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1.0 Objectives

The objective of this unit is to make familiar the readers with the basics of solid
state. The basic constituents of the materials in the view of solid state will be
discussed. The arrangement of the basic constituents at the atomic or molecular
level will be discussed. The different types of solid state structures of the materials
and the arrangement of the atoms or molecules in the crystals are to be explained.
The different tools to study the arrangement of the atoms or molecules in the
structures will be explained.

1.1 Introduction

The unit deals with the study of the basics of solid state physics. In this unit
different types of solids, the basic unit of the crystal and various types of crystal
structures are explained. The arrangement of atoms or molecules in the basic unit
of the solid structure and packing of these in the basic unit are explained. The
arrangement of these atoms or molecules in various sets of parallel planes and the
directions of these planes are discussed with examples. At last ,the size of the basic

unit of the crystal is related to the size of the atom in terms of atomic radius.

1.2 Introduction to Crystal Structure

The solid state materials can be grouped into two broad categories:(1)
Crystalline and (2) Non-crystalline or amorphous materials. These materials cannot
be distinguished at macroscopic level but can only be distinguished at microscopic
level. They are distinguished from each other by the degree of arrangements of
fundamental particles of their composition. The particles of their composition may

be atoms, molecules or ions. These particles are called as their building blocks.

1.2.1 Crystalline Solids

The solids in which the atoms or molecules or ions are arranged in a regular or
periodic manner in the three dimensional space are called as crystalline solids. In
such solids the whole crystal can be obtained by repetition of a well defined pattern
unit. The crystalline solid can further be classified as: Single crystals and
Polycrystals. In the single crystals ,the regularity of the pattern unit is observed
throughout the whole crystal of the solid. In case of polycrystalline solids ,the



regularity of the pattern unit is observed over a small region of the solid. In such
solids there are numbers of small crystalline regions of various shapes and sizes
separated by grain boundaries. In such solids, there is breakdown of the regularity
at the interface of two crystalline regions called as grain boundaries. In the grain
boundaries ,there is an irregular arrangement of the building blocks of the solids.

Most of the solids in nature are polycrystalline. The single crystals materials are
synthesized for special purpose. Most of the materials used in semiconductor
industry are single crystalline. The examples of crystalline materials are metals,
ceramics, salts, etc.

Figurel.l: Single crystal

Figurel.2 : Polycrystals
1.2.2 Non-crystalline Solids (Amorphous Solids)

When the atoms, molecules or ions are not arranged periodically in the solids ,then



such solids are called as non-crystalline or amorphous solids. In other words if the
ordering extends up to the size of the pattern unit,then the nature of the solid is of
amorphous type. Most of the solids in nature prefer to be crystalline, because it
lowers the energy of the solid. However if the atoms in the solid are not allowed to

arrange themselves properly ,then they result in non-crystalline structure.
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Figurel.3: Amorphous solids
1.3 Lattice and Basis

A lattice is a regular or periodic arrangement of points in space. The arrangement
about any point remains same throughout. The points in the lattice are connected

by a vector defined by
=nd+n,b+nc

The lattice can be generated by the translation vector T i.e. if we consider one

lattice point and use the translation vector having different values of n,, n, and n,

—

,sthen we get the whole lattice. Here n, , n, and n, are integers and a.b.,c are
called as fundamental lattice vectors.
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Figure 1.4: Lattice points



Any point in the lattice can be represented by following position vector

F, = 7 + T
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Figure 1.5: Translation operation in lattice and translational vector

The group of atoms or molecules that forms the macroscopic crystal by infinite
repetition is called basis. The basis is placed at a set of mathematical/abstract
points that form the lattice (also called Bravais lattice). So, a crystal is a
combination of a basis and a lattice. Although the basis usually consists of only
few atoms, it can also contain complex organic or inorganic molecules (for
example, proteins) of hundreds and even thousands of atoms.

Bravais basis crystal
lattice
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Figure 1.6: Atomic type basis

Bravais basis crystal
lattice

-

Figure 1.7: Molecular type basis



1.4 Unit Cell

The smallest part of a crystal is called as unit cell. It is formed by combination of
atoms and molecules. The whole crystal structure can be formed by the repetition
of these unit cells. The unit cell may be primitive or non-primitive.

1.4.1 Primitive Unit Cell

The unit cell of smallest volume is called as primitive unit cell. A unit cell having
volume less than the primitive unit cell is not possible. The more accurate
definition of the primitive unit cell 1s “The unit cell having lattice point density

equal to unity is called as primitive unit cell”.
1.4.2 Non-primitive Unit Cell

The volume of the crystal which on repetition gives the whole crystal structure, but
the lattice point density of that cell is greater than unity is called as non-primitive
unit cell. On repetition of such a unit cell no lattice point or not any space of the

crystal is left.

e Primitive Unit Cell

o ﬂ Non Primitive
" UnitCell
"

Figure 1.8: 2D Primitive and Non-primitive unit Cell
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Figure 1.9: 3D Primitive and Non-primitive unit Cell
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1.4.3 Wigner-Seitz Unit Cell

Another way of choosing the primitive unit cell is the choice of Wigner-Seitz unit
cell. The cell is constructed by connecting a lattice point with its nearest
neighbours. Now the lines connecting these points are bisected. The cell within the

bisected region about the point is called as Wigner-Seitz unit cell.

i
|

Figure 1.10 Wigner-Seitz Unit Cell of 2D and 3D

1.5 Classification of Lattices

Crystal lattices can be carried into themselves by lattice translation operation and
by various other symmetry operations. The class of other operations include
rotation about an axis passing through a lattice point, reflection about a plane
passing through a lattice point, inversion about a lattice point, rotation-inversion,

rotation-reflection, etc.
1.5.1 Two Dimensional Lattices

Although there is no restriction on the selection of length of the lattice translation
vectors and the angle between them, but due to the restriction imposed by various
symmetry operations there are only five types of Bravais lattices in two

dimensions. Theses lattices are as

Oblique lattice
Square lattice
Hexagonal lattice

Rectangular lattice

AT S I S

Centered rectangular lattice




The length of the translation vectors and the angle between them are given in the

table below.
Lattice type Length of axes Angle between the axes
a,,a, Y
1.0blique a Fa, Y F 90° 120°
2.Square a,=a, Y =90°
3.Hexagonal a,=a, Y =120°
4 Rectangular a, #a, Y =90°
5.Centred rectangular a, 7a, Y =90°
a. EI square
a E hexagonal
a,
a, rectangular
=T centered
! rectangular
a E oblique

Figure: 1.11 Two Dimensional lattices Types

1.5.2 Three Dimensional Lattices

The point symmetry groups in three dimensions require 14 types of different

lattices. The general lattice is triclinic and 13 types of special lattices. The 14 types



of lattices are grouped into seven systems depending upon the choice of cell. The
seven systems and 14 types of three dimensional lattices are listed in the table

below.
System Conventional cell | Angles between the | No. of
axes length axes lattices
1. Triclinic a,Fa,7a, axP £y 1
2.Monoclinic a,#a,7a, a=7=90"# 2
3.0rthorhombic a,Fa,7t a, o= B = y=090" 4
5.Cubic ==, a=P=y=90° 3
6.Trigonal a,=a,=4a, a=P=v#90°,<120° 1
7.Hexagonal a,=a,7a, o= B = 90°,y=120° 1
Simple Face-centered Body-centered
cubic cubic cubic
Simple Body-centered Hexagonal
tetragonal tetragonal
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
3 7 g
] A7 £
Simple Base-centered Triclinic
Rhombohedral Monoclinic monoclinic

Figure 1.12: Three Dimensional Lattices types
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1.6 Index System For Crystal Planes

In the lattice the lattice points are arranged in space periodically. These lattice
points are supposed to be arranged in various sets of parallel planes. Each set of
parallel planes has unique direction which is determined by a set of three numbers
called as Miller Indices. The Miller indices of a set of parallel plane can be
determined as follows:

(a) (b)

Figure 1.13: Sets of Parallel Planes and Crystallographic axes.

—

Take any lattice point as origin in the lattice and select the co-ordinates axes
which may be primitive or non-primitive.

2. Select one plane of a set of parallel planes and determine its intersects on the
co-ordinates axes in terms of primitive lattice constants ‘a’, ‘b’ and ‘c’ i.e.
convert the intercepts in terms of product of ‘a’, ‘b’ and ‘c’. Let the intercepts
are along the three axes are pa, gb and rc respectively.

3. Take the reciprocals of the coefficients of ‘a’, ‘b’ and ‘c’ of intercepts i.e.
I 1311 1 1

4. Convert these reciprocals into smallest set of integers.
5. The set of integers are the Miller Indices of that set of parallel plane and

10



represented by (hkl).

6. If a plane intersects any axis on negative side then the Miller Index of that axis
is represented by a bar on the value of index. For example if a plane makes
intercept of 1/2, -1/3 and 1, respectively, then the reciprocals are 2, -3 and 1.
So the Miller Indices of the plane are (231) .

7. If any plane is parallel to any axis then its intercept is taken as infinity, so the
Miller Index of that axis is zero. For example the intercepts of a plane are
w,1b,2¢, then the Miller Indices are (021).

. Intcrcepts are 101 @

" * Miller indices of the plane are:
(Hlj = (010)

mlm

Figure 1.13: Miller Indices of Parallel Plane

3k | _——— _’:t-
l | =
| ] i
i | I=:
. —— = ——t——
26 ,/ = - e
: 100 )
Ie =
f i |
—¥r H== [
£ cl i [
: — ] ‘ '
= — == J———
| 2 d d
la sl

(300) (100)

Figure 1.14: Representation of Different Planes with different Miller Indices
in Unit Cell

11



Let us explain the Miller Indices by an example

Figure 1.13: Intercepts of a Plane on different axes
The intercept of the plane along x axis= 2a
The intercept of the plane along x axis=  3b
The intercept of the plane along x axis=  2c

The coefficients of a, b and ¢ are 2, 3 and 2 respectively. So the Miller indices are

as
111 111

(555)—>(323) (2—3—2—) - (323)

So the Miller indices of the plane are (323).

1.7 The Cubic Crystal and Number of Atoms per Unit Cell

In cubic system there are three types of lattices permitted by symmetry operations.

These lattices are given as

Simple Cubic or Primitive Lattice (SC)

Body Centered Cubic Lattice (BCC)

Face Centered Cubic Lattice (FCC).

Simple Cubic or Primitive Lattice (SC): In SC lattice all the atoms lies at the

corners of the unit cell. If “a’ is the lattice constant then the volume of the unit cell

or primitive unit cell is a’. The co-ordination number or nearest neighbors are 6.

12



The nearest neighbor distance is ‘a’. At each corner eight unit cells intersect so
each atom of the corner is shared by eight unit cells. The contribution of each atom

to a unit cell is 1/8. So the number of atoms in a unit cell is one.

Primitive Body=centred Face<centred
(or simple)

Cubic
Figure 1.14: Atomic Arrangement in SC, BCC and FCC
Body Centered Cubic Lattice (BCC):

In BCC lattice there are eight atoms that lie at the corners of the unit cell. There is
an additional atom at the center of the unit cell. If ‘a’ is the lattice constant ,then

the volume of the unit cell is a’. The co-ordination number or nearest neighbors are

8. The nearest neighbor distance is ‘a\/3/2’. At each corner, eight unit cells
intersect, so each atom of the corner is shared by eight unit cells. The contribution
of each atom to the unit cell is 1/8, while the center atom totally belongs to unit
cell. So the number of atoms in the unit cell is two. The volume of the primitive

unit cell is a’/2.

Face Centered Cubic Lattice (FCC):

In FCC lattice there are eight atoms that lie at the corners of the unit cell. There are
additional atoms at the center of each face of the unit cell. If ‘a’ is the lattice

constant ,then the volume of the unit cell is a’. The co-ordination number or nearest

neighbors are 12. The nearest neighbor distance is ‘a\/2/2’. At each corner eight
unit cells intersect, so each atom of the corner is shared by eight unit cells. The
contribution of each atom to a unit cell is 1/8, while the face center atom has
contribution 1/2 to unit cell. So the number of atoms in a unit cell is four. The

volume of the primitive unit cell is a’/4.

13



1.8 Atomic Packing and Atomic Radius

Atomic packing factor is defined as the ratio of volume occupied by the atoms to
the volume of the unit cell. For the calculation we treat the atoms as hard spheres
and the sphere touch each other. For cubic system the co-ordination number is 6, 8
and 12 for SC, BCC and FCC lattices respectively. The number of lattice points in
the unit cell of SC, BCC and FCC are 1, 2 and 4 respectively.

1. SC Lattice: Let us consider the lattice constant of SC lattice 1s ‘a’ and ‘R’

is the atomic radius. The atoms are at the corners and touch each other so the

lattice constant and atomic radius is related to each other as shown in Fig. 1.15

a=2R
So the atomic packing factor is defined as
Volume occupied by the atoms
APF =2 APF = P Y
3 Volume of the unit cell

The volume of an atom = 4/3TTR’

Volume of unit cell =a’

3 3
=f“}§ e “R3 =T _0.524
34 3QR) 6

T

a

-L =0.5a

Figure 1.15: Atomic Packing in SC

2+ BCC Lattice: Let us consider the lattice constant of BCC lattice is ‘a’ and
‘R’ is the atomic radius. The atoms are at the corners and there is one atom at the
center of unit cell. The number of lattice points in the unit cell is 2. The diagonal
corner atoms touch the center atom so the lattice constant and atomic radius is
related to each other as shown in Fig. 1.16

a\/3=4R
So the atomic packing factor is defined as
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Volume occupied by the atoms
Volume of the unit cell

The volume of an atom=(4/3)TIR’
3

APF =

Volume of unit cell =a

3
APF = 2x 2 ;‘R =\/§n=0.68

Close-packed directions:

length =4R = J_B_a

Figure 1.16: Atomic Packing in BCC

3. FCC Lattice: Let us consider the lattice constant of FCC lattice be ‘a” and
‘R’ be the atomic radius. The atoms are at the comners and there is one atom at the
center of each face of the unit cell. The number of lattice points in the unit cell is 4.
The diagonal corner atoms of a face touch each other ,so the lattice constant and

atomic radius is related to each other as shown in Fig. 1.17

a\/2 =4R

So the atomic packing factor is defined as
Volume occupied by the atoms
APF = P2

Volume of the unit cell
The volume of an at0m=(4/3)1'[R3
Volume of unit cell= a’

3 3
APF=4><i£;:4><il
3 a 34 o

(72R)

NG
Jan

=—=0.74
6
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Figure 1.17: Atomic Packing in FCC

1.9 Self Learning Exercise

Q.1
Q.2
Q.3

Q.4

Q.5
Q.6
Q.7
Q.8
Q.9
Q.10

Q.11
Q.12

What are crystalline materials? Explain with examples.

Discuss the various types of crystalline materials.

Name the various symmetry operations permitting the possibility of various
types of lattices in 3D.

Find the Miller Indices of a crystal plane that makes intercepts 3a, -3b and
3/2c on x, y and z axes respectively.

Explain the concepts of lattice, basis and crystal.

Explain the translational vector.

Explain the symmetry operations. Write the various symmetry operations.
Classify the two dimensional lattices. Draw their unit cells.

Draw the various lattices of cubic system.

Name the various systems of lattices of 3D. Write the number of different
lattices in each system.

Write a short note on the Miller Indices.

Find the Miller Indices of a plane whose intersects on the three axes as 2a,

-3b, lc respectively.

16




Q.13 Represent the following planes of given Miller Indices in Cubic unit cell

(100), (010), (001), (111), (121), (132).

Q.14 Write the numbers of atoms in the unit cell, co-ordination number and
volume of primitive unit cells of the SC, BCC and FCC.

Q.15 Write the atomic radius in terms of lattice constants for SC, BCC and FCC.

1.10 Summary

This unit deals with the basics of the solid state physics. The solids are
classified as crystalline and amorphous solids. In the crystalline solid materials,
there is a regular or periodic arrangement of atoms or molecules or ions ,while in
case of amorphous solid there is no regular or periodic arrangement. In the basic
concepts of lattice, basis, translational; vector, unit cell, etc. are discussed.
Different types of unit cell and the differences among them are also discussed. The
various types of 2D and 3D Ilattice systems and the different lattices in system are
discussed at the end of the chapter. The unit cells of various 2D and 3D lattices are
also represented pictorially. The table is also given regarding the lengths of axes
and the angle between the axes of 2D and 3D lattices systems. The arrangement of
lattice points in different planes has been discussed in terms of Miller Indices. The
cubic crystals are discussed in detail. Finally the atomic packing and atomic radius

of the cubic crystals are discussed.

1.11 Glossary

Building blocks : Making units

Synthesized : Prepared

Periodic : Repeating after a fixed scale

Amorphous : Non-crystalline

Symmetry : Similar pattern

Symmetry operation : Act of getting similar pattern.
Bravais :Used for different lattices in a system.
Translation: Linear displacement in space.

Point operation: Operation taken about a lattice point.

17



Inversion: Changing the direction by 180".

Rotation-reflection: Rotation and followed by reflection.

1.12 Answers to Self Learning Exercise

Ans.1: The materials in which the atoms or molecules or ions are arranged in a

well defined or periodic manner in space are called as crystalline materials. All
metals, alloys, salts, metal oxides etc. have crystalline structure.

Ans.3: The fundamental symmetry operation is the translation operation. The other

symmetry operation includes rotations, inversion, reflection, and their

combined operations like rotation-inversions, rotation-reflection, etc.

Ans.4: The intercepts are written as

pa=3a
gb=-3b
rc =3/2¢

So the Miller Indices are

1 1 2 _—
(533)9 (112)

1.13 Exercise

Q.1  Explain the types of various materials.

Q.2 Classify the three dimensional lattices.

Q.3  Explain the unit cell. Discuss the various types of unit cells.

Q.4  Explain poly-crystals.

Q.5 What are primitive and centered unit cell?

Q.6 Why a pentagon can’t be a unit cell in 3D lattice.

Q.7  Write primitive vectors for lattices of cubic system.

Q.8 Explain the Miller Indices of a plane or set of parallel plane.

Q.9 How the Miller Indices of a set of parallel plane can be determined?

Q.10 Find the Miller Indices of a plane that is parallel to x- axis and intercepts

along y and z-axes are 4b and 2c.

18



Q.11 Draw the various lattices of the orthorhombic system.

Q.12 Write the packing fraction in SC, BCC and FCC and find the atomic radius.

1.14 Answers to Exercise

Ans.4: The crystalline materials in the ordering of atoms or molecules or ions
extend over a small region. There are numbers of such ordered regions in
materials separated by disordered regions called as grain boundaries. In the
grain boundaries there is random arrangement of atoms or molecules or ions.

Ans.5: The unit cell in the number of lattice points is equal to unity is called as
primitive unit cell. The primitive unit cell has the smallest volume. The other
unit cell is called as centered unit cell or non-primitive unit cell. In these unit
cells the lattice points are greater than one. In these unit cells there are
additional atoms at body centered or face centered or base centered positions

in addition to corner atoms in the unit cell.

Ans.6: When the unit cell in the form of pentagon is selected and it reaped in space

then repetition of the cell leaves uncovered space in the lattice i.e. a volume of

the space is left on repeating the pentagon see figure 1.18. There is violation of
translation symmetry.

Cheerlap

J

% flnfifad sodoce
Figure 1.18: Pentagon as unit cell
Ans.7: A cubic system has three types of Bravais lattices e.g. simple cubic, body

centered and face centered lattice. In the simple lattice all the atoms are at the
corners of cube. The primitive lattice vectors are

a, =ai
d, = aj
d, = ak

The primitive unit cell is a cube of length ‘a’ and angle between the edges is

90°.In case of body centered cubic lattice the primitive lattice vectors are as
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primitive unit cell conventional unit cell

ol
\\/.M
o L
Figure 1.19 Primitive unit cell of bee
G =§(E +j—k)
i, =§(—f+}'+/€)
a, =%(£ —j+k)

The primitive unit cell is a thombohedron of edge %\Ea . The angle between
the edges is 109°28".

The primitive lattice vectors of face centered lattice are as

. a »
=—(i +
a 2(1 7)

a .~ -
d,=—(j+k
d, 2(1 )

a .. »
a,=—( +k
3 2(1 )
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The primitive unit cell of fcc is a rhombohedron of edge %\/Ea. The angle

between the edges is 60°.

Figure 1.20 Primitive unit cell of fcc

Ans.8:In the crystal the lattice points lie on the planes. There can be number of

sets of parallel planes possible having different directions of each set. The
direction of a plane or a set of parallel plane is represented by set of three

numbers called as miller indices of the plane or a set of parallel plane.

Ans.10: The intercepts are written as

pa= %
qb=4b
rc=2c

1 11
So the Miller Indices are (———) — (012)
w 4 2
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2.0 Objectives

This unit is aiming to make familiar with the symmetry found in crystals. The

various symmetry operations possible in the crystal will be explained. The crystal

structure of some popular materials with arrangements of atoms or molecules in
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the basic unit and their packing will be explained.

2.1 Introduction

The classification of various crystal structures and various lattices is based on the
symmetry operations found in crystals. The various types of symmetry elements
found in crystals are classified and explained in detail. The crystal structure of
some crystals like NaCl, hep, diamond, Zinc blend, perovskites, etc. are discussed

in detail.

2.2 Introduction to Symmetry Elements

An operation that takes the crystal into itself is called as symmetry
operation. If any operation is performed on the crystal then change is observed in
the surrounding of the crystal. The symmetry operations may be grouped into three

classes

1 Translation Symmetry Operation
2. Point Symmetry Operations
3. Hybrid Symmetry Operations.

2.2.1 Translation Symmetry Operations

A translation operation is defined as the displacement of a crystal parallel to
itself by a crystal translation vector. The translation operation is permitted in every
fundamental space lattice of the crystal when a lattice point is moved through a
displacement vector defined by equation (1). The final point of the displacement is
also a lattice point around which the arrangement of lattice points is identical as
before the operation. The fundamental space lattice of a crystal is commonly

known as Bravais lattice.

F=F+T (1)
where T is the translation vector which is given by

+n,b +nc )

2|

T

"

Here n,, n, and n; are integers and a,5,¢ are called as fundamental lattice vectors.
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Figure 1.Translation operation in lattice and translational vector

2.2.2 Point Symmetry Operation

Point operations are performed at a point within a Bravais lattice. The point
symmetry operations include the following operations.
The Mirror Reflections Symmetry Operation:

In this operation the reflection of a structure at a mirror plane “m” passing
through a lattice point leaves the crystal unchanged. The mirror plane is composed
of atoms lying on the concerned imaginary plane.

”?1 m2

O 4

d @

Figure 2: Mirror planes in two dimensional crystal
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The Inversion Symmetry Operation:

Let us consider a lattice point represented by a position vector 7,

considering any lattice point O as origin.

.A

rd

A o’

Figure 3: Inversion Symmetry Operation

If there exists a lattice point in the crystal represented by a position vector -7, then
we can say that the crystal inversion symmetry. The origin is called as centre of

[T3LD)
1

inversion and represented by symbol “i”. The inversion operation shows that the

inversion of a lattice point at centre of inversion leaves the crystal unchanged.

Rotation Symmetry Operation:

The crystal can be repeated by rotation of it about an axis passing through
the crystal. By rotating the crystal through certain angle gives the unchanged

picture of the crystal. The axis of rotation is called as symmetry axis.

If the crystal is rotated by an angle 0 such that the environment appears to be

unchanged ,then the axis of rotation is termed as n-fold axis where the angle of

o 27
rotation is given by 0= —,n=12,3,.....
n

Every crystal has 1-fold axis of rotation. The symmetry axes commonly observed
in crystals are 1-fold, 2-fold, 3-fold, 4-fold and 6-fold. The 5-fold symmetry axis is

not observed in the crystals.
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4 fold axis 3 fold axis 2 fold axis
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1 ~
| ~ "' ' L. ~
1 |l oo™

| e o™

J— - - ,'— - - /' i /'. - -

4 1 / /
’ ’ /s
L
S——
Figure 4: Symmetry axes of rotation in cubic crystal

2.2.3 Hybrid Symmetry Operations

In the proper rotation the right handed object repeated as right handed and
left handed as left handed. But in improper rotation the right handed object is
repeated as left handed. The improper rotation when followed by some other
operation like reflection or translation leads to congruence. Similarly, a reflection
operation may combine with a translation operation to produce congruence. The

combined symmetry operations are called as hybrid symmetry operations.

The Rotoreflection:

It is the combination of an n-fold rotation and a reflection at a plane
perpendicular to the axis of rotation. It is represented by n/m having n=1, 2, 3, 4, 6.

The Rotoreflection 2/m is equivalent to inversion operations.

Figure 5: Rotoreflection Symmetry
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The Rotoinversion:

This operation includes an n-fold rotation followed by an inversion. It is

represented as n .

Figure 6: Rotoinversion Symmetry

The Screw Translation:

The n-fold rotation combined with a translation parallel to rotation axis is

called as screw rotation.

63 axis 6 axis

12t

=
i

2t

2t

Btk

Figure 7: Screw Translation Symmetry
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The Glide reflection:

When the reflection is combined with a translation parallel to plane of

reflection the combined operation is called as glide reflection.

Figure 8: Glide Reflection Symmetry

2.3 The Crystal Structure of NaCl

The space lattice of NaCl crystal is FCC. The arrangement of Na and ClI
atoms in the lattice is shown in the Figure 9. No sodium atom is located at any
corner point, but one of them is at the centre and others are at mid points of 12
edges of the cube. An atom on the edge contribute “4th of the atom. So there are 3
atoms contributed by edges atoms and one by the centre atom. So there are 4
sodium atoms in the unit cell. Similarly there are 4 atoms of chlorine in the unit
cell. A single unit cell accommodates four formula unit cells of NaCl. The position

of Na and CI atoms in the unit cell are as
1 11 1 1 1
Na:{_:_5_}5{0905_}5{05_50}3{_:030}
222 2 2 2
1 1 1 1 1 1
ci:{0,0,0},4—,—,07,4—,0,—,40,—,—
22 2 92 22
J3a

The basis is composed of two atoms which are separated by a distance :
2

where a is the length of cube edge. The lattice parameter of NaCl 1s 5.63 A,
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Na

. ’.... .

Figure 9: Crystal Structure of NaCl

2.4 The Crystal Structure of CsCl

The space lattice of CsCl is simple cubic. The basis has one Cs' ion at {0,0,0} and
Cl ion at {1/2,1/2,1/2}. The atom at the centre of the cube is opposite to the ions
on the corners of the cube. The lattice points of CsCl are two interpenetrating
simple cubic lattices, the corners of one sublattice is the body centre of the other.
One sublattice is occupied by Cs' and other by CI ions. The lattice parameter of

CsClis 4.11A°.

Figure 10: Crystal Structure of CsCl
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2.5 The Hexagonal Close Pack Structure (hcp)

The unit cell of hexagonal structure contains an atom at each corner, one
atom at the centres of hexagonal faces and three more atoms within the body of the
cell. Each atom touches three atoms in the layer below its plane, six atoms in its
plane and three atoms in the layer above. So the coordination number of this
structure is 12. The top layer contains seven atoms. Each corner atom is shared by
six surrounding hexagon cells and the centre atom is shared by two surrounding
cells. Three atoms within the body of the cell are fully contributing to the cell. So

there are 6 atoms in an unit cell.

Hexagonal

0 S

Hexagonal
packing

Figure 11: Hexagonal Close Pack Structure
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Let “c” is the height of unit cell and “a” be the length of the edge.

For given figure below ,let the edge of hexagonal base =a

The height of hexagon =h

Radius of sphere =r

The centre sphere of the first layer lies exactly over the void of 2" layer B.

The centre sphere and the spheres of o layer B are in touch .
So, In A PQR (an equilateral triangle)

PR = 2r, draw QS tangent at points
InAQRS ZQRS=30°, SR=r

SR
Cos30°= —

OR
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2
h=2h'= 4\/:r
3

Now, volume of hexagon = (area of base) x (height)

6\/51:12

4

3 . |2
=—2r) X4, |—r
4 3

=242/

Area of hexagonal can be divided into six equilateral triangles with side 2r.

X h

Volume =

1 1
No. of spheres in hep=12X—+2X—+3=6
6 2

4
Volume of spheres = 6 X —7r’
3

4 3
6 X—Tr
Percentage of space occupied by sphere = 3—3X 100%
2427

—=X100="74%

It
W2
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2.6 The Diamond Structure

The diamond lattice is supposed to be formed by interpenetrating two fcc
lattices along the body diagonal by % th cube edge. One sublattice has its origin at
the point (0,0,0) and at a point quarter of the way along the body diagonal at a
point (a/4,a/4,a/4).

Figure 12: Diamond Structure

Figure 13: Top view of Diamond Structure

The packing factor of this structure is 34%. Carbon, Silicon and Germanium
crystallize in this structure.
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2.7 The Zinc Blende Structure

The Zinc Blende structure is almost identical to diamond structure except
that the two interpenetrating fcc sublattices are of different atoms and displaced
from each other by one-quarter of the body diagonal.

U
.

. \°~. L

{(b) ZnS

Figure 14: Zinc Blende Structure.

The cubic Zinc Sulphide structure results when Zinc atoms are placed at fcc lattice
and S atoms on the other fcc lattice. There are four atoms per unit cell. The
examples of the compounds which have Zinc Blende structure are CuCl, ZnS,
InSb, CdS, etc.

2.8 Perovskite Structure

The structural family of perovskites is a large family of compounds having
crystal structures related to the mineral perovskite CaTiO,. In the ideal form the
crystal structure of cubic ABX, perovskite can be described as consisting of corner
sharing BX, octahedra with the A cation occupying the 12-fold coordination site
formed in the middle of the cube of eight such octahedra. The ideal cubic
perovskite structure is not very common and also the mineral perovskite itself is
slightly distorted. The perovskite family of oxides is probably the best studied
family of oxides. The interest in compounds belonging to this family of crystal
structures arise in the large and ever surprising variety of properties exhibited and

the flexibility to accommodate almost all of the elements in the periodic system.
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Distorted perovskites have reduced symmetry, which is important for their
magnetic and electric properties. Due to these properties, perovskites have great
industrial importance, especially the ferroelectric tetragonal form of BaTiO,
(Figure 15), SrTiO, (Figure 16).

Figure 16: Crystal Structure of SrTiO,
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If the large oxide ion is combined with a metal ion having a small radius the
resulting crystal structure can be looked upon as close packed oxygen ions with
metal ions in the interstitials. This is observed for many compounds with oxygen
ions and transition metals of valence +2, e.g. NiO, CoO and MnO. In these crystal
structures the oxygen ions form a cubic close packed lattice with the metal ion in
octahedral interstitials (i.e. the rock salt structure). Replacing one fourth of the
oxygen with a cation of approximately the same radius as oxygen (e.g. alkali,
alkali earth or rare earth element) reduces the number of octahedral voids,
occupied by a small cation, to one fourth. The chemical formula can be written as
ABX, and the crystal structure is called perovskite. X is often oxygen but also

other large ions such as F and CI are possible.

The ideal cubic structure is realized, in CaRbF, and SrTiO,. The latter can be
described as Sr”" and O ions forming a cubic close packed lattice with Ti" ions
occupying the octahedral holes created by the oxygen. The perovskite structure has
a three dimensional net of corner sharing TiO, octahedral with Sr”" ions in the
twelve fold cavities in between the polyhedral.

2.9 Self Learning Exercise

Q.1 Discuss the various symmetry operations in detail.
Q.2  Explain the hybrid symmetry operation with suitable diagrams.
Q.3  Explain the Zinc Blende and Diamond structure of crystals.

Q.4  Explain the point symmetry operations.

2.10 Summary

This unit deals with the symmetries found in the crystals. The crystal
symmetry operations are then classified into three categories. These symmetry
operations are translational, point and hybrid symmetry operations. The three
symmetry operations are then discussed and their further classifications are also
explained with diagrams. After this some crystal structures are discussed with
diagrams of unit cell. The positions of different atoms in the unit cell are

explained. The lattice parameters and packing fractions of some crystal structures
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are discussed. The unit cells of NaCl, CsCl, HCP, Diamond structure, Zinc Blende

structure and perovskite structure are explained with diagrams.

2.11 Glossary

Symmetry : Similar pattern

Symmetry operation : Act of getting similar pattern.
Lattice : Arrangement of lattice points in space.
Translation : Linear displacement in space.

Point operation : Operation taken about a lattice point.
Hybrid : Combined or mixed.

Congruent : Similar

Inversion: Changing the direction by 180",
Rotoreflection : Rotation and followed by reflection.
Accommodate : Occupy.

Interpenetrating : Getting one into other.
Co-ordination number : Number of nearest neighbours.

Perovskite : A kind of crystal structure (named since its origin in history)

2.12 Exercise

Q.1  Explain the concept of symmetry operation.

Q.2  Write a short note on the translation and rotation symmetry operations.
Q.3  Discuss the rotational symmetry operation in a cubic unit cell.

Q.4  Describe the crystal structure of NaCl and CsCl.

Q.5 Explain the crystal structure of hexagonal close packing and find its

packing fraction.
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Q.6  Explain the perovskite structure and write the examples of this structure.

References and Suggested Readings

1. Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons,
Singapore, 7" edition, 1996.

2. A.J. Dekker, Solid State Physics, Macmillan India Limited, Delhi, 1986.
3. ].P. Srivastava, Elements of Solid State Physics, 3" edition, PHI, Delhi, 2013.

5. S.0. Pillai, Solid State Physics, 6" edition, New Age International Publishers,
New Delhi, 2010.

39




UNIT-3

Reciprocal Lattice

Structure of the Unit

3.0
3.1
3.2
33
34
35
3.6
. ¥
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Objectives

Introduction of Reciprocal lattice

Bragg’s law

Fourier analysis for scattered wave amplitude
Self - Learning Exercise-1

Reciprocal Lattice Vector

Laue Equation of X-rays diffraction

Ewald Construction — Bragg’s law in terms of reciprocal lattice Vector.
Brillouin Zones

Properties of the Reciprocal lattice
Self-Learning Exercise-I1

Summary

Glossary

Answers to Self Learning Exercises

Exercise

References and Suggested Readings

3.0 Objectives

The aim of the unit is to explain the principles of x-ray diffraction and to

derive related equations. After going through this unit you will be able to explain

the principles of x-ray diffraction, the diffraction conditions and the concept of

reciprocal lattice and Brillouin zones.

3.1 Introduction of Reciprocal Lattice

X-rays from part of the electromagnetic spectrum and the energy (E) of an x-ray

photon is related to the wavelength by Planck’s relation

40



E=hv = he/A

where h is Planck’s constant and c is the speed of light. Thus the energy of the
x-ray photon of wavelength 1 A’is of the order of 10 keV.

X-rays are produced when high speed electrons strike some target material. Metals
of high melting point are used as target material and they should have high atomic
weight for abundant production of x-rays. Metals like tungsten, copper and
molybdenum are used as target materials. When electrons accelerated to very high
speeds strike the target they give up their kinetic energy and thereby produce both

characteristic and continuous x-rays.

The discovery of the diffraction of x-rays by crystals in 1912 is one of the most
important discoveries in Physics. Since x-rays can usually penetrate solids non-
destructively, the diffraction of these rays by crystals provides information about
the internal structure of the crystal. Experiments had indicated that wavelength of
x-rays is of the order of 1A°,which is about the same as the interatomic spacing in
a solid. It occurred to Van Laue in 1912 that if the atoms in a crystal were arranged

in a regular way, the crystal might serve as a three dimensional crystal grating.

Techniques using x-ray diffraction immediately provided powerful tool for
determining virtually the structures of any material. X-ray diffraction has great

value, since in a crystal it represents wave propagation in a periodic structure.

3.2 Bragg's Law

Consider a set of atomic planes called Bragg planes as shown in Fig. (3.1). A

parallel beam of X-ray is incident on these planes making a glancing angle 0 with

CO ® @ ® & & oC

® © ®© ¢ & o o
Fig. 3.1: Geometry of Bragg's reflection
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the planes as shown. All wavelets scattered from one plane combine constructively
only in one direction which makes the same angle with the plane under
consideration as the incident ray. In all other directions they combine destructively.
This is the condition of normal optical reflection. Because of this aspect, the actual
scattering process is termed as reflection. When scattering from different parallel
planes is considered, the reflected rays obey the conditions of constructive and

destructive interference.

Consider two parallel rays incident on a set of parallel planes. These rays suffer
Bragg reflections by atoms N and T in two successive planes. T is vertically below

N and the lattice separation is d. From N drop perpendiculars NL and NM on the
incident and reflected ray respectively at T ,the glancing angle is 0.

Comparing the path of rays reflected at N and at T, the additional path travelled by
the ray reflected at T is (LT + TM) i.e. the path difference in the rays reflected
from the two planes is

A=LT+TM
If distance between the two planes NT = d then from the triangle ALNT and

AMNT
LT MT

—— =5sin@ and —— sinBO

LT=dsin® and MT=dsin O

The path difference is A =2 dsin 0
According to the necessary condition for constructive interference path difference
is

A=nA
where A is the wavelength of X-rays and n is an integer.

. 2d sin B =nA.
This equation is called Bragg equation. This equation represents the relation
between inter spacing distance d, reinforce angle 0 and wavelength A of X-ray .

From the Bragg's equation it is clear that for the wavelength of X-rays, the
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minimum value is d.

ni
d=——
2sinf
It is possible the value of d is minimum when
(sin 0) . =1
A
a dmin = n—
-
A
forn=1 d,.=—
2

Thus we see that when the diffraction pattern is obtained from the crystal, the

distance between the lattice planes is E or more.

3.3 Fourier Analysis for Scattered Wave Amplitude

The Bragg derivation of the diffraction condition gives a neat statement of the
condition for the constructive interference of waves scattered from the lattice
points. We need a deeper analysis to determine the scattering intensity from the
basis of atoms, which means from the spatial distribution of electrons within each

cell.

Fourier Analysis

We have seen that a crystal is invariant under any translation of the form
T =u, a; + u, a,+ u, a; where u,, u,, u, are integers and a,, a,, a, are the crystal
axes. Any local physical property of the crystal, such as the charge concentration
electron number density, or magnetic moment density is invariant under T. What is
most important to us here is that the electron number density n (r) is a periodic
function of r, with period’s a,, a,, a, in the directions of the three crystal axes,

respectively. Thus
n(r+T)=n(r). (1)

Such periodicity creates an ideal situation for Fourier analysis. The most
interesting properties of crystals are directly related to the Fourier components of

the electron density.

We consider first a function n (x) in one dimension with period « in the x direction.
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We expand n(x) in a Fourier series of sines and cosine:

n(x):n0+2|:cp cos(27rpx/a)+Spsin(2ﬂpX/a)] 2)

p>0
Where the p is positive integers and C, S, are real constants, called the Fourier

coefficients of the expansion. The factor 27/a in the arguments ensures that n(x)

has the period a:

n(x+a)=n, +Z[Cp cos(2zpx/a+2np)+S, Siﬁ(27[px/a+27rp)}

=n, +Z[Cp cos(2zpx/a)+S, sin(Zr:px/a)]: n(x) 3)

We say that 2TTp/a is a point in the reciprocal lattice or Fourier space of the crystal.
In one dimension these points lie on a line. The reciprocal lattice points tell us the
allowed terms in the Fourier series eq.(3) or (4). A term is allowed if it is
consistent with the periodicity of the crystal, as in Fig. 3.2; other point in the

reciprocal space are not allowed in the Fourier expansion of a periodic function.

ol

€T DI e —
*—0—90—90—00000 0000090
4n 2m04m2m

a a a

3

=

Fig. 3.2: A periodic function n (x) of period a, and the terms 2Tlp/a that may
appear in the Fourier transform

It is convenient to write the series (3) in the compact form
n(x)=3 n,exp(i2zpx/a) 4)
P

where the sum is over all integers p : positive, negative, and zero. The coefficients
n, now are complex numbers. To ensure that n (x) is a real function, we require.
*
n*, =n, (5)

For then the sum of the terms in p and -p is real. The asterisk on n*_ denotes the
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complex conjugate of n_.

With (p= 2TTpx/a, the sum of the terms in p and -p in (4) is real if (5) is satisfied.

The sum is
n,(cosp+ising)+n_, (cose —ising)
=(n],—n_p)cosqoﬂ(np—n_p)sin(p (6)
which in turn is equal to the real function
2 Re (n,) cos( - 2Im (n,) sinp (7

If (5) is satisfied. Here Re[n,] and Im[n ] are real and denote the real and imaginary

parts of n. Thus the number density n (x) is a real function desired.

The extension of the Fourier analysis to periodic functions n(r) in three dimensions

is straightforward. We must find a set of vectors G such that
n(7) =3 n, exp(iG.F) (8)
G

is invariant under all crystal translations T, that leaves the crystal invariant . It will
be shown below that the set of Fourier coefficients n; determines the x-ray

scattering amplitude.

Inversion of Fourier series:
We now show that the Fourier coefficient n_ in the series (4) is given by

n,= a"lj.: n(x)exp(—i2z px / a)dx (9)
Substitute (4) in (9) to obtain

n, :a'lgnp_]‘:exp[iZJ'r(p'— p)x/alx (10)

If p' ¥ p the value of the integral is

a i220p-p) _ 1) =
o )7

Because (p' — p) 1s an integer and exp [i2TT (integer)] =1. For the term p' = p, the
integrand is exp (i0) = 1, and the value of the integral is a, so that n, = a n,a=np,
which is an identity, so that (9) is an identity.

As in (9), the inversion of (8) gives
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ng =V [ n(F)exp(~=iG.F)dV. (11)

cell

Here V. is the volume of a cell of the crystal.

3.4 Self Learning Exercise - I

Q.1
Q.2

Q.3

Q.4

Q.5

Q.6

Section A: Very Short Answer Type Questions
Write the formula of Bragg Equation.

The first order spectrum is viewed at a grazing angle of 8’ through a Bragg
spectrometer. Calculate the wavelength of x-rays if spacing between
successive planes is 2.82 A, [Sin 8= 0.1392]

What is the wavelength of x-ray photon?

Section B : Short Answer Type Questions

X-rays of wave-length 1.3A° are diffracted in a Bragg spectrometer at an
angle of 25". Find the spacing between the atomic planes of the crystals.

The solid crystal is in the form of bcc crystal. The Bragg angle
corresponding to the first order diffraction (200) planer in a crystal is 16°6'
when x-rays of wave length 1.54 A" is used ,then find the lattice constant of
unit Cell.

The Bragg angle corresponding to the first order diffraction from (111)
planes in a crystal is 30" when x-rays of wave length 1.75A" are used.

Calculate the lattice constant of crystal.

3.5 Reciprocal Lattice Vector

The diffraction of X-rays by a crystal may be thought as reflection by sets of

parallel planes in the crystal. When the planes of several slopes are considered in

the same problem, difficulty arises in visualizing the several relative slopes of

these two dimensional surfaces. Crystallographers have long struggled with the

problem of representing adequately crystallographic planes of several slopes. The

slope of the plane is fixed by the geometry of the plane or the geometry of the

normal to the plane. The normal has one less dimension than the plane and thus

provides an ecasier means of thinking of the slope of a plane. A device for

tabulating both the slopes and the inter planer spacing’s of the places of a crystal

lattice is provided by a concept known as the reciprocal lattice. The concept or
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reciprocal lattice is as follows:

(1) Each point in the reciprocal lattice preserves the characteristics of the set of

planes which it represents.

(ii) Its direction with respect to the origin represents the orientation of the planes

and
(111) Its distance from the origin represents the inter planer spacing of the planes.

In a crystal, there exists many sets of planes with different orientations and
spacing. These planes can cause diffraction. If we draw normal to all sets of
planes, from a common origin, the length of normal being proportional to the
reciprocal of the inter planar spacing of the corresponding set, then the end

points of normal from a lattice which is called as 'reciprocal lattice'.

The general procedure for locating the reciprocal lattice points corresponding to

these planes is as allows:
(1) A lattice point is taken as common origin.
(i) From the common origin, draw a normal to each plane.

(111) Place a point on the normal to each plane (h, k 1) at a distance from the origin

1
equal to R
hikl

(iv) Such points from a periodic array called reciprocal lattice.

Vector Development of the Reciprocal Lattice

First of all, a relationship between the normal to a plane and the crystallographic
axes a, b and ¢ will be developed. This can be done by considering a primitive unit
cell as shown in Fig. 3.3. When the height of this cell d,,, is multiplied by the area
of the parallelogram given the volume V of this primitive cell.

_—E)B
Fig. 3.3: Primitive cell and their axes

47



Volume of the primitive cell

V =area % d,y,
1 area )

a_ Volume

In vector notation, the normal to a plane is represented by the unit vector » hence

the equation can be written as
area A
)

- 1o~

ag =—N =
" '/ - Volume V

If any plane is represented by integers (h, k, 1) then

oy L e A
e dhk;’ B V
Area of the parallelogram from by the vector b and c
=bxc
i B :L;“: bxc
e - V

We know that volume of the primitive cell formed by the vectors a , band ¢

3)

V=a.bxc=b.cxa=c.axbh

1 ~ bxc
(4a)

T e . B%
Similarly expression can be written for &, and &), .
oo = ! == (4b)
dy, a.bxc
1 ~ axb
- (4c)

These three vectors are chosen as the three reciprocal axes for defining three

dimensional reciprocal lattices.

a*=c bxc
- 100 = = ———=
a.bxc (5a)
S = cxa
b*¥=0p0==——n—=
010 S Txe (Sb)
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C*=O'OOI=T (SC)

This reciprocal lattice vectors axes bear simple relationship to the crystal axes,

from the vector notation for equation (6).

bx

7 (6a)

= C
a*=2r= =
Xc

QI

Q|

X

a.b

ol

b*=2r7 = (6b)

C

X

p axh
R (60

Form equation (5a)

Vector ¢ * is normal to ? and ¢

Hence a* ib. =0
a* . c=0
Similarly from equation (5b)

Vector b* is normalto ¢ and a

s b* . c=0
and b* . a=0

Vector ¢* is normal to a and b

—p

e* . .a=0

and c*.b=0

From scalar product of reciprocal vectors to direct vector for equation (5)

I
S
X
e
I
—

e 0 Q|
* *

S o
I 1l
Sl
X x
Qi
1l

—

(7

!
ik
IR~ T
X
Sl

I
Py

Qieialal o
x

]
*

=
|

X
S

o
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Using these reciprocal lattice vectors, a lattice can be constructed. The successive
points in the* direction represent successive sub multiples h of the spacing of
(100), and in the b* direction successive sub multiples k of the spacing of (010)
and similarly in ¢* direction, successive sub multiples / of the spacing of (001).

3.6 Laue Equations of X- Rays Diffraction

Laue Treatment Illustrates effectively the way in which X-rays scattered from
different atoms can combine for the formation of diffracted beam. It also provides
the validity of Bragg's picture. Let us consider the radiation scattered by two

identical scattering centers P, and P, separated by a distance . Suppose i is the

unit vector in the direction of the incident beam and s the unit vector in an
arbitrary scattering direction as shown in Fig. (3.4). The incident radiation is
assumed to be a parallel beam and the scattered beam is assumed to be detected at
a long distance away. If P,A and P B are the projection of r on the incident and

scattered way directions respectively, the path difference between the radiation

scattered at P, and that scattered at P, then
pa-pp= 1.7-5.7=(1-3).7
—5.r
where s=i-s is the direction of the normal to a plane that reflects the incident

direction into the scattered direction as shown in Fig. (3.4)

\

€D

"'(' Tmmfmm-n -
WV
>
__:f,)

'
Vs
w>

Fig. 3.4: Geometry of Laue Equation

From ’S‘ =2sin0 [ 7 and s are unit vector]
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Phase difference between the radiations scattered at the two points is

27 27 - —
¢ = 7 (Path difference):T(s _ ,.) 0

The condition that there will be a diffraction maxima in the direction s is that the
scattering contribution from point be an integral multiple of 2TT.

If ¢, b and ¢ are the primitive lattice vectors for lattice point P, with respect to P,

,2then from equation (1)

é. =27”(§ -a)=2mh'

B .
¢,,:7”(s.b):2nk > -
6.=22(5 . c)=2ar

Where h', k' and 1' are integers and ¢a, ¢;, and ¢’C are the phase difference of

scattering ray.

If &, B and Y are the angle between the scattering normal sand the a, b and ¢
primitive lattice vectors respectively, then

S.da a| |S‘COS ¢ =2a sinf cosa

s.b= I;’ ’E’cos p=2b sinf cos

§.c= c’ ’S|COS ¥ =2c¢ sinf cosy

From equation (2)

2a sinf cosa=h'1
2b sinf cosf=k'A 3)
2¢ sinf cosy =1'A

For above equation (3), are called Laue's equations for X-ray diffraction. This is

the second form of Bragg equation 2d sinB = nA which can be calculated by the
Laue equations.

Calculated Bragg Equation by the Laue's Equation

From equation (3),we have
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A’ 1
cosa = ——h
2asin®
y
cos i = e
p 2bsin@ 4)
cosy = !
4 2¢sinf

Hence these direction of cosines are in the ratio of h', k' and I' respectively ,but the
directional cosines are normal to the plane of the miller indices (hkl) are in the
ratio of h, k, 1 respectively. Therefore these integers are mutually equal in ratio.
L. P=h:k:l
h'=nh, k' =nk and I' = n/
Substituting these integers from equation (4)

nA
cosa = -
2asinf
ni
S =
€SP = S psing
cosy = L [
Y 2csinf

From the property of directional cosine

cos” o + cos’B +cos’ Y = 1

n_) E+k—2+£ =1
= 2sin@ ) | a* b* ¢*

nA {hz i 12}“
+

or 2sin@| a* b ¢

But the distance between the planes of the miller indices (h, k, 1)
=142
ok P
d=|—=+—=+—
]

u na B
COCC  Scind

or 2dsinf =ni

This equation is called Bragg condition or equation.
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3.7 Ewald Construction- Bragg's Law in Terms of
Reciprocal Lattice Vectors

The Bragg condition which was earlier derived by considering reflections from
lattice planes can be seen as expressing a relation between the vectors in the

reciprocal lattice.

P. P. Ewald was responsible for interpreting Laue's results in terms of reciprocal
lattices. He devised a simple geometric construction that demonstrates the
relationship in quite elegant.

Bragg's Law: The Bragg equation has a more elegant form in the reciprocal
lattice. All the vectors are magnified by a constant scale factor of 2TT and are

related as shown. The vector G is 2TT times the vector, OB shown in Ewald

construction.

G
Ol

Fig. 3.5: Vector disposition in Ewald construction

Similarly the vectors K and K' are 2TU times the vectors AO and AB. The
disposition of the vectors, however, is of the same type. Therefore for diffraction it
is necessary that the magnitude of A' B' (K' = K + G) must be equal to the
magnitude of A' O' (K)

Thus Bragg condition imply that (K + G)* = K’
or  (K+G).(K+G)=K’
or  K'+2KG+K'=K’
or  2KG+G'=0

This is the Bragg law in terms of reciprocal lattice vectors.

3.8 Brillouin Zones

Through Ewald construction, we have seen the physical significance of Bragg
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reflection condition- whether or not a K-value is reflected depends upon Ewald
sphere's intersecting a point of reciprocal lattice of the crystal under consideration.
We now wish to construct in the reciprocal lattice the locus of all these K-values
that can be Bragg reflected.

Let us consider a simple square lattice. Its primitive translation vectors are

represented by
a=ai ,b= a:f
Where a is its side and i and j are the unit vectors. The corresponding reciprocal
lattice translation vectors are,
a* = (1/a) i and b* = (1/a) |
So that the G- type reciprocal lattice vector
G =(2Tt/a) (hi +k ),
where h and k are integers.

Suppose that the wave vector for an x-ray is K = iK, + jk,, if it is measured from

the origin of the reciprocal lattice.
The Bragg condition now requires, 2K.G. + G* = 0.

Substituting the values of K and G this becomes,

h K, +k K, = (-Tt/a) (b’ + k)
By taking all possible combinations of h and k, we can get the value of k which

will be Bragg reflected.
Ifh=+1,and k=0; k =+ Tl/a and Ky is arbitrary

Ifh=0andk =+ 1; K =Tl /a and K, is arbitrary.
These four lines are plotted in the figure3.6. All K vectors originating at the origin
and terminating on these lines will produce Bragg reflection. Beside this set of
lines, some other sets of lines as, for example = K, £ K = 2 Tl/a are also possible
(forh=+1 and k = +£1).
The regions included in such lines are called Brillouin zones or Weigner-Seitz

cells. In particular, the square bounded by K, =+ Tt/a and K, = =+ Tt/a is the first
Brillouin zone. The first Brillouin zone is the smallest volume entirely enclosed by
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planes that are perpendicular bisectors of the reciprocal lattice vectors drawn from
the origin.
K, +K =2n/a

°e ] K,-Ky=27r/a
\\; /X /K,=n/a
1\‘ AR Kx
K,==nl/a
/- . \'\Kx-Ky=2n/a
K.-K =2n/a
K=naKK-=mr/a

Fig. 3.6: Schematic representation of Brillouin zones

The additional area included by + K + K = 2TU/a is the second Brillouin zone, and
so on. The Brillouin zone boundary thus represents the locus of K-values that are
Bragg reflected; as such, it may be considered as the reflecting plane-the
boundaries of the first zone as the reflecting plane for the first order reflections, the
boundaries of the second zone as the reflecting plane for the second order
reflections etc. It may be added that within a Brillouin zone no K-vectors can give

Bragg reflection.
The form of the Brillouin zones in three dimensions can be easily evaluated by
using the generalized equation.
hK, + kK, + /K, = -T/a (h" + k* +7)
The first zone is clearly a cube intersecting the K, K, and K, axes at the points

(Tt/a) and thus having its sides (2TT/a). The second zone is made up of pyramids
added to each face of the first zone cube in the manner in which the triangles are
added to the first zone square in two dimensions. Higher zones are constructed

similarly.

3.9 Properties of the Reciprocal Lattice

(i) Reciprocal Lattice to Simple Cubic Lattice

The basis vectors of a simple cubic lattice may be written as

Il

i a

a

Il

oL Sl
1l
o L

a
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Volume of the primitive cell
V=a.bxc
:a3 l:; 5 (}XI‘;)} = (13

Components of the reciprocal vector

bxc B az(}X];):l»l:

;l (sz) a a

a* =

- - z"é 2 A
Similarly  5*=~ z;:g)‘a (asm)—éj

. axh _az(‘:"x}) 1
_5.(13><E)_ a’ a

Hence simple cubic is a reciprocal lattice of simple cubic lattice but with lattice

k

constant equal to 1/a.

(ii)  Reciprocal Lattice to Body Centered Cubic Lattice

The basis vectors of the bec lattice are as follows:

—_ ~

a=%(—?+j+i<)

Volume of the primitive cell
V=a.(bxc)
BT n e o By w o fu w ST &
=§[(—i+j+k).(i—j+k)x(z‘+j—kﬂ =
Vector components of Reciprocal lattice
bxc

2 (5x2)

=
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— [ (T4 R)x(+7-F)]
zz_la[+i}+}+l}+?+}—?]
or =é(}'+ff)
Similarly B*:é(hfc)
and E*=é(?+}')

Vector a*,b*,c* are the basis vector of the face centered cubic lattice. Thus face

centered cubic lattice is the reciprocal lattice of the body centered cubic lattice.

(iii) Reciprocal Lattice to Face Centered Cubic Lattice

The basis vectors of a fcc lattice are as follows:

i=2(i+7)
-2(7+#)

- 2(i)

Volume of primitive cell

i (b0
[(w)( £)e(i+1)]

T
8[+] 4

|

Vector component of reciprocal lattice
bxc
(b X c)

=[G +R)<(k+3)]

(1*_
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a
or at=—(i+j-F)
Similatly ~ B*= é(-h}u?)
or == (i-G+k)

There are the basis vectors of the body centered cubic lattice. Thus body centered

cubic lattice 1s the reciprocal lattice of the face centered cubic lattice.

3.10 Self Learning Exercise - I1

Section A : Very Short Answer Type Questions

Q.1 What do you mean by lattice?

Q.2 Define Brillouin Zone.

Q.3 What is the volume of the first Brillouin zone of a simple cubic lattice of
lattice constant a?

Section B : Short Answer Type Questions

Q.4 A two dimensional lattice has the basis vectors @ = 2i,B =i+2j. Find the
basis vectors of the reciprocal lattice.

Q.5 The basis vector of the lattice are 5:£(§+\/§}),I;:

2

¢ =ck . Find the basis vectors of the reciprocal lattice.

(—E +J§j) and

Q.6 What is the reciprocal lattice to simple cubic lattice?

3.11 Summary

X-ray diffraction is understood in terms of Bragg's and Laue equation. Any

function invariant under a lattice translation T may be expanded in a Fourier series
of the form n(r) = > ng exp(iGr) Reciprocal lattice is a geometrical projection
G

of a normal Bravais lattice and is used to make various crystallographic and

diffraction calculations. Bragg's law is also understood in terms of the reciprocal

lattice using Ewald construction. The locus of all the wave vector values that are
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Bragg reflected is the Brillouin zone.

3.12 Glossary

Lattice: Regular periodic arrangement of ions or molecules in a crystalline solid.
Bravais : Non-Primitive unit cells have to be chosen in order to make the
symmetry of the unit cell compatible with the symmetry of the entire lattice.

Reciprocal : Collection of nodal points, derived mathematically from the real

lattice using a reciprocal relationship.

3.13 Answers to Self Learning Exercises

Answers to Self Learning Exercise-1
Ans.1: 2dsinB =nA
Ans.2: 1=0.84 A"
Ans.3: A=1A"
Ans.d: d=3A"
Ans.5: d,,=2.8 A’ a=5.6A"
Ans.6: 3.03 A°
Answer to Self Learning Exercise-11
Ans.1: A regular, Periodic configuration of particles in a crystalline solid.

Ans.2: A Brillouin zone is define as a Wigner- Setiz cell in the reciprocal lattice-

Ans.3: (27 /a)

Ans.4: a* = %(—:’ T 2;)55* = %}

R AP (T AP P
. a¥=—| i+ |[B*=—| =-i |c*=—k
Ans.5: a{ \/5] a{\/i ] C

Ans.6: a*=—1,b*= lj,c* =ék

3.14 Exercise

Section-A : Very Short Answer Type Questions

Q.1 What are Laue's equations.
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Q.2
Q.3
Q4.
Q.5.

Q.6
Q.7

Q.8
Q.9
Q.10

Q.11

Q.12

Q.13

Q.14

Q.15

What is a Laue's diagram?

Why crystal is more suitable for the study of x-ray diffraction?
Explain the Bragg's law of x-ray diffractions.

Write the condition of Bragg's Reflection.

Section- B : Short Answer Type Questions

State Bragg's law.

If ZI,B,E are the basis vector of the direct lattice then write the vector of
reciprocal lattice?

Show that the reciprocal lattice of fce is Bee.

Write Bragg's law in terms of reciprocal lattice vector.

What is the reciprocal lattice?

Section C : Long Answer Type Questions

Explain Bragg's law for x-ray diffraction. What information can be obtained
using Bragg's law?

Arrive at the Laue equations for x-ray diffractions for a crystalline solid.
Show that these equations are equivalent to Bragg's law.

What is Ewald Construction? How does it help in the interpretation of x-ray
diffraction photographs?

Explain the concept of reciprocal lattice. Discuss its properties. Show that
the reciprocal lattice of a bece bravais lattice 1s an Fcc lattice.

Prove that fcc lattice is the reciprocal lattice of the bee lattice and bec lattice

is a reciprocal lattice of fcc lattice.
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UNIT-4
Fourier Analysis of the Basis
and Structure Factor

Structure of the Unit

4.0  Objectives

4.1  Introduction

4.2 Fourier analysis of the basis

4.3 Structure Factor for Simple Cubic unit cell

4.4 Structure Factor for Base Centered cubic unit cell

4.5  Structure Factor for Body Centered Cubic unit cell
4.6  Structure Factor for Face Centered Cubic unit cell
4.7  Illustrative Examples

4.8  Self-Learning Exercise-I

4.9  Atomic form factor

4.10 X-ray diffraction

4.11 Debye-Scherrer (Powder method)

4.12  Illustrative Examples

4.13  Self-Learning Exercise-1I

4.14 Summary

4.15 Glossary

4.16  Answer to self-learning exercise

4.17 Exercise

References and Suggested Readings

4.0 Objectives

The main objective of the unit is to familiarize the readers with the concept
of structure factor and atomic form factor. Structure factor and atomic form factors

are important in the study of crystal structures, hence an understanding of these
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concepts are fundamental to the study of solid state physics. The unit discusses the
Fourier analysis of the basis and introduces the readers to the calculation of
structure factor of simple cubic, base centered, body centered and face centered
cubic lattices.

4.1 Introduction

In study of X-ray crystallography the structure factor plays a central role in
investigating and solving the problem of crystal structure determination. During
the study of crystal structures X-ray diffraction method is used in which the
scattered or diffracted beams combine to form an image. In a microscope the
recombination of rays is done physically by the lenses but in crystallography the
recombination of diffracted beams is done by mathematical methods. The
formation of image by recombination of diffracted rays depends on the direction,
amplitude and phase of each ray. The intensities of the diffracted beams are
observed separately as blackness of spots on X-ray film or by diffractometer. The
division of the diffracted beam is specified by identifying the Miller indices (hkl)

of the crystal plane causing diffraction.

The structure factor represents the resultant amplitude and phase of
scattering due to electron concentration in a unit cell. The superposition of waves
from each atom in the unit cell is taken for calculation of the resultant. The
amplitude of each wave depends on the number of electrons in the atom. The phase
of each wave depends on the position of the atom in the unit cell. Thus
superposition of these waves conveys information about amplitudes and phases in
a combined manner. The resultant scattering is actually calculated for one unit cell
but since whole structure consists of a large number of unit cells ,scattering in
phase with each other, the structure factor represents the resultant X-ray scattering
power for whole crystal structure. Thus structure factor tells about the constructive
interference occurring at a given point of the reciprocal lattice due to atoms in a
unit cell. The interference effects from different electrons within an atom are

described through atomic form factor.

4.2 Fourier Analysis of the Basis

For study of the crystal structure, diffraction pattern of the crystal is

examined, which represents the reciprocal lattice of the crystal. The reciprocal
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lattice is in Fourier space of the crystal and the dimensions of the vectors in

length:| '

The possible X-ray reflections from a crystal are determined with the help

reciprocal lattice are of {

of the reciprocal lattice vector G, where

G=ha*+kb*+Ic* (1)
where h,k,lare integers and a*, E*,E * are primitive vectors of the reciprocal
lattice.
Let us consider a crystal sample on which a beam ¢ is incident and the outgoing

beam is e “where £ and k' are the wave vectors for incident and outgoing
beams as shown in Fig-1. Consider two volume elements separated by distance »

where one element is at origin O. The beam scattered from the volume elements

have phase factor difference as exp [z’(l; —k ’).F} or exp [—iAE.F]

Trcidenk
Pegm @_L Ker

Fig.1: Volume element at distance r from origin and the incident and outgoing

beams.

The scattering amplitude for the wave scattered in the direction of £ 'is given by
F = [n(F)exp(—itk 7)dV )

Here Ak is known as scattering vector, dV is the volume element at distance r
from origin, n(7) is the local electron concentration.

The scattering amplitude F is negligibly small if the value of the scattering vector

Ak significantly different from reciprocal lattice vector. The diffraction condition
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states that Bragg reflections occur when the change in wave vector k is a vector of

the reciprocal lattice. Thus for Ak = G
The expression of scattering amplitude for a crystal of N cells becomes

F=N j dV n(7)exp(—iGF)

cell
orF=NS§, (3)

Here S, is known as structure factor. The structure factor tells about the
interference between atoms in a unit cell. It gives information about the
constructive interference occurring at a given point of the reciprocal lattice.
Considering a basis of m atoms and atoms are taken as 7 =1 fo m of the basis. The
electron concentration n(#)can be expressed as superposition of electron
concentration functions n (¥ —7) where 7 shows the atomic locations of the i

atom. Thus the total electron concentration may be written as

m

n(F)=Xn (F=7) (4)

which gives the sum over all m atoms of the cell. Thus the scattering amplitude

may be written as —

F= N;J’dV n (F —F)exp(—i G.F) (5)
and structure factor may be written as

Sg=2 j dV n.(F —7)exp(-i G.F)

=T exp(~i G.7) [ dVn,(F =) exp{~iG.(F )} (6)
The expression

fi=[dv n(F-Fyexpi=iG.(F -7} (7)
It 1s known as atomic form factor.

Thus structure factor becomes

S, = z frexp(—i G.i}) (8)

The location of i”atom with respect to real lattice is given by (9)
r=xa+ y,.!; +z6

Therefore we have
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GF =2x(hx, +ky, +1z,) (10)
S = Zﬂ exp[727ri(hxf. +ky, +1z, ):I (11)

and

This is the expression for structure factor which may not necessarily be real. The

diffraction intensity involves |S |2 which is real.

4.3 Structure Factor for Simple Cubic

The expression for structure factor is

S :Zf, exp[—2ﬂ'i(hx‘. + &y, + 1z, )]

a

Fig.2: Schematic of simple cubic unit cell

For one atom basis (0,0,0)
S =f{exp[-27i(0.h+0k+01)]}
:f{exp I:—Zm'(()ﬂ}
=/ {exp[(0)]}
=f

Thus for a simple cubic structure the intensity is at every reciprocal point.

Reflections are present for any value of /,k,/ no reflections are absent.

4.4 Structure Factor for Base Centered Cubic Unit Cell

A base centered unit cell schematic 1s shown in Fig.3. For this unit cell two

; 1 1
atoms of the same type are situated at (0,0,0) and (5 5 OJ :
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) 4

O

Fig.3: Schematic of base centered unit cell

The structure factor for base centered unit cell is calculated as

S =Z f; exp [—27:1.'(!1,1’,. +ky, + 1z, ):I
=fexp[—2m’(0)]+fexp[—2m'(h/2+k/2)]
=f + fexp[—m(h +k)]

= f{1+exp[-zi(h+k)]}

Thus S depends on the combination of 4 and &. If both 4 and & are even or both
odd, in that case /2 + k is even and therefore

exp[—m‘(h+k)]=+1 if h+k= even integer ,then S=2f

If one of from 4 and k is even and other one odd then h+k becomes odd and

therefore
exp [ﬁm' (h+k )] =—1 if h+k =odd integer, then S=0.

The value of / index does not show any effect on the structure factor and therefore

111, 112, 113 etc. have the same value of structure factor S.

4.5 Structure Factor For Body-Centered Cubic Unit Cell

The body centered unit cell has been shown in fig.4. Here two atoms of same type
11

are located at (0,0,0) and | —,—,— |.
2.2°2
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Fig. 4: Schematic of body centered unit cell

The structure factor for body centered unit cell is calculated as

&= f{exp[—Zm’(O.h +0.2+01)]+exp [—2;1:'[%.}: + %.k + %lﬂ}

= f{l +exp| —zi(h+k+ 1)]}

Thus the structure factor depends on the combination of 4,4,/ .
exp[—m’ (h+k +I)] =+1 if h+k+1= even integer
exp[—m‘(thk +[)]: =1 if h+k+/=o0dd integer

Therefore S=2f if h+k+I[= even integer
S=0 1if h+k+I= odd integer

4.6 Structure Factor For Face-Centered Cubic (Fec) Unit

The basis of the fce structure consist of four atoms of the same kind located at

(0,0,0), [1,1,0) [0,1,1) (l,o, 1)
2.2 2 2 2 2

Fig. 5: Schematic of face centered unit cell
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Thus the structure factor is calculated as

S= f{exp[—Zm’(O.k + 0.k + O.I)J +exp [—2%1’[%}1 + %.k + O.IH

+exp[—2;ri(o.h +%.k +%.zﬂ +exp[—2ﬂ'i[%.h +0k+ %zﬂ}

S = f{l +exp [—R'f(r’? + /\)] + exp[—m’(k + 1)] + exp[—m’(k + I)]}

If hk and [/ are unmixed ie. all are even or odd then the sum

(h+k).(k+1),(h+1) will be even integers and in that case each term in the above

equation becomes 1.

If h,k and [ are mixed even or odd then the sum of the exponentials becomes -1

and so S will vanish.

Therefore,
S =4 f for all indices even or odd integers
S =0 for mixed even odd indices

Thus for fce structure reflections may occur for planes such as(111), (200) and
(220) but not for planes (100),(110),(210),(112) etc. i.e. there cannot be any

reflections in fce structure when the indices are partly even or partly odd.

4.7 Illustrative Examples

Example 1 Calculate the Structure factor for NaCl.

Sol. Each unit cell of NaCl consists of 4Na and 4Cl atoms in a cubic lattice. The
l,lj e ;(1,1,1][1,0,0] [0,1,0](0,0,1]
22 2222 2 2
S = fy, €Xp [—271'1'(0)]+j}v exp _—271'1' ﬁ+£

a a I 2 2

ho 1] ko1
+ f, €Xp| 27| —+— | |+ [, €XP| 27| =+ —
f}\uu p|: [2 2]_ an p|: (2 2):|
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atoms are located at

Na;(0,0,0)(%,%,O] (%,0,%) [O,

The structure factor is given as




+/c exp {-27? i (g +§ + éﬂ + [, exp [—2m‘ (gﬂ
+f, €Xp {—2%1’[%)} + fo exp[—zm[%ﬂ

S = fya {1+ exp[—mi(h+k)]|+exp[—mi(h+1)]+exp[—mi(k +1)]}
+ for {exp[—mi(h+ k +1)]+exp[-mih]+ exp[-xik] + exp[-xil ]}
It can be rewritten as
S = fuo {1+ exp[—mi(h+ k)] +exp[—mi(h+1)]+exp[-mi(k +1)]}
+fo exp[—mi(h+k+1)]{1+exp[mi(k+1)]+exp[xi(h+1)]+exp[xi(h+k)]}
As " =¢ "™ 50 changing signs in second term
S = f {1+ exp[—mi(h+k)]+exp[—zi(h+1)]+exp[—mi(k+1)]}

+ fo exp[~mi(h+k+1) {1 +exp[~zi(k +1)]+exp[-mi(h+1)]+exp[-mi(h+k)]}
S =[ fya + Jerexp{-mi(h+k+1)} |[1+exp{-mi(h+k)}+exp{-mi(h+1)}
+exp{—m’(k+[)}]

The first factor contains the terms corresponding to the face centered

translations. The second factor contains the terms that describe the basis of the unit

cell i.e. Na atom at (0,0,0) and the CI atom at [%, %, %) The first term has a total

value of zero for mixed indices and value 4 for unmixed indices. This shows

clearly that NaCl has a face centered lattice.
Example 2. Find the expression for structure factor of CsCl. It is given that Cs
atom is located at [%,%,%) and Cl atom at (0,0,0).
Sol. By eq. (11) of section 4.3 we have.
S, =2, exp| —27i (hx, + ky, +1z,) ]

For C_,,(l,l,lj C,(0,0,0)
2’272
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S=fyexp[ —27i(h0+k0+10)] +/, exp {_zm[g%%ﬂ

This S = f; + fo, exp[ i (h+k+1)]

It is the expression for structure factor for CsC/.

Example 3 Find the expression for structure factor of 4B, crystal. The atomic

coordinates are given by

A;(o,o,O),B;[l,l,o j [1,0,1] (0,1,1]
202 2 2 2°2

Sol. The structure factor is given by
Sg = Z it exp[—Zfri(hxf +ky +1z, ):|

Considering the atomic coordinates as given

S =1 exp[aZﬁi(h.OJrk.OJrl.O)] % o 48 {exp {—27ri(h.%+k.%+l.0ﬂ
(1 1 . 11
+exp| 2mi| h—+kO0+1.— || +exp| 27i| hO+k.—+1—
2 2 2 2
Thus

S=f,exp [—27ri(0)] +f, {exp[fm'(h +k)] +exp [ﬂri(h + l)] +exp [—m‘(k + l)]}

or S=f,+f, {exp[—m'(thk)]+exp[—m’(h+k)]+exp[—m'(k +!)]} is the desired

expression.

4.8 Self Learning Exercise -1

Very Short Answer Type Questions
Q.1  When is structure factor non-zero for base centered cubic unit cell?
Q.2  Structure factor is non-zero for which condition for bce structure?
Q.3  Does reflection occur for (112) plane for fcc structure?

Short Answer Type Questions
Q.4  What is diffraction condition?

Q.5 What information does structure factor convey ?
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4.9 Atomic Form Factor

The expression for structure factor given by eq.(11) of section 4.3 contains a
quantity f, known as atomic form factor. Atomic form factor f, represents the

scattering power of the i" atom in the unit cell. The value of f 1s dependent on
the

- number and distribution of atomic electrons i.e. arrangement
- wavelength and scattering angle of radiation.

Structure factor conveys information about the radiation scattered by a unit cell
whereas atomic form factor conveys information about the radiation scattered by a
single atom. Atomic form factor takes into account the interference effects within

the atom.
As defined earlier the atomic form factor may be given by
1 =Ia’V n, (E)exp(—i@.ﬁ) where R=F -7

Here integral is over the election concentration of single atom. Considering an
electron distribution which is spherically symmetric about the origin and the angle
between R and G to be « the expression for form factor becomes
f= ZnIdR R*d (cosa)n, (R)exp(—i GR cosa)
iGR —IGR
e —e
=27 |dRvr* n.(R).
J' ’( ) i GR

Here integration has been done over d(cosa ) between the limits —1 and +1.

Therefore the form factor is given by.

