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1.0Objectives 
  This unit constitutes the basic concepts of static (time invariant )electric 

field and potential. One can learn the Gauss’s law and its applications. We learn 
the usefulness of spherical and cylindrical coordinates for solving the certain kinds 
of problems in electrostatics. The better physical insight of behaviour of electric 
field and potential across the interface can be got by studying the boundary 
conditions at the interface. 

UNIT-1 
Electrostatics 

1.0 Objectives  
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 1.1Introduction 

 This unit introduces Coulomb’s law ,Gauss’s Law and boundary conditions 
on electric fields and potentials. Gauss’s law is developed and shown in both 
integral and differential form. The concept of circulation of the electric field is 
related to its conservative nature  is discussed. The concept of boundary conditions 
for electric field and potential is introduced in this unit. 
1.2 Electric Field 

According to Coulomb’s law , electrostatic force F between two point charges q 
and Q which are placed in free space at a distance r  is expressed mathematically 
as 

 
2

QqF k r  

This force acts along the line joining the charges. 
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The constant 0  is called permittivity of free space. 

Force on  2q due to 1q can be written in vector form as 
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 where  1 2 2 1r r r  
  

=Position vector of 2q −Position vector of  1q  

 1 2 2 1r r r  
    

From eq.(1) taking 1q Q (Source charge) and 2q q (test charge),we have 
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 F qE
 

         (Force on the test charge q)    
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ˆQE 



rr          (2) 

 and FE
q




 

 E


is called electric field (or electric field intensity) due to point charge Q. 

SI unit of E


is N
C

.  

Thus “Electric field E


at a point is the force experienced per unit charge at rest 
state at that point of space.” ( )E E r

    has a value at each point in the space, so it is 
called vector point field. 

For definition of electric field , we can write 

 0
lim
q

FE
q




 

The test charge q should be infinitesimally small because large value of the test 
charge will disturb the original charge distribution of primary charges that 

produces  E


. 
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If there are more than two charges, then we use principle of superposition for 
determination of the force on a particular charge. If there are N point charges 

1 2 3, , ,... NQ Q Q Q  (source charges) placed respectively at distances 

1 2 3, , ,... Nr r r r from charge q then by principle of superposition total force on the 

charge q(test charge)is given by 

 1 2 3 ... NF F F F F   
    

 

 

1 2
1 22 2 2

1 2

ˆ ˆ ˆ.... N
N

N

qQqQ qQF k k k  


r r rr r r  

Here position vectors of 1 2 3, , ,... NQ Q Q Q  are 1 2 3, , ,... Nr r r r   
 respectively and test 

charge q is located at position r , then 

 1 1 2 2, ,....r r r r   
    

r r  
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or   1 2 3 ... NE E E E E   
    

 

Above expression represents the principle of superposition for electric field. 

For continuous charge distribution 

 
2
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ˆdqE
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 

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Now we consider the Coulomb’s law for the general case of volume charge. 

Volume charge density is dq
d




  (in C/m3) ,where differential charge dq is 

present in a differential volume d  

The electric field at a point  , ,r x y z
  in terms of integral over the volume 

 charge distribution  , ,x y z     is written as  



5 
 

 
 

2
0

1( )
4

ˆr
E r d






 


 

  r
r         (3) 

For given charge distribution, ( )E r
  is a function of unprimed coordinates  , ,x y z  

 r   is a function of primed coordinates  , ,x y z    

       ˆˆ ˆr r x x i y y j z z k          
 

r  ’ 
 Volume element d dx dy dz      
For line charge distribution 

 
 
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E r dl


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
 

  r
r  

Line charge density is dq
dl

  (in C/m),where differential charge dq is present on 

a differential length dl .  
For surface charge distribution 

 
 

2
0

1( )
4

ˆ

S

r
E r dS


 


 

  r
r  

Surface charge density is dq
dS

  (in C/m2),where differential charge dq is present 

on a differential area dS .  

1.3 Gauss’s Law 
The theorem is stated mathematically as follows – 

 0

. enclosedqE d S


 


                     

(4)  

where qenclosed =   q 
inside = algebraic sum of charges inside the enclosed volume. 

“That net outward electric flux through a closed surface is equal to the sum of 
the charges inside the enclosed volume divided by the permittivity of free space”. 

Here such a hypothetical closed surface is known as Gaussian Surface. 

Gauss’s  law is  the easiest way of  calculating  electric field in situations in which  

charge distribution  has  symmetry  such as spherical  distribution  of charge, an 

infinite line charge etc. Gauss’s law is also true in non symmetrical situations, but  

1.3 Gauss’s Law 
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in that case it will not be so useful for the evaluation of electric fields. 

Important Points: 

1.  Electric flux .E d S
 

  
is independent of the size and shape of the Gaussian 

surface as long as q enclosed is same. 

2.  Electric flux does not depend on the location of charge inside the closed surface 
S, whereas electric field at each point on surface S, is dependent on location of 
charge. 

3.  Electric flux is unaltered by the charge outside the closed surface S, but outside 
charge contributes in electric field at each point on the surface S.  

The Concept of Solid Angle: 

Solid angle is analogous in three dimensional of the ordinary two dimensional 
angle. Now we consider an infinitesimal small area dS which subtends an 
infinitesimal small solid angle d   at a point O (see Fig. 1.2).  

 
Figure1.2  

Here r is the distance from the vertex O to the surface element dS. Solid angle d   
is related to opening of cone around its vertex. Mathematically, we have 

 2r
dSd    

Unit of solid angle is “Steradian” . From the definition of solid angle, it is obvious 
that the solid angle is dimensionless quantity. 

 (i) Suppose an elemental area vector vector d S


makes an angle   with radial  
vector r  (see figure 1.3)  
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Figure1.3  

Projection area perpendicular to r


is dS cos . Now solid angle d  is the ratio of 
this projected area to 2r  

i.e. 2 2

cos .dS d S rd
r r



  
 

                                           
(5) 

(ii) In figure 1.4, area elements dS1, dS2 and dS3 subtend same solid angle at the 

point O, because for them, opening of cone around its vertex O is same. 

 
Figure1.4  

(iii)Solid  angle subtended by sphere at the centre is4  

   2r
dSd  

  dS
r 2
1   r = constant 

   2
2

1 (4 ) 4r
r

      
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 4  = complete (full) solid angle 

Whatever may be shape or size of a closed surface, above result holds at any 
internal point surrounded by the closed surface. 

Therefore we have general result:  

Entire closed surface subtends solid angle  

 

4 at an internal point
0 at an external point


  




                (6) 

Proof of Gauss’s Theorem:- 

We consider a point charge q surrounded by a hypothetical closed surface S of an 
arbitrary shape as shown in Figure1.5 

 
Figure1.5  

Electric flux through an infinitesimal area element dS is d , then 

  cos. EdSSdEd 


 

where   is the angle between electric field 


E and area vector 


Sd  

Due to the point charge q, electric field at a distance r is given by 2
0

1
4

qE r
r

 




 

 



 cos

4
1cos 2

0

dS
r
qEdSd 








                                 
(7) 
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Since electric field is directed along


r , therefore  is the also angle between r̂ and


Sd .Here area element 


Sd subtends an infinitesimal solid angle d  at the point 

charge q . 

From eq.(5) ,we have 2

ˆ.
r

rSdd


  

  2
cos
r

dSd 


                                         
(8) 

From eq.(7) & (8)  

 
 qdd

04
1



                                                      

(9) 

Total flux through the closed surface S is   

 
 
SS

qdd
04

1


  

      
  dq

04
  

      


04
 q

                                                              
(10) 

Here the hypothetical closed surface S subtends the total solid angle  at the point 
of location of the charge q. 

From eq. (6) & (10)  

 

0

if q lies inside the surface S

0 if q lies outside the surface S

q
 


                                       (11) 

Thus, in electrostatics, Gauss’s Law is direct consequence of Coulomb’s inverse 
square law. Above expression shows Gauss’s law for the single point charge.  

If there are number of charges 1 2 3, , ,... Nq q q q  inside the closed surface and their 

contributions in electric field  are 


1E ,


2E , 


3E ……… NE


respectively ,then by 
principle of superposition we have  
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

 SdE.   

    1 2 3( ......... ).NE E E E d S
    

     

        1 2 3. . . ........... .NE d S E d S E d S E d S
       

            

From eq.(11 )  

 

31 2

0 0 0 0

....... Nq qq q


   
     

    0
iq

  

      0
 enclosedq

  

If the charge q lies outside the closed surface S, then it will not contribute in flux 
through surface S. We can verify this with help of Figure 1.6  

 
Figure1.6  

A cone of solid angle d   is drawn with vertex at the point charge q. The cone cuts 

the surface S with intercepting area 


1Sd  and 


2Sd . Area elements 


1Sd  and 


2Sd  
subtend solid angles of same magnetite d at the point charge q. 
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From eq.(5)  2

.
r

rSdd


  

For element 1d S


 
 

2
11

2

1
1

cos.
r

dS
r

rSdd 




 
1 is obtuse angle, so 1d  is negative 1d d      

For element 2d S


 2 2 2
2 22

cos. dSd S rd
r r


 

      

2  is acute angle, so 2d  is positive 2d = + d  

Flux contribution due to 


1Sd and 


2Sd are 1d and 2d respectively. Therefore net 
flux contribution due to both area elements is given by 

 21  ddd    

From eq.(9) 

 
2

0
1

0 4
1

4
1

 qdqdd


  

       0 0

1 1( )
4 4

q d qd
 

    
 

         0  
If q is positive, then flux through dS1 is an inward flux ,whereas flux through dS2 is 
an outward flux, but algebraic sum of their contribution to net outward flux is zero. 

This holds for all other elemental cones which cut the closed surface S and have 
vertices at the same outside position of the charge q. 

We can say that contribution of outside charge in electric flux through closed 
surface is zero, because the incoming flux is equal to the outgoing flux. This 
verifies Gauss’s Law. 

Differential form of Gauss’s Law of Electrostatics:  

From Gauss’s theorem 

 0

. enclosed

S

q
E d S



 


                                            

(12) 
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For continuous distribution of charge, we can write 

 
enclosedq dq d



      

where volume element d  contains charge dq 

 

dq
d




   Volume charge density in 3m
C

 

     enclosedq d


                      (13) 

The charge density   may vary within the volume  . 

From eq.(12) &(13)
 0

1.
S

E d S d


 


 

   (Integral form of Gauss’s law) 

Here surface S encloses the volume   .By applying Gauss’s divergence theorem 

 0

1.E d d
 

  


    
     . .

S

E d S E d



    

  
 

   

Above equation holds for any arbitrary volume, therefore  

 0

.E
 

 



 (Differential Form of Gauss’s law ) 

This equation is also known as Maxwell’s first equation in electromagnetism. 

        
0

.
r

E r



 

  



                  (14) 

Divergence of 


E  at position 


r  depends on the volume charge density   at that 

position 


r of the point i.e. div


E is a function of co-ordinates and it may vary from 
point to point ,that’s why differential form of Gauss’s law is known as point form 
or local differential equation. 

In Cartesian co-ordinates 

 0

yx z
EE E

x y z



 
  

    where x y zE E i E j E k
   

    

In Spherical co-ordinates 
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   2

2
0

1 1 1sin
sin sinr

E
r E E

r r r r







    

 
  

    

where ˆ ˆˆ
rE E r E E  



    

In Cylindrical co-ordinates 

 
 

0

1 1 z
r

E E
rE

r r r z
 
 

 
  

    

where ˆˆ ˆ
r zE E r E E z



    

We know that 

0

.
d

E d S
div E Lim

d 

 



  = Outflow of electric flux per unit volume at a given point in 

the   limit of infinitesimal volume d . 

0





Ediv
 
means electric flux per unit volume at a point is equal to volume 

charge density   (charge per unit volume) at that point divided by 0 . 

1.4 Illustrative Examples 

Example1: An electric field is given(in spherical coordinates)    by 

   2
ˆ ˆˆsin cos cos cos sinaE r

r
       


 

Determine the volume charge density in the space(except the origin) . 

Sol. Divergence of the electric field in spherical coordinates is given by 

 
   2

2

1 1 1sin
sin sinr

E
div E r E E

r r r r

  
  

  


 
     

 

2
2 2 2

1 1sin cos cos cos sin
sin

a adiv E r
r r r r r

    
 

               

            2
1 sin

sin
a

r r


 
        

 
 2 2

2 2
1 10 cos cos sin cos

sin sin
a adiv E

r r r r



       
   

1.4 Illustrative Examples 
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` 
 2 2

3 3
cos coscos sin
sin sin

a adiv E
r r



   
  
   

 
 2 2

3
cos cos sin 1
sin

adiv E
r



   
  
  

 
 2

3
cos 2sin
sin

adiv E
r



  
 
  

 
32 sin cosadiv E

r



      

 0

div E







 

 

0
32 sin cos

a
r

  


    

1.5 Self Learning Exercise-I 

Q.1  Write the differential form of Gauss’s law. 

Q.2  Suppose Coulomb’s law behaves as inverse cube instead of inverse square, 
then Gauss’s law would not hold. Justify  your answer.  

Q.3 An infinitely long wire has linear charge density 10 nC
m

and this wire is 

located at 3 ,y m 4z m  .Find the electric field at the origin.
 Q.4 A spherical shell carries volume charge density rρ α in the region   

  a r b  ,whereα  is a constant . Find the electric field in the region 

  (i) a r b  (ii) r b  

1.6  Scalar Potential 
Now we consider the Coulomb’s law for the general case of volume charge. 
From eq.(3),the electric field at a point  , ,r x y z

  in terms of integral over the 
volume charge distribution  , ,x y z     is written as  

 
 

2
0

1( )
4

ˆr
E r d






 


 

  r
r                  (15) 

Now we find the gradient of 1 r  

1.5 Self Learning Exercise-I 

1.6  Scalar Potential 
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1 1

r r
 

     
 r  

             2 2 2

1

x x y y z z

 
  
        

 

             2 2 2

1î
x x x y y z z

   
         

  

        
 

     
3

2 2 2 2

2 0 01ˆ
2

x x
i

x x y y z z

 
   

  
           

  

        
 

     
3

2 2 2 2

ˆx x i

x x y y z z


 

        

  

        
     

     
3

2 2 2 2

ˆˆ ˆx x i y y j z z k

x x y y z z

      
 

        
 

          3 3

r r
r r


   



 
 


r
r  

              2

1 ˆ
  

r
r r                  (16) 

From eq.(15)and(16) 

  
0

1 1( )
4

E r r d


 
 

     
 

  
r  

Here integration is over the primed coordinates  , ,x y z    ,whereas gradient 
operation involves unprimed coordinates  , ,x y z .So gradient operator can be 
taken outside the integral sign. 

  
0

1 1( )
4

E r r d


 
 

      
 

  
r  

 
 

0

1( )
4

r
E r d






 

 
  

 


 
r  
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 E V 


                (17) 

where  
0 0

1 1( )
4 4

r dqV r d
 




  


  




r r                     (18) 

Here V is known as electrostatic potential or scalar potential. 
Here potential due to a point charge q is 

 
0

1( )
4

qV r





r  

For collection of charges 

 
10

1( )
4

N
i

i i

qV r
 

 
r                  (19) 

Therefore potential obeys the principle of superposition  

 1 2 3 ...V V V V           
For line charge distribution 

 
 

0

1( )
4 L

r
V r dl


 


 




r  

For surface charge distribution  

 
 

0

1( )
4 S

r
V r dS


 


 




r
 

Symbol  can also  be  used for potential. 
Relation E V 


 can be expressed in different-different coordinate systems as 

In Cartesian co-ordinates 

 

ˆˆ ˆV V VE i j k
x y z

   
       


  

In Spherical co-ordinates 

 

1 1ˆ ˆˆ
sin

V V VE r
r r r

 
  

   
       


 

In Cylindrical co-ordinates 

 1 ˆˆ ˆV V VE r z
r r z




   
       


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Electric field E


 is a vector (three components)quantity, whereas potential V is a 
scalar(one component)quantity. Electric field can be derived from scalar function 
V by the gradient operation, so it is easy to deal with the functionV  . 

Taking curl both sides of eq.(17) 

    0 0E V CurlGradV       
  

  

 0E  
 

               (20) 
By Stoke’s theorem 

  . .
S C

E dS E dl   
  

               (21) 

Above expression holds for any arbitrary open area S enclosing the curve C . 
By using eq.(20),(21) we can say that .

C

E dl


 would vanish over any closed path. 

Hence 0E  
 

. . . 0
C

i e E dl 


  

0E 
 

means conservative field or irrotational field and line integral of electric 
field is independent of path. 
We can get the potential difference between two points in following way 

     .dV V dl 


 
 .dV E dl  


          E V 

 
  

 .
final final

initial initial

dV E dl   


 

 .
final

final initial
initial

V V E dl    


 

We can take initial point as reference point refr and observation point r , then we 
have 

 .
ref

r

ref
r

V V E dl   





                (22) 

Here choice of reference point is arbitrary. Generally refV  is taken zero at the 
reference point for convenience. Therefore 

 .
ref

r

r

V E dl  





                (23) 
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Generally charge resides in a finite region of space ,so at infinite distance electric 

field vanishes .In such cases it  is convenient to take infinity as reference point 
,then eq.(23) becomes 

  .
r

V E dl


 
 

               (24) 
We know that the electric field is the force on  unit test charge. Therefore from 
eq.(24) one can interpret the electrostatic potential at a point as the work done in 
bringing  unit positive test charge from infinity to that observation point without 
changing the kinetic energy of this unit test charge. 
1.7 Electrostatic Boundary Conditions 

In electrostatics there are many problems in which surface charge density or 
potential is specified on boundary surfaces. Now we will discuss the behaviour of 
electric field and potential in crossing the boundary. The conditions that must be 
satisfied by fields or potentials at interface are known as boundary conditions. 

(i) Boundary Condition on Normal Component of Electric Field  

This boundary condition can be obtained by using Gauss’s Law. We consider thin 
cylindrical Gaussian pillbox(Figure1.7) which intersects the interface. Interface has 

surface charge density  2m
C . Here   may vary from point to point on the 

interface.  

 
Figure1.7  

Let  the  pillbox  cuts  out  the area A  on the interface and the height of the pillbox 

1.7 Electrostatic Boundary Conditions 
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being negligibly small in comparison with diameter of its flat surface. Flux through 
the sides (curved surface) of the pillbox is negligible, because thickness b of the 
pillbox is taken to be arbitrarily small. 

By applying Gauss’s law to the pillbox 

 0 0

. enclosedq AE d S 
 

 

   

(Here we have assumed the area A to be extremely small so that  remains 
constant on the area A) 

We consider plane of the area A to be perpendicular to y axis(i.e. area vector A


 
along the y axis).Here x component of electric field does not contribute in flux as it 
is parallel to the flat surface. 

Thus  1 1 2 2
0

. . AE A E A 


   

   

 
1 1 2 2

0

. . AE n A E n A
   

  



 

 
1 2

0

( ) ( )y y

AE A E A   



 

 
2 1

0
y yE E  




 

 
2 1

0
n nE E  




                           
(25) 

“Here E2n is the component of electric field which is normal to surface and just 
above it. Similarly normal component just below the surface is E1n. Thus “There is 

a discontinuity of 
0


in the normal component of electric field at the boundary”. 

If surface charge density   is zero then normal component of electric field is 
continuous across the boundary. 

(ii) Boundary Condition on Tangential Component of Electric Field: 

We  know  that  electrostatic  field 


E  is conservative field , therefore circulation 




rdE .  for  any closed path is  zero. We use this  property  for determination of 
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 boundary condition on tangential component of electrostatic field 


E . 

Let us imagine a rectangular path ABCD as shown in diagram. Segments BC and 
DA are made extremely small and their contribution to the line integral is 
negligible.  

 
Figure1.8  

Using  


0.dlE  

 0.. 12 


CDEABE  

 2 1( ) 0x xE l E l       }lCDAB   

 2 1x xE E   

 2 1t tE E                                                           (26) 

Here E1t is the tangential component of electric field just below the interface and  
E2t is the tangential component of electric field just above the interface. Thus “The 
tangential component of electric field is always continuous across the interface”. 

We can combine the boundary conditions into a single expression  

From eq. (25) 

 0
12 


 nn EE  

     2 1
0

n nE j E j j


  

  
                              

(27) 

From eq. (26)  

 012  tt EE  
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      2 1 0t tE i E i
 

                                                  (28) 

Adding eq. (27) & (28) 

 










 





  jjEiEjEiE ntnt


1122  

       
2 1

0

E E j


  

    

 0

ˆ
above belowE E n


 

 

              
(29)

                   

where 


n  is the unit vector normal to the surface and it is directed from below to 
above. Therefore by knowing the field on one side of the interface, we can find the 
field on the other side of the interface. 

(iii) Boundary Condition  on Potential : 

We consider a segment AB of infinitesimal small length across the interface 

 
Figure1.9  

Potential difference 

 



 rdEVV
A

B
belowabove .  

As the path length AB tends to zero its contribution to line integral can be 
neglected. 

 0 belowabove VV  

      belowabove VV   

Therefore electrostatic potential is continuous across the interface. 
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For example, we take uniformly charged thin spherical shell having total charge Q 

and radius R. Electric field just outside the shell is 2
0

2 4 R
QE


 or  

2

22
0 0

4
4

RE
R

  
 

 
 

and electric field inside the shell is 01 E .Therefore 

00
12 0







 EE  i.e. there is a discontinuity of 
0


 in electric field in 

crossing the boundary. Electric potential just outside the shell is 
R

QV
0

2 4
  and 

just inside the shell is also
R

QV
0

1 4
 . Therefore 2 1 0V V   .Hence there is no 

discontinuity in potential in crossing the boundary. 

1.8 Discontinuity in Potential due to Dipole Layer 

Consider a dipole layer which consists of closely spaced two surfaces S1 and S2. 
The surfaces S1 and S2 have equal and opposite surface charge densities. Suppose 
S1 has surface charge density , then at just opposite points on the surface S2 
surface charge density is   as shown in Figure1.10  

 
Figure1.10  

Now we have to find out the change in potential in crossing the dipole layer. 

 


 rdEVV
S

S

.
2

1

12  

Electric field inside the dipole is 
0


 .Since S1 and S2 are closely spaced, therefore 

a  point between the dipole layer sees oppositely charged two sheets of infinite 

1.8 Discontinuity in Potential due to Dipole Layer 



23 
 

dimensions. Visualization of 
0


E  is analogous to electric field between the 

plates of parallel plate capacitor\. In case of dipolar layer, area elements A1 and A2 
(see figure1.10) serve as parallel plates for observation point (which lies in 
between these area elements). 




 rdEVV .12  

       
 dr

0


 dr
0


 

    
2 1

0

bV V 


 
                 

(30) 

where infinitesimal small distance between layers S1 and S2 is b )0..( bei   

Note that in case of ideal dipole layer surface charge density   has infinitely high 
value i.e.   therefore  b is finite . By eq.(30) we can say that there is a 

discontinuity of 
0

b
in potential in crossing the dipole layer.  

