. Typically, it is assumed that self-
" 106ps (i.e. edges of the form (u,), for some u V) are not containedinagraph. = -
822 Cardinality o R
The number of vertices, the cardinality of V, is called the order of graph and devoted by [V]. We
usually use n to denote the order of G. The number of edges, the cardinality of E, is called the size
of graph and denoted by [E|. We usually use m to denote the size of G Cardinality of V as well as
Cardinality of E of graph shown in Figure 8.3 is 4. - '

N o 194

1

8.2.3 . Neighbour Vertexand Nelghbourhood _ R

We write v, vI E(G) to mean (v, vJ)I E(G), and ife= (vl, v, IE(G) We say v, and v; are
adjacent Vertex v is adjacent to u, but niot w in Figure 8.3. '

Formally, given a graph G = (V, E), two vertices vi, \/ IV are said to be nelghbours, or ad_las:ent
nodes, if (v, v) 1 E. If G is directed, we distinguish between incoming neighbours of v, (those -
vertices v, {'V such that W, v { E) and outgoing neighbours of v, ; (those vertices v, iV such that
(vl, v) i E) In a directed graph shown in Figure 8.4, incoming nelghbour of al vertlces is1
whereas outgomg nelghbour of w is 2 and others have outgomg ne1ghbourasl

Figure 8.4: ADlrected Graph

Theopen ne:ghbourhood N(v) of the vertex v consists of the set of vertices ad_lacent tov, that is,

Nw)={wiV:(v,w)IE}.InFigure 8.3, open neighbourhood of zis 1, wis 3 and uand vis 2
in Figure 8.3. The closed neighbourhood of v is N[v] =N(¥) E {v}. Closed nelghbourhood ofz
is2, wis4 and uand vis 3. Similarly, open neighbourhood of For a set S 1V, the open
neighbourhood N(8) is defined to be E dsN(v), and the closed nelghbourhood of SisN[S]=
NGS)ES.

- 824 Vertex Degree

The degree deg(v) of vertex v is the number of edges incident on v or eqmvalently, deg(v) =

© [N(v)|. For example, vertex w in Figure 8.3 has degree 3.

In Figure 8.3, the graph G, shown has deg(v) =2, deg(v) =2, deg(w) =3 and deg(z)=1.

. The degree sequence of graph is (deg(v,), deg(v,), ..., deg(v,)), typieallywrittcn innondecreasing_
" ornonincreasing order. The minimum and maximum degree of vertices in V(G) are denoted by

d(G) and "(G), respectively. If d(G) ="(G)=r, then graph G is said to be regular of degree 1, or
simply r-regular.

Formally, given a graph G =(V, E), the degree ofavertexv iV is the number of its neighbours
inthe graph. Thatis, — _ .
deg(v)=l{ulV: (v, w)IE}).

If G is directed, we distinguish between m-degree (number of incoming nelghbours) and out-
degree (number of outgoing neighbours) of a vertex. In directed graph shown in: F 1gure 8.4,in~

degree(u)=1, out-degree(u)—l in-degree(w)=1 and out-degree(w)=2.

8.3 Types of Graph

Graph theory has been able to model a large numbér of natural problems irito graph. Accord-
ingly, there are many types of graphs and their components available in graph theory. There can

. be many criteria to classify graphs. This section describes three classifications of graphs.

195

8.3.1 Classification based on Edge Connectivity B *i s

There ate four types of graphs classified based on edge connectivity. Each one is descnhed -
below. It may be noted that most of the algorithms are developed for simple gmph asmaj onty of
the problems can be solved usmg this type of graph only. _

8.3.1.1 Simple Graph _

A graph containing vertices and edges connectmg only a pan' of vertices is called sxmple graph.
We specify a simple graph by its set of vertices and set of edges, treating the edge set asasetof -
unordered pairs of vertices and write e= (v, v) (or e= (v, u)). For an edge e = (u, v), endpoints
are uand v. When u and v are endpoints of an edge, they are adjacent and are neighbowrs.
This type of graphs are simplest ones and mostly used in graph theory. Most of the applications
and algorithms are developed for this type of graphs only. By mentioning graph means simple
graph only. This unit also deals with simple graphs only.

8.3.1.2 Multi-Graph

A graph, that can permit multiple edges between apair of vemoee, 1s called Multl Graph Re-
maining properties are the same as simple graph.

. Figure 8.5: An example of Multi-Graph _
Figure 8 5 shows amulti-graph having multlple edges betweenwand z vertlces
- 83.1.3 Graphwith Loops S

Acgraph that permits self-loop also is called graph w1th self—loop Asc1f~loop isan edge which
startsandendsatﬂlesa:neveﬂcx S _

Loop v

Figure 8.6: A Graph with self- loop
Flgure 8.6 shows a graph havmg a self—loop at vertex V.

- 196

r
f
1
|
|

8.3.1.4 Hypergraph

This type of graph is very important for VLSI Design related problems. In this type o, -

graph an edge can connect one or more vertices (even more than two). This edge is called
hyperedge and the graph containing hyperedge is called hypergraph.

Figure 8.6: Aﬁypergtaph with 4 hypemdges

. Figure 8.6 ShOﬁ’S a hypergraph having 5 vertices namely a, b, ¢, d and e and 4 hypéredges

connecting them. Two hyperedges are represented as eclipses. One of them is connecting a and
e, and another is connecting a and d. Third hyperedge is shown as triangle connecting 3 vertices

. namely ¢, d and e. Finallyrectangle of the Figure shows fourth hyperedge connects four vertices
t bc,dande. _ _ ' -

832 Classification based on Direction

" The graphs canalso be classified based on the direction of the edges. An edge starts-ﬁ'om one
- venexandendsatanother%rtex.AnarrOwindicﬁestlwdirectionofthe'edgeslmwnatending

vertex, Based on direction, graphs can be categorised as directed or undirected.
8.32.1 Directed Graph

In directed graph, the edges start from one node and end at other node. At ending node an arrow
mark is shown to indicate direction. The edge is counted inin-degree of the vertex where arrow
of the edge ends and as out-degree where edge starts. The graph in Figure 8.4 is a directed

- graph.

8322 Undirected Graph o - S

In undirected graph, there is no direction of edge is shown and edge is counted it degree of both
“the vertices. The graph shown iri Figure 8.3 is undirected graph, When not specified, graphiis
833 Classification based on Weight or Label

 Inthe graphs shown above edges indicate merely connectivity of vertices. But, graphs can do

: moleth'an_comlecﬁvitybfvelﬁces.ThereCanbeanumberassociatedwithedgeorvertexrepm—

senting some requirement 6f problem. The number s called weight. Graphs can also be classified
basedonweightil__ ' : .

e

197

13

t

! 833.1 Unlabeled Graph | | R
" ‘Inunlabeled graph, vertices are not named rather each vertex is equally likely. . . .

(@ Unlabeled Graph (b) Similar Unlabeled Graph
Figure 8.7 Two unlabeled indistinguishable Graphs
Figure 8.7 shows two unlabeled and indistinguishable graphs as names to vertices are not as-
signed. However, they become different names are assigned to vertices.
8332 Labelled Graph | S
Agraph,in whicha unique name is assigned to every vertex, is called labelled graph. =

@ 'Lﬁbéﬂed_Gf“P"_ B (b) Different labelled Gﬁp“ o
" Figure 8.8: Two labeIledanddiﬁ'erentIGraphs___ o

| Figure 8.8 shows.fwd different labelled graphs. These graphs were the same when ho'hame was
assigned to vertices. : L . '
.83,3.3 Unweighted Graph e e
- This type of graph shows the edges connect adjacent vertices only. There is nonumber _asso-
ciated with edges or vertices. All graphs shown in Figure 8.3 to 8.8 are unweighted graphs.
83.34 Weighted Graph T A
. Weighted graphs are important graphs in which a number is associated with edge or vertex. This -
number represents a parameter of interest. Dx ding ori application, this.could be _a_dis't_ance,
cost, capacity etc. There are many types of weight possible in graph as described below.
Edge Weighted Graph T T
In these graphs weight is associated with edges as shown in Figure 8.9(a). Weight of edge (0, W) -
- is14inFigure 8.9(a). ' . .

Vertex Weighted Graph

Inthese graphs weight is associated with vertices as shown 1n Flgure 8.9(b). Welght assocmted)
with vertex uis 10 in Figure 8. 9(b) '

) S w2

(a) Edge Weighted Graph (b) Vertex weighted Graph
~ Figure 8,9 Edge Weighted and Vertex Weighted Graphs
Positive Weights -

Mostly weights associated with edge or vertex is pos1t1ve as shown in Fxgure 8.9 except for edge
(w, z)in Figure 8.9(a)..

. Negative Weights

Weights associated with edge or vertex can be negative also as shown for edge (w, z) in Flgune
8.9(a).
Additive Weights

While traversing edges in a graph, total distance or cost needs to be computed. This computation
is normally done by adding the weights associated with edges are added. Such weights are called
additive weights. This is also applicable for vertex welghts In Flgure 8.9(a), travcrmng utovto
w costs 12 if weights are additive.

Multlpllcatlve Weights

Weights associated with vertex or edge canbe multlphcatlve also In other worlds, the total cost
of traversal caxL:e obtained by multiplying weights of edges (or vertices) from source to route, It
Figure 8.9(a), traversing u to v to w costs 20 if weights are multiplicative. '

834 Classification based on Connectivity

The graphs can also be classified based on connectivity. There are two types of graph namely,
connected and disconnected graphs as described below.

834, Connected Graph ' 3 .

Agraph in that is in one piece is said to be connected. In other words, a graph is said to be
connected if every vertex can be reachable from any other vertex by traversing edges.

Figure 8.10: A Connected Graph

- Figure 8.10 shows a connected graph in which every vertex is reachable from every other
vertex througha setofedges Vertex d is reachable from vertex bthroughedges (b,c) and(c,d)

199

8342 Disconiected Graph

Agraph,thatlsnotamngleplece,mcaﬂeddwconnectedgmph,lnsuchgraphs ﬂlcmexlstsapmr |
~ of vertices not reachable through a set of graph edges.

Figure 8.11: A Disconnected Graph

Figure 8.11 shows a disconnected graph in which vertex pair b and d is not reachable through
any set of edges of the graph,

8.4 Data Structure for Graph Representation |

There are many data structures available for representations of the gtﬁphs Depending on appli-

cation requirement, appropriate representat:on isused. This sectlon describes four commonly
used representations. o

8.4.1 Incidence Matrix
Incidence matrix representation is useful for representing connecuwty ofthe glaph. Col-

umns represent edge names and rows represent vertex names. Matrix element value 1 indicates

that edge represented by column and vertex represented by row is connected. Similarly matrix
element value 0 is written when vertex is not end point of corresponding edge. This type of

Tepresentation is very useful for multi-graphs, Usually every column of the mmden.ce matrix oon-

tains two 1’s only. IncldencematnxreqmreO(]Vl*lEl)space

ab.cde

A 10011

"B 11000

cC 00110
01101

Figure 8.42: Incidence Matrix representation of Graphs.

Figure 8.42 shows a graph having 4 vertices and 5 edges. Accordingly, there are 5 cmlmnnsand
4rows 5 columus in its incidence matrix. Matrix element value is 1 in column number 3 for row
number 3 and 4. This indicates vertex C (for row number 3) and vertex D (for row number 4) are

- connected through edge c.

84.2 Ad]acency Matrix
In ad_]acency matrix, rows and columns are indexed by the vertices only. Hence, adjacency

. matrices are square matrices. These matrices canrepresent directed as well as undirected graphs

andweightsasWellasconmctivityBut,th&eemau"ic&s cannot be used to represent multi-graphs.

200

_— _

LY

To represent connectivity, the matrix element entries are just boolean values stating that verl:loes .
representedby row number and column numberareconnectcd ornot, :

ABCD
A 0111
B 1001
. C 1001
D 1110

Figure 8.43: Adjacency Matrix representation of Graphs for connectivity.

Figure 8.43 shows adjacency matrix representation for connectivity of the same graphas shown
inFigure 8. 2.

In case of weighted and directed graphs, the weights themselves can be written into the entrics.

ABCD
Apo 104 1
B 1 00 00 15
Coxooom 9

D o 60 oo 00
Figure 8.44: Adjacency Matrix of Directed and Weighted Graphs.

. - Figure 8.44 shows adjacency matrix representation of directed and weighted graph, Vertwes not
connected throughedgesawshownashavmg weight8, | _ _

~ Adjacency matrices require O(V]?) space, and so they are space-efficient only when they are
dense (that is, when the graphs have many edges) 'I"une-w:se, the adjacency matrices allow easy
addition and deletion of edges. :
8.4.3 Adjacency Lists

Adjaoency List representation of the graph consists of a list of vertices with each vertex contain-
—ing alist ofitsneighbouring vertices.

) A B e
- B A{ |
C Al 4D
D i —F-wn ¢l

Figure 8.45: Ad;acency List representation of Graphs.
Figure 8.45 shows adjacency list representaﬂon for connectivity of the same graph as shownin:

201

Figure 8.42. . _ o - L %1-,,; ae

This representation takes O(|V |+[E{) space. Hence, this is an space efficient representation
" suitable even for sparse graphs. : T
8.4.4 Adjacency Mutli-lists

Tn adjacency multi-list, it is easy to find the vertices adjacent a given vertex even in directed

list.

Adjacency multi-list representation needs two data structures as mentioned below:
An array to represent vertices called headnodes.
A structure to store the following information

e 0 o O ©

Fdge Name
Endpoint-1
Endpoint-2 |
EdgeList-1 for endpoini-1
EdgeList-2 for endpoint-2

The above structure is shown in Figure 8.46.

_ end-point end-pointEdge-list Edge-list

Figure 8.46: ﬁata_Stuwture for edge information in adjacency multi-.list.—

Figure 8.47: A graphand its adjacency multi-lst.

Figure 8.47 shows a graph and its adjacency multi-list. Each vertex pointer HeadNode array
points to first edge list in which vertex appears. For example, vertex 2 first appears in edge (0,
2). Hence, vertex 2 array element points to N1 edgé record, Tracing of edges connected to a
vertex is shown below. For example, vertex number 3 first appears N2 edge record at second
position. Corresponding edgelist pointer points to N4 record, vertex number 3 is again second
position. Hence, it gets a pointer at N5. As there is 0 written at last place in N5, tracing ends

202

graphs, which s difficult in adjacency list. It takes slightly more space compared to adjacency

rd
The Lists are Vertex 0: NO0? N1? N2

Vertex 1: NO? N3? N4
Vertex 2: N1? N3? NS

Vertex 3: N2? N4?7 N5

Figure 8.48: Adjacency multi-list representation of graph in Figure 8.47.
8.5 Graph Traversal Algorithms

A graph search (or graph traversal) algorithm is just an algorithm to systematically go through all
the nodes in a graph, often with the goal of finding a particular node, or one with a given property,
Searching a linear structure such as a list is easy as one can just start at the beginning, and work
through to the end. Searching a graph is obviously more complex and need systematic approach
for traversal. There are two common algorithms are used for traversal namely, Breadth First
Search (BFS) and Depth First Search (DFS). Both of them visit each vertex in different order.
The algorithms are described in following subsections.

8.5.1 Breadth First Search (BFS) Algorithm: This algorithmsystematically visits all nodes
starting from starting vertex. The basicideais to visit neighbouring vertices first then vertices far
from current verteX. This can further be supported by assigning a level of vertex as number of
edges in the path of vertex from starting vertex. Visit the vertices at level i before the nodes of
leveli+1. :

Figure : Agraph with level mumber from startmg vértcx 0
As algorithm progresses, starting Vertex is marked as visited and said to be unexplored. Algo-

rithm marks a vertex as explored by an algorithm when the algorithm has visited all vertices

adjacent from it. All unvisited vertices adjacent to current vertex are marked visited put onto the
- end of the list of unexplored vertices and current vertex is declared explored. First vertex from
list of unexplored vertices is the next to be explored. Exploration continues till no unexplored
vertex left. The tree formed by connecting all vertices and edges used to visit vertex first time is
- called BFS tree. ' '

Algorithm BFS (G v)

Inputs Graph G(V.E) and starting vertex v

Output Graph G with all vertices marked visited

— A BES of G starts at vertex v,

— All vertices visited are marked as VISITED (i) = 1.

- Gand array VISITED are global and VISITED is initialized to zeto.

L VISITED (w)! L;ulv
2. Inttialize Q asempty queue— Q is of unexplored Vertices
3. Loop |

203

4, For all vertices w adjacent from u do

5. If VISITED(w) = 0 then call ADDQ(w, Q)—w is unexplored
6. VISITED (w)!1 - '

7. Endif

8. Endfor _

9. If Q is empty then return Endif—no unexplored vertex

10. CallDELETEQ(u1,Q) — getfirstunexplored vertex

11. Endloop

Algorithm: BFS Algorithm

As algoriﬂnnic stepsare self-explanatory, it is better to explain them through example as
described in Figure 9.2. Black vertices indicate that they are in Q.

@

©

- (¢) Vertexno.4 éxplored | (f) Vertex no. 5 explored

- 204

(m) Finally Vertexno. 12 explored . (0) BFS Tree
Figure (2)-(n): An example and stcps in BFS and BFS Tree
Analysis of BFS .

It is obvious that each node is added in queue by ADDQ and, therefore dequeued once and |
only once by DELETEQ. Individual queue operations are- O(1) and so the total time spent on
gueue operations is O({V]). The adjacency list for each vertex taken off the queue is scanned
once. Hence the total time spent scanning adjacency lists is O(E]). Hence the total time spent
by BFS is O(|V[+E}). '

205

If Adjacency Matrix is used, then a Queue is needed to maintain unexplored vertices & an-
"+ array for maintaining the state of a vertex. Scanning each row for checking the connectmty ofa

Vertex isin order O(JV/). So, Complexlty is O(VP).
8.5.2 Depth First Search (DFS) Algorithm

Like BFS, DFS also visits each and every vertex of the graph, but in different order. DFS isa
recursive algorithm that implicitly records a “backtracking” path from the start vertex to the
vertex currently under consideration. Unlike BES, only one of the adjacent vertices is visited and
path is traced from last visited vertex. In other words, exploration of current vertex is suspended
the moment new vertex is reached. Exploration will resume only after new vertex has been
explored. Hence, stack is used for backtracking instead of queue used in BFS. The tree formed
by connecting all vertices and edges used to visit vertex first time is called DFS tree, Algorithm
steps are detailed below.

Algorithm DFS (G v)

Inputs Graph G(V,E) and starting vertex v

Output Graph G with all vertices marked visited

— ADFS of G starts at vertex v. ‘

- All vertices visited are marked as VISITED (i) = 1.

— G and array VISITED are global and VISITED isinitialized to zero. |
VISITED (v} 1 ; -

1

2 For each vertex wadjacent from vdo
3. If VISITED(w)=0then
4 call DFS(G, w). |

5 Endif '

6 Endfor

Algorithm DFS Algorithm

Asalgorithmic steps are self-explanatory, it is better to explain them through example as
described in Figure 9.3. Vertex details will be stored in stack whenever DFS is called recursively.
Black vertices indicate that they are in stack and will be explored later.

(a)A graph with starting vertex marked (b)Adjacent verticesin stack

206

(©) Vertex b in stack (d) Vertex b explored

] Vertex | explored . (j) Vertex h in stack

- 207

()] Vertex j explored

‘(@) Vertex d in stack (r) Vertex d explored

208 T J

() Vertexc explored S (x) Vertex a explored & DFS Tree
Figure (a)-(x): An example and steps in DFS and DFS Tree
Analysisof DFS

The FOR-loop of DFS takes O([V]) time, excluding the call to DFS. DF S is called exactly once

foreach neighbour of current vertex because it immediately marks current vertex as “visited’ on
entry to DFS. The FOR-loop in DFS is executed for each node adjacent to current vertex, i.e.,
for each edge connected to current vertex. Hence the total work for DFS is O([E[) and the total
work for DFS is O(JV|HE]).

If Adjaceney Matrix is used, then a stack is needed to mmntamunexplored vertices & an array
for maintaining the state of a vertex. Scanning each row for checking the connectivity of a Vertex
isin order O([V]). So, Complexity is O([VF).

8.6 SHORTEST PATH ALGORITHMS

Shortest path problem is the problem of finding a path between two vertices (or nodes) such |
thatthesmnofthe weights of its constituent edges is minimized. An example is ﬁndmg the quick-
209

est way to get from one location to another on a road map; in this case, the vertices represent
locations and the edges represent segments of road and are weighted by the time needed to
travel that segment. The problem is also sometimes called the single-pair shortest path prob-
lem, to distinguish it from the following generalizations:

The single-source shortest path problem, in which we have to find shorbest paths .
- from a source vertex v to all other vertices in the graph.

The single-destination shortest path problem, in which-we have to find shortest
paths from all vertices in the graph to a single destination vertex v. This can be reduced to the
single-source shortest path problem by reversing the edges in the graph.,

 The all-pairs shortest path problem, in which we have to find shortest paths between
every pair of vertices v, v’ in the graph.

These generalizations have significantly more efficient algorithms than the S]I'np]lSth approach of
running a single-pair shortest path algorithm on all relevant pairs of vertices.

To solve this problem, following most important algorithms are described in this unit.

Dijkstra algorithm solves the smgle—palr Slngle—souroe, and smgle-destmatlon shortcst _
path problems.
Bellman-Ford algorithm solves single source problern even if edge weights are negative,

Floyd-Warshall algorithm solves all pair shortest path problem.

8.6.1 Dijkstra Single-Source Shortest Path Algorithm

Dijkstra algorithm, conceived by Duich computer scientist Edsger D1Jkstra in 1959,is a
graph search algorithm that solves the single-source shortest path problem for graphs with non-
negative edge path costs, producing ashortest path tree. This algorithm is often used in routing.

 For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e.
the shortest path) between that vertex and every other vertex. It can also be used for finding -
costs iof shortest paths from a single vertex to a single destination vertex by stopping the algo-
rithmlonce the shortest path to the destination vertex has been determined. For example, if the
vertices of the graph represent cities and edge path costs represent driving distances between
pairs of cities connected by a direct road, Dijkstra algorithm can be used to find the shortest
route between one city and all other cities. As a result, the shortest path first is widely used in
network routing protocols, most notably OSPF (Open Shortest Path First),

Algorithm

Algorithm starts with initial node X and assigns distance from initial node as zero. Assuming
distance of a node Y be the distance from the initial node to it, Dijkstra algorithm will assign
some initial distance values and will try to improve them step-by-step. The concept of improve-
ment is described below. Algorithm is explained thereafter.

1, Assign to every node a distance value. Set it to zero for our initial node and to infinity for
all other nodes. _
2. . Markall nodes asunvisited. Set initial node as current.]
3. For cutrent node, consider all its-unvisited neighbours and calculate their distance (from

the initial node). For example, if current node 3 has distance of' 9, and an edge connecting it with
~ another node 6 is 2, the distance to node 6 through node 3 will be 9+2=11. I this distance is less
than the previously recorded distance (infinity in the begmmng, 14 after first i 1terailon, zero forthe
initial node), overwntcthcdlstance '

B 210

(2) Graph after Last Iteration

Figure (a)-(g): An example of Dijkstra Algorithm _
If we are only interested in a shortest path between vertices source and target, we can terminate
the search at line 12 if u=target. Now we canread the shortest path from source to target by
1 S!empty sequencé
2 u!target '
3 while previous[u] is defined:

4 insertu atthe beginning of S
5 ~ u! previous[u]

Algoritbm : Change in Dijkstra Algorithm for Source-Target Problem
Now sequence S is the list of vertices constituting one of the shortest paths from target to source,
or the empty sequence if no path exists.
~ Analysis of Dijkstra algorithm

~ Anupper bound of the running time of Dijkstra algorithm on a graph with edgesEandvertloesV
can be expressed as a function of |E| and [V| using the Big-O notation. _
For any implementation of set Q the running time is based on two operations namely, decreasing

“weight of a vertex and extract minimum weight edge. The time required in these operations can
be of the O(]El*decrease key in Q+|V|*extract minimum in (), where decrease key in Q
and extract_minimum_in QaretlmesneededtoperﬁmnﬂmtoperatmnmsetQ e

213

. The simplest implementation of the Dijkstra algorithm stores vertices of set Qinan ordinary

linked list or array, and operation Extract—Mm(Q) is simply a linear search through all vertices in

- Q.Inthis case, the rtmnmg time is O([V-HE[=O(V[?).
 For sparse graphs that is, graphs with fewer than [VP edges, Dijkstra algonthm can be imple- |

mented more efficiently by storing the graph in the form of adjacency lists and using a binary heap

or Fibonacci heap as a priority queue to implement the Extract-Min function efficiently. Witha -

binary heap, the algorithm requires O((JE[+{V/) log |V]) time (which is dominated by O(JE| log
[V]), assuming the graph is connected), and the Fibonacci heap improves this to O(| E|+| V | log
VI

8.6.2 Bellman-Ford Single-Source Shortest Path Algorithm

The Bellman-Ford algorithm, alabel correcting algorithm, computés single-source shortest
paths in a weighted digraph (where some of the edge weights may be riegative). Dijkstra algo-
rithm solvesthe same problem with a lower running time, but requires edge weights should not
form negative cycle. Thus, Bellman—Ford is usually used only when there is a possibility of fot-
mation of negative edge weight cycles. The algorithm was developed by Richard Bellman and
Lester Ford, Jr..

According to Robert Sedgewick, “Negative weights are not merely amathematical curiosity, but)

it arises in a natural way when we reduce other problems to shortest-paths problems” and he
gives the specific example of a reduction from the NP-complete Hamilton path problem to the
shortest paths problem with general weights. If a graph contains a cycle of total negative weight
then arbitrarily low weights are achievable and so there is no solution; Bellman-Ford detects this
case. g _ _ _ _ Voo

Ifthe graph does contain a cycle of negative weights, Bellman-Ford can only detect this; Bellman- .

Ford cannot find the shoftest path that does not repeat any vertex in such a graph Tlus problcm
is at least as hard as the NP-complete longest path problem.,

Bellman~Ford is in its basic structure very similar to Dijkstra algorithm, but instead of greedily
selecting the minimum-weight node not yet processed to relax, it simply relaxes all the edges, and
does this [V]“ 1 times, where [V} is the number of vertices in the graph. The repetitions allow
minimum distances to accurately propagate throughout the graph, since, in the absence of nega-
tive cycles, the shortest path can only visit each node at most once. Unlike the greedy approach,
which depends on certain structutal assumptions derived from positive welghts this straightfor-
ward approach extcnds to the general case.

For non-negative weights, algorithm behaves similar to Dijkstra algonthm except some steps -

may not do anything. A priority queue is maintained in Dijkstra algorithm to select next node
which will really update the weights, but for loops in this algorithm at line 8 & 9 will take all
vertices and update weights in right order and may not be doing anything in case of only posmve

weights.

Bellman—Ford runs in O([V|-|E}) time, where |V| and [E| are the number of vertices and edges -

respectively. _

1.Algorithm BellmanFord(list_of vertices, list of edges, source_vertex)
- —This iinplementa_tion takes in a graph, represented as lists of vertices
_and edges, and modifies the vertices so that their distance and

214

~—predecessor attributes store the shortest pathé.
—Step 1: Initialize graph '

2. for each vertex vin vertices:

3. if v is source _

4. | then v.distance ! 0

5. else

6. _ v.distance ! infinity

7. v.predecessor ! null

—Step 2: relax edges repeatedly

8. forifrom 1 to size(vertices)-1:

9. for each edge uvin edges: —uvis the edge fromutov -

10, - u!uvssource

11. v ! uv.destination

12, if u.distance + uv.weight < v.distance

13. then v.distance ! u.distance +uv.weight
14 v.predecessor ! u |

—Step 3: check for negative-weight cycles
15. foreachedgeuvinedges: |

16, ‘u!uv.source
17 v ! uv.destination :
18. if u.distance +uv.weight < v.distance:
19, error “Graph contains a negative-weight cycle”
0. |
Algorithm ; Bellman-FordAlgorithm '

Figure shows initial graph for Bellman-Ford algorithm (same as used in Dijkstra algorithm ex-

-ample). Figure 9.5(b) after first iteration i.e. fori =1 at line 8 and sequence of vertices taken s (a,
b), (a,¢), (a,), (b, d), (b, c), (c,), (c, d), {c,e) and (e, d). These values remain the same for all
xhe;tatlons titl last.

215

_‘ Figure (a): Initial Graph (b) after first till last iteration
Proof of correciness

The correctness of the algonthm can be shown by induction. The premse statement shown by
induction is:

 Lemma. Afterirepetitions offo_rcycle:

If Distance(u) is not infinity, it is equal to the length of some path from s tou;
If there isa path from s to u with at most i edges, then Distance(u) is at most the length of
the shortest path from s to u with at most i edges.

Proof., For the base case of induction, consider i=0 and the moment before for cycle is executed
for the first time. Then, for the source vertex, source.distance ! 0, which is coirect, For other
vertices u, u.distance ! infinity, which is also correct because there is nopathfromsouroewu
with 0 edges.

For the inductive case, we first prove the first part. Consider a moment when avertex distance
is updated by v.distance ! u.distance + uv.weight. By inductive assumption, u.distance is the
length of some path from source tou. Then u.distance +uv.weight is the length of the path from
source to vthat follows the path from source touandthentov. -

For the second part, consider the shortest path from source to u with at mosti edges. Let vbe
the last vertex before u on this path. Then, the part of the path from source to v is the shortest
path from source to v with at most i-1 edges. By inductive assumption, v.distance afteri-1 cycles
- isatmost the length of this path. Therefore, uv.weight + v.distance is at most the length of the path
from s tou. In the i cycle, u.distance gets compared with uv.weight + v.distance, and is set equal
to it if uv.weight +v.distance was smaller. Therefore, afteri cycles, u.distance is at most the length
of the shortest path from source to u that uses at most i edges.

If there are no negative-weight cycles, then every shortest path visits each vertex at most once,
so at step 3 no further improvements can be made. Conversely, suppose no improvement can be
made. Then for any cycle with vertices v[0]...,v{k-1],

v[i].distance <=v[i-1 {mod k)}.distance + v[i-1 (mod k)Jv[i].weight

Summing around the cycle, the v[i].distance terms and the v{i-1 (mod k)] distance terms cancel,
0 <=sum from 1 to k of v[i-1 (mod k)]v{i].weight

I i.e,, every cycle has nonnegative weight.

216

R

8.63 Floyd-Warshall All Pair Shortest Path Algorithm -

The Floyd-Warshall Algorithm is an efficient algorithm to find all-pairs shorﬁest paths ona
graph. That is, it is guaranteed to find the shortest path between every pair of vertices in a graph.
The graph may have negative weight edges, but no negative weight cycl&s (for then the shortest
pathis undefined).
This algorithm can also be used to detect the presence of negative cycles—the graph has one if;
at the end of the algorithm, the distance from a vertex v to itselfis negative. _
The Floyd-Warshall algorithm compares all possible paths through the graph between each pair
of vertices. Itis able to do this with only [V]’ comparisons. This is remarkable considering that
there may be up to [VFedgesmthegmph, and every combination of edges is tested. It does so
by incrementally improving an estimate on the shoriest pathbetween two vertwes, untilthe esti-
mate is known to be optimal. v
Let dist(k,i,j) be the the length of the shortest path from i and j that uses only the vertlces
T, vg,..,,vkasmwnnedlatevemmmefoﬂomngrpcunence -
. k=01is our base case - dist(0,i,)) is the length of the edge from vertex ito vertex j ifit
exists, and o otherwise.

dist(k,ij)= mm(dlsb(k L,i,k) +dist(k - 1k), dlst(k 1,14')) For any vertex i and vertex
J, the length of the shortest path from i to j with all intermediate vertices < k simply does not
involve the vertex k at all (in which case it is the same as dist(k - 1,1,j)), or that the shorter path
goes through vertex k, so the shortest path between vertex i and vertex j mﬂleoombnlahonofﬂie
path from vertex i to k, and from vertexktoj.

/
After [V iterations, there is no need anymore to go through any more intermediate vatww,
the distance dist(N,i,j) represents the shortest dlstance betweeniand j, where N=|V|.

Algorithm

1. Floyd-Warshall (Graph G(V, E))
— Representing N for [V
—Initialize distance values

NS kW

fori=1toN-
forj=10ON"
if there is an edge from ito j
diSt[O] [i]{j] ! the length of the edge from i to j
else o '
d13t[0}[1][]]] [NF]NITY
— Relax distance values i
8. fork!1toN
9, fori!l1to N
10. forj!l1toN
11. dist[K][i](j] ¢ min(dist{k-1][i][j], dist{k-1]{i][K] + dist{k-1][K][j])

Algorithm : Floyd-WarshallAlgonﬂlm

This will give the shortest dlstances between any two nodes, from which shortestpams maybe
constructed.