, sinGR
"=4m|dR n,(R)R"
f=4n[dR n (R)R* ==
If the total election density is concentrated at R=0 then in that case only Gr=0
sin GR

would contribute and hence =1. For this case the atomic form factor is

f,=4x[dRn (R)R* =Z
i.e. atomic form factor is equal to the number of atomic electrons. Thus atomic

form factor can be defined as the ratio of the amplitude of the radiation scattered
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by an atom to the amplitude of the radiation scattered by one election localized at a
point. For any atom scattering in the forward direction f is equal to its atomic
number Z. As o increases, the radiation scattered by individual electrons become
out of phase resulting in decrease of /. The atomic scattering factor also depends
on the wavelength of incident beam; for shorter wavelength f will be smaller as
path differences will be larger relative to the wavelength leading to greater

interferences between the scattered beams.

The name atomic form factor is given because it depends on the way the elections

are distributed around nucleus in an atom.

4.10 X-Ray Diffraction

(i) X-rays

X-rays diffraction is one of the most useful and important technique for
characterization of crystalline material and for determination of their crystal

structures.

X-rays also called as Roentgen rays and these are electromagnetic radiation of
wavelength ~14 ie. ~10""m. In the electromagnetic spectrum these occur
between y—rays and ultraviolet. X-rays are produced when cathode rays
consisting of fast moving electrons accelerated by about 30000 V strike on a metal
target. The frequency of the wavelength of X-rays produced depends on the target
material. When accelerated electrons strike the target, some of the electrons in
inner shells of the target atoms are knocked off. The vacancies are then filled with
the higher orbital electrons. K-series X-rays are produced when electrons from
n = 2 orbital or above jump into the orbital n = 1. If electrons from orbitals n=3 or
above jump into orbital n = 2 then L-series X-rays are produced. X-rays produced
have a wavelength range. The lower wavelength limit corresponds to X-rays of

highest energy. The lower wavelength limit can be calculated from

124 : 3
Aoz (A)z%where V is accelerating voltage fig.6 shows the curve for X-ray

intensity as a function of wavelength(4). For K-—radiation three peaks f,, and

% are seen are shown in Fig. 6. K transition is result of transition 2p—1s and
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K, is result of 3p—Is transition for copper. K, transition is more frequent and

more intense, and actually it is a doublet K, andK, .

/l'\ K

L

T

W vtzgav\gz‘iin( A)
Fig. 6: X-ray emission spectra of a metal showing three peaks.

The doublet is due to slightly different energy for the two possible spin states of

the 2p electron. The characteristic wavelength of the X-rays depends on metal and
1

L 2
is given by Moseley’s law ~ f2 = (%j aZ

(ii)  X-ray diffraction

As X-rays have wavelength of the order of ~14 . These are capable of

study of crystal structures which have interatomic separation ~1 A4 through crystal
diffraction studies. Three types of radiation i.e. X-rays , electron beam and neutron

beam are used for the crystal diffraction studies. The fundamental equation used in

the crystal studies is the Bragg’s law
nA=2dsmf
Here 7 is the order of reflection
A 1s the wavelength of incident X-rays
d is the perpendicular distance between the adjacent ~k/ planes
01s the glancing angle (Bragg angle).
The reflected beams are in phase when Bragg’s law is satisfied and

constructive interference takes place in this case. Angles at which Braggs

condition is satisfied, the reflected beams are in phase and interfere constructively.
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For crystal diffraction studies through X-rays, the required experimental setup

consists of an X-ray source, the sample under investigation and a detector to pick

incdend /deh:dn

Source @——————= I

T ey Aol

up the diffracted X-rays.

Fig. 7: Schematic diagram of X-ray diffraction experimental setup.

There are three X-rays techniques based on three variables-

® Radiation-monochromatic or variable wavelength (1)
L] Sample — single crystal powder or a solid piece
° Detector — photographic film or radiation counter.

These techniques can be classified as

Table 1. Classification of different X-ray diffraction techniques

Wavelength Sample Detector Method
Fixed Powder Counter Diffractometer
Film Debye-Scherrer

Guinier (focusing)

Single crystal Film Rotation (Oscillation)

Weissenberg

Precession (Buerger)

Counter Automatic
Diffractometer
Variable Solid piece Film Laue

(Reference- Solid State Chemistry and its applications-Anthony R. West)
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4.11 Debye-Scherrer Method (Powder Method)

The powder method of X-ray diffraction consists of a finely powdered
sample which has crystals randomly arranged in every possible orientation. In a
powdered sample the various lattice planes are also present in every possible
orientation. When X-rays are incident on a powdered sample, some of the crystals
satisfy the condition of beam incidence at Bragg angle, thus diffraction occurs for
these crystals and planes which can be studied (Fig.8).

o

rd
Source I sdnj“
deteckor

fFilter (_Mm -
’ moveble wuﬂl‘e\()

Fig. 8 : Schematic diagram of X-ray diffraction experimental setup of powder
method

For detection of the diffracted beam either the sample is surrounded by a strip of
photographic film as in Debye-Scherrer and Guinier focusing method or a moving
detector is used such as Geiger counter connected to a chart recorder
(diffractometer). The original powder method is Debye-Scherrer method, though
nowadays modern methods are mainly used. Here we shall discuss the Debye

Scherrer method.

For study of the powder diffraction pattern the sample in powdered form is
filled in a thin capillary glass tube which is sealed and mounted. A narrow beam of
monochromatic X-rays is made to fall on the sample. As the crystals in powdered
sample are randomly oriented, some of them satisfy the diffraction conditions. The
diffracted beams that are produced appear to be emitted from the sample as cones

of radiation as shown in Fig. 9.

If 6 1s the Bragg angle then the angle between diffracted and undiffracted beams is
given by 26 , and the angle of the cone is46 . Each cone is actually a collection of

large number of closely spaced diffracted beams. Each set of planes produces their
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own cone which is detected by strip of film around the sample. The cone leaves

impression on the film in form of two short arcs.

Fig. 9. Formation of cones on film in Debye-Scherrer method

A schematic of typical X-ray powder pattern has been shown in Fig.10

G Wy
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Fig. 10. Schematic of an X-ray powder pattern

In order to calculate the d-spacing, the separation S between the pairs of
corresponding areas on the Debye — Scherrer film need to be measured. The
distance S is given by x, —x, mm as shown in fig. If R is the radius of camera
(film) then

40 =£ radians
R
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40 S
or ——=—-—degrees
360 27zR
| | A
Therefore 0 =[ﬂ—} Sdegrees and d=—
T 4R 2sin @
As @=57.3 so if R=57.3 mm ,then the glancing angle can be directly obtained

T
in terms of S. This is the reason why commercial camera usually have a radius 57.3

or 114.6 mm. Debye — Scherrer method can be used to confirm the formation of
material by comparing the observed d value with the reported (standard) ASTM
(American Society for Testing of Material) data. The disadvantages of this method
are long exposure times (6 to 24 hours), low resolution of closely spaced areas, and
losing of weak lines due to background radiation. Modern methods for powder

samples are Guinier focusing and diffractometer techniques.

The most important use of powder method is the qualitative identification of
crystalline compounds or phases. It does not give direct information about the

chemical constitution.

4.12 TIllustrative Examples

Example 4

The diffraction peaks for an element are obtained for 20 angles(in degrees): 40,
58, 73 ...l The wavelength of X-ray is 0.154mm. Determine whether the
structure is BCC or FCC and find lattice constant a.

Sol. Weknow d=——= and 2dsin@=4

sin® 0 :A—Z(hz +k*+1%)

4a
Here in question 20=40,58,73....
Taking first two 260,=40 26, =58
0, =40 0, =29
sin@,=0.3420 sin @, =0.4848

sin’6,=0.1170  sin’6,=0.2350
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sin®0, 0.1170

Taking ratio ——2= =0.
sin“@, 0.2350

This implies it is a BCC structure because BCC structure has this ratio for
(110),(200) as 0.5 whereas for FCC (111),(200) the ratio is 0.75.

ANK I+ _0.154 2
sin 6 20342
a=0.318nm

Lattice constant a =

4.13 Self-Learning Exercise-I1

Very Short Answer Type Questions

Q.1 If the total electron density is concentrated at R = 0, what is atomic form
factor equal to ?

Q.2 What is the order of wavelength of X-rays ?

Q.3 What type of X-rays are used in powder method of X-ray diffraction ?
Short Answer Type Questions

Q.4 What is the effect on form factor if angle between R and G increases ?

Q.5 What does the name atomic form factor implie ?

Q.6 What is the basic equation used in crystal diffraction studies ?

4.14 Summary

This chapter presented the Fourier analysis of basis and defined structure
factor. Structure factor for various unit cells such as simple cubic, base centered,
body centered and face centered cubic cells have been calculated. Atomic form
factor and X-ray diffraction are introduced. Debye Scherrer technique of powder

X-ray diffraction method has been explained.

® Structure Factor-The structure factor tells about the interference between

atoms in a unit cell. It gives information about the constructive interference

occurring at a given point of the reciprocal lattice.
® Structure factor for simple cubic- S=/

® Structure factor for base centered unit cell
S=f {1 +exp [—m’ (h+ k)]}
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® Structure factor for body centered unit cell
S = f{1+exp[-mi(h+k+1)]}
® Structure factor for face centered unit cell
S = f{l +exp [ﬂrf(h + k):| + exp[ﬁm'(k + !)] + exp[ﬂn’(h T l)]}
® Atomic form factor- The atomic form factor conveys information about the

radiation scattered by a single atom. Atomic form factor takes into account the

interference effects within the atom.

® X-ray diffraction-X-rays are capable of study of crystal structures which have
interatomic separation ~1A  The fundamental equation used in the crystal
studies is the Bragg’s law.

® Debye-Scherrer method of X-ray diffraction- For detection of the diffracted

beam in this method the sample is surrounded by a strip of photographic film.

4.15 Glossary

X Ray : Electromagnetic wave of the order of 14°
FCC : Face centered Cubic
BCC : Body centered Cubic

4.16 Answers to Self-Learning Exercises

Answers to Self-Learning Exercise-1
Ans.1: hand k both even or both odd

Ans.2: h+k+[= even integer

Ans.3:No

Ans.4: Ak=G

Ans.5: Interference between atoms in a unit cell
Answers to Self-Learning Exercise-11
Ans.1: Z, number of electrons

Ans.2: 14"

Ans.3: Narrow beam of monochromatic rays
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Ans.4: Atomic form factor decreases.

Ans.5: It gives the distribution of electrons around nucleus in an atom.

Ans.6: Bragg equation 2dsin@=nAi

4.17 Exercise

Q.1

Q.2
Q.3
Q.4

Q.5

Q.6
Q.7
Q.8
Q.9
Q.10

Q.11
Q.12
Q.13

Q.14
Q.15

Very Short Answer Type Questions

If 7+k = even integer for base centered cubic unit cell then what is the
value of structure factor?

When is structure factor zero for body centered cubic unit cell?

Will reflection occur for (220) plane for FCC structure?

Which index does not affect reflection condition for base centered cubic unit
cell?

What is the angle of cone in Debye Scherrer method?

Short Answer Type Questions

Define structure factor.

Define atomic form factor.

Give expression for lower wavelength limit of X-rays.

How are X-rays produced?

How is distance between two areas S calculated in Debye Scherrer method?
Long Answer Type Questions

Derive the expression for structure factor through Fourier analysis of basis.
Show that structure factor is zero for mixed indices for FCC structure.

Describe the Debye Scherrer technique for X-ray diffraction by crystals.
What are its advantages and disadvantages of this technique?
Describe the concept of atomic form factor.

- 2
sin 0,
2.2

sin” 6,

of diffraction planes for FCC and BCC are respectively 0.75 and 0.5.

Show that by using diffraction studies the values of for first two sets
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5.0 Objectives

In this unit we are going to study the difference between a perfect or ideal crystal
and real crystal. Further we study how the defects present in the real crystals are
classified into different categories.Then we study point defects in detail and obtain
expressions for the equilibrium concentration of point defects both in metals and
ionic crystals. Then we study about the color centers and their models. The student
will be able to understand the difference between edge and screw dislocation and
their characteristics. Finally they can differentiate between edge and screw
dislocation by constructing the Burger's circuit around the dislocation line.

5.1 Introduction

A crystal is defined as a perfect periodic structure. The crystal possesses a
periodic ordering of atoms at the lattice sites confirming to a specified space group.
However, crystals in practice show deviations from perfect ordering of atoms. All
deviations from the specified three dimensional periodicity are called lattice
defects or imperfections. A crystal without defects is an ideal case. Real crystals
are never perfect and they contain a considerable density of defects/imperfections
that effect their physical, chemical, mechanical and electrical properties. The
existence of defects also plays an important role in various technological processes

such as annealing, precipitation, diffusion, sintering, oxidation and others.

It should be noted that defects do not necessarily have adverse effects on the
properties of materials. There are many situations in which a judicious control of
the type and amount of imperfections can bring about specific characteristics
desired in a system. This can be achieved by proper processing techniques. In fact,
defect engineering is emerging as an important activity. In fact some of the
properties like diffusion, ionic conductivity owe their existence to the presence of
defects.

If the presence of the deviations does not affect the long-range order in crystals, the
deviations are called the defects of first order. Lattice vibrations, structural
imperfections, chemical imperfections belong to the above category. If the solid
structure deviates due to the presence of deviations, such lattice defects are called

the imperfections of the second kind. Hence, the long range ordering is disturbed.
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This type of disorder is applied to polycrystalline and amorphous solids. We can
also add here macroscopic or bulk defects such as pores, cracks and foreign

inclusions that are introduced during production and processing of the solid state.

5.2 Classification of Imperfection

Structural imperfections refer to all deviations from perfect arrangement of
the crystal atoms. Based on the spatial dimensions, these deviations occupy, they

can be classified as point defects, line defects, planar defects and volume defects.

1.Point Defects

A lattice defect which spreads out very little in all the three dimensions is
called a point defect. These are zero dimensional defects. A point defect produces
strain in a very small volume of the crystal surrounding the defect, but does not
affect the perfection of more distant parts of the crystal. The important point
defects are: vacancies, interstitials and impurity atoms.

(a) Vacancies: Vacancies are sites which are usually occupied by an atom but
which are unoccupied. The atoms from these lattice sites have migrated on to the
surface thereby leaving vacancies. These vacancies are also known as Schottky
defects. In case of ionic crystals a Schottky defect is one anion vacancy together
with a cation vacancy. This is required to maintain charge neutrality in the interior
of the crystal.

(b) Interstitials:- Interstitials are atoms which occupy a site in the crystal structure
at which there is usually not an atom. Lattice particle or atoms can move to an
interstitial site leaving a vacancy in the original positions. The combination of a
vacancy and interstitial is called Frenkel defects. However, even interstitial atoms
can also exist without getting paired to a vacancy. These defects are usually
referred to as intrinsic defects and the associated vacancies as intrinsic vacancies.
These defects preserve the stoichiometry of crystal, that is the ions even in the
defective crystal are present in exactly the numbers required by the chemical
formula. Besides the intrinsic vacancies, there are also extrinsic vacancies

introduced so as to compensate the excess charge of an external substitutional
Impurity with wrong valency. However these vacancies do not preserve the

stoichiometry of the crystal.
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Fig. 5.1 Point Defects present in metallic crystal V1- Schottky defect ,V-Vacancy
to give interstitial, I F-Frenkel defect

In case of metals we have both Frenkel and Schottky defects. Further in ionic
crystals we have either cationic Frenkel defects or anionic Frenkel defects.

(¢) Impurities : The most obvious point defect in the presence of an impurity atom
in an otherwise perfect crystal. It may fit into the structure in two ways. (i) It may
occupy a position normally occupied by the crystal atom (host atom) in which case
it will be called as substitutional impurity (ii) It may occupy the normally unfilled
volume, termed as the interstices between the atoms of the host crystal and is

called as interstitial impurity.

If the impurity atom has roughly the same size and valency as the host atoms, then
the substitutional impurity is created. On the other hand if the host crystal has
relatively large interstices then the interstitial impurity is accommodated in the
crystal. Obviously, the interstitial impurity can exist only in ionic and covalent

crystals and not in closed packed crystals, where as the reverse may be the case

with the substitutional impurity.

»
Substitutional *Interstitial
Impurities Impurities

Fig. 5.2 Substitutional and interstitial impurities present in metallic crystals

2. Line Defects
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They are defects along closed or open lines, which end on the surfaces of
crystals. Around such line defects, the atoms get displaced from their normal
positions and cause strains that spread over a volume. However, the defect is of
one atomic separation. They are called dislocations. They are -classified
geometrically as edge dislocations & screw dislocations. They are different from
point defects even if the point defects get arranged in an array. A vector called
Burger's vector is associated with each dislocation. It is a lattice vector. It is

perpendicular to edge dislocation and parallel to screw dislocation.

3. Planar Defects

Two dimensional lattice defects belong to this category. Two types of
planar defects exist. They are, (a) grain boundaries - The orientation of the crystal
on one side is different that of the other surface. It is a series of dislocations
(b) Stocking faults- Two lattice planes are mutually shifted by a vector which is
not a lattice vector. All close packed structures exhibit stocking faults. They are the

result of irregular sequences of layers of atoms in a crystalline structure.

4. Volume Defects

Three dimensional defects belong to this category. Voids, impurity precipitates,

cracks, pores, other phases and air bubbles are examples of volume defects.

5.3 Schottky Defects in Metals

Schottky defects are simply the vacancies (the missing atoms) at the lattice
sites of the crystal. The reason for the existence of vacancies at all temperatures
arises from the thermodynamical considerations, that the free energy should be
minimum at a particular temperature during the crystal formation. The
concentration of vacancies in any crystal depends on the energy of formation in

that crystal. At any specified temperature, the concentration of vacancies is fixed.

Let us compute an expression for the equilibrium concentration of
vacancies in a crystal. Consider that the crystal consists of N identical atoms at a
temperature T. The free energy of this unstable crystal is denoted by F .. (T).
Suppose we create n vacant lattice sites by transferring n atoms from the regular
lattice sites on to the surface. Let the energy of formation of Schottky defect
(vacancy) is E, and E, is independent of temperature. It is the energy necessary to
remove a lattice atom from a regular lattice site onto the surface. We shall also

86



assume that E is independent of n, which is justified as long as n<<N. Due to the
creation of, n vacancies the energy of the imperfect crystal increases by nE,
relative to that of the perfect crystal. Also S is the configurational entropy
associated with the imperfect crystal. Further, let AS, be the increase in thermal
entropy per vacancy. We then write the expression for free energy of the perfect

crystal as

Foeee =U,-T S,;=U-T (S, + S,p) = U, - TS,;. Since S ;= 0 for a perfect crystal.

perfect

The free energyexpression for an actual crystal containing n vacancies is written as

F,(n,T)=U,+nE, - T (S, +nAS,) - kT log W, (1)

th

=U, - TS,, + nE, - nTASth — leog{

|
=F +nE,-nTASth— kT 1og{L}

(N—n)!n!

Employing Sterling's formula in the form

Logx!=xlogx forx>>1

F(n,T)=F+nE, - nTAS1h -kT [N log N - (N-n) log (N-n) -n logn ] (2)
In order to find equilibrium value of n, we make use of the fact that in equilibrium,
oF
()
on )y
Then differentiating the equation (2) partially w.r.t, n and equating to 0, we get
oF
(—J = E, - TAS, - kT [log (N- n) - log n] =0,
on ),
dividing through out by KT and taking exponentials we get
AS th
n _e k &
N-n e
n £y
itN>>n, N -a€H @)

where A is the pre exponential factor.

87



This is the expression for the equilibrium concentration of point defects in a metal

at a temperature, T. The number of vacancies is exponentially growing function of

temperature thus apart from a constant determined by ASm, the probability for a
given lattice to be unoccupied is given by a Boltzmann factor containing the

energy of formation of a vacancy.

5.4 Frenkel Defects in Metals

In metals, when atoms which initially occupy normal lattice positions
migrate into interstitial positions gives rise to Frenkel defects. A Frenkel defect is a
combination of a vacancy and the atom in the interstitial sites. Let a metallic
crystal at a temperature T contain a total of N atoms, N, interstitial positions.
Suppose, n Frenkel defects i.e., n vacancies and n interstitial atoms are created in
its interior. Let E;be the energy required to create a Frenkel defect. Let us assume
that E; is independent of n and T. Then the free energy expression for the crystal

containing n Frenkel defects at a temperature T can be written as -
F,(n, T)=U, +nE;- T (S, +nAS,) - kT log W, (1)

N! N.!
+ 1
(N-n)ln! (N,—n)!n!

=U, - TS, + nE;-n TAS, - kT log {

The term in the square bracket indicates the number of ways in which, n Frenkel

defects can be produced. Using Sterling's approximation, we get

F,(n, T) = F,+ nE;- nTAS,, - kT (N log N - (N-n) log (N-n) -n log n + Ni
log N, - (N;-n) log (N.-n) - n log n] (2)

oF,
At equilibrium, |—*| =0
equilibrium ( . l

Then differentiating the equation (2) partially w.r.t., n and equating to 0, we get

[%Fa)— E,-TAS, - kT [log (N-n) (N--) - log n’] = 0
I/

dividing throughout by kT and taking exponentials we get
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If N>>nand Ni>>n, = _ 4, /kT
NN

E
_ f/
Or N=_[NN. de /2kT 3)

This is the expression for the equilibrium concentration of Frenkel defects in

metals.

5.5 Schottky Deffects in Ionic Crystals

An 1onic bond is formed when metallic atoms like alkali or alkaline- earth metals,
or transition element metals, etc., loose electrons and give them to halogens atoms,
or oxygen, Sulphur, etc. By doing so, both the atoms go into ionic state possessing
inert gas configuration. The ionic crystals consist of positive and negative ions. Let
us see how the point defects exist in these crystals. There are two types of
vacancies in ionic crystals. (1) the cation (positive ion) vacancies,(2) the anion

(negative ion) vacancies.

A Cation vacancy is formed when a positive ion from the interior of the crystal
moves out of the crystal to the surface as shown in Fig. 5.3 and similarly an anion

vacancy is created when a negative ion moves out of the crystal on to the surface.

40)
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Fig. 5.3 Formation of defects in ionic crystal:V1 - Negative ion Vacancy ,
V2 - Positive ionic vacancy, P- a vacancy pair, F- Cationic Frenkel defect
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Suppose a cation vacancy is produced in a crystal. A cation vacancy
possesses an effective negative charge. To maintain charge neutrality inside the
crystal, a negative ion moves out from the interior on to the surface to form a
negative ion vacancy V2. The effective charge of this vacancy is positive .Thus,
vacancies in ionic crystal are formed in pairs in order to maintain charge neutrality
both on the surface and the interior. It is to be noted that even if the energy
required to produce a single cation vacancy were appreciably different from the
energy required to produce a single negative ion vacancy, they would occur in

approximately equal numbers.

Therefore, the Schottky defect in an ionic crystal is an anion- cation vacancy pair.
We have considered the case of a crystal like NaCl. Each vacancy of sodium ion
tends to result in the formation of one chloride ion vacancy. A positive ion vacancy

and a negative ion vacancy on adjacent sites (P) can form a neutral defect.

Suppose an ionic crystal contains a total of N cations and N anions and n
Schottky defects. The n Schottky defects are formed by removing n cations and n
anions from the interior of the crystal. Let E be the energy required to create a
Schottky defect. Let us assume that E, is independent of n and T ,then the free
energy expression for the crystal containing n Schottky defects at a temperature T

can be written as

F, (0, T)=U, +nE, - T (S, +nAS,) kT log W,

th

2
~U, - TS, + nE, - nTAS, ~kTlog | N !)' J (1)
.

(N—n

The term in the square brackets represents the number of ways in which (N-n)
positive ions and n positive ion vacancies may be distributed over a total of N

cation sites. The same holds for the negative ion sites, hence the square.

Using the Sterling's approximation

Fy(n, T)=11=T§; +nE~ nTAS[h —2kT [N log N- (N-n) log (N-n) - n log n]
(2)

At equilibrium OF, =0
on T

Then differentiating the equation (2) partially w.r.t. n and equating to 0, we get
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N—n)
n o

log( =0

OF;) = E,- TAS, - 2kT
on T

Dividing throughout by kT and taking exponentials we get

" ASth E,
: =e k e«
(N—-n)
5
If N>>n, n _ -~ %KT )
=Ae
g

where A is the pre-exponential factor.

The energy needed to form a pair of vacancies in NaCl is of the order of 2eV. The
number of ions, per unit volume are of the order of 10”. Then, the concentration of
the Schottky defects is of the order of 10° which is far less than the total number of
ions in the Crystal.

5.6 Frenkel Defects in Ionic Crystals

A Frenkel defect is formed when a positive ion or a negative ion leaves
from its normal site and occupies an interstitial position. Depending on the type of
the ion involved, it can be called as cationic Frenkel defect or anionic Frenkel
defect. A Frenkel defect is shown in Fig. 5.3. Unlike in case of Schottky defects, in
ionic crystal it is not necessary to have equal number of positive and negative
Frenkel defects, because their formation does not require the setting up of space
charges over macroscopic distances. Generally depending on the energy required
for their formation either the cationic or anionic Frenkel defects will be
predominant. They may also occur in combination with Schottky defects.
Following the lines as given for metals, the expression for the concentration of

Frenkel defects in ionic crystals (either cationic or anionic) is given as

EJ/
n=[NN;d4e /2KT

Where E, is the formation energy for a Frenkel defect.

Even though both Schottky and Frenkel types of defects can be formed in
crystals, but only one type of defect would predominate over the other. From the
experimental studies it is observed that in alkali halides like NaCl, KCI, KBr, NaBr
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etc. Schottky vacancies are more common. Anions are larger in size than the
cations in alkali halides and hence a positive ion vacancy is a dominant defect. In

silver halides, Frenkel defects are most common.

Due to the introduction of Schottky defects the volume of the crystal is
increased without any change in mass and consequently, production of these
defects lowers the density of the crystal. On the other hand, the production of
Frenkel defects does not change the volume of the crystal so that the density of the

crystal remains constant.

5.7 Self Learning Exercise-I

Section A: Very Short Answer Type Questions
Q.1  Write the expression for the equilibrium concentration of Schottky defects
in metals.

Q.2 Write the expression for the equilibrium concentration of Frenkel defects in

metals.

Q.3 Write the expression for the concentration of Frenkel defects in ionic
crystals.
Section B : Short Answer Type Questions

Q.4 What are point defects?

Q.5 What are line defects.

Q.6 Define edge dislocation.
5.8 Steady State Diffusion - Fick's First Law

Consider the diffusion of atoms along x-direction between two parallel atomic

planes parallel to the page separated by a distance x shown in Fig. 5.4.

1 2

o “eo
e e

o e
e e

Fig. 5.4 Steady state diffusion of atoms in a concentration gradient
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Let the concentration of atoms at plane 1 be C, and that at plane 2 be C,.
There is no change of concentration at the planes C, and C, with time. Such
diffusion condition is called the steady state condition. Such diffusion is possible in
cases where the atoms that are diffusing don't interact with the host atoms. No
chemical reaction takes place inside the solid. Because of the concentration
difference, diffusion takes place from higher concentration to the lower
concentration. The flux or flow of atoms in this case is represented by the equation

J=—pdC (1)

dx

where J is the flux or net flow of atoms. D is the diffusion coefficient or

diffusivity. LjTC is the concentration gradient.
X

The negative sign indicates that the diffusion is from a higher to a lower
concentration. The above equation is called Fick's first law of diffusion. According
to it, the net flow of atoms by atomic diffusion is equal to the diffusivity D times
the concentration gradient. The units of diffusivity are m’/sec. The values of

diffusivity depend on several variables. Some of them are

1. The type of diffusion mechanism in principle, the diffusion can take place only
in real crystals. The defects like Schottky or Frenkel defects get involved in the
diffusion process. The mass transport through such defects is called self-
diffusion. In these cases, only the lattice atoms are involved. Impurity atoms also
can diffuse through a crystal.

2.The temperature at which diffusion takes place- the diffusion process is a
thermally activated process. The diffusivity is more efficient at higher

temperatures.

3.The type of the crystal structure of the solvent lattice- the best example is the
diffusion of carbon in BCC iron carbon diffuses very efficiently
(D~10-12 m’/sec at 5000C) in BCC iron compared to its diffusion in FCC iron
(D~10-15 m*/sec). The diffusion depends on the atomic packing factor.

4. The nature of imperfections present in the crystal- the steady state diffusion is
dependent on the type of imperfection. Open structures allow more higher rates

of diffusion of atoms. Grain boundaries are examples for this.

5. The flux density of diffusing species.
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5.9 Non Steady State Diffusion- Fick's Second Law

Normally the steady state diffusion is not possible in many materials. In real cases,
we encounter with non-steady state conditions. In such cases, the concentration of
diffusing atoms at any point in the crystal changes with time. When atoms like
carbon diffuse into steel the surface settles well and carbon produces hardening of
steel. However, the carbon concentration at any point below a few atomic layers of
the surface, the diffusion continuously takes place. In such cases a continuity

equation is set up. It is given as

5w B 1
DivJ + ot =0 (1)
% = div (D gradC) (2)

C(x,y,z) 1s the particle or atomic density. J is the flux density. Diffusivity D is a
second rank tensor. We can consider D as a scalar quantity that depends on the
temperature and the crystal but is independent of the density of migrating atoms.

The relation (2) can rewritten as

C _ no2 3
at_DVC (3)

The expression given in equation (2) is called Fick's second law. This law states
that the rate of compositional change is equal to the diffusivity times the rate of

change of the concentration gradient. We can write the equation (2) as

dCy _d | ,dC, 4)
dt  dx dx

When we consider the diffusion to take place along x-direction.

5.10 Color Centers

Ionic crystals have a band gap of about 6eV which corresponds to about
2000A°, that is in ultraviolet. From the dielectric properties, it is known that the
ionic polarizability, resonates at wavelength of 60 microns, in the far infrared and
due to this vibrational transitions occur at 60 microns. Due to this a perfect ionic
crystal should not absorb visible light and so it should be perfectly transparent
throughout the visible region. Because of their excellent transparency, crystals of
NaCl, KC/, LiF and other alkali halides are made into prisms and lenses for use in

optical spectrometers. But there are several circumstances under which absorption
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bands can occur in the visible, near ultraviolet or near infrared in these crystals
thereby giving characteristic colours to crystals. When crystals get coloured, it is
said to have color centers. In fact it is the presence of certain lattice defects in these
crystals that is responsible for the color centers. A color centre is a lattice defect
that absorbs visible light.

Production of color centers

It is possible to color crystals in a number of different ways. The colour

centers in general can be produced in the following ways.

1. By addition of chemical impurities: By the addition of chemical impurities
like transition element ions (Ti, V, Cr, Mn, Cu, and Zn) with excited energy levels
color centers can be produced. The salts added are normally coloured.

2. Additive colouring : When an alkali halide crystal like NaCl is heated to a high
temperature in the vapour of excess of one of their components, the colour centers
are produced. This is called as additive coloration. Atoms from the gas diffuse into
the crystal and become ions. In the process, electrons are given off to the crystal.
These excess electrons get bound to the vacancies present in the crystal. Thus the
colour centers are produced. Even if the alkali halide crystal is heated in the
vapours of divalent atoms like calcium, the colour centers like F-centre are
produced. The colouration would be stronger in such a case. Divalent ions produce
additional vacancies so that the concentration of vacancies increases. The colors
produced depend on the nature of the crystal.

3.Electrolytic Colouring : Suppose a crystal sample like NaCl is inserted in a
furnace. The upper surface of the crystal is attached to a pointed electrode the
forms a cathode. The lower surface is attached to a flat electrode that is maintained
at positive potential. Then the temperature of the crystal is increased by heating it
and then a high potential is applied. The electrons are injected into the crystals
filling the vacancies. The applied voltages is switched before the electrons reach
the flat electrode. In this process all electrons get trapped. The colouration
produced is very deep.

4. Irradiation with High energy radiation : Radiation like x-rays, Y-rays,

accelerated electrons or protons possess high energies. When a thin sample of

alkali halide is subjected to this radiation, the photons, electrons or protons ionize
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the crystal components. In the process electrons or holes are released. These
electrons or holes get trapped in the respective vacancies to produce the coloration.
The concentration and the type of the colour centers produced depend on the
temperature at which the colouration is done. The colour is also strongly dependent
on the type and the concentration of the impurities present in the crystal.

The ionic crystals contain point defects like vacancies .Similarly excess
vacancies can be created by incorporating metallic atom into the lattice. The metal
atom enters into the lattice and gives an electron. The metal ion may occupy the
cation vacancy sites. An electron is left which moves in the field of positive ions
and moves into the missing negative ion site. It forms a defect center. There can be
a metal ion in the lattice with a hole on it. The hole is positively charged and
moves in the field of the negative cation vacancy. This forms a defect center.
These defect centers give rise to what are called colour centers. They are very
strong centers and the energy needed to separate such centers is of the order leV
and less the point defects in ionic crystal which by virtue of their effective charge,

bind electrons or holes are called color centers.

Let us consider only the case of alkali halides. The most important defect
centers that are found in alkali halides like NaCl, KC1, KBr etc. are:

(1) F-Centers (2) F-Centers (3) M-Centers (4) V-Centers
1. F- Centers

Its name comes from the German word Fabre which means colour. F
centers are generally produced by heating a crystal in an excess of an alkali vapour
or by irradiating the crystal by x-rays. An excess electron trapped at a negative ion
vacancy is called an F-centre. This model was first suggested by De-Boer and was
further developed by Mott and Gurney.

The physical characteristics of the F-center are determined by the interactions of
the electron with the ions in the crystal. The electron is treated as trapped one at an
anion vacancy. It possesses a number of eigen values. Its transition from ground

state to the first excited state gives F-center absorption band.

The position of the peak of the absorption band follows Mollow relation given as

E,d’ = constant where d is the inter atomic distance. The above relation is well

suited for crystals with NaCl structure. The following are some of the experimental
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observations in crystals containing F-centers:

These crystals can absorb a band of wavelengths from the visible spectrum and this
band is called F-band.The band optical absorption is characteristic of the crystal
and not of the alkali metal used in the vapour for additive coloration. F-Band is not
symmetrical about the central wavelength value, but has a tail on the short
wavelength side. The name K band has been proposed for this tail. The width of the
band increases and the position of the peak shifts to lower energies when the
temperature increases. Coloration produced by x-rays can be removed or bleached
by heating or illuminating with light which lies in the F-band of wavelengths and
whereas coloration due to excess metal, cannot be bleached. Colored crystals show
electronic photoconductivity when illuminated by F-band light. F-colored crystals

are less dense than uncolored crystals.
2. F'- Centers
When crystal samples containing F-centers are irradiated with a light of

F-band frequencies, the F-band decreases in height and a new band at longer

wavelength starts growing as shown in Fig. 5.5. This new band is called as F band.

Absorption

F-band

Wave Length
Fig. 5.5 Suppression of F-bands and appearance of F-band peaks due to F-light
bleaching

In fact, during this bleaching process of F-centers, photoconductivity is observed
F centre is a defect centre with two electrons trapped at anion vacancy as shown in
the Fig. 5.5. Normally, F-centers are produced only when the crystal is bleached
with F-light. The F centers are stable only at rather low temperatures, because the
electrons causing F absorption are more loosely bound than those in the F-centers.
Thus at high temperatures F centers dissociate thermally and form F centers again.

Two F centers must disappear for the creation of one F center. Because the anion
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vacancy is equivalent to a single positive charge, the two electrons are only weakly
bound. Since the second electron is loosely bound, it can be detached by lower

energy photons. This explains the appearance of F-band and its longer wavelength.
3. Coagulation of F-centers

Suppose a crystal sample that contains F-centers is irradiated with F-light at
room temperature, the F-absorption peak decreases in height but a few absorption
peaks appear in the longer wave length region of the spectrum. Such bands are due
to coagulated centers of F-Centre. They are the result of the coagulation of
F-centers and vacancies as shown in Fig. 5. These coagulated centers can also be
produced by slowly colouring the crystal to lower temperature from the
temperature at which colouration is done. Some of the coagulated centers are:
(a) R1- two neighboring vacancies in the anionic lattice with one electron
(b) R2 - two neighboring vacancies in the anionic lattice both two electrons
(c) M-centre- The M-centre is a coagulated center. It consists of two anion
vacancies and a cation vacancy trapping an electron. Its absorption lies in longer

wavelengths of the visible spectrum.
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Fig. 5.6 Color Centers Models
4. V-Centers

The alkali halides can be coloured by heating the samples in the vapour of
excess halogen atoms. These atoms when they are into the lattice, the hole gets
trapped. The hole-binding centers are called V-centers. They can also be produced
by electrolytic coloration method. The V2 centre consists of two cation vacancies
trapping two holes. V3 centre has one hole trapped by two colour vacancies. The
V1 centre, an analogous center to the F-centre, 1s formed by a cation vacancy
trapping a hole. These centers are not stable at high temperatures as the F-centers

and disappear at room temperature.
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5. Z - Centers

These are also called as impurity centers, as they arise due to the
presence of divalent impurities like Ca’, Ba’ in alkali halides. Z centre is
understood to be a perturbed F-centre. The perturbation is due to the presence of
divalent impurities adjacent to the F-centre. Sometimes at reasonably high
concentration of impurities, impurity-vacancy dipoles are formed and they also

perturb the F-centers.

5.11 Dislocations

Large crystals are built up from three - dimensional array of atoms
producing a perfect crystal. A crystal structure is nothing but a stacking of atoms in
sequence just like arrangement of oranges in layers by a fruit vendor. However
faults can occur in the sequences of arrangements of atoms. Similarly there can be
additional atom layers in the periodic structure of atomic layers or distorted atomic
layers. These distortions cause linear defects or dislocations in the crystal structure.
Dislocations in crystal structure can arise as a result of growth in crystal structure

and growth faults or due to the stress centers in the crystals.

When a shear stress is applied on a plane of a crystal, atoms are displaced
from their original position or the perfect planes of atoms are sheared over one

another. The stress must overcome the attraction between each atom in one plane

and its nearest neighbours. The critical stress to do this is G/2TT, where G is the
shear modulus. This is of the order 1-2x10° psi, for metallic crystals. However the
experimental values are much lower, usually around 10'-10° psi for FCC crystals.
This anomalous behaviour is attributed to the movement of certain line
imperfections in the crystals under the action of a deforming force. These
imperfections are commonly known as dislocations. Metallic crystals undergo
plastic deformation. The plastic deformation is a non-recoverable deformation.
This deformation can only be explained on the basis of existence and movement of
dislocations in the crystals. All crystals, except those grown under special
conditions, usually contain a high concentration of dislocations. A general

dislocation may follow any curved route through the crystal.

There are two major dislocation types. They are (1) Edge dislocations and (2)
Screw dislocations. We shall study the nature of these dislocations.
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5.12 Edge Dislocation

An edge dislocation is defined as a dislocation for which the Burgers vector
is perpendicular to the dislocation line. An edge dislocation is characterized by the
presence of an extra half plane of atoms in the crystal. The edge of this extra half
plane of atoms which is a line is called as edge dislocation. Its formation may be
visualized in terms of slip process. Let us first consider the geometry of edge
dislocations. Consider a simple cubic crystal. The atoms are bound to each other by
chemical bonds. Suppose the crystal is cut across the area ABEF (Fig. 5.7 (a)) such
that across this area the upper and lower parts are disconnected. The upper half of
the crystal is then pushed sideways such that the line A'B' which initially coincided
with AB is shifted by an amount b as shown in figure. If in this position the two
halves were glued together, we would have produced an edge dislocation. Under
these conditions the upper half of the block will clearly be under compression, and
the lower half under tension. A square network of lines drawn on the front face
BCD before the operation and after the operation look as shown in Figures 5.7 (b)
and (c). The strained pattern in figure (c) suggests an alternate method for the

production of edge dislocation.
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Fig. 5.7 (a) Represents an edge dislocation line EF (b) A square network of lines
drawn on the front face BCD before the operation (c) Represents the stain
pattern

Consider the intersections of the network of line of figure 5.7 (c) as representing
rows of atoms perpendicular to the plane of the paper. The edge dislocation may
then be obtained by cutting the block along the plane EFGH, and putting the half
plane of atoms initially above AB, inside the cut. This gives rise to the 'extra half

plane' of atoms corresponding to HE (figure 5.7 (c) ), which is typical of an edge
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dislocation. The plane on which the extra half plane lies is called the slip plane. An
edge dislocation can move on this plane by glide motion. If the extra half plane HE
were displaced to right, slip process would progress and when HE has finally
reached the right hand side of the block. The upper block has completed slip by an
amount, b, called the Burger's vector. It is to be noted that, only if the slip process
terminates within the crystal it gives rise to a dislocation. On the other hand if the
slip proceeds to the end of the crystal, the dislocation moves out of the crystal and

cannot be observed.
1. Positive and Negative edge dislocations
Edge dislocations for which the extra half plane lies in the upper half these

above the slip plane are called positive edge dislocations and are denoted by ' L
fig 5.8 (a)

(a) (b)
Fig. 5.8 (a) Positive edge dislocation (b) Negative edge dislocation

If the extra plane is in the lower half of the crystal, that is below the slip
plane, the dislocation is called a negative edge dislocation and is indicated as 'T".
This is shown in Fig. 5.8 (b).

2. Characteristics of edge dislocations

The edge dislocation does not necessarily be straight. In fact, any curved
line will do as long as it is perpendicular to the Burger's vector. An edge
dislocation may therefore contain jogs as indicated in figure 5.9. If an atom such as
J diffuses into the lattice interstitial atom may be produced or vacancies annihilated
at the expense of the extra half plane. Similarly if an atom occupying a normal
lattice position were to move into the position directly on the left of J, the extra
half plane would grow and a vacancy would be produced or an interstitial
annihilated in the lattice itself. Thus edge dislocations may act as sources or sinks

for vacancies and interstitials.
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Fig. 5.9. Extra half plane of atoms which jogs at J

The presence of an extra half plane of atoms in an edge dislocation restricts the
motion of an edge dislocation mainly to the slip plane. The reason is that any
motion perpendicular to the slip plane requires either a growth or a reduction of the
half plane. Thus the easy direction of motion of an edge dislocation is in the slip
plane since the number of atoms in the extra half is conserved in this case. Any
motion of an edge dislocation perpendicular to the slip plane performed non
conservative, because it involves either rejecting or accepting extra atoms. N
conservative motion is, of course not excluded, but its occurrence depends on

whether the diffusion of atoms is rapid enough to sustain it.

3. Burger's Vector and Burger's Circuit

A Burgers circuit is a clockwise trace around the core of a dislocation,

going from lattice point to lattice point.
® must go an equal number of steps left and right

® must go an equal number of steps up and down

If the crystal does not contain any dislocation, the circuit will be closed (fig
5.10 (a)). However if the crystal contains an edge dislocation, the extra half-plane
of atoms will always cause the circuit to be open rather than closed (Fig. 5.10 (b))
The vector that points from the end of the Burgers circuit to its beginning is called
the Burgers vector, b

® b always points from one lattice point to another

® b always has the same length and direction for a given dislocation, regardless
where the circuit starts.
® For an edge dislocation (shown above), b is always perpendicular to it.The

strength of a dislocation is indicated by a parameter called Burger's vector.

® The loop around the dislocation is P Q—R— S—P'—P. It is an atom by atom

circuit around the dislocation. It fails to close the circuit by a distance PP', as
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compared to a closed loop in a perfect circle. The gap PP' in a crystal
containing the edge dislocation is the Burger's vector. In a regular crystal the
closer failure of the atom to atom movement must be between two atom sites
and is a lattice vector.

@ )
Fig. 5.10. (a) Burgers circuit in a perfect crystal (b) Burgers circuit in a crystal
containing an edge dislocation

® The Burger's vector in any crystal normally would be the shortest distance
between the atoms in that crystal. For example FCC crystal has its shortest
distance between the atoms along [110] directions. Then the Burger's vector of

an edge dislocation would be 4 _r110]. The length of the vector is

a? +a2 +0=-% . The Dislocation tries to move only in closed packed
VaTaT T

planes in a crystal.

5.13 Screw Dislocation

A screw dislocation is produced by displacing a part of the crystal on one
side of ABCD (Fig. 5.11) relative to the other side in the direction AB. Figure 5.11
represents the atomic configuration in the vicinity of a screw dislocation piercing
the surface of a simple cubic lattice. This configuration may be obtained by cutting

the block across the area LGHM and then pushing the upper part backward in the
direction of the Burger's vector b as indicated. The dislocation line LM is parallel

to b. The screw dislocation line is necessarily straight, in contrast with an edge

dislocation line. As one moves around the dislocation line along the circuit
ABCDEF, one advances in the direction of BM by an amount equal to b for every

turn and hence the term screw dislocation.
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Fig. 5.11 Screw dislocation in a cubic lattice. The dislocation line LM is parallel

to the Burger's vector b

Since no extra half plane is involved in a screw dislocation, one cannot speak in
this case of non conservative motion. Thus the motion of a screw dislocation is less
restricted than that for an edge; the screw dislocation can infact move along any
cylindrical surface with the Burgers as its axis. In the figure 5.11, the dislocation
line moves to the left, slip proceeds; thus screw dislocations, like edge can produce
plastic flow.The examination of the atomic layers around the line DC shows that
the atoms are displaced in a spiral staircase fashion. Imagine the line DC as a
screw, suppose you rotate the screw in an anticlockwise direction, the screw moves

one atomic spacing for every 3600 rotation.
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Fig. 5.12 Burger's circuit around a screw dislocation line, LM. It fails to close

the circuit by the gap AB, the Burger's vector, b
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The Burger's circuit is drawn around the dislocation as shown in Fig. 5.12. The

Burger's vector is parallel to the dislocation line.

5.14 Energy of Dislocation

The presence of a dislocation in the crystal always increases the energy of
the crystal. There exists an elastic distortion around the dislocation. As atoms are
displaced from the original positions, a strain is introduced in the crystal. A stress

field is introduced around the dislocation.
(1) Elastic Energy of Screw Dislocation

The elastic distortion around the dislocation is represented in terms of deformation

of cylindrical ring of isotropic material as shown in Fig. 5.13

Y
|

\_// .
Fig. 5.13 Shell of elastically distorted crystal surrounding Screw dislocation with
burgers vector b

Let the cylinder be of length /. Let the screw dislocation possess Burger's
vector 'b' along the axis of cylindrical ring. The ring is deformed to produce a
distortion same as the screw dislocation. A radial slit PQRS is cut in the ring
parallel to the z-axis (i. e. the axis of the ring i.e. along the dislocation direction)
and the free surfaces are displaced rigidly with respect to each other by the

distance b. A uniform elastic strain 69 is produced throughout the ring. This
Z

strain 1s given by
b (1)

e, =
0z 27y
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The corresponding stress is

. _Gb
0z 27r )

Where G is the shear modulus. As the displacement of the ring is produced by a
shear along Z-direction, we do not find displacements in the x - and y- direction.
The stress field around the dislocation consists of two pure shears, 7  in radial
. 6z

planes to the Z-direction and 0z in planes normal to the Z-axis perpendicular to
the radius.

The presence of the stress field around a dislocation indicates that the dislocation is
associated with elastic strain energy. This is equal to work done in forming the

dislocation of unit length. The elastic energy, E_(S) is given as

]
E (S)="[t bdr (3)
el( ) 2'[ 0z
2
_1,G6%, 4)
2° 2mr

The limits of integration are r,and R. The value of r, can not be zero or R cannot
be infinite. Hooke's law is not valid for r, = 0. r cannot be large as strain field

approaches zero
2

R
E (5)=L]874dr Gp2 g
el 27 2 p = In—
r 4r r
) 0 (5)
If the dislocation has the length '/, then the elastic energy of a screw dislocation is
2 (6)
Elel(s)=82"1m R
i '
o
When R >>r, In (R/r) — 4TI, then, E' (S) = IGb’ (7)

The energy is proportional to the square of Burger's vector and the length of the

dislocation in the crystal.
2. Energy of an edge Dislocation
Consider an edge dislocation. Consider a ring around the dislocation (Fig. 5.13).

A strain field is produced in the ring. The strain in the z-direction is zero. The

stress components are
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The stress fields have two components. One corresponds to dilation component

©)

and the other is shear component. The strain energy for the edge dislocation is

given as
1 10)
E (e)=—[t dr (
el 2j re
Once again, the limits of the integration are r, and R.
l:1
1R Gb* Cosbr ¢
E (e)="
el 2 (1) r
(o]
To make it simple, let the displacement in along the slip plane, then cos 6 = 1
1R Gb* ar
E (e)=—| —
el 2 - 2r(l-v) r
0
G b2 R
= - In
47 (1-v) r
o (12)

Thus, the elastic energy of an edge dislocation is more than that of screw
dislocation of the same length. If the length of the dislocation is taken into

consideration, the energy becomes

Gb2l | R (13)
In| —

E —
el ©) dr(l-v) | r
0

The energy of core of the dislocation is calculated to be around 0.5-1.5 eV for each

atom plane threaded by the dislocation. However the total energy of the dislocation
is much higher than this. For example, for copper crystal, the energy of an edge

dislocation is about 8 eV for each atom plane threaded by the dislocation.
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5.15 Mixed Dislocation

In the above discussion it has been assumed that dislocations are straight.
However dislocations move under slight stresses. They can not remain straight. A
part from it, a straight dislocation requires a lot of energy to remain in the crystal.
However, it can go to low energy configuration, if it is bent. These dislocations are
generally bent and irregular, especially after the crystal suffers from external stress
(like plastically deformed crystal). The dislocation possesses a shape as shown in
Fig. 5.14. The dislocation AB is a mixed dislocation.

Fig. 5.14 Mixed dislocation - At B it has a pure edge character, at A pure screw
and at C mixed character

The boundary between the slipped and un-slipped regions of the crystal is curved.
i.e. the dislocation is curved. But the Burger's vector is the same all along the
dislocation length. At point B the dislocation is normal . The dislocation has pure
edge character. The dislocation is parallel to the vector b’ ........................ isa
pure screw dislocation between A and B, the dislocation is bent as shown in figure.

At any point C, it has both screw character as well as an edge character.

5.16 Observation of Dislocation

Many methods are available to observe dislocations. Three main methods are
1. Surface methods
2. Transmission electron microscopy.

3. X-ray diffraction methods.

The other more complicated method is field ion microscopy.
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(i) Surface methods

The dislocations end on the surface of the crystal. If the crystal surface is subjected
to environment that removes atoms from the surface, the dislocation sites loose
more number of atoms than the free surface. The removal of atoms at the
dislocation sites is more because of (a) the lattice distortion and subsequent strain
field at the dislocation site (b) the geometrical planes would be in the form of spiral

steps.

=) |8

a b G
Fig. 5.15 (a) AB is the dislocation (b) Dislocation at A is more (c) An etch pit

As the rate of removal of the atoms at the dislocation sites is more, a pit is
formed at the site of the dislocation when subjected to a chemical environment.
The chemical etching method is most commonly used. The number of pits per unit
area on the surface would directly give the number of dislocations in the crystals.
The only problem is to find the suitable 'etchants' for different crystals. The
removal of atoms can also be found by evaporating the crystal surface at higher
temperatures, at temperatures less than the melting point of the crystal. This
process is known as thermal etching. However, thermal etching is not employed
usually to find the dislocation densities because of the complications involved in

controlling the evaporation of the surface.

(2) Electron Microscopy

This is a widely used method to understand the dislocation interactions,
dislocation networks, stacking faults, grain boundary structures. Here electrons
have a wavelength is the order of 1A”. When electrons fall on a crystal, they get
diffracted. There would be intensities differences in the diffracted beams coming
from the dislocation sites and dislocation free sites. At the dislocation sites
incoherent scattering of electrons takes place,the principle involves the observation
of more fringes in optics. The resolution of the electron microscope is about 4A°,

This limit does not allow the atoms to be revealed around the dislocations.
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Dislocations and stacking faults can be revealed by a technique which
examines the interference between transmitted and diffracted beams resulting from
a beam of electrons incident on a very thin foil of a crystal, usually about
1000-5000 A°® thick. A contrast in the image is produced as the planes near the
dislocations are slightly bent as compared to the dislocation free regions. The
transmitted electron beam would show less intensity at the dislocation sites. The

dislocation would appear as dark lines.
(3) X-ray diffraction method- Topography

This method is similar to electron diffraction. However the resolution is far
less in the case of x-ray diffraction. The method is useful only for the crystal
containing low dislocation densities like 10° cm™. However X-rays penetrate much
deeper as compared to electrons, so that thicker samples can be used. The image

contrast is produced on a film. The dislocations can be recorded as a dark line.

A monochromatic x-ray beam is passed through a crystal slice set at
particular Bragg angle with respect to the x-ray beam. The transmitted x-ray beams
are collected on a photographic plate. The crystal is moved along its axis in the
direction set for a Bragg angle. The x-ray beam scans a number of atoms the
crystal. The x-ray diffraction pattern reveals the topography showing the

dislocation as dark lines. The method gives a direct way of observing dislocation.

5.17 Grain Boundaries

Any crystalline solid consists of a large number of grains that are randomly
oriented with respect to each other. Each grain is separated from the other grain by
grain boundaries. Each grain has its own crystallographic orientation and contains
both point defects as well as the dislocations. In the polycrystalline solid, the grains
are separated by large angle grain boundaries and the orientation of the crystalline
grain would be differing from that of the other grain by an angle more than 10°. In
a single crystal even though it is expected to be single crystallographic orientation,
would consist of missorientation of a region of a crystal from the neighboring
region by an angle sometimes a few minutes of an arc to a few degrees. These
regions are separated by the boundaries called small angle grain boundaries. These

grain boundaries consists of an array of dislocations either edge or screw
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dislocations. Two simple dislocation boundaries are (1) Tilt boundaries and (2)
Twist boundaries.
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Fig. 5.16 Shows low angle tilt and twist boundaries
(1)Tilt boundaries

The simplest boundary is the symmetrical tilt boundary. It consists of an
array of edge dislocations spaced one above the other as shown in the Figure 5.16.

Such an array results a tilt between the grains on opposite sides of the boundary.

If we consider a simple cubic lattice with edge dislocation b = a [010], the
boundary consists of a sheet of equally spaced dislocations lying parallel to the x-
axis. The symmetry plane that is the plane of the sheet will be y =0 1.e. [010]. The

crystals on either side of the boundary differ in orientation by an angle 8. Suppose

the dislocations are separated by a distance 'h', then 0 —9sin@ /2> Where b is the

Burger's vector of the dislocation. For small values of O (in radians) & =0
h

Consider that ¢ ~1°and b = 2.5 X 10 cm the spacing between dislocations
is around 140 A°. Such tilt boundaries are observed in single crystals of metals or
oxides or alkali halides A boundary represents a stable configuration. A grain
boundary can move if the dislocations in it move by climb process. For the climb
process to take place, a good amount of thermal energy has to be provided. This
thermal energy results in the creation of vacancies and when the vacancy
concentration reaches sufficiently high, dislocation climb becomes possible as
vacancies diffuse into the boundary. Only short range diffusion is required for the
processes to take place.

(2) Twist Boundary

A simple boundary formed from a cross grid of pure screw dislocations is a
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twist boundary. A single set of screw dislocations (shown in fig. 5.16) possesses a
long range stress field and is therefore unstable. But the second set of screw
dislocations possessing equal long range stress field cancels the stress field due to
the first one. The two sets of equally spaced .Parallel dislocation lie in the
boundary that lies in the plane of the diagram shown in fig. 5.16. The two sets
produce a rotation about an axis normal to the boundary of one half of the crystal

with respect to the other. The spacing between the dislocations in each set isé ~h-
0

The boundary is symmetrical twist boundary. The boundary can move by the
application of stress to the crystal or by creating vacancies in the crystal. A pure
twist boundary can move by glide motion of the dislocation. In general case, both
edge and screw components are required in a boundary and a given boundary will

have a mixed tilt and twist character.

5.18 Self Learning Exercise -11

Section A : Very Short Answer Type Questions
Q.1 What is F- Centers ?
Q.2 Write the formula of the elastic energy of screw dislocation ?
Q.3 Write the formula of the energy of an edge dislocation ?
Section A : Short Answer Type Questions
Q.4  State Fick's second Law.
Q.5 How many methods are available to observe dislocations?

Q.6  What are positive and negative dislocations.

5.19 Summary

All real crystals do contain defects. Based on the spatial dimensions, these
defects occupy, they can be classified as Point defects, line defects, planar defects
and volume defects do not necessarily have adverse effects on the properties of
materials. There are many situations in which a judicious control of the type and
amount of imperfections can bring about specific characteristics desired in a

system. Color centers in ionic crystals are produce due to the presence of defects.

One-dimensional defects are called dislocations. There are two types of

dislocation called edge and screw dislocations. Grain boundaries, both tilt and
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twist, are examples of two-dimensional defects. Dislocations can be observed
directly using etching, electron microscopy and X-ray topography methods.

5.20 Glossary

Dislocation: a displacement of part of a crystal lattice structure.
Defects: A short coming, imperfection, or Lack.

Diffusion: The intermingling of substances by the natural movement of their

particles.

5.21 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1

Ans.1: ' _ 4 —Ev/KT
N
-F /2KT

Ansi P ae S
i

-E /2KT

Ans.3: ne NN Ade i
\ i

Answer to Self Learning Exercise-I11

Ans.1: An excess electron trapped at a negative ion vacancy is called F-centre.

Ans.2 2
£ (S):Gb llnR
el 4 r
0
Ans.3: b3
E [fj=—20" g, &
el dr(1-v) r

o

5.22 Exercise

Section A : Very Short Answer Type Questions
Q.1  What are zero dimensional defects ? Give examples.
Q.2 Distinguish between Schottky and Frenkel defects.

Q.3 On what factor does the vacancy concentration in a crystal depend ?
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Q4
Q.5

Q.6
Q.7
Q.9
Q.10

Q.11
Q.12
Q.13

Q.14

Q.15

Q.16

Q.17

Q.18

What are V-centers ? How are they produced ?

Why should there be dislocations in crystals ?

Section-B: Short Answer Type Questions

Distinguish between F and F' centers ?

Give the method of producing F' - Centers.

What are the important applications of color centers ?

Explain the effect of divalent impurity on the Schottky defect in NaCl
crystal.

State and explain the first Fick's law of diffusion.

How second Fick's Law explains non steady state diffusions ?

Distinguish between the edge and screw dislocations.

Sections C: Long Answer Type Questions

What are imperfections ? How are they classified ? Explain the various
point defects present in the crystals.

What are Schottky defects? Obtain an expression for the equilibrium
concentration of Schottky defects in ionic crystals.

Explain the difference between Schottky and Frenkel defects in metals.
Calculate the density of Frenkel defects in a copper crystal.

What are intrinsic and extrinsic Vacancies ? How are extrinsic vacancies

created in ionic crystals. Explain the effect of Schottky and Frenkel defects
on the density of an ionic solid.

Obtain an expression for the equilibrium concentration of vacancies in a

metallic crystal. How does this expression change for an ionic crystal.
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UNIT-6

Elastic Constants

Structure of the Unit
6.0  Objectives

6.1 Introduction

6.2  Analysis of Stress

6.3 Analysis of Strain
6.4  Dilation
6.5  Elastic Compliance and Stiffness Constants
6.6  Elastic Energy Density
6.7  Elastic Stiffness Constants of Cubic Crystals
6.8  Bulk Modulus and Compressibility
6.9  Elastic waves in cubic crystals
6.10  Self Learning Exercise
6.11 Summary
6.12 Exercise
6.13  Glossary
References and Suggested Readings
6.0 Objectives

The crystalline materials are supposed to exhibits elastic properties. This chapter is
aimed to acquaint the readers with the basics of elastic properties, elastic constants,
relation among various elastic constants, variation of elastic properties along the

different direction of crystals and propagation of elastic waves in crystals.

6.1 Introduction

rigid, but in practice they are not absolutely rigid. The shapes and sizes of the solid

can be changed by application of some external force on them. Within the range of

In solid state we study the properties of solids which are supposed to be
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small changes if the external force is removed then the solids returns to their
original shapes and sizes. This property of solids is called as elasticity. We will
here study the elastic properties of single crystal and find their elastic constants. In
the study we will consider the crystal as a homogeneous continuous medium rather
than a periodic array of atoms.

6.2 Analysis of Stress

Let us consider the uniform deformation of a crystal in the form of a cubical
shape. When an external force is applied on the crystal then an internal force is
developed within the crystal as a reaction force. This internal force acting on the
unit area of the crystal is called as stress. We here consider that the applied force is

within elastic limit i.e. the Hook’s law is applicable. The stress acting on six faces

O,

x°

O, Oy Ops Oy @ G, O, The first

subscript denotes the direction of the applied force and the second subscript

of the crystal is expressed as G, O,,, G, O,,, -

denotes the direction of the normal to the face on which the force is applied. So the

stress 1s tensor of rank two and it 1s expressed in the matrix form.

9] (o) o

xx xy xz

[Guu]= G, O, O

w ye

zx zy zz
Z 5::
[]
]
' J—— c
O_ 1' =V

]
] O,

G-t

=,
; }' D
' Cxy | Cyx
G e 2 R
g e

I Y

X

Figure 1. Stress Components
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Here p,v=x,y,z.

The components © Lo and O,, denote the normal stress components acting on

x0x00
the yz, zx and xy faces. The remaining six components represent the tangential
components of stress on each pair of faces. If the cube is in static equilibrium and it
does not rotate under the influence of tangential stress components i.e. 6,, and &,
produces the equal and opposites rotations. Hence, G,,=0,,s0 the nine stress

components reduced to six independent components.

6.3 Analysis of Strain

Let us consider three orthogonal unit vectors i,j,k in a crystal which is

unstrained. Suppose on straining the crystal by a deforming force these unit vectors

transforms to non-orthogonal vectors say /,,7 respectively. The magnitudes of

these vectors are different to unity. The new coordinate axis are expressed as

~

lﬂ=(1+am)f+8 j+8x:k

Xy

m=¢g, i+(l+¢ )j+e k
i=g_i+e_j+(+e )k

where coefficients €,y define the deformations and are dimensionless and very

small i.e. &, <<I. By taking the dot products / A, ni ., i we can easily show
that the magnitude of each new vector is different from unity and the dot products

[, m.i, il do not vanish indicating that [, ni,ii arenot orthogonal vectors.

The strain components €, in terms of €,p are as

e, =t,.e, =€,,6 =t_ (1)
and e, =l.i=¢, +¢&, 2)
e,=mn=¢g_,+¢, (3)
e, =il =¢_+¢, @)

In the above equations the terms of the order & are neglected since €,; <<1. The
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strain components here are defined in terms of the changes in angles between the

axes. Therefore, for a rigid rotation in which angles do not change, we have

Cop T TCrEy TTELE, TTEE, T8,

If we do not consider pure rotation since they are not deformation we may always
take

gxy = 8yx?'gyz = Ezyﬂgzx = gxz

1

SO, 8.\'\‘ =& yx = L

] ] ) ]
1

€ ! = 8:\' = _e\

' 2
1

8 X = 8 Xz = —e X
2

Let us now consider an atom in the unstrained crystal whose position vector is
given by

Fo=xi+ y}' + zk
The position vector of the same atom in the strained crystal is
7= xl + ym + zi
The displacement of the atom under the action of deforming force is
A¥ =F —F
AF = I }°+{1 —_— }A'+{1 - Yk
= xe\x _ye X —Zerf l _xe.u' yel ) _Zezv -] _xe.\z _ye z Zezz
2T 2 2 - S T 2 2
Let us now write

A¥ =ui +vj+ wk

Where u= ‘xexx " E Y e,vx + 5 Ze:x

1
V= 5 xexy + ye_w + 5 Ze__y
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1
w= Exetz + Eyem +2ze_,

u, v, and w are the components of displacement along the coordinate axes. The
strain components in terms of u, v and w are as

ou ov ow
e\'x :_;evv = _;ezz =_9
Tooox 7 Oy oz
ov ou
g, =i + —
© o ox oy
ow Ov
e =—+—
¥ 8y 8z
ou ow
e, =—+—
= dz  Ox

So, the strain can also be written in terms of tensor of rank two as below.

€ x xy €2
[e(lﬁ ] = e_‘.',l ey)' e\..
e - e:y e_

6.4 Dilation

The fractional increase in volume due to deformation is called as dilation.
The volume of a unit cube after deformation is

V' ZT(F_ﬁXﬁ) (1)

As ] =(1+8H)f +€ nyA +e_k @
ngyxl' +(l+8.W)'] +8)zk (b)
n==¢_i +€_J +(14+e_ )k ©

Substituting the values from equation (a), (b) and (c) in equation (1) and neglecting

the product of two strain components we get
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V'={l+e )i +e, e kL, f +(1+e, )j+e kixfe i e, j+(1+e k)]
Vi=1l+e, +e, +e,

Therefore the dilation O can be expressed as

v'i—-v
6 = e\"r + e‘u'l-‘ + e::
- s v

Here V=1 was considered for unstrained cube.

6.5 Elastic Compliance and Stiffness Constants

According to Hooke’s law, the strain is directly proportional to the stress
for small deformation. Therefore ,for small elastic deformation of a crystal the

stress tensor components and strain tensor components are linearly related as

o.| [G G Gs G e
v |G G Gs
G G Gs
Gy Cy G

G G G
G G G G G

6}5}

e
IDRFO RSN RN
£ 0000

240 0 000

GZ'.'
O
GZ?C
GJW

Conversely, the strain components can be expressed as the linear function of the

stress components as

e | [Si S2 S5 Se Ss Se ||
W Szl Szz st Sz4 st S26 Oy
&, _ S8y Sy 8 Sy S| O-
€ S41 S42 S43 S44 S45 S46 C
ezx. SS] S52 S53 S54 SSS Sj6 GZX
e _Sél S62 S63 S64 S65 S66 _ _0-‘9’ _
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The coefficients C;are called as elastic stiffness constants and represent the moduli

of elasticity. The coefficients S; are called as elastic compliance constants.

6.6 Elastic Energy Density

In analogy with the energy of a stretched string, the elastic energy density

@ is a quadratic function of strains in the approximation of Hooke’s law

Ll o — - — - _
o= 3 Z:[Cmeuel + Cp.2€|..1€2 +C“3€u€3 + Cu4e“e4 - C'useue5 4 CHGeueé]

p=l
1 - _ _ _ _ _
® = 5{(C1 e +Chee, +Cee, +Cee, +Cee + Cee)

+(Ezleze] + Ezzezez + 6238283 + 6246264 + 6258265 + Ezﬁezeﬁ)
+(E31€3€1 + 6326362 + 6336363 + C_34e3e4 + C_35€3€5 + 6366366)
+(E41€4el + 6428432 + 6438433 + 6446434 ¥ 6453435 + 5466466)
+(C_51€5€1 + 6523592 + 6538583 + 6549584 + Esseses e C_56€586)
+(66,eﬁe1 + 5626662 + C_ﬁaeﬁe3 + 6646’664 + 6656665 + Qﬁeéeﬁ)}

In the above equation there are 36 terms. Six terms are of type C.ee, where

nm-i,

(1=1,2,3...6) and 30 other terms. Out of these 30 terms 15 pair are possible of the

terms Ciee; and Cjee;. So there will be total 21 terms effectively in the above

equationthat will be obvious from following discussion.

So the above equation now becomes
1 -~ 2 — 2 P~ 2 — 2 - 2 — 2
® = P {(Chia” +Cpe, +Cyey” +C e, +Cyses” + Ceg”)

+(élzele2 + Ezleze, )+ (613‘31@3 + 6316361 )+ (6146’]64 + 5416461)

(aseles + 6513531 s (Elﬁel €+ Eﬁleﬁel bk (5239283 + 6326362)

+(C—“2‘,eze4 + 6428482) + (625626’5 + 6526‘562) + (Ezﬁeze6 + 6628682)

+(634e3e4 + 643‘3463) + (6356365 i 6533533 )+ (6366366 + 6636663)

+(54Se4e5 + (_7546564) +- (6468466 + 5646664) + (5566566 + 6658665)}
Also Cee;_Cjee; so
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l = 2. = 2.5 2,5 2.5 2,5 .2
® = E{(Ci € +Cpe” +Che” +Che,” +Ce + Gy )

+(2C,,ee, + 26|38|€3 +2Cee, +2C ce. + .’ZC_'“,,f.’]eﬁ +2C,.e.e,)
+(2Cye,e, +2C,.e,e, +2C,ee, +2C,ee, + 2C,.eqe,)
+(2(4_”3,,,e3eﬁ +2C,e,e. +2C,e,e. +2C, ee.)}

Or

=~ 5, 1= 1
Clll 2C 533

H O ee,+Gsee; +Ceet+Csee + Cl(,e,e6 + Czjezfg)

=
+(624€7e4 + Eﬂeze5 + 626e286 + 6346364 + Ejseles)
+(C,se,e, +C,ie,e, +Cee, +Coese,)
Let us define the indices 1 to 6 as
l=xx;2=yy;3=2zz;
4=yz;5=zx;6=xy
The stress components are found from the derivatives of @ or U i.e. potential
energy with respect to the associated strain components. This result follows from

the definition of potential energy. Let us consider the stress applied to one face of
the cube while keeping the opposite face fixed. The stress is given by

X, ZSTU —% =C, ¢, +Cpe, +Cpie, + Cpye, +Cises +C e
K_ geU = 2% = _ue, + szez + Cqse3 - C'24e4 +C25(e5 - Czﬁe6
Z, = SeU 2: = 5|3el + Czse7 + C33€3 + que4 + CgseaS + Cmeﬁ
g’eU - %U = G+ Couty + Couty + T, + Ty + Gty
Z = SSTU—Z% —asel +(725¢:32 +53593 +E45€4 +55565 +55666
X}_ SSeU = 27[2 = 616‘31 + 62(,62 + QGG; + C' €4 T C5Ge + Cbﬁe

122



6.7 Elastic Stiffness Constants of Cubic Crystals

The number of independent elastic constants is further reduced by the
symmetry elements possessed by the crystal. In cubic crystal X is the stress along
x direction .From the symmetry and isotropy of the crystals we observe C,, =C;
Similarly as Y, is the stress along y direction ,so we observe C, =C,; and for
stress Z, along z direction we observe C;, = C;, . Also from symmetry and isotropy

of the cubic crystals crystal we have

Cn :C22:C33
Clz :C13 :C2| :C23 :C31 :Csz
C44=C55 :C&s

The other coefficients are zero as
Cy=C;=Cs=0Cy :Czs =Cy :C34 =Cis :C36 =C;s=Cs=C5=0
So the potential energy is given by
i 2 1 - 2 1 _— 1 e 2 1 oz~ 2 1 e 2
Ce Ecz b E 13€ +EC4464 +5C5535 + Ecsses
+(Cee, +Chee, +0+0+0) +(Cpe,e, +0+0+0)

o =

N | —

+(0+0+0) +(0+0) +0
(I)=%C_’“(el2 —0—:222+332)+%544(e42 +e52+eﬁz)+C_‘Iz(e‘le2 +ee+aey)

:>CD:%611(€MZ +e )+l (6’}:2+e:x2+e{\_2)+c (e e, +e.e. +e,e. )(1)

xx Ty

[\J

So in cubic crystal there are only three independent stiffness constants. There

exists no other quadratic term like as given below do not occur

(e.e, +....)i(e e +...)(e.e. +..) @)

The minimum symmetry requirement for a cubic structure is the existence of four

three-fold rotation axes. The axes are in [111] and equivalent directions, the effect

of a rotation of 27t/3 about these four is to interchange the x, y, z axes according to

below schemes

X—DYy—>Z—X. —X—Pz—>—y—>—X (3a)
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X—Z 2~y —>X —x—F P —FZ—P —% (3b)

Figure 2.Rotation by 27T/3 about the axis shown

Under the first of these schemes, for example,
2 2 2 2 2 2
exx + eyy + ezz —> eyy + ezz + exx

and for the others terms also, the above equation (1) is invariant under the
operation considered. But each term of the equation is odd in one or more indices.
A rotation in the set of equations (3a, 3b) can be found which will change the sign

of the term, because €, = —€,_,,. Now we have

We now replace here C =C

8;‘) =X, =Ce,+Cpe, +Cpe,
de,, ' v * T
Bﬂ =Y, =Che, +Ce, +Ce,
Be_w_ : - - -
()
8_ =Z,=C,e, + Clzew +C e,
de__ : - . -
Also Cp=Cys, C,=C,;=C,=0
Cu=Co=Cu=Cu=Cs=0
and Cos =Cu
Further, b =Y. =, e,
oe - we

yz
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oD

—=Z =Cp,e_

66‘:\, x 44* zx

O]

a =aA, = C44e/\;v

All the above equations can be written as

%i =X, =C,g+C,e,+C,e,
587(1:_ =Y =C,e+C e +Che
858%: Z,=Che +Che, +Crie,
%ﬁ:){_ =C,e,
;izz.r =Cpes
%:XV =C,e,

Thus from the equations the values of the elastic stiffness constants is reduced for

the cubic crystal to matrix form as below

X c, C, C, 0 0 0\ e
YJ‘ ¢, G, ¢, O 0 0 €,
Z. _ ¢, ¢, ¢, 0 0 0 L
Y| lo 0o o0 Cc, 0 0 |e
Z 0 0 0 0 C, 0 |e
X, 0 0 0 0 0 C,)le
Or
e (C, C, C, 0 0 0)'(&X,
5 G, ¢, ¢, 0 0 0 Y,
83 _ C'12 CIZ Cll 0 0 0 Zz
e, 0o 0 0 C, 0 0]]|Y
e o 0 0 0 C, 0|z
e 0 0 0 0 0 C,)|x
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For cubic crystals the stiffness and compliance constants are related by

| | |
CM:S_;CH_CQ:S 5 ;G +2 12:S 28
44 N ) T4
X, C, G, Cylle
Y_r =G, C, G| e
Z, C, G, C,)\g
Or
€ G, G, G B X,
e, [=|C, G, G Y| or
5 ¢, G, C, Z,
€ Sy S5, Sy (X,
e, =S8, S8, Sy Y.
€ S, S, Sy M\Z.
Sowe S=C' or SC=1
S S, S )[G G, G 100
SI?. Sll SIZ Clz Cn Clz =010
Sy, S Si)\C, G, G 0 01

(]

6.8 Bulk Modulus and Compressibility

Let us consider a strained crystal which is uniformly dilated. This require
the condition as

1
6\\ — €}__t = ez- = _8
3
So the energy density of the cubic crystal is given by
1 2
d =—,+2c,)8° (1)

6
The energy density in terms of bulk modulus B is given by
1 2
® = —Bd"° )
2

Comparing equation (1) and (2)
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1
B= ;(C11 42 Cors )

The inverse of the bulk modulus is the measure of compressibility K
1 3
K = =
B C+ 20,
6.9 Elastic Waves in Cubic Crystals

Consider an elementary cube of sides Ar=Ay=A: within the volume of a
cubic crystal. The edges of the cube are along x, y and z axis. The x component of
force on an elementary cube of volume AV = Ax.Ay.Az of the crystal is given by

oX
F. e T
o oy oz

where X, X and X, are the stresses on X, y, z faces of the cube. If P is the density

of the crystal the mass of the elementary cube is pAx.Ay.Az. The equation of
motion along x direction

o’u °X,
= -

X, X,
= 2 4
3 o ox’ oy’ oz’

—Xzlx)

Xylx + Ax) ™

Figure 6.3 Stress in a cubic crystal and waves in the crystals
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Here u is the displacement in x direction. The equations are similar in y and
z directions. In terms of elastic stiffness constants the above equation can be

written as

ou Oe.. de, Oe. ce,, Qe
o =C G () Oy ()

ox ox Ox gy 0Oz

From the definition of strain components

ou S u ou v  Ow
y_qlaxz +C44(ay ) (Gt C44)(ax—ay @) (1)

Here u, v and w are components of displacements along three axes. Similar to

P

p

above the equation of motion along y and z directions are

v o v Oy ou 8‘w
=C C +(C,+C H)(——+——
patz 1 8_)12 it 44(ax ) ( nt 44)( 8y A ) (2)
And
azw_c 62w+c (5 w Ow ) e )( azv)
p atz = 622 44 ax ay 12 H ax& aya (3)

Now let us the solutions of these equations for some special cases.