1.9 Illustrative Examples 

Example 2: An electric field is given(in spherical coordinates)  by 

 3 3
ˆˆcos sinE r

r r
   


 

Find the relation between   and  for this field to be an electrostatic field. 

Sol. For conservative nature of electrostatic field 0E  
 

 

In spherical coordinates , we have 

 

2

ˆ ˆˆ sin
1 0
sin

sinr

r r r

r r
E rE r E

 

 

  


  


  
 

1.9 Illustrative Examples 
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 3 3

ˆ ˆˆ sin

0

cos sin sin 0

r r r

r

r r
r r

 

 
   

   
  

   
   
   

 

     
2 3

ˆ ˆˆ(0) (0) sin sin cos 0r r r
r r r

    


                  
 

    
3 3

2 sin sin 0
r r
  


             

 

     2    

Example 3: Electric potential is given(in spherical coordinates)   by  

 
cos sinaV

r
 

   
where a is constant. Find the expression for electric 

field. Also calculate the electric filed at point 1, ,
3 6
  

 
 

 

Sol. Electric field in spherical coordinates is given by  

 

1 1ˆ ˆˆ
sin

V V VE r
r r r

 
  

   
       



 
2

1 1ˆ ˆˆcos sin sin sin cos cos
sin

a a aE r
r r r r r

     


      
 


 

       
2 2 2

ˆ ˆˆcos sin sin sin cot cosa a aE r
r r r

        


 

Electric field at point 1, ,
3 6
  

 
 

 is 

         
2 2 2

ˆ ˆˆcos sin sin sin cot cos
1 3 6 1 3 6 1 3 6
a a aE r        


 

    

1 3 1ˆ ˆˆ
4 4 2

E a r  
 

    
 


 

Example 4: A potential in some region is given(in cylindrical  coordinates)  by 
 2 cosV ar z 
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Find   (i) Electric field  (ii) charge density 

Sol. Electric field 

  

1 ˆˆ ˆV V VE r z
r r z




   
       


 

      
     2 2 21 ˆˆ ˆcos cos cosE ar z r ar z ar z z

r r z
   

        
   




 

       

2 21 ˆˆ ˆ2 cos sin cosE arz r ar z ar z
r

      
 

  


 

       
2ˆˆ ˆ2 cos sin cosE arz r arz ar z      


 

From Gauss’s Divergence law
0

.E 


 
 

 

 
 1 1. z

r

E E
E rE

r r r z




 
   

  

 
  

 
     21 12 cos sin cosr arz arz ar

r r r z
  


  

    
  

 

 
   1 14 cos cos 0arz arz

r r
      

 4 cos cosaz az     

 3 cosaz    

Charge density 03 cosaz      
0

.E 


 
 

  

1.10 Self Learning Exercise-II 

Q.1 “The potential difference between any two points must be zero for the 

electrostatic field to be a conservative field”. Is this statement true? 

Q.2  Consider a uniformly charged sphere of radius R and charge density .
  

 Write the values of the divergence and curl of electrostatic field for given 
region 

 (i) r < R  (ii) r > R 

1.10 Self Learning Exercise-II 
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Q.3  The distance between the plates of parallel plate capacitor is 5cm and 
potential difference is 100Volt. Find the force experienced by an alpha 
particle entered into the field. 

Q.4  An electric field in some region is given (in spherical coordinates) by  

 
ˆˆcos sin 2E a r r a r θ θ θ


 ,where a is constant. Evaluate the volume 

charge density. 

1.11 Summary 
1. For continuous charge distribution electric field 

 
2

0

1
4

ˆdqE


 


rr
 

2. Gauss’s Law 

 0

. enclosedqE d S


 


  0

1

V

dV


 
  

 (Integral form of Gauss’s law) 

 0

.E 


 

   ( Differential form of Gauss’s law) 

3. Electric field E V 


 

   where electrostatic potential  
0 0

1 1( )
4 4

r dqV r d
 




  


  




r r          

    Potential Difference .
final

final initial
initial

V V E dl   


 
 

4. Boundary condition on electric field at interface
 

 0

ˆ
above belowE E n


 

 
 

1.12Glossary 

Boundary Conditions: The conditions that must be satisfied by fields or potentials 
at interface are known as boundary conditions. 

Conservative Field: For vector field A


 to be conservative field, A


must be 
zero .  

1.11 Summary 

1.12 Glossary 
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1.13 Answers to Self Learning Exercise 

Answers to Self Learning Exercise-I 
Ans.2: We consider a point charge  q at the centre of the sphere (Gaussian 

surface).Now electric flux passing through the spherical surface of radius r 

is 2 2
3

1. .4 4 4 constantqE dS E r r q
r r
     


 .This electric flux 

depends on radius of sphere r. Therefore Gauss’s law would not hold in this 
case. 

Ans.3:
 

 2 ˆˆ21.6 28.8ˆk NE j k
C

   
 rr     

, Here
ˆˆ3 4

5
ˆ j k 

r
 

Ans.4:(i)
 

4
2

2
0

ˆ
4

aE r r
r




 
  

 



   
(ii)

 

4 4

2
0

ˆ
4

b aE r
r




   
 



    

Answers to Self Learning Exercise-II 

Ans.1: False 

Ans.2: (i)   For r < R ;   
0

, 0divE CurlE 



 
 

 (ii) For r > R ;   
 

0, 0divE Curl E 
 

 
Ans.3:

 
2

100 2000
5 10

dV NE
dx C   

  

 
19 162 1.6 10 2000 6.4 10F qE N       

 
Ans.4:  2

0 3cos 6cos 2a  ε θ θ  

1.14 Exercise 

Section A:Very Short Answer Type Questions 

Q.1  “A potential is given by 32V yz zx   ,then 3 2yz  is the equipotential curve 
on the yz plane.”Is this statement true? 

Q.2  “The line integral .
B

A

E dl


 for any electrostatic field has the same value for all 

paths from the point A to the point B”. Do you agree with this statement? 

1.13 Answers to Self Learning Exercises 

1.14 Exercise 
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Q.3  An electric field in some region is given  by ˆˆ ˆE axi byj czk  


,where a,b,c 
are constants. Find the volume charge density. 

Q.4  Plane 5x m  carries charge 210 nC
m

and plane 15y m  carries charge 25 nC
m

 . 

What is the electric field at the origin ? Here
2

9
2

0

1 9 10
4

N m
C

   

Section B: Short Answer Type Questions 

Q.5 Use Gauss’s law to prove that the electric field at the surface of a conductor is 

normal to the surface and has magnitude
σ
ε0

 ,whereσ  is the local surface 

charge density on that surface. Also check that the result is consistent with 
the boundary conditions. 

Q.6 Obtain the boundary conditions on normal and tangential components of 
electric field. 

Q.7 An electric field in some region is given (in cylindrical  coordinates) by  

 
ˆˆsin cosE ar r br  


 ,where a and b are constants. Evaluate the volume 

charge density. 

Q.8   A ring of radius R has linear charge density density 2
0 cos   .  

 Find the electric potential at a point (0,0,z) on the axis of the ring. Consider 
origin at the centre of the ring. 

 

 

 

 

Section C: Long Answer Type Questions 

Q.9 A long cylinder has volume charge density rρ α 2 ,where α is constant and r 
is the distance from the axis of the cylinder. Radius of the cylinder is R. 

 Use Gauss’s law to find  the electric field  

  (i) inside the cylinder (ii) outside the cylinder . 


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1.15 Answers to Exercise 

Ans.1:Yes, on yz plane 0x  .ThereforeV  has value 2.2 0 4V    which is 

 constant. 

Ans.2:Yes, because electrostatic field is conservative field and it is path 
 independent . 

Ans.3:  0 a b c ε  

Ans.4:  ˆ ˆ180 90 Vi j
m

  
 

Ans.7:
 

 0 2 sin cosa b    

Ans.8: 
0

2 2
04

R
R z


 
 

 

Ans.9: (i)
 

3

0

ˆ
4

rE r





   
(ii)

 

4

0

ˆ
4

RE r
r






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UNIT-2 

Poisson and Laplace Equations 
 

Structure of the Unit 

2.0 Objectives  

2.1 Introduction  

2.2 Poisson and Laplace Equations  

2.3 Green’s Theorem  

2.4 Dirichlet/Neumann Boundary Conditions  

2.5 Formal solution of Electrostatic Boundary-value Problem with Green Function                                           

2.6 Illustrative Examples 

2.7 Self Learning Exercise-1 

2.8 Electrostatic Potential Energy and Energy Density  

2.9 Illustrative Examples 

2.10 Self Learning Exercise-II 

2.11 Summary  

2.12 Glossary 

2.13 Answers to Self Learning Exercises 

2.14 Exercise 

2.15 Answers to Exercise 

       References and Suggested Readings 

2.0 Objectives  
Electrostatics deals with those phenomena that originate from time-independent 
distributions of charge and fields. The theory of the electrostatic field is based on 
Coulomb’s law. The behaviour of an electrostatic field can be described by Poisson 
equation. In regions of space that lack charge density, the scalar potential satisfies 
the Laplace equation. In this chapter we shall focus upon the solution of Poisson 

UNIT-2 
Poisson and Laplace Equations 

2.0 Objectives  
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and Laplace differential equations satisfying certain boundary conditions with the 
help of Green functions. 

2.1 Introduction  
Macroscopic electrodynamics is concerned with the study of electromagnetic fields 
in space that is occupied by matter. Like all macroscopic theories, electrodynamics 
deals with physical quantities averaged over elements of volume which are 
“Physically infinitesimal” ignoring the microscopic variations of the quantities 
which result from the molecular structure of matter.  

Behaviours of an electrostatic field is given by Poisson and Laplace equations 
along with suitable boundary conditions. In this chapter we shall solve these 
equations with the help of Green’s theorem. 

2.2 Poisson and Laplace Equations  

We know that an electrostatic field E


can described by the two differential 
equations : 

 0

.E 
  


 (Gauss’s law)         (1) 

and  

 0E  
 

 (  is charge density)         (2) 

Equation (2) is equivalent to the statement that 

 
E  
 


         (3) 

where    is scalar potential. 

From (1) an (3), we readily obtain 

 0

.( ) 


  
 

 

or      2

0

  



       (Poisson Equation)      (4) 

Equation (4) is called the Poisson equation. 

In regions of space where charge density 0  , Eq (4)becomes 

2.1 Introduction  

2.2 Poisson and Laplace Equations  
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2 0     (Laplace equation)        (5) 

Equation (5) is called the Laplace equation. 

We now determine the field produced by a point charge. From symmetry 
considerations, it is clear that it is directed along the radius-vector from the point at 
which the charge e is located. 

From the same considerations it is clear that the value E of the field depends only 
on the distance R from the charge. 

To find this absolute value, we make use of the Gauss’s law (Eq.1) in the integral 
form : 

Flux of electric field out of the closed surface = ௖௛௔௥௚௘ ௘௡௖௟௢௦௘ௗ
ఢబ

 

 i.e. 2

0

4 

eE R  

 
2

04



eE

R
 

In vector notation 

 
2 3

0 0

ˆ ˆ
4 4

e eE R R
R R 

 
 


                        (6) 

This is Coulomb’s law. The potential of this field is clearly 

 04
e

R






                                 (7) 

If we have a system of charges then the field produced by this system is equal, 
according to the principle of superposition, to the sum of fields produced by each 
of the particles individually. In particular the potential of such a field is 

 0

1
4

a

a a

e
R


 


   ,where aR  is the distance from the charge ae  to the 

point at which we are determining the potential. If we introduce the charge density
 , this formula takes on the form : 

 0

1
4

dV
R


 





                             (8) 
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where R is the distance from the volume element dV to the given point of the field 
. eq (8) is the solution of Poisson Equation (4). 

We note a mathematical relation which is obtained from (4) by substituting the 

values of   and  for a point charge, i.e. ( ) 


e R  and 
04

e
R







 we then 

find 

 

2

0 0

1 ( )
4




 
     

e e R
R  

 or  2 1 4 ( )    
 


R

R
                                  (9) 

2.3 Green’s Theorem  

If electrostatic problems always involved localized discrete or continuous 
distributions of charge with no  boundary surfaces, the general solution(8) could be 
the most convenient and straight forward solution to any problem. There would be 
no need of the Poisson or Laplace equation. 

In actual fact, many of the problems of electrostatics involve finite regions of 
space, with or without charge inside, and with prescribed boundary conditions on 
the bounding surfaces. 

To handle the boundary conditions it is necessary to develop some new 
mathematical tools, namely the identities or theorems due to George Green (1824). 

These follow as simple applications of the divergence theorem. 

 
3 ˆ. .  




V S

Ad x A n da          (Integral form of Gauss’s law)           (10) 

Let   
 
A  

where   and  are arbitrary scalar fields. 

Using 2.( ) .             

and ˆ.n
n
   

 


  in (10), we get 

 

2 3[ . ]d      
    

 
V S

x da
n

                           (11) 

2.3 Green’s Theorem  
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This result is known as Green’s first identity. 

If we write down (11) again with   and   interchanged and then subtract it form 
(11), the .   terms cancel, we obtains Green’s second identity : 

 

2 2 3[ ]d
V S

x da
n n
                                          (12) 

The Poisson differential equation for the potential can be converted into an integral 
equation, if we choose 

 

1 1
'R x x

  

   , 

where x


 is the point of observation and 'x


 is the integration variable.  

Further we put     (the scalar potential) and use 2

0




     from (9) ,we 

know 

that 2 1 4 ( ')x x
R

     
 

 
 ,so that (12) becomes : 

 

3

0

14 ( ') ( ') ( )d '
V

x x x x x
R

  
 
     


   

1 1 '
' 's

da
n R R n

            

If the point 

x lies within the volume V, we obtain: 

 

3

0

1 ( ) d ' 1 14 ( ) '
' '


               

 



v S

x xx da
R n R R n

 

or     
3

0

1 ( ') d ' 1 1 1( ) '
4 4 ' 'V s

x xx da
R R n n R


 

                
 


                    (13) 

where we have used the well known property of -function viz. 

 
3( ') ( ') d ' ( )   

   

V

x x x x x  

If 

x lies outside the surface S, the left-hand-side of (13) is zero. This follows from 

the discontinuities in electric field and potential across the surface. 

From the result (13) it may be noted that, if the surface S goes to infinity and the 

electric field on  S falls faster than 1

R


,then the surface integral vanishes and (13) 
reduces to the familiar result : 
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3

0

1 ( ')( ) '
4 '

xx d x
x x



 

 


   

From (13) we also note that for a charge-free volume, the potential anywhere 
inside the volume (a solution of the Laplace equation) is expressed in terms of the 
potential and its normal derivative only on the surface of the volume. 

This rather surprising result is not a solution to a boundary-value problem, but only 

an integral statement, since the arbitrary specification of both  and 
n




 is an over 

specifications of the problem. 

We shall discuss in detail the techniques yielding solutions for appropriate 
boundary conditions using Green’s theorem (Eq.12) 

2.4 Dirichlet/Neumann Boundary Conditions  

What boundary conditions are appropriate for the Poisson (or Laplace) equation to 
ensure that a unique and well-behaved (i.e. physically reasonable) solution will 
exist inside the bounded region? 

From experience we are led to believe that the specification of the potential on 
closed surface (e.g. a system of conductors held at different potentials) defines a 
unique potential problem. This is called a Dirichlet problem or Dirichlet 
boundary conditions. 

Similarly it is plausible specifications of the electric field (normal derivative of 
the potential) everywhere on the surface (corresponding to a given surface 
charge density) also defines a unique problem. Specification of the normal 
derivative is known as the Neumann boundary conditions. 

2.5 Formal solution of Electrostatic Boundary-value Problem 
with Green Function                                            

We can solve Poisson or Laplace equation in a finite volume V with either 
Dirichlet or Neumann boundary conditions on the bounding surface S by using 
Greens’s theorem. 

2.4 Dirichlet/Neumann Boundary Conditions  

2.5 Formal solution of Electrostatic Boundary-value 
 Problem with Green Function                                            
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In obtaining the result (13) -  not a solution  -We chose the function to be 
1

'x x
   

,it being a potential of a unit point source, satisfying the equation. 

 

2 1 4 ( ')
'

x x
x x

 
    
  

 
                               (14) 

The function 
1

'x x
   is only one of class of functions depending on the variables 

x


 and 'x


and called “Green functions”, which satisfy (14). 

In general 

 
2 ( , ') 4 ( ')G x x x x   

   
                              (15) 

where 
1( , ') ( , ')

'
G x x F x x

x x
 



   
     (16) 

With the function F satisfying the Laplace equation inside the volume V : 

 
2 ( , ') 0F x x 

 
                                  (17) 

Recalling Green’s second identity of Green’s theorem (Eq12) viz. 

 

2 2 3( ) d
V s

x da
n n
                 

Now we substituting 

 , ( , ')   
 

G x x  

and using property of G viz. 

 
2 ( , ') 4 ( ')   

   
G x x x x  

We obtain 

3

0

1 1 ( , ')( ) ( ) ( , ')d ' ( , ') ( ) '
4 4 ' 'V S

G x xx x G x x x G x x x da
n n


 

           
 

            (18) 

The freedom available in the definition of G (Eq.16) means that we can make the 
surface integral depend only on the chosen type of boundary conditions.  

Thus for Dirichlet boundary conditions we demand 

 ( , ') 0 for 
  

DG x x x on S                    (19) 
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Then the first term in the surface integral in (18) vanishes and the solution is 

 

3

0

1 1( ) ( ') ( , ')d ' ( ') '
4 4 '

D
D

v s

Gx x G x x x x da
n


 


   

  
    

                   (20) 

For Neumann boundary conditions, the obvious choice of boundary condition on 
( , ')G x x
 

 seems to be 

 
( , ') 0

'
NG x x

n





 
   for  x on S


 

Since that makes the second term in the surface integral in (18) vanish, as desired 

But an application of Gauss’s theorem to (14) shows that 

 
' 4

'
G da
n


 

  

Consequently the simplest allowable boundary condition on NG is 

 

4( , ')
'

NG
x x

n S


 


 
   for  'x


  on   S             (21) 

where S is the total area of the boundary surface. Then the solution is 

 

3

0

1 1( ) ( ')G ( , ') d ' '
4 4N NS

V S

x x x x x G da
n
 

 


   
  

   
 

Where 
S is the average value of the potential over the whole surface. 

2.6 Illustrative Examples 

Example1 The parallel conducting disks are separated by 5 mm and contain a 
dielectric for which 2.2r  . Determine the charge densities on the disks. See 
figure.  

 

2.6 Illustrative Examples 
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Sol. V Az B   

3

250 100
5 10

V VA
z m

 
 

      
 

  
43 10 V

m
   

E V 
 

 4 ˆ3 10 Vz
m

    

      0 rD E 
 

 

7
2ˆ5.84 10 ez

m
    

Since D


 is constant between disks and  

n sD   at a conductor surface. 

 7
25.84 10s

C
m

      

+ on the upper plate and - on the lower plate.  

2.7 Self Learning Exercise-I 

Q.1 Write Laplace Equation in rectangular coordinates. 

Q.2 Find the potential function V for the region between the parallel circular 
disks of Figure shown. 

 

2.7 Self Learning Exercise-I 
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Q.3 What are Dirichlet and  Neumann boundary conditions? 

Q.4 From the Laplace equation 20 (where  means Laplacian operator )    , 
show that the potential of the electric field can nowhere have a maximum or 
a minimum. 

2.8 Electrostatic Potential Energy and Energy Density  

If a point charge is brought from infinity to a point ix  in a region of localized 

electric fields described by the scalar potential   (which vanishes at infinity), the 
work done on the charge (and hence the potential energy) is given by 

 . ( )i i iW q x 
         (1) 

The potential  can be viewed as produced by an array of (n-1) charges jq

(j=1,2,……n-1) at positions jx


. Then 

 

1

10

1( )
4

n
j

i
j i j

q
x

x x





 
 




         (2) 

So that the potential energy of the charge iq is 

 

1

104

n
ji

i
j i j

qqW
x x






 

          (3)  

The total potential energy of all charges due to all the forces acting between them 
is 

 
10

1
4

n
i j

i j i i j

q q
W

x x  


 

          (4) 

A most symmetric form can be written by summing over i and j unrestricted and 
then dividing by 2 :         

 
0

1
8

i j

i j i j

q q
W

x x


 
  


       (5) 

It is understood that i j  (infinite self energy terms) are omitted in the double 
sum. 

For a continuous charge distribution, the potential energy takes the form : 

2.8 Electrostatic Potential Energy and Energy Density  
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31 ( ) ( )d
2

W x x x 
 

        (6) 

An alternative and very useful approach is to emphasize the electric field and to 
interpret the energy as being stored in the electric field surrounding the charges. To 
obtain this form, we make use of the Poisson equation to eliminate the charge 
density   from (6) : 

 
2 30

2
W d x

     

 

2

0

use  
     

 

Integration by parts we get 

 
  2 30

surfaceat infinity
( )

2
W d x 

       

The first term vanishes at infinity 

 

2 30

2
W E d x

  , where the integration is over all space. (7) 

Capacitance : 

Consider a system of n conductors, each with potential iV and total charge iQ  
(i=1, 2, ….n) in otherwise empty space, the electrostatic potential energy can be 
expressed in terms of the potentials alone and certain geometrical quantities called 
coefficients of capacity. 

For a given configuration of the conductors, the potential of the conductor can be 
written as 

 1

n

i ij j
j

V p Q


   (i=1,2, ……n)                (1) 

Where the ijp depend on the geometry of the conductors. 

These n equations can be inverted to yield the charge on the ith conductor in terms 
of all the potentials : 

 1

n

i ij j
j

Q C V


    (i=1,2, ……n)              (2) 



41 
 

The coefficients iiC are called capacities or capacitances while the ,ijC i j are 
called coefficients of induction. 

“The capacitance of a conductor is therefore the total charge on the conductor 
when it is maintained at unit potential, all other conductors being held at zero 
potential”.  

Sometimes the capacitance of two conductors carrying equal and opposite charges 
in the presence of other grounded conductors is defined as the ratio of the charge 
on one conductor to the potential difference between them. 

The potential energy for the system of conductors is 

 1 1 1

1 1
2 2

n n b

i i ij i j
i i j

W QV C VV
  

  
 

2.9 Illustrative Examples 

Example 2: Calculate the force per unit area on the surface of a conductor with a 

surface charge density  x


. 

Sol. In the immediate neighbourhood of the surface the energy density is 

 
 

20

2
w E

  

But using Gauss’s Law 

  
0

AEA 



 

Therefore 

  
2

02
w 


  

If we now imagine a small outward displacement of an infinitesimal area a  of the 
conducting surface ,the electrostatic energy decreases by an amount that is the 
product of energy density and the excluded volume .x a  . 

 

2

0

. .
2

W a x F x
      


 

2.9 Illustrative Examples 
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This means that there is an outward force per unit area are equal to 
2

02
w


  at 

the surface of the conductor. 

Example 3: Determine the density of the thermionic current between two infinite 
plate electrodes in a vacuum. This is an application of Poisson equation. 

Sol. It is well known that heated metals emit from their surface into the 
surrounding space a beam of free electrons. 