217

This algorithm takes E([VF’) time and E([VP) space, and has the distinct advantage of hiding a

- small constant in its behavior, since very little work is done in the innermost loop. Furthermore,
the space-bound can be reduced further to E(V) by noticing that dist(k,i,j) is independent from
dist(k - 1,1,j). As mentioned above, dist(N,1,j) represent shortest distance betwieen any pair of
vettices, which is nothing but a matrix dist[k][i][j] after N iterations. -

Figure shows example graph. Edges ofthe graph are assumed in both the directions.

Flgure Example graph for Floyd-Warshall Algorlthm

Figure shows matrix representation of the graph used in algorithm. As algonthm progresses,
intermediate matrices are generated, Final matrix is shown Flgure which represents shortest
distance between any pair of vertlces

ABCD E . A B

C D E
o 0?5 ? A 0 10 153 5 20
W o 5 5 10 B1o 0§ 5 10

C 1 5 0 10 15
o 20 u o

o
o
)

D 5 5 10 '0'15"”
10 ? 20 o ' '
E_20 10 15 15 ©

(a) Initial Matrix for example (b) Final Matrix in Floyd-Warshall a-lgor'ithm'
Figure (a)-(b): Initial & Final Matrices for Floyd—WarshallAlgorithm _
For constructing path between any pair of vertices, predecessor matrices are to be generated
and preserved till end. These matrices can be used to generate shortest path between any pair of
vertices. -
8.7 “ SPANNING TREE ALGORITHMS
Given aconnected, undirected graph, a spanning tree of that graph is a subgraph whichisa tree
and connects all the vertices of the graph. A single graph can have many different spanning trees.

We can also assign a weight to each edge, which is anumber representing how unfavorable it s,
and use thisto assi Welght to a spannmg tree by computmg ’the sum ofthe wclghts of thc

e,

218

N _
One example would be a cable TV company laying cable to anew reighborhood. Ifit is con-
strained to bury the cable only along certain paths, then there would be a graph representing
which points are connected by those paths. Some of those paths might be more expensive,
because they are longer, or require the cable to be buried deeper; these paths would be repre-
sented by edges with larger weights. A spanning tree for that graph would be a subset of those
paths that has no cycles but still connects to every house. There might be several spanning trees
possible, A minimum spanning tree would be one with the lowest total cost It is important to note
that if weights of all edges are equal then all spanning trees will have the same weight. On the
other hand, if alt edges have different weights i.e. unequal weights then only one spanning tree will
be MST.

There are two important algorithms being used for obtaining MST namely, Prim algorithm and .
kruskal Algorithm. Both are based on greedy approach for ﬁndma MST. Algorithms are de-
scribed in this section.

8.7.1 Prim Algorithm for MST

Prim algorithm, for finding a minimum spanning tree for a connected weighted graph, was
developed in 1930 by Czech mathematician Vojtich Jarnik and later independently by computer
scientist Robert C. Prim in 1957 and rediscovered by Edsger Dijkstra in 1959, Therefore it is
sometimes called the DJP algorithm, the Jarnik algorithm, or the Primn-Jarnik algorithm.

Algorithm

The algorithm statts with a single vertex and continuously increases the size of atree startmg until
it spans all the vertices. Steps are detailed below:

3

1. Tﬁ\:_.;_,';‘--: Input: A connected welghted graph with vertices Vand edges E.
2. " Initialize: V= {x}, where x is an arbitrary node (starting point) in V, E =0
3 Repeatuntil vV, =V:

0 Choose edge (u,v) with minimal weight such thatuisin V__ and v is not (if there are
multiple edges with the same weight, choose arbitrarily but consistently) — needs a queue for
searching
0 AddvtoV ,add(u,v)toE

4. Output: V__ andE__ describe aminimal spanning tree

B Algorithm : Prim Algorithm for MST

« Time complexity

Time complexity of the algorithm depends on the data structure used to represent the graph and

for searching. The following table shows the time complexity as per data structure representing

the graph. _

Graph data structure Queue Data structure Time complexity (total)

Adjacency matrix Array Oo(V?)
Adjacency list _ Binary heap O((V + E) log(V)) = O(E log(V))
Adjacency list Fibonacci heap OE + V log(V))

Table : Prim Algorithm Time Complexity

A simple implementation using an adjacency matrix graph representation and searching an array
of weights to find the minimum weight edge to add requires O(V?2) running time. Using a simple
binary heap data structure and an adjacency list representation, Prim algorithm can be shown to

219

. nnintime O(E log V) where E is the mumber bf edges and V is the nuinber of vertices, Using a.
more sophisticated Fibonacci heap; this can be brought down to O(E + V log V), whithis

 significantly faster when the graph is dense. Binary heap is the same asused in heap sorting and

Fibonacci heap is complex data structure beyond our scope. - -

220

Example

s edges mdleate thelr welght

I This is-ont origin

lghted graph The num bers near the

1) : 03e . as. a stertmg ponnt.-"
e conneoted to. D throngh a single”

jedge. A is. the vertex nedrest to D and will be chosen as the
second vertex along w1th the edge AD '

The next verte cho en: is the vertex nearest to enker D or
: --away from A, E:is-15, and F.is. .

away,’ eo__\p_re_h;g_h_llght the_vertex .

‘Vertex ﬁ",'-w'h;c_ﬁ i

iy ;_and_"-G".- C 1 y
11 away from F..
nd the arg: BE.

221

Here, the only vertices available are Cand G.Cis S'awa'y-'
from E, and G is:9 away from E. C is chosen, so it is

{highlighted along with the arc EC. - |

iy V_eﬁex-Gfi_&_ the .énlji'."rémai.r;ﬁng’..vért_exi.;It is11 away from
_ [F> and 9 away from E: E-is nearer, $0 we highlight it and the

/- | Nowalltheverces hve been slcced and the
; |minimum spanning tree ssmomn

\,|ingreen. Tn this case, it has weight 39. .~

Proof of correctness

- Let P be a connected, weighted graph. At every iteration of Prim algorithm, an edge must be
found that connects a vertex in a subgraph to 2 vertex outside the subgraph. Since P is con-
nected, there will always be a path to every vertex. The output Y of Prim algorithm isatree,
because the edge and vertex added to Y are connected. Let Y, be aminimum spanning tree of P.
IfY =Y then Y is a minimum spanning tree. Otherwise, let ¢ be the first edge added during the
construction of Y that is not in Y,, and V be the set of vertices connected by the edges added
before e. Then one endpoint of e is in V and the other is not. Since Y, is a spanning tree of P,
there isapath in Y, joining the two endpoinis. As one travels along the path, one must encounter
an edge f joining a vertex in V to one that is not in V. Now, at the iteration when e was added to
Y, feould also have been added and it would be added instead of eif’its weight was less than e.
Since fwas not added, we conclude that _ o _ '

w(f) 2 w(e). |

Let Y, be the graph obtained by removing fand adding ¢ from Y. It is easy to show that Y, is
connected, has the same number of edges as Y,, and the total weights of its edges is not larger
than that of Y, therefore it is also a minimum spanning tree of P and it contains e and all the edges
added before it during the construction of V. Repeat the steps above and we will eventually
obtain aminirnum spanning tree of P that is identical to Y. This shows Yis a minimum spanning
tree. .

222

872 Kruskal Algorithm for MST

~ Kruskal algorithm finds a minimum spanning tree for a connected welghtcd graph and ifthe
graph is not connected, then it finds a minimum spanning forest (a minimum spanning tree for
each connected component). Kruskal algorithm is an example of a greedy algorithm. The a[go-
~ rithm was first published by Joseph Kruskal in 1956,

Algorithm \
The algorithi works as follows:
1. create a forest F (a set of trees), where each vertex in the graph is a separate tree
2. create aset S containing all the edges in the graph
3. while S is ﬁonempty
o remove an edge with minimum weight fiom S
0. ifthat edge connects two different trees and results into asingle tree, then add it
to the forest :

o otherwise discard that edge. _

Algorithm : Kruskal Algorithm for MST

At the termination of the algorithm, the forest has only one component and forms a minimum

spanning tree of the graph.
Time Complexity
Where E is the number of edges in the graph and V is the number of vertices, Kruskat a]gom:hm

can be shown to run in O(E log E) time, or equivalently, O(E log V) tlme, all with snnple data
~ structures. These ranning times are equivalent because:

Eis at most V2and logV2 2logV is O(log V).

If we ignore isolated vertices, which will each be their own oomponent of the mlmmum _

spanning forest, V d” E+1, so log V is O(log E).

We canachieve this bound as follows: first sort the edges by weight using a comparison sort in

O(E log E) time; this allows the step “remove an edge with minimum wezght from S” to operate
in constant time, Next, we usc a dlSjOmt—set data structure fo keep track of which vertices arein

which components. We need to perform O(E) operations, two ‘find’ operations and possibly

one unton for each edge. Evena simple disjoint-set data structure such as disjoint-set forests

withunion by rank can perform O(E) operations in O(E log V) time. Thus the total time is O(E

log E) OElogV).

& _numbers near the

223

A

AD and CE are the shortest.ar(':s, with length 5,
and AD hag been arbitrarily chosen, so it is
highlighted. : : '

A

" CE is'now 'thé"-sﬁbrtest arc that does not form a
cycle, with length 5, so it s highlighted as the second -

" are,

' The next arc, DF with length 6, is highlighted

|using much the same method.. -~

. The next-shortest arcs are AB and BE, both with

~ llength 7. AB is chosen arbitrarily, and is highlighted.
- {The arc BD has been highlighted in red, because there

already exists a-path (in green) between B and D, so it
would form a cycle (ABD) if it were chiosen.

_ ;I’-h'ie_'p-rd_(::'és's continues to highlight the next-
smallest arc, BE with length 7. Many more arcs are
highlighted inred at this stage: BC because it would

* {form the loop- BCE, DE because it would form the
{loop DEBA, and FE because it would form FEBAD:

224

\

Spanning: tree

Prool' of correctness

The proof consists of two parts, First, itis proved that the algorithm produces aspannmg
tree. Seoond it is proved that the constructed spanning tree is of lmmmal we1ght '

P :
Let P be a connected, weighted graph and let Y be the subgraph of P produced by the
algorithm. Y cannot have a cycle, since the last edge added to that subgraph would have been

chosen only ifit doesn’t form cycle. Y cannot be disconnected, since the first encountered
edge that joins two components-of Y would have been added by the alg prithm. Thus, Yisa

spanning teee of P.

Minimality : | .-/

Assume that Y is not ammnnal spanning tree and among all mininmum wmght spanmng,h‘ees
pick Y, which has the smallest number of edgeswhich are not in Y. Consider the edgee
which waﬁ /ﬁrst to be added by the algorithm toY of those which are notin Y - =

¥} U ehasacycle. Being atree, Y cannot contain all edges-of this cycle. Therefore this

cycle contains anedge fwhichisnotin Y. Thegraph Y5 = ¥; U e ﬁsalsoaspamﬁngtxée

and therefore its weight cannot be less than the weight of Y, and hence the welght of'e cannot
be less than the welght of f.

Assume the contrary and remember that the edges are considered for addition to Y in the
order of non-decreasing weight. Therefore f would have been considered in the main loop
before ¢, i.e., it would be tested for the addition to adubforest Yy < ¥ M Yi(recall thate
isthe first edge of Y which isnotin Y,). But f docsfot create acycle in Y, therefore it cannot
create a cycle in Y, and it would have been }cfded to the growing tree.

The above 1mplies that the weights of/and f are equal, and hence Y, is also a minimal
spanning iree. But Y, has one more edgeincommon with Ythan Y, whmh contradicts to the
choice of Y , Hence Broved _

self learning exercises

1. Howmany édges are there in a complete graph on 5 vertices?

@ 5 (b) 10 25 (d)_ 50

2. AnBulerianPathmusthave -

(a) . Only one vertex of even degree | (b) All vertices of’ even degree
(¢) Onlytwo vertices of odd degree (d) None of the above

3. Adjacency List representation of graph requires

(a) O(VHIE]) storage space ®) O(VP storage spage

(¢) O(EP) storage space (d) none of the above

4. For the following graphs, which statement is not true?

225

(a These are Peterson graphs : (b) These are isomorphic graphs
© These are connected-graphs | (d) These are multi?graphs -

. K, ;graphisa ' '

)] Comp[ete Bipartite and Star graph (b) Complete graph

© Regu]ar gaph _ (d)None of the above -

6. Vertices A for (5, 8), B for (-4, 5) and C for (3, 4) are used for construction of an
interval graph, Which statement is true for this graph? '

(@ Aisconnectedto B and c ~ (b)BisconnectedtoAandC
(©) BisnotconnectedtoAandB - - : (d) Cisconnectedto A and B
7. Inthe followmg graph, removal of vemxAleaves

@ 6 ®1 @2 @5
8. Aregulargraphcan be disconnected if | .

@ Ttisofdegree2 (b itisofdegree3 -
(c) itis of degree 1 (d) itisof degree 0 h

9. How many edges need to be removed to leave the following graph dlsconnected‘?

@ 2 1 © 4 @ 2

226

10.For adirected graph, “ in adjacency matrix represents

(a) Vertices are not connected ~ (b) Vertices are adjacent
(¢) Vertices formacycle . _ _ (d) None of the above
88 . Summary "

This unit describes basic fundamentals of graph theory which includes various deﬁmtlons, graph
classﬁicanon and properties, data structure to store graph and solvmg puzzles.

Konigsberg bridge puzzle lead the invention of graph theory by Swiss mathematlman
named Leonhard Euler (pronounced “oiler”y in 1735. Since then graph theory has been solvmg
a large number of problems ranging from travelling salesman problem to VLS design. '

‘ There are many classifications available, but simple graph with directed or undirected,
weighted or unweighted graphs are mostly used and hence, graph theory fundamentals and algo-
rithms have focused on above graphs only.

. 'Ihcrearemanydatasimcﬁn*es available to represent graphs Incidence, adjacencymam};,
adjacency list and adjacency multi-list data structures have been explained in section.,

Two search algorithms are described in section , namely Breadth First Search (BFS)
and Depth First Search (DFS). Both the algorithms visit every node of the graph traversing
through edges but in different way. BES traverses all adjacent vertices of current vertices starting
from root and maintains a queue for this purpose. DFS traverses only one adjacent vertex till no
more vertices can be traversed and maintains stack for this purpose.

Shortest Path algorithms are found in three varianis namely, smgle—soume shortest path
problem, single-destination shortest path problem and all-pairs shortest path problem. Single-
source and single-destination problems can be converted to each other just by reversing the
edge direction. Dijksira Algorithm solves single-source problem if weights of edges donot form
negative cycle. Beliman-Ford algorithm detects neg,ﬁve cycleif it exists and solves if does not
exist. Floyd-Warshall algorithm solves all-pairs shortest path problem in which shortest route
can be found between every pair of vertices. S

Spanning tree of a graph is a tree contaiisng all vertices and a subset of edges of the
graph. A spanning tree having minimum sum of Wights of edgesin a weighted graph is called
Minimum Spanning Tree (MST). Prim and Kmsk’al algorithms with greedy approach obtains

MST. The trees obtained by these algorithms may not be the same; but sum of weights of edges

of the tree will be the same.

8.9 Glossary

: bipartlte A glaph is b1part1te 1f its vertices can be partrtloncd into two d15]01n1: subscts UandV

such that each edge connects a vertex from U to one from V. A bipartite graph is a complete

- bipartite graph if every vertex in U is connected to every vertex in V. fUhas n elements and V

has m, then we denote the resulting complete bipartite graph by Kn,m. The illustration shows
K3,3. See also complete graph and cut vertice

chromatic number : The chromatic number of a graph is the least number of colors it takes to
color its vertices so that adjacent vertices have different colors. For example, this graph has
chromatic number three.

When applied to a map this is the least number of colors so necessary that countries that share
nontrivial borders (borders consisting of more than single points) have different colors.

22'7

complete graph: A complete graph with n vertices (denoted Kn) is a graph withn verticesin
which each vertex is connected to each of the others (with one edge between each pair of
vertices). Here are the first five complete graphs :

directed graph A digraph (or a directed graph) is a graph in which the edges are directed.
(Formally: adigraph is a (usually finite) set of vertices V and set of ordered pairs (a,b) (where a,
bareinV) ed edges. The vertex ais the initial vertex of the edge and b the terminal vertex.

graph: Informally, agraph is a finite set of dots called vertices (or nodes) connected by links - '
called edges (or arcs). More formally: a simple graph is a (usually finite) set of vemces V and set ;
of unordered pairs of distinct elements of V called edges.

8.10 Further Readings

1. Graph thieory with applications to Engmeenng and computer
science by Narsingh Deo.

2. Discrete Mathematics by Rosen,

3. Graph theory by John Clark and Derek Allan Holton

4. Reference Book Allan Tucker for Combinatorics

8.11 Answers to self léarning.-exell'c'ises _
1) 29 30 4D 5@ 6D @ 8D 9B 10

8.12 Unit-End Questions
1. Findwhetherthe following pair of graphs is isomorphic?

2. . Find whether the following graph is planar or not? If not then how many eclges tobe
mmoved to make it planar?_

228

3.For the following graph, assign names to vertices and write its adjacency list representation.
Write steps to count number of edges from adjacency list and write its incidence matrix also.

. Draw four spanning trees of above graph.
5. Find Hamiltonian Path of the graph shown in question

ek

229

UNIT IX

GRAPH TI-IEORY ALGORITH_MS

STRUCTURE OF THE UNIT

9.0 Objectives

9.1 Introduction

9.2 Planarity Detection Technique

93 Algorithms for Connectivity

9.4 Planarity Testing

9.5 ° Summary ‘

9.6 Glossary

9.7 | Further Readings -

9.8 Answersto selfleaming exercises
9.9 Unit—end Questions |

9.0 Objectives

After reading this unit you should appremc.h, the follomng
 Planarity Detection Technique

- Spanning Tree a]gonthm
+ Connectedness algorithm

9.1 Imtroduction
Previous unit has described various types of graphs useful in different applications. To work with

them, a number of interesting algorithuns are available. These algorithms are standard and proven

useful in various applications. However, in some of the apphcatlons, these algorithms need little
' custonuzg\tlon as per the need of the application.

- Planarity detection is very important issue for many graphs in applications like PCB manufacturing.
Planarity determines whether a given graph can be drawn in a plane or not? Kuratowski has

given two 1mportant p]anar graphs, Section 9.4 explams above graphs and useful tips to detect -

planarity.

Spanning tree is atree oons1st1ng of all vertices and partially edges of the graph. These algonthms
are very useful in applications like cable laying for network etc.

| Inmanyapphcanons require to check the reachability of a specific node within the graph through

edges Iike traceroute or ping utility in computer network. To check this reachability, algorithms

for connectedness of a node or sub-graph, important algorithms are described 9.4 '

9.2 Planarity Detection Technique

A planar graph is a graph which can be embedded in the plane, i.e., it can be drawn on
the plane in such a way that its edges intersect only at their endpoints,

‘A planar graph already drawn in the plane without edge intersections is called a plane

T

230

graph or planar embedding of the graph. Aplaﬁe graph can’be défmed asaplanar graph with

amapping from every node to a point in 2D space, and from every edge toq plane curve, such
that the extreme points of each curve are the points mapped fromits end nodes, and all curves
are disjoint except on their extreme points.

Figure (a) shows a graph in which edges intersect. The same graph is drawn in Flgure
(b) without intersecting.edges (1som0rphlc graph). Hence, it can be embedded ina plane and
is aplaner graph.] . _

(a) Edge intersect'ing 'graph _ | | (b) Embedded i in Plane graph
Figure9.1 (a)-(b): Aplaner graph and 1ts embeddmg in plane

Whether a graph is planer or not is not easy to answer and no straight algorithm is available to
detect planarity. However, interesting studies and a number of techniques can be helpful in
determining planarity. This section describes planarity detection techniques using Kuratowski’s
two graphs and Homeomorphic graphs.

The Polish mathematician Kazimierz Kuratowski prowded acharacterization of planar graphs in
terms of forbidden graphs, now known as Kuratowski’s theorems. For this purpose, Kuratowski
gave two graphs known as Kuratowski’s two graphs.

Kuratowski’s first graph represents a non-planer graph with minimum number of vertices.
That is a complete graph with five vertices is non-planer. The graph is popularly known as K5
graph. It was shown that non-planer graph is not possible with less than 5-vertices.

~ Second graph by KuratowskJ is of minimum number of edges. That s of 9-edges. It wag also
shown that a non-planer graph requires 9 or more edges Both the graphs are regular i.e. degree
of each vertex is same and non-planer,

Figure 9.2(a) shows an incomplete graph having S-vertices and 9 edges, WhICh is moomplete and
planer graph. By adding one edge graph becomes regular and non-planer as shown in Figure

92(b)

Figure (a) 5-vertex planer graph (b) 5-vertex non-planer Complete Graph
Figure 9.2(a)-(b): Kuratowski’s K5 (5-vertex Complete) graph.

231

(a) Planer Graph with 8-edges - (b) Non-Planer Graph with 9-edges
' ' Figure 9.3(a)-(b): Kuratowski’s 9-edges K3 3 graph.

Similarly, a graph with 8 edges can be drawn as planer, but not regular as shownin F igure 9.3(a).
However, by adding one edge, it becomes regular but non-planer (Figure 9.3(b). This graphis -
popularly known as K3 3. This graph is also a bipartite graph, ' ' '

*
o

(a) Agraph (b) One Homeomorphic Graph (c) another Homeomorphic
' _ Graph
Figure 9.4(a)-(c): Homeomorphic graphs. /

Two graphs are said to be Homeomorphic if one graph can be obtained from the other by
creation of edges in series (i.. insertion of vertices of degree two on edge) or by merger of edges -
in series. The three graphs shown in Figure 9.11 are homeomorphic to each other. ; '
AKuratowski’s and Wagner’s theorems : o
finite graph is planar if and only if it does not contain a subgraph that is a homomorphic graphof
K5 (the complete graph on five vertices) or K3,3 (complete bipartite graph on six vertices, three
of which connect to each of the other three). ,

D w 5

(a) A graph (b) SubGraph of (a) thatis K3 3
Figure 9.5(a)-(b): Non-Planer graph.

7 - 232

Anexample of a graph shown in Figure 9.5(a), which doesn’thave K5 or K3 3 asits subgraph. .

However, it has a subgraph (as shown in Figure 9.5(b)), that is homeomorphic to K3 3 andis
_ - therefore not planar.

Tnpractice, it is difficult to use Kuratowski’s criterion to quickly decide whether a given graph is
planar. Finding subgraphs and their homeomorphic graphs is adifficult problem. Another condition
described by Euler is also being used for quick examination.

As per Euler condition for a simple, connected, planar graph with v vertices and e edges, the
following simple planarity criteria hold: :

| Ifv=3thene=3v-6;
Tt may be noted that this condition provide necessary conditions for planarity but not sufficient
condition. Hence, it can only be used to prove a graph is not planar, not that it is planar.
Anotherconcept of non-separable graph is also important. A connected graph is said to be non-
separable if removal of one vertex with all connected edges does not leave a disconnected
graph. Figure 9.13(a) shows a separable graph as removal of its vertex a leave the graph
disconnected into three subgraphs. However, by replicating vertex three times as al, a2 and a3,
we get three non-separable graphs. Planarity is not affected by separating graph having such
vertex. Planarity can be checked ineach non-separable component. :

1

(a) Aseparable graph : (b) Non-Separable Components

Figure 9.6(a)-(b): Aseparable graph and its non-separable components.

- With this knowledge, techniques to detect planarity can be described, which are necessary
conditions, but not sufficient. If these conditions are not satisfied, we can quickly detect that
graph is non-plaver, but cannot declare the graph is planer. Hence, this serves the purpose of
preliminary simplification onty which will be nseful most of the time. The steps of simplification
are as follows: y |

1. Find connected components using algorithm described in section 9.3. Theal gorithm is very
simple and run iz linear time. If there are more than one component, then test these steps for each
- components separately. | | o '

2. Removeall self-loops and replace each set of parallel edges by a single edge.

3. Eliminate every vertex of degree two by merging two edges incident on the vertex. Apply

step 2 & 3 repeatedly till no further reduction is possible.
4. Partition the graph into non-separable subgraphs if possible.
5. Apply reduction of step 3 and 2 in each non-separable subgraph.

6. Each reduced non-separable graph obtained after 'step 5, having e edges and n vertices, test

233

J

the following conditions: o -
n=5 . -
e=9 '
e=3n-6 - _ _
7. If any of these inequalities are not satisfied, we can conclude as follows:

ifn <35 or e <9 then subgraph is planer and we need to check other subgraphs too, However,
if e>3n -6 then subgraph is non-planer and hence entire graph s non-planer. "

- These steps do not provide complete defection, but most of th times detect non-planarity.
9.3 ' Algorithms for Connectivity

Connectedness in a graph is an important issue as it describes the reachability or traceability ofa
vertex within a graph. In an undirected graph G two vertices u and v are called connected if G
contains a path from u to v. Otherwise, they are called disconnected. It may also be noted that
vertices connected by an edge, i.e., by path of length 1, are called adjacent. Here are some
conmectivity related definitions: L .

A graph is called connected graph if every pair of distinet vertices in the graph can be connected
through some path.

Aconnected component is a maximal connected subgraph of G. Each vertex belongs to exactly
one connected component, as does each edge.)

A directed graph is called weakly connected directed graph if replacing all ofits directed edges
- with undirected edges produces a connected (undirected) graph.

A directed graph is strongly connected or strong directed graph ifit contains a directed path from

uto vand a directed path from v to u for every pair of vertices v,

The strong components are the maximal strongly connected subgraphs,

A cut or vertex cut of a connected graph G is a set of vertices whose removal renders G
disconnected. The connectivity or vertex connectivity (G) is the size of a smatlest vertex cut, A
graph is called k-connected or k-vertex-connected ifits vertex connectivity is k or greater. A
complete graph with n vertices has no cuts at all, but by convention its connectivity ofa complete
graphisn-1. A vertex cut for two vertices u and v is a set of vertices whose removal from the
graph disconnects uand v. The local connectivity éu,v) s the size of a smallest vertex cut separating

uand v. Local connectivity is symmetric for undirected graphs; that s, &(u,v)=&(v,u). Moreover, |

&(G) equals the minimum of &(u,v) over all pairs of vertices u,v. 2-connectivity is also called
“biconnectivity” and 3-connectivity is also called “triconnectivity”. '
In analogous manner, the concepts of cut can be defined for edges also. Asimple caseis when by
cutting a single, specific edge leaves the graph disconnected. Such an edge is called abridge.
‘More generally, the edge cut of G is a group of edges whose total removal renders the graph
disconnected. The edge-connectivity &(G) is the size of a smallest edge cut, and the local edge-
connectivity &(u,v) of two vertices w,v is the size of a smallest edge cut disconnecting u from v.
Again, local edge-connectivity is symmetric. A graph is called k-edge-connected if its edge
connectivity isk or greater. '

To determine the connected components in undirected and directeci graphs, the élgorithm for
connected components and strongly connected components are described below,

234

'9.3.1 Algorithm to find Connected Components A

This section describes algorithm to find connected components in undirected graph. The same ™
can be used to find weakly connected components in directed graph. As such these compon

~ can also be obtained in linear time of edges using DFS or BFS also if only one component is
available in the graph, However, for more than one component, DFS or BFS have to be repeated
again with updation of a variable for component count. Here, we describe an algorithm that uses
the concept of fusion of vertices and at last only as many vertices remain as the number of
connected components, o

Two connected vertices are said to have been fused if

o anew vertex has been created in place of both -
all edges connecting to both of them are connected tonew vertexand

self-loops and multiple edges between any pair of vertices if any are removed.

(a) a Graph (b) after fusion of B& C (c) after self-loop remoiral_
Figure 9.7(a)-(¢): Fusion of vertices. 8

Figure 9.7 (a) shows a graph in which vertices B & C are to be fused. Vestices B & C are fused
and anew vertex BC is created by connecting all edges B & Cto BC in Figure 9.7(b). In this
process, edge (B, C) also results a self-loop as shown in Figure 9.14(b), the self-loop has been
removed in Figure 9.7(c). .

Now, fusion based algorithm becomes very simple as it runs in linear time of edges.
1. Algorithm ConnectedComponents(Graph G) |
— nifializations -
Subgraphg? G
ComponentCount ? 0;
" Repeat _
ComponentCount ? ComponentCoun‘t' +1;
Selectavertexiing
Repeat -
Fuse all adjacent vertices in and rename fused vertex as i

0 R NNt R W N

Until no more adjacent vertex toi left

235

10. . delete i__fertex i(with all fused vertices)from g

11. call remaining subgraphas g

12. Until no more vertices left

13. Print ComponentCount as number of components

Algorithm :Algorithni for Connected Components

The algo%lthm runs in linear time in number of edges as line 7-9 tests all edges belonging to one.
component and removes the edges. Outer loop repeats for every component, Hence, one
edge is tested only once for connected components.

AEFG
B
C
ABCDEFG
b ®
() Initial Graph (b) after one iteration line 7-9 {(c)at the end

Figure 9.8(a) - (¢): Example of connected component

Figure 9, 8(a) shows a graph for which connected components are to be found. Stamng from
- vertex A, line 7-9 fuses all adjacent vertices as shown in Figure 9.8(b). At last only one vertex
remains in Figure 9.8(c), which indicate only one component,

932 Algorithm to find Strongly Connected Components

Strongly Connected Components (SCC) can be obtained in directed graph. In each component, -
there exists a path between every pair of vertices. A number of algorithms to find SCC are
available. Most important ones are given by Kosaraju, Gabow and Tarjan. Tarjan Algorithm
(named for its discoverer, Robert Tarjan) is very popular algorithm for finding the strongly
connected components of a graph. It can be seen as an improved version 0f Kosaraju algorithm,
and is comparable in efficiency to Gabow algorithm. Here, we describe Tatjan Algorithm.,

Assuch SCC forms a kind of cycle in directed graph such that every pair of vettices has a path

. 236

-

-

"~ from each other. The algorithm uses DFS from a start node. The SCCs form the subtrees of the
DFS tree, the roots of which are the roots of the SCCs: Theﬁrst point belongmg to SCCinDFS
tree is defined as root of SCC.,

The nodes are placed on a stack in the order in wluch they are visited. When the search returns

- from a subtree, the nodes are taken from the stack and it is determined whether each node is the
root of a strongly connected component. If a node is the root of a strongly connected component,
then it and all of the nodes taken off before it form that strongly connected component, '

The crux of the algorithm comes in determining whether a node is the root of a SCC. To do this,
each node is given a DFS index v.index, which numbers the nodes consecutively in the order in
which they are discovered. In addition, each node is assigned a value v.lowlink that satisfies
vlowlink ? min {v’.index: v is reachable from v}, Therefore v is the root of a SCC if and only if
vlowlink =v.index. The value vlowlink is computed during the depth first search such that it is
always known when needed.

Algorithm _ i
1. Input: Graph G (V. E)

2, index 70 — DFS node number counter
3. S ? empty — An empty stack of nodes
4. forallvinVdo |
5. if (v.index is undefined) — Start a DFS at each node
6, tarjan(v) — we haven’t visited yet
procedure tarjan(v) -
- 8, v.index ? index — Set the depth index for v

9. vlowlink?index
10.. = index?index+1 . .
11. ° S.push(v) —Pushvon thestack

12. forall(v,v’)inEdo — Consider sué_cesso_ré ofv
13. if(v’.index isundefined) — Was successor v’ visited?
14, - tajan(v’) . = Recurse

'15. vlowhnk‘?mm(v lowlink, v’ lowlink)
16. elseif (v’isin8) — Was successor v’ in stack S?

17. vlowlink ? min(v.lowlink, v’.index)
18. if(vlowlink==v.index) —Isvtherootofan SCC?
19. print“SCC;”
20. repeat
21, v'=S.,pop ..
22. printy’ =

23. uwntdl (¥’ ==v)
237

Algorithm ; Algonthm for Stmngly Connected Components

Assuch the algorithm is based on DFS andself xplanatofjr Hence, there is no need to shoW
step by step processing in example However, Figure 9.9 shows a directed graph and its three
SCCs. -

A

0 . 1 : _
2 3 - 1{ : o
: : _ 2 3 -
4 s _

Figure 9.9: Directed graph and its Strongly Connected Components -

Complexity
1. Complexity: The Tarjan procedure is called once for each node; the forall statement

considers each edge at most twice. The algorithm running time is thercforc linearin the aumber

‘ofedgesinGieO(|V|+]|E}). .

2. The test for whether v’ is on the stack should be done in constant time, for example, by

testinga ﬂag stored on each node that indicates whether it is on the stack.

9.4 .- Planarity Testing E 7

" Ingraph theory, the planarity testing problem asks whether, given a graph, that graphisa planar.

graph (can be drawn in the plane without edge intersections). This is a well-studied problem in
computer science for which many practical algorithms have emerged, many taking advantage of
novel data structures, Most of these methods operate in O(n) time (linear time), where n is the
number of edges {or vertices) in the graph, which is asymptotically optimal..