Waves in the [100] direction:
Let the solution of the equation (1) is
u =u, expli(Kx—owt)]
On substituting in the equation (1) we get
®'p=C K’
So the velocity of longitudinal wave along [100] direction

I

S=vA=0/K=(C,/p)*
Similarly the solution of equation (2)

v=1y, exp[i(Kx—wr)]

o’'p=C, K’

So the velocity of transverse waves in the [100] direction
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1

9=vi=0/K=(C,/p)*
Similar velocity is obtained for displacement along z direction.
Waves in the [110] direction:

Let us consider a shear wave propagating in x-y plane with particles

displacement w in the z direction
w=w, exp[i(K x+K y—wr)]

So from equation (3) we get

w'p=C, (K’ +K))=C,K’ @
Consider other waves that propagate in the x-y plane with particle motion in x-y
plane

u=u, expli(Kx+K y—wrt)]
And

v=v, expli(Kx+ K,y —wr)]

Substituting in equations (1) and (2) we get
wpu=(C K> +C K u+(Cy+Cy K K v (5)
@’pv=(C,K > +C K )v—(C,+C)K K u (6)

The equations (5) and (6) in the direction [110] for which K = K =K/ V2. The
condition for the solution to exists that the determinant of coefficients of u and v

should be equal to zero.

—@ipt2(C+CK (Cy+CyK’
2 2 o
%(CIZ '{'(:44)K2 _®2p+%(cn “'C44)K2

This equation has the roots as
ofpzé((?”-i~C,2+2C44)K2 and (1):p=%((l'“—C,2)K2

The first root describes a longitudinal wave and the second describes a shear wave.
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The direction of particle displacement can be determined by substituting the first

root in equation (5) as
%(Cn +C,+2C,)Ku :%(C“ +C44)K2u+%(cu +C, K

The displacement components satisfy u = v. So the particle displacement is along
[110] and parallel to the K vector. The second root when substituted in equation (6)
then it gives

%(c” ~C,)Ku = %(q, + K +%(ql +E NS

Which shows u = -v. The particle velocity is along [1 10] and perpendicular to the
K vector.

6.10 Self Learning Exercise

Q.1 Explain the concept of elastic properties of crystals.
Q.2 Explain the strain tensor.

Q.3 Explain the dilation in crystals.

Q.4 Explain the elastic energy density

Q.5 Derive the expression for velocity in cubic crystal in [110] direction.

6.11 Summary

This unit deals with the elastic properties of the solid material like stress
and strain. The crystal is considered as homogeneous medium. The unit starts with
discussion on stress analysis and stress tensor. After the stress analysis the strain
analysis and strain tensor is discussed. The increase in volume due to deformation
1.e. dilation, elastic compliance coefficients and elastic stiffness coefficients are
derived. The elastic energy density, stiffness constant for cubic crystal and bulk
modulus and compressibility is discussed. At the end the equation for elastic waves
in the cubic crystal are derived and solution of the wave is discussed. The velocity
of the waves in the cubic crystal particularly in [110] and [110] direction are

calculated.

6.12 Glossary

Rigid: Difficult to change inter-particle distance
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Homogeneous: Same throughout

Array: Arrangement of atoms in space.

Deformation: Change in shape or size by external force.
Orthogonal: Perpendicular.

Unstrained: Without any change in shape or size

Invariant: Remain unchanged.

6.13 Exercise

Q.1 Explain the stress tensor.

Q.2 Explain the elastic compliance and stiffness constants

Q.3 Derive the expression for bulk modulus and compressibility
Q.4 Derive the differential equation of wave in cubic crystals.

Q.5 Derive the expression for velocity in cubic crystal in [100] direction.

References and Suggested Readings

1. Charles Kittel, Introduction to Solid State Physic, John Wiley & Sons,
Singapore, 7" edition, 1996.
2. A.J. Dekker, Solid State Physics, Macmillan India Limited, Delhi, 1986.

3. J.P. Srivastava, Elements of Solid State Physics 31 edition, PHI, Delhi, 2013.

5. S.0. Pillai, Solid State Physics, 6" edition, New Age International Publishers,
New Delhi, 2010.

131




UNIT-7
Vibrations of Crystals
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7.7  Self Learning Exercise
7.8 Summary
7.9  Glossary
7.10 Answers to Self Learning Exercise
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7.0 Objectives

The aim of this unit to study lattice vibrations of crystals and propagation of elastic
waves in one dimensional monoatomic and diatomic lattices. Then we will study

concept of phonon through quantization of elastic waves and phonon momentum.

In the last we will study inelastic scattering by phonons.

7.1 Introduction

In nature, a solid is composed of atoms or molecules which are closely packed and
their arrangement is ordered. A lattice may be regarded as a regular arrangement of
atoms (molecules) which are joined together by elastic springs. Atoms in solid

execute complex thermal vibrations about their equilibrium positions. The motion
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of any single atom is, therefore, shared by all the atoms ,i.e. the motion of the atom
is coupled. The motion of atoms is due to thermal energy of solid. The interatomic
interaction, however, causes the atoms to vibrate about their mean position. As
these atoms are present at the lattice points, these vibrations are known as Lattice
Vibrations. These vibrations yield information about the thermal properties of
solids, such as specific heat and thermal conductivity. In order to investigate the
characteristics of elastic vibrational motion of a crystal lattice, we have to consider

a one dimensional lattice, i.e. a lattice consisting of linear chains of atoms.

7.2 Vibrations of One Dimensional Monoatomic Basis

In order to study the vibration of one dimensional monoatomic lattice, consider a
one-dimensional linear chain of identical atoms, having mass m and spaced at a
distance a (i.e. lattice constant), connected by massless ideal springs. Practically
this is possible in the case of elastic vibrations of a crystal with one atom in the
primitive cell. When a wave propagate in cubic crystal along the directions [1,0,0],
[1,1,0], [1,1,1], then all the planes of atoms move in phase with displacement either
perpendicular or parallel to the direction of wave vector (K). In such a case the
displacement of a plane can be described by only one coordinate, so displacement
of wave becomes one dimensional. The interaction between atoms in lattice is

identical to elastic forces and obeys Hooke's Law (F o« —x).

Let us consider the equilibrium state the atoms, when atoms are at rest. The
coordinate of n” atom is represented by x =na. Thus at equilibrium position, the
atoms are situated at equally spaced sites represented by ........ (n—3), (n-2), (n—1)
n, (n+l), (n+2), (n+3) ...... with x coordinates as (n—3)a, (n—2)a, (ntl)a, na,

(n+1)a, (n+2)a, (n+3)a...... and so on as shown in figure 7.1.

n—2 n—1 n n+1 n+2
Iy ' :' A AR C' A A o' _. Atrest
! ; : : : I
b il i > ]
i(--)-l E(——-bi E-e--—)i i(-—--ai ié———)n:
@ @ : @ : @ ! ® Vibrating

i, , U, u, Uy Mo

Figure 7.1 State of vibration(state of displacement)
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As the atoms in the crystal start vibrational motion along the x-axis, the atoms will
execute periodic motion about their equilibrium position and produces elastic
waves which propagate through the medium. Let at any instant of time u, denotes
the displacement of n" atom from mean position. Similarly u, ,, u,,,, u,,,
u,., “denote the displacement of (n—-1), (n+1), (n-2) and (n+2)th atom respectively.
The vibrational motion of each atom is simple harmonic. This type of one
dimensional monoatomic lattice is shown in figure (7.1). Since springs are ideally
elastic, so according to Hooke's law ,the force between any two atoms must be
linear and in opposite direction i.e. the force required to produce an atomic
displacement is proportional to the displacement itself (F oc —x). Since the force
experienced by any atom be mainly due to its nearest neighbour's and the force due
to another atoms can be taken as negligible. Therefore the force experienced by n”
atom will be only due to (n+1)lh and (n—l)lh atoms. The elastic force on the n" atom
due to (n+1)" atom will be B(u,,, —u,) and due to (n—1)" atom will be —p(u, —u, )
,where P is interatomic force constant. So the net elastic force acting on n" atom

due to its nearest neighboring atoms (nJrl)th and (n—l)th is given by

Fo = BlUps —Uqy) =By —Up4)
F:i = ﬁ(uiH-] + un—} - 2“;1) (71)
According to Newton's second law motion, the equation of motion of n™ atom is
given by
" dC;;JZn - B(urHl £ uxkl - zun) (72)

d*u . . .
where i 1 denotes the acceleration of n™ atom and m is mass of the atom. Since

2

the propagation of disturbance in crystal is in the form of elastic wave. Equation
(7.2) 1s a differential equations in displacement and has a periodic travelling wave

solution as:
u :Aei(wt-[{xﬂ) (73)

n

un :A ei(Lut--K_na) (74)

where x,=na, represents the x- coordinate of n" atom in equilibrium state. @ and K
. 2t .
are constants, @ being the angular frequency and K =5 1s wave vector or

propagation vector. Since a is the spacing between the two nearest atoms of linear
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chain.
Differentiating equation (7.4) we get

%2‘4 imei(cuerna) (7'5)
t

Again differentiating eq.(7.5) we get

dzun — 4 pli(@i—Kna) (7.6)
de®
On the basis of equation (7.4) we can write

— 4 ei[mt—K(nH)a]

— 7.7
u”+1 (%:1)

i[@t-K(n—1)a]

u  =Ae (7.8)

Now substituting the values from equations (7.4), (7.6), (7.7) and (7.8) in equation
(7.2) we get-

Awm ei (wt—Kna) _ B[ A ei [(0t-K (nth)a] |, ei [wt —K(n-Da] E:i[(ot-Kna]}

=B A ™e” ™ + &' -2]
—o'm =Ble™ + ™ - 2]

=B[2cosKa—2]

= 2B [cos Ka —1]

—-o'm=2p {—2 sin’ K;}

, 4B . L, K
S L

m

or o= ‘fﬁsinﬁ (7.9)
m 2

We have taken only + ve sign because angular frequency is always positive. Since

Q)

. . Ka.
the maximum value of sin ra 1s one ,therefore

(OITIBN = ﬁ (7. l 0)
m
®=,_ Sin w]% (7.11)
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Since equation (7.11) gives relation between « and K. So this relation is known as

dispersion relation(® on y axis and K on x axis) and is plotted in figure (7.2)

1
1
|
[
1
1
v |
|
i
1
1
1

)
|
W

T

a a

First Brillouin Zone

Figure 7.2 :Dispersion curve for a one dimensional monoatomic lattice

The following important results are obtained from equation (7.11):
(I) At low frequency : when K — 0, i.e. when wave length is very large in
comparison to a (interatomic distance) ,then this is known as long wavelength

limit. In this case K -0 ,sinﬁ:ﬁ

2 2
or m:\/EK—a—Ka\/E (7.12)
m 2 m

. Phase velocity V| = 2 a B =V, (713
K m
and group velocity V, = j—z =a E =V, (7.14)

m
where V, is velocity of sound in crystal lattice and a is lattice constant. The

relation V0=% is the same as that for a homogeneous continuous line. Thus for
long wavelength limit ,phase velocity and group velocity do not depend upon

frequency. In this state medium is nondispersive and behaves as homogeneous
continuum.

(II) At high frequency: When the value of K is large, then graph between ®» and
K is not linear, because dispersion takes place. In this state lattice behaves as

discontinuous medium.
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- B sin = sin )
Phase velocity V,= e =g - Ka =V, Ka (7.15)
2 2
and group velocity  V, = j—? = a\/E(COS%j
: m
= Vu(cos%} (7.16)

From equation (7.15) and (7.16) it is clear that both velocities are function of
frequency. In optics ,when light passes through a medium, the refractive index
depends upon frequency, so phenomenon of dispersion of light takes place.Thus
present medium is also dispersive in similar manner to optical case.

4 ;
(IIT) At frequency o= —B (maximum value) : The maximum frequency of
m

elastic waves which can propagate through the lattice can be obtained from

comax = A ﬁ = ZJE = znumax
m m

(4
Also for o = —B , from equation (7.11) sinKza == sing
m

equation (7.10) i.e.

fK 2=3l
max 2 2
T a T
or —_—=
}\‘min 2’ 2
SA =12a
1 v V.
or v, =— E: L (7.17)
n\m A 2a
Since K =~ and K,
a 2 2
2 ) 2
*. Phase velocity V.= ——V, sin g: d 7 (7.18)
e
a

K
Now substituting K = T and 7a = ;[ in equation (7.16), we get
a
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T
V, =V, cos 5:0 (7.19)
So V=0 and V is finite. Since V represents the velocity of energy transmission in
the medium. So no signal or energy is propagated at K =+" and the wave is a

a
standing wave.

Therefore, it is interesting to note that only frequencies ® < —B will propagate in
m

a linear lattice. Thus a monoatomic lattice acts as a low-pass filter, which transmits

. 4
only the frequencies in the range between zero and ,f—B :
m
For most of the solids V, =10°m/sec and A jnmum =a=10"" m.Therefore Highest
3
frequency limit is approximately given by vayimum zh\/—"z%zw”Hz. So the
min

cutoff frequency of one dimensional monoatomic lattice is obtained in infrared
region.

Brillouin Zones : Since the ratio of the displacements of two successive planes is
given by equation (7.4) and (7.7)

i, y e1(@)‘[—](11&1)

T i{otK n+al "€
PRI S

Equation (7.20) show that all independent values of e'*

i Ka (7.20)

a

are covered by a range of
2n for Ka. Since the wave can propagate to both right or left, so we can take both
+ive and —ive values of K. Therefore, the range of independent values of K 1s given
by

—nt<Ka<m

—m/a<K<+m/a (7.21)

This range of values of K is called the first Brillouin Zone and is shown in figure

(7.2) and is of utmost importance in dealing with periodic structures. The region

for which ﬂ< K <—E and E< K <2—T[ 1s the second Brillouin zone. The
a a a a

third zone corresponds to the regionj <K < el and £ <K< 25 and so on.

a a a a
Since for long wavelength limit, phase and group velocities are equal. This is due

to the fact that waves of long wavelength are not sensitive to the discreteness of
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the structure i.e. a large number of atoms participate in all displacements as on a
homogeneous line. The dispersion effects are negligible and hence the medium
acts as elastic, continuous and homogeneous. Since at the edge of first Brillouin
zone i.e. at K=+m/a, V,=0. So no energy is propagated at K =+ n/a and the wave
is standing wave.

7.3 Vibrations of One Dimensional Diatomic Basis (Linear
Lattice)

In order to study the vibrations of one dimensional diatomic lattice, let us consider
a one dimensional diatomic lattice of infinite length, such as NaCl in which there
are two atoms per unit primitive cell{One sodium (Na) atom and another chlorine
(Cl) atom}. Let mass of one atom be m and that of the other M (m<M) and the
distance between nearest neighbors be 'a'. So the distance betweeb of same kind of
atoms is 2a. The atoms are numbered in this manner that atoms of mass m are at
even numbered points and those of mass M at odd numbered points. One
dimensional diatomic lattice 1s shown in figure (7.3)

2n-3  m-2 2n-1 2n 2n+1  2n+2  2n+3
o) @) 0 O O @ O @) 0 @)

m M m M m M m M m M

Figure 7.3: One dimensional diatomic lattice

As the atoms in the crystal start vibrating motion along the x-axis, the atoms will
execute periodic motion about their equilibrium position. Let u, be the
displacement of an atom corresponding to the 2n" site at any time during vibratory
motion of atoms and similarly u, , be the displacement of another atom
corresponding to the (2n—I)lh site at the same time. Now using the similar
assumptions as we have used in monoatomic case, we will obtain two different
equations of motion, one for the lighter atoms of mass m and another for heavier
atom of mass M. If the mutual interaction force between nearest neighboring atoms

is only effective, then equations of motion will be:
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md*u,,

i =Puy, +uy —2u,,) (7.22)
For atoms of mass M placed at odd point
Md’u
= Bl iy, =2, (7.23)

Since the masses of atoms is different so their amplitude of vibrations will be
different. Let A is amplitude of vibration for atom of mass m and B is amplitude of
vibration for atom of mass M.

The solutions of equations (7.22) and (7.23) in the form of travelling wave with

different amplitudes A and B are given by

Uy, = A ¢ @-20Ka) (7.24)
Uy, = B el -2nial (7.25)
Similarly we can write
U,,,, = A eremnd (7.26)
Wy, BT (7.27)

where K is the wave vector of a particular mode of vibration. Since both types of
atoms participate in the same wave motion, so the vibrational frequency of both
types of atoms is taken to be same. Now differentiating equations (7.24) and (7.25)

two times w.r. to t we get

_dzu 2 _i(wt-2nKa)
s oo
12
d’u o
Hence m T’ZH = _A’anE:l (w1-2nKa)
2
or _Amwzei(ml—ZnKa) — B [Be:‘[mff[z:wl}l(a] na Ber’[mr—(ln—l )Ka] _ 2A ei (mt—2nKa]:|
or “mo* A =BB(e™ + &) - 24 -
2
. . d u2n+1 2 i[ot—(2n+1)Ka]
Similarly M i =—BMwe
t

from equation (7.23), (7.25), and (7.26)
_BMOJZ ei[mt—(ZnH}Ka] — B{A ei[cat—(2n+2} Ka) g A ei(ml—ZnKa} _ ZB ei[mt—(ZnHlKaJ}

or ~Mw’'B=BA(™ +e™)-2BB
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Since e™ +e™ =2cosKa
~M o’ B =BA2 cos Ka-23B
S (2B-Mw*)B=2BAcosKa ...

or 2B A cosKa + 2B—-Mw’)B=0 (7.29)
From equation (7.28)
(2B —mw’)A—-2BBcos Ka =0 (7.30)

From equation (7.29) and (7.30) nonvanishing solutions for A and B can possible

only if the determinant of the coefficients of A and B is zero.

(2 B-Mw’) —2BcosKa|
—2Bcos Ka 2B-Mw’
or (2B—mw®) (2B —mn*)—4p* cos’ Ka =0

4B* = 2Bmw’ — 2BM &° + mM " — 4B* cos’ Ka =0
mMo* — 2B’ (m+ M) +4p*(1—cos’ Ka)=0

m+MJ , 4P

o + sinKa=0 (7.31)
mM

or ' —ZB[

mM

Equation (7.31) is a quadratic equation in @ and its solution will be

s a1 1 1. 1Y  sin’Ka
w—B[m+M}i[3\/[m+M] — (7.32)

Equation (7.32) represents dispersion relation for linear diatomic lattice. From

equation (7.11) the corresponding dispersion relation for monoatomic lattice is

. _ 4P

o’ =—sin’ Ka
m

We know that ® should always be positive. We find that in monoatomic case there
is only one value of @ for a single value of K ,whereas in diatomic lattice case
there are two values of w for single value of K. These two values of ® can be

represented as @, and ®_.

. 11 1 1Y  sin’Ka
- o= |+ e | il 7.33
o’ B[m M} B\/[m M] v (7.33)
2 . 2
and mi:B[l*‘L}_B (i+L] _45111 e (%)
m M m M mM
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Various branches of the dispersion relation curve: Since the graph between
and K leads to two different branches: one branch corresponding to ®, is known
as optical branch, while another branch corresponding to ®_ is known as

acoustical branch as shown in figure (7.4).

M>m

Acoustical Branch @

2 0 o k—
2a 2a
Figure 7.4: Dispersion Curve For One Dimensional Diatomic Lattice

(1) Optical mode (branch): Now we take case of W,, for K -0 we know that

sinKa — 0, so from equation (7.33) we get

1 1 1 1
Q=28 —+—| . o =[2B —+— 7.35
T (7.39)
Now for K — 1, sin Ka = sin—a =sinz/2 =1 ,s0 from equation (7.33)
2a 2a
mi:B(1+lJ+B (14.1] — 4 :B(l_}“l].}.ﬁ[l_l):zﬁ
m M m M mM m M m M m
S, = E (7.36)

m
(2) Acoustical mode (branch) : Now we take case of @ , for K— 0 we can

write sin Ka = Ka .We cannot take sin Ka =0 ,because if we take sinKa =0,

then value of @ comes out to be zero, that is not acceptable. So from equation

(7.34) we get .-.mizﬁ[i+i]—[3[i+l) 1_~4K~“~( i ]
m M m M mM \m+M
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(1 1}{ { 4K2a2[ mM }2}11
or =B —+—||1-91-
m M mM \m+M

Now applying binomial theorem and neglecting higher power

) I 1 mM2K*a’
or o =p| —+— || 1-1+——+....
m M (m+M)

or ® = (—26 ]Kza2
m+M

or o =Ka 2b (7.37)
m+M

Now for K = Zi , then sinKa = sinzia =sinn/2 =1 .So from equation (7.34)
a a

ool =
11 1 1Y 11 11
il e R e e

.-.cf:@ or L@ = L (7.38)

M M
The whole curves for ®, and ®_ against K are shown in figure (7.4). In order to

understand the physical importance of existing vibrations in the both branches i.e.
. . . A

acoustic and optical. We determine the value of ik

In optical branch when K — 0, then cosKa — 1 and from equation (7.30)

(2B —mw>)A—2BB =0

o £ =—[A_B] (7.39)
2B mA

Similarly from equation (7.29)
—2BA+(2B-M®’)B=0

or (D—2 = —[ﬁ] (7.40)
2B M B

Comparing equation (7.39) and (7.40) we shall get
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mA=-MB
or a2 = {Mj (7.41)
B m
This shows that in optical branch the atoms vibrate in opposite direction and their
amplitudes are inversely in the ratio of their masses in such a way that their centre
of mass (of unit cell) remains at rest during the period of motion. Such type of

mode of vibration is shown in figure. (7.5) (a)

o @
, ole) g a
Q 0 O—» & o o—
o o St o d *
~ O ~O.
(b)Acoustical mode
(a)Optical mode

Figure 7.5: Types of modes of vibrations

A
When m=M, —=—]
B
So, eventhough their masses are equal, atoms always move in opposite directions.
: : K*a’
Now in acoustical branch as K — 0, then cos Ka =1— +.....

In this case, we cannot neglect second term because it is significant. So from

equation (7.30) we get

(2B - mw*) A —233[1 - K;“'z J =0

KZaE

—mw' A= 2133[1 —~ J— 2pA (7.42)

Similarly from equation (7.29) we get

Y

K-a

—2[3,4[1— ]+(2B—Mc02)B=O

Kla.Z

or ~M®’'B = ZBA[I - ]— 2BB (7.43)

Now adding equations (7.42) and (7.43), we get
—’ (mA+MB)=—-K’a’p(A+ B)
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2B
m+M

or o =Ka’ (—ZB J
m+M

from equation (7.37) o= Ka

—Kzaz[z—B](mA +MB)=-K’a’B(A+B)
m -+

or 2(mA+MB)=(m+M) (A +B)
or mA+MB=MA+mB
(m-M)A=(m-M)B

==+l 7.44
- (7.44)

Thus in the acoustical branch ,the two atoms of different masses i.e. lighter (m) and
heavier (M) move in the same direction with the same amplitudes as shown in

figure (7.5) (b). In acoustic branch ,there is movement of centers of masses as well.

The acoustical branch can be excited by same kind of force, that forces all the
atoms in the crystal to go in the same direction such as sound waves. This is the
reason that it is called as acoustic branch. Such type of vibrations exist in
monoatomic crystals, while the optical branch vibrations can be excited by a force
that produces opposite effect on the two atoms. This type of motion can be excited
by means of electric field of the light waves which tends to move the ions in
opposite directions. The term optical branch is used for this case as these wave

interact with light waves ,example is of diamond.

Forbidden Frequency Band:
We know that in optical branch (®, branch), the value of ®, is maximum for

K=0 and minimum for K = ii .

2a
(m+M)
(D+('max) = 2[3—
mM
N
M MY 4 |?
and o, = B(m+ ] B("H' _
mM mM mM
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B m+M (M —m) %_ ﬁ
_[B( mM )+B mM } “\Vm (7.45)

Similarly in acoustic branch (®_ branch), the value of ® is minimum (zero) for

K=0 and maximum for K = 121 :
a
2
SO m—(min) = 0 and (D—(mzn) = _B
' M

From figure (7.4) it is clear that in frequency band Jﬁ <O >,fi{—ﬁ wave like
m

solutions do not exist. In other words there is a band of frequencies between the
two branches that cannot propagate in one dimensional diatomic lattice. This
frequency interval is known as forbidden frequency band (gap). This is shown in
figure (7.4) by dotted portion. The width of this forbidden band depends on the

difference of the masses i.e. (M—m). The larger the mass ratio (MJ the frequency
m

gap between two branches is wider. If M=m ,the acoustical and optical frequency

coincide at K=i21 and forbidden band tends to zero . In this manner one
a

dimensional diatomic lattice behaves as a mechanical band stop filter. The first
Brillouin zone in the case of one dimensional diatomic lattice lies between the

following values of K, (;_ch <K< (?] .Hence we can say that the smallest
a a

possible wavelength of this first zone is 4a which corresponds to K :izi at the
a

zone boundary.
Some important facts pertaining to one dimensional diatomic lattice are following:
(1) If the masses m and M are equal, the frequency range in both monoatomic and

diatomic lattice is same. There forbidden frequency band does not exist.

(2) At Brillouin zone boundary [K = iziJ only one of the sublattices vibrate, the
a

lighter atom (m) vibrates in the optical branch, whereas the heavier atom (M)

vibrates in acoustical branch .

(3) If the heavier mass M tends to infinity, then acoustical branch disappears and

the optical branch becomes flat such that all K values have same frequency.
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(4) The optical branch disappears, if the lighter mass m tends to zero and the

acoustical branch remains as it 1s.

(5) Only those frequencies which lie in discrete bands corresponding to the optical

and acoustical branches can propagate through lattice.

(6) Since the optical mode is actually the natural frequency of the lighter atoms m,
which is perturbed by the heavier sublattice. At K=— the heavy atom is

2a
. T . 2B
stationary and the natural frequency of the vibrating lighter atoms is ,|— .
m

7.4 Quantization of Elastic Waves : Concept of Phonon

We know that solid is composed of atoms, which are closely packed by fixed
forces or bonds. These bonds work as coupling between two neighboring atoms.
So when any atom acquires the state of vibration, then all the atoms start vibrating,
because these bonds transmit these vibrations successively. These vibrations in
atoms, construct elastic waves in solid. Since these atoms are present at the lattice

point, so these vibrations are also known as lattice vibrations.

As we have studied that the energy of an electromagnetic wave is quantized and
the quantum of energy is known as photon. In the similar manner the energy of
lattice vibrations or an elastic waves is also quantized and the quantum of this
energy is known as phonon. All Kinds of lattice vibrations are composed of
phonons or elastic waves in crystal are made up of phonons. Thermal vibrations in
crystal are thermally excited phonons like the thermally excited photons of black
body electromagnetic radiations in a cavity. Sound waves are acoustic phonons
and the excitation of the optical branch results in optical phonons . All the concepts
like wave-particle duality which apply to photons also apply to phonons. A phonon

wave travels in a medium with the velocity v of sound. The energy of a phonon is
given by hv = o . Where ) is angular frequency of a mode of vibration. According

to quantum theory the energy of an elastic mode of angular frequency @ is
1
e=|n+ 5 ho (7.46)

i . . 1 i :
1.e. the mode is excited to quantum number n. The term —/® is the zero point
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energy of the mode. It occurs for both phonons and photons as a consequence of

their equivalence to a quantum harmonic oscillators of frequency W, for which the
|
energy eigen values are also (n + 5)}‘?.0). Hence the energy of a quantum of elastic

wave of lattice vibration i.e. phonon is therefore quantized. The experimental
evidence that the energy of an elastic wave or phonon is quantized is provided by
the fact that the lattice contribution to the heat capacity of solids always tends to
zero as the temperature approaches zero. This can be explained only if the lattice
vibrations are quantized. Another experimental evidence for phonons is found in
inelastic scattering of x-rays and scattering of neutrons by crystals in which
momentum and energy changes corresponding to the creation or absorption of one
or more phonons. Similarly by measuring the recoil of scattered x-rays or neutrons,
we can determine the properties of the individual phonon. The frequency range of
phonon wave may vary from 10°-10"* Hz. The lower frequency lies in the acoustic
region and consists of sound waves in a crystal lattice, while the higher frequency
lies in the infrared region and is due to thermal vibrations in a crystal. Since
phonons like photons have finite spin quantum number. So phonons obey Bose-

Einstein statistics and B.E. distribution law.

7.5 Phonon Momentum

A phonon on a lattice does not carry momentum. While a phonon of wave vector K
interacts with other particles and behaves as if its momentum were AK. This
momentum (EK = %xz—n = —J is also known as crystal momentum. In crystals
there exist selection rules for wave vector (K) for allowed transitions between
quantum states. The physical significance of 7K is provided by the momentum
conservation laws in crystals. We have seen that the elastic scattering of x-ray
photon by a crystal i.e. Braggs diffraction is governed by the wavevector selection
rule or wavevector conservation law:

K =K+G (7.47)
where K’ is the wavevector of scattered photon, K is wavevector of incident
photon and G is the reciprocal lattice vector of crystal. In this case the crystal as a
whole will recoil with momentum -G . In this process the frequency remains

unchanged and is called normal process.
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Hence equation (7.47) is an example of the rule that the total wavevector of
interacting waves is conserved in a periodic lattice, with the possible addition of a
reciprocal lattice vector (G). So the true momentum of the whole system always is
rigorously conserved.

If the scattering of the photon by crystal is inelastic, the frequency of the incident
photon changes and a phonon is created (emitted) or absorbed in the process.

(I) If a phonon of wavevector K is created (emitted) during the scattering then

applying wavevector conservation law we get:

K + K= k + G
(scattered) (incident)

(7.48)

where K is the wave vector of created phonon as shown is figure (7.6a)

—

K’ K
NMVWA_, “VWWW
K (phonon) K (phonon)
A k
Emission of Phonon Absorption of Phonon

Figure 7.6(a),(b)Emission and absorption of phonon in an inelastic scattering of
photon
(IT) If a phonon of wave vector K is absorbed during the scattering ,then applying
wave vector conservation law we get:
K = k + K+ G

(scattered) (incident)
This is shown in figure 7.6 (b). Hence the process in which frequency of incident
photon changes is called an UmKlapp process and in this process the momentum

is transferred to the crystal as whole.

7.6 Inelastic Scattering by Phonons

(a) Now we study the inelastic scatting of photons by phonons . We know that a
crystal can be considered to be a continuum of refractive index p. When a photon

® . T :
of frequency v = o is propagating in a crystal ,then wavevector of photon is
T
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given by

Bl _5

K=—or o Or Ao=v = £ (7.49)

H [
where c is velocity of light. Now the photon interacts with a phonon beam i.e. with

a sound wave in the crystal and this photon is scattered by sound wave, because
refractive index of the crystal changes due to change in concentration of atoms
brought about by the elastic strain field of the sound waves. Therefore sound wave
can also change optical properties of the medium. On the other hand, the reverse is
also true, 1.e. the electric field of light wave sets up mechanical vibrations in the

medium and thereby changing the elastic properties of the medium.
We know that in an inelastic scattering of photon by the crystal, phonon can be
either created (emitted) or absorbed. In this process of scattering ,let the () wave

vector of the photon changes from K to K’ and its frequency changes from ® to
®' . A phonon of wave vector k and frequency Q be created (emitted) during the
inelastic scattering as shown in figure 7.7 (a).

Then according to the law of conservation of energy, we have

ho = ho' + hQ (7.50)
and according to the law of conservation of momentum, we have
hK =hK'+hk (7.51)
_ Scattered \
K’ «&Photon (o’ '
' R )\‘\‘J‘l\“/ 1oton (@) Photon (@) Phonon (Q2)
Incident 5
PEETAMMA,

Photon (®)
i Phonon (QQ)

Photon @

Figure 7.7(a),(b) (Inelastic scattering of a photon with the production of a phonon)

Now if V_ velocity of sound is constant, then the angular frequency (Q)of created

phonon having wavevector k is given by

V.=hu= kg
27
27
or Q = V‘v T = Vs k (752)

Since the emitted phonon can carry only a fraction of the energy of the incident
photon. We know that velocity of sound V, << c¢ . If k is comparable in magnitude
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with K, we have Vik <<cK. Also m=cK and Q=V;k, therefore ®>>Q. So
from equation (7.50) ,we have ® ~ ® and therefore, K'~ K . So the process as
shown above in figure 7.7(a), can be represented by the momentum balance
diagram in figure 7.7(b). If K’ = K, then the triangle becomes isosceles. The base
of the triangle 1s given by

k=2Ksin¢/2 (7.53)
Putting the value of K = p,g from equation (7.49) in equation (7.52) and using
G

equation (7.53), we get

V= DYsOh g ¢
c
or g::gYéﬂimng (7.54)

This gives the frequency of created (emitted) phonon, when photons are scattered
inelastically at an angle ¢ from the incident direction. Now if the calculated and
experimental values of Q are very close, then we have very strong evidence in

favor of phonon’s existence and their behavior

(b) In the similar manner neutron inelastic scattering by phonons is the most
common method for the experimental determination of phonon dispersion
relations. It is also possible to obtain phonon lifetime from the angular width of the
scattered neutron beam. A neutron sees the crystal lattice mainly by interaction
with the nuclei of the atoms. The kinematics of the inelastic scattering of a neutron

beam by the crystal lattice are described by the general wavevector selection rule:
K+G=K'+k (7.55)
Here k is the wave vector of the phonon emitted (+) or absorbed (—)in the

process and G is reciprocal lattice vector. We choose G such that k lies in the
first Brillouin zone, as it must for a phonon. K is wavevector of incident neutron
and K'is wave vector of scattered neutron.
According to law of conservation of energy:
@ = A K- +ho (7.56)
2M,  2M

n
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where M, is mass of neutron and hwis the energy of phonon created (+) or
absorbed (—) in the process. The dispersion relation can be obtained from
equations (7.55) and (7.56). It is necessary in the experiment to find energy gain or

loss of the scattered neutrons as a function of the scattering direction K — K'.

7.7 Self Learning Exercise

Q.1 What do you mean by lattice?
Q.2 What is UmKlapp process?

Q.3 Explain forbidden energy gap in one dimensional diatomic lattice, in which

wave cannot transmit.

7.8 Summary

In this unit we have studied about vibration of one dimensional monoatomic lattice

and diatomic lattice. We find that in monoatomic lattice there is only one value of
W for a single value of K ,whereas in diatomic lattice there are two values W for

single value of K. These two values of (0 can be represented by ®, and ®_. The
branch corresponding to ®, is the optical branch, while the branch corresponding
to _ is acoustical branch. There is a forbidden energy gap between these two
branches. The width of this forbidden band depends on the difference of masses. If
masses of two atoms in diatomic lattice are equal i.e. M=m, then frequency range
in both monoatomic and diatomic lattices is the same and there is no forbidden

region. The quantum unit of a lattice vibration is a phonon. If the angular

frequency is ), then the energy of phonon is Zm. When a phonon of wavevector
K is created by inelastic scattering of a photon or neutron from crystal then
wavevector changes from K to K'. The wavevector selection rule that governs
the scattering process is K =K'+k+G, where G is a reciprocal lattice vector. All
lattice waves can be described by wave vectors that lie within the first Brillouin

zone 1n reciprocal space.

7.9 Glossary

e

Phase Velocity: v, = T
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do

Group Velocity: v, = —-

dk

7.10 Answers to Self Learning Exercise

Ans.1: A lattice consisting of linear chains or lines of atoms.

Ans.2: If in an inelastic scattering of a photon by a crystal, the frequency of the

photon changes is known as UmKlapp process.

7.11 Exercise

Q.1
Q.2
Q.3

Q4
Q5

Q.6

Q.7

Q.7

Q.9

Section-A :Very short Answer Type Questions

What is lattice vibrations.

What do you mean by diatomic lattice?

What is phonon?

Section-B : Short Answer Type Questions

Deduce vibrational modes of a finite one-dimensional monoatomic lattice.
Differentiate between optical and acoustical branches of diatomic linear
lattice.

What are normal and UmKlapp process ? Explain it with the help of vector
diagram?

Explain briefly quantization of lattice vibrations.

Section-C: Long Answer Type Questions

Show that the dispersion relation for the lattice waves in an one

dimensional monoatomic lattice of mass m, spacing a and nearest neighbor

4p

interaction B is ®=,[— sin| 1/2Kal where  is the angular frequency
m

and K the wave vector.
Derive the vibrational modes of a diatomic linear lattice. Name the different

branches of the dispersion relation curve. Show that the group velocity

vanishes at the zone boundary. Give the physical interpretation of the result.
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Q.10 What is phonon? What is phonon momentum? What are the experimental
evidences that the energy of an elastic wave is quantized.

Q.11 Discuss the inelastic scattering of photon by phonons and obtain the
expression for the frequency of phonon emitted in the process.

Q.12 Calculate the maximum phonon frequency generated by scattering of visible

light of wave length 5000A°. Given velocity of sound V =5x 10°cm/sec and

refractive index p =1.5 .Also calculate the wave vector of the phonon.

7.12 Answers to Exercise

Ans.1: The interatomic interaction, however, causes the atoms or molecules
present at the lattice point to vibrate about their mean position. These
vibrations are known as lattice vibration.

Ans.2: If there are two atoms per unit primitive cell, then this type of lattice
formed by these atoms is known as diatomic lattice.

Ans.3: A quantum of elastic wave of lattice vibration is known as phonon.

Ans.12: (I) Maximum phonon frequency = Q =1.89x10"" /Sec

(IT) Wavevector of phonon K=3.77x10"/cm
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Thermal Properties of Solids
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8.2 Phonon heat capacity

8.3 Planck’s distribution

8.4  Normal mode enumeration

8.5  Density of states in one dimensions
8.6  Density of states in three dimensions
8.7  Einstein model of specific heats
8.8  Debye model of specific heat

8.9  Thermal expansion

8.10 Thermal conductivity

8.11 Umklapp process

8.12 Self Learning Exercise

8.13 Summary

8.14 Glossary

8.15 Answers to Self Learning Exercise
8.16 Exercise

8.17 Answers to Exercise

References and Suggested Readings

8.0 Objectives

The aim of this unit to know about thermal properties of solid, such as specific
heat or heat capacity, thermal conductivity and thermal expansion. We will discuss
the Einstein and Debye approximation to the phonon heat capacity associated with

the lattice vibrations of crystals. The features of more exact calculations are shown.
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Then we consider effects of anharmonic lattice interaction including thermal
expansion and the thermal conductivity of lattice. In the last we will discuss

Umklapp process.

8.1 Introduction

In unit (7) we studied the dynamical properties of lattice. In this unit, we want to
study the thermal properties of lattice. For this, we must know an expression for
the internal energy “U” of the lattice. In case of solids (crystal) the model of a
vibrating lattice that we have developed in unit (7) will provide the information
we need .We know that heat capacity per unit of mass of a substance is known as
specific heat. Specific heat is really a measure of degrees of freedom of a system.
Since degree of freedom imply freedom to absorb potential or kinetic energy. Here
System is the oscillating lattice. Atoms vibrate about their mean equilibrium lattice
points in a solid. These vibrations occur at any temperature, even near absolute
Zero. They are almost entirely responsible for the thermal properties , heat
capacity, thermal expansion and thermal conductivity etc. of insulators and
contribute the greater part of heat capacity of metals. The conduction electrons
contribute only a small part of heat capacity to metals but are almost entirely

responsible for the thermal conductivity of metals.

8.2 Phonon Heat Capacity

As we have studied that energy of a lattice vibration or an elastic wave is also
quantized and a quantum of this energy is known as phonon. All types of lattice
vibrations in crystals comprise phonons. Thermal vibrations are thermally excited
phonons, sound waves are acoustical phonons and excitations of the optical branch
generate optical phonons. So phonon is associated with lattice vibrations. Hence

phonon heat capacity is also known as lattice heat capacity.

An ideal solid may be considered as consisting of a space lattice of independent
atoms vibrating about their mean position, however, the atoms are assumed to be
non-interacting with each other and their vibrations is considered strictly harmonic.
Whenever heat energy is imparted to solids, then their temperature and internal

energy increase. In solids, the increase in internal energy takes place in two ways:

(1) The atoms, which ordinarily vibrate freely about their equilibrium positions,

are set into rigorous vibrations. This is manifested by a rise in temperature.
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(i) The free electrons in case of semiconductors and metals get thermally

excitation to higher energy states.

If we denote the energy contribution due to atomic vibrations in crystal lattice as

U, and thermal excitation of electrons as U then

electron?

+ Ue]ectmn (8 1)

attice

Internal energy of Solid U= U

lattice

So specific heat of solid at constant volume

C, - (d_UJ
C TR s
C = [_d_U] — dUla{tf'ce 4 dUelecfmn
" \dr ), dr dT
CV = CVt’am'ce + CVe!ecrmir (82)

The quantity C,, is known as lattice specific heat or lattice heat capacity i.e.
phonon heat capacity. In discussing the specific heat of solids like crystal, we
assume that no free electrons are present and the entire specific heat of a crystal is

due to the excitations of thermal vibrations of the lattice.

Therefore, for our discussion,
(Cr )ootia =C tattice (8.3)

By heat capacity, we shall usually mean the heat capacity at constant volume,
which is more fundamental than the heat capacity at constant pressure, that is what
the experiments determine. In the case of solids, the two specific heats donot differ
very much, specially at low temperature. This is due to the fact that the volume
expansion of solids is small and work done in expansion is generally negligible.
There is a small difference (about 2%) in C, and C, at ordinary temperature (at

300K). The heat capacity at constant volume is defined as

oS ou
oon(E] (%)

where S is the entropy, U the internal energy and T the temperature.
8.3 Planck’s Distribution

Planck had given theory in 1900 for the explanation of Black body spectrum,
known as quantum theory. According to Planck, a harmonic oscillator does not

have continuous energy spectrum, as considered in the classical theory. But it can
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have only energy values equal to an integer time Ao, where h is Planck’s constant
and vis frequency. Thus the possible energy levels of an oscillator may be

represented as:
g, =nho ,wheren=0,1,23,... (8.5)

Average energy is given by
_nhy
jow(nhv)e KT gy
<£) - _nhy (86)
J:;O e T dy
As the energy values are not continuous but discrete. So that integration is replaced

by summations, we have for average energy;

o _nko
Z (nhv)e KT
<8) = =0 a5 nho (87)
Se #
n=0
To evaluate this equation (8.7) first consider the denominator

o Mo o 2w 3w i T
Do i =l+e il 4o kT o T 4 .. =|1-e #T (8.8)
n=0

Differentiating equation (8.8) w.r.to T, One obtains

@ nhv ho -2 ho
Z(_@}; n(-_l] I P B s [_L}
n=0 k T2 k Tz
ho
- hve *T
or Zﬂhf)e kT = ﬁ (89)
Now substituting the values from (8.9) and (8.8) into equation (8.7) we get
_hv
kT
Energy of each oscillator (&) = Ll (8.10)

T
l—e KT [ekT—I]

Equation (8.10) represents Planck’s distribution formula.
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The normal modes of vibration of a lattice are independent if Hooke’s law is

applicable. Thus the energy of a lattice mode depends only on its frequency V, and
phonon occupancy n, and is independent of the occupancy of the other lattice
modes. In thermal equilibrium at temperature T ,the occupancy of a phonon mode

is given by the plank’s distribution law

()= ,1 (8.11)

ekl —1

where < > denotes the average in thermal equilibrium and k is the Boltzmann’s

constant.

8.4 Normal Mode Enumeration

The energy in thermal equilibrium of a collection of oscillators of different
frequencies v 1s

U:ZnKth (812)
k

where each n is related to v, by the Planck distribution law. It is often convenient
to replace the summation by an integral. Suppose that the crystal has Z(v)dv modes
of vibrations in the frequency range v tov+dv. Then the energy is

U= J-de(v)n(v,T)hv (8.13)
The heat capacity is found from this by differentiation of n(v,7) with respect to
temperature .The general problem is to find Z(v), the number of modes per unit
frequency range. This function is also called the density of modes. The best
practical way to obtain the density of modes is to measure the dispersion relation in

selected crystal direction by inelastic scattering of neutrons.

8.5 Density of States in One Dimension

Consider a one-dimensional continuous string of a length L to be vibrating with its
fixed ends. Let u(x,7) represents the displacement of the string at any point x at
any instant . Then the wave equation will be
*u 1 0%u
a? 2ol

s

(8.14)

where v, = \/i represents the velocity of propagation of the wave along the
p
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one dimensional equation. Since the end points of the string are fixed , the solution

of equation (8.14) should corresponds to standing waves.

u(x,t) = Asin (%)coshv”t (8.15)

where n is a positive integer = 1. The wavelengths and frequencies of the possible

vibrations represented by equation (8.15) are given by

2L % nv
A =— and p, =S4 =—"2 8.16
" n "4 2L (8.16)
N
Z(v)
L —>

Figure (8.1) [Frequency spectrum of a continuous string]

From equation (8.16), it is clear that frequency of the string has discrete values
only. The frequency spectrum is discrete ,one frequency corresponding to each
integer value n. Note that for one dimensional string the frequency spectrum
corresponds to an infinite number of equidistant lines as illustrated in Figure (8.1).

From equation (8.16), we have

-y 8.17)

Vs

The number of possible modes of vibrations in a frequency interval do is obtained
by differentiating equation (8.17) we shall get

dn =(£]du (8.18)

Vs

i.e. equation (8.18) gives the number of possible modes of vibrations in frequency

interval dv in one dimensions i.e. density of states in one dimensions.

8.6 Density of States in Three Dimensions

In three-dimensional case, the wave equation leads

2 2 2 2
W8 s TR LW (8.19)
ox® oy° 0z" vy Of
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Assuming a continuous medium in the shape of a cube of edge L , whose faces are
fixed .The possible standing wave solution of equation (8.19) in analogy with

(8.15) is given by
n,
u(x,y,z,t)=Asin ( ””fx ) sin( nyjsin (%) cos 2zt (8.20)

where n_,n, n,, are positive integers =1

Z2

Differentiating equation (8.20) twice with respect to x, we get

2 2 n
a_uz_(nx?r Asin e el sin il sin(ﬂJCOSZJwt
o2 L L L L

&%u N :
ax—zz_ L u(xayizat) (821)

Similarly differentiating equation (8.20) with respect to y, z and t respectively , we

get
Pu_ (W) (8.22)
—=—| —| u(x,y,z, 4
oy’ L
2 2
Z—§=—[”T“] u(x,y,2,1) (8.23)
2
% = —(271'0)2 u(x,y,z,t) (8.24)

Substituting these values from (8.21) , (8.22) (8.23) and (8.24) into (8.19) we get

n\ ”,-752 n7r2 1 2
[ L J +| =2 +[ : } =—(2m)
L L L V2

2
T 1 2
or [EJ (n.3+n_§ +nf)=7(2nu) =— (8.25)

In this case the wavelength and frequencies of possible vibrations are given by
three integers. Let us now find out the number of possible modes of vibration
Z(v)dv 1n the frequency range » and v +dv . For this ,let us consider a network of
points in which each point being determined by three cartesian positive integer
coordinates n,, n, andn,.Thus the radius vector (R) from the origin to any
point is given by

R?=n? +nJ2, +n? (8.26)

161



Equation (8.26) represents equation of sphere in integer space. Now comparing

equation (8.26) with equation (8.25) we shall get —

2.2
R2 _ 4 2‘0 —~R= &
vS v.S'
e (8.27)
vV,

5
We know that each point occupies on an average a unit volume in the space of
integers , the number of points present in the volume dV of spherical shell,
between radii R and ( R+dR ) is numerically equal to
dn = 47R*dR

Since a mode of vibration is always determined by the positive values of n, n, and
n, only , we must consider the number of points lying in the octant defined by these
positive integers only.

Volume of octant of spherical shell =dV = %4xR2dR Therefore the number of
possible modes of vibrations between frequency range » and v +dv are given by

Z(v)dv = %4xR2dR (8.28)

Now substituting the value of R* and dR from equation (8.27) in equation (8.28) ,
we shall get .

2 3
Zo)do = Lan[ 20| 2Ld0_ 4L o
8 Wy Vg vff
2
Gr Zhjde=r Wy (8.29)

3

UV —> *
Figure 8.2

where V = L’ , the volume of the cube of solid. For a perfect continuum , the

possible frequencies may vary between 0 and 00, the number of such possible
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vibrations increasing with the square of frequencies as shown in figure (8.2). This
situation holds , for example in case of electromagnetic waves in a box of volume
V. Eq.(8.29) is therefore basic expression in the theory of black body radiation. In
the case of elastic waves (in solids), we may distinguish between transverse and
longitudinal waves. In general the velocity of propagation say C, and C,
respectively, will not be equal . To set up an expression for Z(v)dv, in this case
one should keep in mind that for each frequency or wavelength, there are two
transverse mode and one Longitudinal mode i.e. in the longitudinal mode the
deflection is along the direction of propagation, while in transverse mode the
deflection is perpendicular to the direction of propagation, which gives two
independent components. Hence, the total number of modes of vibrations between

v and o +dv for elastic waves is given by

Z(v)do = [%Jr%J drVo*dy

;G (8.30)

Equation (8.30) will be used for the determination of specific heat of Solids.

8.7 Einstein Model of Specific Heat

The Classical theory of specific heat i.e. Dulong Petit law could not explain the

variation of specific heat for many solids with temperature, particularly at low
temperature. This discrepancy was removed by Einstein on the basis of Planck’s
quantum theory. The following assumptions were made by Einstein to explain
specific heat of Solids.

1.All the atoms of solids are identical and independent ,simple harmonic
oscillators.

2. All atomic oscillators vibrate in identical environment and have the same
frequency.

3. The energy spectrum of atomic oscillator is not continuous as assumed in
classical theory but has discrete values as given by quantum theory. According
to quantum theory an oscillator of frequency » has only discrete values of
energy given by E, =nho where n=0,1,2... etc, called quantum number and 4 is
Planck’s constant.

4. The vibrational mode of each atom is composed of all vibrating oscillators in x,

y.z directions.So a solid containing N atoms is considered to be equivalent to 3N
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harmonic oscillators.

5.The oscillators form an assembly of system which are distinguishable due to
their location at separate and distinct lattice sites in the crystal. These, therefore
obey Maxwell Boltzmann’s (M.B.) statistics and have M.B. distribution of
energy.

In accordance to the above assumptions the probability that the atomic oscillator

has the energy £, =nhv at temperature T is governed by Boltzmann’s distribution

_nho

function of e 7 . Now we will calculate the average energy of oscillator in the

following way.

Let Ny M Nowwswsunens be the number of atomic oscillators having energy

0, hv,2hv.... respectively . According to Maxwell — Boltzmann’s distribution
_h _2m _3hv
Ny =Nye KT Ny =Nye ¥  Ny=Nye T |...wherek is Boltzmann’s constant.
.. Total Number of oscillators =N=N_+ N, + N,+ N, +............. ;
_h _2hy _3hkv
N:NO +N0€ kT +N0€ kT +N0€ kT Foass
e 2w S LAY
N=Ny|l+e K +e kT e kT 4+ |=N,|l-e T

Ny

ho
s (8.31)

W

Now total energy of oscillators

E = Nyx0+N; xho+N, x2hv+ N3 x3ho +...........
E=Nge ¥ ho+ Nye *T 2ho+ Nye T 3ho+...
ho _2hv 3ho

E=Npe Mho| 1+2¢ T 43¢ 4T 4

ﬁhu
e kT
E:Nohl)
A 2
_h

o (8.32)
l1—e #T

.. Average energy of atomic oscillator is given by
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Total energy E
(E)

- Total number of oscillators N
From equation (8.31)& (8.32)

kT
e
Nyhv

{l—ef; ]-
(E)=

Ny

v
l—e *T
ho

(E) =
{6” B 1} (8.33)

According to Quantum mechanics the possible energy levels of a harmonic

oscillator are given by

E, = (n +l]hu
2 (8.34)

This has the effect of shifting all energy levels by constant amount of %hv and

instead of (8.33) we will get
ho

[e ko _IJ (8.35)

This first term is called the zero point energy of the atomic oscillator because

<E>=%hu+

(E)=%hu for T=0K, Thus according to quantum mechanics the atoms have

vibrational energy even at the absolute zero ,but this term does not make any
contribution to lattice heat capacity because it does not contain temperature factor.
In Einstein model the vibrational energy of a solid element containing N atoms is
equal to energy provided by 3N oscillators.

The internal energy of the solid can be obtained by multiplying the average energy

per oscillator by the 3N oscillators.
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U =3N(E)=%Nhu+Lh” (8.36)

ho
ekl —1

.. The first term of equation (8.36) is temperature independent zero point energy.

ho

2 kT
Hence, lattice specific heat Cj, = (d—U] =3 Nk(@j =
ho ot
Put . =, = Einstein Temperature (8.37)
2 % 2 ]
) el 0 el
. Cy=3Nk|-£| ———=3R|-£| ——— 8.38

where Nk=R, We now discuss the following Cases

(1) At high temperature : At high temperature, (Q?Ej approaches very small

/e
value, so e’ =1+?E+...

2
0.2 (1+ij+...) 3R[6J [1+6;f] P
.-.CV=3R(7E] = z3R(1+ E]
0,
'8

SCp=3R as T >, t%—)0

So at high temperatures, the lattice heat capacity approaches the classical value 3R

which agrees with experimental results. Obviously, this is the same value as

obtained by the Dulong - Petit’s law.

(2)At low temperature : At very low temperature (%Jwill be sufficiently very

high, so we can neglect number 1 in comparison to[%}.
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@

E

a

E

0, 0, 0,
So e >>1 and e” —1=e” .Therefore equation (8.38) becomes

0,
2 7 2 -6,
CV=3R(9—E] ¢ =3R[9—E] e (8.39)
7]

Vi 0, \* T
el

Thus for T<< 6,., the lattice heat capacity is proportional to eﬁ[ TJ, which is the

dominating factor. At low temperature, the lattice heat capacity falls exponentially

with decrease in temperature. As the value of T decreases to absolute zero, then the
value of Cj also decreases towards zero i.e. T — 0,C;; — 0, But this is not in
agreement with experimental observations, since it has been observed
experimentally that for most of the solids ,the lattice heat capacity at very low
temperatures varies as 7 i.e. Cp o 73. As shown in figure (8.3), which is drawn
according to equation (8.38).

A

72 G

»
>

100K 200K 300K T—
Figure 8.3

Thus, we can conclude that the Einstein’s Theory qualitatively agrees with
experimental facts. But the value of C, obtained theoretically from equation
(8.38) does not agree with the experimental value. In case of copper and
aluminum, it is observed that the atomic heat capacity at low temperature decreases
more slowly than predicted by this theory. So this theory suffers from a serious
drawback.

Shortcomings of Einstein Theory

(1) It explains the specific heat curve up to a certain point, but fails completely at

extremely low temperature, where 77 law holds good.
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(2) v and 6, are obtained empirically and cannot be verified from any
independent physical data.

(3) According to hypotheses of Einstein, atoms in the solid are independent
oscillators and all vibrate with the same frequency. In fact these atoms are bound
with each other under the influence of elastic force. Therefore, the atoms would
behave collectively as system of coupled oscillators, which cannot vibrate
independently. Thus while examining the vibrations in a crystal, it would be better
if instead of a single frequency, a spectrum of frequencies to be considered, so this

fact is taken into account in the Debye’s model, which will be discussed now.

8.8 Debye Model of Specific Heat

Debye proposed in 1912 ,a more realistic model for the frequency spectrum of the
solid. He retained the essential feature introduced by Einstein, the quantization of
oscillator energies. Debye assumed the solid as a system of coupled oscillators.
Thus while examining the vibrations in a crystal, it would be better if instead of a
single frequency, a spectrum of frequencies is considered. The Debye model is

based on the following assumptions.
(1) A solid can be assumed as an isotropic elastic continuum.

(2) Each atom of the solid worked as coupled oscillator with another atom. The

vibrations of this coupled system can be described in terms of normal modes.

(3) There are 3N normal modes in a solid having N atoms. 3N frequencies can have
values from zero to cut off frequency v, . The cut off frequency v, is also

known as Debye characteristic frequency. The restriction to the maximum
frequency v, applies because the waves for which half of the wavelength is

; fon o . A
less than the inter-atomic distance a (i.e. 3 <a) , cannot propagate through the

crystal.

(4) According to Debye model ,the internal energy of a solid is present in the

elastic standing waves originated from the vibrations of individual atoms.

(5) The value of Debye cut off frequency v, 1s same for transverse and
longitudinal modes.
Debye Approximation: According to Debye if the wavelength of the moving

elastic wave is large compared with interatomic distance a ,the crystal medium can
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be assumed as continuum . In such type of medium the total number of vibrational
modes is taken to be 3N, where N is the total number of atoms in the crystal. The
frequency of these vibrational mode is limited from O to v;, . The v;, frequency is
known as Debye cut off frequency . It is common to transverse and longitudinal
modes of vibrations. Thus the frequency spectrum related to perfect continuum has
cut off limit at Debye frequency v, , so as to comply with a total of 3N modes as
shown in figure (8.4).

Thus Debye frequency can be determined by equating the total number of possible

vibrations to 3N.

So _[ Z(v)dv=3N .but from equation (8.30) we have —

Z(v)dv =4xV 23 Y v2dv (8.40)
¢ C,
74 %Jri v?do=3N
0 el
3
or  A4xV 23 L 1% _3y
& ¢ )4
ON(2 1 -
or v = = (8.41)
47rV C C,

Now putting the value of {% - %J from (8.41) into equation (8.40)
t !
9 Nw?

Z(v)dv =

dv (8.42)

>
v
UD

Figure 8.4
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In Debye model it was assumed that phonon gas behaves like a photon gas . So
average energy <E> per mode at a temperature T is given by Planck’s distribution

law as follows

n=o0 E
Z E, eAT .
n v
T (8.43)
Z e kT {ekT _1]
n=0

Since a quantum harmonic oscillator is associated with each vibrational mode of

the same frequency. So the vibrational energy of the crystal is given by
U= j <E>Z(v)dv (8.44)
0
Now putting values from (8.42) and (8.43) in equation (8.44) we will get

Up 3
U= J- ;hv 9Nu 2dv %J. ho o (8.45)
o U 1)3 ho
D o RF ] 4 20 g7 _j
Nowputﬁ=x and hlﬁ:xm or D—Xk—Tand dv—k—de
kT kT h h
Hence equation (8.45) will take the from as follows
4 x, 3 X, 3
L [KTJ [ = 91\{ &7 ] i | (8.46)
vp \ A g & —1 Up 0 € —1

Let us introduce a characteristic temperature &, , known as Debye temperature

defined as 0, = h% o Q?D .So equation (8.46) becomes

(%)

W= 9NkT( J I —dx where N is Avogadro’s number

e’ -1
HD
7Y (7] 3
U :9RT(—] ——dx (8.47)
D 0 e’ -1
HD
dU 7Y (?] xte*
Hence lattice specific heat C,, = (—] = 91{— _f ——dx (8.48)
dT ), 0, 5 (& -1
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(1) At high temperature: At high temperature, Debye temperature is very small

. h .
ie. T>>6, then xzﬁ has very small value i.e. x<<I,s0 that ¢ =1+xand

0!3
o 377 3
0,/ T
),c =x* and j ? szdxz X :l(Q_DJ
e.\ -1 0 3 . 3\ T
So putting these values in equation (8.48)
3 3
i =9R[ 5 l(B_DJ =K (8.49)
Op) 3\ T

This is Dulong and Petit law . Thus at high temperature Debye’s theory agrees with

classical theory i.e. Dulong Petit law .

(2) At low temperature : At low temperature, Debye temperature @), is very large
- : : 6 ; :
, 50 that limit of integration (;] can be taken as infinity . As T<< @,

So x,, = B?D — o ,therefore from equation (8.48)
T 3w x 4
¢, =9 R[_] [
) % (e’v - 1)
2

: ’ 4
The value of integration comes out to %

3
2oy T (8.50)
5 By

In this way according to Debye’s model, at very low temperatures, the molar

%2 "

specific heat is proportional to 7°(i.e. cube of temperature) .This law is known as

Debye T law and this is more closely in agreement with experimental results for
Ag and Al

Shortcomings of Debye Model:

(1) Debye does not consider the crystal structure of solids in his model.

(2) Debye’s model neglects completely the inter-atomic interaction and electronic
contribution to lattice specific heat.

(3) In Debye’s theory, Debye’s temperature ), is taken as a constant, while

through experiment it was observed that 6,, depends upon temperature.

171



(4) In Debye’s model the cutoff frequency v, is taken same for longitudinal and
transverse waves, while C, # C,, so there should be two different values of v,

for longitudinal and transverse waves .

8.9 Thermal Expansion

As we know that thermal expansion of a solid is a result of displacement of ions of

the material due to the change in temperature .As the thermal expansion of a solid

is characterized by linear thermal expansion coefficient a = %(;—;j

Many properties of the crystalline solids are well explained on the basis of
harmonic approximation. In the theory of lattice vibrations as discussed above we
limited ourselves in the potential energy to terms quadratic in the interatomic
displacements, as in the harmonic theory. However, the harmonic approximation is
incapable of accounting for the existence of thermal expansion , temperature
dependence of elastic constants, inequality between specific heat at constant
pressure and constant volume and so many other properties. In case of an ionic
lattice the atoms are held together by Coulomb forces . The electron clouds of the
atoms can interpenetrate only to certain extent to give rise to repulsive forces .The
repulsive energy increases rapidly when the ions approach one another during
vibrations (r<r, ) compared to the attractive forces, but it is close to zero when the
ions deviate from one another. This behaviour makes the resultant force generally
nonlinear or anharmonic. Another reason for anharmonicity according to Born,
may also be due to the lack of proportional displacements of both the nucleus and
the electrical charges. Anharmonicity in a lattice is thus a normal property and this
alone explain the existence of thermal expansion in the crystal.

Expression for coefficient of thermal expansion: A necessary preliminary
relation which one requires while computing the coefficient of thermal expansion
is the realtion between interatomic distance and temperature. The origin of thermal
expansion can be understood by considering a classical oscillator with taking the

effect of anharmonic terms in the potential energy at a temperature T. The

potential energy of an atom at 0°K and at a displacement x from its equilibrium

positionr, . For small values of x=r—r, . We can set the U(x) as

U(x):cxz—gx3—ﬁc4+... (8.51)
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where ¢, g, and f are all positive. Here the term in x° represents the asymmetry of

the mutual repulsion of the atoms and the term in x* represents the softening of
the vibrations at large amplitudes. The average displacement can be calculated by

using the Boltzmann’s distribution function and it gives the possible values of x

According to their thermodynamical probability:

[='s] *U(.\’)
Ixe kT gx
Ie KT dx

Now putting the value of U(x) from (8.51) in equation (8.52) we shall get:
I xe kT dx
X=== (8.53)

o —(ex’-gr’—fx')

.[ e kT dx

—a0

For small displacements, the anharmonic terms in the energy are small in
comparison to kT, we may expand the integrands as:

© —(ex®—gr’— fx*) ” —(ex?) (g’ +fx%)
Numerator of (8.53) J-xe kT dc=| xe ¥ e T dx

—o0

—o0

—(ex?) £
= xe KT {l+£x3+‘—x4}dx
—0 kT kT

*C.YZ 7C.\': . *('.\'2
o0 E— o0 e o0 e
=I xe kT dx+j £ e kT dx+j Lxse kT dx
—o0 o kT —o kT
_('.YZ

=0+ jw £x4€Fdx +0
- kT

Numerator=—}:g?—i— z z (8.54)
2 c
(i)
Denominator = 7 +LE L (8.55)
[ i J kT 4 ( c Jj
kT kT



Now here 1>> (j—fszJ, So we can expand it as
C

—_3g 3/
=—=(kT)| 1 ——=kT 8.56
¥ 4¢? ( )]: 4c? } 530

We can write this relation in a more general form by replacing the classical value
of energy of the atomic oscillator kT by its corresponding quantum mechanical
value E, as

28 p 2% p2 (8.57)
4c l6c

Expression for the coefficient of thermal expansion can now be written in the

X =

following form
1 dx 3g 3/E |Cy
f=—"—=—-" 1—_ S
rdl 4¢? 207

The Second term of equation (8.58) is usually small but this alone represents the

(8.58)

To

temperature dependence of o . The temperature independent value of «, i.e. a, is

obtained by deleting the second term of equation (8.58) and is given by

a, = 3—‘%& (8.59)
4¢” 1,

This equation agrees well with the experimental results of thermal expansion. The

thermal expansion coefficient vanishes as 7 — 0, as required by the third law of

thermodynamics which by the way also requires that C;, -0 as T — 0. So a also

tends to zero. In lowest order the thermal expansion does not involve the

symmetric terms [ x* in U(x), but only the antisymmetric term gx3 exists.

8.10 Thermal Conductivity

We know that the thermal conduction is the process of heat transfer in solid. Heat
flows through vibrational motion of atoms. Atoms of the hot end of rod vibrate

with more amplitude and transfer heat energy to neighbouring atom. In this manner
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heat transfers from one place to another. In crystals heat transfer takes place
through phonons, photons, free electrons, free holes or free hole electron pairs. In
metals, heat transfer takes place through free electron or electron gas, while in non-
metals heat transfer takes place through phonon. Since transfer of lattice vibrations
1.e. phonons takes place with velocity of sound. So we can suppose the transfer of
heat with velocity sound. If the coefficient of thermal conductivity of heat transfer

through free electrons is represented by K and K, is the coefficient of thermal

lat
conductivity of heat transfer through phonon. Then in general the coefficient of
thermal conductivity of solid.

K=K,+K (8.60)

The coefficient of thermal conductivity K of a solid is most easily defined

lat

with respect to the steady state flow of heat down a long rod with a temperature

. .dT
gradient—:
dx

dT
Q=—K(Ej (8.61)
where Q is the amount of heat flowing per unit area per second and K is coefficient
of thermal conductivity and Q is also known as heat current density. Equation
(8.61) shows that the process is random i.e. the heat energy diffuses through the
specimen, suffering frequent collision, besides entering one end and proceed
directly in the straight path to the other end. Without diffusion or in steady state,
the expression will depend only upon the difference of temperature between the
ends of specimen and not upon the temperature gradient regardless of the length of
specimen. From kinetic theory of gases and transport phenomenon, we find the

following

K= %CV/IE (8.62)

where C), is the heat capacity per unit volume, / is the mean free path of a particle

between collisions and ¢ is the average particle velocity. This result was applied
first by Debye to describe thermal conductivity in dielectric solids, with C,, as the

heat capacity of the phonons, ¢ the phonon average velocity and /1 the phonon
mean free path, because in dielectric solids ,heat is conducted by phonons, which

give rise to lattice thermal conductivity.

The thermal conductivity of solids can be most easily understood by
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regarding the crystal as a container enclosing a * gas of phonon™ .This is found to
behave like an ideal monoatomic gas. Now from transport phenomena in
conduction ,the transport of energy takes place from one layer to another layer,

when there exits temperature gradient between different layers. Suppose we are

having three layers at temperature (T ~ AZX—TJ , T and (T + AQJ Then net amount

dx
of heat energy passing per sec per unit area of the layer is given as
1 dT
=—AcCyy — 8.63
Q o (8.63)

From theory of thermal conductivity ,the amount of heat passing per sec per unit

area of the layer is equal to

dT
=K— 8.64
Q=K— (8.64)
Comparing equation (8.63) and (8.64) we get K = %)LECV (8.65)

8.11 Umklapp Process

In an inelastic scattering of the photon by a crystal, the frequency of
incident photon undergoes a change and a phonon is created (emitted) or
absorbed. If a phonon of wavevector k is emitted or created during the scattering,

then according to wavevector conservation law-
K'(scattered) + k = K (incident)+ G (8.66)

where G is reciprocal lattice vector. This has been shown graphically in figure
8.5(a). If a phonon of wave vector k 1s absorbed during the scattering then

according to wavevector conservation law:
K'(scattered) = K (incident) + k +G (8.67)
This has been shown graphically in figure [8.5(b)]

where G is the reciprocal lattice vector of the crystal.
K' K

_NVWWA_, (emission) (absorption)

~ “—“WWW™
k(phonon) k(phonon)
K K

Figure (8.5a):Phonon Emission Figure (8.5b):Phonon Absorption
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Such a process in which the frequency of incident phonon changes is called an
Umklapp process or U- process. This process can be considered as a creation or
absorption of a phonon with simultaneously a Bragg’s reflection. In this process
the momentum is obviously transferred to the crystal as a whole.

Examples of Umklapp process are as follows :

(1) Interactions of three lattice waves due to anharmonic lattice forces, which

produce intrinsic thermal resistance in non-metals.

(2) Scattering of electrons by lattice waves, causing electrical and thermal

resistance in metals.

(3) Bragg refection, which can be regarded as an Umklapp process involving only

two waves.

8.12 Self Learning Exercise

Q.1 What is lattice specific heat?
Q.2 What is Umklapp- process?
Q.3 Derive an expression for density of state in three dimensions.

Q.4 What are the assumptions made in Einstein’s theory of specific heat?

8.13 Summary

In this unit we have studied phonon heat capacity i.e. lattice heat capacity as
lattice vibrations and we derived Planck’s distribution formula. We have calculated
number of modes of vibrations in one and three dimensions in crystal . Then we
discussed Einstein and Debye model of specific heat for solids. The introduction of
anharmonic term in the potential energy expression, successfully explains the
thermal expansions. Then we discussed thermal conductivity of crystals by lattice

waves or phonons. Treating the phonons as a gas and using results of kinetic
: 1 .
Theory, we derived the formula K = ECVE/I , where A 1s mean free path of phonon.

In the last, we discussed Umklapp process, through an inelastic scattering of the
photon by a crystal, the frequency of incident photon undergoes a change and a

phonon is created (emitted) or absorbed .
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8.14 Glossary

Phonon : quanta of lattice vibration

Longitudinal Mode: The deflection is along the direction of propagation.

Transverse Mode: deflection in perpendicular to the direction of propagation.

8.15 Answers to Self Learning Exercise

Ans.1: It is due to rigorous vibrations of the atoms in crystal lattice.

Ans.2: Such a process in which the frequency of incident phonon changes is called

Umklapp or U-process, In this process a phonon is created or absorbed in addition

to the Bragg refection and the momentum is transferred to the crystal as a whole.

8.16 Exercise
Section A: Very Short Answer Type Questions

Q.1 What is Einstein Temperature?

Q.2 What do you mean by density of modes?

Q.3 What is Debye- T° law?
Section B : Short Answer Type Questions

Q.4 What are the refinements of Debye’s theory over Einstein theory?

Q.5 Explain Planck’s distribution law?

Q.6 Discuss briefly the importance of UmKlapp process in explaining an
inelastic scattering of a x- ray photon by a crystal.
Section C :Long Answer Type Questions

Q.7 Derive an expression for the specific heat of solid on the basis of Einstein’s
theory. Discuss the variation of specific heat with temperature.

Q.8 Discuss the Debye model of specific heat of solids, Show how far it agrees
with the experimental values.

Q.9 What is anharmonicity? The anharmonic potential as a function of atomic
displacement x in a solid is given by U(x) = ax? — gx3 -f x*, where a, g,

and f are constants. Prove that the temperature independent part of the
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thermal expansion is a, = 32 by

4¢? I,
Q.10 Explain thermal conductivity and derive necessary formula for it.