If we apply a definite potential difference to two metal electrodes and heat the 
negative electrode (Cathode), then the electrons continuously emitted by the 
glowing cathode will be attracted to the surface of the positive electrode (anode). 

The beam of electrons travelling from the cathode to the anode is equivalent to an 
electronic current. This current is called “thermionic”. 

We choose the axes of Cartesian coordinates so that then origin is on the cathode 
and the x-axis is perpendicular to the plane of the electrodes and is directed toward 
the anode. 

 We assume that the cathode potential equals zero and anode potential 
equals a . 

It follows from considerations of symmetry that equipotential surface are parallel 

to  the  electrodes ; hence  0
y z

 
 

   
and  the Poisson  equation  or the space 

between the electrodes becomes 

 

2

2
0x

 
 

 
                             (1) 

If we denote ( )n x  the number of electrons per unit of volume in the space 
between the electrodes at the distance x  from the cathode, and by e the absolute 
value of the charge on an electron, then the charge density at this distance will be: 

( )n x e    

Denoting by v(x) the velocity of an electron at the distance x from the cathode and 
by ( )x  the potential at the same distance, we get 

 

2( ) ( )
2

mv x e x         (2) 
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Finally the density j of the electric current is 

 ( ) ( )j en x v x         (3) 

 Now using Poisson equation 

 
2

2
0 0 0

ne j
x v
 

   
   

 

Substituting for v from (2) : 

 2ev
m


 , we get 

 
12
2

2
0 2
j m

x e
 




 
        (4)  

 Or 
12
2

2 Aj
x








  where 
0

1.
2
mA
e




 (5) 

Integrating the differential equation (5) with the condition of the problem viz. 

 
2

2 0
x





  at x = 0 

 and 0
x





 at x = 0 we find 

  
42

33Aj x   

If we denote the distance between the anode and cathode by L, then when x L , 

a   Hence  
2 4

3 3( )a Aj L    

Hence
3

2
2

1
aj

AL
  

i.e. 
3

2
aj  

In other words the density of a thermionic current does not obey Ohm’s law, but 

grows proportional to the power 3
2
 of the voltage a . 

Example 4: The region between two concentric right circular cylinders contains 

a uniform charge density . Use Poisson’s equation to find V. 
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Sol. Poisson equation reduces to 

 1 d dVr
r dr dr

      
          

 d dV rr
dr dr

      
 

 Integrating 

 
2

2
dV rr A
dr


   


 

 
2

dV r A
dr r


   

  

2
       

r AdV dr
r

 

 
2

ln
4
rV A r B

    
  

2.10 Self Learning Exercise-II 

Q.1 Define the capacitance of an isolated conductor i.e. a conductor infinitely 
removed from all other conductor. 

Q.2 Let R stand for the distance from a given point of space to an arbitrarily 
chosen initial point P. 

 Show that the scalar 
1
R

  complies with the Laplace equation. 

 2 1 0
R

   
 

 ,the point 0R   is not considered. 

2.11 Summary  
 In this chapter we have learnt that when the region of interest contains 
charges in a known distribution  , Poisson’s equation can be used to determine 
the potential function. Very often the region is charge-free (as well as being of 

uniform permittivity) – Poisson equation then becomes 2 0  , which is 
Laplace’s equation. Laplace’s equation provides a method whereby the potential 
function f can be obtained subject to the conditions on the boundary  conditions. 

2.10 Self Learning Exercise-II 

2.11 Summary  
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We have discussed the boundary conditions that are appropriate for the Poisson (or 
Laplace) equations to ensure that a unique and well-behaved solution will exist 
inside the bounded region. 

2.12 Glossary 

Energy density: Energy per unit volume 

Thermionic emission: driving force of the thermionic emission is thermal energy 
which provides the thermal energy to electrons to overcome the barrier 

2.13 Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I 

Ans.1: 
2 2 2

2 2 2 0
x y z

  
  

  
    

Ans.2: Since V is not a function of r or   ,so Laplace equation reduces to and the 

solution is   
2

2 0d V
dz

 and  the solution isV Az B   . 

Ans.4: In order that  have an extreme value, it would be necessary that the first 
derivatives of with respect to the coordinates be zero, and that the second 
derivatives 

 
2 2 2

2 2 2, ,
x y z

     
  

 

,all have the same sign. This last condition is impossible, since in that case 
0  could not be satisfied. 

Answers to Self Learning Exercise-II 
Ans.1: The capacitance of an isolated conductor is defined as the magnitude of the 

charge needed to impart a unit potential to this conductor. It is assumed that 
the additive constant in the expression for the potential is selected so that 
the potential equals zero at infinity. 

2.14 Exercise 

Q.1 Write Laplace equation in cylindrical and spherical coordinates. 

2.12 Glossary 

2.13 Answers to Self Learning Exercises 

2.14 Exercise 
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Q.2 What is the capacitance of an isolated sphere? 

Q.3 In Cartesian coordinates a potential is a function of x only. At x = -2.0 cm , 

V = 25.0 Volt and 3 ˆ1.5 10 ( )VE x
m

    throughout the region. Find V at x = 

3.0  cm. 

Q.4 Deduce Green’s first and second theorems. 

Q.5 Deduce an expression for the electrostatic potential energy and energy 
density. 

Q.6 Prove 2 1 4 ( ')
'

x x
x x


 
    
  

 
   

Q.7 Deduce Poisson’s and Laplace’s equation. Write Solution of Poisson 
equation in terms of Green’s function. 

2.15  Answers to Exercise 

Ans.1: In cylindrical coordinates ( , , )z  the Laplace equation is 
2 2 2

2 2 2 2
1 1 0

z    
      

   
   

 

In spherical coordinates (r, , )   Laplace equation is  
2 2

2 2 2 2 2
1 1 1(r ) sin 0

sin sinr r r r
             


    

         

Ans.2: 
0

0

4
4

Q QC RQV
R





   



  

Ans.3: 100 V 
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UNIT- 3 

Boundary Value Problems in Electrostatics : 
Methods of Images 

Structure of the Unit  

3.0 Objective  

3.1 Introduction 

3.2 The method of images 

3.3 Point Charge in the presence of a Grounded conducting sphere: 

3.4 Illustrative Examples: 

3.5 Self Learning Exercise – I 

3.6 Point charge in the presence of a charged insulated, conducting sphere 

3.7 Illustrative Examples 

3.8 Point charge near a conducting sphere at fixed potential 

3.9     Self learning Exercise –II 

3.10 Summary 

3.11    Glossary 

3.12    Answers to Self Learning Exercise 

3.13   Exercises 

3.14   Answers to Exercise  

        References and Suggested Readings 
3.0 Objective  

This chapter deals with the boundary value problems in electrostatics and 
their treatment to determine the electrostatics quantities like the potential, surface 
charge density, electric field etc. on the boundary surfaces. 

 

UNIT- 3 
Boundary Value Problems in 

Electrostatics : Methods of Images 

3.0 Objective  
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3.1 Introduction 

There are many problems in Electrostatics, which involves boundary 
surfaces on these surfaces either the potential or the surface charge density is 
specified. The formal solution of such problems using the method of Green’s 
functions may be difficult in some cases as it is difficult to determine the correct 
Green’s function.  

Hence a number of approaches to solve electrostatic boundary value 
problems have been developed. Some of them are: (1) The method of images; (2) 
Expansion in orthogonal functions; (3) The finite element analysis (FEA), which is 
a numerical method and comprises of use of complex-variable techniques. In this 
section we are going to study the method of images technique. 
3.2 The Method of Images 

The method of images concerns with the problem of one or more point 
charges in the presence of boundary surfaces, some of the examples are: grounded 
conductors or conductors held at fixed potential. From the geometry of the problem 
we can infer a small number of suitably placed charges of appropriate magnitudes, 
which are external to our region of interest and can simulate the required boundary 
conditions. These charges are known as “image charges” and the replacement of 
the actual problem with image charges with boundaries by an enlarged region is 
called the “method of images”. 
To understand the method of images, let us take a simple example of a point 
charge located in front of an infinite plane conductor at zero potential as shown in 
the figure given below : 

 

3.1 Introduction 

3.2 The Method of Images 
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We can show that the problem of original charge can be replaced by an equal and 
opposite charge located at the mirror-image point behind the plane defined by the 
position of the conductor and the original charge itself. 

3.3 Point Charge in the presence of a Grounded Conducting 
Sphere 

Any stationary charge distribution near a grounded conducting plane can be 
treated by the method of images technique, by introducing its mirror image charge 

at appropriate distance inside the conducting plane. Consider a point charge ݍ 

located at ݕ ሬሬሬ⃗  distance relative to the origin, on which a grounded conducting 

sphere of radius ′ܴ′ is centered.  

 

 
 

Conducting Sphere of radius R 
                     and charge q,  image charge q
Figure 3.2 (a) 

 

 

3.3 Point Charge in the presence of a Grounded  
Conducting  Sphere 
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 . Vector diagram for the problemFigure 3 2 b  

By symmetry of the problem  

we can see that the image charge ݍ’ will lie on the line connecting the origin ܱ to 
the charge ݍ. 

If we consider the charge ݍ outside the sphere, the image charge ݍ’ will lie inside 
the sphere such that (ܸ(ݔ) = 0)௫ୀோ. We can write the potential due to charges ݍ 
and ݍ′ at point ܲ is : 

(ݔ)ܸ   =  ଵ
ସగ∈బ

 ቂ௤
௥

+ ௤ᇲ

௥ᇲ
ቃ       (3.1) 

ݎ ݁ݎℎ݁ݓ = ሬሬሬ⃗ ݔ) – ሬሬሬ⃗ ݕ ), ᇱݎ = ሬሬሬ⃗ ݔ) – ሬሬሬሬ⃗ ′ݕ ) 

We now try to choose ݍ’ and |ݕ′| such that this potential must vanish at |ݔ| = ܴ. If 
= ݔ out of the second, the potential at ’ݕ is factored out of the first term and ݔ  ܴ 

becomes: 

ݔ) ܸ   = ܴ) =  ଵ
ସగ∈బ

 ቈ ௤
ோቂଵି೤ೃቃ

+ ௤ᇱ

௬ᇱቂଵିೃ
೤ᇲቃ

 ቉         (3.2) 

From eqn (2) we can see that the choices  

  
௤
ோ

=  − ௤ᇲ

௬ᇲ
   , ௬

ோ
 =  ோ

௬ᇲ
                                                (3.3) 

to make ܸ(ݔ =  ܴ)  =  0.  Hence the magnitude and position of image charge 
are : 

ᇱݍ    =  − ோ
௬

;   ݍ  ᇱݕ   = ோమ

௬
      (3.4) 
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to the right of the centre of sphere. We can see that as the charge ݍ is brought 
closer to the sphere, the image charge grows in magnitude and moves out from the 
center of the sphere. When ݍ is just outside the surface of the sphere, the image 
charge is equal and opposite in magnitude and lies just beneath the surface. 

Now let us calculate the actual surface charge density induced on the surface of the 
sphere, which is give as : 

0
x R

V
x





 


       (3.5) 

Where 
డ௏
డ௫

 is the normal derivative of ܸ at the surface. We know that 

(ݔ)ܸ =
1

ߨ4 ∈଴
 ቎

ݍ
ሬሬሬ⃗ ݔ] – ሬሬሬ⃗ ݕ ] +

′ݍ

ቂݔ ሬሬሬ⃗ – ሬሬሬሬ⃗ ′ݕ ቃ
቏ 

Using ݍᇱand y’ from eqn. (4), we get : 

(ݔ)ܸ  = ଵ
ସగ∈బ

 ൥ ௤
ൣ௫ ሬሬሬ⃗ –௬ ሬሬሬ⃗ ൧

+ ோ௤

௬൤௫ିೃ
మ

೤ ൨
൩     (3.6) 

Differentiating and using ݔ =  ܴ, we get 

0
x R

V
x





  


 

ߪ   =  − ௤
ସగோమ

 ቀோ
௬
ቁ 

൬ଵିೃ
మ

೤మ
൰

൬ଵାೃ
మ

೤మି ଶೃ೤ ୡ୭ୱఈ൰
య/మ    (3.7) 

Where ߙ is the angle between ݔ ሬሬሬ⃗  and ݕ ሬሬሬ⃗ . We can also show by direct integration 
that the total induced charge on the sphere is equal to the magnitude of the image 
charge as it must be according to Gauss’s law. 

The force acting on the charge ݍ can be calculated as the force between the charge 
  .′ݍ and the image charge ݍ
The distance between the two charges is 

ݕ  − = ′ݕ ݕ ቀ1 − ோమ

௬మ
ቁ.  



52 
 

Hence the attractive force according to Coulomb’s law is : 

  ห݂ ሬሬሬ⃗ ห = ଵ
ସగ∈బ

௤మ

ோమ
 ቀோ
௬
ቁ
ଷ

 (1 − ோమ

௬మ
)ିଶ    (3.8) 

For large separation the force is an inverse curve law, but close to the sphere it is 
proportional to the inverse square of the distance away from the surface of the 
sphere. 

3.4 Illustrative Examples 

Example 3.1: Find the force on the charge +ݍ in the figure given below. The ݕݔ 
plane is a grounded conductor.   

Solution : Consider two image charges +2ݍ at ݖ =  −݀ and −ݍ at ݖ =  −3݀ and 
then calculating the force on +ݍ is :  

 
Figure  3.3  

 

ܨ  = ௤
ସగ∈బ

 ቂ ିଶ௤
(ଶௗ)మ

+ ଶ௤
(ସௗ)మ

ି௤
(଺ௗ)మ

ቃ ෝ ݖ  

                =
ଶݍ

ߨ4 ∈଴ ݀ଶ
 ൬−

1
2 +

1
8 −

1
36൰ ݖ ෝ  

       = ଵ
ସగ∈బ

 ቀଶଽ௤
మ

଻ଶௗమ
ቁ ෝ ݖ        (3.9) 

3.4 Illustrative Examples 
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The expression gives the total force on the charge ݍ. Similarly we can calculate the 
force on other charges also. 

3.5 Self Learning Exercise – I 

  Section A :Very Short Answer type Questions 

Q.1  Write down the magnitude and position of image charge for the point charge 
in the presence of grounded conducting sphere. 

Q.2  Discuss the case when the point charge is situated just outside the surface of 
the grounded conducting sphere, specially the potential. 

Q.3  What do you mean by image charges? 

Section B : Short Answer type Questions 

Q.4  Show that the total induced charge on the sphere is equal to the magnitude 
of the image charge. 

Hint : You can use equation 3.7 and the total induced charge can be obtained by 
direct integration of equation 3.7. 

Q.5  For a point charge on a grounded conducting sphere calculate the total force 
acting on the surface of the sphere using the expression. 

ܨ݀   = ቀ ఙ
మ

ଶ∈బ
ቁ  ݀ܽ     (3.10)   

 

 
 
 
 

3.5  Self Learning Exercise – I 

Figure  3.4 
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where ݀ܽ is the area element and show that the force will be equal to the 
force given in equation 3.8. 

Q.6  Calculate the energy of the system of a point charge in the presence of a 
grounded conducting sphere. 

3.6 Point Charge in the Presence of a Charged Insulated, 
Conducting Sphere 

In last section we have seen that a surface charge density was induced on 
the sphere as the charge ݍ is present near a grounded conducting sphere. The 
induced charge was of total amount ݍ′ and was distributed over the surface in such 
a way to be in equilibrium under all forces. 

 
.    ,   Figure 3 5 A charged insulated conducting  

Now we have an insulated conducting sphere with total charge ܳ in the 
presence of a point charge ݍ, the solution for the potential can be taken by linear 
superposition. Consider that we have a grounded conducting sphere with its charge 

  .distributed over its surface ′ݍ

We then disconnect the ground wire and an amount of charge (ܳ −  ܳ is added (′ݍ
on the sphere. This added charge (ܳ −  will distribute uniformly over the (′ݍ
surface of the sphere. Hence the potential due to the added charge (ܳ −  will be (’ݍ
the same as if a point charge of some magnitude were at the origin. 

3.6 Point Charge in the Presence of a Charged Insulated, 
Conducting Sphere 
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The potential due to charges ݍ, its image ݍ’ and the potential of a point charge 
(ܳ −  : at the origin will be (’ݍ

(ݔ)ܸ   = ଵ
ସగ∈బ

 ൤ ௤
ห௫ ሬሬሬ⃗ –௬ ሬሬሬ⃗ ห

+ ௤ᇱ
[௫ି௬ᇱ]

+ ொି௤ᇱ
|௫| ൨   (3.11) 

Hence using ݍ’ and y’ from equation 3.3 we can write : 

(ݔ)ܸ =  ଵ
ସగ∈బ

 ൥ ௤
ห௫ ሬሬሬ⃗ –௬ ሬሬሬ⃗ ห

+ ோ௤

௬൤௫ ሬሬሬ⃗ ିೃ
మ

೤మ ௬ ሬሬሬ⃗ ൨
+

ொାೃ೤ ௤

|௫| ൩   (3.12) 

The force acting on the charge ݍ can be written down directly from Coulomb’s 
law. It is along the radial direction of ݍ and has the magnitude: 

ܨ⃗   = ଵ
ସగ∈బ    

 ቂ ௤௤ᇱ
(௬ି௬ᇱ)మ

+ ௤(ொି௤ᇲ)
௬మ

ቃ ݕො   (3.13) 

Which can be written as : 

ሬሬሬ⃗ ܨ =
ݍ

ߨ4 ∈଴    
ቈ
ܳ
ଶݕ −

ᇱݍ

ଶݕ +
ᇱݍ

ݕ) − ଶ(′ݕ
቉ ෝ ݕ  

=
ݍ

ߨ4 ∈଴    
൥
ܳ
ଶݕ − ᇱݍ ൤

1
ଶݕ −

1
ݕ) − ᇱ)ଶ൨ݕ

൩ ෝ ݕ  

=
ݍ

ߨ4 ∈଴    
൥
ܳ
ଶݕ − ᇱݍ ቈ

ଶ′ݕ − ′ݕݕ2
ݕ) ଶݕ − ଶ(′ݕ

቉൩ ෝ ݕ  

=
ݍ

ߨ4 ∈଴    
൥
ܳ
ଶݕ − ᇱݍ ቈ

ᇱݕ)ᇱݕ − ݕ2 
ݕ) ଶݕ − ଶ(′ݕ

቉൩ ෝ ݕ  

Using ݍ’ and ݕ’ from equation 3.3 we get : 

ሬሬሬ⃗ ܨ =
ݍ

ߨ4 ∈଴ ଶݕ
⎣
⎢
⎢
⎡
ܳ −

ݍܴ
ݕ  

⎩
⎨

⎧൬ܴ
ଶ

ݕ ൰ ൬2ݕ − ܴଶ
ݕ ൰

ଶݕ  ൬ݕ − ܴଶ
ݕ ൰

ଶ

⎭
⎬

⎫

⎦
⎥
⎥
⎤
ෝ ݕ  

and finally the force 

ሬሬሬ⃗ ܨ  = ଵ
ସగ∈బ

 ௤
௬మ

 ቂܳ − ௤ோ
య (ଶ௬మି ோమ)
௬ (௬మିோమ)మ ቃ ෝ ݕ             (3.14) 

Using the limit ݕ >>  ܽ, this force reduces to the coulomb’s law for two small 
bodies. If the sphere is charged oppositely to ݍ or is unchanged, the force is 
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attractive at all distances. Even if the charge ܳ is of same sign as of ݍ, the force 
becomes attractive at very close distances. 

With this example we can explain why an excess charge on the surface does 
not immediately leave because of mutual repulsion of the individual charges. If the 
charge is removed from the surface, the image force tries to attract it back and with 
sufficient amount of work, charge can be removed from the surface (the work 
function). 

3.7 Illustrative Examples  

Example 3.2 A point charge ݍ is situated a distance ܽ from the center of a sphere 

at a potential ଴ܸ (relative to infinity). Find the force of attraction between point 
charge ݍ and a neutral conducting sphere. 

Solution : Consider an image charge ‘ݍ′’ at a distance ‘ܾ’ from the centre of the 
sphere 

 

 
  

Figure  3.6  

Now place a second image charge ݍ′′, at the centre of the sphere, this will use to 
make the sphere equipotential and increase that potential from zero to , 

଴ܸ = ଵ
ସగ∈బ

௤ᇱᇱ
ோ

 ,  

hence our second image charge :  

3.7 Illustrative Examples  



57 
 

ᇱᇱݍ  = ߨ4  ∈଴  ଴ܸ ܴ        (3.15) 

at the centre of sphere.  

As per the problem, for a neutral sphere, 

+ ′ݍ  = ′′ݍ   0        (3.16) 

Hence the force on the point charge can be calculated by coulomb’s interaction 
between various charges: 

ሬሬሬ⃗ ܨ   = ଵ
ସగ∈బ

ቀ௤ᇱᇱ ݍ 
௔మ

+ ௤ᇱ
(௔ି௕)మ

ቁ     (3.17) 

  = ௤௤ᇱ
ସగ∈బ

  ቀ− ଵ
௔మ

+ ଵ
(௔ି௕)మ

ቁ  using equation (3.16) 

  = ௤௤ᇱ
ସగ∈బ

  ௕ (ଶ௔ି௕)
௔మ (௔ି௕)మ  using equation (3.4) we can write : 

= ܨ   
௤ ቀ–ೃ೜ೌ ቁ

ସగ∈బ
 (ோమ/௔) (ଶ௔ି ோమ/௔)

௔మ (௔ି ோమ/௔)మ   

and hence 

ܨ  =  − ௤మ

ସగ∈బ
 ቀோ
௔
ቁ
ଷ (ଶ௔మିோమ)

(௔మିோమ)మ     (3.18) 

We can drop the minus sign as in the problem we have been asked for the force of 
attraction. 

3.8 Point Charge near a Conducting Sphere at Fixed 
Potential 

As we have discussed the case of a point charge near a sphere at fixed 
potential in example 3.2 and obtained the force for a neutral conducting sphere. 
Similarly considering a point charge near a conducting sphere held at a fixed 
potential V, the potential can be taken same as of the charged sphere, except that 
the charge (ܳ − ߨat the center is replaced by a charge 4 (’ݍ ∈଴ ோܸ , where ܴ is the 
radius of the sphere.  

We can see from 3.12, since at |ݔ ሬሬሬ⃗ | = ܴ the first two terms cancel and last time will 
be equal to V as required. Thus for this problem we can write the potential as: 

(ݔ)ܸ  = ଵ
ସగ∈బ

 ൥ ௤
ห௫ ሬሬሬ⃗ – ௬ ሬሬሬ⃗ ห

− ோ௤

௬ ฬ௫ ሬሬሬ⃗ ି ೃ
మ

೤మ ௬ ሬሬሬ⃗ ฬ
൩ + ௏ೌ

|௫ ሬሬሬ⃗ |   (3.19) 

3.8 Point Charge near a Conducting Sphere at Fixed 
Potential 
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.     

                     
Figure 3 7 The conducting sphere

at a fixed potential V
 

In 3.19, the first term is the potential term due to charge ݍ, the second term is due 
to the image charge ݍ′ and the last term is due to the fixed potential ܸ on the 
sphere. 