Simple algorithms and planarity characterizations _ L e

By Fary's theorem we can assume the edges in the graph drawing, if any, are straight line seg-
ments. Given such a drawing for the graph, we can verify that there are no crossings using well-

known line segment intersection algorithms that operate in O(n log n) time, However, thisisnot

a partlcularly good solution, for several reasons:

* There's no obvious way to find a drawing, a problem which is considerably more difficult
than planarity testing;

* Line segment mtersectlon algorithms are more expenswe than good plananty testing algo~
rithms;

* It does not extend to verifying nonplanarity, since there is no obvious Way of enumerating all
possible drawings. '

238

" For these reasons, planarity testing algbrithms take advante;ge of theorems in graph theory that

characterize the set of planar graphs in terms that are independent of graph drawings. One of
these is Kuratowski's theorem, which states that: '

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K5

(the complete graph on five vertices) or K3,3 (complete bipartite graph on six vertices, three of
which connect to each of the other three).
A graph can be demonstrated to be nonplanar by exhibiting a subgraph matching the above
description, and this can be easily verified, which places the problem in co-NP. However, this
also doesn't by itself produce a good algorithm, since there are a large number of subgraphs to
consider (5 and K3,3 are fixed in size, but a graph can contain 2?(m) subdivisions of them).

A simple theoren allows graphs with too many edges to be qﬁickly determined to be nonplanar,
but cannot be used to establish planarity. If v is the number of vertices (at least 3) and ¢ is the
-number of edges, then the following imply nonplanarity:

e>3v-6or;
There are no cycles of length 3 and e > 2v -4,

For this reason n can be taken to be either the number of vertices or edges when using big QO

notation with planar graphs, since they differ by at most a constant multiple.
For further study you can refere books refered at the end of the unit.
Self learning exercises ' |
~ 1.Following edges form an undirected graph:
(2, b), (3, 8), (b, ©), (¢, d), (d, ©), (¢, €), (g, ©), (& 1), (&, 1), (<,), (£,), (,j), (b,)
BFS algorithm starting from a will result in sequence of vertices
@ ab,c,d,efjigh ®) a,b,c,f, j,h,gi,de
- © a,b,cedgijhf (d a,b, g c,i,hdef j
2. If DFS algorithm is applied for above graph and an adjacency matrix is used for graph
. representation. The traversal starts from vertex a in algorithm, Stack contains a, b, c. Vertex
has just come out of the stack. What will be the complexity of algorithm and which vertex might
have come out of stack prior to e? |
@ o(vi2), d | () O(IVI+IEI),J
(© O(V],h | (d) O(ED,i

3. Smgle—d&stmatlon ;hortest path problem can be converted into single-source shortest path
problem by :

-

(@ -"adding some more edges - (b) reversing direction of edges
(c) témoving directionof edges (d) none of the above

4. - . Dijkstra Algorithm updates the weights associated with edges after extracting
(@) amaximumwcié;ht veriex from queuve

o an arbitrary vertex from queue

(©) . aminimum weight vertex from priority queue

(@) n;,c‘)_ne of the above

239

1
A

5.. Which statement is true for a Mlmmum Spannmg Tme (MST) ofa graph?

(@ - There cannot be more than one MIST.
(b) There can be more tha_;l one MSTs with different weights.
(c) Thete can be more than one MST with same weight.
(d) None of the above. -
6. - AsKruskal Algorithm progresses, it | ?
() keep selecting edges with minimum _wiaight not forming a cycle.
®) - maintains aminimum weight tree right from beginning,
© - keepremoving maximum weight edgés fromgraph, .
@ none of the above -
7. For a planar graph, planarity is likely to be affected when -
(a) ~ anedge is splitted into two by adding a vertex.
b) some edges are added to make it a complete graph of more than 5 vertices.
© all vertices of degree two are merged into adjacent vertices sequentially.
(d) none of the above. | |
8. A graph having n vertices ande edges can be planar onlj«' if
@ e>3n+6 (b)n=3e (¢) e =3n—-6(d)e= 3n+6
9, Edge listing of a directed graphis gwen below:

L

@b (9, D, (@D, (¢, ¢), (e, 9)
Vertex set of strongly connected component of this graph will be

@ . {a,b,c} (b) {a,c,e} (c) {b,a,c} - () {c,d,e}
10. Aweakly connected oomponentcanbe obtained by ' :
@ removing direction of' edgesand obtaunng connected component
(b) reversing the direction of edges and obtaining strongly connected component
() _ finding any spanning tree
(d) none of the above

9.5 SUMMARY

This unit deals with standard algorithms useful in various applications. Section wise summary is
as follows:

- Two searchal gorltlnns are described in previous module , namely Breadth First Search (BFS)
and Depth First Search (DFS). Both the algorithms visit every node of the graph traversing
through edges but in different way. BFS traverses all adjacent vertices of current vertices starting
from root and maintains a queue for this purpose, DFS traverses only one adjacent vertex till no
more vertices can be traversed and maintains stack for this purpose.

- Shortest Path algorithms are found in three variants namely, single-source shortest path problem,
single-destination shortest path problem and all-pairs shortest path problem. Single-source and
single-destination problems can be converted to each other just by reversing the edge direction.

240

_Dijkstra Algorithm solves smgle-soume problem if welghts of edges donot fonn negative cycle. -
Beliman-Ford algorithm detects negative cycle ifit exists and solves if does not exist. Floyd-
Warshall algonthm solves all-pairs shortest path problem in which shortest route can be found
between every pair of vertices.

- Planar graph is one which can be embedded in a plane. In other words the edges of the graph

do not intersect each other. Two interesting graphs known as Kuratowski’s two graphs are

smallest non-planar graphs, one With minimum number of vertices and other with smallest number
of edges. A,number of plananty criteria and algorithm to detect planarity have been discussed.

Spalmmg tree ofa graph is a tree containing all vertices and a subset of edges of the graph. A

spanning iree having minimum sum of weights of edges in a weighted graph is called Minimum

S Tree (MST). Prim and Kruskal algorithms with greedy approach obtains MST. The

trees ohtained by these algorithms may not be the same, but sum of wexghts of edges of the tree
will bethe same.

- Connectedness of a graph can find whether there are disconnected vertices exist in the graph or
not. If yes then connected components can be found. In.a directed graph, there can be two types
of connectivity namely, weak and strong. Accordingly, weakly connected components can bg
obtained by removuig direction of edges whereas strongly cormected components can be obtained
by retaining direction also. Algorithms to find components in undirected graph (can also obtain

- weakly connected components) and strongly connected components are also described in section

9.6 Glossary

Planar Graph :A planar graph is one that can be drawn on a plane in such 2 way that there are

no "edge crossings," i.e. edges intersect only at their common vertices.

connected graph:A connected graph is a graph such that there exists a path between all pairs of -

vertices. If the graph is a directed graph, and there exists a path from each vertex to every other
- vertex, then it is a strongly connected graph.

Articulation Point : Articulation points in a network are those which are critical to communication:

for an articulation point, all paths between certain nodes have to pass through this point. Averlex
ina connected undirected graph is an articulation point if removing it and all edges incident to it
results in a non-connected graph; in other words, removing a vertex leads a separation ofits
subtree from the other part of a graph. A connected graph is biconnected if it has no articulation
poinis. A biconnected component of an undirected graph G=(V, E) isa maximal subset B of the
edges with the property that the graph GB = (VB, B) is biconnected, where VB is the subset of
vertices incident to edges in B, There is a very close relationship between biconnected components
and articulation points. The articulation points are exactly the vertices at which two biconnected
components are connected. Thus, the articulation point separates the biconnected components
of a graph. The idea of articulation points and biconnected components plays an important role
in any network graph in terms of its connectivity.

Planarity Testing :Problem to decide whether a given graph is embeddable in the plane, and if
50, to get its embedding, otherwise to provide a proof of its non-planarity.

241

9.7 Further Readings

1. Graph theoty with applications to Engineering and computer
science by Narsingh Deo.

2. Discrete Mathematics by Rosen.

3. Graph theory by John Clark and Derek Allan Holton

4. Reference Book Allan Tucker for Combinatorics

9.8 Answers to self learning exercises

Id) 2@ 30) 4 50 6@ 7b) 30 9b)

10(a) _

9.9 Unit End Questions

1. Find whether the graph given below is planar?

A

3.Find BFS tree using root as B and DFS tree using root at X in grapin glven in Q No 2 and

compare their costs. j

242

4.Makethe graph in Q. No. 2 as directed byassﬁgfung Elireptibn asper the edge list given below:
(A’ C)s (B’ A): (}(s A): (D) X}s (Ds Y)a .(X’ .Y)’ (E’ D): (B._. E)s (Pa B)’ (C? B)

Where (A, C) means direction is fromAto C. - ' g

Find Strongly Connected Components in it.

5.In directed graph formied in Q. No. 4, change_ the weight of DB to -15. Perform Bellman-Ford
algorithm for source C and show the weights of A, D,E and prove that it contains negative
cycles. ' _

-

%kk

s

UNIT X T
Graph Theory Applications
Structure of the Unit I
10.0 Objective ; -
10.1 Introduction _
10.2 Topological Sort
10.3 Network Flow Problems
104 Travelling Salesman
10.5 Assignment Problems
10.6 Summary
10.7 Glossary
10.8 Further Readings
109 Answersto selfleaming exercises
10.10 Unit~end Questions

10.0 Objectives . |
- - Thisunitdescribes applications in which graph theory fundamentals are useful, After
reading this unit you will be able to understand
Topological sort related problems
Network Flow problem
Travelling Salesman]J}Q‘E)lem
Assignment problem

For the above problems, problem description, mapping to graph and solution using graph
theory fundamentals have been provided.

[

3

10.1 Introduction

Because of inherent simplicity in graph theory algorithms, it has found a wide range of applica-
tions in engineering, physical, social sciences and in numerous other aress, A graph can represent
almost any physical situation involving distinct objects and relationship between them.

" Any problem to be solved using graph theory requires minimum three steps

- A.Description of problem and identification of objects and relationship between them,
B.Drawing graph using the objects and theirrelationship. Sometimes a mapping with some easy
graph or isomorphic graph may also be required.

- Cldentifying right algorithm and representing the result in desired form.

~ Asanexample, a cable network company wishes to lay down underground cable for connecting

its stations setup in different cities. In step-A, complete city station list with their connectin

distagc_es amongst every pair of city has to be identified. A weighted graph has to be drawn in

244

e— o

Step-B. Finali;; a suitabie algorithm to find the solution has to be found in Step-C. In this case

minimum cost spamning tree algorithm will be suitable. Sometimes algorithm may not be suitable

directly might need some modification or improvement. _

This unit describes topological algorithm and problems that can be solved using topological sort
insection 10.2. Section 10.3 explains network flow problem and algorithms used for solving
" them. Travelling salesman problems are important but difficult problems can be modelled using
graph theory described in section 10.4. Finally interesting Assignment problem is discussed in
section10.5. - '

10.2 TOPOLOGICAL SORT

Sorting is very common in numbers for various purposes, However, sorting is also important in
graphs especially in applications where scheduling activities are required, Critical Path Method
(CPM) and Project Evaluation and Review Techniques (PERT) are some important applications
need scheduling and hence topological sort is necessary, This section describes topological sort-

ing method followed by two applications namely, Cloth-wearing by absent minded professor

and curriculum planning problem.
1102.1. Topological Sort Definitions - |

As mentioned earlier that Topological sort is very important for scheduling of dependent activi-
ties. These dependent activities can be desctibed as a directed acyclic graph (DAG). These
activities are represented as a node for mapping with a graph and their dependency as their
directed edge. Ifa DAG for such activities is possible, atopological sort can be used to schedule
these dctivities. As such life is fll of scheduling activities. In a curriculum development, the courses

can be scheduled in any year of study should have completed its prerequisite courses in its earlier

years. For any construction activity, arrival of raw material, availability of construction equip-
ment, labour and storage with safety activities have to be scheduled very carefully.

As described earlier, DAG is a directed graph which does not contain any cycle. Ascheduling
provides linear order to these vertices such that these activities are executed in that order. The
linear order can be defined as a number associated with a vertex (representing an activity). The
pumber with vertex is a sequence in which the activity should be executed. Atopological sort
takes a directed acyclic graph inits input and assigns a numerical value to each vertex according
toits scheduling order. . '
A topological sort of a directed acyclic graph (DAG) Gis an ordering of the vertices of G such
that for every edge (v, v)) of G we have i <j. That is, atopological sort is a linear ordering of all
its vertices such that if DAG G contains an edge (v, v), then v, appears before v, in the ordering.
. Inother words, the vertices of a graph can be said in topological order if they are labelled 1, 2,
3,, n such that every edge in G leads from smaller numbered vertex to a larger one. The
process of relabeling is called topological sorting. "
Figure 10.1(a) shows an example in which a DAG consists of seven vertices numbered v, to
v,. One scheduling order obtained after topological sorting is shown in Figure 10.1(b).

() ADAG
245

— s i

EEEE L T T Sy
C_{) QQ\“»C“"EZ) (2> <)V"»gﬁ) T
. : \"““--... - i ’!‘
S T |
" (b) Topolegically ordered DAG

Figure 10.1: (a) ADAG (b) Topological order: Yy Vi Ve Ve Vo Vo V..

~ Similarly, Figure 10.2 shows ﬁmt there can be more than one topological ord?q possibleina
DAG There are six topological orders shown for the DAG shown in the Figure10.2.

8.07,5,3, 11,8, 2,9, 10 (visual left-to-right)

' 8.13,5,7, 8,11, 2,9, 10 (smallest-numbered alvailabl
vertex ﬂ;st) :

823,7,8,5,11,10,2,9

8.35,7,3,8,11, 10, 9, 2 (least number of edges first)

8.47,5,11,3,10, 8,9, 2 (largest-numbered available

vertex first) :

8.57,5,11,2,3,8,9, 10 (visual top-to-bottom) _

(@) ADAG : (b) Various Topologically orders
Figure 10.2: (a) ADAG (b) Topological order; Vys Vs Vs Vs Vs Vs V.
It is important o note that

‘Ifthe graph is not acyclic, then no linear ordering is possible, That is, we must not have circulari-
ties in the directed graph. For example, in order to geta job you need to have work experience,
 but in order to get work experience you need to have a job.

"There can be more than one topologjcal order possible for one DAG However, if DAG con-
tains a Hamiltonian Path then only one topologically sorted sequence available for that DAG,
Actually a Hamiltonian Path is defined in undirected graph. But the same definition can be ex.
tended to DAG also. -

The above points can be proved in the following Theorems.

- Theorem 10.1: A directed graph has a topological ordering if and only if it is acyclic.
Proof: The proof can be shown in two parts.

- Part 1- ADAG G has a topological ordering if is G acyclic.
The above can be proved by Contradiction. Lo
1.Suppose Ghasa tdpological order and G also has a cycle.

| 2.As there exists topological ordering in G, there must exist i <ip<...<i

3.As Galso contain a cycle, there must exist iy, <i,, <.i..< i<, for some i where cycle is
formed ati. Thisis clearly impossible.

Therefore, G must be acyclic.

Part2- ADAG G is acyclic if has a topological ordering.

"~ LLét Gbe acyclic.
" 246

2.8ince is G acyclic, it must have a vertex with no incoming edges. Let v, be such a vertex. If we. .
remove v, from graph, together with its outgoing edges, the resulting dngraph is still acycllc
Hence result;mg digraph also has a vertex.

Theorem 10.2: A DAG has only one topological ordering if it has Hamiltonian Path,

Proof: Suppose a DAG G has a Hamiltonian Path, The path starts from one vertex of the
graph and covers rest of the vertices through connecting edges such that each vertex is tra-
versed exactly once.

The above theorem can also be profod by Contradiction.
1.Suppose G has more than one topological order. '

2.0ne order can be obtained by traversmg Hamiltonian Path and topological ordermg inGis
defined by numbering i), <i ,<...<i_

3 Now, another path can be obtained by removing one edge and adding another edge only. This

is possible only if there exists a cycle in DAG as all vertices are already covered in Hamiltonian
Path '

4 Hence, G cannot have another topological order.

10.2.1. Topological Sort Algorithms

The usual algorithms for topological sorting have running time linear in the number of nodos plus

_ the number of edges (O(VIHE]).

One of these algorithms was first described by Kahn in 1962. The algorithm works by choosmg
. vertices in the same order as the eventual topological sort will be. First, find a list of “start nodes™
which have no incoming edges and insert them into a set S; at least one such node must exist if
graph isacyclic. This process continues till end.

L ? Empty list that will contain the sorted elements
S ? Set of all nodes with no incoming edges

while S is non-empty do

remove a node n from S

insert ninto L :
for each node m with an edge € from n to m do
remove edge e from the gro.ph

if m has no other incoming edges then

el AT B A ol

insertminto S

—h
e

if graph has edges then _
output error message (graph has at least one cycle)

j—
b=

else
13. output message (proposed topologically sorted order: L)
Algorithm 10.1: Algorithm to find Topological Sort.

Ifthe graph was a DAG, a solution is contained in the list L (the solut:lon is not unique). Other-
wise, the graph has at least one cycle and therefore a topological sorting is impossible.

247

wevr ¢ OUTPUT

Figure 10.3: Input and OQutput graph for a topological sort.

It may be npticed that, reflecting the noﬂ-wliqucness of the resulting sort, the structure S can be
simply a set or a queueor a stack. Depending on the order that nodes n are removed from set S,
a different solution is created. '
10.2.3Topological Sort Applications _ : g

In this subsection, we desdribe two applications of topological sort namely, cloth-bearing by
absent-minded professo; and finding curriculum planning,

10.2.3.1Cloth-Bearihg By Absent Minded-Professor

An absent-minded Professot has a problem when getting ready to go to work in the morning. He
-sometimes forgets to follow order when he is getting ready to work in the morning and dresses
out of order. For example, he might put his shoes on before putting the socks on. Later he
- realizes takes the shoes off and then put the socks on and then the shoes back on. This cari be
described and solved following the steps for topological sort. _ —
STEP-A: An absent-minded professor has to be given a proper and defined order of bearing
cloths he does not waste time in backtracking because of out of order bearing cloths. He has to
bear shirt, tie, belt, shorts, pants, shoes, shocks, watch and jacket that have tobeputonina
certain order. : o _

STEP-B: Activities of bearing individual cloth can be mapped to a node of the graph, Depen-
dency of the activities can be expressed through directed edges of the graph, The graph
essentially forms a DAG as no activity has to be done repeatedly as there will be no back-
tracking if proper order is followed. ' '

Figure 10.4: Cloth-bearing dependency graph :

The order between different parts of clothing forms a graph: shotts before pants means there is
an edge between shorts and pants. (We generally call a graph like this a dependency graph,
because it describes dependencies between pairs of tasks.) .
STEP-C: This problem can be solved usirig Topological sort for which the alg_oxithni has been
described above. As aresultanumber is assigned to each vertex in dependency graph; following
canbe one of topological order: S ' ' '
Shorts(1/9), pants(2/9), belt(6/9), jacket(8/9), shoes (4/9), socks (3/9), tie(7/9), watch(9/9),
shirt(5/9). _

-

248

10.2.3.1Curriculum Planmng Problem

In cutriculum planning for a professional course like MCA, there canbe prercqmsue COUrses
and corequisite courses for any specific course. Prerequisite courses are the courses must
have been read by students prior to studying that specific course while corequiste courses -
must be taken concurrently. A problem of course development is defined as follows in Step-A:

-
e

Table 10.1 Curriculum Development Plan

S.No | Course Name Course Code | Prerequisites | Corequisites
1|C " Col ;
2| G+t C02 C01 '
3 | Java €03 C02
4 | Data Structure C04
5 | Algorithms €035 | C04
6 | Advanced Algorithms C06 1 CO5
7 | DBMS Co7 C04, C13
8 | Operating Systems C08 €09,C07
9 | System Software Co9 C04,C11 Co7
10 | Artificial Intelligence C10 Co5 "

11 | Microprocessor ' Cll1 Col
12 | Embedded Systems Ci2 Cl1
13 | File Structure [C13 Co4

. Table 10.1 Curriculum Development Plan
In Step-B, the problem can be mapped to a graph. There will be vertex for every course planned.
There will be an edge from prerequisite course to current course. Corequxsnte courses can be
merged into one vertex for scheduling purpose

‘Figure 10.5: Dependency graph for curriculum planning

In Step-C, aright algorithm needs to be found, By nature of the problem, it is clear that there will
be no cycle in the DAG. Topological sort algorithm can be used to find topological order with
‘one modification. Instead of selecting one zero degree vertex at a time, all zero degree vertices
will be selected simultaneously and assigned same number as semester number i in which the
course is to be scheduled.

249 _ ' ;

| M@diﬁed algorithm will Iook like as follows:

I. L ? Empty list that will contain the sorted elements ;
2. 817 Setofall nodes withno incoming edges '
3. S2 ? To store intermediate nodes with no incoming edges |

4, N ?1; semester number assigned to all vertices in S1

5. while S1 is non-empty do ‘ '

6. Assign Nto all nodes in Si

7. for eachnodenin S1do-

8. for each node m in G with an edge e from n to m do

9. remove edge e from the graph
10. ifmhasno other incoming edges then

11 7 insertminto S2

12. enddo _

13. remove node n from S1

14, insertnintod -

15. end do

16. N ? N+l

17. - Moveallnodesin $2to S1

18. enddo "

19. ifgraphhasedgesthen
20. output error message (graph has at least one cycle)
21, else |
-22. output message (proposed topologically sorted order: L)
Algorithm 10.2: Algorithm to find Curriculum Plan using Topologlcal Sort,
Aocordmgly, earliest scheduling of the courses can be given

SNo. |Course Nlnnbers B 1 Schedule Number
| CH, O, 11 . [
o 2| CIL, (00,05, CI3. 1 b
’ ' (3| C12,003,Ca, Clo, Cﬂ9 (0 3
- 4 C08 4

- Table 10 2: One Solution of Currlculum DevelopmentPlan :
10.3 Network Flow Problems . =

b o

Network flow is one- 1mportant use of graphs and fundamentals of graph theory canbe used to
solve these pmblems. Water and gas d:stnbutlon through plpe and, electricity distribution through

250

wire are some notable example of Network flow. Following scenario explams the flow problem
and it ismodelling as graph problem.

An exporter needs to ship several boxes of some product to 2 major 01ty inIndia. There are
various routes that the shipment could take. The possible routes are laid out in the directed
graph below.

capacity

BOUTCE v

si r}'k / 0&(@'{;&& Eughe :

- Figure 10.6: Network Flow Graph Example

The graph in Figure 10.6 is called a network, and itmust hold certain properties. The vertex s,
referred to as the “source” of the network, represents the city in which export company is located.
Notice that the inflow of the source must always be 0 Le. there is no incoming edge connected
to this vertex. This could be placed where the product manufacturing or storage takes place.
Similarly, the vertex t, referred to as the “sink” of the network, represents the city to which the
product is being shipped. Notice that the outflow of the sink must always be 0. The other
vertices (a, b, ¢, d) represent several “middlemen.” The number assigned to each edge, called
“the capacity of the edge, represents the maximum rate at which the product can be shipped over
that particular edge (the capacity must be a non-negative number). Exporter naturally wishes to
send the boxes of the product at the highest possible rate through the graph, but without exceeding
the capacity of each edge.

Now, in order to show the rate at which the product is sent, each edge must also be labelled with
anon-negative number called the flow. A flow must also hold certain properties. The flowonan
edge must not exceed the capacity of the edge. This is referred to as the “capacity constraint”.
The total flow into any vertex must equal the total flow out of the vertex. This is referred to as
“flow conservation,” And due to flow conservation, it follows that the total flow out of the
source must equal the total flow into the sink. This can be observed by looking closely at the
network below that these properties hold true (the flow is shown inside of parentheses.)

LT W 5 L PR . .
Hay ¥l wwr = O

—_ . L RS 5 POV o T
1Tl wir o= X - - ’ IxeTierws == «% —+— 2 = €5

Figure 10.7: Maximum Flow. frpm Source s to Sink t

The problem hasto be Iepresented in terms of Mathematical notations. Notations and assump-
- tions used in algorithms are explained below. . :

251 °

Suppose GV, B) is a finite directed graph in which every edge {2, ¥) € Fhas anon-
negative, real-valued capacity e(u, v) 1f(u, v) € E, weassume that o u, v) = {] We
distinguish two vertlces asource g and a sink 4. A flow network is areal function

F:V XV — IR withthe following three properties for all nodes g and g:

Capacity f(u,v) < {1, 0}, The flow along an edge can not exceed its
constraints: capacity.

flu,0) = —f (U;U), The net flow from uto Umust be the
opposite of the net flow from ¥to t(see example).

'Zf(u,w)mﬂ ,_
, unless U = 8§ or % == £. The net flow to a

node is zero, except for the source, which "produces” flow, and the
sink, which "consumes” flow.

Skew symmetry:

Flow conservation:

Notice that f (ﬂ'a) is the net flow from U to . If the graph represents a physical
network, and if there is a real capacity of, for example, 4 units from 2 to ¥, and a real

flow of 3 units from ¥ to t, we have f(u v) = and (U: u) S

The residual capacity of an edge is &f {u,v) = clu,v) — flu, ”) This deﬁnes a

residual network denoted Gf v, Ef) giving the amount of available capacity. See
that there can be an edge from % to ¥ in the residual network, even though there is no -
edge from 1L to ¥ in the original network. Since flows in opposite directions cancel out,
decreasing the flow from ¥ to U is the same as increasing the flow from U to V. An

_augmenting path is a path {21, U2y - - -3 Uk) in the residual network, where %1 = 3,

Uk =t and Cf (s Uia) > 0 A network is at maximum flow if and only if there is
no augmenting path n}ﬁpe residual network.

- Figure 10.8: Example of Flow and capacity from Source s to Sink t.

InFigure 10.8, sto b capacity is 2, flowis 2 and noresidual capacity is left in residual graph. An
augmenting path (s, a, ¢, t) exists in residual graph in which 1 unit of flow is possible.

The network flow problem is normaily defined as maximum flow problem i.e. to find a maximum
feasible flow through a single-source, single-sink flow network. In order to find the maximum

252

flow through the graph, there are many algorithm/ methods available. Min-Cut Max-Flow Theo- :
rem provides a useful proof for maximum flow. In iterative algorithms/ methods, the flow on each

edge must be initialized to 0 and recursively attempt to improve on each flow until no longer
improvement is not possible '

10.3.1 Min-Cut Max-Flow theorem

Max-flow min-cut theorem states that in a flow network, the maxinmum amount of flow passing
from the source to the sink is equal to the minimum capacity of the edges that needs to be
removed from the network so that no flow can pass from the source to the sink. The set of edges
removed is known as cut as defined earlier and the sum of capacities of the edges is known as

capacity of cut. R

Figuare 10.9: Flow Network and a cut between source & sink of capacify 62,

. 9
6 a 15 15 0

10

Figure 10.10: Flow Network and a cut between source & sink of capacity 28,
Figure 10.9 shows a cut between source and sink of capacity 62 and Figure 10.10 shows
another cut between source and sink of capacity 28 (which is minimum) of the same network.
Theorem 10.3: Min-Cut Max-Flow theorem

Maximum flow from source to sink in a flow network cannot exceed the minimum capacity of
any cut of edges between source and sink.

Proof: 1.Jf fis now flow in a network G=(V, E) with source sand sink t then the equivalence of
the following conditions hasto be proved: '

(@) fis maximum flowin G
(b) The residual network G, contains no augmenting path
© fl=c(S, T) for some cut (8, T)in G

This can be proved as per the following logic:

1.Condition (@) and (b) are obvious as if there exists some augmenting path, some more flow can

be sent along that path and hence, f cannot be maximum.
' 253

o

2Astherelsnoaug;mentmgpathfromstotm(} Sisasetof vertices in G, suchthatthereexlsts
_anaugmentmgpamfromstoallvermesms TlsdeﬁnedT V-S. Partltlon(S T)isacut(s,
t)suchthats =« Sandt « T.

Figure 10.11 shows cut (S, T) with capacity 15
3. Residual capacities of the of the edges can be defined as

f('u,u) fvr—oue K
otherwise

| . olu, v) — flu, o) fu—ve
eflu, v) =

Asthereisno augmemmg path from source s to target tinresidual graph, for every vertexu g S
and v & T

61(1,9) = ofu,) = f(u,0) +F(0,0) = o

Asthere is no flow allowed,

r(,9) = c{u,v) — f(u,v) = 0
and - |
fluy,u) =0

This means that flow satufates every edge from Sto T, which is equal to the capacity of cut.

4.If any other partition/cut is taken then there will be possibility of additional flow between two
partitions, the same flow cannot be passed till sink, Hence, flow cannot be more than the capac-
ity of cut. . _

Hence proved

Figure 10.11: Partition(S, T) and Cut (s, t) divides source & sink of capacity 15.

- 10.3.2 Algorithms
There aremany algonthms available to solve thxs pmblem Alist of connnonly used algorithms

254

with brief description is given below:

Method

Complexity

Description

Linear programming

Constraints given by the definition of a
legal flow, :

Ford-Fulkerson
algorithm v

As long as there is an open path through
Ig:e residual graph, send the minimum of]
¢ residual capacities on the path.

The algorithm works only if all weights are

(K E-meazflow)

integers, Otherwise it is possible that the
Ford-Fuikerson algorithm will not
converge to the maximum value,

Edmonds-Karp
algorithm

O(VE®)

A specialization of Ford-Fulkerson,
finding augmenting paths with breadth-
first search.

Dinitz blocking flow
algorithm

O(V’E)

In cach phase the algorithms builds layered

graph with breadth-first search on . the)
residual graph. The maximum flow in a
layered graph can be calculated in O(VE)

“|time, and the maximum number of the

hasesis 2 ? 1.

General push-relabel
- maximum flow
algorithm

XV°E)

e push. relabel algorithm maintains

reflow, i.e. a flow function with the
possibility of excess in the vertices. Th
algorithms runs while there is vertex with
positive excess, i.e. active vertex in th
eraph. The push operation increases th
flow on a residual edpge, and a heigh
function on ihe vertices controls whic
residual edges can be pushed. The heigh

- [function is changed with relabel operation.

The proper definitions of these operations
guarantee that the resulting flow function
is a maximum flow.

Push-relabel
algorithm with FIFO
vertex selection rule

o(v®)

Push-relabel algorithm variant which|
always selects the most formerly actived
vertex, and makes push operations until the

excess is positive or there are admissible
residual edges from this vertex,

T

—_—

~ Algorithm 10.3: Ford-Fulkerson Algorithm to find Maximum Flow.
Fulkerson-Ford and Edmond-Karp being important algorithms are described in this section.

10.3.2.1Fulkerson-Ford Algorithm

The Ford—Fulkerson algorithm (named for L. R. Ford, Jr. and D. R. Fulkerson) computes the
maximum flowin a flow network. It was published in 1956. The name “Ford—Fulkerson”is often
also used for the Edmonds—Karp algorithm, which is a specialization of Ford—Fulkerson,

The idea behind the algorithm is very simple: As long as there is a path from the source (start
node) to the sink (end node), with available capacity on all edges in theaugmenting path, we
send flow along one of these paths. Then we find another augmenting path, and so on.

To describe the algorithm, notations and conditions are refreshed hete. Given a graph G(V, E),
with capacity c(u, v) and flow f(u, v) =0 for the edge from uto v, We want to find the maximum
flow from the source s to the sink t. After every step in the algorithm the following is maintained:

. F(u,v) < c{a, v} The flow from u to v does not exceed the capacity.
. f (u, 1}) z= e f (‘U, ’u} Maintain the net flow between u and v. If in reality a units are
going from u to v, and b units from v to u, maintain f(w,v) = a -bandf(v,u) =b - a

: R PR — ;o _
. Z f (u’ L] =0 _ meUJ Fout (u’for all nodes u, except s and t. The
- _
amount of flow into a node equals the flow out of the node.

This means that the flow through the network is a legal flow after each round in the algorithm,
Residual network G (V,E,) will be the network with capacity c{u,v)=c(u,v)“ flu,v) and no
flow. Notice that it can happen that a flow from v to u is allowed in the residual network, though
disallowed in the original network: if f{lu,v)> 0 and c(v,u)=0 then c{vu)>0,

Algorithm Ford—Fulkerson

Inputs Graph (7 with flow capacity ¢, a source node g, and a sink node :
Output A flow ffrom to whichisamaximum

1. forall edges
2. Whilethereisa path- from to in, such that for all edges :
AYFd
(B) For each edge _
a) (Send ﬂc:;w along the path)
b) (The flow might be “returned” later)
Algorithm 10.3? Ford-Fulkerson Algorithm to find Maximum Flow.

When no more paths in step 2 can be found, s will not be able to reach t in the residual network.
If S is the set of nodes reachable by s in the residual network, then the total capacity in the
original network of edges from S to the remainder of V is on the one hand equal to the total flow
we found from s to t, and on the other hand serves as an upper bound for all such flows. This
provesthat the flow we foundis maximal. = .- "

By adding the flow augmenting path to the flow already established in the graph, the maxi-
mum flow will be reached when no more flow augmenting paths can be found in the graph.