Q.11 Explain normal mode enumeration . Show that expression for Debye

characteristic frequency for solid is given in the following form:

| 1

18NZ2 B3l 2 1|3
WD= —2+—2
V ¢ G

where C,= velocity of transverse wave and C,= velocity of longitudinal

wave, V= Volume of crystal and N=number of atoms in crystal

8.17 Answers to Exercise

Ans.1: It 1s characteristic a temperature defined by @5 =%, which is used in

Einstein’s model of specific heat. Here k is Boltzmann’s constant.
Ans.2: The number of modes of vibrations per unit frequency range is known as
density of modes.

Ans.3: According to Debye model, at low temperature, the specific heat is
proportional to 7. This is known as Debye’s 7° law and hold for 7 < ?—8, where

is 6,, is the Debye temperature.
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UNIT-9
Free Electron Model : Part-1

Structure of the Unit

9.0  Objectives

9.1 Introduction
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9.3  Free Electron Fermi Gas
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9.6  Effect of the Temperature on the Fermi Dirac Distribution
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9.9  Matthiessen’s Rule

9.10 Umklapp Scattering

9.11 Self Learning Exercise

9.12  Summary

9.13 Glossary

9.14 Answers of Self Learning Exercises
9.15 Exercise

References and Suggested Readings

9.0 Objectives

This unit contains the detailed description about the Free Electron Model. We
study in this unit about Fermions and its energy known as Fermi Energy. The main
objective of this unit is to give a overview about the free electron model and its
related topic which are given or defined on the basis of this model. We are going
to study in this unit about some important topic as the Fermi Dirac Distribution,

heat capacity, electrical conductivity, and Matthissen’s rule.
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9.1 Introduction

Motion of charged elementary particles in solids is responsible for the
manifestation of electrical resistivity in much the same way as the motion of
uncharged particles in fluids is responsible for the manifestation of viscosity. It is
known from elementary Physics that a metallic filament connected to the poles of a
battery or any other source of electric current becomes hot and ends up by melting
if the current is increased enough. Resistance to an electric current appears
whenever the motion of charged particle in an electric field is being impeded by

the motions of or collisions with other charged or neutral particles.

9.2 Free Electron Model

Free electron model is very important and simple model for the study of the
behaviour of valence electron of a crystal structure of a solid which is mainly for
the metal. Somerfield developed a model, by the combination of classical model
of an electron and quantum mechanical Fermi-Dirac Statistics, known as Free
Electron Model.

This model successfully explain some experimental phenomenon, which are
given below;

1. On the basis of Weidemann-Franz Law, Electrical conductivity and Thermal

conductivity,
2. Temperature dependence of the Heat capacity,
3. Shape of Electronic Density of States,

4. Thermal electron emission and Field electron emission.

9.3 Free Electron Fermi Gas

It consists of very large and those particles or electrons which obey the Pauli’s

exclusion principle, known as free electron Fermi gas and the Particles are known
as Fermions. These particles also obey the Fermi-Dirac statistics. In the condition

of the thermal equilibrium, Fermi-Dirac statistics determine the energy distribution

of Fermions in a Fermi gas.

A Fermi gas having total energy at absolute zero larger than the sum of

simple-particle ground states because of the Pauli’s Exclusion principle. A Fermi
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gas have non zero pressure at zero temperature. Fermi gas of electron is also
known as “White Dwarf > star.

9.4 Free Electron Gas in three Dimensions

In a solid state, a few loosely bound valence (outermost and not in
completely filled shells) electrons become detached from atoms and move around
throughout the material being a subject of the combined potential of the entire
crystal lattice rather than initial atomic nucleus. Let us, consider two such models.
In the first one, free electron gas, we ignore all forces except confining boundaries
and treat our electrons as free particles in the three dimensional box with infinite

walls.

We assume that our solid is a rectangular box with dimensions [, [, and l,, and
that the electron inside only experience the potential associated with impenetrable
walls, i.e.
Vix,y,2) =0,if 0<x<L,0<y<l,0<z<l,
= otherwise

The Schrodinger wave equation inside the walls is given by
2

vy =y
2m

Separating in cartesian coordinates with a wave function written as
¥(x,y,2) =X(x)Y(¥) Z(2)

—h?d?*X vz —h? dZYXZ —h?d?*Z

2m dx? 2m dy? 2m dz?

XY =E,XYZ+E,XYZ +E,XYZ

Separating by parts ,we get

B X = —h%d?X
T 2m dx?
—h2d%y
and Ey Y = EE
—-h?2d?z
and Ez Z= EE

Here E = E; + E, + E,

Now making the following substitution

\2mE JZmE 2mE,
= mx,ky yandkz=-&

x h




We get % = —k,’X,—= —kyzY and 3275 = —k,Z
The solutions of the above equations are

X(x) = A,sink,x + B, cosk,y

Y(y) = Ay sink,y + B, cosk,z

Z(z) = A,sink,z+ B,cosk,z
Now, we use our boundary conditions. At the infinite walls, our wave function is
Zero.

X0)=v(0)=2(0)=0
Xy =Y(ly) =20) =0
By applying first condition, we get that
B,=B,=B,=0

Now applying second condition, we get that
k.l, =nn, Heren, =1,2,3, .....
Similarly, we can get

koly'= mhy: Ny = 12,300

kly=mne:. Me=123 .

The normalized wave functions are

@ _ 8 (nnx)_ mn,\ . (nnz)
Ny My Nz = [xly [Z Sin lx sin ly Sin [z

And the allowed energies are
_ hm? (n,zc n ng) B

m \ et et E) " m

3 3

T
= —of
Ll v

k-space. Suppose our solid contains N atoms with each atom contributing q free

Consider the figure (9.4.1) each block in this grid occupies a volume

electrons and our solid is in its collective ground state (no thermal excitations).

If the electrons were distinguishable particles or bosons they all would have been
in the ground state, ¥;,. However, electrons are identical fermions and obey Pauli
exclusion principal, so only two of them can occupy any particular state (two

because of the spin, one being "spin up" and another one being "spin down".

We can say that electrons will fill up one octant (i.e. 1/8 part, see picture) of a

sphere in k-space.
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Figure 9.4.1: 3D k-space with axes ky, k,,k,. Each intersection point in this

block represents a distinct one-particle size.

Fermi Surface

Figure 9.4.2: Fermi Surface

The radius K of that sphere is determined by the volume required for each pair of

1/4 N, (73
e T AL/ § L3
8(3”"") Z(V)

We assume that we have N atoms with each atom contributing q free electrons.

3
electrons (R—):
v

Each pair needs volume, we so need to divide N, by 2.
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We define the free electron density p

Hence k} = (3m2p)
The boundary that separates occupied and unoccupied states in k-space is called

the Fermi surface.

The corresponding Fermi energy, i.c. the energy of the highest occupied state, is

2 2
Er. = — (3m%p)3
F Zm(np)

9.5 Heat Capacity of the Electron Gas

Classical statistical mechanics predicts that particles in an assembly would
be able to absorb energy, and so contribute to the heat capacity. Hence, the

electronic contribution to the capacity of a monovalent metal will be
3 3 : G ;
E(kBNA) = ER . But the observed electronic contribution at room temperature is

usually less than 0.01 of this value. This discrepancy is explained as follows:

When we heat the specimen from absolute zero temperature , not all the
electrons gain energy of the order of KzT as expected classically, but only those
electrons in orbital within an energy range KT of the Fermi level can be excited
thermally; these electrons are in orbital within an energy which itself is of the order
of KgT and go top higher unoccupied energy states. This gives an immediate
qualitative solution to the problem of the heat capacity of the conduction electron
gas. Thus the minimum energy required for exciting all the free electrons will
be Er. Hence the fraction of electrons that will be excited at T=300K is given by:

KsT = 0025 = 0.005 = 0.5%

Ep 5
1.e. at ordinary temperatures, less than 1% of the valence electrons contribute to the
heat capacity. This result contrasts with the classical view in which all the

electrons in a system would absorb energy, and so contribute to the heat capacity.

3KgT
Each of the electrons may absorb a kinetic energy of the order -

. Hence

the energy associated with a kmol of the metal will be
3kgT\[kz T
= ( 2 ) [ Ep ] N
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1] = 3_T2 ks "Ny
2 )| E,

C —(d—U)-[kBT]3Nk
[ v]e[— dT s EF‘ A*B

[Cy]er = 3R,[0.005] with ky T = 0.025eV and E = 5eV
[Cp]er = 0.015R,, (9.5.1)

9.6 Effect of the temperature on the Fermi Dirac distribution

Here we assumed that the electron gas is at absolute zero degree and, in
accordance with the Pauli’s exclusion principle. The levels will be filled until by
all the electrons up to the Fermi level energy E. But the kinetic energy of the
electron gas increases as the temperature is increased and some energy levels are
occupied which were vacant initially at absolute zero, and some levels gets vacant

which were previously occupied at absolute zero.

The number of electrons dN having energy values lying between
E and E + dE is given by
dN = Z(E)dEf(E)

N = [ Z(E)dEf (E) (9.6.1)
E =2 /" Z(E)Ef(E)dE (9.6.2)
E-— [ 2(E) 5z 9.6.3)

1+ekBT

For the solution of this above integral, we shall evaluate the integral given by
equation (9.6.2)

N =, f(E)<-g(E)dE (9.6.4)
Where f(E) is the Fermi distribution function and g(E) any other function, such
that g(E)—0 as E—0.
Now integrating equation (9.6.4) by part
1=[f(E)g(EDI — [, g(EDf'(E)dE (9.6.5)

In the above expression the first term on the right hand side vanishes at the

upper limit because the probability of finding an electron with infinite energy is

zero. The second term vanishes at the lower limit because we assume that g(0)=0.
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Now expanding g(E) by Taylor’s series about E, as

mm=g@g+@_@p@m+ﬁéﬁlgm@+mmmw

Now substituting the value of g(E) in equation (9.6.5), we have

gﬂ@)+(E—Eﬂg(@)+££%§d—y(@)+nm.dE

1=—!rw)

I=1Log(E)+Lig'(Ef) + Log" (Ef) + - (9.6.6)
where L, = —fom f'(E)dE

Iy = —f(E — Ef)f'(E)dE
0

L, =— (%) f(E —E)’f'(E)dE

However, at low temperatures such that kBT<<Ef, the derivatives f'(E) is
large only at energies near Er as shown in given figure (9.1); it is negligible for

other values of E, particularly for negative values of E. The lower limit on the

integrals may thus be replaced by -00; we shall now solve the integrals as follows:

{E) _E(E_,
1 ae
1

—¢ Er
Figure 9.1 The function f(E) and- %

Lo= [ F@)aE = -[fE)2

Ly = ~[fE)%% = |—| =[1-01=1
1+eksT |
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Ly =— f(E — E¢)f'(E)dE

Where f(E) = [ lE—Ef] = (1 T exp (Z?))_l

1+ekBT
i D
1+ei;?: =5
Thus f'(E) = — eksT
kg T
E-Ef
; B 1 ekBT
fE) = (kB T) E-Ef1?
1+ekBT
E—Ef
_ oo 1 ekpT d
Thus Ly = f, (E—E) (kB T)_ - dE
1+ekBT]

The integral vanishes because f'(E) is an even function of (E — Ef),

and the integral is thus an odd function which when integrated from -0 to €0 will

yield zero.
Now L =—(3) [ (E - )’ f (E)E
E-Ef
. , 1 ek T
Wil frE) == (kB T) E-Ef]?
1+eks—r]
Put X = i
KT
ie. (kg T)dx = dE

Substituting these values in L, relation,
1 [ (kg T)?x%e*(kg T)dx

Ly ==
= 3 [1+ e*]2(ky T)
(kB T)z *° xzexdx

L, = 5 f [1+ eX]2

2
The solution of this standard integral is %, thus

188



. TIZ(kB T)Z

L, = c
Thus equation (9.6.6) becomes [ = fom f(E)g(E)dE
2 2
Fi g(Ef) + T (Ic:T) g"(Ef) + (967)

Equation (9.6.7) is a convenient form for working out Fermi integrals given
by equations (9.6.1) and (9.6.3). but it is restricted by the condition g(E)=0 when

E=0 and by the condition that k, T<<Ej .

Hence, to evaluate the integral given by equation (9.6.1), we choose
By

g(E) = | z(E)dE
|

With g’=Z(E) and g”* = Z’(E)
From equation (9.6.1) and (9.6.7), we write

N = [T F(B)ZE)E = [, Z(E)dE + @ 7 (E) (9.6.8)
AtOK, F(E)=1 for 0 < E < E, and thus
N = [.” f(E)dEZ(E)with F(E)=1
ie. N=["" Z(E)dE (9.6.9)
Now equating equations (9.6.8) and (9.6.9), we get

fEifZ(E)dE 3 @ [2:(E)]g, = 0 (9.6.10)

Now we assume that Z(E) does not vary much in the interval from Ep to Ef,

which for k,T<KE; will be only a small fraction of Ez. Hence we can write above

equation as in the form
% (kg T)?

Z(E-)(Er — Ep) + —L(E) =0

1 I S
G

1
2 n?(ky T)? | C(E)2
2 = —
C(Ef) (Ef EF) 2d 6 2E 0
Ef
2k T)>
(Br — ) ——35—=0
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2(k T)Z
Ef=EF—”1—§ 9.6.11)

where Epis the Fermi level at absolute zero and E; that at higher temperature
such that kT <« E.

However, the second term of equation (9.6.11) is a very small correction term
that should be subtracted from a relatively large term Er. For example, the Fermi
energy of copper is about 7eV. Thus

n? (kBT)? m?(0.023)2
12° 7 12 7
Now if E; in equation (9.6.11) is replaced by Er on the right hand side. Thus

= 10"%eV

equation (9.6.11) can be written as
2(kB T)? (kT )*E
Ef:EF_TT( ) :EF_TT(B)Z F
12Ex 12E¢

m? (kg T)Z]

2 (9.6.12)

Ey = Ep|1-

Equation (9.6.12) indicates that Fermi energy is not constant, but decreases
slowly as the temperature rises. The result given by equation (9.6.12) is quite

satisfactory, but while using it, we must remember that it is applicable only at

temperatures such that k,T<<Ey, which includes the whole range of temperatures

for which the metals are solids.

For determining the mean energy of an electron at other temperatures, we
have to evaluate the integral given by equation (9.6.3) choosing

9(E) = f EZ(E)dE
0

With g' = EZ(E)and g" = % [EZ(E)]

Referring from equation (9.6.8), the total energy of the electronic system written as

T T2 [E2(E)],

B= [ Z(E)EdEf(E) Jy 51 EZ(E)dE +

E
n?(kg T)* @

U= f EZ(E)dE + f EZ(E)IE +" 2 [EZ()];,

o U= U0+fEfEZ(E)dE y ol o

where Uy = fOEF EZ(E)dE

_[EZ(E)]g,
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The procedure which we used to solve the equation (9.6.10), is also used here to

solve the above equation. In the last term Z(E) is evaluated at E'p, rather than E f-

2 ' 1
Thus U= U, +ErZ(Ep) fEEFf dE + @% [EC(E)E]E
f

2 2
U=Uy+EpZ(E)(Ef — Er) + - lea 1) [CE(E)%]
6 2 g
2 2
U=Uy+EpZ(Es)(Ef — Ep) + #2(&)

Now we substituting the value of (Ef - EF) from equation (9.6.12)
w2 (kg T)? 4 w2(kg T)?

12E; s 2l

U = Uy — ErZ(Ep)

Z(R T)Z
U = Uy +—2—Z(Ep)

When we put E = E, we have

3

Z(Ep) = (g) (i—T)E V(EF)%

- @)y

and from relation

(Ep)2
3
e (B)GE)V =)=
(Ep)2
Substituting this in equation (9.6.14)
3Ny 1 1 3N
2(80) = (5 )— B2 = o
(Er)? F
Substituting this value of Z (E F) n equation
m2(kg T)? 3N
=" 6  2Ex
U U " n?(kB T)?
N N 4Ey
I (kg T)?
E-E, + mi(kp T)*
4Ep
We know that the relation between E, and Ep is given by
5.
EF = E EO

Now substituting this value of E in the above equation, we have
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E=E, + 4(";—:) Er

B +E ("BT) 21::0

= = kgT
E=E, [1+—(B)] (9.6.15)
In equations (9.6.12) and (9.6.15) E and E, are referring to quantities at
T=0 K. It is thus observed that as T increases Er decreases and E increases

kg T
slightly. The changes are small due to the occurrence of the factor (g;) . At
F

kg T\? .
room temperature, the factor (g;) is only 2 X 107> for Er = 5eV and so for
F

practical purposes, the Fermi level may be considered as a constant.

The significance of the above equations may be studied by considering

the specific heat problem. The specific heat at constant volume is

N L1 I kg® T
[ v]el - aT , - 677: 0 EFZ

« = 3
Now we use relationE, = EE ., We have

Gl =5 [ ks
Thus for a monovalent metal, the heat capacity per k mol of the metal due to free
Tl.'2 kB T Tl'z kB T
() ket = (3) [ ]Ru ©46.16)
) e = ()2
( : ) [kBTF keNa = (%) || Ru (9.6.17)

e 4= (22

For Ex = 5eV and 300 K

o= (5) (7] (5) P22,

[C,]e = 0.025R, (9.6.18)

electron 1s

v]e

This value is higher than that predicted by equation [C,],; = 0.015R,, and
this result agrees with the value which calculates by the experiment. Expression

(9.6.17) differs from classical result of R by a factor ( ) [ ] which amounts to
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0.025 for Erp =5eV at 30°C. Thus the quantum mechanical theory predicts a

specific heat much smaller than the classical value of zRu.

Ratio of electronic specific heat calculated quantum mechanically and classically is

[Cy]et(Q.-Mech) (2—2) [REFT]Ru
vlel((. _ _ »
[Cyler(Classical) 3 0.57 X 107*T (9.6.19)

2t

The electronic specific heat together with the lattice specific heat gives the total
specific heat of a solid. Equation(9.6.17) tells that the electronic contribution varies
linearly with temperature whereas the lattice specific heat varies as the cube of
absolute temperature at low temperature range. Thus the total specific heat at low
temperature is given by

Cy(Total) = [Cyler + [Coliae
[C,]r = AT + BT? (9.6.20)
where A and B are constants. But the lattice specific heat contribution at high
temperature region is 3R, and is independent of temperature. Equation (9.6.20) is
thus written as

%‘f = A+ BT? (9.6.21)

Figure (9.2) indicates the lattice, electronic and total specific heats for the metal
cobalt at low temperature range. It is clear from the graph that the electronic

contribution to the total specific heat in this range is significant.

0 — 10 TK) 20

Figure 9.2: Different contribution to the total specific heat of coballt.

Figure (9.3) shows that a plot of % as a function of T2 gives a straight line,

From this graph the values of the constants A and B can be determined, which are

useful in checking the theoretically predicted specific heat values of metals.
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Fig. 9.3: Keesom plot for copper

The plot for copper in figure (9.3) yields a value 0.695 for A. Using
Ep = 7.1eV, one gets A = 0.508 using the equation (9.6.17). Thus calculated value
1s much smaller than observed value. This will be resolved if we remember that
the free electrons in the system are not actually completely free, and that they
rather move in a periodic potential. Hence if we use the effective mass m * instead
of m (for copper m*=1.5m) for calculating E, the expected agreement with the

experimental results immediately appear.

9.7 Experimental Heat Capacity of Metals

We already know that one gram of water takes 4.18 joules of energy to
increase its temperature by 1°C. This is the most energy any substance takes to
raise its temperature 1°C. In contrast to taking the highest energy to raise its
temperature by 1°C, this means that it also take longest to cool it down. This means
that water has the highest heat capacity. It must release 4.184 joules of energy in
order to decrease its temperature by just 1 °C. The water releases the heat absorbed
by its environment. Knowing the heat capacity of water, it is possible to find how
well its environment insulates it. Also using the heat capacity of water, one can
figure out the heat capacity of an unknown substance by putting it in water and

measure the temperature change of the water and of the unknown substance.

9.8 Electrical Conductivity

In equilibrium condition the valence electrons obeying classical free electron

theory do random motion with no preferential velocity in any direction. It is now
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conveniently plotted the velocities of these free electrons in velocity (vy) which is
the maximum velocity that an electron can have i.e. vy is the actual velocity value
of the electron at the Fermi level. The shape having v¢ as a radius represents,
therefore, the Fermi surface. The velocity vectors cancel each other in pair at
equilibrium and no net velocity of the electron exists.

It is very interesting to note that although all the electrons participate in the
conduction mechanism, the relaxation time of only those electrons which are at the
Fermi level occurs in the conductivity. The conductivity is proportional to the
Fermi surface area. Thus, metals with large Fermi surface areas will have high
electric conductivity; whereas insulators with zero Fermi surface areas will have

zero conductivity.

Since, for a free electron v = [I:n—k] (9.8.1)

Fig 9.4: Displacement of Fermi surface with an electric field.

The equation of motion of each electron in the Fermi surface under the influence of
a static electric field of intensity, E is
dk
h [—] = Ee 9.8.2)
dt

This means that in the absence of collisions, the Fermi sphere will be at a
constant rate in k-space.

The following approach yields the quantum mechanical expression for

electrical conductivity. Now from the integration of above equation (9.8.2) is
eEt

k(t) — k(0) = [T

Thus if the electrical field is applied at time t=0 to a filled Fermi sphere

(9.8.3)

centered at the origin of k-space, then in a characteristic time
A
T="T5 = == (9.8.4)
Yr
The sphere will have moved to a new centre at
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EE;LF

Ak = (9.8.5)

hvg
Collisions create an opposing effect tending to restore the displaced surface back

to its (t=0) equilibrium position: A steady current is ultimately reached with

nehdk
]_[ o ]_ oE (9.8.6)
neh)eEAr x
[m*] hvyp ?
_ [ne?ag
J‘[me 9.8.7)
_ nez’cF]
a_[TW 9.8.8)

ol
J=0dE= —| E
m
The above treatment is based on the free electron approximation. A similar
treatment may be given for the band approximation. The result of such a

calculation is

2
o = [P with =2 (9.8.9)

* F
The real picture of electrical conduction in metals is quite different from classical
one,in which it was assumed that the current is carried equally by all electrons,each
moving with an average drift velocity v,. But quantum mechanical treatment

tells us that current is in fact, carried out by the latter is more accurate.

The only quantity on the right hand side of above equation (9.8.9) which
depends on temperature is the mean free path Ap. Since this mean free path is

inversely proportional to the temperature at high temperatures, it follows that
1

o« = or p X T, in agreement with experimental conclusions. Thus the Fermi
T

surface is very important in transport phenomenon. Since the flow of current is by
electrons close to the Fermi surface, these phenomena are very sensitive to
properties, shape etc. of this surface. Thus the inner electrons are irrelevant so far
as conduction processes are concerned.

The mean free path of the electron in a metal may now be computed from the

above said quantum mechanical treatment of conductivity. The resistivity of

copper is 1.7X1072Q-m. Thus

*

—( m ) ithm* = 1.01
B = . withm* = 1.01m
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9.9 Matthiessen’s Rule

This rule is simply based on resistivity of the metals. It is very easy task to explain
the temperature dependence of resistivity using following model: we assume that
the crystal is free from the deviation that the presence of impurity atoms and other
point defects that will upset the lattice periodicity and estimate Az and T as
determined only by lattice vibrations. We, thus, proceed by assuming that the
scattering of the electron wave is due to the finite size of the vibration amplitude of
the atoms, that is , the vibrational amplitude produces a scattering cross-section;
that mean free path is obtained directly by using kinetic theory formula. It is also

assumed that at high temperatures, the lattice vibrations are essentially classical.

If M is the mass of the atom, and (—fx) 1s the restoring force on the

displaced atom, the equation of the atomic oscillator is
2

X
Mﬁ+fx—0

where w = 2mv = (i)%. x- 1s the amplitude of vibration.
The potential energy of the oscillator will be
%(szxz) = %M[f}nzvzxz]
P.E.= 2m?Muv2x? = k;i 9.9.1)

It is PE per degree of freedom. At high temperatures, at the Einstein and the Debye
frequencies are essential the same, and most of the modes are the high frequency

modes, we write

(,UZ — sz - OJDZ (992)

With hvp = k0.
. 2 2 (ks6p)?
Thus wp® = (2mvp)* = 4n ( h )
2 (Zﬂksep)z

wp* =
h
_ 2 . ksT _
From equation (9.9.1) x° = 4m2Mvp?
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Now substituting v, from equation (9.9.2)
*= (o) (5y55)
x% = —
4m2M ) \k 0,
) heT ( 1 )2
xt=|——=])(=—
Am2kgM ) \B)

X2 =( b7 ) 9.9.3)

kgM6Op?

2

Since the scattering cross-sections are proportional to the squares of the
amplitudes, we write scattering cross-section,
Qs = constant x x*
h2T
kgM6,>
From kinetic theory that the mean free path is given by

1 (1) (constant)

Qf = constant x

1= = -

n X
. 1
1Le. d X —
nx
here n is the number of atoms in one cubic metre.

A
We know that T = >

Thus T = (constant) x

nvx?
From equation (9.9.3)
_ (constant) kzMB,>
e nv h2T
__ (constant) [kBMHDZ]
Tp = i = (9.9.4)
_ __ (constant) kBMBDZ]
TpVp = Ap = ~ o (T >» 6p)
ie. Ap ; (9.9.5)
Substituting this value of 7, in equation (9.9.9), we get
2\ (kgM6p®
o = constant X (me_v,.-) (%) for (T > ) (9.9.6)

Assuming there is one conduction electron per atom.
1.8 pxT
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The temperature dependence of resistivity given by equation (9.9.6) is in
agreement with the experimental value. It is emphasized once again that the theory

applies only to temperature T >> ).

At low temperature, we use the model suggested by Bloch and Debye. At
temperatures much lower than the Debye temperature (T > 6p), a relaxation time
cannot be defined consistently. The above theory, therefore, cannot be extended to
low temperatures, since the lattice vibrations begin to die out, the scattering cross-
section would fall and we would therefore except that their contribution to the
resistivity, usually denoted by pp will decrease at low temperatures, eventually
becoming zero at 0K. A detailed calculation shows that at low temperatures, pp
varies as T° and this changes over to a linear dependence on T at higher

temperatures.

The larger the amplitude of vibration at any temperature, the greater will
be pp. Since this amplitude depends on the inverse of the Debye temperature (6, ),
it is to expect that pp will be less for metals with a high 6;,, and vice versa, and this
is confirmed by experiment. The arrangement of point defects in a crystal
resistivity py, which they produce, would be expected to be constant. The
contribution to the resistivity is temperature independent, but of course, increases

with the impurity concentration.
The total resistivity p is therefore
p = po+ pp(T) (9.9.7)

This is shown in figure (9.4), in which it can be seen that P at first decreases
linearly with T, and at low temperatures, it flattens off to a constant value, equal
to pg, which is called the residual resistivity. it is clear that, for a very pure
sample, powill be very small, whereas for an impure specimen, it will have a high

value.

The probabilities of electrons being scattered by photons and by impurities are
additive, since these two mechanisms are assumed to act independently. Therefore
we may write

1 1 1

1_1,1 (9.9.8)

T p  Tp
where the first term on the right is due to photons and second is due to impurities.

The former is expected to depend on T and latter on impurities, but not on T. Thus

199



* * * 1 1
= LI R (9.9.9)

ne?ty, ne’tp ne?ltp 1

p=po+pp(T) =

The simple addition of p = p, + pp(T) in equation (9.9.9) is often referred to as
Matthissen's rule .The thermally induced part of the resistivity, pp,is
sometimes known as the ideal resistivity, whereas the resistivity which has its
origin in impurities and defects 1s summed up 1n the residual resistivity, p,.Since
the resistivity is inversely proportional to 7, associated with the electrons at the

Fermi level, the impurity scattering leads to a constant term in Matthiessen’s rule.

f? (Scattering by phonons)

Resigual
rismtivity =

e

T

!P ol T s A Y {Scattering by
‘ } impurities)

— ° T
Fig: 9.5: The electrical resistivity,p, is the sum of two contributions. A constant
Po due to scattering by impurities and pp which is caused by electrons being

scattered by photons.

The resistivity of metals arises due to scattering of the conduction electrons
by the lattice vibrations, by the impurities and by the structural imperfections. At
low temperatures, the impurity scattering is dominant and the resistivity due to it is
found to be practically temperature independent. The total resistivity(p) of the
metal can be given as the sum of the three components, p; is resistivity due to
lattice scattering which is temperature dependent, p; is the resistivity due to
scattering by impurities and p, is the resistivity due to defects or dislocation in the
structure. That is:

p=pt+pitpa
This is the Matthissen's rule in stick sense.
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L9.10 Umklapp Scattering

Supposec that two phonons collide and form third phonon. The probability of such a
collision process is controlled by the magnitude of the anharmonic terms in the
description of the energy. The properties of the resulting phonon are controlled by

laws of energy conservation and of crystal momentum conservation.

We remarked earlier in connection with the inelastic scattering of slow neutrons by
vibrations of a crystal momentum 2k of a phonon is not the same thing as
“ordinary” momentum. Thus a normal vibrational mode (a standing wave) in a
finite crystal has zero momentum with respect to the crystal as a whole. Yet
ordinary momentum is transferred to a crystal when phonons are created or
destroyed by external stimulation such as the scattering of an incident neutron
or f — particle. The question of whether crystal momentum Ak must be
conserved or not depends on the detailed circumstances of the transition being

considered.

At any rate, crystal momentum is conserved when two phonons collide to

produce a single phonon such that
hw, + hw, = hw; (9.10.1)
and hk, + hk, = hk; (9.10.2)
in the conservation of energy and momentum. Such a process is known as
anormal — process or N — process. As we can see, if we sketch the vector
diagram of equation (9.10.2), an N-process does not alter the direction of energy
flow; thus it makes no contribution towards the thermal resistance. If N-process

were the only possible phonon-phonon interactions inside a perfect crystal, the

lattice thermal conductivity would be infinite.
However, Peierls showed that thermalization of phonon population could proceed

by process which satisfied equation 9.10.1 for energy conservation, and also the
vector relationship
ki+k,=kz;+G (9.10.3)

Here G is a reciprocal lattice vector. Since a phonon of wave-vector (k3 + G) is

indistinguishable from a phonon of ave-vector k3 in a periodic lattice. Equation

(9.10.3) is evidently a wvalid conservation law. Peierls called such
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events Umklapp — process,or U — process.The intriguing aspect of a U-process

is that it destroys momentum and changes the direction of energy flow (as given in

figure 9.6 in which energy is carried to the right by k,and k,, but to the left by the
final stateks). Thus U-process provide thermal resistance to phonon flow and can

thermalize a phonon distribution.

Figure 9.6: A section through k-space, showing the vector relationships of wave-

vectors for an Umklapp process.

Peierls noted that the mean free path set by U-processes would vary asT ! at high
temperatures, since the excitation of all lattice modes is proportional to T for
temperature larger than . Interesting things happen when we consider the
chances for U-processes at lower temperatures, only the regions of k-space close to
centre of the Brillouin zone remain heavily populated with phonons; yet a
U-process cannot occur unless (kq + k) extends beyond the zone boundary. This

u

requires that the probability of U-processes would fall off asexp (—g?) at low

temperature probability of N-processes, which should fall off as T> well below the
Debye temperature.

Behaviour of the form
A « exp (9?) (9.10.4)

It is indeed seen in numerous solids, though the value of 8,, required for a fit is
usually  smaller than 6,/2. Thus in sapphire (Al,0;) the Debye
temperature 8, ~1000 K and Umklapp temperature 8,,~250 K. The phonon mean
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free path on sapphire at 50 K is about is about 102 ¢m, some 30 times larger than
would be given by extrapolation of the high temperature T~ line.

Phonon-phonon processes more complicated than the ones we have considered
so far also occur. Both N-processes and U-processes involving larger numbers of
phonons have to be considered in more complete discussions of thermal resistance.
These higher order processes affect the behaviour to an appreciable extent only at

rather high temperatures.

9.11 Self Learning Exercise

Q.1 Given that one gram molecule of a gas at 0°C and a pressure of 760mm of
mercury occupies a volume of 22.414 liters, compute the number of molecules
in the gas at 0°C and 760mm of mercury.

Q.2 Compute the average kinetic energy of a gas molecule at 27°C. Express the
result in electron volt. If the gas is hydrogen, what is the order of magnitude of
the velocity of the molecules at 27°C?

Q.3 The relaxation time of conduction in copper is 2.5x10~1*sec. Find the thermal
conductivity of copper at 0°C. Assume density of electrons to be 8.5x1028,

Q.4 Calculate the number of energy states available for the electrons in a cubical
box of side lcm lying below an energy of 1 electron volt.

Q.5 Evaluate the temperature at which there is one percent probability that a state,

with an energy 0.5 electron volt above the Fermi energy, will be occupied by
an electron.

Q.6 The Fermi energy of silver is 5.51 electron volt. (a) What is the average
energy of the free electrons is silver at 0 K?(b) What temperature is necessary
for the average molecular energy in an ideal gas to have this value.? (c) What

is the speed of the electron with this energy?

9.12 Summary

In this unit we study about the Fermi energy and free electron Fermi gas. This
unit gives us very important information about some important topic as Free
Electron Model, Matthissen’s Rule, type of scattering, electrical conductivity of

metals and Fermi Dirac Distribution.
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9.13 Glossary

Electron Gas: The motion of electron in a metal is like perfect gas, so it
constitutes the electron gas.

Fermions: These are the particle which obey Fermi-Dirac Statistics and fill in the
electron shell according to Pauli’s exclusion principle.

Fermi-Dirac Distribution: This distribution is according to the Pauli’s exclusion
principle.

Fermi Energy: The maximum kinetic energy of electron is known as Fermi
energy. It depends upon the temperature.

Phonon: It is quanta of Lattice heat vibration.

9.14 Answers to Self Learning Exercise

Ans.1: 22.414 x 103(c¢m3) of the gas will contain 6.02 X 10?3 molecules.

Hence 1 cm? will therefore contain:

6.02 x 10%3
22414 x 103
Ans.2:We know that the equation of kinetic energy is

= 2.69 X 101? = 2.69 x 1025 /m3

1 )

Jjoule

With kg = 1.38 x 10723 T =27+273=300K

kelvin’
Thus, E=1.5%1.38x10"23x300

6.21 x 10721

E=6.21 x107? joule or E = =——— eV = 0.039eV
1.6x10
3kgT
and now c = =
My

With kg = 1.38 X 10‘2?% , T =300K
My = 1.008 x 2 x 1.67 x 107%7 kilogram

3kg T 3x1.38x10723 x300
Thusc = B — [ — ] = 1921 metre /second
My 2X1.008x1.67x10~27

kgnc A

Ans.3: o = But A=Tc
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kgntc?

Thus Op =
us T 5
3k T
With ¢ = N
m
Thim w5, = [anT] [3k3 T] _ [3k£;2nﬂ"]
m

Withn = 8.5 X o, 7 = 2.5 x 10~ sec, kz = 1.38 X 10~2%joule/kelvin

T =273 K, m = 9.1 x 1073 kilogram
IXBH X108 % 25X 1074 X (1.38 x 10723)2 % 273
2x91x10731

agr =

or =182 ——

8ma?

Ansd: Z(E)dE = [2][ ] E3dE

Thus the number of energy states below one electron volt is:
3

fZ(E)dE [2] = VszdE
With m=9.1x103%g ,V=10"°m3 E =1 x 1.6 x 107%joule

Thus the number of energy states is,

- Gl VB,

1(eV)

X2 8X9.1><10*31“2* 3
= -6 1915 — 21
2x3) [(6.62 x 10772 (107°)[1.6 x107%?]2 =45 x 10
1
Ans.5: We know that F(E) = T Ep
1+exp[ kBT]
E=E;+05
Thes F(E)= Lo 1
100 drexpli]
. 0.5
re. 0.01 =1/1+e* where x = —
kgT

Thus, 0.01+0.01le* =1
0.01e* = [1—-0.01] = 0.99
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0.99
ex —_—

001
LE x = 2.303 X log,,99
0.5
m = 2.303 x log,,99

0.5
2.303 X 10g1499
kzT = 0.109 electron volt
T =0.109 x 1.6 x 10719/1.38 x 10723
T = 1262 kelvin
Ans.6: (a) The average electron energy at 0 K is given by

= kBT

_ 3 3 _
Ey = g Ep = £ X 5.51E, = 3306 (eV)

(b) The average molecular energy in an ideal gas at temperature, T degree

Kelvin is % kgT.

e By =2 _ 25

iLe. Eg =ZkgT or T = e

With E; =3.306 % 1.6 X 1079 joule, kg = 1.38 X 10723joule/kelvin
Thus,

_ 2x3.306x1.6x107"
3 138x10°23
(c) Let the velocity of the electron be v metre/sec, then its kinetic energy is:

_ J2E,

= 1 .
E, = =mv? ie. V=
0 2 ,I_m

With E, =3.306 x 1.6 X 107 joule ,m = 9.1 x 1073 kilogram

3%3.306x1.6x10~1°
Now, v = J[ . atlla ] = 1.3 x 10°m/s.

=2.56 X 10* K

9.1x10731

9.15 Exercise

Q.1 What is Fermi energy? Write down its relation with the concentration of
electrons in metals.

Q.2  What is the sources of electrical resistivity in metals?
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Q.3 Explain Fermi-Dirac distribution function. Plot this function for various
temperatures including 0 K.

Q.4 What is meant by density of energy states in metals?

Q.5 Discuss electrical conductivity in metals.

Q.6 How does Fermi energy change with temperature ?

Q.7 Give the brief description of heat capacity of electron gas.

Q.8 Give a brief account of effect of temperatures on Fermi Dirac distribution.
Q.9 What is Matthissen’s Rule? Give related description.

Q.10 How do you explain the electrical conductivity of metals on the free electron
gas model?

Q.11 Give the brief summary of Umklapp Scattering.

References and Suggested Readings

1. Solid State Physics by Neil W. Ashcroft and N. David Mermin
2. Introduction to Modern Solid State Physics by Yuri M. Galperin
3. Solid State Physics by R. J. Singh

4. Applied Solid State Physics by M R Srinivasan.
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UNIT 10
Free Electron Model : Part-11

Structure of the Unit

10.0 Objectives

10.1 Introduction

10.2 Free Electron Model

10.3 Thermal Conductivity in Metals

10.4 Cyclotron Resonance

10.5 Hall Effect

10.6 AC Conductivity and Optical Properties
10.7 Paramagnetism of Free Electrons

10.8 Thermionic Emission and Richardson Equation
10.9 Schottky Effect

10.10 Field Emission

10.11 Failure of Free Electron Model

10.12 Self Learning Exercise

10.13 Summary

10.14 Glossary

10.15 Answers to Self Learning Exercise
10.16 Exercise

References and Suggested Readings
10.0 Objectives

This unit is based on the thermal properties of metals mainly, such as thermal
conductivity, Hall Effect, Schottky effect and some other properties of metals
such as AC conductivity and optical properties & paramagnetism of metals.

These all above written topic has explained on the basis of Free Electron Model.
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10.1 Introduction

Metals are generally those materials which possess good electrical and thermal
conductivities. The free electron theory, which was able to explain the
conductivities of the materials, was proposed by Drude and further developed by
Lorentz. Based on these free electron model Drude and Lorentz derived theoretical
expressions for electrical and thermal conductivities and evaluated the ratio
between them, which is well known as Lorentz number. This theory was applied to
understand several other physical properties as well. Based on this theory, some
metals, when subjected to combined electric and magnetic fields, showed positive
values for the hall coefficient which proved the presence of positive charge
carriers, contrary to the normal expectations as most possess negative Hall

constants.

10.2 Free Electron Model

According to Rutherford and Bohr arguments, electrons revolve in the
circular stationary orbit around the nucleus. All positive charge of the atom is
concentrated in the nucleus. The electrons in outer orbit are known as valence
electrons. In case of metals, these valence or outermost orbital electrons are loosely
bound to the nucleus and they can move through the volume of the crystal in free
manner. Hence, the valence electrons are also known as free electrons.

Circular stationary orbit

Valence
electron or
loosely
bound
electrons

Cutermost
orbit

Core Nucleus
electrons

Figure: 10.1 Atomic structure of sodium

The behaviour of moving free electrons inside the metals is analogous to that of

atoms or molecules in perfect gas and are called free electron gas. The free electron
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gas, however, differs from ordinary gas:

(1) The molecules of an ordinary gas are neutral while the free electron gas is
negatively charged.
(2) The concentration of molecules in an ordinary gas is very small in comparison
to the concentration of electrons in a free electron gas.

The classical theory of free electron gas (Drude Lorentz Theory) assumes

that the free electron gas obeys M.B. statistics and explains various properties of

metals such as;

Validity of Ohm’s law, high thermal and electrical conductivity of metals
(% = constant), complete opacity of metals etc. But the classical theory fails to
explain the heat capacity & paramagnetic susceptibility of the conduction
electrons. Sommerfeld explained these characteristics by treating the problem
quantum mechanically using F.D. statistics. According to Sommerfeld, the

potential energy for an electron in crystal is periodic.

10.3 Thermal Conductivity in Metals

Heat conduction 1s the transfer of thermal energy from a hot body to a cold

body when both the bodies are brought into contact. For best visualization we
consider a bar of a material of length x whose ends are held at different

temperatures. The amount of thermal energy Q which crosses unit area of this bar

e s 5 ; : ar
per unit time (i.e. the heat flux /,) is proportional to the temperature gradient =

The proportionality constant is called as the Thermal Conductivity o,. We can

write

daT
Jo=—0r— (10.3.1)

The negative sign indicates that the heat flows from the hot to the cold end. The
unit of heat conductivity is Wm™'K ~1.The thermal conductivity decreases by 20%
within a temperature range of 1000°C. In the same temperature region o4 for iron

decreases by 10%.

In insulators, heat is carried entirely by phonons, but in metals heat may be
transported by both electrons and phonons. The conductivity o7 is equal to the sum

of the two contributions.

O = 0g + 0p
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In most metals, the contribution of the electrons greatly exceeds that of the
phonons, because of the great concentration of electrons; typically o, = 0.010,.

Hence o, is usually neglected.

Here now question arises, as to what velocity do the electrons have, and do all

the electrons participate in the heat conduction?

For the answer of this question we follow this model given as:
TZ T]> T| T|

.. — . _n
el =

.

Figure 10.2: Energetic electrons on the left carry net energy to the right.

Electrons at the hot end travel in all directions, but a certain fraction travel to
the right and carry energy to the cold end. Similarly, a certain fraction of electrons
at the cold end travel to the left, and carry to the hot end. These oppositely
travelling electron currents are equal but because those at the hot end are more
energetic on the average than those on the right, a net energy is transported to the
right, resulting in a current of heat. Note that heat is transported almost entirely by
those electrons near Fermi levels, because those well below this level cancel each
other’s contributions. Once more it is seen that the electrons at the Fermi surface
play primary role in transport phenomenon. The velocity of such electrons is

calculated using the formula
Ep = mvp? (10.3.2)
For the evaluation the thermal conductivity oy, we use the

expression gp = g[C,,]elan. In this expression, [C,].; 1s the electronic specific

heat per unit volume. In the present case [C,].; should be substituted from equation
7T2 kB T T[z kB T
el =7 ) o] ke = (7)) ]

Also R, should be replaced by R = nkg, since we are dealing here with unit

volume rather than a kmol. In addition, ¢ and A should be replaced by vy and A,
since only electrons at the Fermi levels are effective. Thus
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1
or = 3 [Colarcn

n*\ 1k T
_m? (nkg? TAzvF]
6 B

1

O-T:_

Now from the equation (10.3.2), we have

o .
2 [nkg” TApvp
Op =—=|——

3 mve? |
2\ [nkg® Ttg]
=T m
A
With 7 = £
Vr
2 kep” T
So we get o = (”?) [”Bm—r‘”] (103.3)

This equation expresses thermal conductivity in terms of the electronic
properties of the metal. Substituting the usual values of the microscopic quantities
in equation (10.3.3), we get

or =350 Wm KL

2

. ne?r
Recalling that 0 = - £ we get

or [m? nkBZTrF( m )
o m ne’tp

3
2= o3

This quantum mechanical equation gives a comparison of thermal

conductivity with electrical conductivity. The relation is the Wiedemann —

Franz law obtained using quantum theory. Thus Lorentz number L is given by

ar 7'[2 kB 2 -8 . _2

=2 (—) —] — 2.45 x 10-® watt ohm kelvin=?  (10.3.5)
aT 3 e

This remarkable result involves neither m nor n. It does not involve the relaxation

time T. This Lorentz number L, because it depends only on the universal constants

kg and €, should be the same for all metals. This conclusion suggests that the

electrical and thermal conductivities are closely related, which is to be expected
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since both electrical and thermal current are carried by the same agent electrons.
Experimental values of L at 0°C and 100°C is for
Ag are2.31x 108 and 2.37 x 1078 respectively.

At low temperatures the Lorentz number tends to decrease. This is due to
difference in the collision averages involved in the electrical and thermal

conductivities; the thermal and electrical relaxation times are not identical.
The theory for low temperature region is very complicated; but it can be said
that at very low temperatures T becomes constant and o, thus, has to go to zero as

T—>0. However, o continues to rise as T goes down, because scattering is less
likely even among the phonons that do exist. The thermal conductivity keeps rising
as T goes down until the mean free path is limited by geometrical scattering; that

is, the sample dimensions themselves finally set an upper limit to A. Further
reduction of temperature now causes o to drop since C, — 0. It may also be
mentioned- impurity scattering. In such a case, if such a case, if the two types of
scattering are independent, we may write for the total conductivity o7 as
1 1 1
+

where o; is the contribution arising from electron-lattice scattering and o; is

the contribution from electron impurity scattering.

10.4 Cyclotron Resonance

According to Maxwell’s equations, a magnetic field applied to an electron tends to
change the electron’s direction of motion without changing its energy. The Lorentz
force is given by

F=—e(E+-(vxH) (10.4.1)
Here e is the velocity of electron, H is magnetic field and E is electric field.

Thus magnetic field H, affects motion in the XY plane without affecting motion in
the z- direction. If the electron is not scattered, it executes an orbit in the XY plane,
superimposed on any trajectory it may have in the z-direction.

For a quasi-free electron of scalar mass m”*, the orbit executed is a circular one,

of radius r and angular frequency w.. These quantities are related by the
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requirement that the centrifugal force (m*w,r) must balance the Lorentz force.

Thus the angular frequency, known as the cyclotron frequency, is

W, = (EHZ) (10.4.2)

m*c

For magnetic fields of the strength used in practice, this frequency lies in the

range of microwave part of the electromagnetic spectrum, since in numerical terms

ve = (%) = 2.8(*2F) MHz (10.4.3)

for a magnetic field expressed in gauss.

The motion of the electron in real space under the influence of a magnetic field is
accompanied by a precession through k-space on a path of constant energy in the
Brillouin zone. Of course, for the highly degenerate electron population in a metal,
this motion is seen only for electrons at the Fermi energy, electrons which perform
orbits in k-space around the Fermi surface. Since there is inevitably some
scattering of electrons by phonons and defects even in a nearly perfect crystal at
low temperatures, a well-defined cyclotron motion can be resolved only
if (w,T,,) > 1, so that an electron can move through a significant part of a magnetic

orbit before it is scattered.

Experiments of cyclotronresonance are based on the absorption of radio-
frequency energy at a frequency w when a steady magnetic field H is adjusted to
make w coincide with w.. Measured combinations of w and H then allow us to
deduce information about the tensor of effective mass at the Fermi energy. The
theory of cyclotron resonance is in practice rather more complicated, both for

semiconductors and for metals.

For a semiconducting material in which the free electron density is small,
cyclotron resonance experiments can be carried out with e. m. waves penetrating
throughout the solid. The complications which arise are associated with the
topology of constant-energy surfaces, and with hybrid plasma resonances if the

free electron density is not very small.

The frequencies used for cyclotron resonance studies in a metal are in
variably much smaller than the plasma frequency, and the real part of the dielectric
constant is negative. Accordingly, a metal is opaque for such frequencies, with a
penetration depth § much smaller than the probable thickness of a sample. The
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magnitude of the electronic mean free path 4 then determines whether the surface
electrical characteristics for R. F. waves are controlled by the normal skin ef fect
or by the anamalous skineffect. The former situation holds ifA < § and the
latter when A is large compared with the skin depth.

10.5 Hall Effect

This effect arises when a metal is subjected to a magnetic field. This effect
sometimes also seems to contradict completely the classical picture of conduction.
If a sample conducting material is placed in a uniform magnetic field and a current
is passed along the length of the conductor as shown in figure 10.3, a voltage is
found to develop at right angles to both the direction of the current flow and that of
the magnetic field. This voltage is known as the Hall voltage, and its value is
found to depend on the magnetic field strength and on the current passed. The
mathematics of Hall effect is based on the simple dynamics of charges moving in

electromagnetic fields.

Consider a specimen in the form of a rectangular cross-section as shown
in figure 10.3 carrying a current I, in x —direction. If a uniform magnetic field B,
is applied along z-axis, it is found that an emf develops along the y-axis i.e., in a

direction perpendicular to I, and B,. This voltage is called Hall voltage.

Vi
’_-_.; - -
. B O -,
hetl P e ®
Field »,

Figure 10.3: Origin of Hall field and Hall Effect.

Let us first consider the situation before the magnetic field is introduced. There

is an electric current flowing in the positive x —direction, which means that the
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conduction electrons are drifting with a velocity v, in the negative x —direction.
When magnetic field is introduced, the Lorentz force F, causes the electrons to
bend downward as shown in figure 10.3. As a result, electrons accumulate on the
lower surface, producing a net negative charge there. Simultaneously a net positive
charge appears on the upper surface, because of the deficiency of electrons there.
This combination of positive and negative surface charges creates a down-ward
electric field, which is called Hall field.

The Lorentz force F;, which produces the charge accumulation in the negative
y-direction, has the value.
F, = ev, B,

Now the field created by the surface charges produces a force which

opposes this Lorentz force. The accumulation process continues until the Hall

force completely cancels the Lorentz force. Thus, in the steady state, Fy = Fj.

eEy = ev,B,

or Ey=v,B, (10.5.1)
The current density, j, is given by the equation
Jx = —nev, (10.5.2)
Dividing equation (10.5.1) by equation (10.5.2)
Ey B,
Je  ne

13,
or Ey=— (;)Jsz
The Hall field is thus proportional, both to the current, and to the magnetic

- i is known as the Hall constant and
Jxbz

field. The proportionality constant, that is

is usually denoted by Ry i.e.,
Ey/j 1
Bulle — L _p, (10.5.3)

B, ne
Now the Hall constant or Hall coefficient Ry, is defined as the ratio of the
electric field strength produced per unit current density to the transverse magnetic
field. It will be noted that Ry depends on the sign of ‘e’ and the reader should
verify that if Ey; is in certain direction for a flow of negative charges, then it will be
in the opposite sense for the same current when it is produced by a flow of positive

charges in a reverse direction. In the monovalent metals, Ry is negative, which is
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consistent with our belief that the current is produced by a flow of negatively
charged particles; the magnitude of Ry is then such that there is of the order of one
moving charge per atom. In more complicated metals, particularly those in which

there is band overlap, Ry can be due to positive holes.

From equation (10.5.3), we have

- - (9)2-62)

Unit of Ry = volt — m/amp — weber/m? = Vm3A lwb™1

Example: For silver and cadmium the Hall coefficient i1s -0.84 and +0.60,
respectively.
The general expression for current density is
Jx = nev,
i.e. electrical conductivity

_Jx _ (&),

Eyx Eyx
The drift velocity produced for unit electric field is called the mobility of charge
carriers.
: _ Jx _ : = (i)
ie. o= o nepe; or pe=(—Jo
= Ryo ; or = (J—x) B
He H ’ He Ex jx Bz

55 =6 E)
=(—=—)l=)=1=)\- )= 10.5.5
He (Bzy Vx Vi/ \y/ \Bg ( )
From above given equation, we can easily determine the mobility of electrons.
Measurement of Hall voltage helps one to determine the following:

1. The sign of current-carrying charges can be determined.

2. The number of charge carriers present in unit volume can be calculated from the

magnitude of Ry.

3. The mobility of the charge carriers may be obtained directly from the
measurement of Hall voltage.

10.6 AC Conductivity and Optical Properties

If the D. C. conductivity of a superconductor is indeed infinite, then a current

initiated in a closed loop of superconducting material should continue forever
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without any need for a driving electromotive force. On the other hand, if a
superconducting loop of inductance L has a finite resistance R, then a persistent

current should slowly decline in accordance with

I'=Iyexp(—=) (10.6.1)
Attempts to detect a decay rate in persistent currents were begun early in the
history of superconductivity, and Onnes and Tuyn concluded that the conductivity
of lead was at least10'®/ohm-cm in the superconducting state. Compared with
perhaps10°/ohm-cm for highly pure lead just above T,. Numerous experiments
since then have extended the lower bound, and Quinn and Ittner report that the

lower limit conductivity is at least10%3/ohm-cm.

It is still important to draw a distinction between a superconductor, as a solid
infinite D. C. conductivity, and a perfect conductor, as a solid which occupy Bloch
states with zero scattering. Bardeen remarked that it is more fruitful to view a
superconductor as an extreme case of diamagnetism rather than as a limiting case
of infinite conductivity. At T=0, the conductivity is infinite only up to a limiting
frequency, and at a finite temperature, there is a small A. C. loss at all frequencies.

(fhea/k, T )—

0 5 15 20
1.0 e

0.8L

0.6L

0.4

0.2}

Absorption Compared with Normal State (ofos)

Angular Frequency @ (10" rad/sec)
Figure 10.4: Frequency dependence of the electromagnetic absorption by a
thin superconducting film of Indium.
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The absence of superconductivity at optical frequencies was noted very early in the
history of this subject and measurements in the 1930’s showed that
superconductivity disappeared at a frequency of more than10° Hz but less
than 10** Hz. The more recent developments of far infrared techniques have
permitted an accurate determination of the frequency dependence in the interesting
region for a variety of superconductors. A typical occurs for a photon energy of
about 4k,T, which is to be associated with an energy gap€, between
superconducting and “normal” electron states. Such an energy gap was postulated
by F. London is an integral part of his phenomenological theory of
superconductivity, and it lies at the heart of the BCS microscopic theory.

10.7 Paramagnetism of Free Electrons

Suppose we have a solid containing N magnetic atoms per unit volume, each

with a magnetic moment p given by equation

pu = gugJ (10.7.1)

For combination of applied field and ambient temperature which justifies a “weak-

field” approximation, a paramagnetic susceptibility
M Nu? ¢
Xm = (;) =L == uH < kg (10.7.2)

T Bk T
This result is known as Curie’s Law, and the quantity C is Curie constant of

the solid. Detail analysis is given in unitl6.

10.8 Thermionic Emission and Richardson Equation

If we increase the temperature of any given metal, then it becomes heated
and electrons are emitted from its surface, then this whole phenomenon is known
as thermionic emission. This property is widely used in vacuum tubes, in which
the metallic cathode is usually heated in order to supply the electrons required for

the operation of the tube.

The given (10.6) figure shows the energy level scheme for electrons in
metals, according to free electron model. At OK, all the levels up to the Fermi level
E are filled up, above which all levels are empty. Note also that an electron at Ep

cannot escape from the metal because of the presence of an energy barrier at the

surface. The height of this barrier, denoted by (P, is known as the work function.
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This function varies from one metal to another, but generally falls in the range
1.5-5¢V. At 0 K, no electrons can escape from the metal. But as the temperature of
the metal is increased, the levels above Ep begin to be occupied because of the
transfer of electrons from below Er. Even the levels above than barrier, i.e. at

energies higher than (E + ¢) become populated to some extent. The electrons in
these latter levels now have enough energy to overcome the barrier, and they are

the ones responsible for the observed emission from the surface of the metals.

Let us consider the x — direction perpendicular to the surface of the
electron emitting solid. The critical value of the electron’s momentum in the

x — direction, so that it just escapes from the surface, is given by

2
Bt

= =FEz+¢ =Vy or Px, = \/Zm(EF + d)) (10.8.1)

2m

€ Inside ~ Outside

Figure10.6: Thermionic Emission

« « — Eleciron Vucuum

T
SR B

e = = & = l
N f

L

Figure 10.7: Ideal potential energy of an electron along a row of atoms near

the surface, and the potential energy barrier at the surface which constrains
the electrons to remain inside, the shaded area represents electron energy as
given by the Fermi distribution shown on the left.
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The height of the potential-energy barrier at the surface (Vp) is greater than that of
the Fermi energy (Er) by an amount (, called the Work function.

The product of electronic charge and the number of electrons having a
momentum in the x — direction greater than its critical value, which strikes unit
area of the surface in unit time, gives the thermionic current at a certain
temperature. Let N(P,) represents the number of electrons per unit volume having
momentum values p, and p, +dp, in the x —direction. When the electron

having momentum p, arrives at the surface, its velocity will be p_T: Thus the

number arriving at unit area of the surface in unit time is

Px
| & nepod,
pJCO

Thus the emission current density is
j =, Px N(po)dpy (108.2)

Here N(p,) is the product of the number of possible states of momentum p,, and
the probability that an electron is in each state. The number of states having

momentum values lying between p and p + dp may be written from the equation

3
2/EYdE = “[P™F EraE
2 [hZ]

% d
Now we substitute E = ;—m anddE = p (;p) in above equation, we have

zyip = (3) 53] (f—m)p (%2)
Z(p)dp = (3) pdp (10.8.3)

This result gives the momentum values of p in any direction, but we are

connected with momenta in the x — direction specifically. We have now

calculated the number of electrons that have a momentum lying in the range dp_ at
P, when p, and p, values are unrestricted. To do this, we construct a plot in
"momentum space’ such that each point represents a particular combination of

momentum components py, py and p, with p? = p,* + p,? + p,%.

A spherical shell with p = \/p,? + p,? + p,? as radius and dp as thickness is

221



drawn. Each momentum state with momentum between p and p + dp lies in the
shell. Thus the fraction of states at momentum which have momentum values lying
in the interval p, and p, + dp,, p, and p, + dp,, p, and p, + dp, is given by the
ratio of the volume dp,dp,dp, to the volume of spherical shell of radius p and
thickness dp.

dp,dpyd
1.e., fraction of states in dpxdpydpz = %
Hence the number of states in the momentum interval dp,dp,dp, is obtained by
multiplying the above fraction by the total number interval dp at momentum p.
Thus

8w dpxdpydpz
Z(payp.)dpadnydp, = (55 ) pPdp = 20

= (=) dpxdpydp, (10.8.4)
Equation (10.8.4) gives the number of states per cubic metre with
momentum component in the x-direction lying between the values p, and
p. + dp, and, similarly, for p,, and p,.
Now number of electrons per unit volume having momentum values p, and
Py + dp, in the x — direction is given by:

2 dp,dp
NGdx = (o) dpe [ =
1+e

dp,dp
N(px)dx—(h3 dpy f f y—EZ‘F

py=—00 py=—00 1+e kBT
(10.8.5)

At 27°C (300 K), E — Er > kgT, hence 1 is neglected. We also know that
E= %(pxz +p,% +p.°)
The equation (10.8.5) becomes
Er_
N(p,)dx = (h3 dpx f f ksTekBpo dp,
Py

=—0p,=

Now we solve the equation on Right Hand Side
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2 T T (0202402 Ep
R.H.S.z(ﬁ)dpr Je 2mkpT  eksTdp,dp,

2

2 EF _px - —pz

— 00

The integrals have the standard form
co

f e~ dp, = |-
. a
Thus

Ep _px

2
N(py)dx = (h )e"BTezkapo J2mmkgT+/2nmkgT

drmkgT\ Er by’
N(px)dx = (T) ekeTe2mkeT dp,

Substituting the above value in equation (10.8.2), we have
(o]

e (4mtmkgT £ %
jz_(T) fe BTe2mksT p dp,
pxg

Now substituting the value of _szfl from the general equation (10.8.1), we have

e 47rkaTf Er —EF -9

j = - h3 ekBTekBT ekBdeqb
e~ (4mmkyT =
=) (TR | a0
¢
(4nemk3 TZ) ‘_‘11’"
j — enB
h3
4memkz* s .
J =73 —TekaT
=
j = AT?eksT (10.8.6)
This equation 1s commonly known as
Richardson — Dushman equation ,with A the emission coefficient. Thus
4memkp® 2
A =$= 1.20 x 10% amp m 2K 2
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Equation (10.8.6) indicates that the emission current is exponentially
dependent upon the work function, and inversely dependent upon the absolute

temperature; which means that the variation of emission with these quantities is

very rapid.
I _ pckar
TZ= Aeks
Now taking ‘log’ both side in above equation, we have
J_ ~2 (1)
log == logA - (10.8.7)

j b
logﬁ = logA — (f)
A plot of log # against 1/T is a straight line having slope (ki) and an intercept
B

to logA.

For Calcium A=60x10*amp m™2K 2 and for Cesium
A=162x10*amp m~2K 2.

When we compare the values of A with the value obtained theoretically from
equation (10.8.6), one finds greater discrepancy. This discrepancy is related to the
difficulties associated with experiment measurements. The theory does not assume
the use of any external field to remove the electrons from the emitter. But if we do
not use it, a space will be existing in the vicinity of the emitter, which intends to
decrease the current. Thus, in order to prevent the decrease of current, the use of an
electric field is a must. This field must be strong enough to remove all the electrons

as soon as they are emitted.

k
0

|-

Figure 10.8: Graph between 1/T and j/T?

However, the application of electric field changes the apparent work function; it

decreases with increasing external field strength. Therefore, it is suggested to
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measure j(7") for different electric fields and then extrapolated to get the correct
value. Because of thermal expansion, the work function (¢) itself is a function of

d
temperature. For metals d_(’ﬁ is of order of 10~*e V /K. Therefore, (P should not be

regarded as a constant, independent of temperature. The actual emission current is

strongly dependent upon the surface conditions. Contamination of the surface may

have a large effect on the value of (p and because of this; the exponential function

may greatly modify the thermionic effect.

10.9 Schottky Effect

Here we shall study model for the process thermionic emission including (a)

image force and (b) electric field.

An accelerating electric field is usually applied to the emitter, in order to
remove the emitted electrons from the vicinity of the surface, and to accelerate
them to the collector, where they constitute the thermionic current. This electric
field besides doing this, also lowers the height of the potential energy barrier at the
surface and hence increases the emission. This increase of emission and its

dependence on the external electric field is called the Schottky ef fect.

Now we consider the following model of the potential energy barrier near the
surface of the metal. The refinement is to add to the potential barrier the force on
an electron outside the metal surface. Any charge when placed near the surface of a
conductor experiences a force arising from the polarization of the conducting
material. For distances that are large compared with the interatomic distances, the
surface of the metal can be considered to be a plane perfect conductor for the
present problem. The force on the electron can thus be calculated by
'method of images' principle used in electrostatics problems. Now the force on
the electron is equivalent to that of an equal positive charge placed at an equal
distance behind the plane surface as the electron is in front. The force acting on the
electron can be expressed as

1 ,e\? 1 e
Finage = Grey (2) = ey a2
1xe?
16me,x?

Fimage =
The potential function for this force is
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X
e? 1
Vimage = 167'[60 f?dx

e2

Vimage = = 16meyx

The potential function is shown below in figure 10.9.

4]

40
=
4

Inside Cutside -

Wixl

Surface

Figure 10.9: Actual form of the potential barrier near the surface of the metal.
Under the influence of an external electric field E,, the potential

experienced by the charge is the sum of the image potential and applied potential.
The total potential is shown below in figure 10.10.

Insige ,
I Barrier wilh
e no tiela
= 3*' Polential energy
> &l due lo Meld

Barrier wilh field

Figure 10.10: The total potential at the surface of a metal including both
image forces and an external electric field.

The most important significance of this result is that the work function ¢, in the
field is less than that without the field. If the applied electric field is strong enough,
it is clearly possible for ¢.¢¢ to vanish completely. When this happens, the top of
the electron distribution is free to leave the metal without the necessity for

tunneling. This reduction in work function is known as the Schottky ef fect. The
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magnitude of the reduction in the work function for a given system is obtained by

following method:

The effective potential energy in the presence of the field is given by

2
V=—

e

— eEx (10.9.1)

16Teyx
Since the work function is the difference between the barrier height and the
position of the Fermi level, equation (10.9.1) represents the effective reduction in
the work function due to the applied field. The maximum value of V may be
obtained by differentiating the above equation with respect to x and putting

X Koy, 158

dv e?
dx 0= 16meg X ax =
o2
16mwegx2, .5 =&l
€ 3
l6me E  max

1
_ -1 (&)
X0 = Xmax. = \/16—JTEO(E) (10.9.2)

So now the equation (10.9.1) become

€2
Vnax, = ———— —eEx
max. 16n60xmax max.
o
Vmax. = ~¥max. [16Treox,2,mx T eE] (10:9.3)

Substituting the value of x,,,, from equation(10.9.2) in equation (10.9.3), we have

o e e? (161TEOE) Lo
max- o 16meyE | 16me, e ¢
e

v, = - ’ E+eE
max. 16TIEOE[e + eE]
Viar, = —2€E |—
max, = —4€ 16meyE
eE
Vinax. = —€ 41e, (10.9.4)
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That is, the energy needed to escape from the metal is reduced by an

amount V... . The effective work function is thus reduced from ¢ to ¢, zr
1

Pery =P = (;EEO)E

Now substituting this value in equation (10.8.6), we get the new formula for
thermionic emission as

. expl /]

(10.9.5)

-1}k T =1566 degk
| - 2

o
- 1=12919¢ L
e

.-"i_ --

1 1 1 1 |
0 1000 3000 5000

vVE

Figure 10.11: Schottky plots of the thermionic emission from uranium
carbide at three temperatures.

Now if we shall plot the graph between logj against VE, we get the
Schottky line.

A comparison with experimental results in figure 10.11. shows that above a
certain value of electric field the relationship is quite accurate. The effect is
(A4¢p = 0.012¢eV for a field of 10°Vm™1), but the effect on the emitted current
may be appreciable.

10.10 Field Emission

In the discussion of thermionic emission, we have assumed that the potential of an

electron jumps from zero inside a metal to (¢p + €) immediately outside the
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surface, as is shown in figure 10.12 A. The quantum mechanical reflection factor is
considerable for an abrupt barrier, even for electrons with energy larger than the
barrier height.

The potential barrier encountered by a departing electron should be more
gradual, as was first noted by Schottky. We might expect V(x) to increase linearly
with x at first; but when the electron is more than a few A beyond the surface it
should experience the attractive image force of a charge -e with respect to a

homogeneous conducting plane, to give a potential energy

2

V() = (¢ + €p) — (Z—x) (10.10.1)
The correct asymptotic behaviour for very small and very large x is given in the
form

V(x)=0,x<0

2
V(x) = —&X0 x>0 (10.10.2)
(¢+€F)+(E)

Which is illustrated in Figure 10.12 B. For an electron with an initial kinetic

energy slightly larger than((f) + € F)= the quantum-mechanical probability of
reflection is considerably smaller for a barrier represented by equation (10.10.2)

than for a step function barrier.

['ﬁ + &)

-
-

Electron Energy

= (1] i -

Distance Quiside Metal

Figure 10.12: Electron energy inside a metal and in a vacuum surrounding the
metal. The origin of energy is chosen as a state of rest inside the crystal.
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Suppose that an electric field in the x-direction is created in the vacuum outside
a heated metal crystal. This modifies the potential energy function to
eZ

Vi) = (¢ +er) — (Z) - exE (10.10.3)

For a locations more than a fewio\ outside the metal. A curve for the field-
modified potential energy is shown as figure 10.12 C. differentiating V(x) with
respect to x, we find that there is a maximum in the height of the potential barrier

at
1/2

e
Xmax = (E)
Viax = (¢ + €g) — (33E)1/2 (10.10.4)

Thus the presence of an external electric field produces a slight lowering of the
effective work function. This is the phenomenon of Field Emission, or Schottky
Emission. The lowering of the work function is small for fields of a few thousand
volt/cm, and then the potential maximum is out many angstrom units from the
crystal surface. Even a small reduction of work function makes thermionic

emission possible for many electrons which are insufficiently energetic at zero
field.

10.11 Failure of Free Electron Model

There are some satisfactory reasons for the failure of the free electron

model, which are given below:

(1) By the help of Sommerfeld’s quantum modification of free electron theory, we
obtained a relation between electrical and thermal conductivities, known
as Lorentz number L, but this expression is not satisfactory. This is due to the fact
that this theory does not include mean free path. In order to obtain the correct

values of conductivities, it is necessary to assume that the mean free path varies

inversely as T, and its value at ordinary temperatures is of the order of 100
interatomic distances. The existence of such a long mean free path cannot be

explained on the basis of classical theory.

(2)This model also suggests that the electrical conductivity is proportional to
electron  concentration. But it is surprising that the divalent

metals(Be, Cd and Zn), and even trivalent metals (Al In) are consistently low
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conductive than the monovalent metals. (Cu, Ag and Au), despite the fact that

former has higher concentration of electrons.

(3) A very important testimony against this model is the fact that some metals
exhibit positive Hall constants, for example, Be,Zn, Cd. The free electron model

always predicts a negative hall constant.

(4)From the measurement of the Fermi surface, we saw that it is nonspherical in
shape. This contradicts the model, which predicts a spherical Fermi surface. It is

also a reason for failure of model.

(5) This theory is incapable of explaining why some crystals have metallic

properties while other semiconductors and insulators.

(6)The most important feature of this theory is that it destroys the notion of
classical theory that all free electrons are conduction electrons. According to
Sommerfeld’s theory only few electrons, whose energies lie in the vicinity of
Fermi level, contribute to the mechanism of conduction and only those free

electrons are called conduction electrons.

10.12 Self Learning Exercise

Q.1 A copper wire of length 0.5 metre and diameter 0.3 mm has a resistance
0.122 at 20°C. If the thermal conductivity of copper at 20°C is
390 W m~tK~1, calculate Lorentz number. Compare this value with the
value predicted by classical free electron theory.

Q.2 The work function of tungsten 1s 4.5eV. Calculate the thermionic emission of a

filament 0.05 m long and 10~* metre diameter that is at a temperature of
2400 K. How much the current increase if a field of would107 volt/meter is
applied to the surface?

Q.3 If the electrical resistivity of aluminium at 20°C is 2.87 X 1078Qm, calculate
the electronic contribution of thermal conductivity of aluminium.

Q.4 Calculate the hall coefficient for sodium whose lattice constant is 0.428nm.

Q.5 If the Hall coefficient of silver is -8.4x10711m3/C, calculate the electron
concentration.

Q.6 Give the Brief theory of Field Emission.
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10.13 Summary

Basically in this unit, we study about the electrical and thermal properties of
metals, such as Hall Effect, Cyclotron frequency, Thermionic Emission, Schottky
effect and Thermal conductivity of metals. Very important topic of this unit is that

the expalnatory reasons which are responsible for failure of free electron model.
10.14 Glossary

Hall Effect: This effect arises when a current carrying metal/semiconductor is

subjected to a magnetic field. This effect sometimes also seems to contradict
completely the classical picture of conduction. If a sample conducting material is
placed in a uniform magnetic field and a current is passed along the length of the

conductor, this effect is known as Hall Effect.

Monovalent: These are defined as the atoms which having one valence electron.

Thermionic Emission: If we increase the temperature of any given metal, then it
became heated and electrons are emitted from its surface, then this whole
phenomenon is known as thermionic emission.

Thermionic Current: An accelerating clectric field is usually applied to the
emitter, in order to remove the emitted electrons from the vicinity of the surface,
and to accelerate them to the collector, where they constitute the thermionic

current.

10.15 Answers to Self Learning Exercise

Ans.1: We know that,
_ar B l B l
P=7 TTT%RT R

With [ = 0.5 meter,r = 0.15 X 10 3meter, r = 0.12Q

Thus,
o 0.5
T GrHR ~ 7(0.15 x 10-3)2 x 0.12
o =589 % 1070hm*m™?
2
Now, L =1L = E(k—B)

oT 2\e

Theoretical value of Lorentz number from classical theory is calculated as follows:
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=EI()

With ky =138 x 10723124 o = 1.6 x 1071 coulomb
kelvin

3] /1.38x10723) 2
Thus, L= "l|l———=

21\ 1.6x1071°
The experimental value of L is obtained as follows:

LI

With o7 = 390 Wm K~ !, 0 =5.89 x 1070hm™~'m™1,T = 293 kelvin

390
5.89x107x293
L=226x10"8 WQK~?

Thus, here we saw that the experimentally found value is twice the

Thus, L=

theoretically predicted classical value.

Ans.3: We know that 0 = %

With p=287x107"8%0m
1
So now g=———7
2.87x10~8

o=348x 1070hmIm™!
And we know that Lorentz number for Aluminium is

L=202%x10"8WaK—?

From the relation [ = —X
a(T)
or = Lo(T)

or =2.02x 1078 x 3.48 x 107 x 293
or = 2059 Wm ™K™' = 206Wm~1K~1
Ans.4: Na will have two atoms per unit cell.
a=0428 x 10"°m
Two atoms occupy volumea?®,

Hence, the number of atoms/m3 is
2 2
“ a3 (0428x1079)3

= 255% 10

233



As Na is monovalent each atom will contribute one free electron.
So, n = 255% 102

Now the Hall constant is:

1 1
RH = = e ™ TEE X105 x L6 X 10-19

Here the negative sign shows that the electrons are current carriers in the specimen.

—2.45 x 10719m3/C

Ans.5: We have for silver

. 3n d 3n
B 8ne anan = 8Rye
Now substituting the value of € and Ry, in above equation, we get
3 x3.14
A= =B8X 108 m3

" 8x—-84%10"11x 1.6 X 10-19

Ans.6: Here, we consider that the potential of an electron jumps from zero inside a
metal to (¢p + €r) immediately outside the surface, as is shown in figure 10.12 A.
The quantum mechanical reflection factor is considerable for an abrupt barrier,
even for electrons with energy larger than the barrier height.