The force on the charge ݍ due to the sphere at fixed potential con be calculated by 
having coulomb’s attraction force terms in between ݍ and other charges. Hence :  

ሬሬሬ⃗ ܨ  =  ଵ
ସగ∈బ

ቂ ݍ  ௤ᇱ
(௬ି௬ᇱ)మ

+  ସగ∈బ ௏ோ
௬మ

ቃ ෝ ݕ     (3.20) 

Using values of ݍ′ and ݕ′ from 3.16 we can write 

ሬሬሬ⃗ ܨ =  
1

ߨ4 ∈଴
 ݍ 

⎣
⎢
⎢
ߨ4⎡ ∈଴  ܸܴ

ଶݕ +  
(ݕ/ݍܴ)

൬ݕ − ܴଶ
ݕ ൰

ଶ

⎦
⎥
⎥
⎤
ෝ ݕ  

Solving this we can write: 

ሬሬሬ⃗ ܨ =  ௤
௬మ

  ቂ ோܸ −
ଵ

ସగ∈బ
 ௤ ோ ௬మ

(௬మିோమ)మቃ ෝ ݕ        (3.21) 

 We can see that the force on a point charge ݍ due to an insulated, 
conducting sphere at fixed potential can have positive values for repulsive forces 
and can have negative values for attractive forces. Regardless of the value of the 
potential charge 4ߨ ∈଴ ௔ܸ  the force is always attractive at close distances because 
of the induced surface charge. 
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Example 3.3 : A uniform line charge λ is placed on an infinite straight wire, a 
distance d above a grounded conducting plane. Then,  

(a) find the potential in the region above the region above the plane and 
(b) find the induced charge density ߪ on the conducting plane. 

 

 Figure  3.8  

Solution (a) Let us consider the wire is parallel to the x-axis and it is directly 
above it and the conducting plane is in the xy-plane.  

 

 
Figure  3.9   

Considering an image line charge (-λ) just below d distance in grounded conducting 
plane. The potential of line charge (+λ) at d distance can be obtained as : 



60 
 

 ାܸ = − ఒ
ଶగ∈బ

ቀ{௬మା(௭ିௗ)మ}భ/మ

ௗ
ቁ      (3.22) 

and similarly the potential of line charge (−ߣ) at (−݀) distance will be : 

 ܸି = + ఒ
ଶగ∈బ

௘݃݋݈ ቂ
{௬మା(௭ାௗ)మ}భ/మ

ௗ
ቃ     (3.23) 

and the total potential for the line charge and its image line charge is given by : 

,ݕ)ܸ  (ݖ =  ଶఒ
ସగ∈బ

௘݃݋݈ ቂ
{௬మା(௭ାௗ)మ}భ/మ

{௬మା(௭ିௗ)మ}భ/మቃ  

,ݕ)ܸ  (ݖ =  ఒ
ସగ∈బ

௘݃݋݈ ቂ
௬మା(௭ାௗ)మ

௬మା(௭ିௗ)మቃ     (3.24) 

The expression 3.24 represents the potential in the region above the plane. 

(b) For calculating induced charge density, we know that, 

  0
z R

V
z





  


      (3.25) 

Hence  

(ݕ) ߪ = −∈଴
ߣ

ߨ4 ∈଴
 ൜

1
ଶݕ + ݖ) + ݀)ଶ ݖ)2  + ݀) − 

1
ଶݕ + ݖ) − ݀)ଶ ݖ)2 − ݀)ൠ ݖ| = 0 

(ݕ) ߪ        = −
ߣ2
ߨ4

 ൜
݀

ଶݕ + ݀ଶ
+ 

݀
ଶݕ + ݀ଶ

ݖ)2 − ݀)ൠ 

(ݕ) ߪ = − ఒௗ
గ(௬మାௗమ)

        (3.26) 

Equation 3.26 will give the induced charge density on the conducting plane and 
we can determine the induced charge on the conducting plane using the equation. 

3.9  Self learning Exercise –II 

Section A:Very Short Answer Type Questions 

Q.1  What do you understand by work function? Discuss work function in 
electrostatic point of view. 

Q.2  For the problem of a point charge near a conducting sphere at fixed potential 
V, show that the potential can be replaced by a charge at the centre of the 
sphere. 

3.9  Self learning Exercise –II 
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Q.3  Discuss the nature of force for a point charge near a conducting sphere at a 
fixed potential. 

Section B: Short Answer Type Questions 

Q.4  Show that the total charge induced in example 3.3 on the strip of line charge 
of width ݈ parallel to the ݕ axis, is given by −݈ߣ. 

Q.5  A point charge ݍ of mass ݉ is released from (rest at a distance ݀ from) an 
infinite grounded conducting plane. How long will it take for the charge to 
hit the plane? 

Q.6  Write down the potential for a point charge in the presence of a charged, 
insulated conduction sphere. 

3.10 Summary 

The unit starts with the introduction of boundary value problems in 
electrostatics. The problems are given with the charge and potential on the 
surfaces. The formal solution of such problems using method of images is 
developed in this unit. The solution using this method makes the problem easier to 
solve. The problems of point charge near a grounded conducting sphere, in the 
presence of a charged, insulated conducting sphere, near a conducting sphere at 
fixed potential have been discussed in this unit and solution in the form of 
potential, induced charge density and force are obtained. 
3.11 Glossary 

Induce :  to cause something to happen 

Grounding: To make potential to zero 

Insulate: Prevent the passage of electricity to or from (something) by covering it 
in non-conducting material  

3.12 Answers to Self Learning Exercise 
Answer to Self learning Exercise –I 

Ans.1 :  ݍᇱ = ோ
௬
, ݍ ᇱݕ = ோమ

௬
 

Ans.2 :  Approximately zero 

3.10 Summary 

3.11 Glossary 

3.12 Answers to Self Learning Exercises 
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Ans.3 :  Definition (See 3.2)  

Ans.6 :  − ଵ
ସగ∈బ

௤మ

ଶ
௘݃݋݈

(௬ିோ)
(௬ାோ)

 

Answer to  Self learning Exercise – II 
Ans.3 :  Repulsive and attractive at close distances 

Ans.5 :  
గௗ
௤

 ඥ2ߨ ∈଴ ݉݀  

Ans.6 :  ܸ(ݔ) =  ଵ
ସగ∈బ

൥ ௤
(௫ ሬሬሬ⃗ –௬ ሬሬሬ⃗ )

− ோ௤

௬ ฬ௫ ሬሬሬ⃗ ିೃ
మ

೤మ௬ ሬሬሬ⃗ ฬ
+

ቀொାೃ೜೤ ቁ

|௫ ሬሬሬ⃗ | ൩ 

 
3.13  Exercise 

Section – A (Very short Answer type Questions) 

Q.1   Whether image charges are always located outside of region where ܸ(ݔ) and 
 : are to be calculated (ݔ)ܧ

Q.2   Whether image charges are always of opposite sign. 

Q.3   Whether image charge is of same strength as of original charge. 

Q.4   What is the total charge induced on surface of the conducting sphere? 

Q.5   Write down the formula for face on a point clearing ݍ dee to an insulated, 
conducting sphere at fixed potential. 

Section – B (Short Answer type Questions) 

Q.6   Calculate the potential for a point charge ݍ held at a distance ݀ above an 
infinite grounded conducting plane. 

(Consider the grounded conducting plane as ݕݔ-plane and the charge is 
along ݖ-axis) 

Q.7   Find out the induced surface charge density for problem 6. 

Q.8   Show that the total induced charge for problem 6 will be same as image 
charge. 

Q.9  Determine the energy in problem 6 by calculating the work required to bring 

point charge ݍ in from infinity. 

3.13  Exercise 



63 
 

Q.10  Two infinite parallel grounded conducting planes are held a distance ‘ܽ’ a 

part. A point charge ݍ is placed in the region between them, a distance ݔ 
from plate. Find the force on ݍ. Check your answer for the special cases 
ܽ → ∞ and ݔ = (ܽ/2). 

Section – C (Long Answer type questions) 

Q.11  Using the method of images. Discuss the problem of a conducting sphere in 
a uniform potential and find : 

(i)  The potential inside the sphere of radius R. 

(ii)  The potential at far off point outside the sphere. 

(iii)  The induced surface charge density. 

Q.12  A point charge  ݍ is situated a distance ݎ from the center of a grounded 
conducting sphere of radius ܴ. Find the potential outside the sphere and the 
force of attraction between the charge and sphere. 

Q.13  A point charge ݍ is brought to a position ݀ away from an infinite plane 
conductor at zero potential. Using method of images, find:  

(i) The surface-charge density induced on the plane. 

(ii) The force between the plane and the charge and also the force between 
the charge and its image. 

(iii) The work required to remove the charge from its position to infinity. 

Q.14  Two long straight wires, carrying opposite uniform line charges ±ߣ are 
situated on either side of a long conducting cylinder of radius ܴ. The wires 
are at a distance ‘ܽ’ from the axis of the cylinder. Find the potential at point 
 .from the centre of the cylinder (, ݎ⃗)

Q.15  Find the potential, force and induced surface charge density for a point 
charge in the presence of a charged, insulated conducting sphere. 

3.14 Answers to Exercise  

Ans.1:  Yes 

Ans.2:  May or may not be 

Ans.3:  May or may not be (depending on the nature of the problem). 

3.14 Answers to Exercise  
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Ans.4:  Equal to image charge ݍ′. 

Ans.5:  ܨ ሬሬሬ⃗ = ௤
௬మ
ቂܸܴ − ଵ

ସగ∈బ
 ௤ ோ ௬య

(௬మିோమ)మቃ ෝ ݕ  

Ans.6:  ܸ(ݔ, ,ݕ (ݖ =  ଵ
ସగ∈బ

 ቂ ௤
(௫మା௬మା(௭ିௗ)మ)భ/మ −

௤
(௫మା௬మା(௭ାௗ)మ)భ/మቃ 

Ans.7:   ݔ) ߪ, (ݕ =  ି௤ௗ
ଶగ(௫మା௬మାௗమ)య/మ 

Ans.8:  ܳ =  ݍ− 

Ans.9:  ܹ =  − ଵ
ସగ∈బ

 ௤
మ

ସௗ
 

Ans.10: ܨ = ଵ
ସగ∈బ

 ௤
మ

ସ
 ቄቂ ଵ

(௔ି௫)మ
+ ଵ

(ଶ௔ି௫)మ
+ ଵ

(ଷ௔ି௫)మ
+ ⋯ ቃ −  ቂ ଵ

௫మ
+ ଵ

(௔ି௫)మ
+

                      ଵ
  (ଶ௔ି௫)మ

+ ⋯ ቃቅ  

  When ܽ →  ∞, ݔ = ௔
ଶ

= ݂ = 0 

Ans.14: 

,ݎ)ܸ  ) = ఒ
ସగ∈బ

௘݃݋݈  ൥
(௥మା௔మାଶ௥௔ୡ୭ୱ) ൤ቀೝೌೃ ቁ

మ
ାோమିଶ௥௔ୡ୭ୱ൨

(௥మା௔మିଶ௥௔ୡ୭ୱ) ൤ቀೝೌೃ ቁ
మ
ାோమାଶ௥௔ୡ୭ୱ൨

൩ 
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Unit-4 

Conducting Sphere in a Uniform Electric 
Field by Method of Image 

 

Structure of the Unit 

4.0  Objectives 

4.1  Introduction 

4.2  Conducting sphere in an uniform electric field by method of image 

4.3  Green function for the sphere: general solution for potential 

4.4  Conducting sphere with Hemispheres at different potential 

4.5  Self Learning Exercise I 

4.6  Orthogonal functions and its expansion 

4.7  Self Learning exercise II 

4.8  Summary 

4.9  Glossary 

4.10 Answer to Self learning Exercises 

4.11 Exercise 

        References and Suggested Readings  

4.0 Objectives 

 After interacting with the material presented here students will be able to 
understand 

1. Method of image by an example of conducting sphere in an uniform electric 
field 

2. Green function 
3. Conducting sphere with Hemispheres at different potential 
4. Orthogonal functions and its expansion 

UNIT- 4 
Conducting Sphere in a Uniform Electric 

Field by Method of Image 

4.0 Objectives 
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4.1 Introduction 

 There are four major analytical methods for solving boundary values problems: 

1. Image charges  
2. Green functions 
3. Expansion in orthogonal functions 
4. Conformal mappings.  

In this chapter we will only deal with the first three methods. The method of 
images and few problems we have discussed in the last chapter. Here we will 
discuss only conducting sphere in an uniform electric field by method of image. 

4.2 Conducting sphere in an uniform electric field by method 
of image  

 Let us consider a grounded conducting sphere, which means  (x) = 0 on 
the sphere, placed in a region where there was initially a uniform electric field 
଴ܧ =  is a unit vector ݖ̂ ,produced by some far away fixed charges. Here ݖ଴̂ܧ
pointing in the z direction. We approach this problem by replacing it with another 
one which will become equivalent to the first one in some limit. 

Let the sphere be centered at the origin and let there be not a uniform 
applied field but rather a charge Q placed at the point (0, 0, −d) and another charge 
−Q placed at the point (0, 0, d) in Cartesian coordinates. 

 

4.1 Introduction 

4.2 Conducting sphere in an uniform electric field by  
method of image  
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The resulting potential configuration is easily solved by the image method; 

there are images of the charges Q in the sphere at (0; 0;-a2/d) and at (0; 0; a2/d); 
they have size –Qa/d and Qa/d, respectively.  

The potential produced by these four charges is zero on the surface of the 
sphere. Thus we have solved the problem of a grounded sphere in the presence of 
two symmetrically located equal and opposite charges. We could equally well 
think of the sphere as isolated (not electrically connected to anything) and neutral, 
because the total image charge is zero. 

Now we want to think about what happens if we let Q become increasingly 
large and at the same time move the real charges farther and farther away from the 
sphere in such a way that the field they produce at the origin is constant. This field 

is E(x) = (2Q/d2) ̂ݖ, so if Q is increased at a rate proportional to d2, the field at the 
origin is unaffected. As d becomes very large in comparison with the radius a of 
the sphere, not only will the applied field at the origin have this value, but it will 
have very nearly this value everywhere in the vicinity of the sphere. The difference 

becomes negligible in the limit
d
a

   .Hence we recover the configuration 

presented in the original problem of a sphere placed in a uniform applied field. If 
we pick E0 = 2Q/d2, or, more appropriately, Q = E0d

2/2, we have the solution in the 

limit of d: 

 
 

2 2
0 0

1 1
2 2 4 22 2

2
2

1 1lim
2 22

2
d

E d E d ax
dd r rdcos a ar r cos

d d







 
 
 
  
             

 

 

2 2
0 0

1 1
2 2 4 22 2

2
2

1 1lim
2 22

2
d

E d E d a
dd r rdcos a ar r cos

d d





 
 
 
   
             
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0 0
1 1

2 4 22 2

2 2 2

1 1lim
2 2

1 2 1
d

E d E da
rr r a acos cos

d d d r rd
 



 
 
 
 
                 



 

  

           = ߠݏ݋ܿ ݎ଴ܧ− +
଴ܽଷܧ

ߠݏ݋ଶܿݎ
 

The first term, −ܧ଴ߠݏ݋ܿ ݎ, is the potential of the applied constant field, E0. The 
second is the potential produced by the induced surface charge density on the 
sphere. This has the characteristic form of an electric dipole field, of which we 
shall hear more presently. The dipole moment p associated with any charge 
distribution is defined by the equation 

݌                          = න݀ଷݔ ×  (ݔ)ߩ

in the present case the dipole moment of the sphere may be found either from the 
surface charge distribution or from the image charge distribution. Taking the latter 
tack, we find 

        
       

2 2
3 0

2
E da a ap d x z y x z y x

d d
     

    
         

    
  

            

2 2
0

2
E da a az z

d d
    

     
    

 
 

            
3

0E a z


 

Comparison with the expression for the potential shows that the dipolar part of the 
potential may be written as 

(ݔ)߮                  = .݌
ݔ
ଷݎ

 

The charge density on the surface of the sphere may be found in the usual way: 

ߪߨ4                    = ௥ܧ  

      
r

r a

E
r




     
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            = ߠݏ݋଴ܿܧ +
଴ܧ2
ܽଷ

ܽଷܿߠݏ݋ 

            =  ߠݏ݋଴ܿܧ3

Hence 

(ߠ)ߪ          =
3

ߨ4
 ߠݏ݋଴ܿܧ

4.3 Green's Function Method for the Sphere: general solution 
for potential 

Next, let us consider an example of the use of the Green's function method by 
considering a Dirichlet potential problem inside of a sphere. The task is to 

calculate the potential distribution inside of an empty ((x) = 0, ∈  ܸ ) spherical 
cavity of radius a, given some specified potential distribution V (,) on the surface 
of the sphere We can immediately invoke the Green's function expression 

(ݔ)߮ = −
1

ߨ4
න݀ଶݔᇱ߮(ݔᇱ)

,ݔ)ܩ߲ (ᇱݔ
߲݊ᇱ   

and we already know that, 

,ݔ)ܩ (ᇱݔ =
1

ݔ| − |ᇱݔ −
ܽ
ᇱݎ

1

ฬݔ − ൬ܽ
ଶ

ᇱଶ൰ݎ ݔ
ᇱฬ

 

since G(x,x) is the potential at x due to a unit point charge at x (x,x V), and we 

have just solved this problem. If we let  be the angle between x and x, 

,ݔ)ܩ (ᇱݔ =
1

ଶݎ) + ᇱଶݎ − (ݏ݋ᇱܿݎݎ2
ଵ
ଶ
−
ܽ
ᇱݎ

1

൬ݎଶ + (ܽସ/ݎᇱଶ) − ݎ2 ൬ܽ
ଶ

ᇱݎ ൰ ൰ݏ݋ܿ
ଵ
ଶ

  

Then 

   
'

' '

' '

, ,

s r a

G x x G x x
n r



   
   
      

 


 
 

                     
   

2 2

3 3
2 2 2 2 4 32 2

1 2 2 2 2
2 2 2 cos

a rcos ar ra cos

r a racos r a a ra

 
 

     
     

 

4.3 Green's Function Method for the Sphere: general 
solution for potential 
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 

2

2

3
2 2 2

1

2

ra
a

r a racos

 
 

 
 

 

                      
 

 

2

32
2 2

11

1 2 cosa


 
   

 

where r
a

 . For simplicity, let us suppose that (x) = 0 inside of the sphere. Then 

߮(ܺ) = −
1

ߨ4
න ݀߮′
ଶగ

଴
න ,ᇱߠ)ᇱܸߠᇱ݀ߠ݊݅ݏ ߮ᇱ)

(1 −∈ଶ)

(1 +∈ଶ− 2 ∈ (ݏ݋ܿ
ଷ
ଶ

గ

଴
 

In terms of ߠ, ߮ and ߠ′, ߮′ 

ߛݏ݋ܿ = ᇱߠݏ݋ܿߠݏ݋ܿ + ߮) cos′ߠ݊݅ݏߠ݊݅ݏ − ߮′) 

This integral can rarely be done in closed form in terms of simple functions; 
however, it is generally a simple matter to carry out the integrals numerically.  

 

4.4 Conducting sphere with Hemispheres at different potential  

Example 

 
 

,ߠ)ܸ               ߮) = ൞
ܸ,     0 ≤ ߠ ≤

ߨ
2

−ܸ,     
ߨ
2 ≤ ߠ ≤ ߨ

 

4.4 Conducting sphere with Hemispheres at different 
potential  
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Then the answer will not depend on , so we may arbitrarily set  equal to zero 

and proceed. Using r/a, we have 

            ߮(∈, (ߠ =
ܸ

ߨ4
(1 −∈ଶ)න ݀߮′

ଶగ

଴
቎න

ᇱߠᇱ݀ߠ݊݅ݏ

(1 +∈ଶ− 2 ∈ (ݏ݋ܿ
ଷ
ଶ

గ
ଶ

଴

−න
ᇱߠᇱ݀ߠ݊݅ݏ

(1 +∈ଶ− 2 ∈ (ݏ݋ܿ
ଷ
ଶ

గ

గ/ଶ
൩ 

The integral is still difficult in the general case. For  = 0, it is easier: 

߮(∈ ,0) =
ܸ

ߨ4
(1 −∈ଶ)2ߨ ൥න

ݑ݀

(1 +∈ଶ− 2 ∈ (ݑ
ଷ
ଶ

ଵ

଴
−න

ݑ݀

(1 +∈ଶ− 2 ∈ (ݑ
ଷ
ଶ

଴

ିଵ
൩ 

These integrals are easily completed with the result that 

              ߮(∈ ,0) = ௏
∈
൤1 − (ଵି∈మ)

ඥ(ଵା∈మ)
൨ 

An alternative approach, valid for r/a << 1, is to expand the integrand in powers of 

 and then to complete the integration term by term. This is straightforward with a 

symbolic manipulator but tedious by hand. Either way, a solution in powers of  
is generated. 

߮(∈ ,0) =
3ܸ
2 ൤∈ ߠݏ݋ܿ −

7
12 ߳

ଷ ൬
5
2 cosଷ ߠ −

3
2 ൰ߠݏ݋ܿ + ܱ(߳ହ)൨ 

Legendre polynomials 

ଵܲ(ܿߠݏ݋) =  ߠݏ݋ܿ

ଷܲ(ܿߠݏ݋) =
5
2 cosଷ ߠ −

3
2  ߠݏ݋ܿ

etc. Note that only terms which are odd in cos enter into the sum, due to the 
symmetry of the boundary conditions. 

4.5 Self Learning Exercise -I 

Short Answer Type Questions 

Q.1  State the analytical methods for solving boundary values problems. 

Q.2 Define method of image. 

Q.3  Write down the charge density on the surface of the sphere 

4.5 Self Learning Exercise -I 
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Q.4  Define Green's function and Green's function solution equation. 

4.6 Orthogonal Functions and Expansions 

Consider a set of functions Un(x) (real or complex) defined on the interval (a, b). 
Then the two functions Un(x) and Um(x) are called orthogonal if 

   * 0,
b

n m
a

dxU x U x m n   

the superscript * denotes complex conjugation. Further, the functions Un(x) are 
normalized on the interval, 

    2* 1
b b

n n n
a a

dxU x U x dx U    

Combining these equations we have 

   * 0,
1,

b

n m nm
a

n m
dxU x U x

n m



   

  

The functions Un(x) are said to be orthonormal; nm is called a Kronecker delta 
function. 