256

S

However, there is no certainty that this situation will ever be reached, so the best that can be
' guaranteed is that the answer will be correct if the algorithm terminates. In the case that the
algorithm runs forever, the flow might not even converge towards the maximum flow. How-
ever, this situation only occurs with irrational flow values. When the capacities are integers,
 the runtime of Ford-Fulkerson is bounded by Q(E*f), where E is the number of edges in the
graph and fis the maximum flow in the graph. This is because each augmenting path can be
found in O(E) time and increases the flow by an integer amount which is at least 1.

Following example illustrate the complexity cbmputation using Ford-Fulkerson algorithm.

Path ~ - Capacity - Resulting flow netwerk

Initial flow network

m in(Cf(A ,B)rC.’(B l’c)l‘cf(C!D

N=
AB,C, | min(c(A,B)?
D f(A.B).c{B,C) ?

f(8.C).c(C.D)? f(C.D)) =
mln(1000 ? 0,1 ? 0,1000
20)=1

min(ce(A,C),ee(C,B),ci
(B,D)) =

: :ﬁin'(c (A.C)?
A,C,B,D f(A,C).c(C.,B) ?
f(C.B).c(B,D) ? {(B.D))

min{(1000? 0,07 (?
1),1000720)=1

257 .

After 1998 more steps ...

Final flow network

10.4: Example of Ford-Fulkerson algorithm for Maximum Flow Problem

It may be noticed that 1 unit flow is increasing after every step. There can be maximum E edges
to be travelled in each step.

10.3.2,2 Edmeond-Karp Algorithm

Edmonds—Karp algorithm is an implementation of the Ford-Fulkerson method for computing
the maximum flow in a flow network in O(VE?). It is asymptotically slower than the relabel-to-
front algorithm, which runs in O(V?), but it is often faster in practice for sparse graphs. The
algorithm was first published by a Russian scientist, Dinic, in 1970, and independently by Jack
Edmonds and Richard Karp in 1972 (discovered earlier). Dinic algorithm includes add:tlonal
techniques that reduce the running time to O(V?E).

The algorithm is identical to the Ford—Fulkerson algorithm, except that the search order when
finding the augmenting path is defined. The path found must be the shortest path which has
available capacity. This can be found by a breadth-first search, as we let edges have unit length,
The running time of O(VE?) is found by showing that each augmenting path can be found in O(E)
time, that every time at least one of the E edges becomes saturated, that the distance from the
saturated edge to the source along the augmenting path must be longer than last time it was
saturated, and that the distance is at most V long. Another property of this algorithm is that the
length of the shortest augmenting path increases monotonically.

Algorithm EdmondsKarp
input: |
C[1.1, 1..n] (Capacity matrix)
E[1..n, 1..n] (Neighbour lists)

s (Source)
t (Sink)
output:
f (Value of maximum flow)

F (A matrix giving a legal flow with the maximum value)
f:= 0 (Initial flow is zero)

258

F = array(1..n, 1..n)(Residual capacity from uto vis Cfu,v] - F{u,v])
forever ' o
m, P :=BreadthFirstSearch(C, E, s,) (m is flow allowed t and P predecessors list)
ifm=0 '
break
f==f+m
{(Backtrack search, and write flow)
vi=t
while v ?s
u =PJvl]
Flu,v} =F[u,v]+m
F[v,u] :=F[v,u]-m
vi=u
return (f,F)

Algorithm BreadthFirstSearch
input:
C,E st
output:
Mt} (Capacity of path found)
P (Parent table)
P :=array(1..n)
foruinl..n ' ' i
Plu] =-1
P[s] := -2 (make sure source is not rediscovered)
M :=array(1..n) (Capacity of found path tonode) . _
M[s] =8 | | T
- Q =queve() |
Q.push(s)
while Q.size() > 0
u:=Qpop()
for vin E[u]

A

(If there is available capacity, and v is not seen before in search)
if C[u,v] - Flu,v] > 0 and P[v] =-1
P[v]==u
M[v] :=min(M[u], C[u,v] - F[u,v])

259

ifv?t
~ Q.push(v)
clse
return M[t], P _
return O, P ' N
Algorithm 10.4: Edmond-Karp Algorithm to find Maximum Flow.
An example of running Edmond-Karp algorithm is shown below.
Given a network of seven nodes, source A, sink G, and capacities as shown below:

Figure 10.12: Example Flow Network with initial capacity;

In the pairs f/ ¢ written on the edges, fis the current flow, and ¢ is the capacity. The residual
capacity from uto vis ¢ (u,v) =c(u,v) - f{u,v), the total capacity, minus the flow thit is a]ready
used. Ifthe net flow from u to v is negative, it contributes to the residual capacity.

s

~260

- Path .

_: 'Cnp'atlt'y:: R ~ :
Resulting network.

m:u(cf(A DJ Cf(D E),ct(E G)) -:' -

]-min(S?OZ?IJI?OJ
in(3,2,1)=1. " - -

_ miﬂ(clm D),eD, F) cf(F GJ) =

l::ir:(&?16?09?0)— '_
in(269)-'2 '

infct(A,B),ct(B), u(c D J,cD F),cr(F c))-_ Y

min(&?nst?o:?os?zg?z)-" DU
) mtu{34,14?)—1_- . S

Table 10.5: Example of Edmond-Karp algorithm for Maximum Flow Problem

‘Notice how the length of the augmenting path found by the algorithm (in red) never decreases.
The paths found are the shortest possible. The flow found is equal to the capacity across the
mm]mumeutmthegraphseparatmgthesoumemdmesmk.'l‘herelsonlyonemmnnaleutmthls

graph, partitioning the nodes into the sets {A,B,C,E} and {D,F,G}, with the capacity c(A,D) +
¢(CD)Y+¢(E,G)=3+1+1=3,

10.4 Travelling Salesman Problem

Travelling Salesman Problem (commonly known as TSP) is a well known problem useful in
many applications, This section defines and explains algorithms for TSP. '

10 4.1 Problem Definition

‘A salesman wishes to sell his products in different cities. The cities are connected through differ-
ent routes with different cost of travelling, Salesman wishesto visit all citiés and comeback t0
ongmal place w1th muumum cost of travellmg This problem is modelled as a graph by,

i a}CreaImg avertex ina graph correspondmg to every city.

b)Drawmg edges between a pair of vertlces 1f a travelhng path is avallable between thelr core-
spondmg cmes

c)Writing welght of the edge as cost associated with correspondmg pai'h between cltles

Figure shows an example of TSP with six cities connected with each other. Each vertex (Ato B)

- represents acity and edge weight represents the cost of traveling. Thick lines in Figure (b)show
| | 261 : '

asolution costing 20, which is minimum.

(a) S A (h'} L

. Figure10.13: (a) A graph connecting 6 cities (b) Thick lines shows TSP solution

In above graph, TSP has been modeled as undirected graph, which is also known as symmetric
TSP. Inthe symmetric TSP, the distance between two cities is the same in each direction. Thus,

the underlying structure is an undirected graph; especially, each tour has the same length in both -

directions. This symmetry halves the number of feasible solutions.

Anothertype of TSPis asymmetric TSP. In the asymmetric TSP, the dlstance {from one city to the
other need not be equal to the distance in the other direction. In general, there may not even be
aconnection in the other direction. Thus, the underlying structure is a directed graph. For example,
the asymmetric case models one-way streets or air-fares that depend on the direction of travel.

The TSP has several applications even in its purest formulation, such as planning, logistics, and
the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas,
such as genome sequencing. In these applications, the concept city represents, for example,
customers, soldering points, or DNA fragments, and the concept distance represents travelling

titnes or cost, or a similarity measure between DNA fragments. In many applications, additional

constraints such as limited resources or time windows make the problem considerably harder.
10.4.2Algorithm

As TSP is modeled as a graph, a TSP tour is now a Hamiltonian cycle in the graph and an optimal
TSP tour is a shortest Hamiltonian cycle. Often, the underlying graph is a complete graph, so that
every pair of vertices is connected by an edge. This is a useful simplifying step, because it makes
it easy to find a solution, however bad, because the Hamiltonian cycle problem in complete
graphs is easy. Instances where not all cities are connected can be transformed into complete

graphs by adding edges with very high weightbetween these cities, edges that willnotappearin

the optimal tour. e

TSP problem has been shown to be NP-hard, and the decxsnon problem version (“given the
costs and a number x, decide whether there is around-trip route cheaper than x”") is NP-complete.

Even though the problem is computationally difficult, a large number of heuristics and exact
methods are known, so that some instances with tens of thousands of cities can be solved.

Complexity of exact algorithms are of the O(n*2"). Dynamic Programming and Branch & Bound
based algorithms are available for exact solution. But worst case complexity is O(’2") only. A
number of approximation algorithms and heuristics are available to find sub-optimal solution.
Least Cost Branch & Bound (LCBB) algorithm for exact solution is described here, :

10.4.2.1Least Cost Branch & Bound Concept
As discussed earlier, TSP is a complex problem, Exact solution can be attempted using Branch

262

& Bound based algorithm. First we explain the concept and algorithm of branch & bound and
ﬂwn representation of a TSP in matrix form for the purpose of LCBB wﬁl be discussed.

To undesstand the concept of branch and bound algorithm, the concept of exploration Space
need to be clear. Figure 10.14 shows an example of six cities and its exhaustive explora.tlon
space as well as advantage of branch & bound based search.

In Exhaustive approach, every possibility will be explored to find optimal travel cost In Figure
10.14 exhaustive approach, from node A all possible routes will be traversed in depth first search
manner for every possible route. While route A-B-C-D-E-F-Acosts 27, route A-B-C-D-F-E-
Awill cost 31. But exhaustive approach will explore every possibility and will incura huge cost
of exploration.

- On the other hand, branch and bound approach will maintain an intelligent boundto cut down
exploration space significantly and wilt find optimal solution in drastically less time if bound func-
tion is suitable enough. In branch and bound approach of Figure 10.14, cost of route A-B-C-D-
E-F.A as 27 was already stored. At any moment of exploration like traversing route A-B-C-F

 costs 22 any traversal beyond this will exceed previous bound 27 and hence must be cut down

or pruned. By this approach, branch and bound algorithms can significantly reduce exp!oratlon

time while worst case tlIIle remains the same.

1

. TSP'exampfe |

Bra.nch and bound

Figure 10,14: Agraph comiecﬁngﬁ cities and its Exhaustive aiﬁd B & B based exi)lora-
tion space o _

L _ 263

'Tnthe context of TSP, a bare minimum cost can also be computed, which can be used as starting
bound, called least cost. Hence, combining Branch & Bound with Least Cost (1.CBB) algo-
rithms are very popular for exact solution. Computation of least cost will be elaborated afier

" matrix representation of the problem. '

Matrix representation of TSP graph for the purpose of LCBB is explained here. Figure 10.15(a)
shows an example of 5 cities indicating travelling cost between the cities and 10.15(b) shows
matrix representation for the purpose of LCBB, Each element of the matrix represents the cost
of travelling between the corresponding cities if they are cormected otherwise a very high number
like 999 (for infinite, as it cannot be stored in computer). For example element (2, 3) contains the
value 4 corresponding to travel cost for vertex no. 2 to 3, while (2,4) contains 999 as there is no
directedge from vertex no 2 to 4; While vertex no. 4 to 2 edge is there having cost 7. '

: 999 9 899 8 999
999 999 4 Q99 2
999 3 9899 4 999

9998 6 7T 999 12
3 1 989 999 10 999

- ® “ (b)
Figure 10.15: (a) An example of TSP graph (b) Matrix representation of TSP

Computation of Least Cost is based on the fact that for completing cycle, traversal of every
vertex requires entry and exit atleast once, Cheapest cost of entry and exit edges (removing

duplicate edge count) will be least cost. Once a matrix representation is available, it is as easy to

compute by adding smallest element in every row and then every column.

InFigure 10.16(a) and (b), cheapest outgoing edges are (1, 4), (2, 5), (3, 2), (4,2) and (5, 1).
Total cost of these traversals will be 20, Accordingly, minimum row value in the matrix and edge
weight in graph from every row/ edge has been reduced. However, these outgoing edges are
also incoming edges for all vertices except vertex no. 3, which can be observed from graph as
well as matrix, In matrix, column no. 3 has all entries non-zero. To cover vertex no. 3 also for -
iricoming edges, we need to reduce cohimn no. 3 by 1 and change graph accordingly. Hence, the
least cost for the graph of Figure 10.15 or 10.16.will be 21. o

099 1 999 0 999
999 999 2 999 o
999 0O 999 1 999
| o9 o 1 999 6
; O 999 999 9 999
N N - -[
@ ()

_Eigure lﬂ.ﬂiiz @ Reduced graph after outgoing edges least cost computation
() iR-educed cost matrix afﬂer outgoing edges least cost computation

.
L]
-

T 264

-Having described matrix representation and computation of least cost, we describe branch and
bound algorithm.

10.4.2.2 LCBB Algorithm

LCBB is basically a branch and bound algorithm only with reduced matrix and pre-
computed least cost. This least cost will be added in the solution obtained from reduced matrix.
Branch and bound algorithm starts from root node and then visits child nodes intelligently. While
visiting child node, there may be 3 possibilities namely, completion of one solution, non-promis-
ing branch and continue. In completion of one solution, with visiting of last node, all nodes have
been explored and likely a new solution. In non-promising branch, current bound cannot be less
than best cost solution available till now and hence, no need to further explore. In continue,
neither end has occurred nor cost has exceeded bound value. Algorithm is illustrated as below:

D AT B

Algorithm L.CBB
Inputs Graph G as Reduced cost matrix and Least Cost value
.Output minimum cost Tour ;
Current_best =one_solution; —stores minimum cost route till now
Current_Cost =one_solution_cost;
S = Root_Node; - —set S will contain intermediate nodes .
while (S 79) do
o
select an element s S;)
remove s from S;
Make a branch based on s yielding sequences (s, , i=1,2,3,....,m);
| —s.should notbea partof trees -
10. for (=1 to m) '
11.. _ { _
12,7 p . compute the lower bound b, of s;
13. ~ If(b,= Current_cost)
4. Kill s; —remove non-promising branch
15. else :
16. {
17. if (s, corresponds to acomplete solution)
18. {
19, Current_best =Root_node to s, route;
20. Current_cost = cost of new solution; — store new solution
value '
21, }
22. else _ _ :
‘23. Add s to set S and become child ?f s; —add this node for
"new solution i '

265

25, : }
26.)
27. }

Algorithm 10.5: LCBB Algorithm to find optimal solution of TSP.

The above algorithm incorporates pruning or killing condition at line no. 14, a complete solu-
tion atline no. 19 and continuing exploration condition at line no. 23 of the algorithm. The tree
obtained for Figure 10.15(a) is given in Figurer 10.17. _

o =221

b=23(3) b=599 (3)

‘ b=21(%) b=999,
P G ©

-

Figure 10:17: Exploration 'i}'ee"ilsing LCBB of example 10.15(a).

AsLCBB algorithm provides exact solution, but time required is uncertain. An approximation
algorithm with complexity O(V2) and worst case cost can be double the minimum value is given
below. The algorithm is very simple and based on Prim Minimum Spanning Tree (MST) algo-
tithm,

- Algorithm Approximation-Algo-for-TSP
Imputs Graph G as Reduced cost matrix and Least Cost value
‘Output sub-optimal cost Tour
1. select a vertexrV to be the root vertex .
2. compute Minimum Spanning Tree T for G from root r using MST-PRIM forroot r
3. LetLbethelist of vertices visited in a preorder tree walk of T
4. Return the Hamiltonian cycle H that visits the vertices in the order L .
Algorithm 10.6: Approximation Algorithm fdrTS_P. -
The above approximation algorithm is useful for quick solutions.

10.5 Assignment Problem

The assignment problem is one of fundamental combinatorial optimization problems. In its
- most general form, the problemn is as foliows: :

Thete aré a number of agents and a number of tasks. Any agent can be assi%necl to perform any
266 .

task, incurring some cost that may vary depending on the assignment. It is required to perform all
tasks by assigning exactly one agent to each task in such a way that the totdl cost of the assign- -
A typical assignment problem is shown in Figure 10.18. Here there are five machines (the
agents) to be assigned to five jobs (the tasks). The numbers in the matrix indicate the costof
doing each job with each machine. Jobs with costs of M are disallowed assignments. The prob-
lem is to find the minimum cost matching of machines to jobs.

M1}
hi

Figure 10.18: Matrix model of the assignment problem.

The network model is shown in Figure 10.19. Arc costofassignment model is not showm in the
figure for clarity. The assignment network also has the bipartite structure.

Figure 10.19: Network mode] of the assignment. problem

The solution to the assignment problem is shown in Figure 10.20. The element yall_,lé] means _ ‘
the Machine number shown at row is assigned to corresponding Job number shown at column’
name. This assignment will be of minimum totat cost. ' '

J1. 1z 13 J4 15

M1 [O 8]] 0 (1)

M2 [O 0 (W [T | O

M3 | QO o | O (1)1 ©

Ma [(17| O 4] [v] 0

Ms [(] (4] 0 | O
N4 -

Figure 10.20: Solution to the assignment Problem -

267

Mathematlcal Formulation
Assngnmem problem can be expressed in the form of mathematical model. Letus denote p; as

" the cost paid by i* job to j™ machine, where there are n jobs and n machines. Also x; be the

~ assignment of i® job to j* machine, where x can have value 0 or 1 for whether assigned or not.
Mathematically the assignment problem can be formulated as: |

Cmon
Minimize | Zzpijméj-

§=21 ==l
- Subject to '

in:;:l, i=1,...,n
1 .

n :
zzij: 1, j=1,...,m
=1

a:,;,—e{ﬂ 1} i=1,...,m, J=1,...,7n

The asmgmmm problem s NP—hard, and it is even APX-hard to approximation. Hence, optimal
solution is very difficult to obtain in polynomial time. To obtaina good solution, Hungarian Algo-
rithm is commonly used and explained below.

Hungarian algorithm

Hungarian algorithm provides a good solution to assignment problem. Algomhm is vcry simple
and is based on simple concept. Normally assignment problem contains same number of ma-
chines and jobs or workers and jobs are given. However, if less number of jobs is there then
dummy jobs are added to make jobs and workers or machines equal with 0 costs. Algorithm
assumes that both of them are equal. Also matrix representahon is assumed as given in Figure

10.18.

Algonthm Hungarian
Inputs Graph (3 with Assignment cost — Assumed that row and columns are equal

s

Output Assignment cost for a good assignment ‘
1. Foreachrow, subtract the minimum number in that row for all numbers in that rovf; |

2. For each column, subiract the mnnmmnnumbcrmﬁmt oolumn from all numbers in that
column, — similartoLCinTSP

3. Draw the minimum number of lines to cover all zeroes;
4, If number is the same as number of rows in matrix,

5. assignment is done and stop;

6. else Determine the minimum uncovered numbersayd

NS ‘Subtract d from uncovered numbers

®) Add d to numbers covered by two lines

©) Numnbers covered by one line remain the same
D) Go ToLine 3

o 268

7. Findaroworcolumn with only one unlined zero and circle i, (If all rows and columns
have two or more unlined zeroes, choose arbitrary zero); |

8. If circle is in a row with one zero, draw a line through its column. Ifthe circle is ina
column with one zero, draw a line through its row. One approach, when all rows and columns
have two or more zeroes, is to draw a line thmugh one with most zeroes, breaking tie arbi-

trary;

9. Repeat Line 8 until all circles are lined. If this minimum number oflines equals the
number of rows, the assignment is over.

Algorithm 10.6: Hungarian Algorithm for Assignment Problem.

- Theabove steps are explained through example as below:
In a worker and job problem, costs are given in the following table.

Worker Jobl Cost Job2 Cost Job3 Cost
Raj Mohan 50 36 16 '
Darpan 28 30 18
Pushpesh 135 32 20
Hatim - 25 25 14
The abovetable is modified for Hungarian Algorithm as follows:
Worker Jobl Cost Job2 Cost Job3 Cost Dummy
1 Raj Mohan , 50 36 - 16 0
Darpan 28 30 18 0
Pushpesh 35 32 20 - 0
‘Hatim 25 25 14 0

Minimum numbers in each row have been identified and it comes in last row as done in step-1.

Now, algorithm starts and subtracts each row and get Matrix as

25 11 2 0 22 9 0 0
3 5 4 0o HW—> 1 3 2 0
0 7 6 0 $ 5 4 0
6o o0 0 0 o o0 0o 2
2 9 0 0 2 9 0 1
o 2 1 o <—m o 2 1 0
7 4 3 0 7 4 3 0

0 0 0 0 o 2

269

Now, each line has one zero atleast, Assignment will be for évery zero entry i.e.
Darpan > Jobl 2 28, Raj Mohan = Job3 =16, Hatim 2Job2 *925 and total cost
will be 69,

Self Learning Exercises
Q.No.1 InTopological sort, unigue schedule will be available if
(@ Hamiltonian Cycleis availablein given DAG
(b) More than two zero indegree vertices available in given DAG
(©) Two or more disconnected vertices are available in given DAG
(d) Noneoftheabove
Q.No.2 In curriculum planning corequisite courses can be
(@)Scheduled in different semester |
(b)Vertices corresponding to them can be merged with all edges
(c)Scheduled only before current semester |
(d)None of the above

Q.No.3 Ina Network Flow problem, ifaugmenting path contains 4 edges having 13/22,
20/24, 5/6 and 8/13 written in its residual graph, What will be the amount of flow allowed along

this path? |
(a) 9 b 5) 1 @ 2

-

Q.No.4 In LCBB algorithm for TSP, ifa solution with 28 cost is available. In another
exploration, cost 19 was computed and next unexplored edge is costing 9. Should it be

(a)Pruned

(b)Treated as a soluuon

(c)Taking this edge in path, exploratlon may be continued
(d)None of the above

Q.No.5 ~ Intheassignment problem solved above, Hatim is assigned Job 2 even though,
he was available at minimum cost for all jobs because

(a)Job 1'and Job 2 cost was same, either one could have been assigned

(b)Job 1 and Job2 cost was maximum for Hatim compared to remaining Jobs

(c)Job 1 and job 3 were minimum for Darpan and Raj Mohan and they could not get Job 2
(d)None of the above

10.6 Summary

In this unit, we have studied various applications of graph theory and their standard algorithms o
deal with these problems; The-algorithms are explained through examples also. Sub-section wise
summary is as follows:

“Topological sort and its usefulness are discussed in first sub-section. There are a number of

i
. R

270 -

)

applications are found for this sort. The applications can be mapped as a Directed Acyclic Graph

" and the vertices are ordered in such a way that no vertex is dependent on its predecessor vertex.

Two classical problems namely, Cloth-bearing by an Absent-Minded professor and Curriculum .-

planning for MCA course are explained.

Network Flow is an important application of graphs. Various types of commodities like eleciric-
ity, water, gas etc. flows between various places. The graph theory based approach well models
and sotves these types of problems. Min-Cut Max-Flow theorem provides basic proof for maxi-
mum flow from source node to destination, Ford-Fulkerson and Edmond-Karp algorithms wefl
solve these problems.

Travelling Salesman Problem (TSP) is one of the classic problems, which can well be modelled
as a graph. A salesman wishes to travel all the cities to sell his products with minimum cost of

travelling. The problem is of NP-Hard nature (its decision version is NP-Complete) and hence
can be solved by Branch and Bound kike algorithm or through approximation algorithm ot heuris-
tics. Least Cost Branch and Bound (LCBB) algorithm and one simple approximation is de-
scribed with example.

~ Assignment Problem is also one of the classic NP-hard problems. In this problem, a number of

machines with same number of jobs are to be assigned. The cost of processing any job is differ-
ent for different achine. Minimuin cost solution is desired in its solution. Mathematical model-
ling and Hungarian Algorithm are described in last sub-section.

10.7 Glossary

topological sort: In graph theory, a topoiogical sort or topological ordering of a directed acyclic
graph (DAG) is a linear ordering of its nodes in which each node comes before all nodes to
which ithas outbound edges. Every DAG has one or more topological sorts.

network flow problem:In graph theory, a flow network is a directed graph where each edge has
acapacity and each edge receives a flow. The amount of flow on an edge cannot exceed the
capacity of the edge. Often in Operations Research, a directed graph is called a network, the
vertices are called nodes and the edges are catled arcs. A flow must satisfy the restriction that the
amount of flow into a node equals the amount of flow out of it, except when it is a source, which
has more outgoing flow, or sink, which has more incoming flow. A network can be used to model

traffic in aroad system, fluids in pipes, currents in anelectrical circuit, or anything similar mwhlch

something travels through anetwork ofnodes. -

10.8 Further Readmgs T el ~
1. Graph ttéory with applications to Engineering and computer
scierice by Narsingh Deo.

2. Discrete Mathematics by Rosen. ' -
3. Graph theory by John Clark and Derek Allan Holton '
4, Reference Book Allan Tucker for Combinatorics

10.9 Answers to self learning exercises
1& 20) 3() 4@ 50
10. 10 Unit End Questions

&

L - * Give an example in which worst case time complexity of Ford-Fulkcrson algo-
rlthm can actually be demonstrated.

271 R

2. Describe Max-FlowMin-Cuttheorem. | . |
3. A TSP matrix is described as below. Compute minimum cost solution.
999 39 8t 108 3 16 28 |

12 999 199 105 16 22 . 18
38 67 999 52 11 17 999
48 999 87 999 56 999 999

31 87 999 999 999 49 67

999 999 78 18 88 999 15

17 23 45 999 999 10 999

4, Describe Mathematical Fonni]lationpfAssigmnent Problem.

5. For the following activity dependence, draw a graph and perform topolo giéal' sort.

S.No. - ActivityNo. Dependent on Activity No .

1 1 | 6

2 2 -

3 3 4,7

4 4 -

5 5 3,1

6 6

7 7 -

8 8 2

9 9 ~ 10

10 10 T -
——RE

272

UNIT X1

SORTINGALGORITHIMS

STRUCTURE OF THE UNIT

11.0
11.1

112

113
11.4
11.5
11.6
11.7
11.8
119

Objectives
Introduction to Sorting algonthms and oomplemtles
Bubble Sort

‘Selection Sort

Insertion Sort
Heap sorts
Qliick Sort
Merge sort
Bucket sort
Radix Sort

11.10 Summary
11.11 Glossary
11.12 Further Readings

~11.13 Answersto the Sclflearning exercises
1.14 . Unit-End Questions

/_u

~'11.0 Objectives

" After completing this unit you will be able to explain

What s sorting algorithms, how different kind of sorting can be perform.
Sorting method in Bubble sort, selection sort, insertion sort, quick sort, radix sort,merge

sort, bucket sort, heap sort etc.

11.1 Introduction

One of the fundamental problems of computer science is ordering a list of items. There’s a excess
of solutions to this problem, known as sorting algorithms. Some sorting algorithms are simple and
intuitive, such as the bubble sort. Others, such as the qmck sort are extremely compllcated but.

produce hghhnng—fast results,

Below are lmks to algorithms, analysis, and source code for seven of the most common sortmg:

SorﬁngAlgorithlm

 Bubble sort

Selectionsort - -
Insertion sort

- Heap sort .

273

Quick sort

Merge sort

Shell sort o
The common sorting algorithms can be divided into two classes by the complexity of their algo-
rithms. Algorithmic complexity is a complex subject that would take 100 much time to explain
here, but suffice it to say that there’s a direct correlation between the complexity of an algorithm
and its relative efficiency. Algorithmic complexity is generally written in a form known as Big-O
notation, where the O represents the complexity of the algorithm and a value nrepresents the size
of the set the algorithm is1un against.

For example, O(n) means that an algorithm has a linear complexity. In other words, it takes ten
times longer to operate on a set of 100 items than it does on a set of 10 items (10 * 10=100).
Ifthe complexity was O(n®) (quadratic complexity}), then it would take 100 times longer o
~operate on a set of 100 items than it does on a set of 10 items. '

The two classes of sorting algorithras are O(n2), which includes the bubble, ilisertion, éelection,
and shell sorts; and O(n log n) which includes the heap, merge, and quick sorts.

In addition to algorithmic complexity, the speed of the various sorts can be compared with
~ empirical data. Since the speed of a sort can vary greatly depending on what data set it sorts,
accurate empirical results require several runs of the sort be made and the results averaged
together. The empirical data on this site is the average of a hundred runs against random data sets
onasingle-user 250MHz UltraSPARC 11. The run times on your system will almost certainly
vary from these results, but the relative speeds should be the same - the selection sort runs in
roughly halfthe time of the bubble sort on the UltraSPARC II, and it should run in roughly halfthe
time on whatever system youuse as well, '

These empirical efficiency graphs are kind of ike golf- the lowest line is the “best”. Keepin mind
that “best” depends on your situation - the quick sort may look like the fastest sort, but using it tc
sortalist of 20 items is kind of like going after a fly with a sledgehammer.

O(n?) Sorts

- /
/

§ - . .

T y /// e]

kot o] 0. s Lan]

i ; fo Shatl]

274

Asthe graph pretty plainly shows, the bubble sort is grossly inefficient, and the shell sort blows it
. outofthe water. Notice that the first horizontal fine in the plot area is 100 seconds - these aren’t
sorts that you want to use for huge amounts of data in an interactive application. Even using the
shiell sort, users are going to be twiddling their thumbs if you try to sort much more than 10,000
data items. o _ :

On the bright side, all of these algorithms are incredibly simple (with the possible exception of the
shell sort). For quick test programs, rapid prototypes, or internal-use software they’re not bad
choices unless you really think youneed split-second efficiency. O(n log n) Sorts

Speaking of split-second efficiency, the O(n log n) sorts are where it’s at. Notice that the time on
this graph is measured in tenths of seconds, instead hundreds of seconds like the O(n?) graph.

But as with everything else in the real world, there are trade-offs. These algorithms are blazingly
fast, but that speed comes at the cost of complexity. Recursion, advanced data structures, mul-
tiple arrays - these algorithms make extensive use of those nasty things.

Inthe end, the important thing is to pick the sorting algorithm that you think is appropriate for the
task at hand. You should be able to use the source code on this site as a “black box” if youneed
to - you can just use it, without understanding how it works. Obviously taking the time to under-
stand how the algorithm you choose works is preferable, but time constraints are a fact of life.

11.2 Bubble Sort
Algorithm Analysis
The bubble sort is the oldest and simplest sort in use. Unfortunately, it’s also the slowest,

- The bubble sort works by comparing each item in the [ist with the item next to it, and swapping
them ifrequired. The algorithm repeats this process until it makes a pass all the way through the
list without swapping any items (in other words, all items are in the correct order). This causes
larger values to “bubble” to the end of the list while smaller values “sink” towards the beginning
ofthelist. ' -

The bubble sort is generally considered to be the most inefficient sorting algorithm in common
usage. Under best-case conditions (the list is already sorted), the bubble sort can approach a
constant O(n) level of complexity. General-case is an abysmal O(n2). While the insertion, selec-
tion, and shell sorts also have O(n2) complexities, they are significantly more efficient than the
bubble sort,

Pros: Simplicity and ease of implementation.

Cons: Horribly inefficient
Empirical Analysis
Bubble Sort Efficiency
- y
pd
- i
i_, e -
)i
- T
.om —""""-_——-M/ .

o e 11460 i THTHID - [T e [Tty
-

.. The graph clearly shows the n? nature of the bubble sort. _ : o
S E 995 .

A fair number of algorithm purists (which means they’ve probably never written software fora
living) claim that the bubble sott should never be used for any reason. Realistically, there isn’ta
noticeable performance difference between the various sorts for 100 items or less, and the sim-
plicity of the bubble sort makes it attractive. The bubble sort shouldn’t be used for repetmve '
sorts or sorts of more than a couple hundred items.

Source Code
Below is the basic bubble sort algorithm.

Program:

#include <stdlib.h>

#include <stdio.h>

#define NUM_ITEMS 1000
vondbubbleSort(mtnumbe:sl],mt amay sme), |
int numbersINUM_ITEMS];

intmain() -

¢ -
inti;

//seed random number generator

stand(getpid();

-~ /ffill array with random integers

for (i=0; i <NUM_ITEMS; i++)

numbers{i] = rand();

fiperform bub!)le sort on array
bubbleSort(nuinbers, NUM_ITEMS);
printf{“Done with sort \n”);

for (i=0; i < NUM_ITEMS; i++)

- | 276

printf{*%iw”, numbers[i]);
void bubbleSort(int numbers{], int array_size)
{
inti, j, temp; |

for (i=(array_size-1);i>=0;i—)

{ o
for(=1j<=g
{ A
if (numbers[j-1] > numbersfj])

{ .

temp = numbers[j-1];

numbers[i-_l] =numbers([j];

numbers[j] = temp;

3o}
} 3

11.3 Selection Sort
Algorithm Analysis

The selection sort works by selecting the smallest unsorted item remaining in the list, and then-
swapping it with the item in the next position to be filled. The selection sort has a complexity of

O().
Pros: Simple and easy to implement,

Cons: Inefficient for large lists, so similar to the more efficient insertion sort that the insertion sort
should be used in its place. : .