The potential barrier encountered by a departing electron should be more
gradual, as was first noted by Schottky. We might expect V(x) to increase linearly
with x at first; but when the electron is more than a fewA’ beyond the surface it
should experience the attractive image force of a charge-e with respect to a

homogeneous conducting plane, to give a potential energy
e 2
V(x) = (¢ +ep) — (E)

The correct asymptotic behaviour for very small and very large X is given in the

form
V(x)=0,x<0
V(ix) = (p+ep)” sepkar )
(P +e€p) + (z_x)

Which is illustrated in Figure 10.12 B. For an electron with an initial kinetic
energy slightly larger than(¢ + €5), the quantum-mechanical probability of
reflection is considerably smaller for a barrier represented by equation (10.10.2)

than for a step function barrier.
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Figure 10.12: Electron energy inside a metal and in a vacuum surrounding the
metal. The origin of energy is chosen as a state of rest inside the crystal.

Suppose that an electric field in the x-direction is created in the vacuum outside a
heated metal crystal. This modifies the potential energy function to

Vix) = (¢ +€p) — (g) — exE

Curve for the field-modified potential energy is shown as figure 10.12 C.
differentiating V(x) with respect to x, we find that there is a maximum in the

height of the potential barrier at
1

€ \2
Xmax = ('4_E)
Viax = (¢ + €) — (e3E)Y/? (10.10.4)
Thus the presence of an external electric field produces a slight lowering of the
effective work function. This is the phenomenon of Field Emission, or Schottky
Emission. The lowering of the work function is small for fields of a few thousand
volt/cm, and the potential maximum is then many angstrom units out from the

crystal surface. Even a small reduction of work function makes thermionic

emission possible for many electrons which are insufficiently energetic at zero
field.
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10.16 Exercise

Q.1
Q.2

Q.3

Q4

Q.5

Q.6

Q.7

Q.8

Q.9

Q.10

Explain Wiedemann-Franz law.

Describe the Hall Effect? Give an elementary theory of Hall Effect. Mention
the important uses of Hall Effect.

Show that Hall coefficient is independent of the applied magnetic field and

is inversely proportional to the current density and electronic charge.

Mention Some of the applications of this effect.

Show that the Lorentz number obtained on the basis of quantum theory is

equal to (%2) [I—cf]z, where the symbols have their usual meaning. Compare
this value with one predicted by classical theory.

Discuss the phenomenon of thermionic emission in metals. Obtain
Richardson-Dushman equation for the emission of current density.

Derive an expression for thermal conductivity on the basis of classical
theory and obtained Wiedemann-Franz law.

The thermal conductivity of aluminium at 20 °C is 210 Wm K1,

Calculate the electrical resistivity of aluminium at this temperature. The

Lorentz number for aluminium is 2.02x1078,

Explain the reasons of failure of free electron model.

Verify Equation of cyclotron frequency and how the radius of orbit
described in real space is related to the electron energy.

A set of paramagnetic atoms has all electrons except one per atom in paired

states and this one 1s in an s-like state. What are the possible values for m;?

References and Suggested Readings

1. Solid State Physics by Neil W. Ashcroft and N. David Mermin

= 2

Introduction to Modern Solid State Physics by Yuri M. Galperin
Solid State Physics by R. J. Singh
Applied Solid State Physics by M. R. Srinivasan.
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UNIT-11
Energy Bands

Structure of the Unit
11.0 Objectives
11.1 Introduction
11.2  Formation of energy bands in crystals
(a) Free Atom Model
(b) Nearly free electron model
11.3  Bloch function and Bloch Theorem
11.4 Kroning Penney model
11.5 Wave equation of electron in a periodic potential
11.6  Number of orbitals in a band
11.7 Self Learning Exercise
11.8 Summary
11.9 Glossary
11.10 Answers to Self Learning Exercise
11.11 Exercise
11.12 Answers to Exercise

References and Suggested Readings

11.0 Objectives

The aim of this unit is to know about the formation of energy bands by free
atom model and by nearly free electron model. To study motion of an electron in a
periodic potential and to obtain Bloch function. Then to study the Bloch theorem
and its proof. Then to study Kronig Penney model to explain energy bands. To
study wave equation of electron in a periodic potential and calculate number of

orbitals in a band.
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11.1 Introduction

The free electron theory could successfully explain several properties of

metals such as thermal conductivity, electrical conductivity, specific heat and
paramagnetism, but this theory could not explain the distinction between
conductors, mnsulators and semiconductors. In order to understand this distinction,
more extended theory as band theory is to be studied now. We must extend the
free electron model to take account of the periodic lattice of the solid. The
possibility of a band gap is the most important new property that emerges from

band theory.

11.2 Formation of Energy Bands in Crystals

In connection with origin of bands, two extreme theories which come across are as
follows:

(1)Free Atom model and (2) Nearly free electron theory

First extreme model comes from atomic physics, in which electrons reside in
bound state in 1solated atoms and when these atoms came nearer to each other, then

due to mutual interaction between them, perturbs the initial atomic levels.

In second extreme model electrons are supposed to be completely free in crystal,
2

where potential is zero and Hamiltonian related to this is H = iy

2m
But in crystal there is periodic potential, which is produced due to mutual

interaction between electrons and lattice ions. So the motion of crystal cannot be

taken completely free. So Hamiltonian will change as
2

H=L 1y Classical (11.1)
2m
H= —;;Vz +V(r) Quantum Mechanical (11.2)
m

Here V(r) is periodic potential

Now here question arises that which extreme model is correct? Whether solid is
composed of free atoms or it is composed of free electrons and ions. Actually both
models are not complete. In solid we cannot assume the electrons totally free,
because electrons experience force with ions and similarly in solid we cannot

assume the atoms to be free, because they interact with each other. Now we discuss
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energy bands on the basis of both models, which can solve most of the problems of

solids.

11.2(a)Energy Bands from Isolated Atoms

We know that in an isolated atom, electrons are arranged in discrete energy
levels whose energy increases as they go away from nucleus. In atom these energy
levels are represented by horizontal straight lines. The gap between these lines
decreases as we go to higher energy levels. The energy levels of two identical
isolated atoms are shown in figure 11.1(a) and 11.1 (b) by identical energy levels.
When these two atoms are brought nearer to each other then interaction takes place
between these two, due to this each energy level of these atoms splits up into two
energy levels as shown in figure 11.1 (c). In mutual interaction between N atoms,
each energy level splits up into N sublevels. Since the number N is very large due
to this, subenergy levels are situated very closer to each other, So it is very difficult

to distinguish the sublevels .The group of these sublevels construct energy bands.
3s

2p

(a) (b) (c) (d)

Figurell.l:(a) and (b) , the energy levels of two identical isolated atoms which
are separated by a large distance. Fig (c) each energy level of these atoms splits
up into two energy levels when these atoms are brought nearer to each other. Fig
(d) In mutual interaction between N atoms, each energy level splits up into N
sublevels i.e. origin of energy bands.

Here this to be noted that as energy of electron increases, then the width of energy
band corresponding to that electron also increases, while opposite to this the
forbidden energy gap between two successive energy band decreases. The region

between two successive energy bands in which energy of electron is not allowed is
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known as forbidden energy gap .We know that electrons nearest to atomic nucleus
are tightly bound with nucleus , so energy levels corresponding to these electrons
are least effected in mutual interaction process. So the energy band of this electron
is of minimum width . This is shown in figure (11.2). It is clear from graph that
interaction between atoms takes place when the atoms are brought closer and as
this distance decreases bandwidth starts increasing, due to this forbidden energy
gap between two successive energy band decreases. When the distance between
atoms is equal to real intermolecular distance “a” of a solid then bands
corresponds to that crystal. It is also clear from figure that as electron energy

increases, bandwidth also increases, while forbidden energy gap decreases.

R L
E-——

Discrete
L Energy

IZ Levels

2s

Eg

Is

0 a r s

Figure (11.2): (Formation of energy bands in crystal having lattice constant “a”)

For example, we consider the origin of conduction band, valence band and

forbidden energy gap in silicon semiconductor.

We know that the electronic configuration of Si atom is 1s, 2s°, 2p°, 3s?, 3p2.
The energy levels of isolated atoms i.e. 1s, 2s, 2p, 3s and 3p contains 2,2,6, 2 and 2
electrons respectively while their capacity is 2,2,6,2 and 6 electrons respectively.
In a crystal of N atoms, when they interact, then degeneracy of s and p energy
levels, split in 2N and 6N subenergy levels. According to figure (11.3), when the

intermolecular distance between Si atoms is equal to b ( i.e. ¥=b) ,then 3s and 3p

energy bands overlap with each other. In this condition distinction between 3s and
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Figure (11.3): (origin of conduction and valence band in silicon crystal)

3p vanishes and total sub energy levels become 2N s-level+6N p-level=8N levels.
For these available electrons are 2N s-electronst+ 2N p-electrons=4Nstates. It is
clear that from available 8N energy levels only 4N are filled while remaining 4N
are unfilled. But at intermolecular distance of crystal i.e. r=a, these filled and
unfilled energy levels are separated by forbidden gap E,. The band corresponding
to filled energy levels, associated with outermost electrons is known as valence
band, while the band just above it which is perfectly empty is known as conduction
band. All the bands 1s, 2s and 2p below valence band are completely, filled.

11.2 (b) Nearly Free Electron Model

In nearly free electron concept, the motion of electrons in perfectly free from
binding forces. Hence electron is moving in constant potential field (Here V=0)
and its total energy E is purely Kinetic. This kinetic energy of electron is related
with wave vector of electron in the following way

. p_2 _ B212 _ h_z
2m  2m  2m

(k; +k, +k2) (11.3)

where kx  k yand k: are the x, y, and z components of k. If we draw dispersion

curve according to equation (11.3), then we shall get parabolic curve as shown in

figure (11.4).
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Figure (11.4): Variation of energy E(k) of free electron with & in the form of
parabolic curve

Energies of electron exist from O to o in approximate continuous form and there
is very small energy interval between them. But on boundary lines the energy

levels are discrete due to boundary condition.

It is clear from energy spectrum of free electron that this model is perfectly
unsuccessful in explaining origin of energy bands and energy gap in crystals. The
reason for this is that electron is not perfectly free in crystal and it is not moving in
constant potential field (here V=0), but electrons in crystal are supposed to move in
a region of periodically varying potential [V(x) =V(x+a)] where a is lattice
constant of ion cores of the crystal.

The motion of electron in periodic potential field, gives rise to phenomenon of
diffraction. Such electrons suffer diffraction in the same way as x-rays suffer
diffraction from crystals and obey Bragg’s law. Now, we will see that Bragg’s

reflection is responsible for the origin of energy bands and forbidden energy gap.

In figure (11.5) periodic arrangement of positive ions in crystal at intermolecular
distance, “a” is shown. According to Bragg’s law, an electron wave having
wavelength A incident on vertical plane YY' at an angle @ i.e. at glancing angle.
The necessary Bragg’s condition for diffraction, which should be obeyed by

electron wave, is given by
2asinf = nA (11.4)

wheren=1,2,3, .....
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Figure (11.5): (The reflection of electron of wavevector k on YV plane in
two-dimensional regular arrangement of positive ions)

For first order diffraction and normal incidence putting n=1 and #=x/2 in
equation (11.4) we shall get 2a = 4, and with this wave vector ,
)
L 2a a
or k=+rn/a (1131

k

Here + sign is for moving electron in positive and negative direction. It is clear

from this, that electron wave reflects at k =+x/a . Due to the presence of incident
T T
I—X —I—X

wave € “ and reflected wave e “ on these points, the resultant wave is obtained

by the superposition of these two waves, which is only standing wave but not

progressive wave. These can be two types of standing waves which can be formed

T T
I—X —i—X

from the two traveling wave € “ and e “

y=ed te @ = 2cos[ﬁj (11.6)
a
ifx —z'Ex
and yy=e? —e @ IZiSiH[EJ (11.7)
a

The charge density associated with these standing waves is given by p = |r//‘2 e,
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which gives the probability of finding the electrons at those points. So associated

charge density will be:
pr =elyn|* = decos? = (11.8)
a
£ :e|y/2’2 = 4esin® = (11.9)
a

while the charge density associated with progressive wave y = ¢™ of free electron

[ie. p= e|t;f|2 = e Jremains constant.
p=e‘w|2=e (11.10)
It 1s clear from equations (11.8) and (11.9) that distribution of electrons near to

positive ions due to standing wave is different from constant distribution of

electrons in progressive wave (i.e. free electrons). Due to this ,electron potential

changes.
" P o cos? =2 J;P ocsm2
gl-g = CE)&S[
U U/\ //\ f AN
-y
5 |
5 1
I ﬂ./\ NN

V(x) —) a

Figure (11.6):The change in charge density due to periodic potential field

produced by the regular arrangement of positive ions is plotted .
From above figure ,the charge density p, and p, corresponding to standing waves
W, and ¥, produced due to linear chain of positive ions in periodic potential

V(x) are shown by solid and dashed line curve, while the constant charge density

of progressive wave associated with free electrons, is shown by horizontal straight
line.

According to figure (11.6) the maximum value of p, is obtained at x=0, a,2a,.....
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which are the positions of positive ions. Hence the distribution of electrons is
maximum, over these positive ions. The potential decreases as negative charges

approach positive ions, hence the energy of electrons corresponding to standing

. . . a 3a Sa
wave y, decreases, while the value of p, is maximum atx=5,7,?, ..... So
electron charge distribution is available at more distance from positive ions, due to

this potential increases. So the energy of electrons corresponding to y, is more.

Hence, the energy difference E, between y, and y, is the main cause of
origin of forbidden energy gap E,. The dispersion curve between E(k) versus & of
free electron as shown in figure (11.4) is changed due to reflection of electron

T : T
wave at k=x—. {The reflection of electron wave at k=+— , changes the
a a

dispersion curve between E(k) and k of free electron as shown in figure (11.4)}

Due to this we observe discontinuity at k=+2 as shown in figure (11.7) . At
a

k =+~ we obtain forbidden energy field whose gap is E,.
a

E(l\ AN
& E(k: )

|
I
l
n
a

+ k »

Figure (11.7):[The change of energy of electron in periodic potential field gives

discontinuous energy interval E, |

The curve is perfectly parabolic in region between —7 /@ to 7z / @ and in this

region electron is free. This region is known as first Brillouin Zone. Mutual

: C . 2r | 3@ :
discontinuities are obtained at k=+—,+—,....... respectively.

a a

Hence the nearly free electron model describes band structure of solid crystal in
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which band electrons in crystal move in a region of periodically varying potential

due to the ion cores of the crystal.

11.3 Bloch Function and Bloch Theorem

The wave function w(x) for total energy E, in potential field V(x) is obtained from

the solution of one-dimensional Schrodinger’s wave equation as given below:

dzy/ 2m
—+—|E-V(x)|w=0 (11.11)
x> R [ ]W

For free electron V(x) =0 and the solution of equation (11.11), is one dimensional

plane wave as follows

p(x)=e" (11.12)

But in a real crystal having lattice constant a, the motion of electron completes in
one-dimensional periodic potential

V(x) = V(x+a) (11.13)
Statement of Bloch Theorem: The solution of Schrodinger’s equation (11.11) for
moving electron in a periodic potential field V(x) defined by equation (11.13) is a

+ikx

plane wave e ™, which is modified by periodic function U, (x) . So for periodic

function V(x) ,the solution of equation (11.11) is as follows.

Wiy =€ U (%) (11.14)
where Uy (x)=U,(x+a) (11.15)
The function W(x) given by equation (11.14) is known as Bloch function. From

this function w(x + a) = etk(xta) U, (x +a) =etika Fkxy  y)

w(x) (11.16)
Proof Bloch Theorem

or w(x+a)= g

Since Schrodinger’s equation (11.11) is differential equation of second
order, so it will have two real and independent solutions. Let f(x) and g(x) are two
real and independent solutions. So general solution will be the simple sum of these

solutions

w(x) = Af (x)+ Bg(x) (11.7)

where A and B are arbitrary constants. Since the potential is periodic i.e.

246



V(x)=V(x+a), therefore function f(x+a) and g(x+a) should also be solution of
equation (11.11) . So functions f(x+a) and g(x+a) can be expressed as the linear
addition of main solutions f(x) and g(x)

J(x+a)=a,f(x)+a,8(x) (11.18)
glx+a)=pif(x)+ frg(x) (11.19)

where @, , @,,p, and B, are real functions of energy E. Substituting equation
(11.19) in equation (11.18) we shall get:

w(x+a)=(Aa; +Bf) f(x)+(Aay + Bf)g(x) (11.20)
Let w(x+a)=0w(x) (11.21)
or y(x+a)=QAf(x)+ OBg(x) from equation (11.17), --- (11.22)
Now comparing equation (11.22) with (11.20), we shall get

Aa; +Bp, = 04 (11.23)(a)
and  Aa, +Bf, =0B (11.23)(b)

where Q is constant. Equation (11.23)(a) and (11.23)(b) will give non zero values

of A and B if the determinant of their coefficient vanishes 1.e.

(al —Q) By _
5] (»32 _Q)
or 0% —(aq + )0+ (o fy —ax 3,) =0 (11.24)

The quadratic equation of Q i.e. equation (11.24) will have two roots Q, and Q, .
The product of these two roots will be following

Q0, =(mf —ar ) (11.25)

In order to obtain the value of product O, O, ,we write Schrodinger’s equation i.e.
equation (11.11) for f(x) and g(x).

2 .

%Jri—’f[E—V(x)]f(x):o (11.26)
dzg(x) 2m

—d;z—-l—h—z[E—V(x)]g(x)zo (11.27)

Multiplying equation (11.16) by g(x) and equation (11.27) by f(x) and then
subtracting them we shall get
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=0

g(x)

2
ddf(v)_f( k(6

x

p [()df(") £ )Eg(x)}

e L L e — (11.28)
dx dx
The left hand side of equation (11.28) is called Wronskian, W(x). So
W(x) = gx) f(x)-fix)g'(x) (11.29)
Similarly W(x+a) =g(x +a)f(x+a)-f(x +a)g'(x+a) (11.30)

By the use of equation (11.18) and (11.19), W(x+a) will have the following value
W(x e a) = (alﬁz —azﬂl )W(x)
Since W(x+a)=W(x)

Putting the value from equation (11.31) in equation (11.25) we shall get
00, =1 (11.32)

From equation (11.21), two solution or two equations corresponding to O, and O,

will be obtained as follows.

vi(x+a) = Oy () (1133)
and  yy(x+a)= Oy, (v) (11.34)
Special Cases:

(i) For imaginary values of @, and O, ,there are two possibilities forQ, and O,

,as follow:
Q| =ei!\'a and Qg_ :e—ikﬂ SO Q — eit‘kﬂ

w(a) (11.35)

which is the solution of Schrodinger’s equation (11.11) as given by equation
(11.16)

From this y(x+a) ="'

(ii) For real values of @, and Q, ,there are also two possibilities for O, and Q, as

follows:

0, =e" and Q, = e ,but these values are not allowed in wave mechanics
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tua

because the wavefunctions obtained from these w(x+a)=e “y(x) or
w(x)= ei”xUk (x) are not bounded functions, since these functions become infinite

at +oo.

So the roots Q, =e™ and Q, =e ™ are allowed roots and roots Q, =e* and
0O, =e ™ are not allowed 1.e. forbidden roots. Hence allowed roots correspond to
allowed energy regions, while the forbidden (or disallowed) roots are associated
with forbidden energy region. Hence it is clear that energy spectrum of an electron

moving in a periodic potential in crystal consists of allowed and forbidden energy
bands.

11.4 Kroning Penney Model

Kroning and Penney illustrated the main characteristics of the behaviour of
electrons in one dimensional periodic potential region in this model in which the
period of periodic potential is assumed as (a+b) . This is shown in figure (11.8).

The periodic potential energy of valance electron is along x-direction.

N
V(x)
Vo V=0
I 11
U, U,
T -b 0] a X —

Figure (11.8): fone-dimensional Kroning Penney periodic potential with period

(a+b)]

It 1s assumed that the potential energy of an electron in a linear array of positive
nuclei has the form of a periodic array of square wells with period (atb). At the
bottom of the well i.e. for 0<x <a the electron is supposed to be in the vicinity of a
nucleus and the potential energy is zero, whereas outside the well i.e. —b<x<0 ,the

potential energy is V.

In periodic potential as shown in figure (11.8)
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Vix)=V,, -b<x<0 (i) and
V(ix)=0,0<x<a (i1) (11.36)

The Schrodinger’s equations for the above two regions are as follows

d’ !'Ul 2[E Vo]t//[—(), -b<x<0 (11.37)
dx?
2

and ‘”;2 2—’”""E W, =0, 0<x<a (11.38)
dx n?

Let the energy E of electron is less than V. Now taking two real quantities O and

B 1in these equations as follows

2 =2E ana g2 _@( Vo~ E) (11.39)

Then equations (11.37) and (11.38) will take the following form.

dd"’f By =0, —b<x<0 (11.40)
X
dz‘/fz 2
and ry +ay, =0, 0<x<a (11.41)
X

Since potential is periodic i.e. V(x) = V(x+a+b), where (a+b) is the period. Let the

solutions of these equations are in the form of Bloch function

w, =e"U,(x) and y, =e™U,(x).The second derivatives of these functions are

2
For Ist function M e d’ L¥L] +2ik— L) -
dx? dx? dx

2 2
Similarly for 2™ function L1 P 2l +2ik Lo R
dx? dx? dx

: d*y, d*v, . .
Now putting the values of y ,y,,— and ——= in equations (11.40) and
(11.41) we shall get
dzUl = dUl 2 2 _
ek —(ﬂ +£2)U; =0, ~b<x<0 (11.42)
2
and L2002 (22 k)u, =0, 0<x<a (11.43)
dx? dx

The Solution of these equations are

250



U, = AeP70% 4 e~ PR for _b<x<0 (11.44)
and U, =Ce"* ¥ L pe R for 0<x<a (11.45)
where A,B,C and D are constants. These constants can be determined by the
following boundary conditions i.c. wave function U and its derivative d—Uare

X
single valued and continuous.

Uylye0=Us| _, and Uy|,-p=U,| (11.46)
av,| _ du, du, _dU,
dx |y=0 dx |x=0 dx |y=—p dx |y=¢g

The first two conditions are imposed because of the requirement of continuity and

the other two conditions are required because of periodicity of U, (x) .Using these

boundary conditions in equations (11.44) and (11.45) ,we get

A+B=C+D (11.47)
A(p —ik)—B(p+ik) =Ci(a—k)— Di(a+k) (11.48)
Ao~ (PR | p(B+ik)b _ ~yila—k)a | py,=i(a+k)a (11.49)

A(B —ik)e P08 _ BB +ik)e PP = Ci(a—k)e' “ ™ — Di(a+k)e e (11.50)

These four equations have a non zero solution only if the determinant of the
coefficients A,B,C and D vanishes. On expanding the determinant and after

simplification, we get the following result:

2 .3
b ﬂa sinh b sin aa + cosh fbcos aa = cosk(a +b) (11.51)

2a

In order to obtain equation (11.51)in more simplified from, we put

B —a? =%(VO —2E) in equation (11.51) we shall get

m(V,—2E)

n*af

m(V,b—2Eb) ( sinh b
or
ha pb

In this expression, we apply ¥, =« and b — 0, but the product ¥ b has a finite

sinh fb sin aa + cosh fb cosaa =cosk(a +b)

J sin aa +cosh fb cosoa = cos k(a +b)

value, i.e. periodic potential barriers become delta function as shown in figure
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(11.9). So given model is modified in such a way that it represents a series of wells
separated by infinitely thin potential barrier of infinitely large potential. The value
V. b 1s known as barrier strength.

. Sinh b
From above conditions Lim,_, nh /

=1, and Cosh pb=1, Eb=0

From these values, the simple form of above expression will be as follows

= Z"b Sinaa +Cosaa = Cos ka
hito
or P24 | osaa = coska (11.52)
aa
where P= "’ng“ (11.53)
h

noa

Now if we plot a graph between (P Si +cos aa] i.e. the left hand side quantity

ada

of equation (11.52) and aa for the va!ueP:%n, we get the curve as shown in

figure (11.9).

in+2 Allowed Energy band
2 / \ /—Forbidden gap
+]

=

A N -l | NAL D
/

+]
-2n 2n o€« d—>

= N/ -1 \/ . -1

Figure (11.9):/Plot of curve, y = 3?7r Sinaa

+Cosaa and on axis of x, x=aa]
oa

In this along y axis ,we took the left hand side of equation (11.52) for P = 3?” and

along x-axis we have takenx = aa . So equation of plot will be

_ 3z Sinaa

— +Cosaa (11.54)
2 aa
Sinaa
As oa— 0, —1
oda
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So the maximum value of y will be y, ., =—+1=

3T (371’4—2
2

] at aa=0

While at aa =+t7,+27,43x,... the value of y comes out to be -1, +1,-1. Equation
(11.52) also gives the condition, which must be satisfied so that solutions of the
wave equation may exist. Since coska lies between +1 and -1, the left hand side of
equation (11.52) should take up only those values of aa for which its values lie
between +1 and -1. The values of dld satisfying the equation (11.52) are obtained
by drawing lines parallel to 0@ -axis at a distance coska from it and if ka is

continuously varied from 0 to 7T i.e. coska from +1 to -1, we obtain all possible
values of ka .These possible values of 0l are shown by thick lines. Here it is to
be noted that from equation (11.39), it is clear that o o E i.e. energy of electron,
therefore, the abscissa & is a measure of energy.

From the study of plot (11.9), we obtain the following important results:

1. The width of allowed energy bands (thick lines) increases as Old increases i.e.

as energy of electron E increases.

2. The interval between two successive energy bands i.e. forbidden energy regions
decreases as (ld increases or energy of electron E increases. So higher energy

bands come closer to each other.

3.The width of allowed energy bands decreases with increasing value of P(i.e. as
Vo increases or binding energy of the electron increases) and at critical boundary
1.e. whenP -« ie. V, - woie. height of periodic potential is larger, then the
allowed energy bands become infinitely narrow .Due to this band spectrum

converts into line spectrum. In this condition, the first term of equation (11.52)
Psinaa

becomes infinite. The value of first term should be finite at P — oo, for

aa
this it is necessary thatsinaa =0 but aa # 0. So the value of aa will be.

@l = NRA where n=1; 2, 3..ccommmmnssnss (11.55)
or a’a’=n’z* from equation (11.39) putting value of a’

%)
2 p ot =nta? Or E,=| Z |2 (11.56)
h 2ma

253



This energy equation, represents, the energy spectrum of those particles confined
into potential box of atomic dimensions, whose height is infinite and the
probability of crossing the box is negligible. In this condition energy spectrum is
linear. This case applies to crystal where the electrons are tightly bound with
their nuclei. In the limit P — 0(no barrier), the electron can be considered to be
moving freely througout the potential well. This case applies to crystals where

the electrons are almost free from their nuclei.

4. From equation (11.52), electron energy can be determined in the form of

function of k and the important results of this energy are shown in figure (11.10)
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Figure-11.10: /A graph between E(k) and k for P = 37”, same type of graph is
obtained in left side of E(k) |

In the graph E(k) versus k discontinuities occur at ka =, 2x,3x,......nwt ,where
N=1,2,3,.cssums .The k values corresponding to these values of ka, define

boundaries of 1%, 2", 3", etc. Brillouin Zones. The forbidden energy gap region

are formed in these boundaries.

From k=+4n/a to —x/a, there exits the first Brillouin Zone. The second Zone

. 2z . .
consists of two parts, one from +x/a to T in the right and second from -z /a
a

to 2 in the left. Similarly other Brillioun Zones can be defined. These Zone
da

boundaries represent the maximum energies that the electron can have without
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any discontinuity.

5.The total number of possible wavefunctions in any energy band is equal to the
number of unit cells N. But according to Pauli’s exclusion principle, each
wavefunction can occupy maximum two electrons only. So in any band, total

number of electrons will be double of number of unit cells 1.e.2N.

11.5 Wave Equation of Electron in a Periodic Potential

In the above part of this chapter, we have considered the approximation for the
solution of the Schrodinger equation that k=+x/a i.e. wave vector k is at a zone
boundary. Now we consider the wave equation for a general potential at general
value of k. Let U(x) denotes the potential energy of an electron in a linear lattice of
lattice constant a. As we have studied that the potential energy is invariant under a
crystal lattice translation: U(x)=U(x+a). We know that if any function is invariant
under a crystal lattice translation, that can be expanded as a Fourier series in terms
of reciprocal lattice vector G, so we can write the Fourier series for the potential

energy as:

Ux)=Y Uge'™ (11.57)
G

The values of the coefficients U, for actual crystal potentials tend to decrease

rapidly with increasing magnitude of G.

For the potential energy U(x) to be a real function:

Ux)= D Ug(e' ™ +e7™)=23 Ug Cos Gx (11.58)
G>0 G>0

For convenience we take U, =0

We know that the wave equation of an electron in crystal is Hy =&y, where H is
the Hamiltonian and & is the energy eigenvalue. The solutions w are called

eigenfunctions or orbitals. So explicitly, the wave equation can be written as:
1 1 iGx
[—pz +U(x)} w(x)= [—pz +Y Uge™® ]w(x) = ep(x) (11.59)
2m 2m G

Since equation (11.59) is written for one-electron approximation in which

wavefunction w(x) describes the motion of one electron in the potential of the ion

cores i.e. in a periodic potential and in the average potential of the other
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conduction electron. Now the wavefunction w(x) may be expressed as a Fourier
series summed over all values of wave vector (k) permitted by the boundary

conditions so that

w(x)=Y C(k)e™ (11.60)
k

: ; - 2 :
Where k is real, the various values of k is in the form % , for these values satisfy

the periodic boundary condition over the length L, here n 1s any integer, positive or
negative. We can label a wavefunction v that contains a Fourier component k as
w(k) or equally well as y(k+G), for if k enters the Fourier series then (k+G) also

enters. The wavevector (k+G) running over G are a very restricted subset of

27n . . .
wavevectorsT ,where G is any reciprocal lattice vector.

Now to solve the wave equation, put equation (11.60) in equation (11.50) to obtain

a set of linear algebraic equations for the Fourier coefficients. The kinetic energy

term is
2 ) 2
I -5 I .d h° dw(x) h ) .
— Py(x)=—| —ih— | y(x)=—— =— > k“C(k)e
2m v Zm( dx] v 2m  dx? ZmZ ()
and the potential energy term is :
[ZUGe’G-‘Jw(x) =2 Y Uge " Clhye™
G G k
The wave equation is obtained as the sum:
2
z;—kZC(k)e’Kx + 3 S UGC(R)EF D =y C(k)e™ (11.61)
e G &k k

So each Fourier component must have the same coefficient on both sides of the

equation. Thus

(4 —€)Clk)+ D UsCk—G)=0 (11.62)
G
where , = ’i: (11.63)

Now the equation (11.62) is a useful form of the wave equation in a periodic

lattice. The solutions of the wave equation in a periodic lattice are of the Bloch
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form wk(F)=e"E'F.Uk(F) , where U,(F) is invariant under a crystal lattice

translations. The k’s which appear in a Fourier series expansion

vy (r) = 3 C(k) exp(ik )
k

are all of the form (k+@G), where G runs over all reciprocal lattice vectors. There
are regions of energy for which no Bloch function solutions of the wave equations
exist. These energies form forbidden regions in which the wavefunctions are
damped in space and the values of the k’s are complex. The existence of insulators
is due to the existence of forbidden regions of energy. The energy bands may often

be approximated by one or two plane waves. For example
_ ikx i(k—G)x 1
wi (x)=C(k)e™ +C(k—-G)e near the zone boundary at 5 G.

The values of & enters into the conservation laws for collision processes of
electrons in crystals. For this region 7k is called the crystal momentum of the

electron.

11.6 Number of Orbitals in a Band

Let us consider a one dimensional crystal of N lattice points. If the distance
between two successive lattice points is a ,then the length of the crystal is L= Na.
In order to count states we apply periodic boundary conditions to the wave
functions (orbital) over the length L of the crystal. We find that the wave function
must be periodic in “L” .That is:

w(x)=w(x+L) (11.64)

The wave function according to Bloch theorem
w(x) =" Uy (x) and Wix+r) = Y (x+ L)

So €U ()= DU (x+1).
eilcrUk (x) = £+ U, ()

Since according to Bloch theorem U, (x) function is also periodic
SU=U(x+ L)

So eilor =er'k(x+l.)
=1=¢2™ where n=0,+1,42,43,...
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2mn kL
Sk=—or n=—
L 2

Thus the number of possible wavefunctions in the interval dk is

dn= (i) dk
2T

Hence total number of possible states in first Brillouin zone ( in a band).

wla
Zi j dk = £x2_7r = £ = N =Total number of unit cell.
T

n=jdn: 2r a a

—nla

Thus the total number of allowed k values in the first Brillouin zone is equal to N.
This shows that the total number of possible states or wavefunctions or orbitals in
an energy band is equal to the number of primitive unit cells N. Taking into
account two independent orientations of the electron spin and Pauli’s exclusion
principle, there are 2N independent orbitals in each energy band. If there is a single
atom of valence one in each primitive cell, the band can be half filled with
electrons. If each atom contributes two valence electrons to the band, the band can
be exactly filled.

11.7 Self Learning Exercise

Q.1 How energy Bands are formed?
Q.2 What is Bloch function?

Q.3 Explain the difference in E-k curve in case of free electron theory and band

theory.

11.8 Summary

In this unit we have studied that when a number of atoms are brought close
together to form a crystal, the atomic energy levels are split into bands. We find
that energy spectrum of the electron is comprised of a set of continuous bands
separated by regions of forbidden energy gap. The solutions of the wave equation
in the periodic lattice are of the Bloch form y (x) :e"k""U,((x) where U, (x)is
invariant under a crystal lattice translation. The potential of the electron within
lattice (potential well) is not constant but it will vary and is periodic. Kronig and
Penney model illustrates the behaviour of electron in a periodic potential by

assuming that the potential energy of an electron in a linear array of positive nuclei
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has the form of a periodic array of square wells. Then using Bloch function,
Kroning Penney Model was successful in explaining band structure of solids. Then
we have discussed wave equation of electron in a periodic potential and define
crystal momentum and concept of reciprocal lattice vector G. In the last we
calculated the number of orbitals in a band and it came out equal to 2N, where N is

the number of unit cells in the crystal.

11.9 Glossary

Bragg’s law: 2asinf = nA

Bloch’s Function: y/(x) = “*U, (x) where U, (x) =U, (x+a)

11.10 Answers to Self Learning Exercise

Ans.1: Energy bands are formed when a number of atoms are brought close

together to form a crystal, the atomic energy levels are split into bands.

Ans.2: The wavefunction of the type w(x)= e 7 ¢ (x) 1s called Bloch function.

The wave vector k gives the direction of Bloch wave.

11.11 Exercise

Section-A (Very short answer type questions)

Q.1 What is Valence band?

Q.2 What is forbidden energy gap?

Q.3 What is the basic assumption in the Kronig —Penny model?
Section-B (Short answer type questions)

Q.4 What are energy bands in Solids? What is its origin?

Q.5 Explain the significance of Bloch theorem.

Q.6 What are the properties of Bloch functions?

Q.7 What are Brillouin Zones?
Section-C (Long answer type questions)

Q.8 Explain the periodicity character of the potential in crystals. State and prove

Bloch theorem in this reference.
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Q.9 Discuss Kronig Penny model. Using the model show that the energy

spectrum of electron consists of a number of allowed energy bands
separated by forbidden regions.

Q.10 What is the significance of E-k curve? Explain the various schemes to
explain the E-k curve. Obtain an expression for the number of possible
wavefunctions (orbitals) in an energy band.

Q.11 Given the solution of Schrodinger equation for a one-dimensional periodic
lattice (with symbols having their usual meaning)

1
2mE

h2

Psinaa

) 2 ) )
+cosaa =coska with « —( ] .Discuss the formation of

aa

energy bands in a solid.
Q.12 Prove that the motion of an electron through the periodic potential of solid

gives rise to band structure using nearly free electron model.

11.12 Answers to Exercise

Ans.1: The Highest filled energy band, which includes electrons shared in covalent
bonds or electrons transferred in ionic bonds, is known as valence band.
Ans.2: The energy gap between the conduction band, and valence band is known

as forbidden energy gap and it is denoted by E,.
Ans.3: In this model it is assumed that the potential energy of an electron has the

form of a periodic array of square wells.
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12.0 Objectives

In this chapter we will discuss physical features of semiconductors such as band

gap, carrier concentration and impurity conductivity. This chapter explains the
direct and indirect absorption process in semiconductors. The chapter also deals

with concept of effective mass of electrons in the energy bands of solids.
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12.1 Introduction

The semiconductors are class of solids has resistivity in between those of metals

and insulators. Semiconductors are quite different from the metals, in metals there
are a large number of electrons available, responsible for thermal and electrical
conductivity. Metals show the positive temperature coefficient of resistance.
Meanwhile, the semiconductors and insulators are observed with negative
temperature coefficient of resistance. Though, the electrical resistivity of
semiconductor is found quite lower than the insulators at room temperature(at
300K). Quantum theory for a free electron gas was able to explain successfully
electrical and thermal properties of metals but the band theory for solids 1s further
required to explain the electrical properties of metals, insulators and
semiconductors. Band theory of solids accounts the periodic potential due to
periodically distributed ion cores throughout the crystal which gives rise the origin

of band gap.

The band gap is general term, represents a range of frequency which is not
allowed or particular allowed to pass through. In electronics, if a specific range of
frequency propagates through the electronic circuits, circuit named as band pass
filters. In materials, specifically, if a range of frequencies of elastic waves are not
allowed to propagate through the crystalline materials, it is still defined as band
gap, though related to vibrational frequencies of lattice. In regime of electrical
properties in metals, semiconductors and insulators, it is related to transition of

electrons and considered as energy band gap.

band g:
ind gap band gap

energy —————»
energy —————=
energy ————————»=

insulator semiconductor conductor

Figure 12.1: Band scheme for insulator, semiconductor and conductor
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As per band theory of solids, the semiconductors are differentiated from the metals
and insulators by its band gap energy. The band gap is considered as a forbidden
energy gap between the highest energy point of valance band (valance band edge)
and lowest energy point of conduction band (conduction band edge), where the
electron is not permissible to exist. The materials with band gap energy range
about 0 <€, <4 eV are considered as semiconductors[]]. Semiconductors also
defined with their four valence electrons available for bonding with neighboring
atoms. According to octet rule, to be more stabilized atom tries to have eight or
zero electrons in their valance shell. A semiconductor, as it has four valence
electrons, it has equal tendency to give up or accept an electron (although it
depends on size of element too). This special property of semiconductor allows it
to achieve p-type or n-type behavior. Available intrinsic semiconductors are
Silicon (Si) and Germanium (Ge), meanwhile there are several compound
semiconductors are invented to fulfill the various purposes in device fabrication
(solar cell, light emitting diodes, switches etc.) having two elements from different
groups known as compound semiconductors such as III-V (GaN, GaAs, InN etc.),
[I-VI (ZnO, ZnS, CdS etc.) and IV-IV (SiC).

12.2 Band Gap in Semiconductors

As it has been already described that the energy difference between the valance
band edge and conduction band edge is considered as band gap; in the
semiconductor at OK the conduction band is found empty. Only those electrons

which are available in conduction band and as well as the holes in valance band
can carry the current through the semiconductors and commonly known as charge

carriers. The generation of charge carriers in a semiconductor is possible by
various processes mainly as an electron in valance band interact with
other electrons, holes, photons, or the vibrating crystal lattice itself (thermally

generated phonons).For an intrinsic semiconductor the number of charge carriers
€

significantly controlled by k—gTu’ as much as this ratio will be lower, carrier
B

concentration will be high.

If a photon equal to band gap energy (Eg)incident on semiconductor, the
transition of electron from valance band to conduction band is possible either by
direct absorption process or indirect absorption process (figure 12.1). In a direct
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absorption process, the photon is absorbed by the crystal and one electron in
conduction band as well as one hole in the valance band are generated. In such a
process the valance band edge and conduction band edge are on same £ values and
such type of materials are commonly classified as direct band gap
semiconductors. Meanwhile, in an indirect absorption process the transition of
electron from valance band to conduction band is possible only by the involvement
of a phonon, it is because of that the both edges are widely separated in k-space
(k,).Since, in the energy range of interest, the wave vector of incident photon is
negligible (k = 0) ,s0 by keeping the conservation of momentum, a phonon with
energy h{) and wave vector g involves for such type of transition processes to be
occurred. The momentum and energy conservation equations for indirect
absorption process can be described as below
hk = hk, + hq =~ 0(momentum conservation)
hw = €, + hQ (energy conservation)

such type of semiconductors is counted as indirect band gap semiconductors. At
lower temperatures, the threshold energy required for this process is in actual
higher than the true band gap (hw > €,). However, at higher temperature, where
the phonons are already thermally excited, instead of phonon creation, it may be
possible a phonon is annihilated along with photon absorption.

Transition of electron from valance band to conduction band at threshold
energy takes place from edge to edge meanwhile, if higher energy is provided than
the threshold one, transition can occur between almost all points of the two bands

for which the wave vector and energy are conserved (figure 12.2).

E .
E
tlectrons
electrons
hQ)
3 ) 4 ‘ -
€g Energy gap €~ €g Energy gap <\ _~_~
holes holes
k
k k,
Direct bandgap semiconductors Indirect bandgap semiconductors

Figure 12.2: Direct and indirect band gap semiconductors
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However, the transition of electron from the conduction band to valance
band generally occurs from edge to edge. Electrons excited to the higher levels in
conduction band first lose their energy in form of phonon by interacting with
immobile ions and as soon as they arrived at the edge point of conduction point,
they jump to the edge point of valance band by emitting a photon and/or by
involvement of a phonon depends on the type of band gap (figure 12.3).

Figure 12.3: possible transition of electron through band gap:

(a) In an inter—band absorption process, photon absorption is
Jfollowed by electron—hole pair generation.

(b) This type of transition attributed to jump of charge carriers
from the continuum states in results of Electron—electron
scattering, electron—hole scattering, or phonon scattering can
result in this transition.

» (c) Direct inter—sub—band transition, such as inter—sub—band
relaxation or absorption, and usually corresponds to a
relatively small energy transition.

e Al gy (d) It is related to indirect intra sub band transition by involving of

\ a phonon. Phonon scattering is usually included in this

/’_\ category

! N\ > K (e) Edge to edge transition of electron by emitting a photon and/or
phonon (depend on type of band gap)

VAN

The band gap for various semiconductors are displayed in table 3.1.

Table 3.1: Energy band gap for various semiconductors [2]

S. | Semi- Band gap Type S. Semi- | Band gap Type
No/ condud 0K | 300K No. | condu ™5 T 300K

tor ctor
1. | Si 117 1.11 | Indirect | 9. SiC 3.0 - Indirect
2. | Ge 0.744 0.66 | Indirect | 10. | PbS 0.286 0.34- Direct

0.37

3. | InSb 0.23 0.17 | Direct | 11. | PbTe 0.190 0.29 Indirect
4. | InAs 0.43 0.36 | Direct | 12. | CdS 2.582 242 Direct
5. | InP 1.42 1.27 | Direct | 13. | CdSe | 1.840 1.74 Direct
6. | GaP 2.32 2.25 | Indirect | 14. | CdTe 1.607 1.44 Direct
7. | GaAs 1.52 1.43 | Direct | 15. | SnTe 0.3 0.18 Direct
8. | GaSb 0.81 0.68 | Direct | 16. | Cu,0 2.172 - Direct
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12.3 Equation of Motion of an Electron in an Energy Band

We can describe the equation of motion of an electron exist in the energy band or
more correctly under the periodic potential. Electron moving with velocity v can be
considered as a wave packet of group velocity v, and definitely:
dw

V=g = op
where (0 is angular frequency of the deBroglie waves associated with moving
electron and k is wave vector. If the energy of electron in the particular band is €
then we can write the velocity of electron

_ 1de |
" hdk M
For free electrons we know that the energy of electrons
hZ k2
€= 2
— 2)

In band theory velocity and € varies with & as given below:

3
€
3 }
z 0 z k
a a
b
v
L
. >
_x ) x k
a a

Figure 12.4: Variation in energy and velocity of electron with k in the first

Brillouin zone.

So, we can observe that the velocity of electron in a band will be zero at the top
and bottom of the energy band means at zonal boundaries of Brillouin zone (for
k= O,ig). Important conclusion is beyond the inflexion points (k = k) the
velocity decreases while energy is increasing, which is indicating that the electron

1s not completely free in a band.
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12.4 Effective Mass

A particle's effective mass (often denoted by m') is the mass that it seems to
possess by the particle when responding to the applied forces, or the mass that it
seems to have whenit grouped with other identical particles in a thermal
distribution.If the same magnitude of electric field is applied to both electrons, one
in the vacuum and other one inside the crystal, the electrons will accelerate at a
different rate from each other due to the existence of different potentials inside the
crystal. So, the electron inside the crystal will behave as a particle having a
different mass than that of the electron in vacuum. This altered mass is called as an
effective-mass. The use of effective mass is an approach that simplifies the
understanding of band structures by constructing an analogy to the behavior of a
free particle with that mass.

Let’s consider that if electric field E is applied on the motion of an electron
present in the Brillouin zone, if v is the velocity of electron then the increment in

the energy of the electron in the time interval dt will be
de = evdt
Using the value of velocity of electron in a band from equation (1)

eE de

de =?ﬁ dt

So we can obtain
dk eE
dt  h
dk
Or h— =eE
dt
d(hk)
dt
So hk represents the crystal momentum (often denoted by G). this

=F 3)

equation is analogues to Newton’s second law for electron in a periodic potential.
Here,for an electron inside the crystal, force F is regarded as the total force on

electron which includes the electrostatic force applied by lattice (F, ) and external

latt

applied electric force (F_).
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d(hk)
at
Furthermore, the acceleration of electron can be given by

dv 1d%edk

4= 3t T hdkZde

1d%¢ eE
a s p— ) S—

~ hdk? h

eE d%e

a=—=—

h2 dk?2
. eE

or = /= (5)

h2
aZe
dic?

We know that the acceleration of a free electron with mass m moving under

Fiaet + Fex 4)

electrostatic force eE is given by
q= .
= — (6)

So, comparing both of the equations (6) and (7), we can obtain the expression for

effective mass of electron in a lattice

* h?
m' = —= (7)
)

(dze
dk?
This equation showing that effective mass of an electron moving in a periodic

potential is not a constant, it is estimated from dispersion curve (e — k diagram). If
3

the slope of slope of curve e is higher ,then it is corresponding to lighter mass
and if the slope is lower, it indicates larger mass (explained in figurel12.5 ).

A Energy
Small mass

Graph 2

Grahl/v Larger mass

» Kk

Figure 12.5: Relation between mass and curvature of the energy band.
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A factor which is the ratio of mass of electron in vacuum to in a periodic potential

can be introduced

fk:%:é_ée) ®)

If the value of this factor is one, it indicates that the electron is a free . Moreover, if
it is greater than one means a heavy particle and influenced by periodic potential
and if it is less than unity which means that effective mass (m*) is less than the real

mass (m).

—p _—
Fex F;gx

Figure 12.6: Electron spatial distribution (4) fi, < 1, (B) fx > 1/3].

If we applied an external electric field on crystal (F,, = eE) and we study the

behavior of particle we can readily express from equation (6)

ext

eE
a= —
m
ek
or ma=m-—
m
ma = fiFoy 9)

From equation (4) and (9)
fie = (10)

So we can see if the potential by lattice (Fj,;;) 1s zero then f, = 1, hence electron

Fex+Flatr

Fex

will behave as a free particle.

Furthermore, if we plot the effective mass with wave vector k& in a Brillouin
zone, as shown figure 12.7
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Figure 12.7: Variation of effective mass with wave vector k.

The upper half of this plot is indicates positive effective mass in the energy band

while the lower half corresponds to negative effective mass. In regime of a

parabolic € — Kk curve, the electron can be treated as free particle and the energy
of free particle is given by(from eq. 2)
1 k?

€ =
h2m
we can observe that energy is function of K

€ o k?
4 Free electron
| € ‘."A/ approximation %
\“ 'J"
‘\‘ J Conduction
N £ — band

:k h.k

Figure 12.8: Electrons in conduction band with positive effective mass

For a particle exists anywhere in the conduction band

(e —€.) «x k?

(e - EC) = C.l'k2
So we can obtain

d%e

T

Here,'C,” and C,are any constants. So from equation (7) the effective mass of
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electron in conduction band can be given by
hZ
G

Since (e — €.) > 0, so surely C; > 0 and in results

*

Me

m, >0
The electrons in conduction band have positive effective mass and are treated as
heavier particles, and would like to stay at the bottom of conduction band.
Furthermore, for valance band where we have the energy of electron

(e, — €) = C3k?

Since (e, — €) > 0, so surely C; > 0 and we can deduce

By using equation (7) the effective mass of electron in valance band can be given
by

2
my = _C_4
Since C, will be also a positive quantity
my, <0

The electrons in valance band have negative effective mass and behave as lighter
particles known as holes, these holes would like to stay at the top of the valance
band.

Holes
(lighter particles since mj, < 0)

Valance . -----

/ band \

\ Free particle
\ approximation

> k > k

Figure 12.9: Electrons in valance band with negative effective mass (holes).
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00K E;=142¢eV

X-valley Er=1T1e¥
\ Ex =190eV
L.yuuy Eo =034 eV

Ex \. Very high group
velocity of electron

<ug> | <TIS pen

o % Wave vector
|
Es | Heavy holes
Light holes
Split-off band

Figure 12.10: Band structure of GaAs in <100> and <I11> direction [4].

In the given example of GaAs band structures, which is a direct band gap
semiconductor, we can observe that at the bottom point of conduction band where
the slope of curve is zero, electron possesses zero group velocity. At the edge of
conduction band, the electron behaves like a heavy mass particle (as indicated in
figure 12.10). Similarly, in this potential well of conduction band, where the slope
is very high (as indicated in figure 12.10), corresponds to high group velocity, with
electron having light effective mass. In a GaAs crystal at such position (indicated
in figure 12.10) have effective mass around
m, = 0.06 m

Here m is mass of free electron (electron in vacuum). Similarly, for the holes in the
valance band, for the example of GaAs, we can see that they have higher effective
mass for the band where slope is lower and are lighter for the band having high

slope in € — k diagram.

12.5 Self Learning Exercises-I

Q.1 What are direct and indirect band gap semiconductors ?
Q.2 If'the energy-wavenumber relationship for an electron in some material is
hZ
= cos(k)

Determine the group velocity.

272



Q.3 Plot the variation of energy and group velocity of an electron with £, in first

Brillouin zone.

Q.4 Plot the €-k diagram for masses m, and m, (where m > m,)

Q.5 Give the name of direct and indirect energy band gap materials.

12.6 Intrinsic Carrier Concentration

The Intrinsic charge carrier concentration is simply means the number of electrons
in the conduction band and the number of holes in the valance band in per unit
volume which is available in form of free electrons and holes at a given
temperature. It can be obtained by mathematical multiplication of the available

states (of course in per unit volume, the volume which is actual available for free
charge carriers) that can be occupied by the electron of energy € (so called density

of states) and the probability to occupy that energy level (€) by the electron at
given temperature T. This probability for electrons and holes (fermions) is

determined by the Fermi-Dirac statistics (f, for electrons and f, for holes).

So the electron concentration in whole conduction bandrange at temperature T

n = [y {De(e) X f, ()}de (11)
Similarly, the hole concentration in whole valance band range at temperature T
Ey
p=[_.{Dn(e) X fr (€)}de (12)

Here, D, density of states for electrons in conduction band and D, density of states

for holes in valance band.

(A)To find out density of states for electrons and holes (D, and D,):

The density of states is calculated simply for parabolic band edges. Electrons in
conduction band are located in the states at the edge and rest of the band remains
empty. So, such electrons can be treated as a free charge carrier with effective
mass m, and hence, the total energy of electron is the kinetic energy

p2
- 2Zm;}

€k

Here P is the momentum in the energy band. To calculate the states available for

the electron of energy E, quantum mechanically, taking in account the wave nature

(with wavelength A) of particle, the momentum of electron can be given by
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For calculation in the momentum space, introducing the wave vector which is

defined by k& = 2M/A, energy of electron can be obtained (in free particle
approximation the kinetic energy of electron will be total energy, as energy curve
is parabolic)

h2k?
= 2m;
If the component of k along the axis X, Y and Z are k,, k, and k_ then

€ = €

2m,
KP+kj+ki=—7¢€

me
€,
h2

This equation is analogues to the equation for a sphere having the radius

indicating that in momentum space, a constant energy (€) surface is spherical in

shape, known as fermi surfaces. The volume of this fermi surface sphere will be
3
4 2m;

37| e

€

On the other hand, if we consider a rectangular parallelepiped having sides L, L,

and L, the wavelengths which a free electron can have in X, Y and Z directions are
L L L . : o

A, = n—:, Ay = éand A, = Tl_z respectively (n,, n, and n, are integers, indicating

number of states). If we change the integers by unity (which is corresponding to

one quantum state) then by using the relation & = 277/4
8m3
AkxAkyAkz = m
In momentum space it is related to volume of one quantum. L,L,L, =V can be

taken as the volume of assumed parallelepiped. Hence, the volume of one quantum

3
state is
v

The number of states upto energy € can be obtained by dividing the total occupied
volume of all quantum states upto energy € with the volume of one quantum state.
So, the number of states for an electron having energy upto €

4 ( [2m; )

37 \\h? €

83

v
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As each quantum state can have two electrons with opposite spin, so total number

of states per unit volume (V = 1) which can be occupied by electron having energy

up to € will be

3
4 2m;}
N=2
% 873
3
_ 1 2m} 3/2
32\ |nz | €

Hence, the total possible number of states in a unit volume available for electrons

those having energy in the range of € to € + de will be

1 /2m, 323

— 1/2
dN_37t2( h® ) z° e
So, the total possible number of states per unit energy range in a unit volume

available for electrons having energy in proximity €, is so called density of states

%, 3/2

i & (ZmE) e1/2
de 2m?\ h?

According to Shockley as the conduction band starts from its edge of lowest

energy level €. and below this level there is forbidden energy gap where the
electrons cannot exist. So, density of states in conduction band for electron having

energy level €
3
1 [/2mg

Do(e) = 5 (222Y (e — €. (13)

212

Similarly, density of states for holes having energy € in valance band can be given
by

i 3/2
Dp(e) = — (532) " (e, — V2 (14)

22 \ h?
Here, m}’; is effective mass of hole in valance band and €, is highest energy level
for holes at the edge of valance band and above it the free hole cannot exist.

(B) To find out the probability to have energy level € for temperature T (f,
and f,):

The probability that an electron can have energy € at temperature T is given by

Fermi-Dirac distribution function
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fe (&) = —e—immat F1
Here, k, is Boltzmann constant and |l is chemical potential. In semiconductor
physics the more popular term is fermi energy (¢;) instead of chemical potential

(W). At the temperature of interest (around room temperature), it can be assumed

(approximation valid if f, (¢) < 1) for the conduction band of a semiconductor
crystal that (€ — €¢) >>kpT (approximation valid if f, (€) « 1). Hence,
AR (15)
(using term € instead of [1)
The probability that a hole can have energy € in valance band at temperature T is

given by
fnle)=1-f.(e)

(since the absence of electron is a hole)
1

E(E—Ef)/kg'r 1

fnle)=1-

fh(e) = e(ff*'f)/kBT +1
With the similar approximation {(€f — €) >>kpT } we can obtain
fr (€) = elcep/kaT (16)

(C)Equilibrium carrier concentration

The electron concentration in whole conduction band range at temperature T
n=| Du©xf(©)e
€c

3
Ef—E

fm L (Zm;)i( )%x BT S d
n= i E—E€ e’"B =
o 2\ h2 c

3
4 (_Zm;)z ;—frfm{ 3 ‘ﬁ}d
= B - B
n 2z \ T2 e 5 (e —€.)2e €
Integration gives the result

3 ef—ec

mekgT\2

Similarly, the equilibrium concentration for the holes
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3
2

Ev th B
p= f 21{2 ) (e, —€)2x eksT »de
E’. E'U_Ef
mypkgT
Solving it, p= 2( ijth"; ) e kBT (18)

Multiplying the electron carrier concentration and hole carrier concentration, we

can obtain
3 3 _Ec—€Ey

k T * *\5
np = 4(2 hz) (mimy)z x e ksT

If the band gap energy of given semiconductor is €g defined as €g =€ — €y
(as shown 1n figure 12.11),
3 3 €g
= 4 (2L (mim:)z x e kBT 19
np =4(2) (mim;)z xe (19)
This relation holds for both intrinsic semiconductor and as well as for impurity

ionization of semiconductor material, the only assumption is taken that the fermi
energy level is far better from the edge of both bands in comparison with k,7. It
can be observed that it does not involve fermi energy and a constant term for a
given temperature, most commonly known as mass action law.

np = n? (20)
Here n, is carrier concentration of electrons for intrinsic semiconductor and
obviously for intrinsic semiconductor

ny =p;

Hence, n; =p; = /np
3

kgT 55
=p; =2 (2 hz) (memh)4 X e 2ksT
as for intrinsic semiconductor at any given temperature T we have
n =pi
using from eq. (17) and eq. (18)
3 3
i o e D mykpT\2 S—5f
2mh? 2mh?
3
5 my\2 a9
ekBT — 2 h ekBT
me
o _f 3 i)
which gives €5 = - + X kgTIn (m;) (21)
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As the effective mass of hole little bit higher than the effective mass of electron
(Imy,| > [m;[), in an intrinsic semiconductor, the fermi level will shift slightly
towards conduction band with temperature. In practice if m; = m;, the fermi
level, we can say, will lie exactly in the middle of forbidden energy gap of an
intrinsic semiconductor.

12.7 Impurity Conductivity

Conductivity of semiconductor materials can be interpreted in terms of mobility
and carrier concentration of charge carriers. Obviously, the electrical conductivity
of a semiconductor is the sum of contributions from electrons as well as holes and
given by:

0 = nel, + pepy,
Here, Ugand Uy are the mobility of electrons and holes in semiconductor material
respectively. Mobility of a charge carrier can be defined as the magnitude of the

drift velocity of a charge carrier per unit electric field (E)[2]. Hence,
vl

E
As the drift velocity of a charged particle with charge g in the electric field E is

defined as
qtE
v=—
m
where m is the mass of charged particle and T is the collision time. Hence, the

mobility of electron and hole in a semiconductor material can be defined as

eTe d etp
= ! an =
l"e mz uh. m;;

As the mobility depends on collision time and effective mass, further the effective
mass of a hole is higher than electron in a given semiconductor material, so the
mobility of holes is comparatively less than the mobility of electrons. Furthermore,
with temperature the collision time will be reduced and it will affect the mobility.
However, the temperature dependence conductivity is dominated by carrier
concentration instead of mobility.

Beyond the mobility, the other factor which is responsible to affect the

conductivity of a semiconductor is the carrier concentration (n and p). The carrier

concentration for an intrinsic semiconductor has already been described, which
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significantly depends upon the temperature of surrounding (T) and band gap (€ g)-
Moreover, the carrier concentration significantly affected by the defects present in
a semiconductor crystal. Crystal defects are broadly divided in two categories as
line and point defects. Any kind of imperfection in the crystal expressively affects
the electrical and optical properties of the crystal. Sometime, point defects are
intentionally created in a semiconductor material to achieve desire level of
electrical and optical properties; for example, at normal room temperature
conductivity of an intrinsic semiconductor is noticed very poor, to enhance the
conductivity for the purpose of device fabrication, foreign impurity atoms (other
than the constituent elements of the crystal) are inserted in the semiconductor
crystal. Intentionally addition of impurities to a semiconductor is known as
doping|[2].

In the crystal of silicon where each atom is attached by its four neighbors
connected by four covalent bonds having the electrical conductivity ~ 10°ohm-cm
at 300 K. If an impurity atom with five valance electrons (P, As or Sb) doped in the
silicon, there will be one electron extra after sharing its four electrons with nearby
silicon atoms. This extra electron can be released by impurity atom after having
sufficient amount of ionization energy and this electron contributes in the charge
carrier concentration of semiconductor, obviously in electron concentration. In
results, the conductivity significantly enhanced. Foreign element that can release
an electron are known as donor.

Conduction band

''''' o & @@ - Donorlevel

N \\\\\\\:\\\\ \\\\\\: Valence band

Figure 12.12: Band energy diagram of semiconductor with donor impurity[5].

These elements require less energy in comparison to the band gap energy (Eg) to
give up the electron and can be represented by a different energy level in the
energy band diagram of semiconductor called donor level (€;).
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Similarly, if an impurity atom with three valance electrons (B, Al, Ga and In)
added in silicon, this trivalent impurity atom will share it’s all three electrons to
nearby four silicon atoms. By sharing all three electrons by impurity atom, there
will be lack of one electron to complete the octet of valance shell. This scarcity of
one electron leaves behind a hole. Such impurities are known as acceptors and
always eager to accept an electron to complete the covalent bond with nearby
atoms. As the acceptor impurity accepts the electron it gets ionized. These
impurities create own energy level in band gap near to the valance band as shown

in the energy diagram of a semiconductor with acceptor impurities.

e e

------- Q----e=-O-------0------- O~ Acceptor

alenis N \\w level
band &k \ \\\\

Figure 12.13: Band energy diagram of semiconductor with acceptor impurity [5].

12.8 Illustrative Examples

Example 1. Show that the period of Bloch oscillation for a one-dimensional crystal

: : ; 5 h
having lattice period a is T = —
eEa

dk
Sol. h— = —Ee
dt

and assume that 7/2 is the time required for the electron to accelerate across the

full Brillouin zone. Then,
T/2 dk T/2
ﬁf —dt = f Eedt
o dt 0
T T
nk (E) — k(0)| = Ee

hE—O]=Ee%
hnr_ T h

—_— - oT=—

2ma 2 eEa
Example 2. What is the occupation probability of an electron at energy level 3k T
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above the fermi level?

Sol. Occupation probability of an electron at energy level E is given by

1
_ H —€r = 3koT
fe 1+ exp (e — € /kgT) B B
1
f(BkpT) = 1+ exp (3kgT/kgT)
1
f(3ksT) =

T+exp(3) 1+20.09
= 0474 = 4.74%

12.9 Self Learning Exercise-11

Q.1 What do you mean doping of a semiconductor?

Q.2 Calculate the thermal equilibrium concentration of holes in silicon at 400 K.
Given: ¢ — €,=0.27e¢V ,N=1.04x 10" em™

Q.3 Plot the Fermi occupation function at temperature T=0K, T=T, and T=T,> T,

Q.4 What do you mean by curvature of the € — k diagram?

Q.5 Draw the € — k diagram for direct and indirect band gap semiconductors.

12.10 Summary

The semiconductors are class of solids has resistivity in between those of metals
and insulators. Semiconductors can be differentiated from metals and insulator by
band gap energy. The band gap for electronic transitions is considered as a
forbidden energy gap between the highest energy point of valance band (valance
band edge) and lowest energy point of conduction band (conduction band edge),
where the electron is not permissible to exist. In well-established regime the

materials with band gap energy 0 < e, < 4 eV are considered as semiconductors.

In a direct absorption process, the photon is absorbed by the crystal and one
electron as well as one hole generated. In such a process the valance band edge and

conduction band edge are on same value ofk and such type of materials are

Commonly classified as direct band gap semiconductors. Meanwhile, in an
indirect absorption process the transition of electron from valance band to

conduction band is possible only by the involvement of a phonon. The variation in
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the energy of electron with its momentum are plotted as € -k diagram.
A particle's effective mass (often denoted by m’) is the mass that it seems

to possess by the particle when responding to the applied forces, or the mass that it
seems to have whenit grouped with other identical particles in a thermal
distribution. The group velocity and the mass of electron are decided by the slope

of these curve.

Intrinsic semiconductors have poor conductivity at room temperature, to
control the conductivity, to achieve n-type and p type characteristics we doped the

impurity elements.

12.11 Glossary

Collision time: relaxation time between two collisions.

Line defects: Line defects, or dislocations, are lines along which whole rows of
atoms in a solid are arranged anomalously. The resulting irregularity in spacing is
most severe along a line called the line of dislocation.

Point defects: Point defects are where an atom is missing or is in an irregular place

in the lattice structure. Point defects include self-interstitial atoms, interstitial

impurity atoms, substitutional atoms and vacancies.

12.12 Answers to Self Learning Exercises

Answers to Self-Learning Exercise 1
Ans.1: Semiconductors in which there is direct transition of electrons from

conduction band to valance band called as direct band gap semiconductors

and those involve a phonon for such transition known as indirect band gap

semiconductors.
1dE 1 k% ho .
Ans.2: =-— = —-—-yin(k) = ——sin(k
g hdk h2m ( ) 2m ( )

Ans.3: Sce figure 12.4.
Ans.4: see figure 12.5.
Ans.5: Direct energy band gap: GaAs and Indirect energy band gap: Si

Answers to Self-Learning Exercise 11

Ans.1: The deliberate addition of impurities like Al, B, As to a semiconductor like
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Ge, Si, is called doping.

Ans.2: N.=1.04 x 10"°(400/300)"* =1.6 x 10" "cm”

k,T=0.0259(400/300)= 0.03453 ¢V

Hole concentration

Ans.3:

_(EF - Ev)
p = Nyexp i
= 1.6 x 10 [ —0.27
p== “*P 17003453
p =643 x10%®cm™3
1.4
12
T T T=0K
Lo WL; \
" SN
0.6 N
\
0z \
0z \
\ e
| N T
oo 02 U4 6 0.8 L0 12
Energy (E)

Ans.4: The curvature of E-k diagram provides information about group velocity

and effective mass of an electron or a hole.

Ans.5: See figure 12.2

12.13 Exercise
Q.1 s it possible to enhance the conductivity of a semiconductor by a laser?
Q.2 In As has donor energy E, = 0.23 eV, dielectric constant € = 18 and electron
effective mass m* = 0.015 m. Then calculate donor ionization energy.
Q.3 Calculate the ground state radius of electron for InAs.
Q.4 In a semiconductor, there are 10" donors/cm’ of ionization energy ImeV

and an effective mass 0.01 m. Then calculate the concentration of electrons
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at4 K.

Q.5 What will be the wave-vector of a hole if an electron is missing from the

state of wave-vector k_?

Q.6 What is the effective mass of the electron in energy band

€x = —a — 6y + yk?a??

12.14 Answers to Exercise

Ans.1: Yes, if the energy of incident photon more than the band gap.

Ans.2: E._=(13.6 ¢V)(m*/m £)=0.63meV

jon

Ans.3: r =aye (1*)

m
ay =053 x1071%n
=6 x 10° cm

Ans.4: n = (ngN,)/?eFa/2ksT

m*kgT\>/?
Ty = (ﬁ) ~ 4 x10B3em™3

Fa_ 1.45 ; and ¢'*=0.23, n=0.46 x 10" electrons cm”

2kpT
Ans.5: k=-k

h2 h2
Ans.6: Effective mass m”™ = —
d2ep/dk? 2ya?
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13.0 Objectives

The measurement of Fermi surface is very useful in metal physics. Shape of the

Fermi surface gives information about electronic band structure. Therefore, in this
section we will study the band structure calculation and experimental measurement

of Fermi surface.

13.2 Introduction to Fermi Surfaces and Metals

The Fermi surface is defined by constant energy surface in k-space at absolute zero
temperature. It separates the filled orbitals from unfilled orbitals. The electrical
conductivity of metals is determined by population of the electrons around Fermi
level or changes in the occupancy of states of the Fermi surface. Therefore, the
volume and shape of the Fermi surface give the electrical properties of the metal.
The free electron Fermi surfaces in k-space is given by spheres of radii k. The
radius depends on concentration of the valence electrons. The free electron Fermi

surfaces in k-space is constructed by the reduced and the periodic zone schemes.

13.3 Reduced Zone Scheme

Consider a Bloch function II)kf (r) = eik’.ruk, (r) having &' outside the first
zone [Figure 1]. But it is always possible to choose a wavevector & for a Bloch
function which lies within the first Brillouin zone. This procedure called as a
mapping of the bands in the reduced zone scheme.

We can obtain a wave vector k, which is lies within the first Brillouin zone by
choosing suitable reciprocal lattice vector G or k=k"+ G [Figure 1] [1]. Then

Bloch function
0
Y (r) = etk Ty ()

= e""(e T up (1) (M
= ek (r)
e (1) = Py (1) (2)

—iG.r iGr

where Uy (1) = € U/ (). Because €~ and Uy (T)are periodic
function of crystal lattice, therefore uk(‘r) is also a periodic function

and l/) k (T) is a Bloch function.
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Figure 1: First Brillouin zone for a lattice of side a. The wave vector k' mapped

into the first zone with suitable reciprocal lattice vector G or k=k' + G[1].
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Figure 2 :E-k diagram for free electrons in the reduced zone scheme [1].
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Because any energy €/ corresponding to k" which is outside the first zone have
equal energy €} in the first zone with k = k' + G. Therefore, in reduced zone

scheme we need the energy for each band only in the first Brillouin zone.

Therefore, in the reduced zone scheme different energy band are represented at the
same value of the k. Each different energy characterizes a different energy band

[see Figure 2].

13.4 Periodic Zone Scheme

Brillouin zone of a lattice can repeat periodically in k-space. This repetition can be

achieved by translation of zone by G. As a result the energy €} of bands also

become a periodic function in G:

€k = €k+6 &)
The periodically representation of energy bands in k-space is called as the periodic
zone scheme.

For example, we can write an energy band for a simple cubic lattice:

€x = —a — 2y(cosk,a + cosk,b + cosk,c) (4)
where @ and ) are constants. For SC lattice, the reciprocal lattice vector is
G = (2rn/a)X.

Now we replace k by k+G then from Equation (3) we have

cosk,a — cos (kx -+ %ﬁ) a = cos(kya + 2m) = cosk,.a (5

When k is increased by G, the energy €j remain same. Therefore, the band

energy €}, is a periodic function of & in k-space.

Generally E-k diagram are constructed in different three zone schemes [see

Figure3].

(a) In extended zone scheme the energy bands are represented in different
zones in k-space.

(b) In reduced zone scheme, all energy bands are represented in the first

Brillouin zone.
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(¢)  In periodic zone scheme representation of energy band, every energy band

is drawn in every zone of the lattice.

Extended Zone Scheme

Reduced Zone Scheme

Periodic Zone Scheme

A

Figure 3: E-k diagram in different three zone schemes (a) the extended, (b)

reduced, and (c) periodic zone schemes|[1].

13.5 Construction of Fermi Surfaces

In k-space Brillouin zone related to diffraction condition 2k.G+ G’ =0 or
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k.(I/ZG):(I/ZG)z. According to diffraction condition in reciprocal space, the zone

boundaries given by a plane normal to G and passing through midpoint of G.

Now consider a square lattice [Figure 4(a)] having three reciprocal lattice vectors
G,, G, and G;. The first Brillouin zone can be construct from G,. Figure 4(b)
shows the first Brillouin zone which is area enclosed by four vectors, normal to G,
and passing through midpoint of G,.

A
k,
e zﬁa ® & . I . . e
- ° /'G: - » * 83 ™ @
3 = - -
. ° cé G, e—p » 2l 1 |2 S °
kx 3 3
5 :.. o
™ ™ z . ® ™ 2l o *
° . » ° » * . & ® @
(a) (b)

Figure 4: (a) Three reciprocal lattice vectors G, G,and G, in k-space for a square

lattice.(b) Construction of Brillouin zones in k-space for a square lattice [1].

For square lattice these four reciprocal lattice vectors are written as
+(2m/ a)kx + (2n/a) ky. Similarly, second and third Brillouin zones can
be construct from reciprocal lattice vectors G, and G,. First, second and third
Brillouin zones are shown in Figure 4(b).
We can also draw the free election Fermi surface for square lattice in two
dimensional k-space with arbitrarily concentration of electron. Figure 5 shows a

Fermi surface of square lattice which is a circle. The total filled area of k-space
determined by free electron concentration and is independent of electron-lattice
interaction. The Shape of Fermi surface may be deviated from exact circle

depending on electron-lattice interaction.
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Figure 5: Brillouin zones diagram for a square lattice and circle represent free

electron Fermi surface [1].

13.6 Nearly Free Electrons

Fermi surfaces for nearly free electrons can be calculated from free electrons Fermi

surfaces by assuming following approximations:

(a) The energy gaps due to interaction between electron and periodic potential
occurs at the zone boundaries.

(b) The intersect of Fermi surfaces at zone boundaries is almost perpendicular.

(¢) Assuming that the crystal potential edges are rounded in the Fermi surfaces.

(d) The volume of Fermi surface is determined only by electron concentrations.

Figure 6 shows the free electron Fermi surfaces for a square lattice constructed by
Harrison procedure. In this procedure, draw circles around each reciprocal lattice
points in k-space. The radii of these circles are determined by free electron
concentration. Any point inside one sphere represents an occupied state in the first
zone. Points common to at least two spheres give occupied states in the second
zone. Similarly, we can find occupied states in other zones. In alkali metals (Na)
conduction electrons interactions with lattice is negligible, hence these metals have

nearly spherical Fermi surfaces.

291




Figure 6: Construction of free electron Fermi surfaces for a square lattice [1].

13.7 Calculation of Energy Bands

In 1933 first time band structure calculations were performed by Wigner and Seitz.
After that several methods developed to calculate the band structure of solids. But
here we will discuss only an introductory methods called the tight-binding
method.