Next, we attempt to expand, on the interval ax b, an arbitrary function f(x) as a 
linear combination of the functions Un(x), which are referred to as basis functions. 
Keeping just N terms in the expansion, one has 

(ݔ)݂                             ≈෍ܽ௡ ௡ܷ(ݔ)
ே

ଵ

 

We need a criterion for choosing the coefficients in the expansion; a standard 
criterion is to minimize the mean square error E which may be defined as follows: 

ܧ                       = න (ݔ)݂|ݔ݀ −෍ܽ௡ ௡ܷ(ݔ)|ଶ
ே

௡ୀଵ

௕

௔
 

= න (ݔ)∗݂)ݔ݀ −෍ܽ௡∗ ௡ܷ
(ݔ)݂)((ݔ)∗ −෍ܽ௡ ௡ܷ(ݔ)) 

ே

௡ୀଵ

 
ே

௡ୀଵ

 
௕

௔
 

The conditions for an extremum are 

4.6 Orthogonal Functions and Expansions 
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ܧ߲

 ߲ܽ௞௔ೖ∗
= 0 =

ܧ߲
߲ܽ௞∗௔ೖ

 

where ak and a*k have been treated as independent variables  Application of these 
conditions leads to 

                  0 = න (ݔ)∗݂)ݔ݀ −෍ܽ௡∗ ௡ܷ
 (ݔ)௞ܷ ((ݔ)∗

ே

௡ୀଵ

 
௕

௔
 

                     = න (ݔ)݂)ݔ݀ −෍ܽ௡ ௡ܷ(ݔ)) ௞ܷ
 (ݔ)∗

ே

௡ୀଵ

 
௕

௔
 

or, making use of the orthonormality of the basis functions, 

               ܽ௞ = න (ݔ)݂ݔ݀ ௞ܷ
(ݔ)∗

௕

௔
 

with a*n given by the complex conjugate of this relation. If the basis 

functions are orthogonal but not normalized, then one finds 

  *

2

( )

( )

b

k
a

k b

k
a

dx f x U x
a

dx U x





 

The set of basis functions Un(x) is said to be complete if the mean square error can 
be made arbitrarily small by keeping a sufficiently large number of terms in the 
sum. Then one says that the sum converges in the mean to the given function. If we 
are a bit careless, we can then write 

(ݔ)݂                   = ෍ܽ௡
௡

௡ܷ(ݔ) 

                            = ෍න (ᇱݔ)ᇱ݂ݔ݀ ௡ܷ
(ᇱݔ)∗

௕

௔௡
௡ܷ(ݔ) 

                            = න ෍′ݔ݀ ௡ܷ
(′ݔ)∗

௕

௔
௡ܷ(ݔ)݂(ݔᇱ) 

from which it is evident that 

   * ( )n nU x U x x x    
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for a complete set of functions. This equation is called the completeness or 
closure relation. 

We may easily generalize to a space of arbitrary dimension. For example, in 

two dimensions we may have the space of x and y with ax b, and cy d and 
complete sets of orthonormal functions Un(x) and Vm(y) on the respective intervals. 
Then the arbitrary function f(x,y) has the expansion 

,ݔ)݂                 (ݕ = ෍ܣ௡௠ ௡ܷ(ݔ) ௠ܸ(ݕ)
௡௠

 

Where 

௡௠ܣ                      = න නݔ݀ ݕ݀
௕

௔
,ݔ)݂ (ݕ ௡ܷ

(ݔ)∗ ௠ܸ
(ݕ)∗

௕

௔
 

Returning to the one-dimensional case, suppose that the interval is infinite, -

<x<. Then the index n of the functions Un(x) may become a continuous index, 

Un(x)  U(x;).  

A familiar example of this is the Fourier integral which is the limit of a 
Fourier series when the interval on which functions are expanded becomes infinite. 
Consider that we have the interval –a/2 < x < a/2. Then the Fourier series may be 
built from the basis functions 

                ܷ௠(ݔ) =
1
√ܽ

݁ି
௜ଶగ௠௫
௔  

With m=0,1,2,… these functions form a complete orthonormal set. The 
expansion of f(x) is 

(ݔ)݂                   =
1
√ܽ

෍ ௠ܣ

ஶ

௠ୀ଴

݁ି
௜ଶగ௠௫
௔  

With  

௠ܣ                      =
1
√ܽ

න (ݔ)݂ݔ݀
௔/ଶ

ି௔/ଶ
݁ି

௜ଶగ௠௫
௔  

The closure relation is 
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1
ܽ
෍ ݁ି

௜ଶగ௠(௫ି௫ᇲ)
௔ = ݔ)ߜ − (′ݔ

ஶ

௠ୀ଴

 

Now define k  2m/a or m = ka/2. Also, define 

௠ܣ                             = ඨ2ߨ
ܽ
 .(݇)ܣ

Note that for a , k takes on a set of values that approach a continuum. Thus 

(ݔ)݂ =
1
√ܽ

න
ܽ

ߨ2
݀݇݁௜௞௫ඨ

ߨ2
ܽ
(݇)ܣ

ஶ

ିஶ
 

=
1

ߨ2√
න݀݇݁௜௞௫ܣ(݇) 

While 

ඨ2ߨ
ܽ
(݇)ܣ =

1
√ܽ

න݀(ݔ)݂ݔ݁ି௜௞௫ 

Or 

  1 ( )
2

ikxA k dx f x e


   

while the closure relation now reads 

 1 ( ')
2

ik x xdk e x x


    

thus eikx form a complete set (this is also a useful representation of the Dirac delta 
function). 

Note that we can also write this equation as 
1

ߨ2
න݀݁ݔ௜௞(௫ି௫ᇲ) = ݇)ߜ − ݇′) 

which is the orthonormalization expression of the complete set of functions  U(x,k) 
on the infinite x interval. These functions are 
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,ݔ)ܷ ݇) =
1

ߨ2√
݁௜௫௞ 

4.7 Self Learning Exercise-  II 

Very Short Answer Type Questions 

Q.1  Define orthogonal functions. 

Short Answer Type Questions 

Q.2  Explain normal functions. 

Q.3  Write down the orthonormal condition of function. 

Long Answer Type Questions 

Q.4  Two concentric spheres have radii a,b (b>a) and each s divided into two 
hemispheres by the same horizontal plane. The upper hemisphere of the inner 
sphere and the lower hemispheres of the outer sphere are maintained at 
potential V The other hemispheres are at zero potential.  

Determine the potential in the region a  r  b as a series of Legendre 
polynomials. Include terms at least upto l=4. Check your solution against 

known results in the limiting cases b and a0.  

4.8  Summary 

 In this chapter we firstly introduce method of image and understand 
conducting sphere in an uniform electric field by method of image followed by 
Green function for the sphere and understand conducting sphere with Hemispheres 
at different potential and at last we discussed orthogonal functions and its 
expansion. 

4.9 Glossary 

Uniform field :  

A uniform field is one in which the electric field is constant at every point. It can 
be approximated by placing two conducting plates parallel to each other and 
maintaining a voltage (potential difference) between them; it is only an 
approximation because of boundary effects (near the edge of the planes, electric 

4.7 Self Learning Exercise-  II 

4.8  Summary 

4.9 Glossary 
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field is distorted because the plane does not continue). Assuming infinite planes, 
the magnitude of the electric field E is: 

ܧ = −
∆߮
݀  

where ∆߮ is the potential difference between the plates and d is the distance 
separating the plates. The negative sign arises as positive charges repel, so a 
positive charge will experience a force away from the positively charged plate, in 
the opposite direction to that in which the voltage increases.  

Method of image: The method of image charges (also known as the method of 
images and method of mirror charges) is a basic problem-solving tool 
in electrostatics. The name originates from the replacement of certain elements in 
the original layout with imaginary charges, which replicates the boundary 
conditions of the problem (see Dirichlet boundary conditions or Neumann 
boundary conditions). 

Green's function: A fundamental solution of a linear differential equation 
satisfying homogeneous boundary conditions. (other names include influence 
function, impulse response, source solution).  
Green's function solution equation: Formal solution to a boundary value problem 
in the form of one or more integrals, each of which contains a Green's function and 
a nonhomogeneous term (``driving term''). The non-homogeneous terms may be 
boundary conditions, initial conditions, or volume energy generation. 
Orthogonal function: 
A set of functions, any two of which, by analogy to orthogonal vectors, vanish if 
their product is summed by integration over a specified interval. 

For example, f(x) and g(x) are orthogonal in the interval x = a to x = b if 

න ݔ݀(ݔ)݃(ݔ)݂ = 0
௕

௔
 

The functions are also said to be normal if 

න ଶ|(ݔ)݂| = 1
௕

௔
 

න ଶ|(ݔ)݃| = 1
௕

௔
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The most familiar examples of such functions, many of which have great 
importance in mathematical physics, are the sine and cosine functions between 
zero and 2π. 

4.10 Answers to Self learning Exercises 

  Answers to Self learning Exercise-I 

Ans.1: There are four major analytical methods for solving boundary values 
problems: 

  1. Image charges  

  2. Green functions 

  3. Expansion in orthogonal functions 

  4. Conformal mappings.  

Ans.2 :  The method of image charges  is a basic problem-solving tool 
in electrostatics. The name originates from the replacement of certain 
elements in the original layout with imaginary charges, which replicates the 
boundary conditions of the problem. 

Ans. 3 :  (ߠ)ߪ = ଷ
ସగ
 ߠݏ݋଴ܿܧ

Ans.4 :  A fundamental solution of a linear differential equation satisfying 
homogeneous boundary conditions. (other names include influence function, 
impulse response, source solution).  

Formal solution to a boundary value problem in the form of one or more 
integrals, each of which contains a Green's function and a nonhomogeneous 
term (``driving term''). The non-homogeneous terms may be boundary 
conditions, initial conditions, or volume energy generation. 

 Answers to Self learning Exercise-II 
Ans.1 :   f(x) and g(x) are orthogonal in the interval x = a to x = b if 

න ݔ݀(ݔ)݃(ݔ)݂ = 0
௕

௔
 

Ans.2 :    The functions are also said to be normal if 

4.10 Answers to Self learning Exercises 
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න ଶ|(ݔ)݂| = 1
௕

௔
 

Ans.3 :  ∫ ݔ݀ ௡ܷ
(ݔ)௠ܷ(ݔ)∗ = ቄ0,   ݊ ≠ ݉

1,   ݊ = ݉ = ௡௠ߜ
௕
௔  

The functions Un(x) are said to be orthonormal; nm is called a Kronecker 
delta function. 

Ans.4 : Begin with a general solution  

,ݎ)߮ (ߠ = ෍ ൫ܣ௟ݎ௟ + ൯(௟ାଵ)ିݎ௟ܤ ௟ܲ(ܿߠݏ݋)
ஶ

௟ୀ଴
 

For a  r  b 

Apply boundary conditions at both the surfaces:  

௟ܣ =
(2݈ + 1)ܸ(ܾ௟ାଵ + ܽ௟ାଵ)

2 (ܾଶ௟ାଵ − ܽଶ௟ାଵ) න ௟ܲ(ݔ)݀ݔ
ଵ

଴

 

௟ܤ                                 = (ଶ௟ାଵ)௏௔೗శభ௕೗శభ൫௕೗ା௔೗൯
ଶ ൫௕మ೗శభି௔మ೗శభ൯ ∫ ௟ܲ(ݔ)݀ݔଵ

଴  

4.11 Exercise 

Long Answer Type Questions: 

Q.1  Explain conducting sphere in an uniform electric field by method of image. 

Q.2     (a) A charge Q is distributed uniformly along a line from z = −a to z = a at x 
=   y = 0. Show that the electric potential for r>a is  

,ݎ)߮ (ߠ =
ܳ
ݎ ∑ ቀܽݎቁ

ଶ௡
௡ ଶܲ௡(cosߠ)

2݊ + 1  

(b) A flat circular disk of radius a has charge Q distributed uniformly over 
its area. Show that the potential for r>a is  

,ݎ)߮ (ߠ =
ܳ
ݎ [ 1 –

1
4 ቀ
ܽ
ቁݎ

ଶ
 ଶܲ(ܿߠ ݏ݋) +

1
8 ቀ
ܽ
ቁݎ

ସ
 ସܲ −

5
64ቀ

ܽ
ቁݎ

଺
 ଺ܲ + . . ..  

For both examples, also calculate the potential for r < a. 

Q.3  A semi-infinite cylinder of radius a about the z axis (z > 0) has grounded 
conducting walls. The disk at z = 0 is held at potential V. The “top” of the 
cylinder is open. 

4.11 Exercise 
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Show that the electric potential inside the cylinder is 

,ݎ)߮ (ݖ =
2ܸ
ܽ

∑ ݁ି௞೗௭
݇௟

 ௟ (ݎ௟݇)଴ܬ

௟(݇௟ܽ)ܬ  

Refer to the notes on Bessel functions for the needed relations. 
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UNIT- 5 

Multipole Expansion 

Structure of the Unit 

5.0 Objectives 

5.1 Introduction 

5.2 Multipole expansion 

5.3    Multipole expansion of the energy of a charge distribution in an External 
field  

5.4   Self  Learning Exercise - I 

5.5  Illustrative examples  

5.6   Summary  

5.7  Glossary 

5.8    Answers to Self Learning Exercise 

5.9   Exercise 

5.10  Answers to Exercise  

References and Suggested Readings 

5.0 Objectives 

This chapter deals with the potential at large distance due to localized charge 
distributions and its expansion in multipoles to understand the mechanism of 
potentials at large distances. The energy of a charge distribution or multipoles in an 
external field is also discussed. 

5.1 Introduction 
If we are far away from a localized charge distribution, it looks like as a point 
charge and the potential can directly be written as 

0

1( )
4

QV r
r





 

UNIT- 5 
Multipole Expansion 

5.0 Objectives 

5.1 Introduction 



82 
 

where Q is the total charge of the charge distribution, measured at a distance r. But 
what happened, if Q is zero, we would certainly conclude that potential is 
approximately zero, which is quite correct up to a certain extent. As potential at 
large distances is very small even if Q is not zero. 

In our earlier classes we have studied the potential due to a dipole (two equal and 
opposite charges q separated by a small distance) is given by : 

2 2
0

1 cos 1( )
4

pV r
r r

 







 
which falls off more rapidly than the potential for point charge and for dipole total 
charge is zero also. If we put another pair of equal and opposite charges to make 

a quadrupole, the potential falls off with 3

1
r

 and also for a octopole, it falls off 

with 4

1
r

 and so on. 

                                            
 

1V
r

 
  

Figure  5.1(a)Monopole 2

1V
r

 
  

Figure  5.1(b)Dipole  

 

  
 

3

1V
r

 
  

Figure  5.1(c)Quadrupole 4

1V
r

 
  

Figure  5.1(d)Octopole   
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5.2 Multipole Expansion 

A localized charge distribution is shown in figure 1, which is described by the 

charge density ( ')r


 non-vanishing only inside the charge distribution. We would 
like to develop a systematic expansion for the potential of this localized charge 

distribution in powers of 1
r

. 

 
Figure  5.2 Localized Charge 

distribution  

For a charge distribution ( ')r


 consider the potential at r distance will be: 

0

1 1( ) ( ') '
4 '

V r r d
r r

 



 

  
         (5.1) 

where using the law of cosines, 

2 2' ' 2 'cos 'r r r r rr    
 

 

  

2
2 ' '1 2 cos 'r rr

r r


          
     

                 (5.2) 

5.2 Multipole Expansion 
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  1r     

Where   
' ' 2cos 'r r

r r
     

                                               
(5.3) 

For ', 1r r    for the points well outside the charge 

So 
1 1

21' (1 )r r
r

    
 

   

2 31 1 3 51 ....
2 8 16r

        
 

 

So 

 

2 2

3 3

1 1 1 ' ' 3 ' '1 2 cos ' 2cos '
' 2 8

5 ' ' 2 cos ' ...
16

r r r r
r r r r r r r

r r
r r

 



                         
         

    

 

 

2 32 31 ' ' (3cos ' 1) ' (5cos ' 3cos ')1 cos ' ......
2 2

r r r
r r r r

  
                 

       
   

              ..(5.4) 

0

1 1 ' (cos ')
'

n

n
n

r P
r r r r






     
     

The above equation is known as Legendre polynomial. This is the method to obtain 

Legendre polynomial. Hence 

1
'r r

 
 is called the generating function for 

Legendre polynomial. 

So using this expansion in potential term, we get : 

1
00

1 1( ) ( ') (cos ) ( ') '
4

n
nn

n
V r r P r d

r
  









  

 
                  (5.5) 

The multipole expansion of V in powers of 
1

'r r
   will be : 
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2
0

2 2
3

1 1 1( ) ( ) ' 'cos ' ( ) '
4

1 3 1( ) cos ' ( ) ' ....
2 2

V r r d r r d
r r

r r d
r

    


  

     
       

 



  

     (5.6)  

The equation (5.6) has many number of terms, which can be explained with the 
numbered terms as described below: 

The n = 0 term gives monopole contribution. 

The n = 1 term gives dipole contribution 

 [where ( ) 'p r r d   
  

] 

The n = 2 term gives Quadrupole contribution [where
2 2( ') (3cos 1) ( ) 'Q r r d   

 ]  

Hence we can expansion of ( )V r  will be : 

2 3
0

ˆ ˆ ˆ1 . 1 . '( ) .......
4 2

Q p r r rV r Q
r r r

       



                     (5.7) 

Hence we can see that the coefficients in equation 5.7 are linear combinations of 
the corresponding multipoles. Let us look at these coefficients more closely. The 

first term in expansion is : 
0

1
4 '

Q
r 

, which is nothing but the potential due to the 

total charge of the distribution. The first term will exist if we measure potential at 
sufficiently large distance. 

If we have a neutral molecule, then the first term will be zero. The second term 

2
0

ˆ1 .
4

p r
r

 
 

  



dominates and has a non zero value for the distribution and hence 

the potential will vary asymptotically as 2

1
r  and the electric field strengths behave 

asymptotically like 3

1
r . For a dipole of strength p


, the potential is given by : 
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2 2
0 0

ˆ. p cos( )
4 4

p rV r
r r


 

 
 




 
To calculate the field, we take the negative gradient of V, hence: 

3
0

2 cos
4r

V pE
r r





  

      and 

3
0

1 sin
4

V pE
r r


 


  

   

Thus 3
0

ˆˆ( ) (2cos sin )
4

pE r r
r

 


 


 
                                       (5.8) 

In the coordinate free from it can be written as : 

3
0

1 1 ˆˆ( ) [3( . ) r ]
4

E r p r p
r

 


  
                                        (5.9) 

Similarly if first and second terms are zero but the third term is not, the potential 

will behave like 3

1
r  at large distances and the field strength will fall off with the 

4

1
r . 

The advantage of describing a charge distribution by this hierarchy of moments is 
that it singles out just those features of the charge distribution which determines 
the field at a great distance. For our understanding to the dielectrics, it turns out 
that only the monopole strength (the total charge) and the dipole strength of the 
molecules matter and hence we can ignore all other moments. If the molecule 
structures are neutral, we left with only dipole moments to be considered.  

5.3 Multipole Expansion of the Energy of a Charge 
Distribution in an External Field  

If a localized charge distribution ( )r    is placed in an external potential ( )V r  the 
electrostatic energy of the system is: 

5.3 Multipole Expansion of the Energy of a Charge 
 Distribution in an External Field  
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( ) ( ) 'W r V r d  
 

                                        (5.10) 

If the potential is slowly varying, it can be expanded in Taylor series around a 
suitably chosen origin like this 

2
' '

,

1( ) (0) '. (0) (0) ......
2 i j

i j i j

VV r V r V r r
r r


    
  

               (5.11) 

Using the electric field E V 


, the last two terms can be rewritten as: 

' '1( ) (0) . (0) (0) .....
2

j
i j

i j i

E
V r V r E r r

r


   


 
                (5.12) 

as . 0E 


, we can subtract 
21 . (0)

6
r E  from the equation, we get: 

' ' 21( ) (0) .E(0) (3r r r ) (0) .......
6

j
i j ij

i j i

E
V r V r

r



    


 

     (5.13) 

Using this in electrostatic energy shown in equation 5.10, we can write: 

(0)
1. (0) (0) ........
6

j
ij

i j i

E
W qV p E Q

r


   


 
     (5.14) 

This expansion shows that how various multipoles interact with an external field, 
the charge with the potential, the dipole with the electric field, the quadrupole with 
the electric field gradient and so on. Hence with multipole expansion we can show 
that these multipoles interact with electric potential.   

5.4  Self Learning Exercise- I 
Very short Answer type questions 

Q.1 Write down the potential if we are far away from a localized charge  
distribution? 

Q.2   What do you mean by a dipole? 

Q.3   For a quadrupole, what will be the dependence on distance for the potential. 

Short Answer type Questions 

Q.4   Obtain the form of electric field for a dipole. 

5.4  Self Learning Exercise- I 
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Q.5 Charge is uniformly distributed throughout a sphere of radius ‘a’ at unit  
density. A redistribution of the charge results in the density function: 

(ݎ) ௩ߩ                  = ݇ ቀ3 − ௥మ

௔మ
ቁ                                   (5.15) 

        Evaluate k. 

5.5  Illustrative Examples  

Example 5.1. Consider a sphere of radius R, centered at origin, having charge 
density 

2( , ) ( 2 )sinRr k R r
r

   


         (5.16) 

where k is a constant and ,r   are the spherical coordinates. Find the different 
terms of potential for points on the z-axis, far from the sphere. 

Sol.  

For multipole expansion of potential, we know that first term is a monopole term, 
for which the charge is : 

2
2

1 ( 2 )sin sinQ d kR R r r d d dr
r

           (5.17)  

We can see that the r integral is : 

2
0

( 2 ) ( ) 0
R

R

O

R r dr Rr r        

hence 0Q   

The total charge in the sphere is zero, hence the monopole contribution in the 
potential will be zero. For second term, which is a dipole term : 

2
2

1( cos ) ( 2 )sin sinrcos d kR r R r r drd d
r

                 (5.18) 

Here we can see that in   integral: 

3
2

0 0

sin 1sin cos (0 0) 0
3 3

d
   

 
    

 


 

5.5  Illustrative Examples  



89 
 

Hence the dipole term contribution in the potential will also be zero. 

For third term, which is quadrupole term : 

2 23 1cos
2 2

r d    
   

2 2
2

1 1(3cos 1) ( 2 )sin sin
2

kR R r r drd d
r

              (5.19) 

Where r integral is given as : 

3 4
2

0 0

( 2 )
3 2

RR r rr R r dr R
 

   
 


 

4 3 4

3 2 6
R R R

     

  Integral can be calculated as 

2 2 2 2

0 0

(3cos 1)sin (2 3sin )sind d
 

          

2 4

0 0

32 sin 3 sin 2 3
2 8

d d
                

      

91
8 8

      
        (5.20) 

and the   integral will give : 
2

0

2d


   

The value of the whole integral is given by : 

4 2 51 (2 )
2 6 8 48

R k RkR  
      

  
     (5.21)  

For the point on the z-axis, we can take r z and the approximate potential will 
be : 
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2 5

3
0

1( )
4 48

k RV z
z





         (5.22) 

which will be a Contribution of quadrupole term. Hence we can see that even if the 
total charge and the dipole are not available in the problem the potential have its 
physical value. 

Example 5.2 Three point charges are placed as shown in figure below, all these 
charges are separated by a distance ‘a’ from the origin. 

 
Figure  5.3  

Find the approximates potential and electric field at points far from the origin by 
including first two terms in the multipole expansion of potential. 

Sol.  