Empirical Analysis

Selection Sort Efﬁciency :

N

The selection sort is the unwanted stepchild of the n? sorts. It yields a 60% performance
improvement over the bubble sort, but the insertion sort is over twice as fast as the bubble sort
and is just as easy to implement as the selection sort. In short, therereally isn’t any reason to use
the selection sort - use the insertion sort instead. ' o

If you really want to use the selection sort for some reason, try to avoid sorting lists of more than
a 1000 items with it or repetitively sorting lists of more than a couple hundred items.

Source Code _
Below is the basic selection sort algorithm.

A sample C program that demonstrates the use of the selection sort may
Program:
#include <stdlib.h>
#include <stdio.h>
 #define NUM_ITEMS 100
void selectionSort(int numbers[], int array_size);
int numberseNUM_ITEMS}; | o
int main()
{
inti; _
//seed random number generator
srand(getpid();
/il array with random integers
for (i=0; i <NUM_ITEMS; i++)
. numbers[i] =rand();

278

/fperform selection sort on array
selectionSort(numbers, NUM_ITEMS);
printf{*Done with sort.\n™);
for (i=0; i <NUM_ITEMS; i++) -
printf(*“%in”, numbersfi]); '
y
void selectionSort(int numbers(), int array_size)
{
inti,j;
int min, temp;
for (i=0; i <array_size-1; i++)
{
min=1; _
for (j =i+1;j <array_size; j++)

{

if (numbers{j] < numbers[min})
min=j;

} .

temp = numbers[i];

_ numbersﬁ] = numbers[min];
numbers{min] = temp;
}

}

11.4 1Insertion Sort

Algorithm Analysis

Lt

The insertion sort works just like its name suggests - it inserts each item into its proper pladé in
the final list. The simplest implementation of this requires two list structures - the source list and
the list into which sorted items are inserted. To save memory, most implementations use an in-
place sort that works by moving the current item past the already sorted items and repeatedly
swapping it with the preceding item until it is in place. "

Like the bubble sort, the insertion sort has a complexity of O(n2). Although it has the sge'

complexity, the insertion sort is a little over twice as efficient as the bubbie sort. E

Pros: Relatively simple and easy to implement. ~ \
- Cons: Inefficient for large [ists. g

279 |

Empirical Analysis

Insertion Sort Efficiency
' T
- /.
. ¥
= // :
o | / . . .
w T / i
: —— |

The insertion sort is a good middle-of-the-road choice for sorting lists of a few thousand items or
less. The algorithm is significantly simpler than the shell sort, with only a small trade-offin effi-
ciency. At the same time, the insertion sort is over twice as fast as the bubble sort and almost
40% faster than the selection sort. The insertion sort shouldn’t be used for sorting lists larger than
acouple thousand items or repetitive sorting of lists larger than a couple hundred items. '

Source Code '
Below is the basic insertion sort algorithm.

Program:
#include <stdlibh>
#include <stdio h>
#define NUM_ITEMS 100
 void insertionSort(int numbers[], int array _size);

280 : - gt

int numbers[]NUM_ITEMS];

int main()

{

inti;’

f/seed random number generator
- srand(getpidQ); -

/il array with random integers
- for (i=0; i <NUM_ITEMS; i++)

numbersfi] =rand();
{/perform insertion sort on array
insertionSort(numbers, NUM_ITEMS),
printf(“Done with sort.\n");

for (i=0; i <NUM_ITEMS; i++)
printf{“%i\n”, numbersfi]);

Y
void insertionSort(int numbersf], int array_size)
{
inti, j, index;
for (i=1; i < array_size; i++)

{

index = numbers(i};

=i
while ((j> 0) && (numbers([j-1]> index))
numbersfj] = numbers[j-1];
SRRt
-}
_numbers[j] =index;
)

[

11.5 Heap Sort -

AlgorithmAnalysis

The heap sort is the slowest of the O(nlog n) sorting algorithms, but unlike the merge and quick

sorts it doesn’t require massive recursion or multiple arrays to work. This makes it-the most

aftractive option for very large data sets of millions of items.

The heap sort works as it name suggests - it begins by building a heap out of the data set, and
then removing the largest item and placing it at the end of the sorted array. After removing the

281

largest itern, it reconstructs the heap and removes the largest remaining item and places it in the
next open position from the end of the sorted array. This is repeated until there are no items left
in the heap and the sorted array is full. Elementary implementations require two arrays - one to
hold the heap and the other 1o hold the sorted clements.

To do an in-place sort and save the space the second array would require, the algorithm below

“cheats” by using the same array to store both the heap and the sorted artay. Whenever anitem
isremoved from the heap, it frees up a space at the end of the array that the removed item canbe
placed in,

Pros: In-place and non-recursive, makmg ita good choice for extremely large data sets.
Cons: Slower than the merge and quick sorts.

Empirical Analysis
Heap Sort Eﬁciency
N . : . /f .
[:F3 I . //
L | /
']
. « hy e 00 0% 003 ot 3 N

As mentioned above, the heap sort is slower than the merge and quick sorts but doesn’t use
multiple arrays or massive recursion like they do. This makes it 2 good choice forreally large
sets, but most modern computers have enough memory and processmg power to handle the
faster sorts unless over a million items are being sorted. S :

The “million item rule” is just a rule of thumb for common appﬁcations - high-end servers and
workstations can probably safely handle sorting tens of millions of items with the quick or merge
sorts. But if you’re working on a common user-level application, there’ s always going to be
some yahoo who tries to run it on junk machine oldet than the programmer who wrote it, so
better safe than sorry.

Source Code
Belowisthe basw heap sort algorithm, The 51ﬂDown() function bullds and reconsiructs the
heap.

282

Program:

#include <stdlib.h>

#include <stdio.h> ,
#define NUM_ITEMS 100
void heapSori(int numbers[], int array_siz/e);

void sifiDown(int numbers], int root, int bottom);
int numberspNUM_ITEMS];

int main()

{

283

<o

inti;
/fseed random number generator

. srand(getpid();

/Hill array with random integers

~ for(i=0; i <NUM_ITEMS; i++)

numbers[i] =rand();
/fperform heap sort on array
heapSort(numbers, NUM_ITEMS);
printf(*Done with sort.\n”);
for (1=0; i <NUM_ITEMS; i++)
printf(“%i\n”, numbers(il);

H _
void heapSort(int numbers{], int array_size)
{

int i, temp;

- for (i = (array_size/ 2)-1; i>=0;i—)

sifiDown(numbers, i, array _size);

for (i=array_size-1;i>=1;i—)

{

temp = numbers{0];

numbers[0] = numbers(i];

numbers[i}=temp;

sifiDown{numbers, 0, i-1);

)
} .
void siftDown(int numbers], int root, int bottom)
{ : :
int done, maxChild, temp;
done = 0;

while ((root*2 <=bottom) && (!done))

{

if (root*2 == bottom)

‘maxChild = root * 2;
else if (numbers[root * 2] > numbers{root * 2 + 1]}
maxChild =root * 2;

ke |

- 284

maxChild=root*2+1;

if (nwnbers[foot] < l_nunbers[maxChild])
¢ _
temp = numbers[root];

numbers[root] = numbers[maxChild];
numbers[maxChild] = temp;
root = maxChild;
}

else

done=1;
3
}

11.6 Quick Sort

Algorithm Analysis

The quick sort is an in-place, divide-and-conquer, massively recursive sort. As a normal person
would say, it’s essentially a faster in-place version of the merge sort. The quick sort algorithm is
simple in theory, but very difficult to put into code (computer scientists tied themselves into knots
for years trying to write a practical implementation of the algorithm, and it still has that effect on
university students). _

The recursive algorithm consists of four steps (which closely resemble the merge sort):

L. Tf there are one or less elements in the array to be sorted, return immediately.

2. Pick an element in the array to serve as a “pivot” point. (Usually the left-most elementin
the array is used.) '

3. Splitthe amayinto two parts - one with elements larger than the pivot and the other with

elements smaller than the pivot.
4. Recursively repeat the algorithm for both halves of the original array.

The efficiency of the algorithm is majorly impacted by which element is choosen as the pivot
point. The worst-case efficiency of the quick sort, O(n2), occurs when the list is sorted and the
left-most element is chosen. Randomly choosing a pivot point rather than using the left-most

element is recommended if the data to be sorted isn’t random. As long as the pivot point is

chosen randomly, the quick sort has an algorithmic complexity of O(nlogn).

Pros: Extremely fast. -
Cons: Very complex algorithm, massively recursive.

285

Empirical Analysis
Quick Sort Efficiency

03
[k] /

2 4
i 7
at "
L1k
m e e fen] b2 71 R TR M

- The quick sort is by far the fastest of the common sorting algorithms. It’s possible to write a
- special-purpose sotting algorithm that can beat the quick sort for some data sets, but for general-

case sorting there isn’t anything faster, -

As soon as students figure this out, their immediate implulse is to use the quick sort for everything
- after all, faster is better, right? It’s important to resist this urge - the quick sort isn’t always the

best choice. Asmentioned earlier, it's massively recursive (which means that for very large sorts,

you canrun the system out of stack space pretty easily). It’s also a complex algorithm - alittle too

complex to make it practical for a one-time sort 0f 25 items, for example.

With that said, in most cases the quick sort is the best choice if speed is important (and it almost
always is). Use it for repetitive sorting, sorting of medium to large lists, and as a default choice
when you’re not really sure which sorting algorithm to use, Ironically, the quick sort has horrible
efficiency when operating on lists that are mostly sorted in either forward or reverse order -
avoid it in those situations,

Source Code
Below is the basic quick sort algorithm

286

~-r_hold = right; -7
' pivot = numbers[left];:
= "while (left <'right)

Program
#include <stdlib.h>
#include <stdio.h>
#define NUM_ITEMS 100
void quickSort(int numbers[], intarray _size);
voidq_sort(int numbersf], int left, int right);
int numbers[NUM_ITEMS];
int main()
{
iI\lt i
- #/seed randommumber generator

.

287

srand(getpidQ);
/il array with random integers
for (i=0;1<NUM_ITEMS;i++)
‘numbers[i] =rand();
//perform quick sort on array
quickSort(numbers, NUM_ITEMS);
printf(“Done with sort.\n");
for (i=0; i <NUM_ITEMS; i-++)
printf(*%i\n”, numbers[i));
B |
void quickSort(int numbers[], int array_size)
{
¢_sort{numbers, 0, array_size - 1);
}
void q_sort(int numbers], int left, int right)
»
intpivot,|_hold,r_hold;
1_hold=left;
r_hold=right;
 pivot=numbers[left];
~‘while(left <right)
{
while ((numbers[right] >=pivot) && (left <right))
right—; ' _
if (left t=right)
{ | -
numbers[leff] = numbers[right];
left++;
}
- while (numbers[left] <= pivot) && (left <right))
left++;
if (left I=right)
{ |
" numbers[right] = numbexs[left];
right—;
}

' 2338

)
numbers[left] = pivot;
pivot=1left;
left=1 hold;
right=r_hold;
if (left <ptvot)
q_sort(numbers, left, pivot-1);
if (right > pivot)
q_sort(numbers, pivot-+1, right);
} oo
11.7 Merge Sort

Algorithm Analysis "
The merge sort splits the list to be sorted into two equal halves, and places them in separate
arrays. Each array is recursively sorted, and then merged back together to form the final sorted
list, Like most recursive sorts, the merge sort has an algorithmic complexity of O(nlog).
Flementary implementations of the merge sort make use of three arrays - one for each half of the
data set and one to store the sorted list in, The below algorithm merges the arrays in-place, so

only two arrays are required. There are non-recursive versions of the merge sort, butthey don’t
yield any significant performance enhancement over the recursive algorithm on most machines.

Pros: Marginally faster than the heap sort for larger sets.
Cons: At least twice the memory requirements of the other sorts; recursive.

. Empirical Analysis

Merge Sort Efficiency
s
i
o . //
. V
. J
1 >
S
o -
LA] "/
: —
,«_.f"
q =77 ‘
w I wr e sy o 7005 e

The merge sortis slightly faster than the heap sort for larger sets, but it requires twice the memory
of the heap sort because of the second array. This additional memory requirement makes it
unattractive for most purposes - the quick sort is a better choice most of the time and the heap
sort is a better choice for very large sets.

Like the quick sort, the merge sort is recursive which can make it a bad choice for applications
289 |

that run on machines with limited memory.
Source Code _

Below is the basic merge sort algorithm.

#include <stdlib.h> ‘
~#include<stdio>
#define NUM_ITEMS 100 -

~ void mergeSort(int numbers[], int templ], intarray_size);
void m_sort(int numbers(], int templ[], int left, int right);
void merge(int numbers[], int temp{], int left,in mid, int right):
int numbersfNUM_ITEMS];
int temp[NUM_ITEMS];
intmain()
{
inti;
~ //seed random number generator
srand(getpid());
/ifill array with random integers
for (i=0; i <NUM_ITEMS; i++)
numbers[i] = rand();
- //perform merge sort on artay
- mergeSort(numbers, temp, NUM_ITEMS);
printf{“Done with sort.\n”);
for (i=0;i <NUM_ITEMS; i++)
printf{**%i\n”, numbers[i]);
} |
void mergeSort(int mumbers(], int temp(], int array_size)
K |
m_sort(numbers, temp, 0, array_size - 1);
- voidm_sort(int numbers[], int temp[], int left, int right)
(O
int mid;
if (right > left) o
{ _
mid = (right + left) / 2;
m_sort(numbers, temp, left, mid);
m_sort(numbers, temp, mid+1; tight);
merge(numbers, temp, left, mid+1, right);
} | -
3 | | |
 void merge(int numbers[], int tempf], int Jeft, inf inid, int right)
{

291

inti, left_end, num_elemenits, tmp_pos;
left end=mid-1;

tmp_pos =left;

num_elements =right-left+1; |

while ((left <=left_end) && (mid <=right))

{
if (numbers[left] <=numbersfmid])
£ _
temp{tmp_pos] = numbers[left];
tmp_pos =tmp_pos +1;
left=left +1;
}
else
{
temp[tmp_pos] = numbers[mid];
tmp_pos =tmp_pos +1;
mid=mid +1;
}
} .
while (left <=left_end)
{ .
~ temp{tmp_pos] =numbersfleft];
left=left +1;
tmp_pos =tmp_pos + 1;
}
while (mid <=right)
{
temp[tmp_pos] =numbers[mid];
mid =mid +1;
tmp_pos =tmp_pos + 1;
H _
for (i=0; i <=num_elements; i++)
{
numbers[right] = temp{right];
right=right- 1;
1}

292

11.8 Bucket Sort

- Idea: suppose the values are in the range 0..m-1; start with m empty buckets numbered 0 to
m-1, scan the list and place element s[i] in bucket s[i], and then output the buckets in order
Will need an array of buckets, and the values in the list to be sorted will be the indexes to the

buckets no comparisons will be necessary

Exanmple:

S _

421 J2lol32]1 |a o
2

o >

O 1 2 3 4

O 1 > 3 4

o |o.|o 1 (1 [2 (22]2 [3 4

Bucket Sort Algorithm

Algorithm BucketSott(S)

{ values in S are between 0 and m-1)
forj < Otom-1do //initializembuckets

bfj] <0 _
fori<« 0ton-1do // place elements in their
b[S[i]}« b[S[i]] +1 / appropriate buckets
<0 |
forj« Otom-1do //placeelementsin buckets
forr< 1tob[jldo //backin$S
Slil«j
iei+1
Values versus entries

» _ Ifwe were sorting values, each bucket is just a counter that we incremient whenever a

value matching the bucket’s number is encountered
— 293

. If we were sorting entries according to keys, then each bucket is a queue

o Entries are enqueued into a matching bucket

. Entries will be dequeued back into the artay after the scan
Time complexity

. Bucket initialization: O(m)

+ . Fromarray to buckets: O(n)

. From buckets to array: O(n)

+ . Eventhough this stage is anested loop, notice that all we do is dequeue from each
bucket until they are all empty —>n dequeue opemtlons in all Since m will likely be small
compared to n, Bucket sortisO(n)

. Strictly speaking, time complexity is O (n+m)

11.9 Radix Sort

Radix sort is one of the linear sorting algorithms for integers. It functions by sorting the input
numbers on each digit, for each of the digits in the numbers. However, the process adopted by
this sort method is somewhat counteriniuitive, in the sense that the numbers are sorted on the
least-significant digit first, followed by the second—least significant dlglt and so on till the most
significant digit.
To appreciate Radix Sort, consider the following analogy Suppose that we & wish to sorta deck
of 52 playing cards (the different suits can be given suitable values, for exampie 1 for Diamonds,
2 for Clubs, 3 for Hearts and 4 for Spades). The 'natural’ thing to do would be to first sort the
cards according to suits, then sort each of the four seperate piles, and finally combine the four in
order. This approach, however, has an inherent disadvantage. When each of the piles is being
sorted, the other piles have to be kept aside and kept track of. If; instead, we follow the -
'counterintuitive' aproach of first sorting the cards by value, this problem is eliminated. After the
first step, the four seperate piles are combined in order and then sorted by suit. If a stable sorting
algorithm (i.e. one which resolves a tie by keeping the number obtained first in the input as the
first in the output) it can be easily seen that correct final results are obtained.

~ As has been mentioned, the sorting of numbers proceeds by sorting the least significant to most
significant digit. For sorting each of these digit groups, astable sorting algorithm is needed. Also,
the elements in this group to be sorted are inthe fixed range of 0 to 9. Both of these characteristics
point towards the use of Counting Sort as the sorting algorithm of choice for sorting on each digit
(If you haven't read the description on Counting Sort already, please do so now).

The time complexity of the algorithm is as follows: Suppose that the n input numbers have maximum
k digits. Then the Counting Sort procedure is called a total of k times. Counting Sortisa linear,
or O(n) algorithm. So the entire Radix Sort procedure takes O(kn) time. If the numbers are of
finite size, the algorithm runs in O(n) asymptotic time.

Example

Here isa simple example of the sort. Suppose the input keys are 34, 12,42, 32,44, 41,34, 11,
32, and 23. Four buckets are appropriate, since there are four different digits. The first pass
distributes the keys into buckets by the least significant digit, Half way tbrough the first pass, the
buckets contain the following, wherc each line is a bucket.

294 |

124232

3444

When the first pass is done, we have the following.
4111

12423232

23

34 44 34

We collect these, keeping their relative order: 41 11 12 42 32 32 23 34 44 34. Now we
distribute by the next most significant digit, which is the highest digit, and we get the following.

1112 . :

23

32323434

41 42 44 . :

When we collect them, they are in order: 11 1223 323234 34 41 42 44.
Self Learning Exercises

Choose the right soiting algorithm

- Given are several scenarios where sorting algorithms are applied. Choose an appropriate
sorting algorithm and explain why the algorithm was chosen:

1. Givenis a list of people sorted by their year of birth, Sort them by their resting pulserate,
(Hint: the higher the age the lower the resting puls rate)

2, Given is a cryptographic algorithm that facilitates a sorting algorithm as part of its

implementation. Which algorithms can prevent timing attacks? oy _ |
- 3.Givenisan alphabetic sorted list of students 6f the university of Innsbruck. Find an appropriate
algorithm for sorting the list by the first two digits (year) of the matriculation number,

—_
—

11.310 Summary

“The bubble sort works by comparing each item in the list with the item next to it, and swapping
them if required. The algorithm repeats this process until it makes a pass all the way through the
list without swapping any items .
‘The selection sort works by selecﬁng the smallest unsorted item remaining in the list, and then
swapping it with the item in the next position to be filled. The selection sort hasa complexity of
02, | |

“The insertion sort works just like its name suggests - it inserts each item into its proper place in
the final list. The simplest implementation of this requires two list structures™ the source list and
the list into which sorted items are inserted

“The heap sort is the slowest of the O(n log n) sorting algorithms, but unlike the merge and quick
sorts it doesn’t require massive recursion or multiple arrays to work. This makes it the most
attractive option for very large data sets of millions of items.

295

_+The quick sort is an in-place, divide-and-conquer, massively recursive sort. As a normal person
"~ would say, it’s essentially a faster in-place version of the merge sort. The quick sort algorithm is
simple in theory, but very difficult to put into code

“The merge sort splits the list to be sorted into two equal halves, and places them in separate
arrays. Each array is recursively sorted, and then merged back together to form the final sorted
list. Like most recursive sorts, the merge sort has an algorithmic complexity of O(nlog n).

“The heap sort works as it name suggests - it begins by building aheap out of the data set, and '

then removing the largest item and placing it at the end of the sorted array. After removing the
largest item, it reconstructs the heap and removes the largest remaining item and places it inthe
next open position from the end of the sorted array. This is repeated until there are no items left
in the heap and the sorted array is full. Elementary implementations require two arrays - one to
hold the heap and the other to hold the sorted elements.

11.11 Glossary

Bubble sort: Bubble sortisa simple sorting algorithm. It works by repeatedly stepping through
the list to be sorted, comparing each pair of adjacent items and swapping them if they are in the
wrong order.

Heap Sort: Heapsort is a comparison-based sorting algorithm, and is part of the selection sort
family. Although somewhat slower in practice on most machines than a good implementation of
quicksort, it has the advantage of a worst-case ?(n log n) runtime. Heapsort is an in-place algorithm,
but is not a stable sort.-

Radix Sort: radix sort is a sorting algorithm that sorts integers by processing individual digits, by
companngmdmdual digits sharing the same significant position.

Bucket Sort: Bucket sort, or bin sort, is a sorting algorithm that works by partltlonmg an array
into a number of buckets. Each bucket is then sorted individually, either using a different sorting
algorithm, or by recursively applying the bucket sorting algorithm.

" 11.12 Further Readings

1.Anany Levitin, “Introduction to the Design and Analysis of Algorithm™, Pearson Education
Asia, 2003.

2. T.H. Cormen, C.E. Leiserson, R.L. Rivestand C. Stein, “Introduction to Algonthms” PHI
Pvt. Ltd., 2001

- 3.Donald E. Knuth, The Art of Computer Programming Sorting and Seaxcmng Second Edition

(Readmg, Massachusetts: Addison-Wesley, 1998), ISBN (-201-89685-0
4.R. G. Dromey ,How to Solve It By Computer (Prentice Hall, ISBN 0-13-434001-9).
5.Computer Algorithms by Horowitz, Sahni, Rajasekaran. Freeman- VPHS Publications

11.13 Answers to the Self learning exerclses

1. Because the list is sorted by year of birth it is almost sorted by puls. Therefore msertlon sort

is a good-algorithm for this problem. L
2.A good solution would be heapsort becanse it provides stable runtime behaviour.

296

3. Agood solution would be bucket sort. Because the number of digits isknownin advance and

the number of buckets are at maximum 100. Al} Students
can be sorted within O(n).

11.14 Unit -End Questions
1. How many types of sorting is there list a compare chart of all sorting algorithms .

2. Write down the steps for bubble sort algorithm
3. What is the difference between selection sort and insertion sort.
4, How heap sort is implemented.
5. Whrite ashortnote on following
a. Quicksort b.Radixsort ¢. merge sort
Hokede

297

UNIT XII | -

ALGORITHM DESIGN TECHNIQUES

STRUCTURE OF THE UNIT

12.0 Objectives

12.1 Introduction

12.2. Divide and conquer strategy

123 Greedy Method
12.3,1 Minimal Spanning Tree
12.3.2 Knapsack Problem
12.3.3 Jobsequencing

. 12.3.4 Optimal Merge Pattern

12.4 ° Summary

12.5 Glossary

12.6 Further Readings

12.7 Answers toselflearning exercises

12.8 * Unit End Questions

12.1 Objectives

After completing this unit you will learn
Algorithem Désign Techniques,
Divide And Conquer Stratrgy, Greedy Method _
Jobsequencing Optimal merge pattrrns and minimal spanning trees efc.

12.1 Introduction

An algorithm is any set of detailed instructions which results in a predictable end-state from a
known beginning, Algorithms are only as good as the instructions given, however, and the result
will be incorrect if the algorithm is not properly defined.

For example an algorithm would be instructions for assembling a model airplane. Given the
starting set of a number of marked pieces, one can follow the instructions given to resultin a
predictable end-state: the completed airplane, Misprints inthe instructions, or a failure to prop-

erly follow a step will result in a faulty end product. How to design an algorithm ? Itis the most

imporatnt question. In this unit we will discuss basically two methods for algorithm development
: Divide and Conquer strategy and Greedy strategy and then described how problems can be
solved using theses algorithms and their complexity.

-12.2 Divide and Conquer strategy

Divide and conquer was a successful military strategy long before it became an algorithm deSign
paradigm. Generals observed that it was easier to defeat one army of 50,000 men, followed by
another army of 50,000 men than it was to beat a single 100,000 man army. Thus the wise

298

general would attack so as to divide the enemy army into two forces and then mop up one after
the other, . ' _ _
To use divide and conquer as an algorithm design technique, we must divide the problem into
two smaller sub problems, solve each of them recursively, and then meld the two partial solutions
into one solution to the full problem. Whenever the merging takes less time than solving the two
sub problems, we get an efficient algorithm. Merge sort is the classic example of a divide-and
conquer algorithm. It takes only linear time to merge two sorted lists of n/2 elements each of
which was obtained in O(nlog n) time. ' :
Divide and conquer is a design technique with many important algorithms to its credit, including
merge sort, the fast Fourier transform, and matrix multiplication algorithm. However, with the
exception of binary search.

This is a method of designing algorithms that (informally) proceeds as follows:

Given an instance of the problem to be solved, split this into several, smaller; sub-instances (of
the same problem) independently solve each of the sub-instances and then combine the sub-
 instance solutions so as to yield a soluti;m for the original instance. This description raises the

question:

By whit methods are the sub-instances to be independently solved?. _
;_;{;-.?"-_Ihe answcrtotlns question is central to thcfoncept of Divide & Conquer algorithm and is akey
. factorin gauging their efficiency, o :

- Consider the following: We have an algorithm, alpha say, which is known to solve all problem
_instances of size n in at most ¢ 0”2 steps (where ¢ is some constant). We then discover an
'+ algorithm, beta say, which solves the same problem by: : o
Dividing antinstance into 3 sub-instances of size n/?2.

SR S_blVeﬁ these 3 sub-instances.
e Combines the three sub-solutions taking d n steps to do this. L
- Suppose our original algorithm, alpila, is used to carry out the “solves these sub-instances', Let
" “T(alphaX n) =Running time of alpha ‘ S
- T(beta)(n)=Running time of beta

Then, |
T(alpha)(n)=cn2 (by definition of alpha)
But |
T(beta)(n) =3 T(alpha)(n/2) +d n

= (3/4)(cn”™2) + dn
Soifdn < (cn”2)/4 (i.e. d <cn/4) then beta is faster inan alpha
In particular for all large enough n, (0> 4d/c = Constant), beta is faster than alpha.

This realisation of beta improves upon alpha by just a constant factor, But if the problem size, n,
islargeenoughthen . .

n > 4d/c
n/2 > 4d/c

299 .

n/2MN> 4dfc

which suggests that using beta instead of alpha for the “solves these' stage repeatedly until the .

sub-sub-sub..sub-instances are of size n0 <= (4d/c) will yield a still faster algorithm.
So consider the following new algorithm for instances of size n |
procedure gamma (n : problem size } is
begin
{fn <=1n"-0 then
- Solve problem using Algorithm alpha;
else '
Split into 3 sub-instances of sizen/2;
Use gamma to sofve each sub-instance;
Combine the 3 sub-solutions; '

end if;
end gamma;
Let T(gamma)(n) denote the running time of this algorithm,
 en™2 ifn<=n0
T(gamma)(n) =

3T(garama)(n/2 y+dn otherwise

We shall show how relations of this form can be estimated later in the course. With these meth-
ods it can be shown that

T(gamma)(n)=0(n"{log3}) (F0@"{1.59..})
This is an asymptotic improvement upon algorithms alpha and beta.

- The improvement that results from applying algorithm gamma is due to the fact that it maximises
the savings achieved beta.

The (relatively) inefficient method alpha is applied only to "small” problem sizes.
The precise form of a divide-and-conqguer algorithm is characterised by:
* The threshold input size, n0, below which the problem size is not sub-divided.
* The size of sub-instances into which an instance is split.
* The number of such sub-instances,
* The algorithm used to combine sub-solutions.

In (II) it is more usual to consider the ratio of initial problem size to sub-instance size. In our
example this was 2. The threshold in (I) is sometimes called the (recursive) base value, In sum-
mary, the generic form of a divide-and-conquer algorithm is:

procedure D-and-C (n : input size) is
begin
ifn<=n0then-
Solve problem without further
sub-division;
300

¢lse
Splitintor sub-instances ' R
each of size n/k;
for each of the r sub-instances do
D-and-C (/k); |
Combine the rresulting
sub-solutions to produce
the?solution to the original problem;
end if}
end D-and-C;
Fibonocci Number
The Fibonacci numbers are given by following recurrence

(o n=0, |
F,=131 n=1, (14.4)
Fy 1+ Fn2 n> 2.

In this section we present a divide-and-conquer style of algonthm for oompm:mg Fibonacci
numbers. We make use of the following identities

0 _ n=1{0,

1 n=1,

(F) [nf2]]'2 + (¥ [ni2] -—1}2 n>2andnis odd,
{-FTnm)z + 2P 21 Flofa]1 w2 2and u it even.

~ Following program is to find out the fibonocci of the given number.

Fp= (14.5)

mnaigned int ‘Fibonacci {(unsigned int n)

1

r {

3 if (n==01]l n=1)

. roturn n}

: elze

. {

y maigned int const a = Fibonacei {(n + 1) / 2);
. unaigned int conzt b = Fibonacci ({n + 1) / 2 = 1);
3 i:f(n142=l>}

" raturnat(n-l-z#h);

u alze

» return a + A+ b * b;

» T

u }

301

Program: Divide-and-Conquer Example-—Computing Fibonacci Numbers

To determine a bound on the running time of the Fibonacci routine in Program we assume that

T(n)is anon-decreasiilg function.ie. T(m) > T{m — Vgoran > 1 Therefore

T([nf2]) > 7(r“/ 2] - 1JAlli10ugh the program works correctly for all values of n, it is

convenient to assume that n is a power of 2. In this case, the running time of the routine is
upper-bounded by T(n) where :

_Jofy n<l,
Tin} = {21*{«:/2} +0(1) n>1. (146)

Equation is easily solved using repeated substitution

M(n/2) +1
_ T(nf4)+14+2
X = 8T(nf8)+1+2+4

T |

I

= T(n/o4) + E 2
' =0

; aT(l}+n~1 (m=2%

-

Thus, T(n)y=2n-1=0(n).

Binary Search

Binary search is a fast algorithm for searching in a sorted array S of keys. To search for key q, we

-compare q to the middle key S[n/2]. If q appears before S[n/2], it must reside in the top half of
our set; if not, it must reside in the bottom half of our set. By recursively repeating this processon
the correct half, we find the key in a total of [logn] comparisons, a big win over the n/2 we
expect with sequential search. '

This much you probably know. What is important is to have a sense for just how fast binary
searchis. _ '

a popular children’s game, where one player selects a word, and the other repeatedly asks true
false questions in an attempt to identify the word, If the word remains unidentified after 20
questions, the first party wins; otherwise, the second player takes the honors. In fact, the second
player always has a winning strategy, based on binary search. Given a printed dictionary, the
player opensiit in the middle, selects a word (say “move”), and asks whether the unknown word
is before “move” in alphabetical order. Since standard dictionaries contain 50,000 to 200,000
words, we can be certain that the process will always terminate within twenty questions.

Other interesting algorithms follow from simple variants of binary search. For example, suppose
we have an array A consisting of a run of 0s, followed by an unbounded run of 1’s, and would

302

" like to identify the exact point of transition between them. Binary search on the array would
provide the transition point in [log n] tests, if we had a bound n on the number of elements in the
array. In the absence of such a bound, we can test repeatedly at larger intervals (A[1], A[2],
A[4],A[8], A[16],) until we find a first non-zero value, Now we have a window containing the
target and can proceed with binary search.

This one sided binary search finds the transition point pusing at most comparisons, regardless of
how large the array actually is. One-sided binary scarch is most useful whenever we are looking
for a key that probably lies close to our current position.

Consider the following problem: one has a directory contammg aset of names and a telephone
number associated with each name.

The directory is sorted by alphabetical order of names. It contains n entries which are stored in
2 arrays:

names (1..n) ; numbers (1..n)
Given aname and the value n the problem is to find the number associated with the name.

We assume that any given input name actually does occur in the dlrectory, in order to make the
exposition easier.

The Divide & Conquer algorithm to solve this problem is the simplest example of the paradigm.
Itis based on the following observation

Given a name, X say,

X occurs in the middle place of the names array

Or '

X occurs in the first half of the names array. (U)

Or _

X occurs in the second half of the names array. (L)

U (respectively L) are true only if X comes before (respectively after) that name stored in the
middle place.