13.8 Tight Binding Method for Energy Bands

A free atom characterized by discrete energy levels and energy level denoted by
principal quantum number # [ Figure 7(a)]. As free atoms come close to each other
as a result the coulomb interaction between these atoms occurs. Due to coulomb
interaction between these atoms their energy levels split and formation of the
energy bands take place. Each energy state of free atom corresponding to quantum
number n, gives a band of energies [s-band (n=1), p-band (n=2), d-band, (n=3) ...],
where width of energy band depends on strength of interaction between atoms.

292




V(r) { Energy levels
r (Spacing)™!
n=2 e Bands,
] each
¢ with
N values
of k
_——________
ey
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Figure 7.(a) Energy levels of an atom. (b) Formation of bands in a solid
corresponding to desecrate energy level of atom[2].

In tight-binding model we assumed that the crystal potential is strong.
When an electron is moving in such periodic potential it is captured by strong ionic
potential. Therefore, electron spent a long time at that lattice site before tunneling
to neighboring ion. During capturing process, wave function of the electron is
considered as atomic orbital wave function which is unaffected by other nearest
ions. In such approximation we can express one electron wavefunction for the

whole crystal as the linear combination of atomic orbitals (LCAO)

Yr(r) = N"Y2Y exp (ik.T)) (r — 1) (6)
Where @ (1 — Tj) atomic orbital at ] lattice site. For whole crystal Y () is
similar to Bloch function in periodic potential.

The first-order energy calculation is given by diagonal matrix elements of the

Hamiltonian:

e = (kIH|k) = N1 3; ¥ exp [ik. (1) — ) [ {@m|H]|@j) )

293



where @, = @(r — 1,,;). Now we can write the distance between m" and j"

lattice siteas Py = Vo — rj then from Equation (7) we have

(k|H\k) = ¥, exp(—ik.py,) [ dVe™ (r — p)He (1) (8)

We consider only neraest neighbour interaction as a result we neglect all other

integral term in Equation (8) except corresponding to same atom and nearest

neighbors separeted by 0. Then we have the first-order energy
ex = (k|H|k) = —a —y X exp(—ik. pp) ©
where f dV(p* (r)H(p(r) = —-a andf dV(p* (T' = p)HQO(T') = =Y.

13.9 Hlustrative Examples

Example 1. Calculate first order band energy for simple cubic lattice in case
ka <<1.

Sol. According to tight-binding method band energy
€k =—a-—Y Zm exp(_ik- pm)

In simple cubic lattice position of nearest-neighbour atoms
Pm: (£a,0,0); (0,%a,0); (0,0, ta)
Then we have
€x = —a —y [(exp(—ik,a) + exp(ik,a)) + (exp(—ikya)
+ exp(ikya))
+ (exp(—ik,a) + exp(ik,a))
or
€x = —a — 2y[cosk,a + coskya + cosk,a]
For ka <<1 we can expand cosx=1-x" then we have band energy

€ = —a — 6y +yk?a?

13.10 Self Learning Exercise-I

Q.1  What is the diffraction condition in k-space?
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Q.2 Construct the first three Brillouin zones in k space for a square lattice.
Q.3  Draw the free electron Fermi surface for a square lattice.

Q.4  What is the effective mass of the electron in following energy band ?

€ = —a — 6y + yk?a?

13.11 Experimental Methods in Fermi Surface Studies

Experimentally measurement of Fermi surface gives details about band structure of
the material. It also provided the information about crystal potential. The shape of
the Fermi surface is useful in calculation of transport properties of metals. There
are several experimental methods to determine Fermi surfaces. But the de Haas-
van Alphan effect is most powerful and simple method for determination of Fermi

surface.

13.12 Quantization Orbits in a Magnetic Field

When a particle of charge q and momentum p moving in a magnetic field B then

its resultant momentum will be sum of kinetic momentum (P, = mv = Rk) and the

field momentum (Py,,= qA/c).
P = Pkin+Pfietd = hk‘l'qA/C (10)
where the vector potential A and magnetic field B are related by B = curl A.

According to Onsager and Lifslutz the orbits of particle are quantized in magnetic
field B and quantization given by the Bohr-Sommerfeld relation [1]

¢ P.dr = (n+y)2nh (11)

where is n an integer and ) i1s a phase correction factor. Integrating Equation

(10)for close path then we have
95P.dr=gﬁhk.dr+%56fl.dr (12)

But we know that the equation of motion the particle in presence of magnetic field

18 ﬁdk/dt = q/c[dr/dt X B]and its integration with respect to time

gives
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hk = %r X B (13)
From first term of Equation (12) and Equation (13) we have

gShk.drz%gﬁpr.drz —%B.gﬁrxdrz —qudJ (14)

where @ magnetic flux within area of orbit and which is equal to
¢ r X dr = 2 (area enclosed bythe orbit).

Again path integral of second term in Equation (12) can be written as

q _4q — 4
;gﬁA.dr—ch.da—CCD (15)
Finally, from Equation (12), Equation (14) and Equation (15) we have
9’3P.dr=—%<b= (n+vy)2nh (16)

Therefore quantized flux of electron in magnetic field is
®d, = (n+y)(2rhc/e) (17)

Where unit of quantized flux is 27TAC / e=4.14x 10”7 gauss cm’ or Tm'.

13.13 De Haas-Van Alphen Effect

For Fermi surface measurement by de Haas-van Alphen effect we required the area
of the orbit in k-space. Equation (13) shows the relation between orbit element Ar

in real space and Ak in k-space. Magnetic field perpendicular to line element of
real space then A1 = (hc/eB)AK and we can write
A, = (hc/eB)?S, (18)

where A is area of orbit in real space and S in k-space. Therefore, the flux in k-

space one can write using Equation (17) and (18)

®, = (he/e)? 2 = (n +7) - (19)

e
For experimental measurement of Fermi surface in k-space we can change the

applied static magnetic field. The incremental change in magnetic field AB, such

that two successive orbits (n and n+1) in k-space have equal area on the Fermi

surface. or
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1 1 2me
() =

o A (g) = (20)

Equation (20) is an important result which explain the equal increments of 1/B
gives identical orbits and having periodicity in 1/B [ see Figure 8]. For
experimental measurement of Fermi surface requires the oscillation of the
magnetic moment of pure specimens at low temperatures with a static magnetic
field. Fermi surface of a metal reconstructed from period of these oscillations of

magnetic moment of metal.

30 1
@
20 o
=
10 1
g ¥
S \
g 0 - \ '
= (] | ‘ 6
= 10 100/B
=
=20 + \
o
=30 +

Figure 8: Plot of oscillations of magnetic moment of a metal as a function of

1/B[1].

13.14 Illustrative Examples

Example.1 According to free electron theory estimate the period of magnetic

momentum oscillation with 1/B for potassium and calculate the area of orbit in
real spaceat B=10kG=1T.
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Sol. The period of oscillations of the magnetic moment of a metal with static

A(l) B 2me
B)  Shc

2
The area of orbit in k-space is S = TEkF then

A(l)_ 2me B 2e
B} mkihc kihc

magnetic field is

2

e
Putting e = FET then we have
c

A (1) :
B) 137kZe
8 -1
For potassium kF: 0.75 x 10 cm then the period of oscillations of the magnetic

moment

1 -9 -1

A(—) =55x10"G

B

Area of orbit in real space is given by
A = (hc/eB)?*S
2
The area of orbit in k-space is S = Tth then
A = mki(hc/eB)? = n(hckg/eB)?

hckp

eB
A=7x 107 cm’

=5x10"%cm

13.15 Self-Learning Exercise-11

Q.1 What will be the total momentum p of a particle of charge q moving in a
magnetic field B?

Q.2 What is the quantized flux of an electron in k-space?

Q.3 In de Haas-van Alphen effect, plot the magnetic moment vs. 1/B?

Q.4 What is the period of oscillations of the magnetic moment of a metal in

static magnetic field B?
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13.16 Summary

1. In k-space a Fermi surface is a constant energy surface which separates filled
and empty states at 0 K. The shape of the Fermi surface is best to represent in
the reduced zone scheme, but the electrical properties are more clear in the
periodic zone scheme.

2. The tight binding model is good for the inner electrons of atoms. Therefore,
the d bands of the transition metals can be described approximately by this
model.

3. In de Haas-van Alphan effect the oscillation of the magnetic moment of pure
specimens with a static magnetic field allows the construction of Fermi

surface.

13.17 Glossary

k-space diagram: The plot between energy gap of an electron in a crystal and
wavevector k.

Femi energy: The energy which separates the filled states and empty states at
T=0K.

13.18 Answers to Self Learning Exercises

Answers to Self Learning Exercise-1

Ans. 1:  In k-space diffraction condition is 2k.G+ G* =0
Ans. 2:  See Figure 4

Ans. 3:  See figure 5

h? h?
Ans. 4:  Effective massm”* = =
d%e/dk?  2ya?

Answers to Self Learning Exercise-I11

Ans. 1:  When a particle of charge q and momentum p moving in a magnetic

field B then its resultant momentum is sum of kinetic momentum

(P,,= mv = Rk) and the field momentum (P, .~ qA/c)
or P = Pkin+Pfield = hk"‘qA/C
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Ans. 2:  Quantized magnetic flux in k-space is
P, = (he/e)? = (n+y) -
Ans. 3:  See Figure 8
Ans. 4:  The period of oscillations of the magnetic moment of a metal with static
magnetic field is
ik 2me
2(5) = 5he
13.19 Exercise
Q.1 Define the Fermi surface in k-space.
Q.2 Why construction of Fermi surface is important?
Q.3 How one can construct Fermi surfaces for free electrons from Fermi
surfaces for nearly free electrons?
Q.4 What are the reciprocal lattice vector for simple cubic lattice?
Q.5 Draw the E-k diagram in different three zone scheme (a) the extended,
(b) reduced, and (c) periodic zone schemes.
Q.6 What is the tight binding approximation?
Q.7 For what kind of material tight binding modal is applicable?
Q.8 Why de Haas-van Alphan effect can be observed in pure specimens at low

temperatures in strong magnetic fields?

13.20 Answers to Exercise

Ans. 1

Ans. 2:

Ans. 3:
Ans. 4:

: In k-space a Fermi surface is a constant energy surface which separates
filled and empty states at 0 K.

Experimentally measurement of Fermi surface gives details about band
structure of the material. It also provides the information about crystal
potential. The shape of the Fermi surface is useful in calculation of
transport properties of metals.

see section 13.4

See figure 4
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Ans.

Ans.

Ans.

Ans.

For simple cubic lattice, six reciprocal lattice
vectors: +(2n/a)k, + (Zn/a)’ky.i(ZR'/a)’kz.

In tight-binding model we assumed that the crystal potential is strong.
When an electron is moving in such periodic potential it captured by
strong ionic potential. Therefore, electron spent a long time at that
lattice site before tunneling to neighboring ion. During capturing, wave
function of the electron is considered as atomic orbital wave function
which is unaffected by other nearest ions.

(a) For the d bands of the transition metals (b) valence bands of
diamond like materials(c) crystals of inert gas.

To avoid effect of collision and temperature on quantized orbits of the

electron in static magnetic field.
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14.0 Objectives

The aim of this chapter is to let the readers know about the behaviour of the solid
dielectric materials in the electric field. When such materials are placed in the
external field then what happens at atomic or molecular levels. The phenomenon
related to such response will be discussed. The different parameters of dielectric
materials and the theories related to dielectric phenomenon will we explained in
detail.
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14.1 Introduction

The dielectric materials is one of the important class of solid materials. In this
chapter the behaviour of such materials in external electric field i.e. polarization of
the materials is discussed. The net electric field in the dielectric materials is
evaluated. The dielectric parameters like electric polarizability, dielectric constant
and electric susceptibility are explained in detail. The contribution due to
electronic polarization of the polarizability and its frequency dependence has been

discussed.

14.2 Introduction to Dielectric Materials

The dielectrics are the non-conducting materials of electricity due to bounding of
positive and negatively charged particles. When electric field is applied on such
materials, separation of positive and negative charges takes place. This
phenomenon is called as polarization of dielectric materials. In the polarization
process the whole material medium remains neutral. The polarize charges create

their own electric field which oppose the applied electric field.

Applied Field, E3 _

NIIIE>
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RIS Ie
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|

Figure14.1 Dielectric Polarization in external electric field

The polarization P (polarization vector) in a solid is defined as total dipole

moment per unit volume.
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L > .qF
pof T

V V

where p is the total dipole moment and V is the volume of the material medium.

The characteristics of a dielectric medium are studied in term of dielectric constant.

— EV(IC — C

E C

vac

The dielectric constant is the representative of dielectric and optical properties of

the medium.

14.3 Macroscopic Electric Field

One contribution to field inside the dielectric material is due to the applied external
field produced by fixed charges. The other contribution to the electric field is the
sum of all the charges that constitute the material body. If a body is neutral, the
contribution to the average field is due to sum of electric fields of atomic dipoles.
We define the average electric field as the average field over a volume of the
crystal cell that contain the lattice point r,

E)= Vi [ear

where €(7)is the microscopic field at the point# . To find the contribution of the
polarization to the macroscopic field simplification will be done over all the
dipoles in the sample. From the theorem of electrostatic the macroscopic electric
field produced by uniform polarization is equal to the electric field in vacuum of a

fictitious surface charge density on the surface of a body given by

O = ﬁ]_j , here n is the unit vector normal to the surface
We apply the result to a thin dielectric slab (Figure 14.2)with a uniform volume

polarizationp . The electric field E(F)is equal to the field produced by the

fictitious surface charge density & = 71.P on the surface of a slab. On the upper

surface the unit vector is in upward direction while in the lower surface it is in
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lower direction. The upper surface has charge +Q while lower has —Q charge or

surface charge density O = n,\p =P and—0 = ﬁp =-P.
' /
d /

i

Figure 14.2 Charges due to polarization

The electric field E due to these charges has a simple form at any point between
the plates. By Gauss law

. ol . P

go_lol;__ P

€y €9

2

where Z is the unit vector normal to plane of slab.

The total macroscopic electric field inside the slab is given by

oy =By +E
nacy
., ., P
= Emacr = EO -
80

—

Here Eo is the applied electric field and the electric field £ due to polarized

surface charge density which varies smoothly in space inside and outside the body
and satisfies the Maxwell equation similar to macroscopic field. In the above

equations the polarization is uniform throughout the whole body. The electric field

E' due to uniform polarization is called as depolarization field because it tends to

oppose the applied electric field Eo .
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In case of sample in the form of ellipsoid like sphere, cylinder, disc, etc.,
the uniform polarization produces uniform depolarization field inside the body. If
P, P, and P, are the components of polarization along the principal axes of the
ellipsoid, then the components of the depolarization field are

NP
EX — __ X X ,
&y
N, F
E),—— —— and
; g,
g o NP
z g,

Here N, ,N, and N, are called as depolarization factors and their values depend
upon the ratio of principal axes. The values of these depolarization factors are

positive and satisfy the equation as
N_+N +N_=1

The polarization vector P is related to local electric field E by the following

macr
equation as

P = 80 Z E macr

Here ¥ is called as dielectric susceptibility.

If Eo is uniform and parallel to the principal axis of the ellipsoid then

i

, . . . NP
macr EO + E = EO o
80
P=y(g,E, — NP)
s & 5
p=—2%
1+ Ny
The macroscopic electric field in a sphere
, s = am P
macr =E0 +E=E0_
3¢,
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14.4 Local Electric Field at an Atom

The value of the local electric field that acts at the site of an atom is
significantly different from the value of the macroscopic electric field. We
consider here the local field at a site in the cubic crystal of spherical shape. The

macroscopic electric field in a sphere

—

- - - P
=B +E=E ———
38,

—

macr

We now derive an expression for local field at a general lattice site not necessarily
having cubic symmetry. The field at an atom is the sum of electric field from
external source and from the dipoles inside the specimen. The local field can be

written as
local — Eo +E+E,+ E3
where

— —

Eo is the applied electric field, E1 is depolarization field on the outer

—

surface of the specimen, E2 is field due to polarization charges (Lorentz field) on

inside of a spherical cavity cut from the specimen and E3 is the field of atoms

within the cavity.

Cavity material

-] 4]

U +

e

= +

. i

+ | o

= -

& +

i +

r +

= _/\'\._,.—’r'LJ" :

: + —
E near Sy EF' Eex
Field at an ion Lorentz force Depolarizing field External field
from surroundings on the surface

of the cavity

Figure 14.3: Electric field Contributors at an atom
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The contribution of El + E2 + E3 to local field at any atom, caused by dipole

moments of all the other atoms in the specimen is given by

. . .1 Q3B AE-rP,
E +E,+E, = AR
e 4%802,-: r;’

1

The depolarization field is given by

Figure 14.4: Lorentz Cavity

This field is due to polarization charges on the surface of an arbitrary cavity. This

field was calculated by Lorentz and called as Lorentz field. Let 0 is the angle of an

elementary surface on the surface of cavity with respect to polarization direction P

. The surface charge density on the surface of cavity is —Pcos6. So the electric field
at the centre of spherical cavity of radius a is

o 1 I(Zﬁa sin @)(adO)(P cosB)(cos )

2

2

4re, a

0
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= X—P
dre,
B P
3¢g,
. p
:>E2 Zg
0

So the depolarization field and the Lorentz field cancel each other for a sphere.

(For sphere)

The field E3 is due to dipoles within the spherical cavity which depends upon the

crystal structure. For cubic surrounding it is equal to zero.
E =0

So the total local field at a cubic site is
Epeas = Eqg + E| + E, + E,

. . P
=E,+E +
&
» . P
E local = macr
3¢,

It is the Lorentz relation for the electric field on an atom in cubic site.

14.5 Dielectric Constant and Polarizability

The dielectric constant ¢ of an isotropic or having cubic medium relative to
vacuum is defined in term of macroscopic field as

E+£

macr g
g=——"2

macr
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— macr — 1 _l_ Z
EOEmacr
The susceptibility is related to dielectric constant as
P
y=———=¢6-1
SOEmacr

The polarization of an atom in the material is due to local electric field. The dipole
moment induced on an atom is proportional to the local electric field.
p = aElocal

The polarization of a crystal may be expressed as the product of polarizability of

the atoms times the local electric field.
P= Z N, iP;
= P= Z Nfa[El'oca! (l)
i

where, IV ; 1s the number of atoms per unit volume, &, is the polarizability of i

atoms and EIO cal (I) is the electric field at the site of 7 atoms. The local electric

field is given by

—

— —

P
E  =E  +—

local — ~macr
3e,

So the polarization is given by

—

. ” P
P=>Y Na,(E o)

macr
0

The electric susceptibility is given by

. D Na,
Z = P = : |
gOEmacr' £ (1— L N.a.
0( 380 Z i r)

As the dielectric constant is related to electric susceptibility as
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x=&-1

ZN{.ai

which get converted into, =—
e+2 3¢, 5

This equation is called as Clausius-Mossotti equation.

14.6 Electronic Polarizability

The total polarizability of a specimen has three contributions from
electronic, ionic and dipolar. The electronic contribution arises from the
displacement of the electron shell relative to the nucleus. The ionic contributions
arise due to displacement of charged ions with respect to other ions. The dipolar
contribution arises from molecules with a permanent electric dipole moment that
can change orientation relative to applied electric field. In heterogeneous materials
there is an interfacial polarization arising from accumulation of charges at
structural interfaces.

The dielectric constant at optical frequencies arises due to mostly from
electronic polarizability. The contributions from dipolar and ionic polarizability are
small at high frequencies because of inertia of the molecules and ions. In optical

frequencies the Clausius-Mossotti equation reduces to
2
n" —1 1
: =
n“+2 3¢

Z N.a (electonic)
0 i

2 ) . .
where n=c, 1 is the refractive index of the material.

By using this equation for large number of crystals the electronic polarizabilities
were found to reasonably consistent with observed values of refractive indices. But
it not entirely consistent because the electronic polarizability of an ion depends
upon the environment in which it is placed. The negative ions have high

polarizability due to their large size.
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14.6.1Classical Theory of Electronic Polarizability (Static Case)

Suppose an electron is bound harmonically to an atom which show

B

; 1/2 :
resonance absorption at a frequency at @, = (—)"", where B is the force

constant. Let the displacement of the electron from mean position x on application

of electric field £

local - 1 he equation of motion of the electron in the local electric

field is as
d*x
dr’

Let the solution of this equation is

m + ma)j x=—el local Sin wt , (neglecting the damping effect)

X = X, sin wt

2 2
So m(_a) + w{] )x[) = _eElocal ’
ek
_ local
m(w, —w")

The dipole moment induced is given by

e’E

local

p =ex, =
L mle -0

The electronic polarizability is given by

2
- _ Py _ €
(electronic) ~— - ) 2
E/n(‘af m(a)() —@ )

The static electronic polarizability is given by

2
e

(04 L=
(electronic) 5
ma)o

14.6.2 Frequency dependence of Electronic Polarizability

If in the above equation damping effect of the dielectric medium is also considered
then the equation of motion of the electron in the A.C. local electric field is given

by
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d’x dx .
m—s+mg—+mw,x =—ekE, e
dt dt

where, g = 1 , ¥ is the coefficient of damping,

m
B loca Iej “ is the local A.C. electric field
Let the solution of this equation is
x = x,e™”
So  m(—@’ +igw+w))x,=—ekE,_,.
€Locar

X =
’ m(w; — o’ +igw)

The dipole moment induced is given by

e’E

local

m(w, — " +igw)

The electronic polarizability is given by

P

a(e/ectronic) - E

local

2
e

- a(e/ecrmm'c) = m(a); B 602 + lga))

Dipole Ionic Electronic
. polarizability polarizability polarizability
!

s — - — - -

10° 101 102 T

Figurel4.5: Variation of Polarizability with Frequency
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If N is the number of polarized electrons per unit volume, then polarization vector

is given by
P=N p,
The complex dielectric constant is given by
g(w)y=1+y
P
— 1 +—
80E local
Ne’
=1+

me, (0, — " +igw)
Lt &(w)=¢'(0)+ie"(w)
The real part of dielectric constant is given by
Ne*(w; — @)

g'w)=1+
me,[(0; —0)’ +g’w’]

and the imaginary part of the dielectric is

Ne’gw

The real part of dielectric constant gives the value of dielectric constant while

imaginary part gives the power dissipation or damping loss.

For frequency @ = @), the value of 8”((0) is maximum i.e. material absorbs

energy at natural frequency; this phenomenon is called as resonance absorption.

14.7 Self Learning Exercise

Q.1 Write the relation between polarization, electric susceptibility,

depolarization factor and applied electric field.
Q.2 Write the Clausius-Mossotti equation.
Q.3 Explain the polarizability. Discuss various types of polarizabilities.

Q.4 Write a short note on Lorentz field in dielectric material.
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14.8 Summary

This unit deals with the study of dielectric materials. It deals with the basics
of the dielectric materials. Here first the effect of applied electric field on the
dielectric materials is discussed in terms of polarization i.e. dipole moment induced
per unit volume. After this the concept of macroscopic field is discussed. Here the
idea of depolarization field is discussed and also its dependence on geometry of the
specimen is discussed in terms of depolarization factor. The relations of
polarization, depolarization factor and the applied electric field are derived. The
theory is developed to find the electric field at the site of an atom in the specimen
of a dielectric. The different contributions are discussed and evaluated. After this
the concept of polarizability is discussed and relations with various dielectric
quantities are derived. The different kinds of polarizabilities and their variation

with frequency are discussed.

Finally the electronic polarizability is discussed in detail and its classical theory is
discussed. The frequency dependence of the electronic polarizability is discussed
and variation of dielectric constant and loss factor with frequency are also
discussed.

14.9 Glossary

Dielectric: Insulator

Dipole: The arrangement of two equal and opposite charges separated by a

distance.

Polarization Vector : The total dipole moment per unit volume.
Depolarization : Opposing polarization

Specimen : Sample

Cavity : Geometry in the form of sphere

Heterogeneous : Different kind

Interface : Boundary

Accumulation : Collection
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14.10 Answers to Self Learning Exercise

Ans.1: The relation between theses quantities is given by

p=—~5
1+ Ny

Ans.2: The Clausius-Mossotti equation is given by

g—~1l 1
e+2 35,5
nz—l_ 1

n’+2 3,

0

or Z N.a.(electonic)
i
Ans.3: The polarizability of molecules means that the positive and negative

charges are displaced relative to each on application of electric field. The

polarizability has three major contributions as

(1) Dipolar or orientation polarizability

(i1) Tonic polarizability

(1i1) Electronic polarizability
[f the molecules of materials are ionic in nature then they have permanent
dipole moment. In absence of external electric field ,the dipole moments of
these molecules are randomly oriented. When electric field is applied then

these dipole moments tends to align along the direction of field. This

phenomenon is called as dipolar or orientation polarizability.

If the molecules of the material contain ions ,then the field tends to displace
the positive and negative ions in opposite direction causing a change in the
length of the bond. The effect of this change in length is to produce a net
dipole in the unit cell as compared to earlier state having zero dipole moment.

This phenomenon is called as 1onic polarizability.

The polarizability of atoms or ions in the molecules due to displacement of the
electrons with respect to nuclei is called as electronic polarizability. So the

total polarizability is given by

a=a, ta,, +a

ion elect
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where O dip is the dipolar polarizability, &, is the ionic polarizability and

ion

o is the electronic polarizability.

elect

14.11 Exercise

Q.1
Q.2
Q.3
Q.4

Q.5

Q.6

Q.7
Q.8
Q.9

Explain the polarization or polarization vector.
What are dielectric materials ? Define the dielectric constant.
Explain the macroscopic field and derive the formula for it.

Explain the depolarization field. Express the depolarization field in terms of
depolarization factors and also write the macroscopic field in terms of

depolarization factor.

Find the expression for local electric field at the site of an atom in the
dielectric material.

Discuss various types of dielectric materials and type of polarization
processes.

Derive the Clausius-Mossotti relation.

Explain the variation of polarizability with frequency.

Explain the electronic polarizability and discuss its classical theory.

14.12 Answers to Exercise

Ans.1: The total dipole moment induced per unit volume is called as polarization

or polarization vector.

Ans.2: The materials in which the positive and negative charges are strongly

bounded are called as dielectric materials. They behave like the insulating
materials. When such materials are subjected to external electric field they get
polarized. In these materials either electric dipole moment is induced or dipole
moments get orientated in the direction of applied field. The later process is
called as orientation polarization. The characteristic of diclectric materials are
studied in terms of dielectric constant. The dielectric constant is defined as the

ratio of permittivity of the medium to the permittivity of air.

Ans.3: The sum of applied external electric field and the field due to polarization

on the surface of dielectric material is called as macroscopic field.
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Ans.4: The electric field which is induced on the surface of the dielectric material

which tends to oppose the applied electric field is called as depolarization
field.

Ans.6: The dielectric materials are of two types: polar and non polar dielectric
materials. The materials having molecules which have intrinsic electric dipole
moment are called as called as polar dielectric materials. In the materials
positively and negatively charges are strongly bounded. When such materials
are subjected to external electric field the dipole moment of the molecule tends
to get oriented in the direction of applied field. The non polar materials have
molecules which have non polar molecules. When such materials are placed in
external electric field then polarization of molecules takes place i.e. the centres
of positives and negatives chares are displaced with respect to each other and

electric dipole moment is induced on the molecules.
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References and Suggested Readings
15.0 Objectives

This chapter is aimed to understand the readers the one kind of dielectric materials

known as ferroelectric. The basic theory of ferroelectricity, kind of ferroelectric

materials and related theory will be presented here. The basic idea of other
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dielectric materials like anti-ferroelectric, piezoelectric and pyroelectric materials
will be explained.

15.1 Introduction

Ferroelectric is one of the kinds of dielectric materials. In this chapter ,the basic
characteristics of ferroelectric materials, theory of ferroelectricity and types of
ferroelectric materials are presented. The examples of some of the ferroelectric
materials and spontaneous polarization in ferroelectric materials are explained
here. The overview of other class of dielectric materials like piezoelectric and

pyroelectric materials is discussed.

15.2 Ferroelectricity

The ferroelectric materials are kind of dielectric materials which have following
properties:
1. The static dielectric constant of these material changes with temperature
according to following relation
&= .. , where T>T
T,
here C is a constant which is independent of temperature and called as Curie’s
constant. This relation is known as Curie-Weiss law. C and T. are the
parameters which depend upon the material. T,. 1s called as Curie temperature.
2. These materials posses spontaneous electric polarization i.e. polarization in the
absence of external electric field. This polarization only exits if the

temperature T<T_..

o
(=)

o
()]

04|

PbTIO,

Spontaneous Polarization (C!mz)

o
o

o

100 200 200 200 500
Temperature [°C]
Figure 1. Spontaneous polarization with temperature
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3. These materials show the property of hysteresis under the action of alternating
electric field. The hysteresis loop can be obtained for such materials. This
curve is obtained between polarization and the electric field (P-E curve). This
curve is similar to the B-H curve for ferromagnetic materials.

A

P

Polarization

E

Electric ﬁeld'

\j

Figure 2: P-E curve for ferroelectrics

15.3 Dipolar Theory of Ferroelectricity

The most popular theory of Ferroelectricity is the dipolar theory. This
theory is based on the fact that the ferroelectric substance consists of a system of
freely rotating dipoles. The existence of spontancous resulted due to orientation of
dipole moments of different unit cells in a common direction. There is cooperation
between different unit cells to align the dipoles in a common direction. So the
cooperative phenomenon is observed in ferroelectrics. The dipole moment of a unit
cell is contributed by electronic displacement, ionic displacements and from
permanent dipoles. The local field which is responsible for rotation of the dipoles

Is given

E

local

=E,+yP (1)

where E, is the externally applied field, P is the polarization and 7y is the local field
constant. This expresses the cooperative phenomenon because larger the value of

P, larger the value of E, ,; and hence stronger will be the tendency of a dipole to
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align in the direction of polarization of other dipoles. In the high temperature
region the local field given by above equation leads to Curie-Weiss law. The
polarization far away from saturation polarization is given by the following
equation

")

Nu
3kT

where N is total no of electric dipoles per unit volume, p is electric dipole moment

P=Npu<cosf>= B 2)

of each dipole and 0 is the angle between the orientations of dipole with respect to

field. The electric susceptibility is given by
P (Nu’/3kT)

X E T (= Nyl 1 3kT)
_ T. 1y
T—T.
1= 3)
T-T,

where C =T, c / ¥ is called as Curie’s constant and 7, c= is called as

Curie’s temperature.

In order to discuss the spontaneous polarization we will here make the use of

Langevin’s expression as

E
P=Nu<cosf >= N#L(_#k;m ) @

E . . . .
where L(%) is called as Langevin’s function. For spontaneous polarization P

we have to consider the external electric field to be zero i.e. E;=0. So we can write
the equation (4) as
P P

EIT_L(X) (%)

sat.
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where P ﬂ

sat.

=Npu is called as saturation polarization and x = since E,,=YP

From equation (1)

PP &
Nu P N’y

sat.

)x (6)

The equations (5) and (6) should be satisfied simultaneously, which corresponds to

a set of straight lines passing through origin and have slope equal to

2

Nu'y’

1= 1471

-‘:".

Figure 3:Temperature Dependence of Spontaneous Polarization

Thus the slope of these lines depends upon the temperature. The solution for il

sat.

corresponding to a temperature T, is determined by the intersection of L(x) and the

line of slope ;—T‘z The slope of the straight line decreases with decrease in
'y

: P . -
temperature and solution — approaches unity. At the critical temperature T ,the

sat.
slope at the origin is
kT 1 . . Nuy?
¢ =—, so the critical temperature is given by 7,. = il 4
Nuy 3 3k

For T>T.. there is no spontaneous polarization.

15.4 Ferroelectric Crystals

The ferroelectric crystal exhibits an electric dipole moment even in the absence of

an external field. In the ferroelectric state the centre of positive charge of the
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crystals does not coincide with the centre of negative charge. The plot of
polarization versus electric field for a ferroelectric state shows hysteresis loop. A
crystal in the normal dielectric state generally does not show significant hysteresis,
when the electric field is increased and reversed thereafter slowly.

10000

(&)

3
/OO0 |- M = —

g i

EOOMD |

]

Diclectric constant €
T
- -
-
| |

ADEH 400 500 G -
T(°C) e
B Ty = 448 ]
DN = T. = 492°C

(b}

04— —_
2
2 aa -
g
3 oz} -
'g j'!.l
= L2l
= ol T -
0.0 I ! |
50 pu
E B )
E' 40
s B .
B
=
30 p— —1
| | ] 1}
L1 1060 2O Rt h ] A0 SH)Y GO

Tl-lllp:-ramrt- =)

Figure 4.

In some ferroelectric crystals the ferroelectric dipole moment is not changed by an
electric field of maximum intensity which it is possible to apply before causing
electrical breakdown. In these crystals we often observe a change in the
spontaneous moment when the temperature is changed. Such crystals are called as

pyroelectric. For example LiNbO, is a pyroelectric crystal at room temperature. It
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has a very high transition temperature T, = 1480 K and a high saturation
polarization 50pC/em’.

Ferroelectricity disappears above a certain temperature called as transition

temperature. Above the transition temperature the crystal is in paraelectric state.

15.5 Classification of Ferroelectric Crystals

The ferroelectric crystals may be classified into two main groups:
Displacive transition and order-disorder transition ferroelectrics. If in the
paraelectric phase the atomic displacements are oscillations about a non-polar site,
then after displacive transition the oscillations are about a polar site. If in the
paraelectric phase the displacements are about some double-well or multi-well
configuration of sites then in an order-disorder transition the displacements are

about an ordered subset of these wells.

The order-disorder class of ferroelectrics includes crystals with hydrogen
bonds in which the motion of proton is related to ferroelectric properties. For
example the crystals of dihydrogen Phosphate KH,PO, and isomorphous salt
KD,PO,. The substitution of hydrogen by deuterons nearly doubles the transition

temperature.

The displacive class of ferroelectric includes ionic crystals structures closely
related to the perovskite and ilmenite structure. The example of such ferroelectric
is GeTe with sodium chloride structure and LiNbO, BaTiO,, SrTiO,, etc.

15.6 Theory of Displacive Transitions

This theory provides good information regarding these transitions in
perovskite type crystal and it could explain the experimental data. Theses crystals
generally undergo a displacive transition at the Curie point. There are two
viewpoints to understand the ferroelectric displacive transition. In first viewpoint
we talk about polarization catastrophe that refers to an unusual situation in which
the polarization becomes infinitely large. In this situation the force exerted by local
electric field is greater than the elastic restoring force. The shift is limited to a
finite displacement by the anharmonic restoring force. The second point of view is
the soft mode approach in which a transverse optical mode is frozen i.e. the

frequency vanishes at some point in the Brillouin zone below the Curie
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temperature. This mode is called as soft mode. When ®, = 0, the crystal becomes

unstable because of the absence of an effective restoring force.

15.6.1 Polarization Catastrophe

From the Clausius-Mossotti equation

3(N.oL+N o)
e=1+ ) (1)
35, —(NO, +N. o)

If (VO +N O, )=3E, the dielectric constant becomes infinite giving the state
of polarization catastrophe. Further

P. = (Nia'i + N('ae )E..’ucaf (2)

—

. . P
P=(N,a +N,o)E+—) 3)
3¢

0
where,E =E +E, E
field.
If E =0, then

= NOL +N O

P———— ¢ 1=
3e

is the applied electric field and £, is the depolarization

0

In the polarization catastrophe, P # 0
In order to understand the physical meaning of above situation ,we consider

a highly polarisable ionic crystal having cubic symmetry. Let O be the total
polarizability and p is the dipole moment of an ionic pair. A transient ficld is
supposed to start polarization of the pair. The ionic pair will keep on polarizing
until some resistance develops to stop the process. The resistance finally stop the

process of polarization. The dipole moment of a single ion pair with ion separation
yis

P=qy= O“Emm = 4)

where F is the restoring force that tends to bring the positive and negative ions
together and q is the charge on the each ion. The work required to form such N

dipoles per unit volume in the crystal is
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2 2
Ng .. Np
:—J‘y'dj} = ———
o 20
P2
=>w, =— (5)
2NOL

On the other hand the work done per unit volume by local electric field in

displacement of ions is

WZ — -[El'm'ﬂf d}_:;

. P
W, =I[E+—].dP
3g

0

P . -
W, =—+J.E.dP (6)
6€,
So, the resultant work done per unit volume or the energy density of a polarized
dielectric is
- NA o
w, —w, =——(——=1)+ | EdP (7)
2NOL 3g,

This shows that even E =0, w, >w,, if NQ > 3€,. This can be written in general
form

D (v, =3e,

i

The equality sign describes the condition of polarization catastrophe. The

minimum value of »_(N,0t,) for which the Ferroelectricity will be found is 3€, .

i

Unfortunately in any real ferroelectric crystal ,the polarization catastrophe is not

observed. A small deviation in the value of Z(Nfaf) from 3€, changes the

i

value of € by large amount. Let us consider

Z(N,_OL,,) =3g—3, where 3 <<I
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So from equation (1) we get

1
EoC—

If we assume that ﬁ is a linear function of temperature near Curie point and it is

given by
Ir—1, _
B = , M 1s a constant then
n
1
oC
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Figure 5. Dielectric constant and 1/(T-T_) curve
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The temperature variation of € given by this equation is in excellent agreement

with observed behaviour in several perovskite crystals.
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Figure 6. Structure of Barium Titanate
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Figure 7. Spontaneous polarization of Barium Titanate with Temperature

15.6.2‘Frozen in’ Transverse Optical Phonon

A ferroelectric state can be regarded as a ‘Frozen In’ Transverse Optical (TO)
phonon. From the Lyddane-Sachs-Teller relation

2
(DTO — Eoo .
—— =——, where TO stands for transverse optical and LO stands for

® €

LO §
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longitudinal optical mode. € is the static dielectric constant. It shows that when

€ increases ,then (0, decreases. Thus for large value of € which is observed at

Curie temperature (0., may be zero. In actual practice &, remains finite, so the TO

mode is called as soft mode. At the transition temperature T. , when ®.,

approaches the zero value the crystal becomes unstable and anharmonic elastic

forces come into play. So, in presence of anharmonic forces (0, show a following

temperature dependence

I
W,, < (T—T.) or —C(T—T,)
€,

The large value of static dielectric constant at low frequency TO phonon is

supported by several perovskites ferroelectrics.

15.7 Antiferroelectricity

A ferroelectric displacement is not only the type of instability that is found
in dielectric materials but some other types of deformations also occurs there.
These types of deformations do not give any spontaneous polarization by them are
accompanied by change in dielectric constant. One type of deformations are in
which neighbouring lines of ions displaced in opposite sense called as
antiferroelectrics. The perovskites structure appears to be susceptibility to many

types of deformations often with a small difference in the energy between them.

400
Paraelectric
300 §
?;' Antiferro-
e electric
v
= 200
o
vl
3 |
= Eerro- Ferroelectric
L 100 lectric tetragonal
hombae-
hedral
0 4 = i i Il
0 5 10 15 20 25 30
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The phase diagram of perovskite like BaTiO, shows transition between para-,

ferro-, and antiferroelectrics states. Ordered antiferroelectic arrangement of
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permanent dipole moments occur at low temperatures in ammonium salt and in

hydrogen halides.
a2 A A T<T,
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Figure 8 : Antiferroelectric transition and Displacement of ions in
Ferroelectrics

15.7.1 Difference between Ferroelectric and Antiferroelectric

A ferroelectric crystal is defined as a crystal which belongs to the pyroelectric

family i.e. It shows a spontaneous electric polarization and whose direction of
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spontaneous polarization can be reversed by an electric field. An antiferroelectric
crystal is defined as a crystal whose structure can be considered as being composed
of two sublattices polarized spontaneously in antiparallel directions and in which a
ferroelectric phase can be induced by applying an electric field. Experimentally,
the reversal of the spontaneous polarization in ferroelectrics is observed as a single
hysteresis loop and the induced phase transition in antiferroelectrics as a double
hysteresis loop, when a low-frequency ac field of a suitable strength is applied. The
spontaneous polarization in ferroelectrics and the sublattice polarizations in
antiferroelectrics are analogous to their magnetic counterparts. However, these
polarizations are a necessary but not sufficient condition for ferroelectricity or
antiferroelectricity. In other words, ferroelectricity and antiferroelectricity are
concepts based not only upon the crystal structure, but also upon the dielectric
behaviour of the crystal. It is a common dielectric characteristic of ferroelectrics
and antiferroelectrics that, in a certain temperature range, the dielectric polarization

is observed to be a two-valued function of the electric field.

P P

f E Te -T=3K
J T" e

Figure 9: Hysteresis loop of ferroelectric and antiferroelectric material

15.8 Ferroelectric Domains

Let us a ferroelectric crystal of barium titanate in the tetragonal phase. In
this phase of crystal the spontaneous polarization is either in upward direction or in
the downward direction of the ¢ axis of the crystal. So in the ferroelectric crystals
the regions of spontanecously polarized called as domains are observed. Within
each domain the polarization is in same direction. The direction of polarization is
different in different domains. The net polarization in a volume depends upon the
difference in the upward and downward directed domains. The crystal as whole is

unpolarized since the volumes of oppositely polarized regions are same. The total
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dipole moment may be changed by the movement of walls between the domains or

by the nucleation of new domains.

\\\_' VL /)
W/// : \
N JINT

Figure 10: Spontaneous polarization without field, in presence of field,
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15.9 Piezoelectricity

The materials in the ferroelectric state also show the property of
piezoelectricity i.e. when stress is applied on the crystal it will induce electric
polarization. Similarly, on application of electric field on the crystal will induce a
strain in it. In one dimension the polarization vector and elastic strain in the

material are given by
P=dZ+¢gYE and e=sZ+dE
where P is the polarization vector, Z is the stress, d is the polarization constant, E is

the electric field, ( 1s the dielectric susceptibility, e is the elastic strain and s 1s the
elastic compliance constant. These relations show the development of polarization
by an applied stress and the development. A crystal may be piezoelectric even if it
is not ferroelectric e.g. quartz is not ferroelectric. In quartz the order of magnitude
of d is 10° m/V while in barium titanate it is of order of 10" m/V. The other
examples of good piezoelectric materials are lead zirconate-lead titanate system
(PZT) and polymer of polyvinylidenfluoride (PVF,). The response of a
piezoelectric crystal in transducer application is given by the electrochemical

constant factor k, the square of this is given by

mechnical energy stored

electric energy stored
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Figure 12: Polarization in Lead-Zirconate-Titanate (PZT) ceramic due to
voltage.

The essential requirement for a crystal to be piezoelectric is the absence of centre
of symmetry. In piezoelectric materials there is a lack of centre of inversion
symmetry.

15.10 Pyroelectricity

Pyroelectricity is the ability of some materials to generate a voltage when
they are subjected to heat or cold. Due to the variation in the temperature, slight
changes occur in the position of atoms within the crystals as a result, the
polarization of the crystal changes. This develops a voltage across the crystal. The
voltage that develops across the crystal is not stable and when the temperature

change remains as such, the voltage ceases due to leakage of current. This may be
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due to the movement of electrons in the crystals. The term pyroelectricity was
originated from Greek word ‘Pyr’ meaning ‘fire’ and the term electricity.

Pyroelectricity is different from thermoelectricity in terms of the electric charge. In
pyroelectricity, as the temperature changes the pyroelectric crystal as a whole and a
voltage develops across the crystal whereas in thermoelectricity a voltage develops
across the crystal when its one side is kept at one temperature while the other end
at a different temperature. The electrical and thermal aspects of the Pyroelectric
crystals represent the pyroelectric effect while the kinetic energy aspect &electrical
aspect represents the piezoelectric property. All the pyroelectric materials also
show the piezoelectric property. But some piezoelectric materials have a crystal
symmetry which does not allow the pyroelectric property. Some pyroelectric
crystals change their crystal property in response to very minute change in
temperature level as seen in the crystals used to make the PIR Sensors. In these
‘Passive Infra Red’ sensors the passive infrared emissions due to the body heat of

human beings generate voltage across the crystals.

BLACK COATING PYROELECTRIC

MATERIAL

ELECTRODES < .

Figure 13:  Pyroelectric crystal

The crystals generating pyroelectricity falls into thirty two classes based on the
number of rotational axes and reflection planes. Out of the 32 classes of crystals,
21 classes are considered as non Centro metric which do not have centre
symmetry. Out of these 21 classes, 20 classes exhibit direct piezoelectric property.
Out of the 20 classes, crystals of 10 classes are polar in nature possessing a dipole
and exhibits pyroelectricity. If the dipole of the crystal is reversed by applying an
electrical field, the crystal shows ferroelectric property. Out of the 32 classes of
pyroelectric crystals, only 10 are polar crystals showing charge separation even in

the absence of an electric field. All the polar crystals are pyroelectric.
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15.11 Self Learning Exercise

Q.1  Define the ferroelectric materials.

Q.2  Explain the characteristics of ferroelectric materials.

Q.3  Explain the Curie’s temperature for ferroelectric materials.
Q.4  Write the examples of ferroelectric materials.

Q.5  Write a short note on antiferroelectric materials.

15.12 Summary

This unit deals with the study of a class of dielectric materials called as
ferroelectrics. First of all the general characteristics are discussed i.e. spontaneous
polarization, ferro-paraelectric transition and ferroelectric hysteresis. The most
popular theory of ferroelectric materials known as dipolar theory is discussed in
detail. In the next step the theory for displacive transition is discussed in detail to
explain the transition in ferroelectric materials. The next section is related to
antiferroelectric materials and the existence of spontaneous polarized regions
called as domains. In both ferroelectric and antiferroelectric the existence of
domain and the hysteresis is discussed. The last section of the unit deals with
piezoelectric materials and pyroelectric materials. A brief discussion is presented

here on both these materials.

15.13 Glossary

Dielectric: Insulator

Dipole: The arrangement of two equal and opposite charges separated by a
distance

Polarization Vector: The total dipole moment per unit volume.

Spontaneously: Automatically (without electric field here)

Ferroelectric: A class of dielectric materials

Hysteresis: Property of materials (here of ferroelectric implying lagging of P with
E)
Perovskites: Kind of structure name.

Cooperative: Combined
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Orientation: Direction

Deformation: Related to some types of defects

Analogous: Similar

Counterpart: Similar to some in other stream.

Nucleation: Combining or get bigger.

15.14 Exercise
Q.1 Explain the dipole theory of ferroelectric materials in details.
Q.2  Discuss the theory of displacive transition of ferroelectric materials.
Q.3  Write a short note on ferroelectric domains.
Q.4 Explain the difference between ferroelectric and antiferroelectric materials.
Q.5  Write a short note on piezoelectric materials.
Q.6  Explain the concept of pyroelectricity.
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UNIT-16

Diamagnetism and Paramagnetism

Structure of the Unit
16.0  Objectives
16.1  Introduction
16.2 Langevin Diamagnetism Equation
16.3  Quantum Theory of Diamagnetism
16.4  Self Learning Exercise-I
16.5 Langevin Theory of Paramagnetism
16.6  Quantum Theory of Paramagnetism
16.7  Self Learning Exercise-11
16.8  Summary
16.9  Glossary
16.10 Answers to Self Learning Exercises
16.11 Exercise
References and Suggested Readings
16.0 Objectives

In this unit we study the dia and para magnetic properties of materials.
After going through this unit you will be able to explain the properties and
classical and quantum mechanical model of diamagnetic and paramagnetic

materials.

16.1 Introduction

Substances are classified into groups in terms of both the magnitude of their

magnetic properties and the temperature dependence of these properties.

Magnetism originates from the magnetic moment due to the rotational
motion of charged particles. An electron revolving in an orbit about the nudeus in
an atom is equivalent to circular current and behaves like a magnetic shell or tiny

magnetic doublet possessing a magnetic moment. Thus electronic orbits are
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associated with a magnetic moment. Since most of the atoms include several
electronic orbits, their orbital planes are not usually parallel to each other and the

sense of rotation is not essentially the same, two cases arise:-

1. The arrangement of orbits be such that the vector sum of magnetic moments is
not zero and the atom as a whole has resultant magnetic moment. This effect
gives rise to paramagnetic substance whose atoms or molecules are assumed to
possess a permanent magnetic moment. Consequently, on the application of
external fields, the atoms of such a substance will rotate in the field direction

increasing there by the magnetic induction.

2. The number and orientation be such that the vector sum of magnetic moment is
zero. Consequently, there should be no directive rotating action upon the atom
when subjected to external field but actually the field will cause a rotating action
owing to its influence on the individual electronic orbits. This action produces an
induced magnetic moment which according to lenz's law will be in a direction
opposite to the field and hence tend to decrease the magnetic induction.

Substances built up of such molecules or atoms are diamagnetic .

16.2 Langvin Diamagnetism Equation

Electric orbits are associated with a magnetic moment. Since most of the
atoms include several electronic orbits, their orbital planes are not usually parallel
to each other and the sense of rotation is not essentially the same. When the
number and orientation of the electronic orbits is such that the vector sum of
magnetic moments is zero then there would be no directive rotating action upon the
atom when subjected to external field, but actually the field will cause a rotating
action owing to its influence on the individual electronic orbits. This action
produces an induced magnetic moment which according to Lenz's law will be in a
direction opposite to the field and hence tend to decrease the magnetic induction.
This action is called diamagnetic action and the substance built up of such

molecules are called diamagnetic substances.

A quantitative discussion of the effect of magnetic field on the motion of an

electron in an atom will now be taken as follows:

Since any orientation of electronic orbits with respect to the applied field direction

is possible, we take angular momentum L in any arbitrary direction relative to
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to the direction of H as shown in Fig. (2.1).
H, .

dLa

La

Fig. 16.1 : Precesion of angular momentum

The magnetic dipole moment will be

— e
= . = ¥ (1)
# [2mcj ¢

where m is the mass and e the charge vector around H on electron. The minus sign

signifies that the dipole moment points in a direction opposite to L.

The magnetic field H exerts a torque ;x H on the dipole so that we may write
dL _ 7,

BE = uxH
dt
= ( e L, xH (2)
2me
which is the equation of motion of vector L, precessing about H with an angular
frequency.
o eH
L 2me

where @, is called the Larmor's frequency which is quite small even for high value

of H as compared to the angular frequency of the electron in its orbit.

While deriving the relation for Larmor's frequency it has been assumed that L can
assume any direction relative to H or L, is independent of H which implies that

orbit is not deformed under the influence of magnetic field. Equation (2) predicts
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that the plane of the orbit is not stationary but precesses about H. Since there is
charge on the electron, this precession gives rise to an induced magnetic moment
with a component opposite to the direction of applied field H. Suppose r, is the
projection of radium r of an orbit on the plane perpendicular to the magnetic field.
Then component of induced magnetic moment opposite to that of H will be,

(44 )imteca =~ [2‘3] meo, ;2 3)
mc

For single electron, if an atom consists of z electronic orbits lying in all possible

directions in space, the total induced magnetic moment is

e 2
(H)ind = (2"’10) me Zr]. (4)
where ;12 represents the mean of the square of the projections of the orbits radii on

a plane perpendicular to the field H. If x, y and z are the co-ordinates of any point

on an orbit of radius r, then

R

For a spherically symmetric atom, we have

-2 -2 —i

X =y =z

On  Preg fas

If z - axis lies in a plane perpendicular to the field H, then

2= 32,52=00=23 7

So that equiation (4) becomes

B 2.2
('u)ind a ( ZmC}m(JL z 3 !
= _[e? 22;2 (on putting for WL)
4mc2 3

_ 2
= He =2
T

6mce
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If there are z orbits (equal to the atomic numbers, i.e. each atom containing z

electrons) ,then the total induced magnetic moment will be

(u)m ™= _ZHe 2 (5)
6me?

Therefore diamagnetic susceptibility is given by

A wa= (1),  peratom
H
= —Ze* 2
2

6mce
If there are N atoms, each atom containing Z electrons, then susceptibility is given
by

Ya= Nz 72 ©6)
6mc2

The following points are note worthy:
(i) From, -2 2(-2" we get (F2) =3 (;12) which represents the mean square

¥l = 3 s 2

distance of the electrons from the nucleus. This implies that susceptibility is thus

determined essentially by the charge distribution in the atoms.

(i1) Equation (6) represents that diamagnetic susceptibility is independent of the
field applied and the temperature, and is true according to experimental

verification.

(ii1) As stated in the beginning, the effect of field H on individual electron will be
the same irrespective of the fact that the total magnetic moment of the atom is
zero or not. This mean each electron orbit would acquire an additional induced
moment opposite to the direction of applied field, modifying the magnetic
moment of the atom as a whole in the same sense. Thus it predicts that all

substances should exhibit diamagnetism.

16.3 Quantum Theory of Diamagnetism

We know that for a charged particle moving in an electromagnetic field, the

Hamiltonian, H, is
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1 e ’
H=(P+AJ —eg
2m ¢

where P is the momenta of the particle,¢ is magnetic scalar potential and A is
magnetic vector potential. If we putP=—1h V

According to schrodinger co-ordinate representation, then

2
H= 1 (—ihV+€AJ —ed
2m @

A AN A

N N N
where .0 .0 0 and
V:[— —+k— A:iAx-[-jAy-[-kAZ

+
ar "y Bz

Therefore

2
it =i C 484 |[-inr P 184
c Ox ¢ y Ox ¢

X - component

6)(2 oxlec y c X a C
T, 82 5 ey 22, | 24 in 9 121242
h _indd e f_xl %oy
8 x xOx\c c Ox
= 2 2
7207 e[ 24X 5429 |1 424
8x2 c X Ox c2

in which we have implicity operated over some function, say V.

Writing for all the three components, x, y and z, we have
2 &, o o
.2 € ;. vy €
[ih V+eAJ - _12v2 _in€ diva—2ih (Ax&“y@xﬂzaj +
&4 (64 C

2
€ 42
C

Thus the Hamiltonian becomes
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Ko - Bl g2 e gy ihe (Axamya_f/lza} X
2Zm mc me
2
e : A2_e¢
2mce

Putting divA = 1@5
c a
We get
2 : _ N = a
_h ihed ihe| 4. 14, +4. < 5
o __( Yox Vay' ZazJ e 2
2m mcc mc

If the external field H is uniform, we may choose A as
- 1= _
A=—Hxr
2
If the field H lies in Z- direction only, then

H=H =0 andH=H,
So that

1
Ax:—_y HZ:—_yH

2 2
Ay =——xH
Sothat A,=0
|
ax O vy vz 0 |- M 9,0

’ v oz 2 oy " ox
and ¢ = 0¢ = o e _o

oo ot\ r
also A°=A. A

Ll )| (o)
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1
4

- erz(x2 +»2)

y2H2 -+ isz

Putting these values, we get for H,

2

_ & o) 2

H= A g2 0 gl 0 40 W & pord, 2y .4
2m 2mc ox ~ Ox Smcz

Thus the additional term in Hamiltonian due to magnetic fields is

_ ihe o o o )
W(x202) " o,

2mc Oy ~ Ox ame2
We note that :
(i) First term can be written as
=B . ; —ihg —y(—ihaJ
2mc oy Ox

_eH |
2mc

Z

where L, is the Z- component of the angular momentum. So the term is

= H
=—(—u.H
which means that the electron motion is associated with a permanent

magnetic dipole moment [L. Further the term is proportional to the orbital angular
momentum compenent L, and in mononuclear systems give rise only to

paramagnetism.

(i)  The second term, if written for a unit volume of a substance containing N
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atoms, each atom containing z- electrons, would become

2 2
= H
Z(x +y)
8mc i

_ 242
NZ € H2 p2

8mc
where 52 represents the mean squares of the radii of the projections of orbits on a
plane perpendicular to H. Now, if the magnetic field produces induced dipole
moments in the substance, then the corresponding energy term would be quadratic
in H. Thus the above term is considered as the energy term associated with the

diamagnetism of the solid.

Thus, comparing it with A ¥ o H we get
= 2\ _
/l,dla —-NZ[ [ . ]PZ

we know that 7 = % ;2

Here we have ;32 instead of 7. so that
52 _ 2 ;2
3
Putting it, we have

Aa=-NZ 7 32 ;2

2

6mc

With the application of quantum orbital theory, the expression for , was
_ —2
corrected by substituting the value of r2. For hydrogen like atoms, » from Bohr's

theory is given by ;72 22 W (5 - 3 12
22 2 2

where n is radial quantum number and k is azimuthal quantum number and z is the

effective nuclear charge, a, is the radius of the inner most orbit in the hydrogen
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atom (normal state) and is equal to 0.528 x 10" cm.

Therefore atomic diamagnetic susceptibility is given by

2
A= 0.79x1076" [ 2,232
22 2 2
Theoretical value of susceptibility, when put to experimental verification,
was found to be much smaller than the experimental value. To make the expression

of susceptibility move accurate, Van-Vleck modified the expressian as follows.

2
A= —0.79><10—6"—(5112—731(”1)_1j

72 2

where [ is orbital quantum number equal to (R-1) for molecular hydrogen, the

susceptibility will be

An=24,

2 _
~2x-0.79x10~6" an—3l(l+l) 1}

22 -

=2x—0.79x10~6| 210+ L
22

or ¥, =-4.74x10°
The experimental value of §, , the molar susceptibility, For hydrogen is found to
be - 4.00 X10° and is thus quite in agreement with the above calculated value.

In 1927, Pauling extended the equation (2) to atoms with many electrons

using the wave mechanical theory. He deduced the relation

Z.=-079%10° _ ,2 Fnz_y(m)—q

212 2

(z—07)
where summation extends over all the electrons in the atom. O is the

screening constent. Later on in 1927 stoner evaluated the value of xr by applying

the result of Hartee self consistent field calculations. For helium predicted value

¥=-1.86X10° whereas the experimental value is 1.906 X 10”. Slater, Augus and

others gave other useful expressions.
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16.4 Self Learning Exercise-I

Section A:Very Short Answer Type Questions
Q.1  Write the formula of Langevin diamagnetism.
Q.2 Write the formula of atomic diamagnetic susceptibility?
Q.3  What is the value of diamagnetic susceptibelity for copper?
Section B: Short Answer Type Questions
Q.4  What is Curie temperature?
Q.5 Define magnetic susceptibility?

Q.6  Explain the properties of diamagnetism material?

16.5 Langevin Theory of Paramagnetism

Some atoms and ions have permanent magenetic moments arising out of
particular combination of orbital and spin magnetic moments of the electrons.
These magnetic moments, in the absence of any external field, point in random
directions so that there is no resultant external magnetic moment. This happens
because the interaction energy between the dipoles is smaller than the thermal
energy at that temperature (K;T). Thus thermal agitation that gives rise to
randomising effect predominates. When an external magnetic field is applied, the
magnetic moments tend to line up along the field direction and produce a net
magnetisation, counteracting the thermal agitation. When the atoms and ions are
acted upon individually, with no mutual interaction between them, the effect is

called paramagnetism.
On the basis of kinetic theory, for the explanation of paramagnetism
property in material Langevin used the following postulates:-

1. Due to motion of electrons in an atoms of paramagnetism material are permanent
magnetic moment, a atom in which odd number of electrons i.e. whose internal
electron orbits are not filled, they has permanent magnetic moment. Permanent
magnetic moment of atom is equivalent to the magnetic moment of short

magnetic dipole.

2.In the absence of an external magnetic field, the probability of direction of
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magnetic moment or magnetic dipoles of an atoms is equal in all directions.
Hence at specified direction the sum of magnetic moment of the atoms is zero.

3. When an external magnetic field is applied which tends to produce alignment of
the magnetic axes of atoms in its direction of external magnetic field. But the

thermal agitation in material causes disorder and oppose the alignment of atoms.

Since both effects are opposite, resultant state of matter is decided by the both

effects.
4. According to kinetic theory, in equilbrium those atom whose magnetic axis lies
between & and € +d 6 is directly proportional to sin 0 49 of its number.

5. According to equipartition of energy, the number of atoms ( magnetic dipoles)

whose magnetic potential energy is directly proportional to exp (-u/k;T).

Let us consider the unit volume of a paramagnetic material containing N
atoms or molecules, each bearing a permanent magnetic moment A{. When the

external magnetic field B is applied, the magnetic potential energy of magnetic
dipoles or atoms whose magnetic axis makes an angle 0 with the filled is
M =— UBcos 0 (1)

According to kinetic theory, number of atoms inclined at an angle 0 from

the external magnetic field

dN =N exp {yBcosH/K T} sin d 0 @)
B

where K i1s Boltzmann constant and T is temperature of the material.

The average component of the magnetic moment of all atoms along the external

magnetic field isgiven as

T T
< U>= | cos@dN _N | ycos@exp{uBcos@/KBT}sinQ
o

0
4 T
[ dN N exp[,uBcosQ/K T}sin@
0 0 B
Let
HB _ .
KT
B
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T
. chos@ex cos@sin@do
0

<H

T
[ e¥¢089 Gin a0
o0

Let I: ?e)CCOSQ Smgdg

0
dl _«
d_ jcos@excosgsianB
o0
< == pdl
1 dx
Butl= ?excosﬂ sin0do = _excose -
o X 0
e
X

<u>=U ex+e_x_l

¥ =
e —e X

X

- Hu {cothx—1:|_ p L (x)

where L (x) = |:cothx— 1
X

Intensity of magnetisation of material
M=N<U>=N UL (x)

or M=M,L (x) =M, (Cothx - I)
X

where Mg =N U is called saturation intensity of magnetisation.
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The graph plotted between Langevin's function L(x) and x is as shown in Fig.
(16.2)

10— .

(MO.6-—

04

1 2 3 < 5

X

Fig. (16.2) : Variation of Langevins funcion L (x) with x
Case-1:When B>>K,T 1e. x>> 1 ,then for large value of x is obtained
corresponding to strong intense field and at low temperature.

Atx>>1 LetL (x) = 1
M =M )

i.e. at strong intense field and low temperature intensity of magnetisation is in

saturation state.

Case-2. When HB << KT i.e. x<<I then this position is obtained at weak
field and high temperature.
1 x
At x<<1, Letcothx~| 4+ (6)
X
Intensity of magnetisation M =M_* = N uuB
3 3Kk T
B
Or M= N qu B
3K T
B

Magnetic Susceptibility
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= 4 Ny? (7)

2
where C = J”ON M is called Curie constant.

3K T
B

As the sucessful explanation of Langevin's theory for gases, dilute solution of
paramagnetic material and temperature dependence (equation 7) of magnetic
susceptitility of gadolinium sulphate (solid) but this is failure to explanation of
compression and cooling gases, concentration solution of paramagnetic material,
temperature dependence of magnetic susceptibility in solid and crystal ,because the

following shortcoming in this theory.

(1) If the permanent magnetic moment is associated with and it is directly
proportional to the angular momentum of moving electric charges then the
magnetic moment cannot have a fixed magnitude but must take all values
ranging from - 0 g + O,

(i) When the atom of permanent magnetic moment [lis placed in a weak

magnetic field B, it cannot place itself at any angle O to the external magnetic

field as was supposed by Langevin.

16.6 Quantum Theory of Paramgnetism

According to classical theory, the permanent magnetic moment of a given
atom rotates freely and can possess any orientation with respect to the external
magnetic field. But According to quantum theory, the permanent magnetic moment
of a given atom does not rotate freely, but limited, with respect to the external

magnetic field to a finite set of orientations.

Let the permanent magnetic moment in atoms of a material Let N be the

number of atoms per unit volume of a material and J be the total angular
momentum in each atom. According to quantum mechanics, the possible number
of components of its magnetic moment along magnetic field B is (2J+1) and the
value of these component

(uz)Jz_mjg!'[B
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where m, =1, (J-1), (J-2) «..vveen.... (J-1),-J

Here m, is the magnetic quantum number, g the Lande splitting factor and the Bohr
magneton.

The magnetic potential energy of atoms in magnetic field
u_ =-puB=-u B=mj B
B H H o 8 H B
From the Maxwell - Boltzmann statistics, average of total magnetic moment

along the external magnetic field in atom is

J
<1u>—2[,u) exp[—u /K T}
-J\ z/g B B

J
3 exp(—u /K T J
=) B B

of
=X|m gu |expjm gu B/K T
-J\ j B j B B

P |
Sexplm gu B/IK T
-J /j B B

Hence total intensity of Magnetisation in material is
M=N<H>

Let y=gH B
" g

KT
B
o
M= Ngu Im exp(m y)
By j ]
J
Y exp(m y)
-J J
= J
Ng My 4 log[z exp(m y)J
dp| =k g
=Ng U, j {loge(ejyﬂeu_l)y-k ..... +e_(J_1)y+e_Jyﬂ
a4
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—(2J+1)y
-Ne p1, 4 p(ke ]
dy | loge

(- )

y Y
e(.]+l] - (J+1/2)

12 —y/2
e

-Ng U, 4
dy |loge

= d sinh J+1 7
=Ng M, o Loge W)
i4 sinh y/2

M=Ng Hy, J+l]cot h(J+l]y—lCOch
2 2 2 z

x=Jy=Jgu B
__ B
KT
B
M=Ng,uBJB(x) (1)
where B (x) = {( 2J+1]Coth(zj+l )x_l Cothx:| (2)
2J 2J 744 .9 4

is known as brillouin function.
Case-1:- When mjg #sB<<KT i.e. x<<I then this condition is obtained at high

temperature and weak magnetic field B. In this condition

a2x2

cothax~ 1 1+
ax 3

Using above approximation in equation (2)

B(x)=~ JUJ+])
3 J
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Nng,z2 B
B j(J+1)
3K T
B

Magnetic Susceptibility of material

Hence M =

u M No2s2 B
: — 1 Ngtp
A= o ) B J(J41) 3)
B
3K T
B

If total magnetic moment [l, is defined from following way:-

K, = gHp \/J(J-I-l) =Py Uy

where P;=g V LI is called effective number of Bohr magneton

2

— U Nu
A "o | i
3IK' T

B

The equation when compared with equation (7) of topic (16.5) 1s found to

be identical with classical result with a difference that in quantum result L

2
replaces [ but from this theory Curie constant is C = JUON H= It is equivalent to

2K
B

experimental value.

Case-2 : When mgll B >> KT 1.e. x>>| then condition 1s obtained at Low

temperature and strong magnetic field B.
In this condition
Coth 0x =1
Using of above approximation in equation (2), We have
B(x)=1
Intensity of Magnetisation M = Ng[1,J = M (Intensity of Saturation)

Hence at low temperature applied strong magnetic field causes
magnetisation of paramagnetic materials to be in saturation state. This is consistant

with experiment.
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(1) Rare earth ions :- The rare earth compound falls under the VI group of
periodic table. These are 14 in number. The shells are complete upto 4d"
consisting of a Xenon core of 54 electrons. In this case most of the atoms are in

lowest energy state and L-S coupling holds good.

12} Dy
(0]

Peff E—

z—>»
Fig. (16.3) : Calculated and observed value of P (in the form of Z function) for

the rare earth ions.

The experimental data have been thoroughly examined by Vanvleck. He

tabulated the mean value of P obtained experimentally and those calculated from
the expression P, =g ,/J(J+])- The full curve represents the effective number
of Bohr magnetons calculated from the above expression, and J and g values were
obtained from Hund's rule and Lande's formula. The vertical lines correspond to
observed values of P_;. These values of P delivered in the case of wide multiples,
agree well with the experimental values except for Sm and Eu.
(ii)  Iron- Group lIons :- The iron group elements fall under the IV group of the
periodic table. They are 10 in number. The sub shells are completed filled up to 3p°
and such shells are partially filled upto 3d. The values of P, were calculated from
Py= gm . But is was found that the result obtained from the ions did not
agree. It has been found that the experimental values lie much closes to
Py =2./S(S+1). the value which would be expected if there were no orbital

angular momentum at all and the magnetism were due entirely due to the electron
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spin.

Stoner has suggested the following explanation in this respect. In the rare
earth group, on the other hand, the paramagnetic 4f electrons are situated relatively
deep inside the ions. Because of the outer electrons filled shells 557 Sp6 ,2the
electrons in these ions are therefore practically screened from the crystalline field.
In the iron group, the paramagnetic 3d electrons are the outermost electrons and
these are therefore fully exposed to crystalline field. Consequently, the orbital
motion is locked into the field of neighbours and cannot orient itself in an external
magnetic field. The electron spin has no direct interaction with electric static field.
Thus orient itself freely in an external magnetic field. Similarly in the iron group

ions ,the contribution of L in magnetic moment is neligible.

16.7 Self Learning Exercise-II

Section A : Very Short Answer Type Questions
Q.1  Write the formula of Langevin theory of paramagnetism ?
Q.2 Write the formula of quantum theory of paramagnetism ?
Q.3  What is the value of Curie constant?

Section B : Short Answer Type Questions
Q.4  Draw the graph between Langevin's function L(x) and x ?

Q.5 What are the postulates of Langevin theory of paramagnetism?

Q.6 The magnetic susceptibility 2><10_3 of a paramagnetic material at
temperature 27°C. If atomic concentration of material is 2.7x10 per m’
then calculate the stable magnetic moment of each atomic dipole in absence

of magnetic field.

16.8 Summary

In this chapter we have discussed diamagnetism, Larmor-Langevin theory,
quantum theory of diamagnetism. We have shown that for diamagnetic materials
classical and quantum theories gives the exactly same expression for magnetic

susceptibility. We have also explained paramagnetism and paramagnetic cooling.
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16.9 Glossary

Paramagnetism: Magnetic property in certain iron bearing minerals that cause

them to be weakly attracted to magnetic field.

Curie temperature: The temperature that a magnetic substance losses it magnetic
properties.

Magnetic saturation: The maximum amount of magnetic energy that can be

absorbed by a magnetic substance.

16.10 Answers to Self Learning Exercises

Answers to Self Learning Exercise-1

Ans.1: B —z.e2 ;2
dia 6mcz
. 2
AnS2: . __079x10-67[ 2,2 32
a 22 2 2

Ans.3: —4.2)(10_6

Answer To Self Learning Exercise-1T
Ans.1:

M= nyzH
Au*N
3K

B

Ans.2: M = NgﬂB JB(x)

5% (7 )
B

2
Ans.3: H Nu
s R

3K
B

Ans.6: —8.55x10~22 4—m?2

16.11 Exercise

Section-A (Very Short Answer Type Questions)

Q.1 Define diamagnetism.
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Q.2
Q.3
Q.4
Q.5

Q.6

Q.7
Q.8
Q.9
Q.10

Q.12

Q.12
Q.13
Q.14

Q.15

What is diamagnetism material ?

Define paramagnetism.

Explain the properties of paramagnetism material.

Explain the difference between diamagnetism and paramagnetism.
Section-B (Short Answer Type Questions)

What is magnetic susceptibility? How does it vary for different types of
magnetic materials.

Distinguish between the dia, para and ferromagnetic materials.
What is physical significance of magnetic susceptibility?

What is Larmor's precession?

What is paramagnetic cooling ?

Section - C (Long Answer Type Questions)

Explain Paramagnetism of rare earth ions and iron group ions. Explain the
quenching of orbital angular momentum for iron group ions.

Discuss Langevin's theory of paramagnetism for a magnetic material.
Discuss Langevin's theory of diamagnetism for a magnetic material.

On the basis of classical theory derive expression for the paramagnetism
susceptibility of free electrons.

Explain quantum theory of diamagnetism.
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UNIT-17

Ferromagnetism

Structure of the Unit

17.0  Objectives

17.1  Introduction

17.2  Properties of Ferromagnetism material
17.3  Curie Point and exchange Integral
17.4  Temperature dependence of the saturation magnetization
17.5  Self learning exercise -1

17.6  Magnons-quantized spin wave

17.7  Thermal excitation of magnons

17.8  Self learning exercise-II

17.9  Summary

17.10  Glossary

17.11 Answers to self learning exercises
1712 Exercise

References and Suggested Readings

17.0 Objectives
After interacting with the material presented here students will be able to
understand
° Concept of Ferromagnetism
L Curie Point of Ferromagnetic material
° Temperature dependence of the saturation magnetization
° Magnons and thermal excitation of them
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17.1 Introduction

Ferromagnetism is an extreme case of paramagnetism. If the permanent dipoles
resulting from the electron spin are very close together in the medium, there is a
quantum mechanical effect, called “exchange” which results in a strong tendency
for the spins of adjacent atoms or molecules to line up parallel to each other, even
in the absence of a magnetic field. This parallel orientation can extend, in an
unmagnetized body, over volumes of a considerable atomic scale. Such a volume

containing parallel orientation of magnetic dipoles, is called a “domain.”

domain a

domain b

crystal boundary

domain a
H
———
domain b
crystal boundary

An ordinary unmagnetized ferromagnetic body contains many domains, each with
a strong magnetic moment, but oriented in different directions. In the presence of
an external magnetic field, the domains change the orientation of their permanent
magnetic moments, lining up with the external magnetic field, until finally when

the external magnetic field reaches a certain large value, the moment reaches a
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limit when all moments are parallel. This limit is called “saturation.” Reversing the
external field reverses the moments, but this reorientation is countered by an effect
similar to friction, so that by the time the external field is reduced to zero, there can
still be a considerable magnetic moment. This is the origin of permanent
magnetism. If the external field is reversed alternately between one direction and
the other, the magnetic moment lags behind the field, resulting in the phenomenon

of hysteresis.

Ferromagnetism tends to decrease with temperature, and the individual domains
lose their magnetic moments at a critical temperature known as the “Curie
temperature.” The origin of this temperature effect is thermal agitation which

opposes the tendency toward orientation.

17.2 Properties of Ferromagnetism Material

1. Large and positive susceptibility.
2. Strong attraction to magnetic fields.
Retain their magnetic properties after the external field has been removed.

Some unpaired electrons so their atoms have a net magnetic moment.