We can see from the configuration given in figure that the total charge will be q
hence Q q   So 

( )
0

1
4mono

qV
r




        (5.23) 

The dipole moment of the configuration will be : 
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ˆp qaz


 and hence the dipole contribution of the configuration will be : 

2
0

1 cos
4dip

qaV
r





        (5.24) 

and hence the total potential is given by : 

2
0

1 cos( , )
4

q aV r
r r




      


 , 

which is the approximate potential including monopole and dipole terms. 

Now to calculate the electric field of the configuration we use: 

E V 


 

In terms of spherical coordinates: 

1 1ˆ ˆˆ
sin

V V VE r
r r r

 
  

   
       


     (5.25) 

Calculating the r̂  and ̂  terms for the electric field ,the final electric field is given 
by : 

2 3
0

1 ˆˆ ˆ( , ) (2cos sin
4

q aE r r r
r r

  


       


               (5.26) 

which is the required approximate electric field. 

5.6 Self Learning Exercise-II 

Q.1  Discuss monopole, dipole and quadrupole for a system of charges. 

Q.2  Write down the variation of the potential on the measuring distance for  
 various charge combinations. 

5.7  Summary  
 In this unit the potential at large distance due to localized charge 
distributions and its expansion in multipoles is developed so that reader can 
understand the mechanism of potentials at large distances.  Initially the mutipole 
expansion is developed to give an idea of monopoles, dipoles, quadrupoles etc. in 
the charge distribution available in atoms and molecules, then the energy of a 

5.6 Self Learning Exercise-II 

5.7  Summary  
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charge distribution or multipoles in an external field is developed to give an idea 
that how various multipoles interact with an external field. 

5.8  Glossary 

 Induce :  to cause something to happen 

Multipole expansion: It is a mathematical series representing a function that 
generally depends on angles — usually the two angles on a sphere. The function 
being expanded may be complex in general. Multipole expansions are very 
frequently used in the study of electromagnetic and gravitational fields, where the 
fields at distant points are given in terms of sources in a small region. 

 Electric quadrupole:  The simplest example of an electric quadrupole consists of 
alternating positive and negative charges, arranged on the corners of a square. The 
monopole moment (just the total charge) of this arrangement is zero. Similarly, 
the dipole moment is zero, regardless of the coordinate origin that has been chosen. 

Asymptote: straight line that continually approaches a given curve but does 
not meet it at any finite distance. 

5.9   Answers to Self Learning Exercise 

Answers to Self Learning Exercise-I 

Ans.1 :   
0

1( )
4

QV r
r






 
     where Q is the total charge of the system. 

Ans.2 : A group of two opposite charges having similar magnitude, separated by 
small distance between them. For such dipole , dipole moment is given by 

 
p qd

  

Ans.3 :  For large distance, potential is inversely proportional to cube of the 
 distance i.e.

  

  
3

1V
r

 
  

 

 Ans.4 :  See equation 5.8 

Ans.5 :  k=5/12 

5.8  Glossary 

5.9   Answers to Self Learning Exercise 
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Answers to Self Learning Exercise-II 
Ans.2: 

2
0

2 2
3

1 1 1( ) ( ) ' 'cos ' ( ) '
4

1 3 1( ) cos ' ( ) ' ....
2 2

V r r d r r d
r r

r r d
r

    


  

     
       

 



  

  

5.10  Exercise 

Section – A (Very short Answer type Questions) 

Q.1   What do you mean by multipole expansion of the potential? 

Q.2 Write down the electrostatic energy for a charge distribution placed in an 
external electric field. 

Section- B (Short Answer type Questions) 

Q.3 A circular disk of radius ‘R’ has a surface charge density that increases 
linearly away from the center, the constant of proportionality being k. 
Determine the total charge on the disk. 

Q.4 Calculate the energy required to uniformly charge a sphere of radius ‘R’ by a 
total charge Q. 

Q.5 Show that the electric field of a dipole can be written in the coordinate free  
form: 

3
0

1 1 ˆ ˆ( ) 3( . )
4dipE r p r r p

r
   

 

 
Section – C (Long Answer type questions) 

Q.6 Two point charges 3q and –q are separated by a distance ‘a’ for the given 
arrangements in the figures 5.3(a),(b),(c) below find : 

(i)The monopole and dipole moment 

(ii)The approximate potential at large r including both the monopole and 
dipole contribution. 

 

5.10  Exercise 
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 Figure  5.3(a)     Figure  5.3(b)  
 

 
  Figure  5.3(c)  

Q.7  For a spherical shell of radius R, which carries a surface charge cosk    

  (i) Calculate the dipole moment of this configuration and 

  (ii) Find the approximate potential at points far from the sphere. 

Q.8  Prove that due to a system of point charges, the potential at an external point 
is given by the sum of the individual potentials due to monopoles, dipoles, 
quadrupoles etc. 

Q.9 Obtain the multipole expansion of energy for a charge distribution in an 
electric field that how various multipoles interact with an external field. 
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Q.10 Determine that the interaction energy between two dipoles 1p  and  2p  and 
mutual potential energy will be : 

1 2 1 2
12 3

1 2

ˆ ˆ. 3(r . )(r . )p p p pW
r r






  
       

where  1 2r r
   

5.11 Answers to Exercise  

Ans.2 :  ( ) ( ) 'W r V r d  
     

Ans.3:.      ܳ =  ଶగ௞ோ
య

ଷ
 

Ans.4 :      ଷ௞ொ
మ

ହோ
 

Ans.6 :   

     [a]  Q = 2q, p=3qâݖ   

 ܸ =  ଵ
ସగ∈బ

 ቂଶ௤
௥

+ ଷ௤௔௖௢௦ఏ
௥మ

ቃ 

     [b]  Q = 2q, p=qâݖ  

  ܸ =  ଵ
ସగ∈బ

 ቂଶ௤
௥

+ ௤௔௖௢௦ఏ
௥మ

ቃ 

  [c]  Q = 2q, p=3qaݕො  

  ܸ =  ଵ
ସగ∈బ

 ቂଶ௤
௥

+ ଷ௤௔௦௜௡ఏ௦௜௡∅
௥మ

ቃ 
Ans.7 : 

    [i]  ݌ =  ସగ௞ோ
య

ଷ
 ݖ̂

    [ii] ܸ =  ௞ோ
య

ଷ∈బ
 ቂ௖௢௦ఏ

௥మ
ቃ 

References and Suggested Readings 

1.  David J. Griffiths, Introduction to Electrodynamics, 2nd Edition, Prentice-
Hall,2000 

5.11 Answers to Exercise  

References and Suggested Readings 



96 
 

2.   J.D. Jackson, Classical Electrodynamics, Wiley Eastern Limited,2002. 

3.   W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd 
edition, Addison Wesley, 1962. 

4.   Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University 
Press, 2001. 

5.  Landau & Lifshitz, Classical theory of Electrodynamics (Pergaman press, New 
York). 

 
  



97 
 

 

 

 

 

 

Structure of the Unit 

6.0  Objectives 

6.1 Introduction 

6.2  Elementary Treatment of Electrostatics with permeable Media 

6.3 Boundary Conditions  

6.4  Boundary Value Problems with Linear Dielectrics 

6.5 Molecular Polarizability & Electrical Susceptibility 

6.6  Models for the Molecular Polarizability 

6.7  Self Learning Exercise  

6.8  Illustrative Examples 

6.9  Electrostatic Energy in Dielectric Media  

6.10 Illustrative Examples 

6.11 Summary 

6.12 Glossary 

6.13 Answers to Self Learning Exercise 

6.14 Exercise 

6.15 Answers to Exercise 

         References and Suggested Readings 

6.0 Objectives 
This chapter deals with the boundary value problems in electrostatics with 

dielectric their treatment to understand the electrostatics quantities molecular 
polarizability and electric susceptibility, electrostatic energy in dielectric media. 

6.0  Objectives 

UNIT-6 
Elementary Treatment of Electrostatics 

with Permeable Media 
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6.1Introduction 

In this unit we will discuss the electrostatic boundary condition at the interface of  
the dielectric. We will study the displacement vector D and we find the usefulness 
of the D in case of symmetrical situations with dielectrics. understand the 
electrostatics quantities molecular polarizability and electric susceptibility are 
explained in this unit. 
6.2 Elementary Treatment of Electrostatics with permeable 
Media 
 If a piece of dielectric medium is placed in an electric field. Even if the 
substance consists of neutral atoms, the field will induce in each a tiny dipole 
moment, pointing in the same direction of the field. 

 If the material is made of polar molecules, dipole experiences the torque, to 
line up them with field. Thus produced in the medium an electric polarization p  
(dipole moment per unit volume) given by 

   i i
i

p r N p      

[Where ip  is the dipole moment if thi  molecule, Ni is the average number of thi
type molecules per unit volume]. 

For a single dipole the potential is  

  2
0

ˆ ˆ. '1
4 ˆ ˆ '

p r r
r

r r






 


   

For a polarization P


 

 dipole moment 
V

p Pd  
  

So the potential is: 

    
2

0

ˆ. '1 '
4 'V

r P r
r d

r r
 




 



   [we know that 2

ˆ ˆ1 r r
r r r r

  
     
    ] 

So  
0

1 1. '
4 V

r P d
r r

 


 
  
   




   

6.1 Introduction 

6.2 Elementary Treatment of Electrostatics with permeable   
Media 
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Integrating by parts we get: 

   
0

1 1. ' . '
4 V V

Pr d P d
r r r r

  


  
             

 
 

     

Using the divergence theorem: 

    
0 0

1 1 1. . '
4 4 | |S V

Pr dS P d
r r r r

 
 

   
     

  
      

 The first term looks like the potential of a surface charge density ˆ.b P n 


 
[along the surface vector] while the second term looks like the potential of volume 

charge density .b P  


[volume contribution is large] and hence the potential 

     1 .
| |

r d r P r
r r

         
  

  , with E  


 so first Maxwell’s eq. will be 

: 
0

.
.

P
E

   





 

The presence of divergence of P


 in effective charge to the density is due to 
presence of bound charges to the material.  

 So   0. .E P    
 

 

or  0. E P    
 

, which can be written as 0D E P 
  

[electric 

displacement] and the Gauss’s law will be . freeD  


or in integral from 

. free enclosedD da Q
  . 

For simplicity consider medium is linear isotropic, then the induced polarization 

P


 is parallel to

E , that is  

 0 eP E
 

  [ e  Electrical susceptibility] 

So in isotropic (linear) medium 

  0 0 0 0 1e eD E P E E E       
     

 

So 

D is proportional to E D E 

  
 

where  0 1 e  and 
0

1r e


   


is called the relative permittivity or 
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dielectric constant of the medium (material). 

For anisotropic medium  

  0 xx xy xzx e x e y e zP E E E       

  0 yx yy yzy e x e y e zP E E E      

  0 zx zy zzz e x e y e zP E E E      

constitute the Susceptibility Tensor. 

6.3 Boundary Conditions  
The electrostatic boundary condition can be written in terms of D. The 
discontinuity in the normal components of D will be.  

  2 1 fD D     

In parallel components  

 2 1 2 1D D P P         

and on E


  

       2 1
0

E E 
 


 in parallel components  

 2 1 0E E   (tangential components) 

6.4 Boundary Value Problems with Linear Dielectrics 

To illustrate the method of images for dielectrics, we consider a point charge q 
embedded in a semi infinite dielectric 1  at a distance d away from a plane interface 
which separates the medium from another semi infinite 2  .We have to find the 
solutions for this. 

 

1
0

2

. 0

. 0 0

0

lE z

E z

E everywhere





       
  







           (1) 

6.3  Boundary Conditions  

6.4 Boundary Value Problems with Linear Dielectrics 
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          Figure 6.1  

Boundary conditions at z = 0 

 
1 2

0 0
lim lim

z z

x x
z z

y y

E E
E E
E E 

    
   

   
   
   

      (2) 

Using image method to locate an image charge 'q  at the symmetrical position A
as shown below.  

 

 

 

 

 

 

 

    

    Figure 6.2  

Then for 0z  the potential at a point P described by cylindrical coordinates
( , , )r z  will be: 

 
0 1

1= for z > 0
4 1 2

q q+
R R




 
    

   

where  22
1R r d z    ,  22

2R r d z    
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Since there is no charge in the z < 0 region, it must be a solution of the Laplace 
equation without singularities in that region. Consider the potential at  z<0 is 
equivalent to the charge q  at the position of actual charge q . 

 
0 2 2

1 "
4

q
R





 

          z<0     (4) 

Since  
1 0

1

z
z R



 
   

= 
2 0

1

z
z R



 
    

 = 
 

3
2 2 2

d

r d
   

While 
 

3
2 2 21 2 00

1 1

zz

r
r R r R r d

     
          

 

Using the boundary conditions (eqn.(2)) 

 ' "q q q   

and  
1 2

1 1q q q  
 

 

after solving the image charges . 

 2 1

2 1

q q
         

 and 2

2 1

2q q
       

 

The polarization charge density is - .P


 For dielectrics 0 eP E
 

so that 

  .P


 = 0 . 0,e E   


except at the point charge q . 

Bound charge density  b proportional to free charge  f  

 0. .
1

e e
b f

e

P D 
 


              

 
 

The surface found charge 

2 0ˆ.b e zP n P E   


, where zE is z component of total field inside the 
dielectric, at z=0, that is  

 
   

32 2 2 2 20 0

1 1cos
4 4

q qd
d r d


 

  
  
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The z component of bound charges is 
02

b


 

 

 

 

 

 

 

   

   

         Figure 6.3  

So  
 

0 3
2 2 20 0

1
4 2

b
b e

qd

r d


 



 
       

     

Solving for b  we get: 

  
 

3
2 2 22 2

e
b

e

q d

r d




 
 

     
 

Using pol  =  2 1 21ˆ.P P n 
 

 where 21n̂  is the normal from dielectric 1 to dielectric 

2 and for this  

 
 

2 1
3

2 2 21 2 12pol
q d

r d



  

        
 

6.5 Molecular Polarizability & Electrical Susceptibility 

The polarization is given by:  

.P N p  
   This induced dipole moment is proportional to electric field on the 

molecule .For this we define a molecular prolarizability   as the ratio of the 
average dipole moment to the applied field at the molecule, this gives:  

  ip E E    here iE is the internal field. 

6.5 Molecular Polarizability & Electrical Susceptibility 
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We know polarization is given by i iP N p    

Space for a molecule is a sphere of radius R and hence  

 
34

3
Rp P

 , 

so average electric field inside the sphere is : 

 3
3 3

0 0

3 1 1
4 4 4i

r R

pE Ed x
R R  

 
   

 



 

The density of molecules in 
  3

1
4 3 R

   

 3
0

1
4i R





  


 so total field will be : 

 3
0 0 3

1 1
4 4Total i R R

 
 

   
                 

 

  
0

1
3
N 

    
 

So  0

0

1
3

Total eP  



      

   

 
 

And hence 0

0

1
3

e
N






   

  solving for   

 
 

03
3

e

e







 
but 1e r    

 so 0 13
2






  

      
 

This is called the Clausius –Mossotti equation 

6.6 Models for the Molecular Polarizability 

The polarization of the collection of atoms or molecules can arise in two ways.  

6.6 Models for the Molecular Polarizability 
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1) The applied field distorts the charge distribution and so produces an 
induced dipole moment in each molecules.  

2)  The applied field tends to line up the initially randomly oriented permanent 
dipole moments of the molecules.   

To estimate the induced moments, consider harmonically  bounded charges( ions 
and electrons). Each charge  is bound under the action of a restoring force  

 2
0F mw x   

where  m is the mass of charge and 0  is the frequency of oscillation about 
equilibrium.  

Under the action of an electric field  




the charges displaced from its equilibrium by x ,given by  

 2
0mw x eE             (1) 

The induced dipole moment is  

  
2

2
0

mol
ep E

mw
             (2) 

This means that the polarizability is 
2

2
0

e
mw

   

If there are set of charges ie with mass mi and oscillation frequencies wi in each 
molecule ,then the molecular polariazability is  

 
2

2
i

mol
i i

e
m w

              (3) 

We know that the binding frequencies of electrons in atoms  must be of the order 

of light frequencies. Taking a typical  of light as 3000 0 , we find 156 10w X

1sec  so electronic contribution is   
2

24 3
2 6 10 .el

e cm
mw

    

The possibility that thermal agitation could modify results (in eqn.(3)). In statistical 
mechanics the probability distribution of particles in phase space( p,q space) is  

( )
H
kTf H e

     The Boltzmann’s factor.  
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For the problem of harmonically bound charges with and applied field in the z 
direction, the Hamiltonian is :  

 
2

2
0

1
2 2
p mw x e z
m

       

The average value of the dipole moment is the z direction is :  

 molp  
 

 

3 3

3 3

( )d p d x ez f

d p d x f

 


 



 

For a displaced coordinate 2
0/x x eEk m    then, 

   
22 2 2

20
2
02 2 2

mp e EH x
m m




    and 

  
 

 

2
3 3

2
0

3 3mol

e Ed p d x ez f H
m

p
d p d x f H


 

   
 



 

 
 

Since H is even is z  , the first integral vanishes, hence, we obtain 
2

2
0

mol
ep
m


  

same as we have obtained ignoring thermal motion.  

The second type of polarizability is that caused by the partial orientation of 
otherwise permanent dipole moments. As for some polar substances such as HCl 
and 2  it is important. 

Here all molecules are assumed to passes a permanent dipole moment 0p , which 
can be oriented in any direction in space. In the absence of field, thermal agitation 
keeps the molecules randomly oriented so that there is no net dipole moment. With 
applied field they try to line up along the field to have lowest energy and there will 
be an average dipole moment. For this case Hamiltonian  

 0 0.p    
   

and the average dipole moment will be : 

  

0
0

0

coscos exp

cosmol

pd p
kp

pd exp
k





     
    
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 As  0 1p
k







 so that   

 
2
0

3mol
pp
k





 

Here we can see that orientation polarization depends inversely on the 
temperature. In general both polarizations induced (electronic and ionic) and 
orientation are present and the general form of the molecular polarization is :  

2
01

3mol i
p
kT

    of the form ba   
 

  

 

 

 

 

 

 

   

   Figure 6.4  

  

6.7 Self Learning Exercise  
Very Short Answer type Questions 

Q.1 Define dielectric polarisation. 

Q.2 What do you mean by polar molecules?       

Q.3 Define polarizability. 

Q.4 Find the relation between atomic polarizability  and the e    

Short Answer type Questions  

Q.5 Establish a relation between electric field ,E


Polarization P


 and displacement 

vector .D


 

6.7 Self Learning Exercise  
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Q.6 A Parallel-Plate Capacitor is filled with insulating material of dielectric 
constant r . What effect does this have on its capacitance ? 

Q.7 Define the Claussius-Mossotti relation.  

6.8 Illustrative Examples 
Example 1: An interface between two dielectrics is shown as in figure below. 
Obtain the relationship between the tangential components of E field at either side 
of the interface. 

 
Figure 6.5  

Sol. We consider the convention for interface problem as, at any point of the 
interface the unit normal vector n̂  points out of medium 1 and into medium 2. 

 Since the electrostatic field is conservative, . 0E dl 


  around the 

rectangular contour of figure 6.5 .Hence: 

 2 2 1 1 1 2
0t n n t n nE w E h E h E w E h E h             

In the limit as the rectangular path approaches the surface, i.e. as 0h  , this 
becomes  

  2 1
0t tE E w    or 

2 1t tE E  

Thus the tangential components of E


 are continuous across the interface. 

6.8 Illustrative Examples 
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Example 2: If a surface charge density s  exists at the interface of two material 
media as shown in figure given below, obtain, the relationship between the normal 
components of the D


-vector at either side of the interface. 

 

 
    Figure 6.6  

Sol. As per the Gauss’s law . V
S V

D dS dV 



 
to the infinitesimal box as shown in 

figure 6.6 .As the height of this box approaches zero, i.e. 0h  , only the 
components of D


 normal to the boundary contributes to the Gauss’s law: 

  
2 1 0

limn n Vh
D S D S h S

 
       

hence 
2 1n n VD S D S h S      

which finally written as : 
2 1n n SD D    

Thus at a point of an interface, the jump in the normal components of D equal the 
local free surface charge density. 

As per the examples 1 and 2, the results can also the written as : 

 2 1

2 1

t tD D


 
  

and 
2 12 1n n SE E     
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If both the media are perfect dielectrics, with 0S  , the boundary conditions can 
be written as : 

  
2 1 2 1

, ,t t n nE E D D   

 
2 1

2 12 1
2 1

,t t
n n

D D
E E  

 
 

6.9 Electrostatic Energy in Dielectric Media  

Electrostatic energy of a system of charges in free space is :  

     3
0

1
2

W e x x d x          (1) 

But for dielectric media this cannot be taken in general. As the work done in 
dielectric media is not only to bring real charges into position, but also to produce 
a certain state of polarization in the medium.  

Let us consider a small change in energy W  due to some sort of change in e  
and this is: 

     3
0W e x x d x            (2) 

Where  x  is the potential due to charge density ( )e x  already present. 

Since .D  


so  . D  


and energy change will be:  

 3
0 .W D d x  


        (3) 

Where we have used ,  


 by allowing D variations from 0 to D we see that: 

 3
0 0

.
D

W d x D  


       (4) 

If medium is linear  1. .
2

D D   
  

 and the electrostatic energy is:  

  3
0

1 .
2

W Dd x  
 

        (5) 

This result in eqn. (5) can be transformed in eq. (1) by using   


and 
.D  


 

6.9 Electrostatic Energy in Dielectric Media  
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So it is dear that eq. (1) is valid macroscopically if the behaviour is linear 
otherwise energy can be calculated from eq. (4). 

6.10 Illustrative Examples 

Example 3:  A spherical conductor, of radius ‘a’, carries Q as charge as shown in 
the figure below. It is surrounded by linear dielectric material of susceptibility e  
out of radius b, find the energy of this configuration. 

 
     Figure 6.7  

Sol. We know that the free charge is Q, and the arrangement is spherically 

symmetric, so let’s start by calculating D


 from equation .
S

D dS Q


 

hence 2
ˆ

4
QD r

r



 for r a  

Inside the spherical conductor, of course 0E p D  
   and hence we can write: 

 
 

 2

0

ˆ
4

r a
D Q r r a

r

 
   

  


 and  

similarly we can obtain E


, which is: 

 

 

 

 

2

2
0

0

ˆ
4

ˆ
4

r a
QE r a r b

r
Q r r b

r





 
 
 
     
 

  


 

Now we will calculate the energy of this configuration. 

6.10 Illustrative Examples 
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We know that energy is given as: 

   
1 .
2

W D E d 
 

 

     
 

2
2

2 2 2 2
0

1 1 1 1 1 14
2 4

b

a b

Q r d d
r r r

  



 

 
   

      
2

0

1 1 1 1
8

b

ba

Q
r r

                 
 

      
 

2

0

1 1 1 1
8 1 e

Q
a b b 

            
 

   
 

2

0

1
8 1

e

e

QW
a b


 

      
 

which is the required energy of the configuration. 