This observation leads to the following algonﬂlm:
Tunction search (X : umhe;
' start, finish : integer)
return integer is
middle : infoger;
bcgin .
- middle :=(start+Hfinish)/2;
ifnames(middle)=x then
' retum numbers(middle);
elsif X<names(middle) then
return search(X,start,middle-1);
else -- X&ginames(middle)
return search(X,middle+1 finish);

303

.endif;
- end search;
- Divide-and-conquer recurrences,

Suppose that a recursive algorithm divides a problem of size n into a parts, where each sub-
problem is of size n/b. Also suppose that a total number of g(n)extra operations are needed in
the conquer step of the algorithm to combinethe solutions of the sub-problems into a solution
of the original problem. Let f(n) be the number of operations required to solve the problem of
size n.Then fsatisfies the recurrence relation

flu)=a fn)+gm) B

and it is called divide-and-conquer recurrence relation,

12.3 Greedy Algorithms

This is another approach that is oftenused to design algorithms for solvmg

Optlmmatmn Problems ,

In contrast to dynamic programming, however,

* Greedyalgorithms do not always yield a genuinely optimal solution. In such cases the
greedy method is frequently the basis of a heuristic approach.

. Even for problems which can be solved exactly by a greedy algorithm, establishing the
correctness of the method may be a non-trivial process.

In order fo give a precise description of the greedy paradigm we must ﬁrst.conside_r amore
detailed definition of the environmentin which typical optimisation problems occur. Thus in an
optimisation problem, one will have, in the context of greedy algonthms, the followmg

. A collection (set, list, etc) of candidates, e.g. nodes, edges ina g;raph ete.

. A setof candidates which have already been ‘used’.

. A predicate (solution) to test whether a given set of candidates give a solution (not
necessarily optimal).

. A predicate (fea51ble) to testif a set of candldates canbe extended toa (not necessar-
ily optimal) solution.

. A selection function (select) which chooses some candidate which h as not yet been
used.

. An objective function which assigns a value to a solution.

In other words: An optimisation problem involves finding a subset, S, from a collection of
candidates, C; the subset, S, must satisfy some specified criteria, i.e. be a solution and be such
that the objective function is optimised by S. ‘Optimised’ may mean

304

Minimised or Maximised
depending on the precise problem being solved. Greedy methods are distinguished by the fact

that the selection funciion assigns a numerical value to each candidate, x, and chooses that
candidate for which:

SELECT(x)is largest
or SELECT(x)issmallest |
All Greedy Algorithms have exactly the same general form. A Greedy Algorithm for a particu-
lar problem is specified by describing the predicates ‘solution’ and ‘feasible’; and the selection
function ‘select’.
Consequently, GreedyAlgorithms are often very easy to design for optimisation problems.
The General Form of a Greedy Algorithm is '
function select (C : candidate_set) return candidate;
function solution (S : candidate_set) return
boolean;
function feasible (S : candidate_set) return
boolean;
function greedy (C : candidate_set) return candidate_set is
x : candidate;
S: candidafe_sct;
S=1{} -
while (not solution(8)) and C /= {} loop
x =select(C);
C=C-{x};
if feasible(S union {x}) then
S :=Sunion {x };
end if;
end loop;
if solution(S)then
return S; o
else
return es;
endif; -
enc_l greedy;
Asillustrative examples of the greedy paradigm we shall describe algorithms for the following
problems:
Minimal Spanning Tree.
I(pteger Knapsack.)
o " ‘ 305

_FOfﬂle first of these, the algorithm always returns an optimal solution. -
- e N

12.3:1 Minimal Spanning Tree
- The inputs for this problem is an (undirected) graph, G(V,E) in which each edge, ¢ in E, has
an associated positive edge length, denoted Length(¢). '

Theoutputisaspamﬁng'n'ee,T(V,F)ofG_(\'f,E)suchthatthetotaledgelengﬂyiSminimal
. amongst all the possible spanning trees of G(V;E). o

Note: An n-node tree, T is a connected n-node graph with exactly n-1 edges.

T(V,F)is a spanning tree of G(V.E) if and only if Tis a tree and the edges in F are a subset
oftheedgesin E. : ' '

Interms of general templaic given previously:
~ “The candidates are the edges of G(V,E). _
“Asubset of edges, S, is a solution if the graph T(V,S) is a spanning tree of G(V.E).

‘Asubset of edges, S, is feasible if there is a spanning tree T(V,H) of G(V.E) for which S sube -

H. .
“The objective function which is fo be minimised is the sum of the edge lengths in a solution,
“The select function chooses the candidate (i.c. edgeyihose length is smallest (from the
remaining candidates). _
' The full algorithm, discovered by Kruskal, is:
functionmin_spanning_tree (E : edge_set) _ .
return edge_set is
S:edge set;
e:edge;
begin
S =(es;
while (H(V,S) not a tree)
and E /= {} loop
¢:= Shortest edge inE;
E=E- {e};
if H(V, S union {e}) is acyciic then
S =S union {e};
end if}
end loop;
return S;
endmin_spanning_ tree;
Before proving the comrectness of this algorithm, we give an example of it running.
The algorithm may be viewed as dividing the set of nodes, V, into n parts or components:
{1}:{2};...; {n}
Anedge is added to the set S if and only if it joins two nodes which belong to different com-
306

ponents; if an edge is added to S then the two components contatning its endpoints are coa-
lesced into a single component. :

Inthis way, the algorithm stops when there is just a single component
{1,2,.,n}
.

i}i%%&ﬂ‘?ﬁ bR SN iy W} P A s o Eﬁ@% ni L m@hﬁmw‘i e
Jlteration|Edge | _ Components

50 1} (2} {3): A4); {5}; {6}; {7}
i LYY (3): {4y {5); {6); {7} |
42,3Y1(1,2,3}; {4); {5); {(6}; {7} _

3 KaSH(1,2,3) (4,5 {63; ()

Y9

W H67y[1,2,3}); {4,5); 6,7y]
5 143,234,567} o
6 12,5} Not included (adds cydie) |
7 41234567

How do we know that the resulting set of edges form a Minimal Spanning Trec?

In order to prove this we need the following result,

For G(V.E) as before, a subset, F, of the edges E is called promising if F is a subset of the
edges ina minimal spanning tree of G(V.E).

Lemma: Let G(V,E) be as before and W be a subset of V.

LetF, a subset of E be a promising st of edges such that no edges in F has exactly one
endpoint in W.- ' N
If {p,q} in E-F is a shortest edge having exactly one of p orq in W then: the set of edges F

307

umon{ {p.} } is promising.

Proof: Let T(V,H) be a minimal spanning tree of G{V E)suchthatFisa subset of H. Note that
T exists since F is a promising set of edges.

Consider the edge e = {p,q} of the Lemma statement.

If e is in H then the result follows immediately, so suppose that ¢ is not in H. Assume that p is
in W and q is not in W and consider the graph T(V, H union {e}).

Since T is atree the graph T (which contams one extra edge) must contain a oycle that in-
cludes the (new) edge {p,q)-

Nowsince pisin Wand qis not in W there must be some edge, e’ = {p’,q’} inH whichis
also part of this cycle and is such that p’ is in W and q” is not in W,

\ _
Now, by the choice of ¢, we know that
Length (¢)\<= Length (¢’)
Removing the edge ¢’ from T gives a new spanning free of G(V;E).
The cost of this tree is exactly
cost(T)- Length(e’) + Length(e)
and this is <=cost{T).
T is a minimal spanning tree so either e and ¢ have the same length or this case cannot occur.

It follows that there is a minimal spanning tree containing F union {e} and hence this set of
edges is promising as claimed.

Theorem: Kruskal’s algonthm always produces aminimal spanning tree.

Proof: We show by inductiononk>=0-the number of edges in S at each stage - that the _
setofedgesin S is always promising.

Base (k= 0): $= {} and obviously the empty set of edgesis promising

Step: (<=k-1 implies k): Suppose S contains k-1 edges. Lete= {p,q} be the next edge that
would be added to S. Then:

pand q lie in different components
{p,q} is ashortest such edge.

Let C be the component in which p lies. By the inductive hypothesis the setSis promising.
The Inductive Step now follows by invoking the Lemma, with W =Set of nodesinCand F=
S. ' ' :

L. | 308

1232 | Integer Knapsack
In various forms this is a frequently arising optimisation problem.
Input: A set of items U= {ul,u2,...,uN}
each item having a given size s(vi) and value v(ui).
A capacity K.

Output: A subset B of U such that the sum overuin B of s(u) does not exceed K and the sum
overuin B of v(u)is maximised.

Using a greedy approach, however, we can ﬁnd asolution whose value is at worst 1/2 of the

optimal value.
The items, U, are the candidates.

A subset, B, is a solution if the total size of B fits within the given capacity, but addmg

any other item will exceed the capacity.
The objective function which is to be maximised is the total value.
The selection function chooses that item, ui for which
v(ui}

s(ui)
ismaximal
These yield the following greedy algonthm which approximately solves the integer knapsack
problem.
fanction knapsack (U : item_set;

K : integer)
return item_set is >
C,S:item_set;
X:item;
begin
C=U;S:={};

while C/= {} loop

X :=Item uin C such that

v(u)/s(u) is largest;
C:=C-{x};
if (sum over fuin 8} s(u))+ s(x) <=K then
S := S union {x};

end if}
end loop;
return S;

end knapsack; -

309

A very simple example shows that the method can fail to deliver an optimal solution. Let
U={ul,u2,u3,.,ul2}
s(ul)=101 ; v(ul) =102
s(ui) = v(ui)=10 2<=i<=12
K=110
Greedy solution: S = {ul}; Value is 102.
Optimal solution: $ =U - {ul}; Valueis 110.
12.3.2 JobSequencing
njobs, $={1,2, ..., n}, each job i has a deadline d >0 and.a profit p>> 0. We need one unit of
time to process each job and we can do at most one job each time. We can eain the profit p, if

jobiis completed by its deadline.

i 1 2 3 4 5
p. |20 |15 [10 |5 1
da, |2 2 1 3 3 |

The optimal solution = {1, 2, 4}.

The total profit =20 + 15 + 5 =40.

Step 1: Sort p, into nonincreasing order. After sorting p, °p,* p,* ... > Py
Step2: Add the next job i to the solution set if i can be completed by iis deadline, Assign i to ime
slot [r-1, 1], where r is the largest integer such that 1 £1£ d, and [r-1,] is free.

Step 3: Stop if all jobs are examined. Otherwise, go tostep 2. -

Time complexity: 0,119

i P d, ‘
1 20 2 assign to [1, 2]

2 15 2 assign to [0, 1]

3. 10 1 reject

4 5 3 assign to [2, 3]

5 1 3 reject

solution= {1, 2,4}
total profit=20+ 15+ 5=40
c.g

310 y

i P; d, .
i 20 2 | assign to [1, 27
2 15 2 assign to [0, 1]
3 10 11 reject ‘
<4 5 3 assign to [2, 3]
5 1 3 reject

solution= {1, 2, 4}
total profit=20+15+5=40
12.3.4 Optimal Merge Patterns
* Input: N sorted arrays of length L{1],L[2]....L{n] _
* Problem: Ultimateley, to merge the arrays pairwise as fast as possible. The problem is to
determine which pairto merge everytime,
*Method (the Greedy method): The selection policy (of which best pair of arrays to merge
next) is to choose the two shortest remaining arrays.
* Implementation: N _ : S
o Need a data structure to store the lengths of the arrays, to find the shortest 2 arrays at
any tifne, to delete those lengths, and insert in a new length (for the newly merged array),
0 In essence, the data structure has to support delete-min and insert. Clearly, a min-
 heapisideal. _ :

" oTime complexity of the algorithm: The algorithm iterates (n-1) times. At every iteration
two deletk—mins and one insert is performed. The 3 operations take O(logn)ineach
iteration. _ ' o

o Thus the total time is O(nlog n) for the while loop + O(n) for initial heap construction.
o Thatis, the total time is O(nlog n). ' S ' '

Self learning exercises ‘ | :

1. Estimate the number of comparisons by a binary search. -
2 Estimate the number of comparisons needed to find the max and the min elements of the list
withnelements, . ' ' ' |
3.Job sequencing with deadlines using greedy method find an optimal solution to the problem -
of job sequncing with deadline where n=4,(p1,p2,p3,p4)~(100,10,5,27)and
(d1,d2,43,d4)=(2,1,2,1) | -

4, S

12.4 Summary

’ - Many recursive algorithms take a problem with a given input and divide it into one or
more smaller problems. This reduction is repeatedly applied until the sohtions of smaller problems
can be found quickiy. This procedure is called divide-and-conquer algorithm,

. Greedy algorithms build up a solution piece by piece, always choosing the next piece
that offers the most obvious and immediate benefit, Although such an approach can be disastrous
for some computational tasks, there are many for which it is optimal.. -

12.5 Glossary |
Knapsack Problem: The knapsack problem or rucksack problem is a problem in combinatorial
S 311 |

optimization: Given a set of items, each with a weight and a value, determine the number of each
item to include in a collection so that the total weight is less than a given limit and the total value
is as large as possible. It derives its name from the problem faced by someone who is con-
strained by a fixed-size knapsack and must fill it with the most useful items.

Binary Search:In computer science, a binary search is an algorithm for locating the position of
an element in a sorted list

_ Greedy algorithm: A greedy algorithm is any algorithm that follows the problem solving
metaheuristic of making the locally optimal choice at each stage with the hope of finding the
global optimum.

12.6 Further Readings

1.Anany Levitin, “Introduction to the Design and Analyms of. Algonthm” Pearson Education
Asia, 2003,

2.T.H. Cormen, C.E. Lelserson,RL Rivest and C. Stein, “Introduction toAlgonthms” PHI
Pvt. Ltd., 2001

3.Sara Baase and Allen Van Gelder, “Computer Algorithms Introducnon to Design and
Analysis”, Pearson Education Asia, 2003.

4. A V.Aho, J.E. Hopcroft and J.D.Ullman, “The Des:gn and Analysis Of Computer
Algorithms”, Pearson Education Asia, 2003,

5.S. Dasgupta, C.H. Papadimitriou, and U. V. Vazirani, Algorithms. May 2006.
6.Horowitz, Sahni, Rajasekaran,Computer Algorithms. Freeman- VPHS Publications

12.7 Answers to self learning exercises

1.we know that f{n)=f(n/2)+2 for evenn, if f{n) is the number of comparisons needed to
~ check ifan element x is in a list of size n. witha=1, b=2, ¢=2, itis clear that f{in)is

Otlogn)

2.we know that fin)=2f(n/2)+2 for evenn, if f{n) is the number of comparisons needed to find a

Yy epeY
max and min in a list of size n. with a=2, b=2, ¢=2, itis clear that f{n) is Q:(?.‘ '-?".?f}mﬂ(n).

3.Problem: n jobs, S={1, 2, , n}, each job i has a deadline di ? 0 and a profit pi ? 0. We need one
unit of time to process each job and we can do at most one job each time. We can earn the profit
piifjobiis completed by its deadline. '

The optimal selution= {1, 2, 4}.

The total profit =20+ 15 + 5 =40. | | >
Algorithm:

Step 1: Sort pi into nonmcleasmg order. After sorting p1 ? p2 2 p3 2 2 pi.

Step 2: Addthenextjob1toﬂ1esolut10nset1flcanbecompletedby1tsdeadlme Assngmtotlme
slot {r-1, r], where ris the largest integer suchthat 1 7 r ? di and fr-1, 1] is free.

Step 3: Stop if all jobs are examined. Otherwise, go to step 2.

A

312

12.8 Unit End Questionns |

1. What is divide and conquer algotithm explain it.

2. Explain greedy Algorithm.
3. What is Knapsack problem,
4. Explain the minimal spanning tree,

fedk__

313

UNIT X1
DYNAMIC PROGRAMMING -

. STRUCTURE OF THE UNIT

13.0 Objective

13.1 Introduction - | |
13.2 DynamicProgramming in Computer Programming
13.3 Matrix Chain Multiplication

13.4 Branch and Bound Method

13.5 Travelling Salesman Problem

13.6 Summary ,

13.7 Glossary

13.8 Further Readings _

13.9 }%mwersto Self Learning Exercises

13.10 UnitFnd Questions

13.0 Objectives: |
Afler completing this unit you would be able to understand the following points

History of Dynamic Programming

Implementation of Dynamic Programming in Computer and other fields.

Top Down and Bottom Up Approach

‘Balanced Matrix _

Applications of Dynamic Programming

Matrix Chain Multiplication

Branch and Bound Method

Applications of Branch and Bound Algorithm
~ Travelling Salesman Problem

13.1 Introductio_n

L ve will discuss the advance topics, which includes the implementation of Dynamic
g, This unit will describe the implementation of matrix chain multiplication, branch
rorithm and travelling salesman problem. These common problems are discussed in
€ ic programming. _ :
rience and mathematics, dynamic programming is a method through which
sms are solved by breaking them down into simpler steps. It is applicable to

314

", problems that exhibit the properties of' overlapping subproblems and optimal substructure . When
- applicable, the method takes much less time than naive methods. Bottom-up dynamic programming

~ simply means storing the results of certain calculations, which are then re-used later because the
same calculation is a sub-problem ina larger caleulation, Top-down dynamic programming involves
formulating a complex calculation as a recursive series of simpler calculations.

History B

Richard Bellman originally used the term in the 1940s to describe the process of solving problems
where one needs to find the best decisions one after another, By 1953, he had refined this to the
modern meaning, which refers specifically to nesting smaller decision problems inside larger
decisions, and the field was thereafter recognized by the IEEE as a systems analysis and engineering
- topic. Bellman’s contribution is remembered in the name of the Bellman equation, a cendral result
of dynamic programming which restates an optimization problem in recursive form. _
Initially the word “programming” in “dynamic programming” had no connection to computer
programming, and instead came from the term “mathematical programming” - a synonym for
optimization. However, now many optimization problems are best solved by writing a computer
program that implements a dynamic programming algorithm, rather than carrying out thousands
oftedious calculations by hand. Some of the examples given below are illustrated using computer
programs. '

Overview

Figure 13.1 : Path Graph

Figure 13.1is to Find the shortest pathina graph using optimal substructure; a straight line
indicates a single edge; a wavy line indicates a shortest path between the two vertices it connects
(other nodes on these paths are not shown); the bold line is the overall shortest path from start to

goal. - _ _

Dynamic programming is both acomputer programming method, and a mathematical optimization
method. Inboth contexts, it is used for simplifying 2 complicated problem by breaking it down
into simpler subproblems in a recursive manner, While some decision problems cannot be taken
apart this way, decisions that span several points in time do often break apartrecursively; Bellman
called this the “Pringciple of Optimality”. In computer science, a problem which can be broken
down recursively is said to have optimal substructure.

I subproblems can be nested recursively inside larger problems, so that dynamic programming
methods are applicable, then there is a relation between the value of the larger problem and the

315

" exquiation.

" Dynamic programming in mathematical optimization

Tn tefms of mathematical optimization, dynamic programming usually referstoa simplification of
a decision by breaking it down into a sequence of decision steps over time. This is done by
defining a sequence of value functions V1,V2,...Vn, with an argument y representing the
state of the system at times i from 1 ton. The definition of Vn(y)is the value obtained in state y
at the last time n. The values Vi at earlier times i=n-1,n-2,.. .,2,1 can be found by working
backwards, using a recursive relationship called the Bellman equation. For i=2,...n, Vi-1 atany
state y is calculated from Vi by maximizing a simple function (usually the sum) of the gain from
decision i-1 and the function Vi at the new state of the system if this decision is made. Since Vi
has already been calculated, for the needed states, the above operation yields Vi -1 for all the
needed states. Finally, V1 at the initial state of the system is the value of the optimnal solution. The

optimal values of the decision variables can be recovered, one by one, by tracking back the

calculations already performed.

13.2 Dynamic programming in computer programming

As acomputer programming method, dynamic programming is mainly used to tackle problems
that are solvable in polynomial time. There are two key atiributes that a problem must have in
order for dynamic programming to be applicable: optimal substructure and overlapping
subproblems.

Optimal substructure means that the solution toa given optimiza’tibn_ problem can be obtained by
the combination of optimal solutions to its subproblems. Consequently, the first step towards

devising a dynamic programming solution is to check whether the problem exhibits such optimal
substructure, Such optimal substructures are usually described by means of recursion, For example,
given a graph G=(V,E), the shortest path p from a vertex u to-a vertex v exhibits optimal
substructure: take any intermediate vertex w on this shortest path p. If p s truly the shortest path,
then the path p1 from u to w and p2 from w to v are indeed the shortest paths between the
corresponding vertices . Hence, one can easily formulate the solution for nding shortest paths in
a recursive manner, which is what the Bellman-Ford algorithm does. f

Overlapping subproblems means that the space of subproblems must be small, any recursive
algorithm solving the problem should solve the same subproblems over and over, rather than
generating another new subproblems. For example, consider the recursive formulation for
generating the Fibonacci series: Fi = Fi-1 +Fi-2, with base case F1=F2=1. ThenF43=F42+
F41, and F42 =F41 +F40. Now F41 is being solved in the recursive subtrees of both F43 as
' well as F42. Eventhough the total number of subproblems is actually small (only 43 of them), we
end up solving the same problems over and over if we adopt a naive recursive solution suchas
this. Dynamic programming takes account of this fact and solves each subproblem only once.

This can be achieved in any of the two ways:
(1)Top-down approach, -
(2)Bottom-up approaéh. :

Top-down approach: This is the direct fall-out of the recursive formulation of any problem.
If the solution to any problem canbe formulated recursively using the solution to its subproblems,
and ifits s{ubproblems are overlapping, then one can easily memoize or store the solutions to the

316

val;‘les of the subproblems. In the optimization Jiteraiure this relationship is called the Bellman |

'subproblems in a table. Whenever we attempt to solve a new subproblem, we first check the
table to see if it is already solved. If a solution has been recorded, we can use itdirectly, otherwise
we solve the subproblem and add its solution to the table.

Bottom-up approach: This is the more interesting case. Once we formulate the solution
toaproblem recursively as in terms of its subproblems, we can try reformulating the problem in
abottom-up fashion: try solving the subproblems first and use their solutions to build-on and
azrive at solutions to bigger subproblems. This isalso usually done in a tabular form by iteratively
generating solutions to bigger and bigger subproblems by using the solutions to small sabproblems.
For example, if we already know the values of F41 and F40, we can directly calculate the value
of F42, '

There-are some programming languages that can automatically memoize the result of a function
+ call witha particular set of arguments, in order to speed up call-by-name evaluation (this mechanism
isreferred to as call-by-need), Some languages make it possible portably (e.g. Scheme, Common
Lisp or Perl), some need special extensions (e.g. C++). Some languages have automatic
memoization built in. In any case, this is only possible fora referentially transparent function,

Examples: Computer algorithms
Fibonacci sequence

Here is aimplementation of a function finding the nth member of the Fibonacci sequence, based
i onthe mathematical definition: : —

function fib(n)
ifn=0return 0
ifn=1return 1 -
- return fib(n “ 1) + fib(n “ 2) _
Notice that if we call, say, fib(5), we produce a call tree that calls the function on the same vajue
many different times:
1 fib(5)
2 fib(4)+fib(3)-
J30 (fib(3)+ fib(2)) + (fib(2) + fib(1))
4. ((fib2)+1fib(1)) +(fib(1) + ib(0))) + ((b(1)+ fib(0)) + fib(1))
((GEb(1) + £ib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

In particular, fib(2) was calculated three times from scratch, In larger examples, many more
values of fib, or subproblems, are recalculated, leading to an exponential time algorithm.

Now, suppose we have a simple map object, m, which maps cach value of fib that has already _
been calculated to its result, and we modify our function to use it and update it. The resulting
function requires only O(n) time instead of exponential time:

varm:=map(010,1!1)
" fanction fib(n)
if map m does not contain keyn
m(n] := fib(n “ 1)+ fib(n “ 2)
return m[p‘]

“o

317

Technique of saving values that have already been calculated is called memoization; thisis called

top-down approach, as we had first broken the problem into subproblems and then calculate
and store values.

In bottom-up approach we calculate the smaller values of fib first, then build larger values from
them. This method also uses O(n) time since it contains a loop that repeats n *“ 1 times, however
it only takes constant (O(1)) space, in contrast to the top-down approach which requires O(n)
space to store the map.

function fib(n)
var previousFib = 0, currentFib =1
ifn=0
return O _ -
elseifn=1
return 1
repeatn “ 1 times
~ -var newFib := previousFib + currentF ib
: previousFib := currentFib
currentFib = newFib
return currentFib

In both these above mentioned examples, we only calculate fib(2) one time, and then use itto
calculate both fib(4) and £ib(3), instead of computmg it every time either of them is evaluaied,

A type of balanced (-1 matrix

" Consider the problem of assigning values, either zero or one, to the positions of an n x n matrix,
n even, so that each row and each column contains exactly n / 2 zeros and n/ 2 ones. For
example, when n= 4, three possible solutions are:

+----+ Fannant F =t
10101] [0011] 11100
}1010Jand 10011| and [0011]
10101] 11100 11100}
11010] - |1100] 10011]
+----++ L A o Fewnmnt

We ask how many different asmgnments there are for a given n. There are at least three poss:ble
approaches: brute force; backtracking, and dynamic programming. Brute force consists of

checking all assignments of zeros and ones and counting those that have balanced rows and
T

columns (n/ 2 zeros and n/ 2 ones). As there are(f2) possible assignments, this strategy

is not practical except maybe upton=6. Backtrackmg for this problem consists of choosing
some order of the matrix elements and recursively placing ones or zeros, while checking that in
every row and cohumn the number of elements that have not been assigned plus the number of
ones or zeros are both at least n/ 2. While more sophisticated than brute force, this approach will
visit every solution once, making it impracticable for n larger than six, since the number of solutions

318

isalready 116963796250 forn= 8, as we shall see. Dynamic programming makes it possible to
count the number of solutions without visiting themall, *

We consider }. w y.boards, where 1 < k < nwhosekrows containn/2 zerosandn/2

ones. The function f't6 which memoization is applied maps vectors of n pairs of integers to the
number of admissible boards (solutions). There i one pair for each column and its two components
indicate respectively the number of ones and zeros that have yetto be placed in that column. We

seek the value of f((n/2,1n/2),(n/2,n/2),. .. (n/2,7n/2))n arguments or one

vector of n elements). The process of subproblem creation involves iterating over every one of

n
(n /z)pqssible assignments for the top row of the board, and going through every column,

subtracting gne from the appropriate element of the pair for that column, depending on whether
the assignment for the top row contained a zero or a one at that position. Ifany one of the reseﬁts
isnegative, then the assignment is invalid and does not conlribute to the set of solutions (recursion
stops). Otherwise, we have an assignment for the top row of the board and recursively compute
thenumber of solutions to the remaining board, adding the numbers of solutions for every admissible
assignment of the top row and returning the sum, which is being memoized. The base case is the
trivial subproblem, which occurs for a board. The number of solutions for this board is either
zeto or one, depending on whether the vectoris a permutation of n/2 (0,1)andn/2 (1,0) pairs
ornot.

For example, in the two boards shown above the sequences of vectors would be
(2E22.902,2) 222.22.22,2) k =4
¢ I 0 1 0 0 1 1

LYEH1LY@L) (1L,DA,2)E 1.) &1y k=3
I 0 1 0 0 0 1 1t

(LDAL DA, DA D) (0,2)(0,2)(2,0)(2,0) k=2
01 0 |1 1 1 0 0

©. 1)(1,0) ©.1) (1; 0) (0, 1)(0,1)(1,00(1,0) k=1
I 0 1 0 1 1 0 0

((0,0)(0,0)(0,0) (6, 0)) ((0,0) (0, 0), (0, 0) (0, 0))
The number of solutions (sequence A058527 in OEIS)is
Checkerboard

Consider a checkerboard with n x n squares and a cost-function ¢(i, j) which returns a cost
associated with square ij (i being the row, j being the column). For instance (ona 5 x 5
checkerboard), :

5 6 7 4 7 3
4 7 6 1 1

Thusc¢(l,3)=5 ' _ _

Let us say you had a checker that could start at any square on the first rank (i.e., row) and you
wanted to know the shortest path (sum of the costs of the visited squares are at a minimum) to
get to the last rank, assuming the checker could move only diagonally left forward, diagonally
right forward, or straight forward, That is, a checker on (1,3) can move to (2,2), (2,3) or 2.4).

3

XXX

o A

o
123435

This problem exhibits optimal substructure. That s, the solution to the entire problem relieson
solutions to subproblems. Let us define a functionq(i, j) as

q(i, j)=the minimum cost to reach square (i, j)

If we can find the values of this function for all the squares at rank n, we pick the minimum and
- follow that path backwards to get the shortest path.

Note that q(i, j) is equal to the minimum cost to get to any of the three squares below it (since
those are the only squares that can reach it) plus c(j, j). For instance: '

5

A
BCD

T W A

12345 |
' Ndw lets redefine mincost function
function minCost(i, j).
ifj<lorj>n
return infinity
elseifi=>5
return c(i, j)
else
return min(minCost(i+1, j-1), minCost(i+1, j), minCost(i+1, }+1)) *+¢(i,)

Tt should be noted that this function only computes the path-cost, not the actual path. We will get
to the path soon. This, like the Fibonacci-numbers example, is horribly slow since it spends

320

mountains of time recomputing the same shortest paths over and over. However, we can compute
~ itmuch faster in a bottom-up fashion if we use a two-dimensional array q[i, j] instead of a
function. Why do we do that? Simply because when using a function we recompute the same
path over and over, and we can choose what values to compute first,

We also need to know what the actual path is. The path problem we can solve using another
array pli, j], a predecessor array. This array basically says where paths come from. Consider the
following code: - _

function oomputcShortéstPthAxrays()
forxfromlton
qil, x] =e(l, x)
foryfrom 1ton
qly,0] :=infinity
q[y, n+ 1] := infinity
foryfrom2ton
forxfrom 1 ton
m = min{q[y-1, x-1}, q[y-1, x], q[y-1, x+1])
qfy, x] =m+c(y, x)
if m =q[y-1, x-1]

ply, x}:=-1
else if m = qfy-1, x]
ply,x] =0
else
pl,x]=1
Now the rest is a simple maiter of finding the minimum and printing it.
function compuicShortestPath()
computeShortestPathArrays().
minIndex =1

min:=q[n,1] -
forifrom 2 ton
if g[n, i] <min
minlndex :=i
min = g[n, i
printPath(n, minIndex)
funetion printPath(y, x)
print(x)
print(“<-") N
ify=2
print(x + ply, x])
321

else _
printPath(y-1, x + [y, x) . \
Sequence alignment
In genetics, sequence alignment is an important application where dynamic programming is
essenttial. Typically, the problem consists of transforming one sequence into another using edit

operations that replace, insert, or remove an element. Each operation has an associated cost,
and the goal is to find the sequence of edits with the lowest total cost.

The problem can be stated naturally as a recursion, a sequence A is optimally edited into a
sequence B by either:

inserting the first character of B, and performing an optimal alignment of A and the tail of

1.
B
2. deleting the first character of A, and performing the optimal alignment of the tail of Aand

3. replacing the first character of A with the first character of B, and performing optimal
alignments of the tails of Aand B. '

The partial alignments can be tabulated ina matrix, where cell (i) contains the cost of the optimal
alignment of A[1..i] to B[1..j]. The costin cell (i) can be calculated by adding the cost of the
 relevant operations to the cost of its neighboring cells, and selecting the optimum.
Algorithms that use dynamic programming ll _
Backward induction as a solulion method for ﬁ'uﬁte-horizon discrete-time dynamic
- optimization problems . S ,
" Method ofundetermined coefficients i be used to sofve the Bellman equition ininfinite-
horizon, discrete-time, discounted, time-invariant dynamic optimization problems;

Many string algorithms including longest common subsequence, longést increasing
subsequence, longest common substring, Levenshtein distance (edit distance).

Many algorithmic problems on graphs canbe solved”e_fﬁéiehﬂy_/ for graphs of bounded
trecwidth or bounded clique-width by using dynamic programming on a tree decomposition of
the graph. | : : _

The Cocke-Younger-Kasami (CYK) algorithrrwhich determines whetherand how a
given string can be generated by a given context-free grammar '

The use of ransposition tables and refutation tables in computer chess

The Viterbi algorithm (used forhidden Markovmodels)

The Earley algorithm (a type of chart parser) - =

The Needleman-Wunsch and other algorithms used inbioinformatics, including sequence

alignment, structural alignment, RNA structure prediction. .
Floyd’s Ali-Pairs shortest path algorithm i
Optimizing the order for chain matrix multiplication S
Pseudopolynomial time algorithms for the Subset Sum and Knapsack and\Partition
problem Problems _

RS

322

The dynamic time warping algorithm for computing the global distance between two time
series _

The Selinger (a.k.a. System R) algorithm for relational database query optimization

De Boor algorithm for evaluating B-spline curves '

Duckworth-Lewis method for resolving the problem when games of cricket are interrupted -

The Value Iteration method for solving Maxkov decision processes

Some graphic image edge following selection methods such as the “magnet” selection
tool in Photoshop

Some methods for solving interval scheduling problems

Some methods for solving word wrap problems

Some methods for solving the travelling salesman problem

Recursive least squares method |

Beat tracking in Music Information Retrieval.