R B

Strong magnetic properties due to the presence of magnetic domains. In these
domains, large numbers of atomic moments ( 10" to 10'5) are aligned parallel
so that the magnetic force within the domain is strong. When a ferromagnetic
material is in the unmagnetized state, the domains are nearly randomly
organized and the net magnetic field for the part as a whole is zero. When a
magnetizing force is applied, the domains become aligned to produce a strong

magnetic field within the part.
6. Tron, nickel, and cobalt are examples of ferromagnetic materials.

7. Magnetization is not proportional to the applied field.

B=L(H+ M)

17.3 Curie Point and Exchange Integral

Ferromagnetism is the phenomenon of spontancous magnetization — the
magnetization exists in the ferromagnetic material in the absence of applied

magnetic field.
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Ferromagnetism appears only below a certain temperature, which is known as the
ferromagnetic transition temperature or simply as the Curie temperature. This
temperature depends on the substance, but its order of magnitude is about 1000°K
for Fe, Co, Gd, Dy. It might be however much less. For example it is 70K for EuO
and even less for EuS. Thus the ferromagnetic range often includes the whole of

the usual temperature region.

Above the Curie temperature, the moments are oriented randomly, resulting in a
zero net magnetization. In this region the substance is paramagnetic, and its

susceptibility is given by
 C
T-T

which 1s the Curie-Weiss law. The constant C 1s called the Curie constant and T is

4

the Curie temperature.

The Curie-Weiss law can be derived using arguments proposed by Weiss. In the
ferromagnetic materials the moments are magnetized spontaneously, which implies
the presence of an internal field to produce this magnetization. Weiss assumed that

this field is proportional to the magnetization, i.e.
B=AM

where A is the Weiss constant. Weiss called this field the molecular field and
thought that this field results from all the molecules in the sample. In reality, the
origin of this field is the exchange interaction. The exchange interaction is the
consequence of the Pauli exclusion principle and the Coulomb interaction between
electrons. Consider for example the system of two electrons. There are two
possible arrangements for the spins of the electrons: either parallel or antiparallel.
If they are parallel, the exclusion principle requires the electrons to remain far
apart. If they are antiparallel, the electrons may come closer together and their
wavefunctions overlap considerably. These two arrangements have different
energies because, when the electrons are close together, the energy rises as a result
of the large Coulomb repulsion. This is actually an explanation of the first Hund
rule according to which the system of electrons tends to have a high possible spin,
which is not forbidden by the Pauli principle. As we see from this example the

electrostatic energy of an electron system depends on the relative orientation of the
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spins: the difference in energy defines the exchange energy. The exchange
interaction is short ranged. Therefore, only nearest neighbor atoms are responsible
for producing the molecular field. The magnitude of the molecular (exchange) field
is very large — of the order of 10'G or 10°T. It is not possible to produce such field
in laboratories.

Let us consider the paramagnetic phase: an applied magnetic field B, causes a

finite magnetization. This in turn causes a finite exchange field B,. If ¥, is the

paramagnetic susceptibility, the induced magnetization is given by
M= y(B,+B,)=x(B,+AM)

Note that the magnetization is equal to a constant susceptibility times a field only if
the fractional alignment is small: this is where the assumption enters that the
specimen is in the paramagnetic phase. Above equation should be considered as a
self-consistent equation for the magnetization. It can be solved explicitly for the

magnitude of the magnetization so that

We know that the paramagnetic susceptibility is given by the Curie law Y, = C/T,
where C is the Curie constant. We then find for the susceptibility of the

ferromagnetic material.
MM C
B I—t%9 7-r

X

The susceptibility has a singularity at 7. = CA. At this temperature (and below)
there exists a spontaneous magnetization, because if C is infinite so that we can

have a finite M for zero B,

174 Temperature dependence of the Saturation

Magnetization

The susceptibility of the ferromagnetic material is

M Cc
# T—¢% T-T

0
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Using the expression we obtained earlier for C (in paramagnetic material), i.e.

oo NP u
3k,
the Curie temperature is given by
r _NAp'u,
3k,
3

(p/x) x 1074

450 500
Temperature in °C

Figure 1: The reciprocal of the susceptibility per gram of nickel in the
neighborhood of the Curie temperature (358°C). The dashed line is a linear
extrapolation from high temperatures.

The Curie-Weis law describes fairly well the observed susceptibility variation in
the paramagnetic region above the Curie point. Only in the vicinity of the Curie
temperature a notable deviations are observed. This due to the fact that strong
fluctuations of the magnetic moments close to the phase transition temperature
can’t be described by the mean field theory which was used for deriving the Curie-

Weiss law. Accurate calculations predict that at temperatures very close to 7.
@

o —
Z (T_T;)IJ:’&
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We can also use the mean field approximation below the Curie temperature to find
the magnetization as a function of temperature. We can proceed as before but
instead of the Curie law which is valid for not too high magnetic fields and not too
low temperatures, we can use the complete Brillouin function. If we omit the

applied magnetic field and replace B by the exchange field B, =AM we find

M = NgJ j1,B, (g‘]‘z#)

where B (x) 1s the Brillouin function. This is a non-linear equation in M, which can
be solved numerically.

Now we shall see that solutions of this equation with nonzero M exist in the
temperature range between 0 and 7. To solve above equation we write it in terms

of the reduced magnetization
M = NgJ u,M

and the reduced temperature

T

- Ng*J*u,A

andm=BJ[E)
t

Graphical solution of above equation for the reduced magnetization m as a function

t

of temperature. The left-hand side of Eq. is plotted as a straight line m with unit
slope. The right-hand side Eq. is plotted vs. m for three different values of the
reduced temperature 7. The three curves correspond to the temperatures 27, 7.,
and 0.5T.. The curve for ¢+ = 2 intersects the straight line m only at m = 0, as
appropriate for the paramagnetic region (there is no external applied magnetic
field). The curve for =1 (or T = T is tangent to the straight line m at the origin;

this temperature marks the onset of ferromagnetism. The curve for # = 0.5 is in the
ferromagnetic region and intersects the straight line m at about m =0.94NLL,,. As

t—0 the intercept moves up to m =1, so that all magnetic moments are lined up at
absolute zero.
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tanh(m/t)

for t=0.5
fort=1
fort=2

0 ] | | | | B
0 0.2 04 06 08 10 12

m —>

The curves of M versus T obtained in this way reproduce roughly the features of
the experimental results, as shown in below figure for Iron. As T increases the

magnetization decreases smoothly to zero at 7 = T ..

The mean field theory does not give a good description of the variation of M at low

temperatures.
M, (T)
Msat(o)
1 . ", 8 &
— - e e,
.- . - & @
08| - .. ., o
| |- o & ®. e,
-9
0.6 | %=
04 —
— - s o 8
02 .. & e,
= g . 8 L
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17.5 Self Learning Exercise-I

Very Short Answer Type Questions
Q.1 State Curie-Weiss law.
Q.2 Define Ferromagnetism.

Short Answer Type Questions
Q.3 What is Curie temperature ?

Q.4 Write down any four properties of Ferromagnetism material.

17.6 Magnons-Quantized Spin Wave

In ferromagnetic materials the lowest energy of the system occurs when all spins
are parallel to each other in the direction of magnetization. When one of the spins
is tilted or disturbed, however, it begins to precess — due to the field from the other
spins. Due to the exchange interaction between nearest neighbors the disturbance

propagates as a wave through the system, as shown in Figure.

FITTVOCCTTT77

= e P

X ¥y & AY I
./ \_/J "\_) (\HH/I '\,,.) LJ! \gJ

Figure 2 A spin wave on a line of spins, (a) The spins viewed in perspective,
(b) Spins viewed from above, showing one wavelength. The wave is drawn

through the ends of the spin vectors.

Spin waves are analogous to lattice waves. In lattice waves, atoms oscillate around
their equilibrium positions, and their displacements are correlated through lattice
forces. In spin waves, the spins precess around the equilibrium magnetization and

their precessions are correlated through exchange forces.

Now we derive an expression for the frequency of the spin waves. We consider a
linear chain of spins with nearest neighbor spins coupled by the Heisenberg

mteraction:
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N
U=-2J)S..5,.,
p=l
where J is the exchange integral and S, is spin at site p. For simplicity we will use
classical theory in which spin operators are replaces by classical vectors.
According to above interaction which involves the p-th spin is

=2J5,.(5,,+5,.1)

This interaction can be rewritten as -4.B, , where |\ =-g/L,S, is the magnetic

moment associated with spin S, and B, is an effective magnetic field or exchange

field acting on this moment due to nearest neighbor spins:

27
B, = _—(Sp—l +Sp+l)

P
EHp
According to classical mechanics the rate of change of the angular momentum

hS 5 is equal to the torque M, X B " which acts on the spin, i.e.

hds,
. He S
ds gu 2T 2J
R S B ) O SRR

Normally the amplitude of excitation 1s very small, so that
T X y
S,~SandS§,,S) << §.

This allows to linearize Eqs:

ds, 2J 5 e v
dlj’ =5 (282 82, -2, ]
das; 2J 3 g .
dl‘P = 75 A [2S}D —Sp — SP-;—]]
ds; ~0

dt
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By analogy with the problem of lattice vibrations we look for traveling wave

solutions of the form
S, =uexpli( pka — wt)]
S, =vexpli( pka — wt)]

where u and v are constants and « is the lattice constant. we obtain

—icou = 2—‘]5[2 —g —e"""}v = ﬂS[l—coska]v
h h

—iv = —2—JS[2— g e’“}u = —4—JS[1 —coska]u,
hi h

These equations have a solution if the determinant of coefficients is equal to zero,
1

0] %(1 —coska)

—%(l—coska) i

This leads to the dispersion relation
4J
w=—_5[1-coska]
h
With this solution we find that v = —iu. This corresponds to circular presession of
each spin about the z axis. Then
S, =ucos[(pka — wt)]
S, =usin[( pka — wt)]
In a long wave limit, ka<<1, we find

N 2JSa’
h

The frequency is proportional to /’. Note that in the same limit the phonon

k2

)

frequency is proportional to .
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hawld$]

m™

kK — a

Figure 3: Dispersion relation for magnons in a ferromagnet in one dimension

with nearest-neighbor interactions.

Generalization to a three dimensional cubic lattice with nearest neighbor

interaction results in

_4ss
h

Q)

z— Zcos(k.5)

where the summation is over the z vectors denoted by O which join the central

atom to its nearest neighbors. In the limit ka<<1 we find for all three cubic lattices

2JSa’
a) P
h

which is the same result.

k2

17.7 Thermal Excitation of Magnons

Spin waves can be quantized in a similar way as phonons. A quantized spin wave

is called magnon. The energy of a magnon mode of frequency 0, with n, magnons

is given by
1
Ek :ha)k(nk +E)
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In thermal equilibrium the average number of magnons excited in the mode k is

given by the Planck distribution
|

The total number of magnons excited at temperature T is

an = [ doD(w){n(w))

where D((®) is the number of magnon modes per unit frequency range. The

integral is taken over allowed values of k lying in the first Brillouin zone. At
sufficiently low temperatures we may carry the integral between 0 and 20 ,because
<n(()>—>0 exponentially as (—>»00.

Magnons have a single polarization for each value of k. In three dimensions the
number of modes of wavevector less than k is (1 /271')3(471'](3 / 3)per unit

volume, whence the number of magnons D(®)d @ with frequency in d@ at @ is

(1/2x) (4nk*)dk !/ dow)dw.

In the longwave limit [@ ~ (2JSa” / 7)k”] (we can use a longwave limit here
because at low temperatures only magnons which have low frequency and

therefore small wavevector are thermally excited), we find
12
2

@:M:az kzz[QJ:a a#

dk

Therefore the density of magnon modes is

1( # 32 2
Dol omz) ©

Thus the total number of magnons is
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32

S () fao (A fat

T AT\ 25 ) e:qj(ha)/kBT)14 205 ) 3 €1

The definite integral is equal to (0.0587)(470).

The number of N of atoms per unit volume is Q/as, where Q=1,2,4 for sc, bee and

fce lattices. Since the excitation of a magnon corresponds to the reversal of one

spin, an / NS is equal to the fractional change of magnetization AM /M,
k

whence

AM 0.0587[1{;}”
M SO \2JS

The result is the Bloch T>” law which is confirmed experimentally.

17.8 Self Learning Exercise -11

Short Answer Type Questions
Q.1 What is magnon?

Q.2 Draw the dispersion relation for magnons in a ferromagnet in one
dimension with nearest-neighbor interactions.

Q.3 State Bloch 7" law.
Long Answer Type Questions

Q.4 Explain thermal excitation of magnons.

17.9 Summary

In this chapter we firstly introduce Ferromagnetism and properties of
Ferromagnetic materials followed by Curie Point of Ferromagnetic material,
Temperature dependence of the saturation magnetization, Magnons and thermal

excitation of them.

17.10 Glossary

Crystal Structure: For crystalline materials, the manner in which atoms or ions

are arrayed in space. It is defined in terms of the unit cell geometry and the atom

positions within the cell.
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Curie Temperature: It is the temperature above which a ferromagnetic or
ferrimagnetic material becomes paramagnetic.

Ferromagnetism: Permanent and large magnetizations found in some metals (e.g.,
Fe, Ni, and Co), which result from the parallel alignments of neighboring magnetic
moments.

Hysteresis (magnetic): The irreversible magnetic flux density-versus-magnetic
field strength (B-versus-H) behavior found for ferromagnetic and ferrimagnetic
materials.

Magnetic Susceptibility: The proportionality constant between the magnetization
M and the magnetic field strength H.

Magnetization: The total magnetic moment per unit volume of material. Also, a
measure of the contribution to the magnetic flux by some material within an H
field.

Relative Magnetic Permeability: The ratio of the magnetic permeability of some
medium to that of a vacuum.

Resistivity :The reciprocal of electrical conductivity, and a measure of a material's

resistance to the passage of electric current.

17.11 Answer to Self Learning Exercises

Answer to Self learning exercise-I

_Cc
r-T,

Ans.2: Ferromagnetism is the phenomenon of spontancous magnetization — the

Ans.l: y =

magnetization exists in the ferromagnetic material in the absence of applied

magnetic field.

Ans.3: Curie temperature is the temperature above which a ferromagnetic or
ferrimagnetic material becomes paramagnetic.

Ans.4:
1. Large and positive susceptibility.

2. Strong attraction to magnetic fields.
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3. Retain their magnetic properties after the external field has been removed.

4. Some unpaired electrons so their atoms have a net magnetic moment.

Answer of Self Learning Exercise-11

Ans.1: A quantized spin wave is called magnon.

Ans.2:
&1 |
|
()0 1
K — T
Ans.3:
AM  0.0587 [kBT]m
M SO \2JS

Ans.4: Section 17.7

17.12 Exercise

Q.1 What is the origin of magnetic dipoles ?

Q.2 How does magnetic dipole relates to the orbital angular momentum and
spin?

Q.3 What is saturation magnetization ?

Q.4 What is the physical origin of the exchange interaction ?

Q.5 What is the form of magnetic interaction Hamiltonian ?
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UNIT-18
Ferromagnetic Domain,

Antiferromagnetism , Ferrimagnetism

Structure of the Unit

18.0  Objectives

18.1 Ferrimagnetism

18.2 Antiferromagnetism

18.3 Self learning exercise -1

18.4 Magnetic domains in ferromagnetic materials
18.5 Self learning exercise-II

18.6 Summary

18.7 Glossary

18.8 Answer to self learning exercise
18.9 Exercise

References and Suggested Readings
18.0 Objectives

After interacting with the material presented here students will be able to

understand

1. Ferromagnetism

2. Antiferromagnetism

3. Ferrimagnetism

4. Origin of domains-Magnetic energy, Anisotropic energy, Bloch wall,

Magnetostriction,

18.1 Ferrimagnetism

The Heisenberg model leads to ferromagnetism, if the constant J is positive. The

parallel aligned state will then have a lower energy then the antiparallel state. The
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negative constant leads to antiferromagnetism or ferrimagnetism. Figure 1b
illustrates an antiferromagnetic arrangement, in which the dipoles have equal
moments, but adjacent dipoles point in opposite directions. Thus the moments
balance each other, resulting in a zero net magnetization. Another type of
arrangement commonly encountered is the ferrimagnetic pattern shown in
Figure 1c. Neighboring dipoles point in opposite directions, but since in this case
the moments are unequal, they do not balance each other completely, and there is a

finite net magnetization.

Now we discuss the ferrimagnetic arrangement.

HEE HLLMJJ

{a) {b)

Figure 4: a. ferromagnetic, b. antiferromagnetic, c. ferrimagnetic

The most familiar example of a ferrimagnetic material is magnetite, Fe;O,. More
explicitly, the chemical composition is FeO.Fe,O,, showing that there are two
types of iron ions: ferrous (doubly charged), and ferric (triply charged). The
compound crystallizes in the spinel structure. The unit cell contains 56 ions, 24 of
which are iron ions and the remainder oxygen. The magnetic moments are located
on the iron ions. If we study the unit cell closely, we find that the Fe ions are
located in either of two different coordinate environments: A tetrahedral one, in
which the Fe ion is surrounded by 4 oxygen ions, and an octahedral one, in which
it is surrounded by 6 oxygen ions. Of the 16 ferric ions in the unit cell, 8 are in one
type of position and 8 are in the other. Furthermore, the tetrahedral structure has
moments oriented opposite to those of the octahedral one, resulting in a complete
cancellation of the contribution of the ferric ions. The net moment therefore arises
entirely from the 8 ferrous ions which occupy octahedral sites. Each of these ions

has six 3d electrons,

whose spin orientations are MM . Hence each ion carries a moment equal to
4 Bohr magneton.
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Figure 5: Spin arrangements in magnetite, FeO.Fe203, showing how the

—y

moments of the Fe3+ ions cancel out, leaving only the moments of the Fe2+
ions.

There are many other materials which have ferrimagnetic properties. An important
class of magnetic oxides is known as ferrites. The usual chemical formula of a
ferrite is MO.Fe,0,, where M is a divalent cation, often Zn, Cd, Fe, Ni, Cu, Co, or
Mg.

Now we calculate the Curie temperature and susceptibility of ferromagnets using

the mean field theory.

For this we assume that the lattice consists of two types of ions which have

different magnetic moments and positions at sites A and B. We assume that there is
an antiparallel interaction between the A and B sites so that B, = -AM, and

By = -AM, , where A is positive. We define Curie constants C, and C, for the ions

on the A and B sites. Within the mean field approximation we obtain
C,
MA :?(BO_AMB)

My =2 (8,~ M)
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where B, is the applied field. These equations have a nonzero solution for M, and
M, in zero applied field if

T AC,
ae, 1|70
So that the ferrimagnetic Curie temperature is given by
T.=1C,C,
We solve above equation for M, and M, to obtain the susceptibility at 7> 7'
= M, +M,
B,
G+ G)T =24C,C,
X = T? _ Tcz

This result is more complicated than that for ferromagnets. Experimental values for

Fe,O, are plotted in Figure3. The curvature of the plot of I/ versus T is a

characteristic feature of a ferrimagnet.
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Figure 3

Many ferromagnets exhibit a very interesting behavior of the saturation

magnetization versus temperature which is shown in Figure 4.
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Magnetic moment in pp per formula unit

Figure 4

18.2 Antiferromagnetism

An antiferromagnet is a special case of a ferrimagnet for which both sublattices 4

and B have equal saturation magnetizations.

In an antiferromagnet the spins are ordered in an antiparallel arrangement with

zero net moment at temperatures below the ordering temperature which is called

the Néel temperature. Thus C, = C,, and T,=AC. where C refers to a single
sublattice. This expression is identical to that we obtained earlier for ferromagnetic
materials. However, in this case the susceptibility in the paramagnetic region
behaves in a different fashion. For 7 > T, we obtain

_2CT-2AC* _ 2C
T°—(AC)*  T+T,
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At and above the Néel temperature the susceptibility is nearly independent of the
direction of the field relative to the spin axis. However, below the Néel
temperature the susceptibility of antiferromagnets depends strongly on the
orientation of magnetic field. There are two situations: with the applied magnetic
field perpendicular to the axis of the spins; and with the field parallel to the axis of
the spins.

For B, perpendicular to the axis of the spins we can calculate the susceptibility
from the energy density which is

U=AM M,—B,(M ,+M,)=-AM" (1 - %(2&)} —~2B M

where M = M, |= [M; |, and the angle that the spins make with each other is 2

(Figure 5a). In Figure Magnetic susceptibility parallel and perpendicular to the
tetragonal axis.

(b}
Figure 5

The energy is a minimum when

auv _ 0=4AM’p-2BM

de

_ BU

T oam

so that
2Mop 1
L= B, 7
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In the parallel orientation (Figure 5b) the magnetic energy is not changed if the

spins make equal angles with the field. Thus the susceptibility at T=0K is zero.

% =0

The parallel susceptibility increases smoothly with temperature up to 7,. The

X 1> X for MnF, are shown in Figure6.
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Figure 6

18.3 Self Learning Exercise -1

Very Short Answer Type Questions
Q.1 Write down example of ferrimagnetic material.

Short Answer Type Questions

Q.2 Design ferromagnetic, antiferromagnetic, ferrimagnetic pattern.

Q.3 Define antiferromagnetic arrangement.

Q.4 What 1s Neel temperature?

18.4 Magnetic Domains in Ferromagnetic Materials

Magnetization Curve

If we apply a magnetic field to a previously demagnetized ferromagnetic specimen
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its magnetization will gradually increase. Starting from point O, the magnetization
increases relatively fast at first, then the increase becomes slower, until it reaches a
constant value at point A. At this point, the specimen is saturated. This curve is the
initial magnetization curve. The saturation magnetization M, is equal to the

spontaneous magnetization.

Figure 7: (Magnetization curve) The coercivity B is the reverse field that
reduces M to zero. The remanence M_ is the value of M at B = 0. The

r

saturation magnetization M is the limit of M at large B

If the field, B 1s now decreased, M does not retrace the initial magnetization curve,
but decreases more slowly and when B reaches zero, M still has a non-zero value
M. This is the largest magnetization we can get in zero field. It is called the
remanent magnetization or remanence. In order to decrease M further, we must
apply a field in the opposite direction. When the reverse field is sufficiently large,
M passes through zero. The reverse field needed to bring the magnetization to zero
from remanence is called the coercive field or coercivity B.. A further increase of
the reverse field results in increasing M in the direction in which / is now applied.
Eventually, M reaches the saturation value M, again. If we continue to change B
between large values in opposite directions, M will vary repeatedly along the
closed loop. This loop is called the Ahysteresis loop.

Magnetic Domains

Within each domain the magnetization is uniform and equal to the spontancous
magnetization. However different domains are magnetized in different directions.

Now if we calculate the average magnetization of this sample it will not be equal to
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the spontaneous magnetization. The average magnetization of a specimen will be

than M and could even be zero (if we have the appropriate domain configuration).

Why ferromagnetic materials are subdivided into domains rather than be uniformly
magnetized ? We know that a system will always be in a state in which its energy
is minimum. We have to explain therefore why a subdivided state has a smaller
energy than a uniformly magnetized state. There are four types of energy which

contribute to the total energy of the material.

1. Exchange energy

This is the energy which is responsible for ferromagnetism of magnetic materials.
The exchange coupling between nearest neighbors is significant and results in
parallel alignment of the magnetizations in ferromagnetic materials. In a classical
view of the Heisenberg representation the exchange coupling between nearest

spins can be written as follows:
E,=-2J55,=-2JS.S,cos0

where J 1s the exchange integral and S; and S; are two neighboring spins. The sign

of the exchange integral determines whether we have ferromagnetic or

antiferromagnetic coupling. For ferromagnetic materials J is positive.

If there were no other type of energy to consider, then obviously all magnetic
materials would be magnetized to saturation all the time. In the presence of other
interactions the exchange coupling tries to ensure that the angle between them is as

small as possible. Because the exchange interaction is strong, we may assume that

the angle between two spins O is small. In this case
2 2
E_~2JS°6¢p" /2+const

where we assumed that $=S=S,. The constant is independent of angle and can be

put equal to zero because we can measure all the energies relative to this constant.

Now consider a material with a simple cubic structure with a lattice constant a. Let
X, y and z to be the Cartesian axes and assume for simplicity that the magnetic

moments are parallel everywhere to yz plane. The orientation of magnetic moments

varies with x so that (0 is the angle between the magnetic moment and the y-axis

and 6([) is the angle between neighboring moments. Because 5([) is normally very
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small ,we can regard it as a continuous function of x and therefore

do
op ~a—
Y
Therefore the exchange energy per unit volume is
JS*a® d d
E, ~—=(EFy = aEy
Vo odx dx

where A is the exchange stiffness constant which can serve as a characteristic of a
ferromagnetic material. A typical value for the exchange stiffness constant in

ferromagnetic metals is 10 erg/cm.

2. Magnetostatic energy

Why a magnetic material should not always be uniformly magnetized like as is

shown in Figure 8a.

The state of uniform magnetization has the lowest possible exchange energy, since
all adjacent spins are parallel to each other. However, the exchange energy is not
the only type of energy that a magnetic material has. This state costs a large
amount of magnetostatic energy. The magnetization generates north poles on the
top surface and south poles on the bottom surface. These poles act as the source of
magnetic field. They can be thought as “magnetic” charges. These poles produce a
magnetic field which is shown in Figure 8a.
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Figure 8

In addition to the field outside the specimen there is also field inside the specimen.

This field is in the opposite direction to the magnetization. This field tries to
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demagnetize the specimen and is called the demagnetization field B, The

respective energy is called magnetostatic or demagnetization energy. The density

of this energy is given by

1
Em == MBﬁ'
2
The value of B, depends on the shape of the specimen, and is usually written as
B,=-NM,
B dz _N zM z
B = _N rM X

where N_, N , and N_ are the demagnetization factors. This factor, which is large
for a flat salﬁple and small for an elongated sample, is equal to unity for a sample
in the shape of a thin, flat disc normal to the field. The magnetostatic energy is of
the order of 10 erg/cm3. The fields which are produced by the uniformly
magnetized sample are huge and the magnetic system will try to reduce them.

What happens if the specimen is subdivided into two domains (Figure 8b). In this
case the top surface carries north poles on the left and south poles on the right, and
the bottom surface carries south poles on the left and north poles on the right. The
demagnetizing field does not extend from the top surface to the bottom, but it is
confined to the region near the two ends of the specimen. As the specimen is
further subdivided into smaller domains, the effect of the demagnetizing field

becomes even smaller (Figure 8 c.d).

What happens with the exchange energy in a state where the magnetic sample is
subdivided into domains. You see that this state does not correspond to a minimum
of the exchange energy. The exchange energy is minimized for uniformly
magnetized material. However, the exchange interaction is quite short-ranged.
Therefore, only spins near domain boundaries will experience unfavorable
exchange interactions with the nearby spins in the neighboring misaligned domain.
On the contrary, the dipolar interaction is long-ranged. Therefore, all the spins in
the sample are involved in the magnetic dipolar interactions. And therefore,

subdivision into domains is energetically favorable.
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We see therefore that the main reason for the subdivision into domains is

magnetostatic energy.

3. Anisotropy energy

What is wrong with a configuration in which magnetization is gradually rotates? If
the magnetization rotates very slowly, it has very little exchange energy. It appears

however that this configuration does not normally exist.

There is usually a structure consisting of uniformly magnetized domains, separated
by narrow boundaries. The reason is that there is another kind of energy which is
called magnetic anisotropy. It arises from the crystalline nature of most magnetic

materials. That is why it is often called magnetocrystalline anisotropy.

Due to crystalline structure of most magnetic materials the directions in which the
magnetization is allowed to point are restricted. The magnetization prefers to be
parallel to certain crystallographic directions. In this sense crystals are anisotropic.
If the magnetization deviates from these directions there is an extra cost in energy

which is called the anisotropy energy.

The origin of magnetocrystalline anisotropy is spin-orbit interaction. The
magnetization of the crystal sees the crystal lattice through orbital overlap of the
electrons: the spin interacts with the orbital motion by means of the spin-orbit
coupling.

Magnetic anisotropy reflects the symmetry of the lattice. In cubic monocrystals the

anisotropy energy can be expressed as
_ D D 32 . B0 0
E =K (a0, +a,a, +a,0;)+ K0 a,
where K is the first order ,

K, is the second order anisotropy constants and

Q,, OL,, O, are the direction cosines referred to the cube axes.

This form of the expression comes from symmetry considerations. It can be shown
that this expression is invariant under all transformation of the cubic symmetry. If
constants K, and K, are positive (of the order of 10° erg/cm3), the anisotropy
energy has a minimum when the magnetization is aligned along (100) direction.

This is the case for example for iron. (100) is called the easy axis because the
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magnetization can be very easily saturated if the magnetic field is applied in this

1&0@/

direction.

[111]
= 1200[
=
= 800
=
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Figure 9: Magnetization curves for single crystal of iron. From the curves for
iron we see that the [100] directions are easy directions of magnetization and
the [110] and [111] directions are hard directions.

This can be seen from above Figure 9, where the magnetization of iron as a
function of the magnetic field is shown. If the magnetic field is applied along (100)
direction the magnetization very rapidly riches the saturation. On the contrary, if
the magnetic field is applied along (110) or (111) directions ,the magnetizations
reach the saturation only in a relatively high fields. That is why (110) and (111)
axes are called the hard axes of magnetization.

In uniaxial crystals which have tetragonal, hexagonal and trigonal symmetries, the

anisotropy per unit volume can be written as
. 2 =4
E_=K,sin"0+K,sin" 0

where 0 is the angle between the magnetization and the main symmetry axis. If
K,>0 the magnetization prefers to be parallel to the symmetry axis. In this case this
axis 1s called the easy axis. If K,<0 1t prefers to be perpendicular to the symmetry

axis. In this case it is called the hard axis.

Now let us return to the domain structures. The domain configuration with
gradually rotating magnetization is not possible because it would cost too much

anisotropy energy because in a large part of the specimen the magnetization is not
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parallel to an easy direction. The magnetization prefers certain direction in crystals
and can not rotate gradually over long distances. In order to reduce the anisotropy

energy the domains have to have abrupt boundaries.

This configuration would have very little exchange, magnetostatic and anisotropy
energy if this is a cubic crystal and this is (100) direction. It turns out however that
simple structures with large domains do not usually occur. We usually have a
much larger number of much smaller domains. In order to understand why it

happens we have to consider the magnetoelastic energy.

4. Magnetoelastic energy

When the magnetization of the material is changed, there is a slight change in its
dimensions, generally of the order of 10 or less. Some materials expand in the
direction of the magnetization, others, for example nickel, contract. This effect is
called magnetostriction. The materials which expend are said to have positive
magnetostriction, the materials which contract are said to have negative
magnetostriction. Therefore, the change in the magnetization of the material results
in elastic distortions. The energy associated with these distortions is called the
magnetoelastic energy. The larger the domains are, the more elastic energy is
needed. It is therefore favorable to form smaller domains at the domain boundaries

of larger domains. This costs less elastic energy to hold the domains together.

Domain walls

In order to complete the picture about domain structures we should consider the
boundary between neighboring domains which called domain walls. Qualitatively
it is clear that the width of the domain wall is determined by the balance between
the exchange energy and the anisotropy energy. If the exchange is very strong and
anisotropy is small ,we can expect that the width of the domain wall is large. On
the contrary, in the case when the exchange energy is small and anisotropy is large,
the width of the domain wall should be small.

In order to calculate the width of the domain wall we assume that we have a 180°
domain wall as is shown in Figurel0. That means that this wall separates two
domains magnetized in opposite directions — the magnetization rotates by 180

degrees.
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Figure 10

The exchange energy per unit area of the domain wall is

(225

dx

where O is the domain wall width. For the case considered we can use estimate

2)-(5)

So that
2
E, =4~
For the anisotropy energy per unit area we take a rough estimate
E,_=Ké

where K is anisotropy constant. The total energy of the domain wall per unit area is
2

E=E,_+E, =A%+K5

dE

In the equilibrium we have —=0
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which gives

0 =nJA/K
and FE =2mVAK

For typical values A~10‘6erg/cm and Kml()serg/cm3 we have O~100nm. The typical

size of the domains is 1-100{tm and therefore the width of the domain walls is
much smaller. That is why the domain structure consists of uniformly magnetized

domains separated by narrow boundaries.
The Effect of Applied Field and Domain Wall Motion

Now we consider qualitatively the effect of applied field on the domain structure.
The applied magnetic field tends to align the magnetization parallel to the field.
There are two ways to reduce the energy. First, the domain wall can move, thereby
increasing the volume of the domain whose energy is lower and decreasing the
volume of the other. Second, the magnetization direction of the two domains can
change. Both these processes, i.e. the domain wall motion and the magnetization

rotation, can occur in practice.

The position of the domain walls depends on the demagnetizing energy. When the
external field is applied, the magnetic field inside the specimen is the sum of the
demagnetizing field and the applied field. The domain walls will therefore
generally move to new positions. On the other hand, the magnetization orientations
are determined mainly by the anisotropy, which resists the rotation of the
magnetization. In general therefore domain wall motion tends to occur in small
applied fields, and the magnetization rotation only begins as the field is large

enough.

Domain walls move reversibly in very small magnetic fields. In other words, the
domain walls are displaced by a small amount when the field is applied, but if the
field is removed, they return to their original positions. In larger fields the domain
wall motion becomes irreversible - the walls do not return to their original
positions when the field is removed. The main reason of that is that the domain
wall energy is not a constant but varies in an irregular manner because of
imperfections of the specimen. These imperfections are dislocations, grain

boundaries, voids, lattice distortions, impurities. When the aligning field is
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removed, these defects may prevent the domain walls from returning to their
original configuration. It then becomes necessary to apply a rather strong field in
the opposite direction to restore the unmagnetized configuration. This is the origin
of the hysteresis in ferromagnetic materials.

18.5 Self Learning Exercise-11

Very Short Answer Type Questions

Q.1 Why the magnetization can be much less than the saturation magnetization

and even equal to zero?

Q.2 Write down the Heisenberg representation of the exchange coupling energy

between nearest spins.

Short Answer Type Questions
Q.3 Draw magnetization curve.
Q.4 What is coercive field or coercivity, B, ?

Q.5 Why a magnetic material should not always be uniformly magnetized?

18.6 Summary

The unit starts with the introduction of Ferromagnetism, Antiferromagnetism, and

Ferrimagnetism followed by Origin of domains.
18.7 Glossary

Antiferromagnetism: A phenomenon observed in some materials in which

complete magnetic moment cancellation occurs as a result of antiparallel coupling
of adjacent atoms or ions. The macroscopic solid possesses no net magnetic
moment.

Crystal Structure: For crystalline materials, the manner in which atoms or ions
are arrayed in space. It is defined in terms of the unit cell geometry and the atom
positions within the cell.

Curie Temperature: It is the temperatue above which a ferromagnetic or
ferrimagnetic material becomes paramagnetic.

Ferroelectric: A dielectric material that may exhibit polarization in the absence of

an electric field.
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Ferromagnetism: Permanent and large magnetizations found in some metals (e.g.,
Fe, Ni, and Co), which result from the parallel alignments of neighboring magnetic
moments.

Hysteresis (magnetic) : The irreversible magnetic flux density-versus-magnetic
field strength (B-versus-H) behavior found for ferromagnetic and ferrimagnetic
materials.

Magnetic Susceptibility : The proportionality constant between the magnetization
M and the magnetic field strength H. In general it is tensor quantity.
Magnetization : The total magnetic moment per unit volume of material. Also, a
measure of the contribution to the magnetic flux by some material within an H
field.

Relative Magnetic Permeability : The ratio of the magnetic permeability of some
medium to that of a vacuum.

Resistivity : The reciprocal of electrical conductivity, and a measure of a material's

resistance to the passage of electric current.

18.8 Answer To Self Learning Exercises

Answer To Self Learning Exercise-I
Ans.1: Fe,0,.

Ans.2: a. ferromagnetic, b. antiferromagnetic, c. ferrimagnetic

LUttt ey

Ans.3: In antiferromagnetic arrangement the dipoles have equal moments, but

adjacent dipoles point in opposite directions. Thus the moments balance

each other, resulting in a zero net magnetization.
Ans.4: In an antiferromagnet the spins are ordered in an antiparallel arrangement

with zero net moment at temperatures below the ordering temperature which

1s called the Néel temperature.
Answer To Self Learning Exercise-11

Ans.1: Magnetic domains.
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Ans.2: Ewr = —ZJSI.SJ. = —2JS{SJ cos@
Ans.3:

e

AN

D

Ans.4: The reverse field needed to bring the magnetization to zero from remanence
1s called the coercive field or coercivity, B..
Ans.5: The state of uniform magnetization has the lowest possible exchange

energy, since all adjacent spins are parallel to each other.

18.9 Exercise

Short Answer Type Questions

Q.1 At what temperature do materials loose their ferro-, anti-ferro- and
ferromagnetic properties?
Long Answer Type Questions

Q.2 How to classify materials with respect to exchange integral? What are the

differences between ferromagnetic, anti-ferromagnetic and ferromagnetic

materials?
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19.0 Objectives

The objectives of this unit is to study the phenomenon of superconductivity. How
superconductivity was discovered and to study which properties of superconductor
changes from normal into superconducting state and which do not change. We also
study influence of external factors on superconductivity. In the last we study
various experimental observations in superconductors which are helpful in

understanding the superconductivity phenomenon.

19.1 Introduction

We have studied that resistance of conductor increases with increase in
temperature and decreases with decrease in temperature. In 1911 first of all
Kamerlingh Onnes observed that when various metals and alloyes are cooled in
the region of Helium liquid temperature, then their electric resistivity sharply

decreases and in the end the resistivity becomes zero.

The sudden decrease of resistivity to zero, only possible when metals are cooled
below a fixed temperature, which is known as critical temperature T. .The
phenomenon of decreasing resistivity to zero is known as Superconductivity. The
concerned material under study is called Superconductor. The temperature at
which the specimen undergoes a phase transition is called Super-Conducting
transition temperature or critical temperature T.. For example Ny, Pb, Vd and Al
show Superconductivity at temperature 9.2K, 7.2K, 5.1K and 1.2K respectively.
Different research scientists are trying to increase the Superconducting temperature
because lowering the temperature to 4K or 1K is very cumbersome. Many
scientists say that they have been able to raise the critical temperature to 100K. If
by some mean the conductors could be changed into superconductors, we shall
have vast applications of superconductivity, for example generation and
transmission  of  electricity,  exceptionally = powerful electromagnets,

supercomputers, fastest trains etc., shall be there.

In the study of superconductor it is found that those metals which are good
conductors at normal temperatures like Ag, Cu,Au remain normal conductors even
at temperatures down to 0.35K, 0.07 K and 0.05K respectively. It has been found
that the superconducting properties of metals can be changed by varying

temperature, magnetic field and impurity etc.
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19.2 Experimental Survey

19.2 .1 Superconductivity and Transition Temperature

Superconductivity is the name given to a remarkable combination of electric and
magnetic properties which appears in certain metals, when they are cooled to a
sufficiently low temperature often a temperature in the liquid Helium range.
Superconductivity was discovered in 1911 when Kamerlingh Onnes observed that
the resistivity of Hg vanishes completely below 4.2°K. At critical temperature T
the specimen undergoes a phase transition from a state of normal electrical
resistivity to a superconductivity state. The temperature at which the
superconductor loses resistance is called its superconducting transition temperature
or critical temperature T .The element Nobium has highest transition temperature
i.e. 9.3’K. The transition temperature is not very sensitive to small amount of
impurities. The transition temperature varies from specimen to specimen. For a
particular metallic element ,the transition and its transition point to
superconducting state depend upon the degree of its purity. Less pure it is,
transition temperature will be higher and the transition range will be broader and

vice versa.

T Pure

Resistivity
/ Impure

/

Figure 19.1

On cooling the transition to the super-conducting state may be extremely sharp if
the specimen is pure and physically perfect as given in figure (19.1) which shows

the transitions in pure and impure or disturbed crystal structure of Tin specimens.
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19.2.2 Zero Resistance

As described earlier, that the disappearance of d.c. resistance at temperatures,
below the transition temperature as shown in fig. (19.1) is the most important
property of superconductor. The careful investigation have shown that the
resistivity of a metal in the superconducting state drops to less than one part in 10™
of its value in the normal state. It may be noted that no general criteria for
determining whether a given metal should become a superconductor has been
developed so far. The abrupt loss of resistance appears because of some
fundamental changes occur in the electronic or atomic structure of the metals. If
d.c. current flows through a superconductor in the form of ring. It was observed
that constant current flows for more than one year without decay because of zero
resistance. This type of current is known as persistent current. Besides this, in
some substances, which are used in superconducting magnets, decay time is

observed.

19.3 Effect of Magnetic Field

If high magnetic fields are applied on superconductors, then their
superconductivity is destroyed and substance becomes normal conductor again.
We know that critical temperature is that temperature above which substance
behave as normal conductor and below this temperature substance behaves as
superconductor. If applied magnetic field is zero, the applied magnetic field which
is required to destroy superconductivity is known as critical magnetic field H.. and
it 1s function of temperature. The critical magnetic field H. and temperature T are
related with the following equation:
TZ
iy =Bl (19.1)

Where H, is the critical magnetic field at T=0’K. From equation (19.1) it is clear
that the critical magnetic field increases as temperature decreases below T, or
T< T, or we can say that below critical temperature more magnetic field is

required to destroy superconductivity.

This is demonstrated by graph in figure (19.2). The right side of upper portion of
H. - T curve shows normal state of Pb and the left side of lower portion represents

superconducting state of Pb. For most of the superconductors it was observed
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experimentally that H., is related with critical temperature T by the following

relation :
Heo = AT2 (19.2)
B, .
where a=1.8 and H. = — in S.I. System
Hy
T
900 +
Heth) normal condcuting state
In Gauss
Superconducting
State
300 +
1 1 0 =TC
— t G e S B B

1 2 3 4 5 6 7 8
Temperature °)K -
Figure (19.2): Variation graph of Critical magnetic field (H.) with
Temperature T for Pb

The original observation on the elimination of superconductivity by the application
of magnetic field was made by K. Onnes by passing an electric current through a

superconducting wire.

19.4 Meissener Effect

It was observed that when the value of applied magnetic field B, is less than

critical magnetic field B. (= W H.)., then below critical temperature, the
superconductor behaves perfectly diamagnetic i.e. the magnetic flux originally
present 1s ejected from the specimen i.e. the magnetic induction B inside

superconducting substance is zero. This phenomenon is known as Meissner Effect.

At T <T., B =0 inside superconductor shows that below critical temperature (T),
the superconducting material diverses total magnetic flux lying inside the
substance. This is shown in diagram 19.3(a) for T > T and in diagram 19.3 (b) for
T<T..

If we take superconducting material in the form of a thin cylinder and we apply

magnetic field (B,= W ,H,) along its length then total magnetic induction will be:
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B=B, + |, M (19.3)
where M is known as magnetization or intensity of magnetization. If applied

magnetic induction B, is less than critical magnetic induction then at T<T_
superconductor shows Meissner Effect 1.e. B=0.

So from equation (19.3)

Bﬂ+l’l0M = 0
or B, =-pM (19.4)
or  WH=-H,M
X L (19.5)
or =—=- :
H
normal conductor | sﬁperconductor
ANNN /N NN
\
B ¢0}
+ L -
T > Te T < T
Figure 19.3 (a) Figure 19.3 (b)
At T >T ,the substance behaves At T<T. the substance
as normal conductor and behaves as superconductor
magnetic flux density B inside is and it expells total magnetic
not zero. flux from inside.

It 1s clear from eq.(19.5) that at T < T ,superconductor is perfectly diamagnetic,
whose magnetic susceptibility is negative 1.e. X =—1

Hence it 1s necessary to note that for superconductor perfect diamagnetism and

zero resistivity are two independent phenomenon. To understand this we consider
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the relation between current density J and intensity of Electric Field (E).
E=pl (19.6)
We know that superconductor resistivity Pp=0 and current density J is finite, then

from equation (19.6) E=0

From Maxwell's equation ~ VxFE = _g_tB
Since E=0 A
ot

or B = Constant.

This result, in which magnetic induction is constant w.r. to time is against
Meissner effect, in which at critical temperature the magnetic induction B suddenly

drops to zero.

This concludes that perfect diamagnetism is an essential property of the

superconducting state.

19.5 Type -1 & Type - II Superconductors

If we draw magnetization curve below ftransition temperature or critical
temperature, for many superconductors, those are obtained as shown in diagram
19.4 (a) and 19.4(b)

Type-I
T TR,
~“HoM

B.>B
a &
B,< B
normal
Superconducto? conductor

BC
Applied Magnetic field Bg —

Figure 19.4(a)
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Diagram 19.4(a) shows that magnetization curve at B, < B_, obeys Meissner effect
perfectly and at B>B_ substance behaves as normal conductor where B, is applied
external magnetic field.

Diagram 19.4(b) describes that penetration of magnetic flux starts when B> B,
.For B. <B, <B the substance remains in mixed state and at B >Bc, the

substance acquires normal conducting state.

Type-II
T T<E,

=~ IJU M 1
“ |
\ |

! mixed

uper ooqgductor ”;  Normal
conducto?: | '(Tonductc?
BCI Bc BC

2
Applied magnetic field Ba —»

Figure 19.4(b)
19.5.1 Type — I Superconductor

When the value of applied magnetic field B, is increased on superconductor then
the value of Magnetic Intensity M increases proportionally to B, , when applied
magnetic field B, is equal to critical magnetic field B, then the value of M
suddenly drops to zero and at B >B_ ,the substance acquire normal conducting
state. This is shown in diagram 19.4(a). Those Substances whose magnetization
curve is according to diagram 19.4(a) are known as Type -I or soft superconductor.
Pb, Sn and Hg are the examples of Type - I Superconductors. Such type of
superconductors obey Meissner effect perfectly and their magnetization curve is
according to the equation (19.4). They are called soft because of their tendency to
permit magnetic field to penetrate fully above H.. These are useful in coils for

superconducting magnets.

19.5.2 Type — 11 Supercondcutor

The magnetization curve for Type-II superconductors are obtained as shown in fig.

19.4 (b) in which high and low critical magnetic fields Bc, and Bc, are obtained as
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shown in figure. When the applied magnetic field B, is less than low critical
magnetic field Bc, ,then the substance remains in superconducting state. When
applied magnetic field B, is more than Bc, then magnetic flux penetrates inside the
substance and when B, is equal to Bc, then magnetic flux totally enter into the
substance.Due to this ,the super conductivity of the substance totally destroyed.
when B_> Bc,, then substance returns to its normal conducting state. It is clear that
when applied magnetic field B, lies between B¢, and Bc, then substance remains in
mixed state of superconductor and normal conductor. Hence it is noticeable that
low critical magnetic field Bc,<B, and high critical magnetic field Be,>B,. Where
B, 1s that critical magnetic field which is at critical temperature T,. The value of
Bc, is 100 times B_ and even more than this. Between Bc, and Bc, we have

mtermediate state called vortex state.

In Type-II superconductors, we are having transition metals and alloys, whose
electric conductivity in normal state 1s high. These are also known as hard
superconductors. These superconductors are technically very usefull materials in
contrast to type-I superconductors. These superconductors are used for naking

strong field superconducting magnets.

19.6 Isotope Effect

Through experiments it was observed that the critical temperature T, of
superconductors changes with average isotopic mass M. This change occurs

according to following equation :

M“T = Constant (19.7)

where the value of (X is different for different superconductors. It has been found
through experiment that the superconducting critical temperature (T,) for various

isotopes of a superconductor is different. This is called Isotope effect.

For example the average atomic mass M of Hg superconductor varies from
199.5a.m.u. to 203.4 a.m.u. while the value of critical temperature T, ,varies from
4.185K to 4.146K.

The dependence of critical temperature (T_) on isotopic mass, proves that in
superconductors electron-phonon interaction exists necessarily. There 1s no other
reason due to which critical temperature (T,) depends upon neutron number or

isotopic mass.
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For o = 5 , the relation (19.7) can be obtained in the following manner :

From BCS Theory
TC X echyc

But 0,,,,,.X phonon velocity

|
Phonon velocity (V)a M *

T.aM ?

1
or 7. M * = Constant

or METC = Constant (19.8)

When we compare equation (19.8) with (19.7) We obtain O=1/2 .1t is clear

that eq.(19.7) 1s the result of phonon -electron interaction, in which 0=1/2. But
when Coulombian interaction between electrons also involves then equation (19.8)

will change.

From the dependence of T, on isotopic mass ,we learn about lattice vibrations and

hence electron-lattice interaction are deeply involved in superconductivity.

19.7 Thermodynamic Effects

As we know that transition from normal conducting state to superconducting state
is a reversible process, this is analogous to phase transition of substance from
liquid state to vapour state is reversible under the condition of slow evaporation
.This is due to the fact that because the superconducting currents do not die away
with the production of Joule heat when superconductivity is destroyed by the
application of magnetic field. We can therefore apply thermodynamics to the phase
transition and thereby obtain an expression for the difference of entropy between
superconducting and normal states in terms of the critical field curve B, versus T.
We treat type I superconductor with a complete Meissner effect, so that B=0 inside
the superconductor. We shall see that the critical field B, is a quantitative measure
of the energy difference between the normal and superconducting states at absolute
zero. Hence we can apply thermodynamics argument to a superconductor using the

405




temperature and magnetic field strength with the thermodynamical variable. There
are a number of thermodynamic effects of interest in the superconducting and in
the normal states, which are primarily important from the point of view of the
development of the fundamental theory of superconductivity. These effects are
essentially reversible in nature and all are predicted by phenomenological theories.
Now we will discuss different thermodynamical effects e.g. entropy, specific heat,
energy gap and thermal conductivity in detail.

19.8 Entropy

It is observed that in all superconductors entropy decreases remarkably on cooling
below the critical temperature T, This decrease in entropy from normal to
superconducting states tells us that the superconducting state is more ordered than
normal state, brcause entropy is a measure of disorder. Although the difference in
entropy is very small, it is of the order of 107 kg per atom in the case of aluminum;
This small difference shows that the rearrangement of the system on becoming

superconducting is relatively small.

The entropy S of Al in normal and superconducting states as a function of
temperature is plotted in figure (19.5). It is clear from figure that entropy is less in
the case of superconducting state. It was observed that is simple superconductors
(Type-I or soft superconductor) , there is a spatial order of super electrons which

extends over a distance of the order of 10 meters.

|

Entropy

Sy (normal ¢

rconductor)

Te
Temperature (in K) ——

Figure 19.5: Variation of entropy with temperature (K) in normal state and

superconducting state
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19.9 Specific Heat

In superconductors the behavior of specific heat curves in superconducting state
and normal conducting state is different. At T<T_, ,the specific heat of
superconductor decreases exponentially as temperature T decreases as shown in
figure (19.6). The change in specific heat of superconductor with temperature is
represented by the following relation:

c;==Aexp(—Eé;] (19.9)

B
where 2A = E, is the energy gap which is obtained in superconductor. But this is
not universal property of superconductor. There are such type of superconductors
in which there are no energy gap. The specific heat of superconductor is mainly

due to electrons.

T
Specific heaa .
= super-
(md/ conducting, 4
mole-K) 'state ‘ l
3= ,V & 7 l P
o Mol =
g normal €6nducting
2 L L 6’ ] ‘ Stﬂe
P
~ & & - I ﬂ X
1+ P ”~ =4
. Py
oy ¥ |
— o] :
0 0.5 s % 15 2.0

Temperature TK -
Figure (19.6: [Specific heat curve for Al:- In superconducting state, specific heat

[

If at T<T_ ,we apply magnetic field greater than critical magnetic

varies as e and in normal conducting state at T<T,,C, is proportional to T]

field B, on superconductor ,then this returns to normal conducting state. In this
position its specific heat is equal to the sum of electronic specific heat C, and
lattice specific heat C

Ca=Ca* Catice

=YT+AT (19.10)

so total specific heat

lattice?
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But at temperature T<T,, electronic specific heat is more effective, due to this in

normal conducting state specific heat C_ is proportional to T, as shown in figure
(19.6)

For Al, whose critical temperature is T =1.19K, specific heat graph is shown in
figure (19.6). It is clear from figure (19.6) ,that at T=T, , discontinuity appears in
specific heat and it is related with entropy. In conducting state electrons are in
more disordered state, while in superconducting state electrons are in more ordered
state. So as soon as substance acquires superconducting state from normal
conducting state ,its entropy decreases. At low temperature close to T, ,the specific
heat of superconductor is more than specific heat in normal conducting state. But

on decreasing temperature ,the value of C_ decreases more rapidly in comparison
to C,.

19.10 Thermal Conductivity

The value of thermal conductivity of a pure superconductor in superconducting

state is less in comparison to thermal conductivity in normal conducting state. For
this reason is that in pure superconductor electrons are in more ordered state. In
normal conducting state electrons are in more disordered, due to this, they are more
helpful in heat transfer, so thermal conductivity is more. While in perfect ordered
state i.e. in superconducting state, the possibility of heat transfer is negligible, due

to this thermal conductivity is very low.

If however, the superconductor is driven normal by the application of a magnetic
field, thermal conductivity is restored to the value of the normal state. Hence
thermal conductivity of the superconductor can be controlled by magnetic field,
and this effect has been used in “Thermal Switches™ at low temperature to make
and break heat contact between specimen connected by a link of superconducting

metals.

19.11 Energy Gap

It is observed through experiment that in superconductors energy gap exists. At
transition temperature T, ,the sudden increase in specific heat, clearly shows that
energy gap (£, =2A) exists in superconductors. But its value (~107E,) is very low.
The nature of energy gap in superconductor is totally different than energy gap in

insulators. In insulators energy gap separates valence electrons and conduction
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electrons while in superconductors it separates electrons in normal state and
superconducting state and nearer to Fermi level. The energy gap E, which exists in
superconductor is function of temperature T. This energy gap initially decreases
slowly with increase in temperature. But when temperature T, approaches T, i.e.
transition temperature, then energy gap decreases sharply and at T=T, it becomes
zero. The dependence of E, on temperature is given by the following equation :

1

Eg(T)=1.74Eg(0)[1—ﬂ2 (19.11)

e

where E(T) and E(0) are the energy gap at temperature T and OK respectively.
The dependence of E(T) on temperature is shown in figure (19.7). The value of
E (0) is maximum at T=0K and at T=T, ,the value of E (T) is equal to zero.

| [

.T
Eq(T)

Eg (0) .
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w ==

Figure 19.7 (Variation of energy gap Eg(T) with respect to Temperature T in
superconductor.

In normal conductor at T=0K all energy level below Fermi level are completely
filled and energy bandgap is zero as shown in figure 19.8(a). While in
superconductor on Fermi level E., the energy gap is (£,=24). At 0K any

superconductor electron cannot cross this forbidden energy gap.

At 0K, the energy gap in V, Nb, Ta and Al, is 1.6, 3.05, 1.4 and 0.34 meV
respectively.

We know that due to the presence of an energy gap, the superconductors respond
only to high frequency electromagnetic radiation of a particular frequency. Thus

energy gap is a characteristic feature of all superconductors which determines their
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thermal properties as well as their response to high frequency electromagnetic

fields.
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Figure 19.8(b)

[In Superconducting state
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19.12 Self Learning Exercise

Q.1 What is a superconductor?

Q.2 What is Meissner effect?

Q.3 Distinguish between soft and hard superconductors.

Q.4 Explain isotope effect in superconductors.

19.13 Summary

In 1911 first of all Kamerling Onnes discovered superconductivity. Meissner and

Ochsenfield found that the field distribution around the superconductor could only

be explained if it were assumed that all magnetic flux was excluded from the

metal. In other words a superconductor is perfect diamagnetic. The alloys and

metals become superconductor at transition temperature T, .As we know the

characteristics of superconductors are its zero resistivity, persistent current, perfect

: : E, .
diamagnetism and presence of energy gap(A=7” ). In superconducting state
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many thermodynamical properties as entropy, thermal conductivity and specific
heat undergo changes. There are two type of superconductors i.e. soft (Type-I) and
hard (Type-I1). It has been found that the superconducting properties of metals can
be changed by varying temperature, magnetic field, impurity, frequency of
excitation and isotopic mass etc. Superconductivity can be destroyed by magnetic
field. Superconductivity can be used in generation and transmission of electricity
and making exceptionally powerful electromagnets supercomputers, fastest train

etc.

19.14 Glossary

Isotope : atoms having same number of protons but different number of neutrons

Perfectly Diamagnetic: whose magnetic susceptibility is negative i.e. X=—1

Phonon : Quanta of Lattice Vibration

19.15 Answers to Self Learning Exercise

Ans.1: The conductor which offers almost zero resistance is called a
superconductor.
Ans.2: A bulk specimen of metal in the superconducting state exhibits perfect

diamagnetism, with the magnetic induction B=0, this i1s Meissner effect.

19.16 Exercise

Section - A (Very Short Answer Type Questions)
Q.1 What is transition temperature or critical temperature?
Q.2 What is energy gap in superconductors?
Q.3 What is vortex state?

Section - B (Short Answer Type Questions)
Q.4 Define transition temperature and critical magnetic field.

Q.5 What is Meissner effect? Give some applications of superconducting

materials.

Q.6 Discuss the effect of external magnetic field on superconductors.
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Section - C (Long Answer Type Questions)

Q.7 What is superconductivity? Describe the effect of magnetic field on a
superconductor.

Q.8 What is Meissner effect ? Distinguish between Type-lI and Type-II
superconductors.

Q.9 Write brief notes on:

(a) Isotope Effect
(b) Entropy change in superconductors
(c) Thermal Conductivity and specific heat of superconductors.
Q.10 Explain the origin of energy gap in superconductors. Explain the relevant

experimental observations in superconductors that confirms the existence of

energy gap.
Q.11 What are important properties of superconductors, list them. How these

properties can change? What are the uses of superconductors?

19.17 Answers to Exercise

Ans.1: The temperature at which the specimen undergoes a phase transition is
called superconducting transition temperature or critical temperature.
Ans.2:In the superconducting state an energy gap E=4K T,  separates

superconducting electrons (below) from normal electrons (above) the gap.
This gap is detected in specific heat.
Ans.3: In the region between Bc, and Bc, the superconductor is threaded by flux

lines and is said to be in the vortex state.
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UNIT-20
Superconductivity : Part-11

Structure of the Unit
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20.9

Objectives
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London Equations

BCS Theory

20.3 (a) Electron-phonon-Electron interaction and formation of Copper pairs
20.3 (b) The energy gap

20.3 (c) Ground state

20.3 (d) Coherence length

Flux quantization in a superconducting ring
Josephson effect

20.5 (a) The d.c. Josephson effect
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Summary

20.10 Glossary
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20.0 Objectives

The objective of this unit is to study the theoretical explanation of
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superconductivity in the form of London equations and BCS theory. We will also
study coherence length, flux quantization in a superconducting ring, Josephson
effect i.e. tunneling effects in superconductors. In the last ,we will study elements

of high temperature superconductors and applications of superconductors.

20.1 Introduction

The explanation of various properties related to superconductivity
phenomeno cannot be understood by only single principle. So far there are number
of theories have been proposed to explain the phenomenon of superconductivity.
Since thermodynamics and London’s equations are useful in explaining free
energy, stabilization energy and penetration depth. While Bardeen, Cooper and
Schrieffer have given microscopic theory i.e. quantum theory for superconductivity
and provide basis for progressive path. The B.C.S. theory is the most successful
one and explains all the properties of superconductors. But it cannot explain high-
T, ceramic superconductors. Josephson and Anderson showed the importance of

phase of superconducting wave function.

20.2 London Equations

As we know that in superconducting state zero resistivity (P=0) and Meissner
effect both are observed independently. Since Meissner effect is perfectly
applicable in type-I superconductors. This shows that magnetic field (B) inside the
superconductors is zero ,which is the characteristic of perfectly diamagnetic

property of superconductor i.e. X =—1. But the penetration of magnetic flux in
superconducting thin films cannot be understood with this effect. The penetration
of magnetic flux in superconducting thin films was successfully explained by
London’s theory. This theory is based on Maxwell’s equation and conductivity and
it is very useful in finding penetration depth in superconductors. In 1935 London
and London derived two equations by using Ohm’s law and Maxwell’s equation,
known as London’s equations considering two fluid model .They considered that
in material there are two types of electrons (1) superconducting electrons and (2)
normal electrons. In this theory it was supposed that the current in superconductor
flows due to purely superconducting electrons and electron-lattice scattering is

negligible. So that resistivity can be taken as zero .At OK a superconductor
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contains only superconducting electrons but as temperature increases the ratio of
the normal electrons to superconducting electrons increases, until at the transition
temperature all the electrons become normal. Suppose below critical temperature
there are n superconducting electrons/ions present in superconductor. The equation

of motion of an electron in presence of electric field £ is given by

e o (20.1)
dt

where m is the mass of electron and (-¢) is charge of the electron.

Equation of current density

J =—nev (20.2)
Now putting the value of ¥ from equation (20.2) in equation (20.1) we shall get
BE ok
ne dt
e E Mg (20.3)
dt  m

Equation (20.3) is first London’s equation. This equation represents absence of
resistance in substance, in superconducting state. If E = 0, then from equation
(20.3),

@7 _
dt
or J= const (w.r.t. to time). This shows that in the absence of electric field
current flows continuously, which is characteristic property of superconducting

state. While in normal conducting stage, J =cE , if E = 0, then J = 0 which is the

characteristic property of normal conductor .Now taking curl of equation (20.3) we

shall get
LN
dt m
2
or  L(ox="C9xE (20.4)
dt m
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_ . 0B . I .
From Maxwell’s equation VxFE =—Z—t, putting value of (VxE) in equation

(20.4), we shall get

or VxJj=-"%5§ (20.5)
m
Equation (20.5) is second London’s equation. By putting B=Vx A, where 4 is

vector potential, then equation (20.5) changes in the following form

)

VxJ = —n—thx A
m
or J=-2¢} (20.6)

m

Now we will show how London’s second equation (20.5) explains Meissner effect.

Maxwell’s equation in static state is given by
VxB=p,J Since (E=0) (20.7)

Now taking curl of equation (20.7) on both side we shall get

oo

X%’X

<]|

= Juuﬁx'j
V(V.B)-V’B = u,VxJ
Since V.B=0, so

~V’B=uVxJ (20.8)

Now putting the value of VxJ from equation(20.5) into equation (20.8) we shall
get
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2
or V2§=[}u°ne ]E’

or V:B=—8 (20.9)

m

where A4, = (20.10)

yne’
Since the dimensions of A, is of length and it is known as London penetration
depth. The solution of equation (20.9) cannot be B = constant i.e. magnetic field
can not be uniform in superconductor and it is only possible when B = 0, inside
superconductor, which is Meissner effect. So the possible solution of equation
(20.9) 1s following :

B=B,e ™™ (20.11)

where B 1s the magnetic filed on the surface of superconductor and B is the
magnetic field at a distance x inside the surface of superconductor. Equation
(20.11) represents that magnetic field inside the substance decreases exponentially
and A, measures the magnitude of penetration distance of magnetic field ,so it is

known as London penetration depth. A, is the distance from surface of substance

where the value of magnetic field reduced to (&J
e

On observing equation (20.10) ,we found that 4, is inversely proportional to
square root of superconducting electron density (n). It is found that at T = 0 the
penetration depth is minimum due to maximum superconducting electron density
(n), while at T = T, penetration depth tending towards infinity, because at T =T,

superconducting electrons density (n)tending towards zero. Since at T = T, ,

superconducting electrons convert into normal conducting electrons.

20.3 BCS Theory

The phenomenon of superconductivity has been developed over many years.
Various theories have been proposed to explain the phenomenon of

superconductivity. Thermodynamics and London’s Theory cannot explain
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superconductivity fully. In 1957 Bardeen, Cooper and Schrieffer formulated an
effective quantum theory or microscopic theory to explain various properties of
superconductors. This theory has a long list of experimental checkups and it is is
called BCS theory. The important facts that provide the basis for this theory are (1)
the isotope effect and (2) variation of specific heat of superconductors. By getting
the clues from above facts Bardeen, Cooper and Schrieffer built up their theory
using quantum mechanical concepts. An elementary qualitative treatment of BCS

theory is given as follows.

As we know from the isotopes effect (7.M'? =const.) it is observed that the
transition which produces the superconducting phase must involve thermodynamic
of the ion motions or the lattice vibrations i.e. phonons. When the transition
temperature tends to zero, then M tends to infinity or if the lattice points were
really to be fixed. This suggests very strongly that non zero transition temperature
is a consequence of the finite mass of the ions which can contribute phonons by
their vibrations. To find out the part played by the phonons in producing
superconducting transitions we have to very careful to observe the interaction

process.

20.3 (A) Electron-Phonon-Electron Interaction and Formation of

Cooper Pairs

Frohlic and Bardeen for the first time pointed out that an electron moving through
a crystal lattice has a self energy accompanied with virtual phonons. It means that
moving electron through lattice, distorts it and oscillatory distortion takes place.
This oscillatory distortion of lattice is quantized in terms of phonons. This distorted
lattice acts on electron by virtue of electrostatic forces between them. The
interaction between electrons and lattice can be interpreted as the constant
emission and re-absorption of phonons by the lattice. These are called virtual
phonons because as a consequence of uncertainty principle their short life-time
renders it unnecessary to conserve the energy in the process. Thus one can think of
the electron moving through the lattice, as being accompanied, even at 0K, by a
cloud of virtual phonons. This is responsible for the self energy of the electron.

The energy is proportional to the square of the average phonon energy.
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Bardeen, Cooper and Schrieffer succeeded in showing that the basic interaction
responsible for superconductivity appears to be that of a pair of electrons by means
of an interchange of virtual phonons. This means that the lattice is distorted by a
moving electron. This distortion of lattice give rise to a phonon. A second electron
is attracted by distorted lattice or vibrating ion core. This lowers the energy of the
second electron. Hence two electron interact via the lattice distortion or phonon
field. This type of interaction is called electron-lattice- electron interaction. Thus
the basic postulate by B.C.S. theory is that when superconductivity appears, the
attractive interaction between two electrons by means of phonon exchange,

dominates the usual repulsive Coulomb interaction.

Cooper Pair :

In superconductor, Two electrons, whose momentum is equal and opposite,
interacts by the exchange of phonon, form a pair and this pair of electrons is
known as Copper pair. This interaction between electrons is a very rare interaction.
The process of Copper pair formation is the result of lattice distortion. When an
electron performs Columbian interaction with lattice ion, then it is scattered by
emitting a phonon, due to this its momentum decreases. Another electron nearer to
this distorted lattice absorbs this phonon and got scattered and both electrons form

a Cooper pair.

Figure 20.1: Electron-electron interaction through exchange of phonon

Although in electron-electron interaction it is not necessary that the momentum of

both the electrons should be same. Even then for strongest attractive interaction

momentum of both the electrons are equal and opposite. This interaction is shown
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in diagram (20.1) in which an electron of momentum K,, emits a phonon of

momentum ¢ and scattered with the momentum (ff —g ) while another electron of

momentum K, absorbs the phonon of momentum § and scattered with
momentum (K, +§). In energy levels of BCS state, electrons reside in pair form

whose momentum are K and —K and have spins opposite to each other. This pair
behaves as boson particle. The energy of the pair of electrons in the bound state is
less than the energy of the pair in the free state. The difference of energy of the two
states 1s the binding energy of Cooper pair and therefore this amount of energy
should be supplied if the pair is to be broken. Cooper pairs have certain aspects of
single particle. At temperature less than critical temperature, electron lattice
electron interaction is stronger than electron- electron Coulomb interaction. So the
valence electrons tend to pair up and pairing completes at T = 0K and is

completely broken at a critical temperature.
20.3 (B) The Energy Gap

The energy difference between the free state of the electron (normal state)
and the paired state (superconducting state) appears as energy gap at the Fermi
surface. The normal electron states are above the energy gap and superconducting
electron states are below the energy gap at the Fermi surface. This energy gap
unlike the constant energy gap in semiconductors and insulators, depends strongly
on temperature. At absolute zero temperature the energy gap is maximum and at
T = T, pairing is dissolved and energy gap reduces to zero. Across the energy gap
there are many excited states for the superconducting Cooper pairs.

20.3 (C) Ground State:

As we know that BCS ground state differs from the ground state of the non-
interacting Fermi gas. As we have studied earlier, the phonon assisted attractive
interaction between eclectrons gives rise to the BCS ground state. The
superconducting BCS theory states that the superconducting state is separated by a
finite energy gap E, from the lowest excited state. The BCS state appears to have a
higher energy than the Fermi state. But the attractive potential energy of the BCS
state, acts to decrease this total energy of the BCS state with respect to Fermi state

and due to this BCS state becomes more stable than the Fermi state and
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superconductivity persists. In BCS state, the one particle orbitals are occupied in
pairs. These are called Cooper pairs. If state with wave Kand spin up (T)is

occupied, then the orbital with wave vector —K and spin down ({)is also

occupied. Similarly if one is vacant, then the other is also vacant.

20.3 (D) Coherence Length

According to BCS theory Cooper pairs (i.e paired electrons) are not scattered
from lattice due to their special property of smoothly riding over the lattice
imperfections without ever exchanging energy with them. These paired electrons
keep their coupled motion up to a certain distance. This distance up to which they
almost behaves as a single unit is called coherence length. The concept of
coherence is the idea that superconductivity is due to the mutual interaction and
correlation of the behavior of electrons .This corelation extends over a
considerable distance. The maximum distance up to which the states of pair
electrons are correlated to produce superconductivity is called coherence length
(&) . In superconducting state coherence length (&) is of the order of 10 °m. The
properties of a superconductor depend on the correlation of electrons within a
volume of (£)’ called the coherence volume. Since the large number of electrons in
such a volume act together in superconductivity, so the transition is extremely

sharp. The ratio of London penetration depth to the coherence length given by

K== (20.12)

1 1
For type —I superconductors K <— and for e-I1 superconductors K >—. It
typ p \/5 typ p \/5

can be shown from BCS theory that intrinsic coherence length (&) is related to the
energy gap as

_V;
E

4

S

(20.13)

where E, is the energy gap.

It has also been shown by BCS theory that the energy gap decreases from a value

of about 3.5 K,T. at OK to zero at transition temperature T..
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20.4 Flux Quantization in a Superconducting Ring

When a superconducting ring is placed in magnetic field B at normal
temperature, then flux of magnetic field will pass through all places as shown in
figure 20.2 (a). If the temperature of the ring is decreased below critical
temperature then magnetic flux will diverge from the material of the ring but it is
concentrated in the hole of the ring. Now if the applied magnetic filed B is reduced
to zero. Then induced current in the ring maintains magnetic flux in the hole of the
ring. When induced current reduces then magnetic flux linked with hole of ring

also decreases. B B

/\
!I/\\
A\

v

SERRR NN
Ir>T. T <T.

Figure 20.2(a) Figure 20.2(b)

Through supersensitive experiment it was observed that magnetic flux produced in

a superconducting ring due to flow of superconducting current is quantized and it

: : h : : ;
is perfect integer of —. Hence q is equal to 2e, i.e. charge of electron pair.

Hence magnetic flux =¢=n 2£ (20.14)
e

wheren=1, 2, 3...

-34
The value of quantum of magnetic flux =¢, = L. 662;10_]9
2e 2x1.6x10

" ¢, =2.06x107"° weber-m’

The unit of flux is known as Fluxoid. The flux quantization has been confirmed
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experimentally. The quantization of flux is in accordance with modern theory of

superconductivity in which electrons exists in pairs on Fermi level.

20.5 Josephson Effect

In 1962 B.D. Josephson predicated that a supercurrent consisting of correlated
pairs of electrons (Cooper pair) can be made to flow across an insulating gap
between two superconductors if the thickness of insulating layer is very thin of the
order nm. This effect is known as Josephson’s effect. If a Junction is made by
joining a very thin insulator between two superconductors. Such an insulating layer
forms a weak link between the superconductors which is referred to as the

Josephson junction. The effects observed by Josephson are :
(1) The D.C. Josephson effect.

(11) The A.C. Josephson effect.

Experimental arrangement to study Josephson effect

Consider the Josephson Junction with two superconductors S, and S, of the same
kind separated by a very thin insulator (of the order of nanometer) as shown in
figure (20.3) and no magnetic field shall be present. The object of insulating film
separates the superconductors and leaving open a way of coupling them by

tunneling.
+

©

Sz

S,

Figure 20.3 : Circuit to study Josephson effect
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Now the temperature should be low enough so that it is assumed that all electrons
are assoclated together in Cooper pairs and motion of electrons is correlated. The
arrangement shown in figure (20.3) is referred as Josephson Junction. Now if the
thickness of the insulating film is more ,then no current will flow and the voltmeter
will indicate a voltage equal to the open circuit voltage of the current source. Now
if the thickness of the insulating film is of the order of 1 nm, then voltmeter
suddenly shows zero voltage showing thereby that a current flows across the
junction in a superconducting way. This is known as the d.c. Josephson’s effect.
When a d.c. voltage is applied at the ends of the Junction ,the voltmeter indicates a
voltage, but at the same time a very high frequency electromagnetic radiation
emanates from the gap, indicating the presence of a very high frequency alternating
current in the gap. This phenomenon is known as A.C. Josephson’s effect. All

these experimental observations show that BCS theory is gaining more grounds.

20.5 (A) The D.C. Josephson Effect :

As soon as the contact across the Junction is complete, a tunnel current of Cooper
pairs flows. This d.c. current which flows through the Junction in absence of
external magnetic field or electric field in a direction S, to S,. The voltage drop V
across the junction is zero though an external voltage is applied as shown in figure.
The current flowing in the circuit in this condition is purely the tunnel current of
Cooper pairs. This is called the d.c. Josephson effect.

20.5(B) The A.C. Josephson Effect :

On applying d.c. voltage at the ends of the Junction, it causes r.f. (radio
frequency)current oscillation across the Junction. This phenomenon of generating
an alternate current by applying a d.c voltage across a Josephson Junction is called
a.c. Josephson effect. A d.c. voltage of 1 uV produces a frequency of 483.6 MHz.
By the application of r.f. voltage alongwith the d.c. voltage can result in the flow of

direct current through the junction.