Example 4: A metal sphere of radius ‘a’ carries a charge Q. The sphere is 
surrounded by a linear dielectric material of permittivity with outer radius ‘b’. 
Find the potential at the centre of the sphere. Compute the polarization, surface and 
volume bound charges. 

 
             Figure 6.8  

Sol. The free charge on the sphere is given as Q and due to spherical symmetric 
problem the displacement is: 

 2
ˆ

4
QD r

r



 for all points r a  

Inside the metal sphere for points r a ; 

 0E P D  
  
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So we are left with two regions only: 

(i) The linear dielectric material of permittivity  for ;a r b   and  

(ii) the free space of permittivity r b . 

Using the expression for D


, we can write the electric field for the two regions as, 

 

2

2
0

1 ˆ
4

1 ˆ
4

Q r a r b
rE Q r r b
r





    
 




 

Therefore the potential at the centre is: 

 
.

b
V E dr


 

   

   
0

2 2
0

0.
4 4

b a

b a

Q Qdr dr dr
r r 

            
    

   
0

1 1 1 1
4

b a

b

Q
r r 

                    

          0

1 1 1
4
QV

b a b   
 

   
 

 

We know that the polarization is the dielectrics is given by  :- 

  0 ,P E 
 

 thus :  

 0 2
1 ˆ. ,

4
QP r
r

 





 

For the region  ,a r b    therefore bound changes that appear on the surface will 

be : - 

0
2

'

0
2

at the outer surface
4

ˆ.
at the inner surface

4

p

Q
b

p n
Q
a

 
 


 
 


   


  

while for volume charges, the repression is:-  

 . 0p P     


 

 Hence eqn. represents the desired expression for potential a centre, polarization, 
surface and volume bound changes respectively.  
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Example 5: A dielectric sphere is placed in a uniform electrostatic field. Calculate 
the electric field outside and inside the  dielectric sphere.  

Sol.  A dielectric sphere when introduced in a uniform electric field 0E


 then the 
sphere will be polarized uniformly so that  field inside and outside the dielectric 
sphere will not be same. The resultant field inside the sphere will be sum of 

uniform applied field 0E


and the internal field inE


 generated by polarization say P


,hence.  

 
0

03o inE E E E 


   
  

 

But from the definition of polarization  

  0 1rP E  
 

 

Hence   0

0

1
3
r

o

E
E E

 



 


 

 

 

 1
3

r
o

E
E E

 
 


 

 
which gives 

 

3
2 o

r

E E





 

 

We can see that since  1,r   the factor 3
2r

 
    

should be less than 1, which 

implies that 0E E
 

 . The resultant field inside the dielectric sphere is smaller than 
the applied electric field. The direction of the field inside the sphere is same as 0E



and it is also uniform within the sphere. 

Now we will calculate the resultant field outside the sphere. The field outside the 
dielectric sphere will the sum of the uniform field and the outside field due to 
polarization of dielectric. The outside field will be  

 

3 3

3 3
0 0

2 cos sinˆˆ
3 3out
R RE r

r r
   
 

 


 

The R is the radius of the sphere, r̂   and ̂   specify the factor corresponding to 
distance and  direction from the centre .  



115 
 

Where the resultant field outside the sphere will be: - 

 o outE E E 
 

  

 
3 3

3 3
2 cos sin ˆˆ

3 3o
o o

R RE E r
r r

    
 

  
 

 

Using  1o rP E  
 

  

and using internal field we may write:  

   
 

1
3

2
r

o o
r

P E










 
 

 or  
 

1
3 2

r
o

o r

P E


 





 
  

and hence the outside electric field will be: - 

  
 

 
 

3 3

03 3

2 1 1 ˆˆcos sin
2 2

r r
o o

r r

R R
E E E r E

r r
 

 
 

 
  

 

 

 
6.11 Summary 

The unit starts with the elementary treatment of electrostatics with permeable 
media. Boundary value problems with dielectrics, molecular polarizability and 
electric susceptibility, models for molecular polarizability have been discussed in 
this unit. Then the energy of a charge distribution with dielectric  is developed. 

6.12 Glossary 

Induce :  to cause something to happen 

Insulate: Prevent the passage of electricity to or from (something) by covering it 
in non-conducting material  

6.13 Answers to Self Learning Exercise 

Ans.4: We know 0 eP E
 

 and also ,p E
   

 P N p N E 
   , 

 So we can say 
0

e
N 


 

6.11 Summary 

6.12 Glossary 

6.13 Answers to Self Learning Exercise 
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6.14 Exercise 

Section A:  (Very Short Answer type Questions) 

Q.1 How the Polarisation of a collection of atoms or molecules arises? 

Q.2 What do you mean by electric susceptibility? 

Q.3 Write down the boundary conditions for normal components of D


 and the 

tangential components of .E


 

Q.4 Write down the relation between dielectric constant and electric 
susceptibility. 

Q.5 Write down the Hamiltonian for a harmonically bound electric change with 
an applied filled in the Z   direction. 

Section B:  (Short Answer type Questions) 

Q.6 Calculate the induced dipole moment per unit volume of gas placed  in an 

electric field of  6 ×105 Volts/ m. the molecular polarizability is 412.33 10   

Farad 2m  and the density of molecules  is given 2520.60 10  per unit 
Volume.    

Q.7 Determine the total electrostatic energy of a dielectric material . 

Q.8 Consider an electric charge   ,e  moving in a circular orbit of radius oa   
about charge e  in a field directed at right angles to the plane of the orbit. 
Show that the Polarizability  approximately 3

04 .oa   

Q.9 Prove that potential due to a polarized medium is expressible in terms of a 
sum of volume and surface integral. Explain the physical meaning of the two. 

Q.10 A long straight wire, carrying uniform line charge ,  is surrounded by rubber 
insulation  out to a radius ‘a’ .Find the electric  displacement   

Q.11Show that energy stored in a capacitor is given leg 
2

21
2 2
QW CV
C

   .If a 

slab of dielectric  1r   is being inserted between the plates of a parallel 
plate capacitor, with the charge on the capacitor held fixed. Calculate the 

amount of work  to be done for this.  21
2ework done F dx V dC   

 
 

6.14 Exercise 
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Section C:(Long Answer type Questions) 

Q.12What do you mean by molecular polarzability and electric susceptibility? 
Establish a relation between these quantities and relate your answer in terms 
of the result obtained in Claussius-Mossotti equation. 

Q.13Consider a point charge q embedded in a semi-infinite dielectric 1 , at a 
distance ‘d’ away from a plane interface which separates the first medium 
from another semi-infinite dielectric 2   

 Obtain the following: 

 (i) the potential for 0,z   considering the interface at 0,z    

 (ii) the potential for 0,z   

 (iii) the polarization charge density using the method of images. 

Q.14Obtain the electrostatic energy in dielectric media and represent its 
formulation in terms of the polarization of the dielectric. 

Q.15A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric 

electric field with a gradient 
0

zE
z

 
  

 along the Z axis  at the position of the 

nucleus. Show that the  energy of quadruple interaction is :  

 1
4

Z

o

EeW Q
z

     
 

Q.16Two concentric conducting shells of inner and  outer radii ‘a’ and ‘b’, 
respectively, carry changes  Q. The empty space between the shells is filled 

by a spherical shell of dielectric of dielectric constant 
0

r



 
 

 
 as shown in 

the figure.  

 
                 Figure 6.9  
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(i)  Find the electric field between the spheres,  

(ii) Find the potential difference between the spheres. 

(iii)Calculate the polarization in the dielectric. 

6.15 Answers to Exercise 

Ans.6:    
 

9
2

.2.88 10 CoulP
m

   
 


 

Ans.10:   ˆ
2

D r
r




  
 


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7.0 Objective 

In previous chapters, we limited our discussions to static electric fields 

characterized by E


 orD


. We now focus our attention on static magnetic field or 
magnetostatic fields, which are characterized by H or B. Steady currents produce 
magnetic fields that are constant in time. These fields are called magnetostatic 
fields. In this chapter, first we discuss the basic laws of steady magnetic field 
produced by steady currents in non-magnetic materials, which have permeability 

74 10     H/m. It also covers magnetic vector potential, magnetic induction 
for a circular current loop and magnetic field of a localized current distribution. 

7.1 Introduction  

The history of magnetism is fairly old. Naturally occurring substances 
called lodestones were the first materials in which magnetic forces were observed. 
In 1819, Hans Christian observed that current carrying wires produced deflections 
of permanent magnetic dipoles placed in their neighbourhood. Thus, the currents 

were sources of magnetic induction (B


). Biot-Savart (1820) and Andre-Marie 
ampere (1820-25) established the basic experimental law relating the magnetic 

induction B


 to the currents and established the law of force between one current 
and another.  

A magnetostatic field is produced by a constant current flow or direct current. This 
current flow may be due to magnetization currents as in permanent magnets, 
electron-beam currents as in vacuum tubes or conduction currents as in current-
carrying wires. There are two major laws governing magnetostatic fields: (1) Biot-
Savart’s law and (2) Ampere’s circuit law. Biot-Savart’s law is the general law of 
magnetostatics and Ampere’s law is a special case of Biot-Savart’s law and is 
easily applied in problems involving symmetrical current distribution. 

7.2 Magnetic field and its direction 

All magnetic fields are produced by currents. Even in a permanent magnet, 
it is the currents at the atomic level which produce the magnetic fields. 

A magnetic field can be described by either of two vectors, the magnetic induction 

7.0  Objectives 

7.1 Introduction  

7.2 Magnetic field and its direction 
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 (also called magnetic flux density or magnetic field) B


 or magnetic field intensity 

(also called magnetic field strength) H


. In vacuum, these two variables are related 
by  

                 
 

0B= H                 (1) 

where the constant 0   is the permeability of free space and is given by  

µ0=4π   
2

N
or

A
 
 
 

 

The unit of magnetic flux density  B


 is Weber/ 2m  or Tesla or 

Newton

Ampere meter

 
 
 

. The unit of magnetic field intensity  H


  is Ampere/meter. 

The direction of the magnetic field is easily known using the right hand thumb rule 
as shown in fig.  7.1 

 
FIG 7.1 Right hand thumb rule 

If a current element is held in the right hand with the thumb pointing upwards 
indicating the direction of current, the direction of the remaining fingers indicate 
the direction of the magnetic field. If the current in upwards, the direction of 
magnetic field is anti-clockwise(top view) and if the current is downwards, the 
direction of magnetic field is clockwise as shown in fig. 7.2 
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FIG 7.2 Direction of the magnetic field 

7.3 Magnetic force on a current carrying conductor 

A current element is a current carrying conductor. It is represented by Idl


. Here I 

is the current and dl


 is the length of the conductor. 

If an electric charge moving with a velocity v is placed in a magnetic field with 

flux density B


 , it will experience a force. This force is given by 

 
 F=q v B                     (1) 

The force experienced by the charge dq moving with velocity v is given by 

 dF dq v B 
                           (2) 

            Since  
dq

I
dt

  

               dF Idt v B 
                        (3) 

Suppose, in time dt, charge dq travels along the length dl


 of the conductor, then 
dl

v
dt





 

So that eq. (3) becomes 
dl

dF I dt B
dt

   
 

 
 

7.3 Magnetic Force on a Current Carrying Conductor 



123 
 

  
 

dF I dl B         (4) 

Therefore, the force on a current element  Idl


 placed in a magnetic field B


 is 

given by  

                 dF I dl B 
 

        (5) 

This termed as Ampere’s force law. 

The force law is illustrated using the Fleming’s left hand rule as shown in fig.7.3. 

 
FIG. 7.3 Fleming’s Left Hand rule (Showing direction of force) 

If the charge q is placed in both electric and magnetic fields, then the total force 
and the charge will be the vector sum of the electric force (given by coulomb’s 
law) and the magnetic force as in eq.(1) 

      i.e.             
  
F q E v B        (6) 

This equation is known as Lorentz force equation. 

7.4 Equation of continuity 

  It is based on the law of conservation of charge. Conservation of charge demands 
that the charge density at any point in space must be related to the current density 
in that neighbourhood by an equation: 

  


  


 
. J 0

t
        (1) 

This equation is known as a continuity equation. This expresses that a decrease in 
charge inside a small volume with time must correspond to a flow of charge out 

7.4 Equation of continuity 
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through the surface of the small volume, since the total amount of charge must be 

conserved. In the steady state magnetic phenomena 





0
t

 

Therefore, the continuity equation in magnetostatics. 

.J 0 
 

         (2) 

7.5 Magnetic flux density  B


 and magnetic flux  m  

Magnetic flux density is a measure of the strength of a magnetic field at a 
given point, expressed by the force per unit length on a conductor carrying unit 
current at that point. It is also known as magnetic induction. As we know that 
electric charges moving through a magnetic field are subjected to a force given by           

    F=q v B I dl B  
            (1) 

             maxF I dl B  

              maxF
B

I dl
 = Newton/(Ampere -meter )or Tesla       (2) 

i.e. magnetic flux density also can be understood as the density of magnetic lines 
of force or magnetic flux line passing through a unit  area or 

For uniform magnetic field              mB
A


               (3) 

where m  is magnetic flux and plane of area A is perpendicular to field. The unit 

of m  is Weber. Therefore the unit of B


 is also Weber square meter. 

 
FIG. 7.4 Flux lines through an area 

 
F lu x line s

No rmal to are a



7.5 Magnetic flux density B  and magnetic flux  
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If the magnetic flux density B


 is constant, the magnetic flux passing through a 

surface of vector area S


 is given by 

 . cosm B S B S  


       (4) 

where    is the angle between the magnetic field lines and  area vector S


.If B


 is 
not uniform over the area, first we consider the magnetic flux through an 
infinitesimal area element d s


 

        i.e.       d .m B d s 
 

         (5) 

Therefore, the total magnetic flux through the surface of vector area S


 is the 
surface integral 

  
 

.m

S

B ds          (6) 

In an electrostatic field, the flux passing through a closed surface is the same as the 
charge enclosed i.e.  

                  .D d s Q  
   

Thus it is possible to have an isolated electric charge. However, the magnetic flux 
lines always close upon themselves and they do not start or close on a “magnetic 
charge”  

This is due to the fact that it is not possible to have isolated magnetic charges or 
poles. Thus the total flux through a closed surface in a magnetic field must be zero, 

i.e . 
  . 0

s

B ds                      (7) 

This equation is referred to as the law of conservation of magnetic flux or Gauss’s 
law for magnetostatic fields. By applying the divergence theorem to eq. (7), we 
obtain 

 . 0 . 0
S v

B ds B dv    
    

             
 

. 0B     This shows there is no magnetic mono poles.      (8)
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7.6 Biot-Savart’s law 

It states that the magnitude of the magnetic induction dB produced at a 
point P by the differential current element Idl is proportional to the product Idl and 
the sine of the angle lying between the element and the line joining point P to the 
element. It is also inversely proportional to the square of the distance R from the 
element to the point P i.e. 

                
2

Idl sin
dB

R


          (1) 

 
 

FIG 7.5 Magnetic induction dB


 at P due to current element Id l


 

or            dB=
2

sinKIdl

R


                  (2) 

where K is the constant proportionality. In SI units 0

4
K




  so eq. (2) becomes 

Fig. Magnetic induction d  at P due to current element Idl


 

           
 


 0
2

sin

4

Idl
dB

R
         (3) 

In vector form 

             d  =   0

4




  
3

Idl R

R


 

     

      



 

3

Idl R
dB

R
        (4) 

  

P
R


7.6 Biot-Savart’s law 

dl



I 

dB (inward)
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   where     R=   and R

R
a

R




 

The direction of dB


 can be determined by the right-handed screw rule. The 

direction of dB


 is normal to the plane containing I dl


 and line drawn from the 
element to the point P. This normal is in the direction of progress of a right-handed 

screw turned from dl


 through a small angle to the line from the element to the 
point P.  

It is customary to represent the direction of the magnetic induction  (or current I) 

by a small circle with dot or cross sign depending on whether  (or I) is out of, or 
into, the page as illustrated in fig.7.6. 

      
FIG 7.6 Conventional representation of B


 or I  

There are three types of current distributions line current, surface current and 
volume current as shown in fig. 7.7 

     
FIG 7.7 Current distributions: (a) line current (b) surface current and (c) 

volume current 

If we define  as the surface current density (amperes/meter) and J


as volume 
current density (amperes/meter square), the source elements are related as 

           
  

Idl Kds Jdv                   (5) 

 B


or I is out of the page

(a)

  B


or I  is into the page

(b)

 

Idl


I

(a)

  K


Kds
 b

 

Jdv


J


 c



128 
 

Thus in terms of the distributed current sources, the Biot-Savart’s law as in eq. (4) 
becomes 

        





 

0
3

B=
4

L

Idl R

R
 (Line current)        (6) 

        




 

 
0

3
B

4
S

Kds R

R
  (Surface current)       (7) 





 

 
0

3
B

4
v

Jdv R

R
 (Volume current)       (8) 

7.7 Differential Equation of Magnetostatics and Ampere’s 
law 

If we assume that the positions of the source point and the field are at 'r  

 ', ', 'x y z  and r  (x, y, z), respectively as shown in fig. 7.8, then the basic law for 

magnetic induction  for a volume current density J


can be written as 

       0
3

'
' '

4 '
v

r r
B r J r dv

r r





 


   
       (1) 

Here 'r r R 
 

 is the distance vector from the volume element dv at the source 
point  ', ', 'x y z  to the field point (x, y, z) i.e. 

       
1/22 2 2

R= ' ' ' 'r r x x y y z z        
 

   (2) 

 
FIG. 7.8 Illustration of the Source point and the field point 

 source point
 ' , ', 'x y z

'dv

'R r r 
  

 , ,x y z
Field point

o
r


r'


7.7 Differential Equation of Magnetostatics and Ampere’s 
law 
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Hence     
 

33

'1

' '

r rR

r r R r r

  
       

  
         (3) 

where the differentiation is with respect to x, y and z. Substituting this into eq. (1), 
we get 

             0 1
' '

4 '
v

B r J r dv
r r




  
      


  
      (4) 

Taking the divergence 

       .  =  0 1
. ' '

4 '
v

J r dv
r r




  
      


  

   

Using the identity 

        .  = .( ) - .(    )       

We have  

     
 

 

                   
 

 

    
   0 0

.

1 1
. J ' ' J ' . '

4 ' 4 '
v v

B

r dv r dv
r r r r

 

(5) 

Because  operates only r, the first integral zero. The second term contains a 

factor curl grad 
1

'r r

 
  
   which is identically zero. Therefore 

              . 0B 
 

                       (6)      

This is the first law in magnetostatics corresponding to the relation     in 

electrostatics. The relation shows that the magnetic field is solenoidal (   =0) 

in contrast to the electrostatic field which is irrotational ( 0E 
 

). 

Let us now find the value of    complete the analogy with electrostatics. 
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Since     
   0

3

' '
'

4 '
v

J r r r
B dv

r r




 



   
   

              0 1
' '

4 '
v

J r dv
r r




  
      


 
   

           
 


 


 
 0 J '

B
4 '

v

r
dv

r r
       (7) 

Taking the curl 

           =
 '

'
4 '

o

v

J r
dv

r r






  
              (8) 

Using the identity   (   ) =  (   )-  A


, we have 

   20' '
B . ' '

4 ' 4 '
o J r J r

dv dv
r r r r

 
 

 
        

 
   
     

    20 01 1
' . ' ' '

4 ' 4 '
B J r dv J r dv

r r r r

 
 

 
         

 
     

   
 

 (9) 

We know that  
 

     

 
 

2 1
4 '

'
r r

r r
               (10) 

and 
1 1

'
' 'r r r r

   
         

 
                            (11) 

where '


 operates on 'r  only. 

 Using eqs. (10) and (11), we can write eq. (9) as 

     0 01
' ' . ' ' ' 4 ' '

4 ' 4
B J r dv J r r r dv

r r

  
 

 
        

 
       

   
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   0 01'' . ' J 4
4 ' 4

J r dv r
r r

  
 

 
       


   

   

   0
0

'. '
'

4 '

J r
B dv J r

r r

 



    


     
   

But for steady state magnetic phenomena .J=0
 

, so that we obtain 

          
  

0 JB             (12) 

This is the second law of magnetostatics corresponding to 
0

.E


 


 
 of 

electrostatics. 

Taking the integral of the normal component of eq.(12) over an open surface S 
bounded by a closed curve C as shown in fig. 7.9 

 
FIG. 7.9 An open surface S bounded by a closed curve 

  0ˆ ˆ. .
s s

B nda J nda  
  

 

  0. .
s s

B da J da  
   

 

By Stoke’s theorem 

 . .
s c

B da B dl  
     

 0. .
c s

B dl J da 
                                (13) 

 

S

dl


da

n̂

C
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Since the surface integral of the current density is the total current I passing 
through the closed curve C, therefore eq. (13) can be written as 




 0. I
c

B dl             (14) 

This is known as Ampere’s circuital law. The line integral of magnetic flux density 
round any closed path is equal to 0  time the current flowing through the area 
enclosed by the path. This law indicates that the magnetic field of a current is non-
conservative. 

7.8 Applications of Ampere’s law  

(1) Magnetic field due to a long straight current carrying conductor:- Consider 
a long straight wire carrying a current I as shown in fig 7.10. If wire is vertical then 

lines of magnetic induction B


 will be concentric circles in horizontal plane. Let P 

be a point at a distance r from the wire, where  is to be determined.  

Z 

 
FIG.7.10 Long straight current carrying conductor 

Consider a circular path of a radius r passing through P. Since B


 and dl are always 

directed along the same direction, therefore line integral of B


 along the boundary 
C of circular path will be  

  . cos 2
c c c

B dl B dl B dl B r     


    

From Ampere’s law 

 

r

C

P

I

d l


7.8 Applications of Ampere’s law  
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0.
c

B dl I


  

 02B r I   

  0

2

I
B

r




  

(2) Magnetic field inside a long solenoid:- 

Consider a long solenoid of length l and N be the total number of turns, then the 

number of turns per unit length is n=
N

l
. Let I be the current flowing in the 

solenoid as shown in fig 7.11. 

 
FIG7.11 Solenoid 

Field outside the solenoid: - Consider a closed path ABCD. Applying Ampere’s 
law to this path 

  0. 0B dl  


  

Since in each turn, equal and opposite current is flowing, therefore net current I 
enclosed by the total path is zero. 

As 0dl 


  0B 


 

This means that the magnetic induction B


 outside the solenoid is zero.  