Adaptive Critic training strategy for artificial neural networks

Stereo algorithms for solving the Conespondenoe problemusedin steteo wsmn
‘Seam carving (contfent aware image resizing) i

The Bellman-Ford algorithm for finding the shortest distance in a graph.

Some approximate solution methods for the linear search problem.

13.3 Matrix Chain Multiplication

Given: A sequence of matricesAl...Antobe muitlplxed where each Ai has dlmenmonpl-l X pi.
To do: A parenthesization of the sequence that minimizes the number of scalar multxphcatlons
needed.

Important facts:

Matrix multiplication is associative so each panenthesnzahon gives the same final product.
Consequently, solutions to this problem can be very useful in practice.

The dimension of the product of Ai...Aj, fori <=j, ispi-1 x pj.

To multiply two matrices A and B, A with dimension px q and B with dimension g xr, we
require p**r scalar multiplications.

Step 1: Characterize optlmal subproblems

Inan optimal parenthesization, the final matrix multiplication is bctweenlhe product ofAl * KAl
and the product of Ai+1*. *An, for some i between 1 and n-1

The. parenthesmatmn of Al*..*Aiin the optimal parenthemzatwn of A1*...* Anis optimal.
a n d
The parenthesization of Ai+1¥...*Anin the optlmal parenthcmzanon of Al*..*Anis opnmal

Step 2: Recursive algorlthm
Mamx-_Mult—Value(Al ..An)

ifn<=1 then

" solution=0

323

else -

solution =infinity

fori=1.n-1do

solution = min(solution, Matrix-Mult-Value(A1...Ai)

+ Matrix-Mult-Value(Ait+1...An)
+ plpipn) '

return solution
Running time? Exponential,
The number of recursive algorithm calls is given by:

T(n)= 1+ sumi=1n-1 [TG)+ T(n-i)]
T(1)=1

We show that T(n) is at least 2n+1-+n by induction, so assume that T(n) >=2n+1+nforalin< -
C, for some C>=1.
Now consider n=C+1.

T(n)=1+sumi=1n-1 [T(i) + T(n-i)]
>=1+2(22+..+2n+ 1+...+(n-1))
=1+ 8(20+..+20-242(1+..+(n-1))
- =1+8(2p-1-1) + n(n-1)

=2n+2 + 1 +n(n-1)

=2n+2 +n+1+n(n-2)

>=2n+1 +n+ 1+ n{n-2)

>=2n+l +n

Step 3: Dynamic programming algorithm

How many different subproblems are we actually solving?

Fach recursive call has the form Matrm-Mult—Value(AJ Aj)

for I<=i<=j<=n

Consequently, we are solvmg less than n2 different subproblems

As usual, we use a recursive algorithm with table look-up or an iterative algorithm that fillsina
table bottom-up. Since there are less n2 subproblems, you might think that your algorithm(s) will
run in O(n2) time. Actually, they will ran in O(n3) time because we may make upto n-1 comparisons
in order to compute a single value in the dynamic programming table. '

- Step 4: Reconstructing an optimal solution

Matrix chain multiplication

Matrix chain multiplication is an optimization problem that can be solved using dynamic
programming. Given a sequence of matrices, we want to find the most efficient way to multiply
these matrices together. The problem is not actually to perform the multiplications, but metely to
~decidein whxch order to perform the multiplications.

We have many options because matrix multiplication is associative. In other words, no matter
how we parenthesize the product, the result will be the same. For example, if we had four
matrices A, B,C, and D, we would have:

324

(ABC)D =(AB)Y(CD)=A(BCD)=ABC)D=... _ .
However, the order in which we parenthesize the product affects the number of simple arithmetic
operations needed to compute the product, or the efficiency. For example, suppose Aisa 10 x
30 matrix, B is a 30 x § matrix, and Cis a’5 x 60 matrix. Then,
(AB)C = (10%30x5) + (10x5x60) = 1500 + 3000 = 4500 operations
A(BC) = (30%5%60) -+ (10x30x60) = 9000 + 18000 = 27000 operations
Clearly the first method is the more efficient. Now that we have identified the problem, how'do
we determine the optimal parenthesization of a product of n matrices? We could go through
possible parenthesization (brute force), but this would require time O(2n), which is very slow
and impractical for large n. The solution, as we will see, is to break up the problem intoasetof
related subproblems. By solving subproblems one time and reusing these solutions many times,
we can drastically reduce the time required. This is known as dynamic programming.
Dynamic Prograinming Algorithm .
To begin, let’sassume that all we really want to know is the minimum cost, or minimum number
of arithmetic operations, needed to multiply out the matrices. If'we're only multiplying two matrices,
there’s only one way to multiply them, so the minimum cost is the cost of doing this. In general,
we can find the minimum cost using the following recursive algorithm:

Take the sequence of matrices and separate it into two subsequences.

Find the minimum cost of multiplying out each subsequence.

Add these costs together, and add in the cost of multiplying the two result matrices.

) Do this for each possible position at which the sequence of matrices can be split, and
take the minimum over all of them. | |
. For example, if we have four matrices ABCD, we compute the cost required to find each of
(AXBCD), (ABYCD), and (ABCXD), making recursive calls to find the minimum cost to compute
ABC, AB, CD, and BCD. We then choose the best one. Better still, this yields not only the
- minimum cost, but also demonstrates the best way of doing the multiplication: just group it the
way that yields the lowest total cost, and do the same for each factor. :
Unfortunately, if we implement this algorithm we discover that i’s just as slow as the naive way of
trying all permutations! What went wrong? The answer is that we’re doing a lot of redundant
work. For example, above we made a recursive call to find the best cost for computing both
ABC and AB. But finding the best cost for computing ABC also requires finding the best cost for
AB. As the recursion grows deeper, more and more of this type of unnecessary repetition occurs.

One simple solution is called memoization: each time we compuite the minimum cost needed to
multiply out a specific subsequence, we saveit. Tf we are ever asked to compute it again, we
simply give the saved answer, and do not recompute it. Since there are about n2/2 different
subsequences, where 1t is the number of matrices, the space required to do this is reasonable. It
can be shown that this simple trick brings the runtime down from O(2n) to O(n3), whichismore
than efficient enough for real applications. This is top-down dynamic programming, -
Pseudocode: ' - . -
Matrix~-Chain-Order(int p[])
{

n=p.length-1;

325

for (i=1;i<=n;i++)
‘m[i,i}=0;

for (1=2; <=n; H++) { // 1is chain length
for (i=1; i<=n-1+1; i++) {
j=itl-1;
* m[i,j]= MAXINT;
for (k=i; k<=j-1; k++) {
q=m[ik] + m[k+1,J] + p[l-l]*p[k]*p[_]] //MamxAl has the dlmensmn pli-13x p(i).
(if(q <mlij]) {
. mlij]=gq;
s[if] =k;

Another solution is to anticipate which costs we will need and precompute them. It works like
~ For é_achkffomZto n, the number of matrices:
3 - Compute the minimum costs of each subsequence of length k, using the costs
already computed.
- When we’re done, we have the minimum cost_ for the full sequence. Although it also requires

O(n3) time, this approach has the practical advantages that it requires no recursion, no testing if

a value has already been computed, and we can save space by throwing away some of the
- subresults that are no longer needed. This is bottom—up dynamic programming: a seoond way by
whmh this problem can be solved.

13.4 Branch and Bound (BB)

Branch and bound (BB)is a general algorithm for finding optimal solutions of various optimization
problems, especially in discrete and combinatorial optimization. It consists of a systematic
enumeration of all candidate solutions, where large subsets of fruitless candidates are discarded
en masse, by using upper and lower estimated bounds of the quantity being optimized

The method was first proposed byA.H.Land anclA G Doig in 1960 for lmear pmgrammmg

General descnptmn

For definiteness, we assume that the goal is to find the minimum value of a function f(x) whexex
tanges over some set S of adimissible or candidate solutions (the search space or feasible region).

Note that one can find the maximum value of f{x) by finding the minimum of g(x) = “f{x). (For
example, S could be the set of all possible trip schedules for a bus fleet, and f(x) could be the

expected revenue for schedule x.)-

326

A branch-and-bound procedure requires two tools. The first one is a splitting procedure that,
given aset S of candidates, returns two or more smaller sets whose union covers S. Note that the
 minimum of f(x) over S is , where each vi is the minimum of f{(x) within Si. This step is called
branching, since its recursive application defines a tree structure (the search tree) whose nodes
are the subsets of S,

Another tool is a procedure that computes upper and lower bounds for the minimum value of f{x)
within a given subset S. This step is called bounding. .

The key idea of the BB algorithm is: if the lower bound for some tree node (set of candidates) A
is greater than the upper bound for some other node B, then A may be safely discarded from the
search, This step is called pruning, and is usually implemented by maintaining a global variable m
(shared among all nodes of the tree) that records the minimum upper bound seen among all
subregions examined so far. Any node whose lower bound is greater than m can be discarded.

The recursion stops when the current candidate set S is reduced toa single element; or also when
the upper bound for set S matches the lower bound. Either way, any element of S willbe a
minimum of the function within S.

Effective subdmsmn

The efficiency of the method depends strongly on the node-splitting procedure and on the upper
and lower bound estimators. All other things bemg equal, itis bestto choose a splitting method
that provides non-overlapping subsets.

Ideally the procedure stops when all nodes of the search tree are either pruned or solved. At that
point, all non-pruned subregions will have their upper and lower bounds equal to the global
minimum of the fimction. In practice the procedure is often terminated after a given time; at that -
point, the minimum lower bound and the minimum upper bound, among all non-pruned sections,
define a range of values that contains the global minimum. Alternatively, within an overriding time
constraint, the algorithm may be terminated when some error criterion, such as (max mm)/(mm
+max), falls below a specified value.
. Theefficiency of the method depends critically on the effectiveness of the branching and bounding
 algorithms used; bad choices could lead to repeated branching, without any pruning, until the
sub-regions become very small, In that case the method would be reduced to an exhaustive
enumeration of the domain, which is often impractically large. There is no universal bounding
algorithm that works for all problems, and there is little hope that one will ever be found; therefore
the general paradigm needs to be implemented separately for each application, with branchmg
and bounding algorithms that are specially designed for it.

Branch and bound methods may be classified according to the bounding methods and according
to the ways of cwatmg/mspectmg the search tree nodes.

'I_‘hebrmwh—and-bounddemgn is very similar to backtracking in that a state space tree is
used to solve a problem. The differences are that the branch-and-bound method (1) does not
limit us to any particular way of traversing the tres and (2) is used only for optimization problems.

This method naturally Yends itself for parallel and d1mbuted implementations, see, ¢.g,, thetraveling
salesman problem article.

Applications =
This approach is used for a number of NP-hard problems, such as

Knapsack problem -

327

Integer programming

Nonlinear programmming

Traveling salesman problem (TSP)

Quadratic assignment problem (QAP)

Maximum satisfiability problem (MAX-SAT)
 Nearest neighbor search (NNS)

Cutting stock problem
False noise analysis (FNA)

Branch-and-bound may also be a base of various heuristics. For example, one may wish to stop
branching when the gap between the upper and lower bounds becomes smaller than a certain
threshold. This is used when the solution is “good enough for practical purposes” and can greatly
reduce the computations required. This type of solution is particularly applicable when the cost
function used is noisy or is the result of statistical estimates and so is not known precisely but
rather only known to lie within a range of values with a specific probability. An example of its
application here is in biology when performing cladistic analysis to evaluate evolutionary
relationships between organisms, where the data sets are often impractically large without
heuristics.

For this reason, branch'-and-bound techniques are often used in game tree search algoﬁthms, .
most notably through the use of alpha-beta pruning.

Branch and Bound Algorithm Technique

Branch and bound is another algorithm techmque that we are going to present in our multi-part
 article series covering algorithm design patterns and techniques. B&B, as itis often abbreviated,
is one of the most complex techniques and surely cannot be discussed in its entirety in a single
article. Thus, we are going to focus on the so-called A* algorithm that is the most dlstmctlve
B&B graph search algorithm.,

If you have followed this article series then you know that we have already covered the most
important techniques such as backtracking, the greedy strategy, divide and conquer, dynamic
programming, and even genetic programming, As a result, in this part we will compare branch
and bound with the previously mentioned teclmiques as well. Itis really useful to understand the
differences.

Branch and bound isan algonthm technigue that is ofien implemented for finding the optimal
solutions in case of optimization problems; it is mainty used for combinatorial and discrete global
optimizations of problems. In a nutshell, we opt for this technique when the domain of possible
candidates is way too large and all of the other algorithms fail. This technique is based on the en
masse elimination of the candidates.

You should already be familiar with the tree structure of algorithms, Out of the techniques that we
have learned, both the backtracking and divide and conquer traverse the tree in its depth, though
they take opposite routes. The greedy strategy picks a single route and forgets about the rest.
Dynamic programming approaches this in a sort of breadth-first search variation (BFS).

Now if the decision tree of the problem that we are planning to solve has practically unlimited
depth, then, by definition, the backtracking and divide and conquer algorithms are out. We
shouldn’t rely on greedy because that is problem-~dependent and never promises to deliver a
global optimum, unless proven otherwise mathematically.

328

~ As our last resort we may even think about dynamic programming. The truth is that maybe the
problem can indeed be solved with dynamic programming, but the implementation wouldn’tbe
an efficient approach; additionally, it would be very hard to implement. You see, if wehave a
complex problem where we would need lots of parameters to describe the solutions of sub-
problems, DP becomes inefficient.

Ifyou still need a real-world proof, then there’s the fificen puzzle. One of the most straightforward
implementations of dynamic programming would require 16 distinctive parameters to represent

the optimum values of the solutions of each sub-problem. That means a 16-dimensional array.

You see, this is why DP is out of question!

. On the previous page you saw that the most promising approach was dynamic programming.

Basically, let’s continue to look at breadth-first search [BFS]. The drawback is that the complexity
of BFS is exponential. We need an algorithm that ameliorates this issue by reducing a whole

number of possible candidates that just aren’t satisfactory and, thus, won’t contribute to the -

optimal solution. Answer: the B&B.

. That is what branch and bound does. This algorithm injects some intelligence into the naive but
complex breadth-first search. Instead of searching throughout the entire decision/search tree
structure, it instills some sort of criteria, according to which the complexity of the BFS can be
reduced. We can do this by adding “costs.” '

For example, if we calculate the distance of each node in terms of “how far” itis located from the
initial root node configaration and “how close” it is fiom the solution, then the distance/cost is the
sum of the aforementioned two distances. However, as you can surely see, the second distance
relies on heuristics. Thus, it’s just a guess.

‘Moreover, we can move through this tree based on the instilled costs; a node is amore possible
candidate toward the solution if its cost is less than other nodes. What we did is add an essence
of depth-search to the breadth-first meaning; meaning, there is going to be a priority queue,

according to which we are running the breath-first search. The traditional BFS runs from left to

right, but now we’ll have the pl‘:lOI'ity queue instead.

The beauty of this approach is that we haven’t lost the not-so-possible candidates. You see, they
are stored somewhere on the end of the priority queue, so this algorithm doesn’t neglect the rest
of the possible options. Summing these up, this is in fact a typical Branch and Bound algorithm
technique. And yes, it relies on the guessing game. ' _

B&B is composed of two main actions, but there’s an additional step. The first step is, as its
name suggests, the branching, This is where we define the tree structure from the set of candidates
ina recursive manner, The second action is called bounding since this procedure calculates the
upper and iower bounds of each node from the tree. :

Furthermore, there’s the additional pruning step that we can add. Ina nutshell, it means that if the

lower bound for some node of the tree is greater than the upper bound of some other node of the

tree, then the first node of the tree canbe “discarded” (remember, it does not mean eliminate)
from the search. A variable always holds the value of the global minimum upper bound.

Allinall, B&B is very similar to backtracking. The main differences are that the formeris used
only in case of optimization problems, whereas backtracking cannot be, and B&B doesn’t limit
us to a particular way of traversing the tree (depth-first search / preorder as with backtracking).

Backtracking always picks one single successor from the candidates, while B&B always hasthe .

entire list of successors in the queue.

!

E 329

Here we are going to sum up the key elements of the B&B algorithm technique. Later on a
typical problem will be presented, namely the knapsack problem. You will surely understand by
the end of this article why the knapsack is an NP-hard problem that is definitely an optimization
problem. But first let’s see the resume of B&B.

A branch and bound algorithm is based on an advanced breadth-first search. The said BFSis
done with a priority queue [PQ] instead of the traditional list. You can imagine the priority queue
asany other queue, except that it is sorted, This means that the hj ghest priority element is always
onthe first position. - . '

Itis crucial to understand the importance of these two functions: g(x) and h(x). The first function,
g(x), calculates the distance between the x node and the root node. The latter, h(x), is a heuristic
function because it estimates how close the said x node is to the solution (leaf). The heuristic
function ought to return 0 in the case of a solution leaf (since the distance is zero). The efficiency
of the B&B relies on this function. '

Moreover, we can say that f(x) =g(x) + h(x) is a distance-plus-cost heuristic function itself; too.
The g(x) part is the path-cost finction, while the h{x) part is the admissible heuristic estimate; the
sum of these two is the f{x). At the beginning of this article we mentioned the A * (Astar) algorithm.
This is when it comes into the picture. '

The A*isa best-first, graph search algorithm It is used when we want to find the least-cost path

from an initial node to a specified goal node. This A* algorithm works on the basis of the
aforementioned fx) distance-plus-cost heuristic function. I starts with the initial node and expands _
it with the lowest f{x) value (lowest cost-per-benefit). But it storesall of the partial solutions in the
priority queue (unexpanded leaf nodes).

This particular variation of the B&B algorithm works in the same fashion. We are going to work
with two lists: open and close. In the former we store all of the non-expanded configurations,

‘while the latter stores the expanded configurations. A solution is found only if'the h(x) returns 0

(thus, a solution leaf) or the PQ queue becomes empty.
Here’s a brief guide in pseudocode:

Procedure B&B:

open =initial configurations;

g =0; f:=h; solution ;= FALSE; -
while (h NOT equal 0) AND (open NOT empty)) do

- t:=node with the lowest f value;

expand this t node with its successors;

for each successor of tnode do

g == g(t)+costof the éxpansion; // this costisoften=1
if (current successor is part of close OR empty)

then if (g < g(current conﬁgmaﬁon))

then link the current successor in the path;

set the new g value;

if (this successor found in close)

.add in open;

330

add in open;

endfor; : _

if (hequals 0) // solution is found | ' C
recursively print the route between this leaf node and the root
solution=TRUE; '

end while;

if (solution equals FALSE)

no solutions;

end procedure;

The Knapsack problem isa combmatorlal optimization problem Youare given a set of items,
each with its own cost and value, and you are to determine the number of each item that you
should pack into the knapsack so that the total cost doesn’t exceed the given limitation, but the
total value is as high as possible. As you can see, thls is a maximization problem; it is part of
combinatorics and applied mathematics. '

The value is the weight of the items, and thclr cost l'eprcsents how much theitem is won‘h The
knapsack can hold a specified amount of weight, and this limitation cannot be exceeded. In
short, you want to maximize the storage capability of the knapsack by packing the most valuable

items in it. Sometimes this problem is told in the form of arobbery. Obviously, the thief wants the o

best bang for his buck (his effort).

Let’s say the weight of the i items are W1, W2, ... Wk, ... Wn and their cost isC1,C2,... Ck, ..
Chn, respectively; the capacity of the knapsack is specified as K. Now we have the followmg
mathematical formula to calculate the upper bound [UB] Check it out!,

Ri ght after this pomt we catt alrcady present the pseudocode of the a]gon’dnn
Procedure knapsack:

Initialize root;

PQ <- root;

max_cdst =root.cost;

while PQ not equal do
current<-PQ;

if (current.bound > max_cost) then
create left_child :=next 1tem,
if(left_child.cost>max_cost)
max_cost :=left_child.cost;

update best_solution;

331

if (left_child.bound >max_cost)
PQ<-left_child;

endif, |
create right_child; // it skips packing the next item
if (ﬁght_chilc_tbound> max_cost)
PQ<-right child;

endif}

endif,

end while;

return best_solution and its cost;
end procedure;

13.5 Travelling salesman problem

The Travelling Salesman Problem (:l‘SP) is a problem in combinatorial optimization studied in
operations research and theoretical computer science. Given a list of cities and their pairwise
* distances, the task is to find a shortest possible tour that visits each cify exactly once.

This problem was initially formulated asa mathematical problenn in 1930 and is one of the most
intensively discussed probleins in optimization. It is used as a benchmark for matty optimization
methods. Even though the problem is computationally difficult, a large number of heuristics and
exact methods are known, so that some instances with tens of thousands of citiés can be solved.

The TSP has various applications even in its purest formulation, such as planning, logistics, and
_ themanufacture of microchips. Slightly modified, itappears as a sub-problem in many areas,
such as genome sequencing. In these applications, the concept city represents, for example,
customers, soldering points, or DNA fragments, and the concept distance represents travelling
times or cost, or a similarity measure between DNA fragments, In many applications, additional
constraints such as limited resources or time windows make the problem considerably harder.
In the theory of computational complexity, the decision version of TSP belongs to the class of
NP-complete problems, Thus, it is assumed that there is no efficient algorithm for solving TSP
problems In other words, it is likely that the worst case running time for any algerithm for TSP
increases exponentially with the number of cities, so even some instances with only hundreds of
cities will take many CPU years to solve exactly.

- Description
As a graph problem
Symmetric TSP with four cities

TSP can be modelled as a graph: the graph’s vertices cotrespond to cities and the graph’s edges
correspond to connections between cities, the length of an edge is the corresponding connection’s
distance. A TSP tour is now a Hamiltonian cycle in the graph, and an optimal TSP tour is a

~ shortest Hamiltonian cycle.

Ofien, the underlymg graph is a complete graph, so that every pair of vertices is connectecl by an
“edge. This ik a useful simplifying step, because it makes it easy to find a solution, however bad,
because the Hamiltonian cycle problem in complete graphs is easy. Instances where not all cities

332

-

are connected can be transformed into complete graph.s by adding very long edges between
these cities, edges that will not appear inthe optimal tour.

Asymmetric and symmetric _

Inthe symmetric TSP, the distance between two cities is the same in each direction. Thus, the

underlying structure is an undirected graph between; especially, each tour has the same length in
both directions. This symmetry halves the number of feasible solutions.

In the asymmetric TSP, the distance from one city to the other need not equal the distance in the
other direction, in general, there may not even be a connection in the other direction. Thus, the
underlying structure is adirected graph. For example, the asymmetric case models one-way

~ streets or air-fares that depend on the direction of travel. :
With metric distances '
In the metric TSP the intercity distances satisfy the triangle inequality. This can be understood as
“no shortcuts”, in the sense that the direct connection from A to B is never longer than the detour
viaC,) ' _

' These edge lengths define a metric on the set of vertices. When the cities are viewed as pointsin
the plane, many natural distance functions are metrics.

In the Euclidian TSP the distance between two cities is the Euclidean-distance between
the corresponding points.

In the Rectilinear TSP the distance between two cities is the sum of the differences of
their x- and y-coordinates. This metric is often called the Manhattan distance or city-block
metric, :)

In the maximummetric, the distance between two points is the maximum of the differences
of theit x~ and y-coordinates. ' _ o
The last two metrics appear for example in routing a machine that drills a given set of holes ina
-printed circuit, The Manhattan metric corresponds to @ machine that adjusts first one co-ordinate,
and then the other, so the time to move to a new point is the sum of both movements. The
maximum metric corresponds to a machine that adjusts both co-ordinates stmultaneously, so the

time to move to a new point is the slower of the two movements,
Non-metric distances

Distance measures that do not satisfy the triangle inequality arise in many routing problems. For
- example, one mode of transportation, such as travel by airplane, may be faster, even though it

covers alonger distance. -
Inits definition, the TSP does not allow cities to be visited twice, but many applications do not
need this constraint. In such cases, a symmetric, non-metric instance can be reduced to a metric
one. This replaces the original graph with a complete graph in which the inter-city distance cijis
replaced by the shortest path between i and j in the original graph.
Self Learning Exercises '
1.The traveling salesperson problem is to visit a number of cities in the minimum distance, For
instance, a politician begins in New York and has to visit Miami, Dallas, and Chicago before

) returning to New York. How can she minimize the distance traveled? The distances are as in
following figre: '

|

333 v

New York Miami Dallas Chicago
1. NewYork --- 1334 1559 809
2. Miami 1334 --- 1343 1397
3.Dallas 1559 1343 - 921
4. Chicago 809 1397 921 -
2.Money-board problem

Given an NxN board find the path starting from any square at the start, to a target square in row
n which maximizes the amount of money that can be obtained. The person can only move -
forward, diagonally or straight. Let’s assume we have a 4x4 board

<>

I bl ul &
%

kA =X 3 <+

Numbers represent index of each row and column.
- O represents our current square.
+ X represents the squares we can travel to.
- Cash [7, ¢] returns the cash amount on square (r,¢)
- T represents our target square
So how do we solve this? We could use brute force by generating all possible paths and
find the path which has the most money but, there are 3N possibllmem which is too slow in
caseswhen ¥V gets large. So we will use dynamic programming.

'\

13.6 Summary

In this unit we have discussed in detail regarding the concepts of Dynamic programming. We
“have learnt in briefregarding the history of dynamic programming and its use in computer
science and other fields. We have learnt about the use of matrix chain multiplication and how
its algorithm can be implemented in solving the problems in computer science. We have also
discussed regarding the use of branch and bound algorithm. We have discussed very interest-
ing and common problem of Travelling salesman which we have tried to discuss in reference to
the dynamic programming, We hope that after reading this unit students will be well versed the
objectives which we have discussed at the starting of the unit.

+*

13.7 Glossary

Dynamic programming: Dynamic programming is a very general optimization technique
that can be applied to problems that can be subdivided into similar subproblems of smaller size
such that the solution to the larger problem can be obtained by combining the solutions to the
subproblems. These "divide and conquer™ methods are frequently used to solve alignment
problems.

334

- ‘The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization studied
* inoperations research and theoretical computer science. Given a list of cities and their pairwise
distances, the task is to find a shortest possible tour that visits each city exactly once

Branch and Bound (BB) is a general algorithm for finding optimal solutions of various optimization
problems, especially in discrete and combinatorial optimization. It consists of a systematic
enumeration of all candidate solutions, where large subsets of fiuitless candidates are discarded
en masse, by using upper and lower estimated bounds of the quantity being optimized.

13.8 Answer to self learning exercises

1. The real problem in solving this is to define the Stages, states, and decisions. One natural

choice is to let stage t represent visiting t cities, and let the decision be where to go next. That

leaves us with states. Imagine we chose the city we are in to be the state, We could not make the -
~ decision where to go next, for we do not know where we have gone before. Instead, the state

has to inchide information about all the cities visited, plus the city we ended up in, So a state is

represented by a pair (i,S) where S is the set of t cities already visited and 1 is the last city visited

(s0 i must be in 8). This turns out to be enough to get a recursion.

The stage 3 calculations are

£,(2,{23,4})=1334 '

£,3,{2,3,4})=1559.

£,3,{2,3,4})=809

For other stages, the recursionis
ft(i,S) =min { ¢, + £..0.SUj} -
j#1 andj ES

Q.2. _
Step 1 - Define the optimal structure for the problem. : :
As shown in figure 1 that we can move to 3 squares above our current, which means that
we can also say that the maximum amount for any square is the maximum amount of the
3 squares below it plus the amount in the current square.
Therefore we can say that the best path to (t, ¢) is one of
- The best way through (r— 1, ¢ - 1) — The bottom left square
+ The best way through (r — 1, ¢) — The bottom square
» The best way through (r-- 1, ¢ + 1)~ The bottom right square
Ifr= 1 then we know that we are at the start and there is no best way to that square This
gives usenough information to create arecursive solution.
~ Step 2 - Solve the problem recursively
Let C (1, ¢) be a function which returns the maxtmum amount of cash thaj: a person can
pick up by going to the specified row and column

335

Knowing the optimal structure, we go to 2nd step of creating a dynamic programming
 algorithm, creating a recursive function to solve the problem.

This algorithm works however it has a problem; many of the same subproblems are
solved multiple times. Fortunately we can solve this problem by calcﬁlatmg upwards
starting from yow 1.

3 Saad Ahmad _

Step 3— Generating a solution bottom up

Instead of C being a function, we will use it as a 2D array to store the maximum amount
of money that can be picked up by going to (z, ¢).

In our recursive algorithm we see that for all for values of r 0 2, we need the value of
r—1. This allows us to start at r=2 and go up the money board.

13.9 Further Readings
1. Dynamic Programming by Richard Bellman
2. Dynamic Programming: Models and Applications by Exic V. Denardo

3. Dynamic Programming and Optimal Control, Vol. 1 (Optimization and Computaﬁon Series)
by Dimitri P. Bertsekas

4, Schaum's Qutline of Theory and Problems of Matrix Operations by Richard Bronson

5. The Traveling Salesman Problem: A Computational Study (Princeton Series inApplied -
Mathematics) by David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook

13.10 Unit End Questions

1. Describe the use of Dynamic Progra:mmng in Computer Science and other fields.
- 2. What do you mean by the Matrix Chain Multiplication. Explaiil through example.

3. Explain the concept of Dynarmc Programmni usmg the Top - Down and Bottom -Up
approach.- —

4, Explain the apphcatlon areas onynamlc Programmmg
5. What do you mean by branch and bound algonthm What is the use of tl'us algonthm

6. Explain the travelling salesman problem.

devede

336

UNITXIV
PROBLEM CLASSES

STRCUTURE OF THE UNIT

14.0 Objectives
14.1 Introduction
142 NP Complete problem
14.2.1 Solving NP Complete Problem
14.3 Decision Problem
144 CookLevin Theorem
14.5 Vertex Cover
14.6 Summary
147 Glossary
14.8 Further Readings
14.9 Answer to selflearning exercises
14.10 UnitEnd Questions

i

14.0 Objectives:
After completmg this unit you would be able to understand the following pomts

Introduction to Problem classes NP

- NP Complemty

- NPComplete

. Definition of NP Complete and Problems
Solving NP Complete Problems
Decision Problems
Cooks Levin Theorem
Vertex Cover

+ . Vertex Coverin Hyper graphs

14.1 Introduction

In this unit we will discuss the Problems classes of NP, NP Hard and NP Complete. We will
discuss in detail the implementation of NP problems, implementation and use of these problems
in computer algorithms, We will also discussin detail regarding the Cooks-Levin Theorem. Later
in this unit Vertex Cover problems is discussed which includes the vertex cover in hyper graphs.
A problem is assigned to the NP (nondeterministic polynomial time) class if it is solvable in
pol i mnebyanondetemumstlc Turing machine.

AP-problem (whose solution time is bounded by a polynomial) is always also NP. If aproblem
is knoWwn to be NP, and a solution to the problem is known, then demonstratmg the correctness
of the solution can always be reduced to a single P (polynomial time) verification. If P and NP are
not equivalent, then the solution of NP-problems requires (in the worst qase) an exhaustive
\search

: - 337

A problem is said to be NP-hard if an algorithm for éolving it can be translated into one for
solving any other NP-problem. It is much easier fo show that a problem is NP than to show that
it is NP-hard. A problem which is both NP and NP-hard is called an NP-complete problem,

NP (complexity)

Diagram of complexity classes provided that P *“ NP, The existence of problems outside both P
and NP-complete in this case was established by Ladner.

In computational complexity theory NP is one of the most fundamental complexny classes. The
- abbreviation NP refers to “nondeterministic polynomial time’”. .

Intuitively, NP is the setofall decision problems for which the* yes® answers have snmple proofs
of the fact that the answer is indeed “yes’. More precisely, these proofs have to be verifiable in
polynomial time by a deterministic Turmg machine. In an equivalent formal definition, NP is the
set of decision problems solvable in polynomial time by a non-deterministic Turing machine.

The complexity class P is contained in NP, but NP contains many i lmportant problems, the hardest

_ of which are called NP~complete problems, for which no polynomial-time algorithms are known.
The most important open question in complexity theory, the P =NP problem, asks whether such
algorithms actually exist for NP-complete, and by coro]lary, all NP problems. It is w1dely believed
that this is not the case.

The complexity class NP can be defined in terms of NTIME as follows:

| NTIME(»*)

Many natural computer science problenis are covered by the class NP, In particular, the decision
versions of many interesting search problems and optimization problems are contained in NP.

Verifier-based definition

In order to explain the verifier-based definition of NP, let us consider the subset sum problem: :
Assume that we are given some integers, such as {“7, 3, “2, 5, 8}, and we wish to know
whether some of these integers sum up to zero. In this example, the answer is ‘yes’, since the

338

subset of integers {-3, -2, 5} corresponds to the sum (-3) +(-2) + 5 =0. The task of deciding

whether such a subset with sum zero exists is called the subset sum problem.