20.6 Introduction to High Temperature Superconductors

We know that the property of superconductivity in many metals and alloys is

obtained by cooling them up to critical temperature. Critical temperature of these
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were found from 0.5K to 23K (for NB,Ge). The process of obtaining low
temperature is very cumbersome and costly. So applications associated with
superconductors are also very costly. So in last few years many attempt to discover
superconductors of high critical temperature were performed. In present time to
obtain superconductivity at high temperature (T > 30 K) by liquid helium or
another cooling method is a subject of research.

In this reference in 1986 J.G. Bednorz and K.A. Muller for the first time
discovered a new class of oxide ceramic superconductors having the critical
temperature greater than 30 K. These are called high temperature superconductors.
The first group of high temperature superconductor discovered was La, M CuO,
(where M = Ba, Ca, Sr) and critical temperature lies between 20K to 40 K. Both
the scientists in their experiment measured critical temperature T, = 36 K of
compound La, .. Ba ;,; CuO, in the system of Ba — La —CuO. This process was
followed by the discovery of another important system having the general formula
LnBa,Cu,0,  (Ln =Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) with x = 0.2. In 1988
several other non-rare earth based copper oxide system involving 7/ and Bi were
discovered which showed superconductivity between 60 K and 125 K. The critical
temperature of these substances are more than critical temperature of liquid
Nitrogen. So these can be converted into superconductors easily. Both these
scientists were awarded Noble prize in 1987 for the discovery of high temperature
superconductivity. Various families of high temperature superconductors with

critical temperature limits are given below

Formula Symbol Range of T in 0K
(1) La, M, CuO, M =Ca, Sr, Ba 2040
(i1) Ln Ba, Cu,O, Ln = rare earth element 90
(iii) Ti,Ca_Ba,Cu O,,, n=14 80 —125
(iv) Pb,Sr,ACu,0q A=rare earth or Ln + Sr or Ca 40-70

Recently it has been possible to design some ceramic superconductors
which can act as such at temperature greater than 77 K, these high temperature

oxide superconductors have advantage over low temperature superconductors in
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the sense that liquid nitrogen can be used as coolent, this arrangement is not only

much cheaper but has better cooling due to high thermal capacity of liquid

nitrogen. This also suggests strongly that with modified ceramic materials we may

have superconducting materials at room temperature in future.

20.7 Application of Superconductors

Superconductivity finds a number of practical applications as follows.

(1

)

3)

“4)

)

(6)

In making cryotron : It is a magnetically operated current switch. As we know
superconductivity disappears for magnetic field exceeding the critical value,
has been utilized in a cryotron. It was discovered by Buck. The Cryotron is
used in digital computers.

In making superconducting coils : Since superconducting rings can produce
maximum magnetic field with the required homogeneity. Since the
superconducting current density flowing through superconducting rings is
maximum (~10%amp/m’) so the magnetic field produced by this current is
also more (B > 10Tesla). High magnetic fields are used in high energy
physics.

In making cables : In those works, where high alternating current is required,
for power transmission niobium superconductor is used in making cables. In

power transmission by superconductors, power loss is very small.

Electromagnets : Electromagnets that carry heavy currents can be constructed
and thereby large magnetic fields of the order of 5 to 10Tesla can be obtained.
As thin superconducting wires can carry large currents as their resistivity is

ZEro.

Bearings : These use the Meissner effect. The mutual repulsion between two
superconductors that expel the magnetic flux is used in the principle, the

bearings operate without power loss and friction.

The memory systems, logic units, cryotronic switches, oscillators, amplifiers,

modulators,  superconducting  magnetometers, microwave detector,
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superconducting computer and counters etc. are possible with

superconductors.

20.8 Self Learning Exercise

Q.1 What is London penetration depth ?
Q.2 What is d.c. Josephson effect ?
Q.3 Explain electron-phonon-electron interaction.

Q.4 Explain the flux quantization in a superconducting ring.

20.9 Summary

In this chapter we have studied the phenomenon of superconductivity with
theoretical explanation by London equations and B.C.S. theory. In London theory
we studied coherence length and penetration depth. London theory can explain
only Meissener effect but failed to explain the presence of energy gap in
superconductors and other properties. The B.C.S. theory is able to explain all the
experimental observations such as coherence length, flux quantization etc. in
metallic superconductors. In 1986 Bednorz and Muller discovered a new class of
oxide ceramic superconductors having the critical temperature more than 30 K.
These are called high temperature superconductors. These are having a wide and

variety of applications in various fields of science.

20.10 Glossary

Phonon : Quanta of Lattice Vibration

B.C.S. theory: Bardeen, Cooper and Schrieffer theory for superconductivity.

20.11 Answers to Self Learning Exercise

Ans.1: It is the distance from the surface of substance where the value of magnetic

field reduces to (lj of its initial value at the surface.
e

427



Ans.2: According to this effect, a d.c. current flows across the junction even when

no voltage is applied across it.

20.12 Exercise

Q.1
Q.2
Q.3

Q.4
Q.5
Q.6

Q.7
Q.8

Q.9

Q.10
Q.11

Section-A (Very Short Answer Type-Questions)

What is cooper pair ?

Write down London’s first and second equations.

What is coherence length ?

Section-B (Short Answer Type Questions)

Describe the construction of cooper pair in short.

Derive an expression for London penetration depth in superconductor.
Describe the application of superconductors.

Section-C (Long Answer Type Questions)

Derive London equations and hence discuss the Meissner effect.

Give a qualitative description of the BCS theory. On the basis of this theory

explain the energy gap and ground state in superconductors.

What is Josephson effect ? Distinguish between d.c. and a.c. Josephson

effects?

What are high temperature superconductors? Write a note on them ?

What is flux quantization ? Prove that the magnetic flux trapped inside the
superconducting ring is an integer multiple of (EJ ,where h is Planck’s

constant and q is the charge of superconducting carrier.

20.13 Answers to Exercise

Ans.1: In superconductor, two electrons, whose momentum is equal and opposite,
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interacts by the exchange of phonon form a pair and this pair of two electrons

is known as Cooper pair.

Ans.2: (1) First London’s equation 1s given by

= 2
ﬂ: ne P
dt m

(i1) Second London’s equations is given by

2
Vxj=-"B
m

Ans.3: The paired electrons (i.e. Cooper pair) keep their coupled motion up to a
certain distance. This distance up to which they almost behaves as a single unit

is called coherence length.
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21.0 Objectives

Nanotechnology offers a paradigm that crosses scientific disciplines and
therefore provides a unique motivation for exploring the intersections between
traditional disciplines. The broad nanotechnology invests at the frontiers and

intersections of many areas, including biology, chemistry, computer science,
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ecology, engineering, geology, materials science, medicine, physics and the social
sciences. Activities targeted towards this goal span a broad continuum, form
support for basic and fundamental research through use-inspired and application
research and into technology development. Successful advancement and
commercialization of nanotechnology will depend on the scientific quality of

research.

21.1 Introduction

Nanoscience is one of the most exciting topics in the history of scientific
research. The role of nanotechnology was given its due recognition by prominent
academicians from all over the world and industry as well recognized its potential

for a plethora of applications.

21.2 Background of Nanoscience and Nanotechnology

At the beginning of 20" century, when scientists felt that atoms were mere
abstract entities used for the purpose of calculations, it was Albert Einstein who
explained the “jittery dance of microscopic particles-Brownian motion”- with his
original work tilted “On the movement of small particles suspended in stationary
liquids required by the molecular-kinetic theory ” and provided the view point that
the mathematical description of Brownian motion is the evidence for the true

existence of atoms.

21.3 History of Nanoscience

After the prediction of Albert Einstein, Richard P. Feynman suggested that it
should be possible to build machines small enough to manufacture objects with
atomic precision. His talk, There's plenty of Room at the bottom, is widely
considered to be the foreshadowing of nanotechnology.

Feynman said, “What I want to talk about is the problem of manipulating and
controlling things on a Small Scale”. The term “nanotechnology” rapidly became
popular.

Following this, a team of IBM physicist revealed that they could write the
letters “IBM™ using 35 individual atoms of Xenon. A book titled
Nanosystems: Molecular Machinary, Manufacturing and computation

was published by Eric Drexler where he outlined a way to manufacture extremely
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high-performance machines out of molecular carbon lattice. After some time
Federal funding for nanotechnology in the United States began with the National
Nanotechnology Initiative (NNI). The NNI-funded nanotechnology was defined as
a new technology dealing with materials with sizes between 1 to 100 nanometres
exhibiting novel properties. The broad definition covering cutting-edge
semiconductor research, several developing families of physics and chemistry,
deals with physics of low dimensional systems and other advanced materials. The
government of India launched a mission on nanoscience and nanotechnology with
an allocation of 1000 crores for the first five years. One of the main objective of
this mission is to foster linkage between educational and research institutions and

industry and promote public private partnerships.

21.4 Density of States at Low Dimensional Structures

The density of states (DOS) formulation describes the number of electronic states
that are available in system. Therefore it is important from the viewpoints of
carrier concentration of the system and energy distribution of the carriers. It is also
useful for the determination of optical properties of a material such as a
semiconductor. Here, we will find out the expressions for DOS for three-
dimensional, two-dimensional, one-dimensional and zero-dimensional systems and

see if the electronic DOS changes as a function of size reduction.

21.4.1 Density of States at One-Dimensional Structures:

In case of one-dimensional system (nanowire), the electron is confined in both
the x — and y — directions, but the electron can move freely in the z — direction
(quantum wire). The DOS equation for 1D system is given by

g(k)dk = 2 22< 21.4.1)

2(3)

where 2dk is the length of wire in k — space and 2 (g) is effective length of the

wire and multiplication factor 2 is due to the spin degeneracy. Finally we get

g(k) dk = 2;‘”dk (21.4.2)
We have
m
kdk = (ﬁ) dE

By putting the value of k = \/2mE /h?, we get
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dk = \/Z—ZE(:‘—Z) dE (21.4.3)

Substitutingdk in Equation (21.4.2), the number states in the energy

range E and E + dE can be written as

2a hZ /m
g(EYAE == |-— (%) dE (21.4.4)

Hence, DOS for the 1D case [DOS(1D)] is given by

DOS (1D) = (%Jizf) % (21.4.5)

1
which varies as \/% . Figure 21.1 depicts the 1D Nano system (nanorod) and the

corresponding DOS variation of the 1D system as a function of energy.

3
t Energy
(b)
Figure 21.1: (a) Illustration of 1D system, (b) DOS variation of 1D system as
function of energy.

21.4.2 Density of States at Zero-Dimensional Structures:

The DOS for a 0-D system (quantum box or a quantum dot) shows the variation
like that of a &-function as shown in Fig.21.2

Electronic levels and DOS determine the properties of materials including
optical, magnetic and electronic properties and there functionalities. For nanoscale
materials, the energy levels and the DOS vary as a function of size, resulting in
dramatic changes in the material property. Thus, the DOS of a reduced
dimensional system also changes significantly with decreasing size. As discussed

above, for a 3-D bulk material, the DOS is proportional to the square root of
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energy (vVE). For a 2D system (ultra thin film quantum wells), the DOS is a step
function. For a 1D system (nanowire or quantum wire), the DOS is completely
different (peculiar behaviour). For a 0-D system (quantum dot), The DOS has the

shape for a O-function (atom like) . Figure 21.2 shows a summary of the DOS for

low-dimensional systems in comparison with the microscopic bulk material.

DOsS

(a) (b)
Figure 21.2: (a) Illustration of 0D system, (b) DOS variation of 0D system as

function of energy.

21.5 Idea of Quantum Well Structure

If we consider initially an isolated thin semiconductor sheet of thickness L, the
carrier motion is unrestricted in such a thin sheet along two orthogonal directions
with in the plan of sheet. However, the motion is quantized perpendicular to the
plane, forming a quantum well. The resultant quantized energy levels are found by

solving the 1D form of the time independent Schrodinger equation given by

2 g2
- ;—m% + V() Pn(x) = Ep ()P ()

where V(x) is the potential and ¥ (x) and E are the wave function and energy of

the nth confined state respectively. The one dimensional potential [V(x)] can be

constructed from alternating thin layers of dissimilar semiconductors in which

electrons and holes can move in the plane of layers. For the present case, V(x) is

zero within the semiconductor (which extends from x = 0 to x = L) and is infinite

elsewhere; this is the infinite-depth potential well model.

Solving the Schrodinger equation and apply the boundary condition that the wave

functions must be zero at the edges of the sheet results in the following energies
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and wave functions

h%n?
n = (21.5.1)
W, (x) = \Esm (%) (21.5.2)
Heren=1,2,3,4, ........ CO,

A thin free-standing semiconductor sheet would possess negligible
mechanical strength, and practical quantum wells are formed by sandwiching a
thin layer of a semiconductor between two layers of a second, larger bandgap
semiconductor which forms the barriers. This results in a finite-depth potential
(~25eV) well. The wave functions and energies of a confined state are again
determined by the solution of the Schrodinger equation with the appropriate

potential, which now remains finite outside the well.

In contrast to the infinite-depth well, in the case of a finite-depth potential well, the
wave functions penetrate out of the well and into the barriers. For a finite-depth-
well, it is not possible to obtain analytical forms for the confined energies and the
Schrodinger equation must be solved numerically. However, for many
applications, the energies and wave functions of an infinite-depth well can be used
as reasonable approximations, particularly for states that lie close to the bottom of
the well. For the semiconductor quantum well, both the electron and hole motions
normal to the plane will be quantized, resulting in a series of confined energy states

in the conduction and the valence bands.

DOS

Energy

Figure 21.3: Quantum well

One consequence of this quantum confinement is that the effective bandgap of the
semiconductor is increased from its bulk value by the addition and hole

confinement energies corresponding to the states with n = 1 and is given by
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eff . hZ hZ
E,j/ " =E; + P— + P— (21.5.3)

The effective bandgap will determine, for example, the energy of emitted photons
and can be altered by varying the thickness of the well. If we consider the emission
spectrum of a structure containing five quantum wells of different widths, each
well emits photons of different energies; the energy increases as the width of the
well decreases, in agreement with the predictions of the equation. Although the
carrier energy is quantized for motion normal to the well, the motion is
unrestricted. The total energy of a carrier is given by the sum of the energies due to
this unrestricted motion plus the quantization energy. The motion in-plane is
characterized by a wave vectors (k;;), which corresponds to the combination of the

wavevectors for motion along the two mutually orthogonal in-plane directions.

If the z-axis is taken perpendicular to the plane of the well, then the two in-plane

directions are x and y and hence we can write

kir = ki + k3 (21.5.4)

From the relationship between momentum, p = mv and wave vector, p = hk ,

where AL = h/2TT, the definition of kinetic energy is given by
2

1
E=-mv2=L (21.5.5)
2 2m
The energy corresponding to in-plane motion can be written as
h2k}
E = (—”) (21.5.6)
2m
The total energy for a carrier in the nth confined states is therefore given by
_ h%k} | hn?
By =, U5 (21.5.7)

Heisenberg uncertainty principal tells us that if we confine a particle with a mass
m to a region of the z-axis of length Az (e.g., thickness of a thin film quantum
well), then we introduce an uncertainly in its momentum given by

h
Ap,~ (21.5.8)

The confinement in the z-directions gives the particle’s additional kinetic energy of

magnitude is given by
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E _ (apA) A

confinement — ~ 5 2m(Az)? (21.5.9)

The confinement energy will be significant if it is comparable to or greater than the
kinetic energy of the particle due to its thermal motion in the z-direction. Hence,
Eq. (21.5.9) may be written as
Econfinement:"" L = - kgT (21.5.10)
2m(Az)? 2
Equation (21.5.10) gives us an idea that the size-
dependent “quantum confinement ef fect” will be important if
hz
mkgT

Az~

(21.5.11)

This is equivalent to saying that Az must be of the same order of magnitude as

the de Broglie wavelength A ;=p /h for the thermal motion. The criterion given in
Eq. (21.5.11) gives us an idea of how small the structure must be if we are to
observe “size dependent quantum confinement effects.” For an electron in a typical
semiconductor quantum well (ultrathin film), we {find that we must
have Az ~5nm (nearly 10-12 unit cell stacks). In other words, to observe the
quantum confinement effect, we must grow thin enough layers by employing
advanced growth techniques such as molecular beam epitaxy (MBE), metal-

organic comical vapour deposition (MOCVD), pulsed laser deposition (PLD), etc.,
21.6 Quantum Wire

A quantum wire can be considered as a strip of a semiconductor. Unrestricted
carrier motion 1s only possible along the length of the wire and is quantized along
the two remaining orthogonal directions. For simple wire shapes (square or
rectangular cross sections), it is possible to calculate the quantization energies for
the two directions independently. These two quantization energies are then added
to the energy resulting from the unrestricted motion along the wire. Using the
infinite-depth approximation for the quantized energies, the total energies for a
carrier in a quantum wire with z and y dimensions L, and L, respectively, is
h?n? h?m?  h2%kZ

En, ky; == ax +

8m*L;  8m'Li = 2m’

(n,m=1,2,3,...... )

437



DOS

Energy
Figure 21.4: Quantum wire.

The total energy depends on the two quantum numbers n and m and the
wavevector for free motion along the wire is k, .Here m’ is the effective mass. For
each confined state, given by a particular combination of n and m, there will be a

sub-band of continuous states resulting from the unrestricted values of k.

In realty quantum wires have complex cross-sections. This prevents the confined
energies from being calculated by separating them in two terms corresponding to
the directions to the axis of the wire. Instead, the confined energies of a quantum
wire must be obtained from a numerical solution of the appropriate Schrodinger

equation.

21.7 Quantum Dots

In a quantum dot, the carrier motion is quantized along all three spatial directions
and this means there is restricted carrier motion. For a simple shape such as cube
or a cuboid or a cluster, confinement for the three spatial directions can be
considered separately. In the infinite-depth well approximation, the energy for a
carrier in cuboid-shaped dot of dimensions L,, L, and L is a function of three
quantum numbers », m, and / and is given by

1292 Ji 22 h212
Enm1 = sm*'Ly = 8m*L% = 8m*L:

']

=y
D

_ Energy
Figure 21.5: Quantum dots.
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The energy is now fully quantized and the states are discrete, in a manner
similar to those of an atom. The shapes of real quantum dots are more complex
than simple cuboid and a calculation of the confined energy levels requires a

numerical solution of the relevant Schrodinger equation.

21.8 Growth Techniques of Nanomaterials

Growth of crystal ranges from a small inexpensive technique to a complex
sophisticated expensive process and crystallization time ranges from minutes,
hours, days and to months. Single crystals may be produced by the transport of
crystal constituents in the solid, liquid or vapour phase. On the basis of this, crystal
growth may be classified into three categories as follows,

Solid Growth - Solid-to-Solid phase transformation
Liquid Growth - Liquid to Solid phase transformation
Vapour Growth - Vapour to Solid phase transformation

Based on the phase transformation process, crystal growth techniques are classified

as solid growth, vapour growth, melt growth and solution growth.

The conversion of a polycrystalline piece of material into single crystal by causing
the grain boundaries to be swept through and pushed out of the crystal takes place
in the solid-growth of crystals. The above methods have been discussed in detail

by several authors.

An efficient process is the one, which produces crystals adequate for their use at
minimum cost. Better choice of the growth method is essential because it suggests
the possible impurity and other defect concentrations. Choosing the best method to

grow a given material depends on material characteristics.

In the above mentioned categories liquid growth includes both melt and solution
growth. A survey of the methods of growth suggests that almost 80% of the single
crystals are grown from the melt compared with roughly 5% from vapour, 5%
from low temperature solution, 5% from high temperature solution, and 3% from

the solid and only 2% by hydrothermal methods.

In contrast to the historical work, it seems that the essential task for the crystal
growers at present is to gain basic knowledge about the correlation of crystal

properties and the growth conditions defined to be special parameters. This basic
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understanding of the deposition of atoms onto a suitable substrate surface — crystal
growth — the generation of faults in the atomic structure during growth and
subsequent cooling to room temperature — crystal defect structure, are the input for
the design of crystal growth systems and control of growth parameters. Though the
fundamentals are relatively simple, the complexities of the interactions involved
and the individualities of different materials, system and growth process have
ensured that experimentally verifiable predictions from scientific principles have
met with limited success — good crystal growth remains apart. As a result, crystal
growth has long had the image of alchemy. The recent advances which include
reduction of growth temperature, the reduction or elimination of reactant transport
variables and the use of better controlled energy sources to promote specific
reactions, coupled with increased development and application of in-situ diagnostic
techniques to monitor and perhaps the ultimate control lead to simplified growth
systems and the crystal growth process has transferred the field from an art to

science, technique and to technology.

21.8.1 Growth From Solution

Materials, which have high solubility and have variation in solubility with

temperature can be grown easily by solution method.

L : Heater Lamp ; B: Bath ; F:Flask ; S: Stirrer ;
O: Opening ; SG: Stirring Gland ; T: control Thermometer ;
M: Motor.

Figure21.6 Basic apparatus for solution growth
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There are two methods in solution growth depending on the solvents and the
solubility of the solute. They are

1. High temperature solution growth

2. Low temperature solution growth

21.8.1.1 High temperature solution growth:

In high-temperature solutions, the constituents of the material to be crystallized are
dissolved in a suitable solvent and crystallization occurs as the solution becomes
critically supersaturated. The supersaturation may be promoted by evaporation of
the solvent, by cooling the solution or by a transport process in which the solute is

made to flow from a hotter to a cooler region. The high temperature crystal growth

can be divided into two major categories:
1. Growth from single component system.
2. Growth from multi component system.

This method is widely used for the growth of oxide crystals. The procedure is to
heat the container having flux and the solute to a temperature so that all the solute
materials dissolve. This temperature is maintained for a ‘soak’ period of several

hours and then the temperature is lowered very slowly.

21.8.1.2 Growth From Melt:

All materials can be grown inform of single crystal from the melt provided they
melt congruently without decomposition at the melting point and do not undergo
any phase transformation between the melting point and room temperature.

Depending on the thermal characteristics, the following techniques are employed.
1. Bridgman technique
2. Czochralski technique
3. Kyropoulos technique
4. Zone melting technique

5. Verneuil technique
1. In Bridgman technique the material is melted in a vertical cylindrical

container, tapered conically with a point bottom. The container is lowered slowly

from the hot zone of the furnace in to the cold zone. The rates of movement for
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such processes range from about 1 — 30 mm/hr. Crystallization begins at the tip and
continues usually by growth from the first formed nucleus. This technique cannot
be used for materials, which decompose before melting. This technique is best
suited for materials with low melting point.

2. In Czochralski method, the material to be grown is melted by induction or
resistance heating under a controlled atmosphere in a suitable non-reacting
container. By controlling the furnace temperature, the material is melted. A seed
crystal is lowered to touch the molten charge. When the temperature of the seed is
maintained very low compared to the temperature of the melt, by suitable water
cooling arrangement, the molten charge in contact with the seed will solidify on
the seed. Then the seed is pulled with simultaneous rotation of the seed rod and the

crucible in order to grow perfect single crystals.

Liquid encapsulated Czochralski abbreviated as LEC technique makes it possible
to grow single crystals of materials, which consists of components that produce
high vapour pressure at the melting point. This refined method of Czochralski

technique is widely adopted to grow III-V compound semiconductors.

3. In Kyropoulos technique, the crystal is grown in a larger diameter. As in the
Czochralski method, here also the seed is brought into contact with the melt and is
not raised much during the growth, i.e. part of the seed is allowed to melt and a
short narrow neck is grown. After this, the vertical motion of the seed is stopped
and growth proceeds by decreasing the power into the melt. The major use of this
method is growth of alkali halides to make optical components.

4. In the zone melting technique, the feed material is taken in the form of sintered
rod and the seed is attached to one end. A small molten zone is maintained by
surface tension between the seed and the feed. The zone is slowly moved towards
the feed. Single crystal is obtained over the seed. This method is applied to
materials having large surface tension. The main reasons for the impact of zone
refining process to modern electronic industry are the simplicity of the process, the
capability to produce a variety of organic and inorganic materials of extreme high
purity, and to produce dislocation free crystal with a low defect density.

In the case of vertical normal freezing, the solid-melt interface is moved upwards

from the cold bottom to the hot top so as to get better quality crystals. The method
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is more applicable in growing single crystals of materials with volatile constituents
like GaAs.

5. In the Verneuil technique, a fine dry powder of size 1-20 microns of the
material to be grown is shaken through the wire mesh and allowed to fall through
the oxy-hydrogen flame. The powder melts and a film of liquid is formed on the
top of the seed crystal. This freezes progressively as the seed crystal is slowly
lowered. The art of the method is to balance the rate of charge feed and the rate of
lowering of the seed to maintain a constant growth rate and diameter. By this
method ruby crystals are grown up to 90 mm in diameter for use in jewelled
bearings and lasers. This technique is widely used for the growth of synthetic gems

and variety of high melting oxides.

21.8.2 Low Temperature Solution Growth

Growth of crystals from aqueous solution is one of the ancient methods of crystal
growth. The method of crystal growth from low temperature aqueous solutions is
extremely popular in the production of many technologically important crystals. It
is the most widely used method for the growth of single crystals, when the starting
materials are unstable at high temperatures and also which undergo phase
transformations below melting point. The growth of crystals by low temperature
solution growth involves weeks, months and sometimes years. Though the
technology of growth of crystals from solution has been well perfected, it involves
meticulous work, much patience and even a little amount of luck. A power failure

or a contaminated batch of raw material can destroy months of work.

Materials having moderate to high solubility in temperature range, ambient to
100 °C at atmospheric pressure can be grown by low-temperature solution method.
The mechanism of crystallization from solutions is governed, in addition to other
factors, by the interaction of ions or molecules of the solute and the solvent which
is based on the solubility of substance on the thermodynamical parameters of the
process; temperature, pressure and solvent concentration. The advantages of crystal
growth from low temperature solution nearer the ambient temperature results in the
simple and straight forward equipment design which gives a good degree of
control of accuracy of +£0.01 °C. Due to the precise temperature control,
supersaturation can be very accurately controlled. Also efficient stirring of

solutions reduces fluctuations to a minimum.
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The low temperature solution growth technique is well suited to those materials
which suffer from decomposition in the melt or in the solid at high temperatures
and which undergo structural transformations while cooling from the melting point
and as a matter of fact numerous organic and inorganic materials which fall in this
category can be crystallized using this technique .The low temperature solution
growth technique also allows variety of different morphologies and polymorphic
forms of the same substance can be grown by variations of growth conditions or of
solvent (Hooper et al 1979). The proximity to ambient temperature reduces the
possibility of major thermal shock to the crystal both during growth and removal
from the apparatus.

The main disadvantages of the low temperature solution growth are the slow
growth rate in many cases and the ease of solvent inclusion into the growing
crystal. Under the controlled conditions of growth the solvent inclusion can be
minimized and the high quality of the grown crystal can compensate the
disadvantage of much longer growth periods. After many modifications and
refinements, the process of solution growth now yields good quality crystals for a
variety of applications. Growth of crystals from solution at room temperature has
many advantages over other growth methods though the rate of crystallization is
slow. Since growth is carried out at room temperature, the structural imperfections

in solution grown crystals are relatively low.

Among the various methods of growing single crystals, solution growth at low
temperatures occupies a prominent place owing to its versatility and simplicity.
After undergoing so many modifications and refinements, the process of solution

growth now yields good quality crystals for a variety of applications.

In the low temperature solution growth, crystals can be grown from solution if the
solution is supersaturated i.e., it contains more solute than it can be in equilibrium
with the solid. Three principal methods are used to produce the required

supersaturation:

1. Slow cooling of the solution

ii. Slow evaporation of the solvent
iii. The temperature gradient method.

Low temperature solution growth is a well-established technique due to its
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versatility and simplicity. It is possible to grow large crystals of high perfections as
the growth occurs close to equilibrium conditions. It also permits the preparation of

different morphologies of the same materials by varying the growth conditions.
21.8.2.1 Slow Cooling Technique

It is the best way to grow single crystals by solution technique. The Main
limitation is the need to use a range of temperature. The possible range of
temperature is usually small so that much of the solute remains in the solution at
the end of the run. To compensate this effect, large volumes of solution are
required. The use of a range of temperatures may not be desirable because the
properties of the grown material may vary with temperature. Even though the
method has technical difficulty of requiring a programmable temperature control, it
is widely used with great success. The temperature at which such crystallization
can begin is usually within the range 45 - 75 °C and the lower limit of cooling is

the room temperature.

21.8.2.2 Slow Evaporation Method

This method is similar to the slow cooling method in view of the apparatus
requirements. The temperature is fixed constant and provision is made for
evaporation. With non-toxic solvents like water, it is permissible to allow
evaporation into the atmosphere. Typical growth conditions involve temperature
stabilization to about = 0.005°C and rates of evaporation of a few ml /hr. The
evaporation techniques of crystal growth have the advantage that the crystals grow
at a fixed temperature. But inadequacies of the temperature control system still
have a major effect on the growth rate. This method is the only one, which can be

used with materials, which have very small temperature coefficient of stability.

21.8.2.3 Temperature Gradient Method

This method involves the transport of the materials from a hot region containing
the source material to be grown to a cooler region where the solution is

supersaturated and the crystal grows. The main advantages of this method are that
(a) Crystal grows at a fixed temperature.

(b) This method is insensitive to changes in temperature provided both the source

and the growing crystal undergo the same change.

(c) Economy of solvent and solute.
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On the other hand, changes in the small temperature differences between the

source and the crystal zones have a large effect on the growth rate.

Excellent quality nanomaterials of ferroelectric and piezo-electric materials such as
Ammonium dihydrogen phosphate (ADP), Potassium di-hydrogen phosphate
(KDP) and Triglycine sulphate (TGS) are commercially grown for use in devices

by the low temperature solution growth method.
21.8.3 Electrocrystallization:

Electrolysis of fused salts is normally used for the commercial production of
metals such as aluminium and has great technological importance. The process of
crystal growth from fused salts is analogous in many respects, except for the
requirement of electron transfer in deposition of the metal. Fused salt electrolysis

has been used to grow crystals of oxides in reduced valence states.

21.9 Plasma Arc Discharge Method

The synthesis setup consists of a stainless steel cylindrical vacuum chamber with a
total volume of 4500cm’ (27 cm in length and 14.5 cm in diameter). A pair of
electrodes ,a cathode and anode, is installed along the vertical axis of the chamber.
Both electrodes are made of POCO EDM-3 graphite. The cathode is a cylindrical
rod with a diameter of 13 mm, while the anode is a hollow tube with inner and

outer diameters of 3 and 5 mm respectively.

Figure 21.7a shows the schematic of the arc discharge synthesis setup. The anode
and cathode were placed 2 mm apart, and the distance between the substrate and
the cathode-anode assembly was about 1.5-2 cm. A shutter (shown in
Figure 21.7b) made of molybdenum foil, with a quarter section cutout, allowed
control of the substrate exposure time to the arc plasmas. The vacuum chamber
was pumped to the pressure of about 13 Pa and then high purity helium (about
99.97%) was introduced into the chamber to the pressure around 67000 Pa.

A 1.5 x 14 mm’, 0.1 mm thick copper foil was used as a substrate to collect
sample. In order to heat the substrate, a nickel-chromium resistance wire was used.
The resistance wire was wound into the shape of a spring, and the copper foil was
then inserted inside. Voltage generated by a variable auto-transformer was applied

to the heater during the synthesis. Before the experiment, the substrate was pre-

cleaned using ethanol. It has to be noted that extreme requirements to residual
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vacuum and substrate cleaning were not applied in this work.

The arc electrodes were connected to an external DC power source at a fixed arc
current of about 75A. Arc current and arc voltage were recorded by a digital
oscilloscope. The anode motion was controlled by a linear drive system using a
personal computer equipped with a National Instruments Data Acquisition card,
and the program was written on the lab view platform. The arc was generated by
mechanical contact of the arc electrodes followed by their immediate separation. A

camera was utilized to record the whole process of the synthesis procedure.

The sample synthesized on the copper substrate was then characterized using a
Horiba Lab RAM spectroscope, SIGMA VP-02-44 SEM and JEOL 1200 EX
TEM. It has to be noted that there was no quantity of sample observed on the pre-
heated substrate if the arc discharge was not initiated, indicating that possible
production of sample as a result of decomposition of hydrocarbon oil utilized in the

vacuum pumping system is negligible.
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Figure21.7 Schematic of the set-up of the plasma based synthesis system using
Shutter in between the substrate and arc.

The substrate was heated for 2 minutes before initiating the arc. Once the arc
stabilized, a few seconds after initiation, the shutter then made one full revolution
for one second. After a single revolution, the arc was then turned off. Heating of
the copper foil was continued for an additional 3 minutes and then was also turned
off.
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El.lﬂ Pulsed Laser Deposition
Transient and high speed events can be photographed using holographic

methods. It is especially useful, when it is not clear, as to where in a given volume
the event is taking place. So the techniques applied in particle size analysis can
also be used in macrophotography. A ruby laser, both in conventional and Q
switched mode was used by Brookers and his colleagues. The design was such that
the path of the reference beam was carefully matched to the path of the
illuminating beam. Here the output from the laser is slightly diverged and divided

into two, by a beam divider.

21.11 Chemical Methods

If the crystal is in dynamic equilibrium with its parent phase ,the free energy is

at a minimum and no growth will occur. For growth to occur this equilibrium must
be disturbed by a change of the correct sign, in temperature, in pressure, chemical
potential (e.g. saturation) electrochemical potential (e.g. electrolysis), or strain
(solid state growth). The system may then release energy to its surrounding to
compensate for the decrease in entropy occasioned by the ordering of atoms in the
crystal and the evolution of heat of crystallization. In a well — designed growth
process just one of these parameters is held minimally away from its equilibrium

value to provide a driving force for growth.

Crystal growth then is a non-equilibrium process and thought must be given to
the temperature and concentration and other gradients and the fact that heat of
crystallization is evolved and must be removed to the surroundings. At the same
time the crystal growth process must be kept as near equilibrium and as near to a
steady state process as possible. This is why control of the crystal growth
environment and a consideration of growth kinetics both at the macroscopic and
the atomic levels are of vital importance to the success of a crystal growth
experiment. It is particularly important to avoid constitutional supercooling and the

breakdown of the crystal-liquid interface that this can cause.

In some growth techniques there is no crystal initially present. Here the nucleation
problem is met which in essence is due to the fact that the surface-to-volume ratio
of small particle is much higher than for a large crystal. Surfaces lose energy

because of discontinuities in atomic bonding. Thus the nucleation of a new phase is

448



a discontinuity, not a quasi equilibrium process. This is the reason why pure melts
supercool and solutions become supersaturated. Thus the growth system departs
considerably from equilibrium before a crystal nucleates, and when it comes the
new born crystal grows very rapidly at first and is full of defects, some of which
propagates into the later stages of near equilibrium growth. Crystal growers thus
seek to use methods where a seed crystal can be introduced into the system to
avoid the nucleation. In the last three decades great strides have been made toward
achieving crystal perfection motivated by the needs of the electronics and optics
industries. While thermodynamics excludes the possibility of growing a perfect
crystal, gross defect like grain boundaries, voids, and even dislocations can be
eliminated with care and point defects, like impurities, vacancies, interstitials, and
antistructure disorder can be minimized by attention to growth environment and

purity of reagents and apparatus.

There are some chemical methods present for the growth of the nano-materials

21.11.1 Gel Growth

It is an alternative technique to solution growth with controlled diffusion and the
growth process is free from convection. Gel is a two-component system of a
semisolid rich in liquid and inert in nature. The material, which decomposes before
melting, can be grown in this medium by counter diffusing two suitable reactants.
Crystals with dimensions of several mm can be grown in a period of 3 to 4 weeks.
The crystals grown by this technique have high degree of perfection and fewer

defects since the growth takes place at room temperature.

21.11.2 Hydrothermal Growth

Hydrothermal implies conditions of high pressure as well as high temperature.
Substances like calcite, quartz is considered to be insoluble in water ,but at high
temperature and pressure, these substances are soluble. This method of crystal
growth at high temperature and pressure is known as hydrothermal method.
Temperatures are typically in the range of 400°C to 600°C and the pressure
involved is large (hundreds or thousands of atmospheres).

Growth is usually carried out in steel autoclaves with gold or silver linings.
Depending on the pressure the autoclaves are grouped into low, medium and high-

pressure autoclaves. The concentration gradient required to produce growth is
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provided by a temperature difference between the nutrient and growth areas. The
requirement of high pressure presents practical difficulties and there are only a few
crystals of good quality and large dimensions are grown by this technique. Quartz
is the outstanding example of industrial hydrothermal crystallization. One serious

disadvantage of this technique is the frequent incorporation of OH ions into the

crystal, which makes them unsuitable for many applications.

21.11.3 Growth from Vapour

The growth of single crystal material from the vapour phase is probably the most
versatile of all crystal growth processes. Crystals of high purity can be grown from
vapour phase by sublimation, condensation and sputtering of elemental materials.
To obtain single crystals of high melting point materials this method is used.
Molecular beam techniques have also been applied recently to crystal growth
problems. The most frequently used method for the growth of bulk crystals utilizes
chemical transport reaction in which a reversible reaction is used to transport the
source material as a volatile species to the crystallization region. Finding a suitable
transporting agent is a formidable, problem in this technique. It is rarely possible to

grow large crystals because of multi-nucleation.

The commercial importance of vapour growth is the production of thin layers by
chemical vapour deposition (CVD), where usually irreversible reactions e.g.
decomposition of silicon halides or of organic compounds are used to deposit
materials epitaxially on a substrate. Doping can be achieved by introducing volatile
compounds of dopant elements into the reaction region. The thickness of the doped

layer can be controlled.
21.12 Thermolysis

Thermal decomposition, or thermolysis, is a chemical decomposition caused by

heat. The decomposition temperature of a substance is the temperature at which

the substance chemically decomposes.

The reaction is usually endothermic as heat is required to break chemical bonds in
the compound undergoing decomposition. If decomposition is sufficiently
exothermic, a positive feedback loop is created producing thermal runaway and

possibly an explosion.

Example:
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o Calcium carbonate (limestone or chalk) decomposes into calcium oxide and

carbon dioxide when heated. The chemical reaction is as follows:

CaCo,—CaD +CO,

The reaction is used to make quick lime, which is an industrially important

product.

« Some oxides, especially of weakly electropositive metals decompose when
heated to high enough temperatures. A classical example is the decomposition of

mercuric oxide to give oxygen and mercury metal.

When metals are near the bottom of the reactivity series, their compounds
generally decompose easily at high temperatures. This is because stronger bonds
form between atoms towards the top of the reactivity series, and strong bonds
break less easily. For example, copper is near the bottom of the reactivity series,
and copper sulphate (CuSO,), begins to decompose at about 200 °C, increasing
rapidly at higher temperatures to about 560 °C. In contrast potassium is near the
top of the reactivity series, and potassium sulphate (K,SO,) does not decompose at

its melting point of about 1069 °C, nor even at its boiling point.

21.13 Self Learning Exercise

Q.1 What is nanotechnology ? Give the reason for their development.
Q.2 How is nanotech different from biotech ?
Q.3 Where is nanotechnology being developed ?

Q.4 Are there any safety or environmental issues with the nanotechnologies in
use today ?

Q.5 What are some of the most interesting nanoparticles found in nature (not
manufactured in the lab) ?

Q.6 What are nanomaterials ? Do they exist in nature ?

Q.7 What are nanotubes, nanoparticles and nanoplates ?

Q.8 What are uses of nanotechnology ?

21.14 Summary

In this chapter we have studied some important topics named as Quantum

dot,Quantum well structures and growth techniques of nanomaterials. This is very
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important study in nanoscience because it gives us basic idea about the

nanoscience.

21.15 Glossary

Quantum Dot: 0-D system (quantum box or a quantum dot).In a quantum dot, the
carrier motion is quantized along all three spatial directions and this means there is

restricted carrier motion.
DOS: The density of states (DOS) formulation describes the number of electronic

states that are available in system.

21.16 Answer to Self Learning Exercise

Ans.1: On the basis of industrial use nano technology consists those structures,
devices, and systems having novel properties and functions in which the
arrangement of their atoms on the 1 to 100 nanometre scale. Many fields of
endeavour contribute to nanotechnology, including molecular physics, materials
science, chemistry, biology, computer science, electrical engineering, and

mechanical engineering.

Due to the extreme breadth and generality of this definition, many prefer to use the
term "nanotechnologies." For clarity, it is also useful to differentiate between near-
term and long-term prospects, or to segment the field into first-generation through

fourth-generation stages.

Gaining better control over the structure of matter has been a primary project of
our species since we started chipping flint. The quality of all human-made goods
depends on the arrangement of their atoms. The cost of our products depends on
how difficult it is for us to get the atoms and molecules to connect up the way we
want them. The amount of energy used - and pollution created - depends on the
methods we use to place and connect the molecules into a given product. The goal
of nanotechnology is to improve our control over how we build things, so that our
products can be of the highest quality and while causing the lowest environmental
impact. Nanotech is even expected to help us heal the damage our past cruder and

dirtier technologies have caused to the biosphere.
Nanotechnology has been identified as essential in solving many of the problems

facing humanity. Specifically, it is the key to addressing the Foresight Nanotech
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Challenges:

1. Providing Renewable Clean Energy

2. Supplying Clean Water Globally

3. Improving Health and Longevity

4. Healing and Preserving the Environment

5. Making Information Technology Available To All

6. Enabling Space Development
Ans.2: On the basis of the definition of nanotech is defined as involves structures,
devices, and systems having novel properties and functions due to the arrangement
of their atoms on the 1 to 100 nanometer scale and biotech can be thought of as a
subset of nanotech - "nature's nanotechnology." Biotech uses the molecular
structures, devices, and systems found in plants and animals to create new
molecular products. Nanotech is more general, not being limited to existing natural
structures, devices, and systems, and instead designing and building new, non-
biological ones. These can be quite different: harder, stronger, tougher, and able to
survive a dry or hot environment, unlike biology. For example, nanotech products
can be used to build an automobile or spacecraft.
Ans.4: Concerns have been raised regarding potential health and environmental
effects of the passive nanostructures termed "nanoparticles." Regulatory agencies
and standards bodies are beginning to look at these issues, though significantly
more funding for these efforts is required. Foresight is working with the
International Council on Nanotechnology to address these concerns.
Ans.5: Certainly, nanoparticles are a fact of life, and were long before humans
were around. Anything that burns and many things that get very hot release
nanoparticles — think fires and volcanoes. Liquid sprays that contain small
amounts of dissolved substances can also produce nanoparticles as they evaporate
— sea spray for instance is a great source of nanoparticles. Photochemical smog is
a great example of man-made atmospheric “nanoparticle factories.” But nature
was there before us — terpenes released by trees can form nanoparticles in the
atmosphere (the blue haze associated with the Blue Ridge Mountains is a result of
naturally occurring nanoparticles). These are all certainly interesting
nanoparticles. But they usually differ from engineered nanoparticles in that they

are usually complex mixtures of nanoparticles and other stuff.
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Ans.7: These are different types of nanomaterials, named for their individual
shapes and dimensions. Think of these simply as objects with one or more

dimension at the nanoscale.

Nanoparticles are bits of a material in which all three dimensions of the object are
within the nanoscale. Nanotubes have a diameter in the nanoscale, but can be
several hundred nanometers long—or even longer. Nanoplates have a thickness at

the nanoscale, but their other two dimensions can be quite large.
Ams.8: Nanotechnology is used in many commercial products and processes, for
example, nanomaterials are used to manufacture lightweight, strong materials for

applications such as boat hulls, sporting equipment, and automotive parts.

Nanomaterials are also used in sunscreens and cosmetics.

Nanostructured products are used to produce space-saving insulators which are
useful when size and weight is at a premium—for example, when insulating long
pipelines in remote places, or trying to reduce heat loss from an old house.
Nanostructured catalysts make chemical manufacturing processes more efficient,

by saving energy and reducing waste.

In healthcare, nanoceramics are used in some dental implants or to fill holes in
diseased bones, because their mechanical and chemical properties can be “tuned”
to attract bone cells from the surrounding tissue to make new bone. Some
pharmaceutical products have been reformulated with nanosized particles to
improve their absorption and make them easier to administer. Opticians apply

nanocoatings to eyeglasses to make them easier to keep clean and harder to scratch
and nanoenabled coatings are used on fabrics to make clothing stain-resistant and
easy to care for.

Almost all high-performance electronic devices manufactured in the past decade
use some nanomaterials. Nanotechnology helps build new transistor structures and

interconnects for the fastest, most advanced computing chips.

21.17 Exercise

Q.1 What do you mean by Nano? Define Nano Technology and Nano Science ?
Q.2  What is the difference between Nano Science & Nano Technology ?

Q.3 Define nano structured material ? Classify nanomaterials and give examples
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for them ?
Q.4 List any four day to day live commercial applications of nanotechnology ?
Q.5 What do you mean by quantum dots & nanocrystals ?
Q.6 List any four processes for growth of nanomaterial.

Q.7 What are the nanotubes ? Define carbon nanotubes ?
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nanoscale science too has to start from basic scientific research. Once a
comprehensive understanding of the nanoworld has been established,
nanotechnology with applications showing commercial potential will emerge.
There are so many fields in nanotechnology like Nanobiotechnology is related to
the science which gives us idea about diseases and other form of life. It mainly

teaches us nanoscale things which are useful in our life.

22.1 Introduction

The term “nano” refers to the metric prefix 10”. It means one billionth of
something. “Nano” can be ascribed to any unit of measure. For example, you may
report a very small mass in nanograms or the amount of liquid in one cell in terms

of nanoliters.

So Nanoscience is the study of structures and materials on the scale of
nanometers. To give you an idea of how long a nanometer is, this printed page is
about 75,000 nanometers thick. When structures are made small enough—in the
nanometer size range—they can take on interesting and useful properties.
Nanoscale structures have existed in nature long before scientists began studying
them in laboratories. A single strand of DNA, the building block of all living
things, is about three nanometers wide. The scales on a morpho butterfly’s wings
contain nanostructures that change the way light waves interact with each other,
giving the wings brilliant metallic blue and green hues. Peacock feathers and soap
bubbles also get their iridescent coloration from light interacting with structures
just tens of nanometers thick. Scientists have even created nanostructures in the

laboratory that mimic some of nature’s amazing nanostructures.

22.2 Bukminster Fullerence

Buckminsterfullerene derives from the name of the noted futurist and inventor
Buckminster Fuller. One of his designs of a geodesic dome structure bears great
resemblance to Cg; as a result, the discoverers of the allotrope named the
newfound molecule after him. The general public, however, sometimes refers to
buckminsterfullerene, and even Mr. Fuller's dome structure, as buckyballs.

Buckminsterfullerene (or bucky-ball) is a spherical fullerene molecule with

the formula Cg. It has a cage-like fused-ring structure (truncated icosahedron)

which resembles a football (soccer ball), made of twenty hexagons and twelve
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pentagons, with a carbon atom at each vertex of each polygon and a bond along
each polygon edge.

Figure 22.1: Buckyballs.

It was first generated by scientists Harold Kroto, James R. Heath, Sean O'Brien,
Robert Curl, and Richard Smalley at Rice University. Some scientists were
awarded the Nobel Prize in Chemistry for their roles in the discovery of
buckminsterfullerene and the related class of molecules, the fullerenes. The name
is a reference to Buckminster Fuller, as Cg, resembles his trademark geodesic
domes. Buckminsterfullerene is the most common naturally occurring fullerene
molecule, as it can be found in small quantities in soot. Solid and gaseous forms of

the molecule have been detected in deep space.

Buckminsterfullerene is one of the largest objects to have been shown to exhibit
wave—particle duality; as stated in the theory every object exhibits this behaviour.
Its discovery led to the exploration of a new field of chemistry, involving the study
of fullerenes.

The structure of a buckminsterfullerene is truncated icosahedrons with 60
vertices and 32 faces (20 hexagons and 12 pentagons where no pentagons share a

vertex) with a carbon atom at the vertices of each polygon and a bond along each
polygon edge. The Vander Waals diameter of a Cgy molecule is about 1.01
nanometres (nm). The nucleus to nucleus diameter of a Cgq molecule is about

0.71 nm. The 660 molecule has two bond lengths. The 6:6 ring bonds (between
two hexagons) can be considered "double bonds" and are shorter than the 6:5
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bonds (between a hexagon and a pentagon). Its average bond length is 0.14 nm.

Each carbon atom in the structure is bonded covalently with 3 others.

The Cgg molecule is extremely stable, withstanding high temperatures and
high pressures. The exposed surface of the structure can selectively react with
other species while maintaining the spherical geometry. Atoms and small

molecules can be trapped within the molecule without reacting.

C60 undergoes six reversible, one-electron reductions to C 660_ , but oxidation
is irreversible. The first reduction needs ~1.0 V showing that C, is a moderately
effective electron acceptor. C6O tends to avoid having double bonds in the
pentagonal rings, which makes electron delocalization poor, and results in C60
not being "superaromatic". CGO behaves very much like an electron deficient
alkene and readily reacts with electron rich species. A carbon atom in the Cgq
molecule can be substituted by a nitrogen or boron atom yielding C5qN or

C 598 respectively.

In solid buckminsterfullerene, the molecules C, stick together via the Vander
Waals forces in the fcc (face-centred cubic) motif. At low temperatures the
individual molecules are locked against rotation. Upon heating, they start rotating
at about —20 °C. This results in a first-order phase transition to a fcc structure and a

small, yet abrupt increase in the lattice constant from 1.411 to 1.4154 nm.
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Figure 22.2: Optical absorption spectrum of C, 60 solution.
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There is no application of C, in commercial life. In the medical field, elements
such as helium (that can be detected in minute quantities) can be used as chemical
tracers in impregnated buckyballs.

Water-soluble derivatives of C, were discovered to exert an inhibition on the

three isoforms of nitric oxide synthase, with slightly different potencies.

The optical absorption properties of C., match solar spectrum in a way that
suggests that C,-based films could be useful for photovoltaic applications because
of its high electronic affinity. It is one of the most common electron acceptor used
in donor/acceptor based solar cells. Conversion efficiencies up to 5.7% have been
reported in C,-polymer cells.

22.3 Carbon Nano Tubes

The terminology of nano tubes is no consensus on some terms describing
carbon nanotubes in scientific literature: both -wall and -walled are being used in
combination with single, double, triple or multi, and the letter C is often omitted in

the abbreviation; for example, multi-walled carbon nanotube.

Figure 22.3: Carbon Nano tube.

Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical
nanostructure. Nanotubes have been constructed with length-to-diameter ratio of
up to 132,000,000:1 significantly larger than for any other material. These
cylindrical carbon molecules have unusual properties, which are valuable for

nanotechnology, electronics, optics and other fields of materials science and
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technology. In particular, owing to their extraordinary thermal conductivity and
mechanical and electrical properties, carbon nanotubes find applications as
additives to various structural materials. For instance, nanotubes form a tiny
portion of the material(s) in some (primarily carbon fiber) baseball bats, golf clubs,
car parts or damascus steel.

Nanotubes are members of the fullerene structural family. Their name is
derived from their long, hollow structure with the walls formed by one-atom-thick
sheets of carbon, called graphene. These sheets are rolled at specific and discrete
angles, and the combination of the rolling angle and radius decides the nanotube
properties; for example, whether the individual nanotube shell is a metal or
semiconductor. Nanotubes are categorized as single-walled nanotubes and multi-
walled nanotubes. Individual nanotubes naturally align themselves into ropes held

together by Vander Waals forces, more specifically, pi-stacking.

Applied quantum chemistry, specifically, orbital hybridization best describes
chemical bonding in nanotubes. The chemical bonding of nanotubes is composed
entirely of sp” bonds, similar to those of graphite. These bonds, which are stronger
than the sp’ bonds found in alkanes and diamond, provide nanotubes with their

unique strength.

Most single-walled nanotubes (SWNTs) have a diameter of close to
1 nanometer, and can be many millions of times longer. Multi-walled nanotubes
(MWNTs) consist of multiple rolled layers (concentric tubes) of graphene. There
are two models that can be used to describe the structures of multi-walled
nanotubes, sheets of graphite are arranged in concentric cylinders, e.g., a (0,8)
single-walled nanotube (SWNT) within a larger (0,17) single-walled nanotube. In
the Parchment model, a single sheet of graphite is rolled in around itself,
resembling a scroll of parchment or a rolled newspaper.

Recently, several studies have highlighted the prospect of using carbon
nanotubes as building blocks to fabricate three-dimensional macroscopic (>100 nm
in all three dimensions) all-carbon devices. Lalwani et al. have reported a novel
radical initiated thermal crosslinking method to fabricate macroscopic, free-
standing, porous, all-carbon scaffolds using single- and multi-walled carbon
nanotubes as building blocks. These scaffolds possess macro-, micro-, and nano-

structured pores and the porosity can be tailored for specific applications. These
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3D all-carbon scaffolds/architectures may be used for the fabrication of the next
generation of energy storage, supercapacitors, field emission transistors, high-

performance catalysis, photovoltaics, and biomedical devices and implants

22.3.1 Nitrogen Doped Carbon Nano Tubes

Nitrogen doped carbon nanotubes (N-CNTs) can be produced through five main
methods, chemical vapor deposition, high-temperature and high-pressure reactions,
gas-solid reaction of amorphous carbon with NH, at high temperature, solid

reaction, and solvothermal synthesis.

Nitrogen doping plays a pivotal role in lithium storage, as it creates defects in
the CNT walls allowing for Li ions to diffuse into interwall space. It also increases
capacity by providing more favorable bind of N-doped sites. N-CNTs are also
much more reactive to metal oxide nanoparticle deposition which can further
enhance storage capacity, especially in anode materials for Li-ion batteries.
However boron-doped nanotubes have been shown to make batteries with triple
capacity

A carbon peapod is a novel hybrid carbon material which traps fullerene inside a
carbon nanotube. It can possess interesting magnetic properties with heating and
irradiation. It can also be applied as an oscillator during theoretical investigations

and predictions.

22.3.2 Cup Stacked Carbon Nano Tube

Cup-stacked carbon nanotubes (CSCNTSs) differ from other quasi-1D carbon
structures, which normally behave as quasi-metallic conductors of electrons.
CSCNTs exhibit semiconducting behaviors due to the stacking microstructure of

graphene layers.

22.3.3 Extreme Carbon Nano Tube

The observation of the longest carbon nanotubes grown so far are over 1/2 m
(550 mm long) was reported in 2013. These nanotubes were grown on Si substrates
using an improved chemical vapor deposition (CVD) method and represent

electrically uniform arrays of single-walled carbon nanotubes.

The shortest carbon nanotube is the organic compound cycloparaphenylene,

which was synthesized in few years ago.
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The thinnest carbon nanotube is the armchair (2, 2) CNT with a diameter of
0.3 nm. This nanotube was grown inside a multi-walled carbon nanotube.
Assigning of carbon nanotube type was done by a combination of high-resolution
transmission electron microscopy (HRTEM), Raman spectroscopy and density
functional theory (DFT) calculations.

22.3.4 Properties of Carbon Nano Tubes

The highest density of CNTs was achieved in 2013, grown on a conductive
titanium-coated copper surface that was coated with co-catalysts cobalt and

molybdenum at lower than typical temperatures of 450 °C. The tubes averaged a
height of 380 nm and a mass density of 1.6 g cm . The material showed ohmic
conductivity (lowest resistance ~22 k(J).

Carbon nanotubes are the strongest and stiffest materials yet discovered in
terms of tensile strength and elastic modulus respectively. This strength results

from the covalent sp2 bonds formed between the individual carbon atoms.

Standard single-walled carbon nanotubes can withstand a pressure up to 25 GPa
without [plastic/permanent]| deformation. They then undergo a transformation to
super hard phase nanotubes. Maximum pressures measured using current
experimental techniques are around 55 GPa. However, these new superhard phase

nanotubes collapse at an even higher, albeit unknown, pressure.

The surface wet ability of CNT is of importance for its applications in various
settings. Although the intrinsic contact angle of graphite is around 90°, the contact
angles of most as-synthesized CNT arrays are over 160°, exhibiting a super
hydrophobic property. By applying a low voltage as low as 1.3V, the extreme
water repellent surface can be switched into super hydrophilic.

Multi-walled nanotubes are multiple concentric nanotubes precisely nested
within one another. These exhibit a striking telescoping property whereby an inner
nanotube core may slide, almost without friction, within its outer nanotube shell,
thus creating an atomically perfect linear or rotational bearing. This is one of the
first true examples of molecular nanotechnology, the precise positioning of atoms
to create useful machines. Already, this property has been utilized to create the

world's smallest rotational motor.
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22.3.5 Current Application

Current use and applications of nanotubes has mostly been limited to the use of
bulk nanotubes, which is a mass of rather unorganized fragments of nanotubes.
Bulk nanotube materials may never achieve a tensile strength similar to that of
individual tubes, but such composites may, nevertheless, yield strengths sufficient
for many applications. Bulk carbon nanotubes have already been used as
composite fibres in polymers to improve the mechanical, thermal and electrical

properties of the bulk product.

22.4 Nanoelectronics

Nanoelectronics refers to the use of nanotechnology in electronic
components. The term covers a diverse set of devices and materials, with the
common characteristic that they are so small that inter-atomic interactions and
quantum mechanical properties need to be studied extensively. Some of these
candidates include: hybrid molecular/semiconductor electronics, one-dimensional
nanotubes/nanowires, or advanced molecular electronics. Recent silicon CMOS
technology generations, such as the 22 nanometer node, are already within this
regime. Nanoelectronics are sometimes considered as disruptive technology

because present candidates are significantly different from traditional transistors.

It is observed that silicon transistors were undergoing a continual process of
scaling downward, an observation which was later codified as Moore's law. Since
his observation transistor minimum feature sizes have decreased from 10
micrometers to the 28-22 nm range in 2011. The field of nanoelectronics aims to
enable the continued realization of this law by using new methods and materials to
build electronic devices with feature sizes on the nanoscale. The volume of an
object decreases as the third power of its linear dimensions, but the surface area

only decreases as its second power.
22.4.1 Some Approaches of Nanoelectronics
Nanofabrication:

For example, single electron transistors, which involve transistor operation based
on a single electron. Nanoelectromechanical systems also fall under this category.
Nanofabrication can be used to construct ultradense parallel arrays of nanowires,

as an alternative to synthesizing nanowires individually.
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Nanomaterials electronics:

Besides being small and allowing more transistors to be packed into a single chip,
the uniform and symmetrical structure of nanotubes allows a higher electron
mobility (faster electron movement in the material), a higher dielectric constant
(faster frequency), and a symmetrical electron/hole characteristic. Also,

nanoparticles can be used as quantum dots.

Molecular Electronics:

Single molecule devices are another possibility. These schemes would make
heavy use of molecular self-assembly, designing the device components to
construct a larger structure or even a complete system on their own. This can be
very useful for reconfigurable computing, and may even completely replace

present some technology.

Molecular electronics is a new technology which is still in its infancy, but
also brings hope for truly atomic scale electronic systems in the future. One of the
more promising applications of molecular electronics was proposed by the IBM
researcher Ari Aviram and the theoretical chemist Mark Ratner. This is one of
many possible ways in which a molecular level diode / transistor might be
synthesized by organic chemistry. A model system was proposed with a spiro
carbon structure giving a molecular diode about half a nanometre across which
could be connected by polythiophene molecular wires. Theoretical calculations
showed the design to be sound in principle and there is still hope that such a

system can be made to work.

22.5 Molecular Machine

A molecular machine, or nanomachine, is any discrete number of molecular

components that produce quasi-mechanical movements (output) in response to
specific input. The expression is often more generally applied to molecules that
simply mimic functions that occur at the macroscopic level. The term is also
common in nanotechnology where a number of highly complex molecular
machines have been proposed that are aimed at the goal of constructing a
molecular assembler. Molecular machines can be divided into two broad

categories; synthetic and biological.

Molecular systems capable of shifting a chemical or mechanical process away
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from equilibrium represent a potentially important branch of chemistry and
nanotechnology. As the gradient generated from this process is able to perform
useful work these types of systems, by definition are examples of molecular
machinery.

From a synthetic perspective, there are two important types of molecular
machines: molecular switches (or shuttles) and molecular motors. The major
difference between the two systems is that a switch influences a system as a
function of state, whereas a motor influences a system as function of trajectory.
Furthermore, switches cannot use chemical energy to repetitively and

progressively drive a system away from equilibrium where a motor can.

22.5.1 Biological Molecular Machine

The most complex molecular machines are proteins found within cells. These
include motor proteins, such as myosin, which is responsible for muscle
contraction, kinesin, which moves cargo inside cells away from the nucleus along
microtubules, and dynein, which produces the axonemal beating of motile cilia and
flagella. These proteins and their nanoscale dynamics are far more complex than

any molecular machines that have yet been artificially constructed.

Probably the most significant biological machine known is the ribosome. Other
important examples include ciliary mobility. A high-level-abstraction summary is
that, "in effect, the [motile cilium] is a nanomachine composed of perhaps over
600 proteins in molecular complexes, many of which also function independently
as nanomachines." Flexible linker domains allow the connecting protein domains
to recruit their binding partners and induce long-range allostery via protein domain

dynamics.

This protein flexibility allows the construction of biological machines. The first
useful applications of these biological machines might be in nanomedicine. For
example, they could be used to identify and destroy cancer cells. Molecular
nanotechnology is a speculative subfield of nanotechnology regarding the
possibility of engineering molecular assemblers, biological machines which could
re-order matter at a molecular or atomic scale. Nanomedicine would make use of
these nanorobots, introduced into the body, to repair or detect damages and

infections. Molecular nanotechnology is highly theoretical, seeking to anticipate
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what inventions nanotechnology might yield and to propose an agenda for future
inquiry. The proposed elements of molecular nanotechnology, such as molecular

assemblers and nanorobots are far beyond current capabilities.

22.6 Nanobiometrics

It is defined as the part of nanobiomechanics in which the measurement of the

tiny forces that act on the cells and may be related to deseases and their cure.

Nanorobots have existed in nature since the beginning of life. They are
called bacteria and viruses. Cells contain many sorts of nanomachines including
12 nm diameter rotating motors, called ATPase. Optical structures on butterfly
wings that are highly metallic in appearance, yet contain no pigments; exquisitely
sensitive chemical sensors based on 4 nm-sized ion channels; composite
nanomaterials, such as spiders’ silk or abalone shells, that are tougher or stronger
than the best synthetic materials; and methods to convert sunlight into chemical
energy. All of this is done without the use of toxic solvents, billion dollar factories

and endless pollution.

Humans are inveterate tinkerers. We want these materials, but we want to
have control and to make them suit our purpose, not nature’s. Our needs are
different to those of an abalone or a butter fly. We need to be able to make
standard materials, since western society is not very good at dealing with products
that are not identical. We can also produce materials that biology cannot make and
so we may be able to develop new hybrid materials and structures to extend
biology’s proper ties. So, rightly or wrongly, for various reasons, we are not

content with what nature provides. We want to develop our own nanotechnology.

Biology shows us that only a few basic building blocks can self assemble into
more complex structures. These structures in turn can self-assemble into more
complex hierarchical structures from which you can build devices ranging from the
nanoscopic (such as nanoscale sensors based on proteins) to the gargantuan (for
example, the Great Barrier Reef in Australia). The three basic structural units
found in biology — lipids, proteins and DNA — and how these units can self
assemble into structures and devices that can be used to develop areas of

nanotechnology. It is important to remember that although we may want to mimic
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and to some extent imitate nature, we do not want to slavishly copy biology —

hence the term biomimetic nanotechnology.

22.7 Self Learning Exercise

Q.1 What is Bukminster Fullerence ?

Q.2 What are Carbon Nano Tubes ?

Q.3 Give some future uses of nanotechnology.

Q.4 Give brief description about nano-electronics devices.
Q.5 Give the brief description about Lipid structure.

Q.6 What is Nano-scale ?

Q.7 What is Nanobiotechnology ?

Q.8 What is molecular manufacturing ?

22.8 Summary

This unit contains some important topics which are Fullerence, Nanobiometrics
and nanoelectronics. These topics give us idea about the nanoscale development in
our life. An important topic which is molecular machine gives us idea about the
construction of molecules. Molecules are very important unit in our life. This unit

contains all topics related to our life and our future uses.

22.9 Glossary

Fullerene : A fullerene is a molecule of cabon in the form of a hollo sphere,
ellipsoid, tube, and many other shapes.

Nano tubes : It is nanometer scale tube like structure.

Carbon Nano-tubes : these are allotropes of carbon with a cylindrical

nanostructure.
Nanoelectronics: it is refer to the use of nanotechnology in electronic component.

22.10 Answer to Self Learning Exercise

Ans.1: In 1985 a new allotrope of carbon (C,,) was discovered. Sixty carbon atoms

form the shape of a ball like a football with a carbon atom at each corner of the 20

hexagons and 12 pentagons. Each carbon atom (shown below as a circle) has three
bonds.
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The size of the molecule is almost exactly 1nm in diameter. The ratio of the size of
an ordinary soccer ball to the planet Earth is the same as the ratio of the size of a
C,, molecule to a soccer ball. These are not called giant molecules because there
are only sixty atoms. A large number of these molecules can fit together to form a
transparent yellow solid called fullerite. This form of carbon was named after the
American architect Buckminster Fuller, who was famous for designing a large
geodesic dome which looked similar (sort of) to the molecular structure of C,,.
Many other balls of carbon called fullerenes have since been made, including C,,

C,, and C,,. These molecules have become known as "buckyballs".

Fullerenes are used as catalysts and lubricants. They are also used in nanotubes for
strengthening materials (for example sports equipment) and are sometimes used as
a way of delivering drugs into the body.

Ans.2: Carbon nanotubes (CNTs) are best described as a seamless cylindrical
hollow fibers, comprised of a single sheet of pure graphite (a hexagonal lattice of
carbon, similar to a chain link fence), having a diameter of 0.7 to 50 nanometers
with lengths generally in the range of 10’s of microns. Being a hollow tube

comprised entirely of carbon, they are also extremely light weight.
The type of bond holding the carbon atoms together is very strong, plus the

hexagonal pattern of the atoms themselves gives rise to a phenomenon known as

electron delocalization. This means that under the right conditions electrical
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charge can move freely in a nanotube. The regular arrangement of the atoms also
can vibrate in ways that effectively move heat through the tube, so thermal

conductivity is high as well as electrical.

When Carbon Nano Tubes were first discovered people believed that any
length was good enough for real world applications. However, it was soon
learned that the relatively short lengths of these tubes (a small fraction of a
millimeter) meant that when tubes were combined with other materials, unless they
were added in very high (and costly) amounts, they wouldn’t connect and form a
network. Without the tubes forming a network, it was practically impossible to
make a material that delivered the electrical, thermal, and mechanical performance
that the individual tubes exhibited.

Nanocomp resolved this problem by developing processes that generate tubes
that are hundreds of times longer (>1mm) than those from other manufacturers
formed into bundles. When tubes get very close to each other, some of the
electrons in each of the tubes begin synchronizing their motion so that the tubes
actually stick together. This attractive force — called a dispersion force - does
more than simply hold the tubes together. As the tubes come together, the force
also makes them intertwine with each other forming a network. This combined
effect makes the sheets, yarns, and tapes made by Nanocomp much stronger than if
they were made with the shorter tubes. While the bulk material properties of
Nanocomp’s Miralon products do not match those of the individual tubes described
above, they are far superior to the loose tube powders being manufactured

elsewhere.

Further, Miralon products are shipped as macro formats, comprised of many
bundles of multi-millimeter long Carbon Nano Tubes that are too long to
be inhaled or absorbed by the skin. Due to this, they are classified by the

Environmental Protection Agency (EPA) as "articles”, and "not" particles, unlike
traditional Carbon Nano Tube powders and loose tubes, making them safe to
handle and process in commercial, industrial, and military applications.

Ans.3: Exciting new nanotechnology-based medicines are now in clinical trials,

which may be available soon to treat patients. Some use nanoparticles to deliver

toxic anti-cancer drugs targeted directly to tumors, minimizing drug damage to
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other parts of the body. Others help medical imaging tools, like MRIs and CAT
scans, work better and more safely. Nanotechnology is helping scientists make our
homes, cars, and businesses more energy-efficient through new fuel cells, batteries,
and solar panels. It is also helping to find ways to purify drinking water and to
detect and clean up environmental waste and damage.

Nanomaterials are being tested for use in food packaging to greatly improve
shelf life and safety. Nanosensors to detect food-borne pathogens are also being
developed for food packaging. New nanomaterials will be stronger, lighter, and
more durable than the materials we use today in buildings, bridges, automobiles,
and more. Scientists have experimented with nanomaterials that bend light in
unique ways that may enable the developmentof an “invisibility cloak.” The

possibilities seem limitless, and the future of nanotechnology holds great potential.

Ans.4: Current high-technology production processes are based on traditional top
down strategies, where nanotechnology has already been introduced silently. The
critical length scale of integrated circuits is already at the nanoscale (50 nm and

below) regarding the gate length of transistors in CPUs or DRAM devices.

Computers:

Nanoelectronics holds the promise of making computer processors more powerful
than are possible with conventional semiconductor fabrication techniques. A
number of approaches are currently being researched, including new forms of
nanolithography, as well as the use of nanomaterials such as nanowires or small
molecules in place of traditional CMOS components. Field effect transistors have
been made using both semiconducting carbon nanotubes and with heterostructured

semiconductor nanowires.

Memory Storage:

Electronic memory designs in the past have largely relied on the formation of
transistors. However, research into crossbar switch based electronic have offered
an alternative using reconfigurable interconnections between vertical and
horizontal wiring arrays to create ultra high density memories. Two leaders in this
area are Nantero which has developed a carbon nanotube based crossbar memory
called Nano-RAM and Hewlett-Packard which has proposed the use of memristor

material as a future replacement of Flash memory.
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Ans.5: The term lipid has been used in a variety of ways. Here the word lipid is
generally used to refer to compounds that are extracted from, or are synthesised to
mimic, the naturally occurring compounds. So what are lipids ? Lipids are
molecules that possess a hydrocarbon tail that is hydrophobic or insoluble in water
(just like oil is insoluble in water) and a polar head group that is hydrophilic, or
water soluble. This is a rule of thumb for solubility: like dissolves like. Generally
the total length of the lipid molecules is 2—4 nm. From these molecules we can
build supermolecular structures that are hundreds of anometres to hundreds of

microns in size.

These lipids, as well as synthetic compounds where the hydrophilic head-
groups and hydrophobic tails are made up of groups that may never occur in
nature, are also known as amphiphilic compounds or amphiphiles (literally amphi
— both, phile — to love, that is, to be happy in both oil and water). It is possible to
either extract naturally occurring lipids or to synthesize lipids using standard
organic chemistry techniques. Literally thousands of different amphiphiles have
been extracted, synthesized and studied.

Ans.6: The nanoscale is the dimensional range of approximately 1 to 100
nanometers. Matter such as gases, liquids, and solids can exhibit unusual physical,
chemical, and biological properties at the nanoscale, differing in important ways
from the properties of bulk materials and single atoms or molecules. Some
nanostructured materials are stronger or have different magnetic properties
compared to other forms or sizes or the same material. Others are better at
conducting heat or electricity. They may become more chemically reactive or
reflect light better or change color as their size or structure is altered.

Ans.7: Nanobiotechnology is an emerging field of research and development that
seeks new solutions to pressing health and environmental problems by combining
physical sciences and engineering with life sciences and medicine. This exciting
frontier of discovery is generating new therapies, devices, diagnostic tools, and a
better understanding of the relationship between cells and disease. For example,
very small devices are now enabling new kinds of minimally invasive medical
procedures. Nanobiotechnology represents the future of medicine and healthcare.
Ans.8 : Molecular manufacturing is the name given to a specific type of "bottom-

up" construction technology. As its name implies, molecular manufacturing will be
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achieved when we are able to build things from the molecule up, and we will be
able to rearrange matter with atomic precision. This technology does not yet exist;
but once it does, we should have a thorough and inexpensive system for controlling
of the structure of matter.

Other terms, such as molecular engineering or productive molecular
nanosystems, arc also often applied when describing this emerging technology.
The central thesis of nanotechnology is that almost any chemically stable structure
that is not specifically disallowed by the laws of physics can in fact be built. The
possibility of building things with atomic precision was first introduced by Richard
Feynman in a famous after-dinner talk in 1959 when he said: "The principles of
physics, as far as I can see, do not speak against the possibility of maneuvering

things atom by atom."

Scientists have recently gained the ability to observe and manipulate atoms
directly, but this is only one small aspect of a growing array of techniques in
nanoscale science and technology. The ability to make commercial products may
yet be a few decades away. But theoretical and computational models indicate that
molecular manufacturing systems are possible - that they do not violate existing
physical law. These models also give us a feel for what a molecular manufacturing
system might look like. Today, scientists are devising numerous tools and
techniques that will be needed to transform nanotechnology from computer models
into reality. While most remain in the realm of theory, there appears to be no

fundamental barrier to their development.

22.11 Exercise

Q.1 Define carbon nanotube ? What are the types of carbon nanotubes ?
Q.2 Highlight the properties of carbon nanotubes?

Q.3 What is the difference between nanotechnology & nanoscience ?
Q.4 What is the Lipid Structure ? Give briefly.

Q.5 What are the nanotubes ? Define carbon nanotubes ?

Q.6 Define nano structured material ? Classify nanomaterials and give examples

for them?

Q.7 What is the difference between STM & AFM ?
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Q.8 What are the induced effects due to increase in surface area of
nanoparticles?

Q.9 Define nanocomposite ? What are the types of nanocomposites ?

Q.10 What is the difference between SEM & TEM?
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