- Asthenumber of i mtegers that we feed into the algorithm becomes larger, the number of subsets
grows expomntlally, and in fact the subset sum problem is NP-complete. However, notice that,
if we are given a particular subset (often called a certificate), we can easily check or verify
whether the subset sum is zero, by just summing up the integers of the subset. So if the sum is
indeed zero, that particular subset is the proof or witness for the fact that the answer is ‘yes’, An
algorithm that verifies whether a given subset has sum zero is called verifier, A problem is said to
be in NP if and only if there exists a verifier for the problem that executes in polynomial time. In
case of the subset sum problem, the verifier needs only polynomial time, for which reason the
subset sum problem is in NP. :

Note that the verifier-based definition of NP does not require an easy-to-veniy certlﬁcate forthe

‘no’-answers. The class of problems with such certificates for the ‘no’-answersis called co-NP,
In fact, it is an open question whether all problems in NP also have certificates for the ‘no’-
~answers and thus are in co-NP.

Some NP Problems are hard to solve because of the many important problems in this class, there
have been extensive efforts to find polynomial-time algorithms for problems in NP. However,
there remain a large number of problems in NP that defy such attempts, sceming to require
supetpolynomial time, Whether these problems really aren’t decidable in polynomial time is one
of the greatest open questions in computer science An important notion in this context is the set
of NP-complete decision problems, which is a subset of NP and might be informally described
as the “hardest” problems in NP, If there isa polynomial-time algorithm for even one of them,

then there is a polynomial-time algorithm for all the problems in NP. Because of this, and because

dedicated research has failed to find a polynomial algorithm for any NP-complete problem,
once a problem has been proven to be NP-complete this is widely regarded as a sign thata
- polynomial algorithm for this problem is unfikely to exist.

14.2 NP-complete Problem |
In computational complexity theory, the complexity class NP-complete (abbreviated NP-C or
NPC, with NP standing for nondeterministic polynomial time) is a class of problems having two
properties |

- Any given solution to the problem canbe verified quickly (111 polynomial tlme), thc setof
- problems with this property is called NP.

Ifthe problem can be solved quickly ('mpolyhomiél time), then so can eveiy prbblem in
NP' -) - N . .

Although any given solution to such a problem can be verified quickly, there is no known efficient
way to locate a solution in the first place; indeed, the most notable characteristic of NP-complete
problems is that no fast solution to them is known, That is, the time required to solve the problem
using any currently known algorithm increases very quickly as the size of the problem grows. As
aresult, the time required to solve even moderately large versions of many of these problems
easily reaches into the billions or trillions of years, using any amount of computing power available

339

today. As a consequence, determining whether or not it is possible to solve these problems
quickly is one of the principal unsolved problems in computer science today.

While amethod for computing the solutions to NP-complete problems using a reasonable amount
of time remains undiscovered, computer scientists and programmoers still frequently encounter
NP-complete problems. An expert programmer should be able to recognize an NP-complete
problem so that he or she does not unknowingly waste time trying to solve a problem which so
far has eluded generatlons of computer scientists. Instead, NP»complete problems are often
addressed by usmg approximation algorithms.

- NP-complete is a subset of NP, the set of all decision problems whose solutions can be verified
in polynomial time; NP may be equivalently defined as the set of decision probiems that can be
solved in polynomial time on a nondeterministic Turing machine. A problem p in NP is alsp in

" NPC if and only if every other problem in NP can be transformed into p in polynomial time, NP-

complete can also be used as an adjective: problems in the class NP-complete are known as

NP-complete problems.

NP-complete problems are studied because the ability to quickly verify solutions to a problem
(NP) seems to correlate with the ability to quickly solve that problem (P). It is not known whether
every problem in NP can be quickly solved—this is called the P = NP problem. But if any single
problem inNP-complete can be solved quickly, then every problem in NP can also be quickly
solved, because the definition of an NP-complete problem states that every problem in NP must
be quickly reducible to every problem in NP-complete (that is, it can be reduced in polynomial
time). Because of this, it is often said that the NP-complete problems are harder or more difficult
than NP problems in general.

Formal definition of NP-completeness
A decision problem C is NP-complete if:
1. CisinNP,and

2. Every problem mNP stduclbletoC mpolynomlal time. -

I

" C can be shown to be in NP by demonstra:ung thata canchdatc solutlon to C can be vcnﬁed in
polynomial time.

A problém K isreducible to C if there isa polynomxal-tlme many-one reduction, a detennnnstw

“algorithm which transforms any instance k/*/K into an instance ¢/”/C, such that the answerto ¢ is
yes if and only if the answer to k is yes. To prove that an NP problem C is in fact an NP-complete
problem itis sufficient to show that an a]ready known NP-COmplete problem reduces to C.

Note that a problem satlsfymg condition 2 is said to be NP-hard whether or not it satisfies
cond:t:on 1

A consequence of this definition is that 1f wehada polynormal time algonthm (on aUTM, orany
other Turing-equivalent abstract machine) for C, we could solve all problems in NP in polynomial

340

NP-complete problems
< Clrcuit SAT >
Y . '

k4
_3-CNF SAT

lique Problem | Subject Problem

"Vertex Cover Problem

Hamlltoman Cycle

Travellmg Salesman

. ' l

) Some NP-complete problems, mdlcatmg the reductions typlcally used to prove thelr NP-

oompleteness ;

* Aninteresting example is the graph 1som01phlsm problem the graphtheory problem of detemunmg)

whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can
be transformed into the other simply by reniaining vertices. Consnder these two problems:

Graph Isomorphlsm Is graph G, isomorphic to graph G,?
Subgraph Isomorphxsm Is graph G 1somorphlc toa subgraph of graph G ?

‘The Subgraph Tsomorphism problem is NP-complete The graph 1somorphlsm problem is |

suspected to be neither in P nor NP-complete, though it is obviously in NP, This i$ an example of
a problem that is thought to be hard, but isn’t thought to be NP-complete.

The casiest way to prove that some new problem is NP-complete is first to prove thatitisin NP '

and then to reduce some known NP-complete problem to it. Therefore, it is useful to know a

variety of NP-complete problems. The list below contains some Well-knovm problems thatare -

NP-complete when expressed as decision problems
* . Boolean satisfiability problem (Sax)
‘ N-puzzle
*. Knapsack pmblem

. Hamiltonian path problem

Travelling salesman problem
Subgraph isomorphism problem
Subset sum problem |
Clique problem

Vertex cover problem
Independent set problem
Dominating set problem

- Graph coloring problem

Tothe rightis a diagram of some of the problems and the reductions typically used to prove their
NP-completeness. In this diagram, an arrow from one problem to another indicates the direction
of the reduction. Note that this diagram is misleading as a description of the mathematical
relationship between these problems, as there exists a polynomial-time reduction between any
two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction
has been casiest. _

There is often only a small difference between a problem in P and an NP-complete problem. For
example, the 3-satisfiability problem, a restriction of the boolean satisfiability problem, remains
NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically,
NL-complete), and the slightly more general max, 2-sat. problem is again NP-complete.
Determining whether a graph can be colored with 2 colors is in P, but with 3 colors is NP-
complete, even when restricted to planar graphs. Determining if a graph is a cycle or is bipartite
is very easy (in L), but finding a maximum bipartite or a maximum cycle subgraph is NP-complete:
A solution of the knapsack problem within any fixed percentage of the optimal solution can be
computed in polynomial time, but finding the optxmal solution is NP-complete. -

14.2.1 Solving NP-complete problems _

Atpresent, all known algorithms for NP-complete problcms require time that is superpolynomial
inthe input size, and it is unknown whether there are any faster algorithms. _

The fc)llowing techniques can be appliéd to _s_o_Ivé computational problems in general, and they
often give rise to substantially faster algorithms:

Approximation: Instead of searching for an optimeal solution, search for an “almost” optirnal

one,

Randomization: Use randomness to get a faster average running time, and allow the
algorithm to fail with some small probability. See Monte Catlo method.

Restriction: By restricting the structure of the input (e.g., to planar graphs), faster a]gonthms
areusually possible.

Parameterization: Often there are fast algorithms if certain parameters of the input are-
fixed. ' '

342

Heuristic: An algorithm that works “reésonably well” in many cases, but for which there

is no proof'that it is both always fast and always produces a good result. Metaheuristic
approaches are often used.

One example of a heuristic algoritlﬁ:n is a suboptimal O(n log n) greedy coloring algorithm used
for graph coloring during the register allocation phase of some compilers, a technique called
- graph-coloring global register allocation. Each vertex is a variable, edges are drawn between

variables which are being used at the same time, and colors indicate the register assigned to each.

variable. Because most RISC machines have a fairly large number of general—purpose registers,
- even aheuristic approach is effective for this application.

Completeness under different types of reduction

Inthe deﬂmhon of NP-oomplete given above, the term reduction was used in the techmcai
meaning of a polynomial-time many-one reduction.

Another type of reduction is polynomial-time Turing reduction. A problem X is polynomial-time
Turing-reducible to a problem Y if, given a subroutine that solves Y in polynomial time, one could
write a program that calls this subroutine and solves X in polynomial time. This contrasts with
many-one reducibility, which has the restriction that the program can only call the subroutine
once, and the return value of the subroutine must be the return value of the program.

If one defines the analogue to NP-complete with Turing reductions instead of many-one reductions,
the resulting set of problems won’t be smaller than NP-complete; it is an open question whether
it will be any larger. If the two concepts were the same, then it would follow that NP =co-NP.
This holds because by their definition the classes of NPcomplete and co-NP-complete problems
under Turing reductions are the same and because these classes are both supersets of the same
classes defined with many-one reductions. So if both definitions of NP-completeness are equal
then there is a co-NP-complete problem (under both definitions) such as for example the
complement of the boolean satisfiability problem that is also NP-complete (under both definitions).
This implies that NP = co-NP as is shown in the proof in the co-NP article. Although whether
NP/=/co-NP is an open question it is considered unlikely and therefore it is also unlikely that the
two definitions of NP-completeness are equivalent.

Another type of reduction that is also often used to define NP-completeness is the loganthmlc-
space many-one reduction which is a many-one reduction that can be computed with only a
logarithmic amount of space. Since every computation that can be done in logarithmic space can
also be done in polynomial time it follows that if there isa logarlthnnc-spaoe many-one reduction
 then there is also a polynomial-time many-one reduction. This type of reduction is more refined
than the more usual polynomial-time many-one reductions and it allows us to distinguish more
classes such as P-complete, Whether under these types of reductions the definition of NP-

complete changes is still an open problem.

14.3 Decision problem

In computability theory and computational complexity theoty, a decision problem is a question
in some formal system with a yes-or-no answer, depending on the values of some input parametets.

For example, the problem “given two numbers x and y, does x evenly divide y? is a decision.

problem. The answer can be either ‘yes” or ‘no’, and depends upon the values of x and y.

e

343

Decision problems are closely related to fungtion problems, which can have answers that are;
more complex than a simple ‘yes’ or ‘no’. A corresponding function problem is “given two
numbers x and y, what is x divided by y?”. They are also related to optimization problems, which
awconoemed with finding the best answer to apartlcular problem. '

A method for solvmg adecision problem given in the form of an algorithm is called a decision

procedure for that problem. A decision procedure for the decision problem “given two numbers

x andy, does x evenly divide y?”” would give the steps for determining whetherx evenly divides

¥, given x and y. One such algorithm is long division, taught to many school children. If the

remainder is zero the answer produced is ‘yes’, otherwise it is ‘no’. A decision problem which
~ can be solved by an algorithm, such as this example, is called decidable.

The field of computational complexity categorizes decidable decision problems by how difficult
they are to solve. “Difficult”, in this sense, is described in terms of the computational resoutces
needed by the most efficient algorithm for a certain problem. The ficld of recursion theory,
meanwhile, categorizes undecidable decision problems by T\mng degree, whlch is a measure of
the noncomputability inherent in any solution.

Research in computability theory has typically focused on decision problems. As explamed inthe
section Equivalence with function problems below, there isno loss of generality.

Deﬁmtlon

A declsmn problem isany arbltrary ycs-or—no questlon on an infinite set of inputs. Because of
this, it is traditional to define the decision problem equivalently as: the set of inputs for which the
“problem returns yes.

These inputs can be natural nurbers, but also other values of some other kind, such as strings of
a formal language. Using some encoding, such as Gidel numbers, the strings can be encoded as
natural numbers. Thus, a decision problem informally phrased in terms of a formal language is
also equivalent to a set of natural numbers, To keep the formal definition simple, it is phrased in
terms of subsets of the natural numbers. '

Formally, a decision problem is a subset of the natural numbers The correspondmg informal
problem is that of deciding whether a given number is in the set.

Examples

A classic example of a decidable decision problem is the set of prime numbers. It is possible to
effectively decide whether a given natural number is prime by testing every possible nontrivial
factor. Although much more efficient methods of primality testing are known, the existence of any
effective method isenough to establish decidability.

Decidability

A decision problem A is called decidable or effectively solvable if A is a recutsive set. A
~ problemis called partially decidable, semidecidable, solvable, or provableif Ais a recursively
enumerable set. Partially dec1dable problems and any other problems that are not decidable are
called undecldable

The haltmg problem is an important undecidable decision problem.
344

I

Complete problems

Dec151on problems can be ordered accorclmg to many-one redu01b111ty and related feasible

reductions such as Polynomial-time reductions, A decision problem P is said to be complete for

aset of decision problems S if P is a member of S and every problem in S can be reduced to P,

Complete decision problems are used in computational complexity to characterize complexity

classes of decision problems. For example, the Boolean satisfiability problem is complete forthe
- class NP of decision problems under polynomlal—tlme reducibility.

Practlcal deusmn

Havmg practical decision procedures for classes of loglcal formulas is of considerable interest for
program verification and circuit verification. Pure Boolean logical formulas are usually decided
using SAT-solving techniques based on the DPLL algorithm. Conjunctive formulas over linear
real or rational arithmetic can be decided using the Simplex algorithm, formulas in lineari integer
arithmetic (Presburger arithmetic) can be decided using Cooper’s algorithm or William Pugh’s
Omega test. Formulas with negations, conjunctions and disjunctions combine the difficulties of
satisfiability testing with that of decision of conjunctions; they are generally decided nowadays
using SMT-solving technique, which combine SAT-solving with decision procedures for
conjunctions and propagation techniques. Real polynomial arithmetic, also known as the theory
of reai closed fields, is decidable, for instanice using the Cylindrical algebraic decomposmon '
unfortunately the complexny of that algorithm is excessive for most practical uses. -

14.4 Cook—Levm theorem

In computationat comple}oty theory, ﬂ1e Cook-I.evm theorem, also known as Cook’s theorem
states that the Boolean satisfiability problem is NP-complete. That s, any problem in NP can be
reduced in polynomial time by a detemnmsnc Tl,mng machme toa problem of deten’mmng whether
aBoolean formula is sansﬁable

Ani nnportant consequence of the theorem is thlS if there were a detenmmstzc polynormal fime
 algorithm for solving Boolean satisfiability, then there would exista deterministic polynomial time
algonﬂm for solving all problems mNP Cruc1ally, the same follows for any NP complete problem
asthese are also mNP) -

The question of whether such an algonthm exists is called the P=NP problem and it is widely
con31dered the most 1mportant unsolved problem in theoretlcal computer science. -

Contributions

The concept of NP-completeness was developed in the late 1960s and early 70sin parallel by
researchers in the US and the USSR. In th¢ US in 1971, Stephen Cook published his paper

“The complexity of theorem proving procedures”in conference proceedings of the newly-founded
ACM Symposium on Theory of Computing. Richard Karp’s subsequent paper, “Reducibility-
among combinatorial problems”, generated renewed interest in Cook’s paper by providing a list
of 21 NP-complete problems. Cook and Karp received a Turing Award for this work.

The theoretical interest in NP-completeness was also enhanced by the work of Theodore P.
Baker, John Gill, and Robert Solovay who showed that solving NP-problems in Oracle machine
models requires exponentlal time.

345

Inth€ USSR, a result.eouivalent to Baker, Gill, and Solovay’s was published in 1969 by M.
Dekhtiar. Later Levin’s paper, “Universal search problems was published in 1973, atthough it
was mentioned in talks and submitted for publication a few years earlier.

Levin’s approach was slightly different from Cook’s and Karp’s in that he considered search
problems, which require finding solutions rather than simply determining existence. He provided
6 such NP-complete search problems, or universal problems, and additionally found that each
has an algorithm which solves it in optimal time. '

| Definitions

- A decision problem is in NP iff it can be solved by a non-deterministic algorithm inpolynomial
fime,

An instance ofthe Boolean satisfiability problem isaBoolean expression that combines Boolean
variables using Boolean operators.

Anexpressionis satisfiable iff thereis some asstgnment of truth values to the variables that makes
the entire expression true.

- Proof
T.lus proofis based on the one given by Garey and Johnson.

There are two parts to proving that the Boolean satisfiability problem (SAT)is NP-complete
One is to show that SAT is an NP problem. The other is to show that every NP problem can be
reduced to an mstance of a SAT problem by a polynomial-time many-one reduction,

SAT isin NP because any assignment of Boolean values to Boolean variables that is claimed to
satisfy the given expression can be verified in polynomial time by a deterministic Turing machine,

Now suppose that a given problem in NP can be solved by the nondeterministic Turing machine
M=(Q, O, s, F, &), where Q is the set of states, O is the alphabet of tape symbols, s “ Q is the
initial state, F “ Q is the set of accepting states, and #: Q x O Q x O x {*1,+1} is the set of
transitions. Suppose further that M accepts or rejects an instance of the problom intime p(n)
where n is the size of the instance and pis a polynomial function.

For each input I we Specify a Boolean expression which is satlsﬁable if and only if the machine M
accepts L. -

The Boolean expression uses the vanables set out in the following table. Here, q “ Q, “p(n) d”i
d” p(n),j O, and 0 k d” p(n). -

7346

‘anb!esﬂntenﬁeﬂwmtaﬁw Howmany? |

L cmpmm B At 9@@;}*}

o T‘me ;f the M‘s readfwnmiaead isat tape cell fat step kof the S
__-_'computaﬁnn L @@(’W

Define the Boolean expression B to be the conjunction of the clauses in the following table, for all
“p(n) d”id” p(n) and 0 d” k d” p(n):

- P2

"mpamaﬂ i‘wfme inynl CoL s o B
B s 2o S i SN iriidl

S ftnlx__i_ﬁl gj_fnm;pr.M_ o L mt} E

o [mial paition o venerwiite Do, [

L e e miner par waps. am. 0 L oy,

) R
L feenberen,

meunumnmuu i, . . R 2 S,

lnw-.- - ﬂm mn,.\hhs:\.iiw Rl wavae, | OrGuigrr. |

o A TM’ B - a VEsEc: tmmml m ant 22 T
. . : e Lo o AN . i
Nt“ma—l) 'y] (qi_' s d) m o . A l:lewd lsa At pronitio #, {fﬂ:p(w‘}")
rypfe fmw!ﬂ‘ s ;) IR R Lo

T - mmn . r_".'iu_ Eac ST s s Pl ﬁ-‘i—%.n}mpl’ilxg:atmlﬂ. €1y
iy - o q{ - - 1 L .) . o

If there isan accepting coputation for M on input I that follows the steps indicated by the
assignments to the variables. There are O(p(n)?) Boolean variables, each encodeable in space
O(log p(n)). The If there is an accepting computation for M on input I, then B is satisfiable by
assigning T, H, and Q, their intended interpretations. On the other hand, if B is satisfiable, then
there is annumber of clauses is O(p(n)®) so the size of B is O(log(p(n))p(m)?). Thus the
transformation is certainly a polynomial-time many-one reduction, as required.

347

Consequences

The proof shows that any problem in NP can be reduced in polynomial time (in fact, logarithmic
space sufices) to an instance of the Boolean satisfiability problem. This means that if the Boolean
satisfiability problem could be solved in polynomial time by a deterministic Turing machine, then
all problems in NP could be solved in polynomial time, and so the complex1ty class NP would be
equal to the complexity class P.

The significance of NP—completeness was made clear by the publication in 1972 of Richard
Karp’s landmark paper, “Reducibility among combinatorial problems”, in which he showed that
21 diverse combinatorial and graph theoretical problems, each infamous for its intractability, are
NP-complete

Karp showed each of his problems to be NP-complete by reducing another problem (already
~ shown to be NP-complete) to that problem. For example, he showed the problem 3SAT (the
Boolean satisfiability problem for expressions in conjunctive normal form with exactly three
variables or negations of variables per clause) to be NP-complete by showing how to reduce (in
polynomnial fime) any instance of SAT to an equivalent instance of 3SAT. (First you modify the
proof of the Cook-Levin theorem, so that the resulting formula is in conjunctive nofmal form,then
you introduce new variables to split clauses with more than 3 atoms. For example, the clause (A
(“B (“ C (“ D) can be replaced by the conjunction of clauses (A (“B (“ 2) ““ CZ (*C(“D),
where Z is a new variable which will not be used anywhere else in the expression. Clauses with
fewer than 3 atoms can be padded; for example, A can be replaced by (A (“ A(“A),and (A (%
B) can be replaced by (A (“ B (“B).

As of 2008é]_ alihough many practical instances of SAT can be solved by heuristic methods,
the question of whether there is a deterministic polynomial-time algorithm for SAT (and
consequently all other NP-complete problems) isstill a famots unsolved problem, despite decades
of intense effort by complexity theorists, mathematical logicians, and others. For more details, -
see the article P=NP problem.

14.5 Vertex cover

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such -
that each edge of the graph is incident to at least one vertex of the set. The problem of finding a
minimum vertex cover is a classical optimization problem in computer science and is a typical
example of an NP-hard optimization problem that has an approximation algorithm. Its decision -
version, the vertex cover problem was one of Karp’s 21 NP-complete problems and is therefore

a classical NP~complete problem in computational complexity theory. Furthermore, the vertex -
cover problem is fixed-parameter tractable and a central problem in parameterized complexity
theory.

The minimum vettex cover problem canbé formulated as a half-integral]mear program whose
dual linear program is the maximum matching problem.

Definition

Formally, a vertex cover of a graph G isasetof veruces Csuch that each edge of Gis mcident |
1o at least one vertex in C. The set C is said to cover the edges of G. The fo]lowmg ﬁgure shows
examples of vertex covers in two graphs.

348

A minimum vertex cover is a vertex cover of a smallest possible size The vertex cover

number & is the size of a minimum vertex cover, The following figure shows examples of minimum

vertex covers in two graphs

Examples .
The set of all vertices is. a vertex cover.
A set of vertices is a vertex cover if and only if its complement is an independent set.
The eﬁdpoints of amaximal matching fon:n a vertex cover.
The complete bipartite graph K., has vertex cover number min{m,n}.
Propertles

The number of vertices of a graph is equal to its vertex cover number plus the size of a
maximum independent set.

Computational problem
The minimum vertex cover problem is the optimization problem of finding a smallest vertex

coverina given graph.

INSTANCE: Graph G
OUTPUT: Smallest number k such that there is a vertex cover C for G of size k.

Ifthe problem is stated as a decision problem, it is called the vertex cover problem

INSTANCE: Graph G and posmve integerk. _
QUESTION: Is there a vertex cover C for G of size at most k? -

349

- : /
The vertex cover problem is an NP-complete problem: it was one of Karp’s 21 NP-complete
problems, It is often used in computational complexity theory to prove that another problem is
NP-hard. - . . _

ILP formulation

Assume that every vertex has an associated cost of . The (weighted) minimum vertex cover
problem can be formulated as the following integer linear program

iminimize EV a(v)a:,-, (minimize the total cost)
ey
subject | ffor Tl
fo_ P to 2 1{_%,1:} ¢E %Wﬂ‘ every edge of the graph)
2, € {0,1} forallv €V. ii?;%f?;i’f s either in the vetex

This ILP belongs to the more general class of ILPs for covering problems. Theintegralitygapof
this ILP is 2, so its relaxation gives a factor-2 approximation algorithim for the minimum vertex
cover problem. Furthermore, the linear programming relaxation of that IL¥ is half-integral, that

is, there exists an optimal solution with for all . L

Exact evaluation

The decision variant of the vertex cover problem is NP-complete, which means it is unlikely that
there is an efficient algorithm to solve it exactly. NP-completeness can be proven by reduction
from 3-satisfiability or, as Karp did, by reduction from the clique problem. Vertex cover remains
NP-complete even in cubic graphs and even in planar graphs of degree at most 3. '

For bipartite graphs, the equivalence between vertex cover and maximum matching described
by Kdnig’s theorem allows the bipartite vertex cover problem to be solved in polynomial time.

Fixed-parameter tractability

Abrute force algorithm can solve the problem in time 2%¥n%", Vertex cover is therefore fixed- .
parameter tractable, and if we are only interested in small k, we cam solve the problem in polynomial
time, One algorithmic technique that works here is called bounded search tree algorithm, and its
idea is to repeatedly choose some vertex and recursively branch, with two cases at each step:
place either the current vertex or all its neighbours into the vertex cover. Under reasonable
complexity-theoretic assumptions, namely the exponential time hypothesis, this unning time cannot
be improved to 2°0n%®, -

350

For planar graphs, however, a vertex cover of size k can be found intime, i.¢., the problem is
subexponential fixed-parameter tractable. This algorithm is again optimal, in the sense that, under
the exponential time hypothesis, no algorithm can solve vertex cover on planar graphs in time .

Approximate evaluation

One can find a factor-2 approximation by repeatedly taking both endpoints of an edge into the
vertex cover, then removing them from the graph. Put otherwise, we find a maximal matching M
with a greedy algorithm and construct a vertex cover C that consists of all endpoints of the edges
in M. In the following figure, 2 maximal matching M is marked with red, and the vertex cover C
ismarked with blue. : ' '

« <

The set C construgted this way is a vertex cover: suppose that an edge ¢ is not covered

- byC;thenM *” {} isamatchingande“l\&,whichisaconh'adicﬁonwiththeassumpﬁon
that M is maximal. Furthermore, if e = {u,v} “ M, then any vertex cover— incliding an
optimal vertex cover —must containu or v {or both); otherwise the

Thatis;anoptimalcovercontainsatlcastonemdpointofeachedgeinM; intotal, the set C is at
most 2 times as large as the optimal vertex cover.

This simple algorithm was discovered independently by Fanica Gavril and Mihalis Yannakakis,

More involved techmqucs show that there are approximation algorithms with a slightly better
approximation factor. For example, an approximation algorithm with an approximation factor of
isknown.

Inapproximability o L

No better constant-factor approximation algorithm than the above one is known. The minimum
vertex cover problem is APX-complete, that is, it cannot be approximated arbitrarily well unless
P=NP. Dinur and Safta proved, using technigues from the PCP theorem, that minimum vertex
cover cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree
unless P=NP. Moreover, if the unique games conjecture is true then minimum vertex cover cannot
be approximated within any constant factor better than 2.

Although finding the minimum-size vertex coveris equivalent to finding the maiimum-size
independent set, as described above, the two problems are not equivalent in an approximation-
preserving way: The Independent Set problem has no constant-factor approximation unless P=NP,

Vertex cover in hypergraphs

Vertex cover has a natural generalization to hypergraphs which is oftenjust called vertex cover
for hypergraphs but which is also known under the names hitting set and, in a more combinatorial
context, transversal. Even more, the notions of hitting set and set cover are equivalent.

351

Fomiall?, let H=IV,E) be a hypergraph with vertex set V and hyperedge set E. Then a set S“V.
is called hitting #ét of Hif, for all edges e “ E, itholds 8)" e ™ *“. The computational problems
minimum hitting set and hitting set are defined as in the case of graphs. - o '

Note that we get back the case of vertex covers for simple graphs if the maximum size of the
hyperedges is 2. If that size isrestricted to d, the problem of finding a minimum d-hitting set .
 permits ad-approximation algotithm. ' : - - L

: Fixed—parameter'tfactability'

For the hitting set problem, different parameterizations make sense. The hitting set problem is -
W[2]-complete for the parameter OPT, that is, it is unlikely that there is an algorithm that runs in -

time {OPT)n™" where OPT is the cardinality of the smallest hitting set. The hitting set problem -
is fixed-parameter tractable for the parameter OPT + d, where d is the size | e | of the largpst

‘edfge of the hypergraph. More specifically, there is an algorithm for hitting set that runs intime
dOPTnO(l).) - : . o

Hitfing set and set cover

“The Hitting Set Problem is equivalent to the Set cover problem: An instance of set cover can be
viewed as an arbitrary bipartite graph, with sets represented by vertices on the left, the universe
represented by vertices on the right, and edges representing the inchusion of elements in sets, The
task is then to find a minimum cardinality subset of lefi-vertices which covers all of the right--
vertices. In the Hitting set problem, the objective is to cover the left-vertices using a minimum
subset of the right vertices. Converting from one problem to the other is therefore achieved by

interchanging the two sets of vertices.

Self learning exercises

1. ProveThe decision version of the traveling salesman problem is in NP. .
2. . Compare and give example of P and NP problems. o

14.6 Summary:

In this unit we have discussed the various concepts of Problem classes NP, NP hard and NP -
 complete. A problem is said to be NP-hard if an algorithm for solving it can be translated into one
for solying any other NP-problem. It is much easier to show thata problem is NP than to show
that it is NP-hard. A problem which is both NP and NP-hard is called an NP-complete problem.
A.method for solving a decision problem given in the form of an aléoriﬂun is called a decision
procedure for that problem. We have discussed in details regarding the decision problems. We -
have also discussed in details regarding the Cooks — Levis Theorem. Apart from this we also
have defined the vertex cover problem and vertex hyper graph. SR

14.7 Glossary

P Problem:A problem is assiéne_d tothe P (polynomia};time)-class if there exists at least one |
algorithm to solve that problem, such that the number of steps of the algorithm is bounded by 2
polynomial in n, where n s the length of the input. o : . :

352

NP-Complete Problem A problem which is both NP (verifiable in nondetermiristic polynomial

time) and NP-hard (any NP-problem can be translated into this problem). Examples of NP-

hard problems include the Hamiltonian cycle and traveling salesman problems,

NP-Hard Problem A problem is NP-hard if an aigorithm foi‘-solvhlg it can be translated into one
for solving any NP-problem (nondeterministic polynomtial time) problem, NP-hard therefore-
means "at least as hard as any NP—probleIn," although it might, infact, be harder _

~ NP-Problem A probiem is assigned to the NI"(nondetenninistic polynomial time) class ifit is
solvable inpolynomial time by anondetenninistic-’l‘ming machine, ' E

" Decision problem:A decision probiern is any arbitrary yes-or-no question on an inﬁnjte setof

“inputs, Because of this, it is traditional to defipne the decision problem equivalently as: the set of
inputs for which the problem returns yes, : _ . .

14.8 Further Readings

1. Computers and Intractability: A Guide to the Theory of NP-Completeness byM.R. Garey .

and D. S. Johnson
2. Graph Algorithms and Np-Completeness by Kurt Mehlhorn
Gonzaer

4. Statistics for Applied Problem Solving and Decision Making by Richard J, Larsen, Morris L.
Marx, and Bruce Cooil _ _ o .

3. Hénd_book of NP-Completeness: Theory and Applications by Teofilo F,

5. Experimenta Analysis ofA;ﬁproxihlationAlgoritlnns for the Vertex Cover and Set Covering.
: Problems by F.C, Gomes, C.N. Meneses, PM. Pardalos, and G, Viana) s

14.9 Answers to self learning exercises

1. Given an input matrix of distances between N cities, the problem is to determine if thereisa

Toute visiting all cities with total distance less thank. _ _—

A proof certificate can simply be alist of the cities. Then verification can clearly be done in .

polynomial time by a deterministic Turing machine. It simply adds the matrix entries corresponding

tothe paths between the cities, o S :
-‘Anondetemﬁ_nistic Turing machine can find such aroute as follows: .
Ateach city it visits it “guesses” the next city to visit, until it has visited every vertex. If it gets

stuck, it stops immediately, ' : N - -

Atthe end it verifies that the route it has taken has cost less than k in O¢n) time.

One can think of each 8uess as “forking” a new copy of the Turing machine to follow eaéh ofthe

possible paths fonva_rd_, and if at least one machine finds aroute of distance less than k, that

machine accepts the input, (Equivalently, this can be thought of as a single Turing machine that
- ' STy o

always guesses correctly) -

353

Binary search on the range of possible d1stances can convert the decision version of’ Travelmg
- Salesman to the optimization version, by cailing the decision version repeatedly (a polynormal
‘number of times). ' :
2. NP-complete
. e Satisfiability -
< Graphcoloring
+ Hamiltonian Path (visit
all nodes)
+Subset Sum (subset of
numberssumtoz) -
« Traveling Salesperson
Problem (TSP)
P Polynomial time
 eMedian
*Prime
+ String search
« Connectivity (go s tot)
+ Bulerian Path (visitall edges) _
. Coin sum (subset of coins sum to 2?) ~

14. 10 Unit End Questlons

1. What do you mean by Problem NP Classes

2 Explam in detail concept of NP Hard and NP Complete

3. Explam in how decision problems can help youi in solvmg problem |

4. What are the contribution of Cook Levin Theorem in solwngNP problems .'
5. What do you mean by vertex cover. |

6. Explam ;he use of vertex coverin hyper graph

wekd_

e -——

354