Field inside the solenoid: - Consider a closed path PQRS, then the line integral of 

magnetic induction  along path PQRS is  

 D C R

P Q

S

A B

B

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. . . . .
PQRS PQ QR RS SP

B dl B dl B dl B dl B dl       
        

     (1) 

For path PQ, B


 and dl


 are along the same direction, therefore 

. cos0
PQ

B dl Bdl B dl Bl    


       (2) 

For path QR and SP, B


 and dl


 are mutually perpendicular to each other 

0. . cos90 0
QR SP

B dl B dl Bdl    
  

      (3) 

For path RS, B


 =O due to outside a solenoid  

 . 0
RS

B dl 


         (4) 

Put these values in eq. (1), we get 

. .
PQRS PQ

B dl B dl Bl  
  

         (5) 

From Ampere’s law . oB dl  


  total current enclosed by path 

From eq. (5), we get  0B NI


 
since N in the number of turns in the solenoid, then the total current enclosed = NI 

0 NI
B

l


                                  (6) 

 0B nI          (7) 

where  n=  = number of turns per unit length 

7.9 Magnetic Vector Potential 

In electrostatics, we know that electric potential depends on the charges which 
establish the field. The potential is a scalar function and the electric field is vector 
field. In electrostatics, we know that electric potential depends on the charges 
which establish the field. The potential is a scalar function and the electric field 

7.9 Magnetic Vector Potential 
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is expressed as a gradient of the potential i.e. E V 


     (1) 

Similarly, a potential may be associated with magnetostatics named as magnetic 
potential, whose gradient may give the magnetic field. 

i.e.     mH V 


                      (2) 

where mV  is scalar magnetic potential. 

But this relation holds good only for =0. Since in magnetostatics (from Ampere’s 
Law) 

JH 
  

         (3) 

    0,H 
 

 If J 0


 

   mH V 


  Since   0V  
 

    (4) 

Thus the scalar magnetic potential can exist in a region where no current is there. 

In magnetostatics, the source for producing magnetic field is a “current element” as 
is charge in case of electrostatics. Therefore there should be a potential which 

depends on current element Idl


 (vector quantity). 

As we know form Gauss’s law of magnetostatics  

.B 0 
 

                            (5) 

If the divergence of a vector is zero, then that vector can be expressed as the curl of 

another vector  A


 i.e. 

B= A
 

                 (6) 

where A


 is called magnetic vector potential. 

Since  0B J 
  

 

    0A J  
   

 

     2
0. .A A J   

    
 

For steady current . 0A 
 
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2
0A J  

 
         (7) 

This is Poisson’s equation in magnetostatics. Since for electrostatics the Poisson’s 

eq. 2

0

,V



    where 

0

1

4
v

v

dv
V

R




                     (8) 

Similarly for magnetostatics 

  
 2

0A J   

where 



 


 0

4
v

Jdv
A

R
         (9) 

7.10 Magnetic vector potential from Biot-Savart’s law 

If we assume that the positions of the source point and the field point are at 

 ' ', ', 'r x y z
  and  , , ,r x y z

  respectively as shown in fig. 7.13, then Biot-Savart’s 
law can be written as 

0
3

'

4
L

Idl R
B

R





 

 
         (1) 

 
FIG. 7.13 Illustration of the source point  ', ', 'x y z  and field point  , ,x y z  

where R


 is the distance vector from the line element 'dl


 at the source point 

 ', ', 'x y z  to the field point (x, y, z) and R R


 i.e.  

 
 ', ', 'x y z 'dl



'R r r 
  

'r

 , ,x y z

r
O

7.10 Magnetic vector potential from Biot-Savart’s law 
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     
1/22 2 2

' ' ' 'R R r r x x y y z z          
  

 
 (2) 

Hence 

     

     
3/2 32 2 2

' ' '1

' ' '

x y zx x a y y a z z a R

R Rx x y y z z

          
        

  
     (3) 

i.e. 
3

1R

R R
   
 

 
        (4) 

From eqs. (1) & (4), we get 

0 1
'

4
L

B Idl
R




    
 


      (5) 

Using vector identity  

   f F f F f F     
    

     (6) 

Where f = scalar field  = 
1

R
 and F


 = vector field = 'dl


 , we have  

' 1 1
' '

dl
dl dl

R R R

            

   
 

  
1 1 '

' '
dl

dl dl
R R R

           

   
 

Since 


 operates with respect to  , ,x y z  while 'dl


 is function of ( ', ', ')x y z  

therefore ' 0dl 
 

 

Hence   
1 '

'
dl

dl
R R

          

 
           (7) 

From  eqs.  (5) & (7), we get  

B


= 0 '

4
L

I dl

R







        (8) 
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But we know that  B A


 

Therefore magnetic vector potential  

  0 '

4
L

I dl
A

R




 



   Or 

  0
'

4
L

I dl
A

R




 



          (9) 

Therefore general expression for magnetic vector potential is  

    



 



0

4

I dl
A

R
  (for line current)               (10) 

0

4
S

Kds
A

R




 


  (for surface current)            (11) 

0

4
v

Jdv
A

R




 


   (for volume current)              (12) 

Since magnetic flux thorough a surface S is given by  

  .m

S

B ds  
 

                 (13) 

But magnetic field in terms of vector potential is given by B A 
 

           (14) 

From eq. (13) and (19) , we get  

  .m

S

A d s  
 

 

Applying stroke’s theorem, we get  

         .m A dl  
 
                  (15) 

Thus the line integral of magnetic vector potential A


 around a closed curve gives 
the magnetic flux linked with the surface enclosed by the curve. 

7.12 Magnetic Induction for a Circular Current loop 

Let us determine the magnetic induction  B


 at an observation point  , ,r  
   

 

7.11 Magnetic Induction for a Circular Current loop 
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due to a circular loop carrying current 'I  as shown in fig 7.14 . 

 
FIG. 7.14 Magnetic induction as P due to a current loop 

The current 'I  flows in the wire and the loop is placed on the X-Y plane. Due to 
the cylindrical geometry, we may choose the observation point P in the X-Z plane 

 0   without loss of generality. The radius of the loop is a, then 

' ' 'd l ad a 
 

               (1)  

The magnetic vector potential at P is  

0
''

( )
4 '

d lI
A r

r r








 
          (2) 

In the spherical coordinate system 

2 '2' 2 'cos ( ')sin sin ' 2 'cos cos 'r r r r rr rr           
  (3)

 

Since the loop lies on the X-Y plane  , ' ' ,
2

and r a


    then eq. (3) becomes 

   2 2' 2 cos ( ') sinr r r a r a        
     (4) 

Putting the value of 'dl


 and 'r r 
 from eqs.  (1)  and (4), respectively into eq. 

(2), we get 

   
 

0

2 2

' ''

4 2 cos ' sin

ad aI
A r

r a ar


   


  


 

  (5) 

 

Field point

'I

'dl


x

z

a

source point





r

y

 ', ', 'r  

 , , 0P r   
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We evaluate this integral on the X-Z plane where 0  , then eq. (5) becomes 

    0

2 2

' ''

4 2 cos ' sin

ad aI
A r

r a ar


  


 

      (6) 

We know from the transformation relation between Cartesian coordinates (x, y, z) 
and spherical coordinates  , ,r     

  sin ' cos 'x ya a a             (7) 

From eqs. (6) and (7), we get  
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where we have used xa


 and ya


 since these are constant vectors, otherwise 

integration with vector which are always changing direction is impossible. Since a 
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i.e.  A


has only    component  according to eq.  (8) and it is given by  
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where  2' zm I a a    is defined as the magnetic dipole moment and  

sinz ra a a   
. It is a vector whose magnitude is the product of the current in 

and the area of the loop and whose direction is the direction of the thumb as the 
fingers of the right hand follow the direction of the current . The magnetic field 
produced by a small current loop is similar to the electric field from a small electric 
field from a small electric dipole. For this reason, a small current loop is called 
magnetic dipole.  

The magnetic flux density is   B A 

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The magnetic flux lines of a magnetic dipole are continuous as illustrated in fig 
7.15 

 
FIG. 7.15 Magnetic induction lines due to small current loop (magnetic dipole) 

7.12 Magnetic fields of localized current distribution and 
magnetic moment  

Let us consider a current element I 'dl


 on a current loop 'c  having position vector 

'r  relative to origin, then the vector potential A


 at field point P having position 
vector r is given by  

7.12 Magnetic fields of localized current distribution and 
magnetic moment 
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FIG. 7.16 Current Loop 

where  'r r   =  2 2' 2 'cosr r rr     
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From eqs.  (1)  & (2), we get  
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Using binomial expansion and considering only first term in 
'r

r
 since r’<< r, eq. 

(3) may write  
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Since 'c  'dl


 = 0 for any arbitrary closed loop 'c  as initial and final positions 

are same. Therefore eq. (4) becomes  
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 From vector triple product, we know  
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Let us write the differential of   ' . 'r r r
  

 for a small change in 'r  i.e. 
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Add eqs. (6) and (7) , we get  
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From eqs. (5)  and  (8) , we get  
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Since the second integral involves perfect differential around a closed counter, 
hence its integral around a closed loop is always zero. Hence (9) becomes  
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Defining , the magnetic dipole moment of current loop by 
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Therefore eq.  (10) becomes  
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This is the lowest non vanishing term in the expansion of A


 for a localized steady 

state current distribution. 

Since    
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The magnetic induction  B A 
 

 

  7.14 Illustrative Examples 
      

Example 7.1 A long cable is constructed of a solid conductor of radius r in a co-

axial hollow cylindrical conduction of inner and outer radii 1R and 2R , 
respectively, The I Amperes current flows in the inner and outer conductors in 

opposite direction. Determine the magnetic field induction B


 at any point a 
distance x  from the axis of the cable. 
Sol. The cross-sectional view of the cable normal to its length is shown in figure 

7.13 Illustrative Examples 
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7.20. We have drawn a circle of radius x  around the axis of the cable. By 

symmetry, the magnetic induction B


 produced by the flow of current is tangential 
at any point on the circumference of this path. From Ampere’s law  

 

 
FIG. 7.20 Cross-Sectional view of cable normal to its length 

   0.B dl I
 
        (1) 

where I is the current enclosed by the path. 

 Case-I if x <r, i.e. the current is enclosed by the circular path of radius 1x . That is  

 Current = current density   area of circular path of radius 1x  
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 From eqs. (1) & (2), we get 

   
2

1
0 2.

Ix
B dl B dl

r
  

 
   

     
2

0 1
1 22

Ix
B x

r


   

   0 1
22

I x
B

r




         (3) 

Case-II r < x  < R, then the current enclosed is the entire current enclosed by the 
circular path of radius 2x , i.e. current = I  
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1
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2x 3x
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 From eq. (1), we get 
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Case-III If 1R < x  < 2R , then the current enclosed is the enclosed by the circular 
path of radius 3x . That is  

Current = current density   area of circular path of radius 3x  
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From eqs. (1) & (5), we get 
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Case IV If x  > 2R  i.e. current enclosed by the circular path of radius 4x . That is I = 
0. Because of the current in the outer and inner conductors are equal and opposite. 

From eq. (1), we get 

  . 0B dl 
 
    0B dl   
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    42 0B x     B = 0      

Example 7.2 Find the magnetic flux density at a point on the axis of a circular 
loop of radius a that carries a direct current I. 

Sol. From Biot-Savart’s Law  

 
FIG 7.21 A circular loop carrying current I 
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4

I dl R
B

R





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        (1) 

where R


 in the vector from the source element 1dl


 to the field point P. 

 Here ' 'dl ad a
 

 

  zR z a aa 
  

 

 and 2 2R R z a  


        (2) 

   ' ' zdl R ad a za a a    
      

  2' ' zaz d a a d a           (3) 

Because of cylindrical symmetry, it is easy to see that a
  component is cancelled 

by the contribution of the element located diametrically opposite to 'dl


, so we 
need only consider the za  component of this cross product. 

From eqs. (1), (2) and (3), we get 

 0,0, z
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Example7.3(a) Find magnetic vector potential and magnetic induction for a long 
current carrying wire. 
(b) Show that the magnetic vector potential for two long straight parallel wires 
carrying same current I in opposite directions is given by 
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where 1r  and 2r  are the distances from the fixed point P to the wires and n  is the 
unit vector parallel to the wires. 

Sol. Let P be the field point at a distance x  from the wire carrying current I and 
having length L along y-axis as shown in fig.7.20. 

 
FIG. 7.20 A current carrying wire of length L 

The magnetic vector potential at P due to a current element dy at a distance y from 
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O is given by  0
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where j
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 is unit vector along y-axis. 

The magnetic potential due to whole length of wire is 
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As wire is infinitely long, then  
2
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L
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Hence on using binomial theorem and neglecting higher order terms, we have 
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This is the expression for magnetic potential due to a long straight current carrying 
wire. 

The magnetic induction B


 is given by 

  B A
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

        


       (2) 

(b) In this problem, there are two wires in which same current is flowing in 
opposite directions and n  is the unit vector parallel to the wires as shown in 
fig.7.21. The distance of field point P from one wire is 1r  and from second wire 2r . 
From eq. (1), the magnetic vector potential at point P due to one wire is 

  0
1

1

log
2

I L
A n

r




 
  

 

   

 and due to second wire is  

 

 
FIG. 7.21 Two long parallel current carrying wires 
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where L is the length of two wires. Thus total magnetic vector potential at point P 
will be 

 

I I

P

1r 2r

n n
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  1 2A A A 
  
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Example 7.4  Find the magnetic vector potential of an infinite solenoid with n 
turns per unit length, radius R and current I. 

Solution-: We know that the magnetic induction for solenoid is 0B nI . Since 
the magnetic flux through a surface S is given by 

  .
s

B ds  
 

    since B A
 

 

   .
s

A ds 
  

 

  .
L

A dl  
 
     Using Stoke’s theorem  

  . .
L S

A dl B ds 
     

The vector potential is circumferential, it mimics the magnetic field of the wire. 
Using a circular Amperian loop at radius r inside the solenoid, we hence 

     2
0. 2 .

L s

A dl A r B ds nI r     
   

 

  0

2

nI
A r


   for r < R 

 Or 0

2

nI
A r





 for r < R 
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For an Amperian loop outside the solenoid, the flux is  

   2
0.

s

B ds nI R 
 

 

Since the field only extends out to R. Thus 

  
2

0

2

nI R
A

r





 for r > R 

7.14 Self Learning Exercise 

Q.1 What is the unit of magnetic flux density? 

Q.2 What is the magnetic induction due to solenoid? 

Q.3 Define relation between magnetic vector potential  A


 and magnetic 

induction B


. 

Q.4 The unit of magnetic dipole moment is…. 

Q.5 What is the utility of magnetic vector potential in magnetostatics. 

Q.6 Write the continuity equation for magnetostatics. 

Q.7  What is the magnetic dipole moment of a circular coil with n turns A cross 

 sectional area and I current. 

Q.8 Define the magnetic flux through a given area in terms of magnetic vector 
potential. 

Q.9 The direction of the magnetic field in easily known using……… 

Q.10 Write the Lorentz force equation for a charge q placed in both electric and 
magnetic field. 

Q.11 A current of 20 Amperes flow through each of the two parallel long 
conducting wires. The distance between two parallel wires is 4 cm. 
Determine the force exerted per unit length of each wire. 

Q.12 Define magnetic flux and magnetic flux density. 

Q.13 Explain that the south and north poles of a magnet cannot be isolated. 

Q.14 The magnitude of magnetic field strength H


 at a radius of 1 meter from a 

7.14 Self Learning Exercise 
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 long conductor is 2 Amp/m. Determine the current in the conducting wire. 

Q.15 Show that the divergence of the magnetic induction is always zero or 
magnetic field lines are always continuous. 

Q.16 A current distribution gives rise to the vector magnetic potential 
2 2 4A x y i y x j xyz k  

   Wb/m. Calculate magnetic induction B


 at (-1, 

2, 5). 

7.15 Summary 

 This unit starts with the introduction of magnetostatic fields. By giving the 
concept of two main governing laws of magnetostatics fields, we have derived 
differential equations of magnetostatics. Here, we study the different application of 
Ampere’s law. The vector potential, magnetic induction for a circular current loop, 
magnetic fields of a localized current distribution and magnetic moment have also 
been studied in this unit. In the end some examples on above concept are given. 

7.16  Glossary 

Localized: happening in or limited to a particular area 

Magnetic Flux : Number of magnetic field lines passing through given area. 

7.17 Answer to Self-Learning Exercise  

Ans. 1 :  Weber/meter 2   Ans. 2 :  0B nI  

Ans. 3 : B= A


   Ans. 4 :  Amperes 2m  

Ans. 5 :  Define potential related to current element, which is a vector quantity. 

Ans. 6 :  . 0J 
 

   Ans. 7 :  m = n I A  

Ans. 8 :  .
L

A dl  
 
   Ans. 9 : The right hand thumb rule. 

Ans. 10 :   F q E v B    
  

   

Ans. 11 :  31 2 & 2 10 /
2

o I I F
F l N m

d l




    

7.15 Summary 

7.16  Glossary 

7.17 Answer to Self-Learning Exercise  
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Ans. 12 :  maxF
B

Idl
 and .m

s

B ds  
   

 Ans. 13 :  The magnetic flux lines always close upon themselves. This is due   to 
the fact that it is not possible to have isolated magnetic poles or 
magnetic charges. 

Ans. 14 :  . 12.56H dl I I  


 Ampere 

Ans. 15 :  Prove . 0B 
 

 

Ans. 16 :  20 40 3B A B i j k     
      

7.18 Exercise 

Section–A: Very Short Answer type Question 

Q.1   Is it possible to have isolated magnetic change? 

Q.2   How can produce magnetostatic field? 

Q.3   Which are main laws governing magnetostatics. 

Q.4   Magnetic field is conservative or not. 

Q.5   What is the unit of vector magnetic potential? 

Section –B : Short Answer type Questions  

Q.6   State and explain Ampere’s law both in integral and differential form. 

   
  

 0 0.
c

B dl I and B J  

Q.7   What is the magnitude of the current flowing in two parallel wires, which 

are 10 cm apart [center to center], if the force between them is 310F N . 

The currents in both wires have the same magnitude. 

Hint 1 2 , 22.36 .
2

o I I
F I Amp

d




   

Q.8  Prove that, the magnetic force on a volume current is given by 

 
v

F J B dv 
  
  

7.18 Exercise 
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Q.9   Explain the concept of magnetic vector potential. 

Q.10  The vector magnetic potential A


 due to a direct current in a conductor in 

free space is given by  2 2
zA x y a 

  /wb m . Determine the magnetic 

field produced by the current element at (1, 2, 3).   

  3.97 4.7 /x yH a a Amp m 
  

 

Section- C : Long Answer type Questions 

Q.11  Derive the expression for different equation of magnetostatics and 
Ampere’s law.  

      
     

0 0. 0 , .
c

B B J and B dl I

 

Q.12  Show that the magnetic induction can be written in terms of magnetic  

vector potential. Derive magnetic vector potential from Biot-Savart’s law.  

  

 



   
   0,

4 L

I dl
B A A

R
 

Q.13  A coaxial cable has core of radius a and sheath of radius b. A current I 
flows along the core, uniformly distributed across it, and returns along the 
sheath, uniformly distributed around it. Find the magnetic flux density (i) 
within the core (r < a)  

(ii) within the core-sheath space  a r b   and 

    (iii) outside the sheath (r > b). 

Q.14  Prove that the magnetic induction for a circular current loop is given by  

   0
3

2cos sin
4

r

m
B a a

r



 


 
  

 

` Calculate the expression for vector potential and magnetic induction of a 
localized current distribution. 

  
 0 0

3 3 2

3 .
,

4 4

m r rm r
A B m

r r r

 
 

      

     
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7.19  Answers to Exercise 

Ans.1:  No, magnetic flux lines always close upon themselves. 

Ans.2:  If the charges are moving with constant velocity, a magnetostatic field is 
produced. 

Ans.3:  (1) Biot-Savart’s law and (2) Ampere’s circuit law. 

Ans.4:  No, since oB J 
  

. 

Ans.5:  Weber/meter. 

Ans.13: (i) 0
22

Ir
B

a




  (ii) 0

2

I
B

r




   and  (iii) B=0 
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UNIT - 8 

Macroscopic Equations in Magnetostatics 
Structure of the unit 

8.0   Objectives 

8.1  Introduction 

8.2  Magnetization and Bound current densities 

8.3  Physical Interpretation of bound currents   

8.4  Microscopic Equations 

8.5  Magnetic susceptibility and relative permeability  

8.6  Classification of Magnetic Materials 

8.7  Boundary condition on B & H  

8.8  Methods of solving boundary value problems in magnetostatics 

8.9  Uniformly magnetized sphere in an external field or Permanent Magnet 

8.10  Magnetic Shielding: Spherical shell of permeable material in a uniform 
field  

8.11  Illustrative examples 

8.12  Self learning exercise  

8.13  Summary  

8.14    Glossary 

8.15  Answer to self learning exercise  

8.16 Exercises 

8.17   Answers to Exercise 

            References and Suggested Readings 

8.0 Objective 
We have discussed so far magnetostatic fields produced by steady currents 

in non-magnetic material i.e. in vacuum. How is the magnetic field affected when 
material media are present. We shall discuss this question in the present section. 

UNIT - 8 
Macroscopic Equations in Magnetostatics 

8.0 Objectives 
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First we will discuss about the magnetization bound current densities and 
Macroscopic equations for magnetostatics. This chapter also covers Magnetic 
Susceptibility, Relative permeability, classification of magnetic materials, 
boundary conditions on B& H, method of solving boundary value problems in 
magnetostatics, uniformly magnetized sphere in an external field, permanent 
magnetic shielding and spherical shell of permeable material in an uniform field.  

8.1 Introduction 
We have dealt so far with the basic laws of magnetostatic fields as 

microscopic equations given in previous chapter, where we have assumed that the 

current density J


 was a completely known function of position. As we know that 
a given material is composed of atoms. The atoms in matter have electrons that 
give rise to effective atomic currents due to their orbital motion and spin, the 
current density of which is a rapidly fluctuating quantity. Its average over a 
macroscopic volume in only known. The orbital motion and spin of electrons in 
atoms provide tiny currents which give rise to the magnetic dipole moments. All 
these moments can give rise to fields that vary appreciably on the atomic scale of 
dimensions. This is called a macroscopic effect i.e. when we are talking about 
magnetic field inside matter, we mean the macroscopic field. It is the average over 
regions large enough to contain many atoms of matter. Ordinarily, the magnetic 
dipoles of atoms cancel each other out because of the random orientation. But 
when a magnetic field is applied, a net alignment of these magnetic dipoles occurs 
and the medium becomes magnetized. It is also called magnetization. 

There are some materials acquire a magnetization parallel B


 called 

paramagnets and some opposite to B


 called diamagnets. A few substances called 
ferromagnets, retain a substantial magnetization indefinitely after the external field 
has been removed. The magnetization of these materials is not determined by the 
present field but by the whole magnetic history of the object. 
8.2 Magnetization and Bound Current Densities 

According to the elementary atomic model of matter, all materials are 
composed of atoms.  Each atom may be regarded as consisting of electron orbiting 
about a central positive nucleus. In addition, the electrons of atom also rotate (spin) 

8.1 Introduction 

8.2 Magnetization and Bound Current Densities 
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on their own axes. Both of these electronic motion produce equivalent atomic 
currents flowing in circular loops. The equivalent current loop has a magnetic 

dipole moment of b nm I S a 
 ,where  S is the area of the loop and bI  is the bound 

current (bound to the atom). Where


na  is the unit vector perpendicular to plane of 
the area. 

Since the nucleus of an atom also rotate (spin) on their own axis. The magnetic 
dipole moment of a spinning nucleus is usually negligible in comparison to that of 
an orbiting or spinning electron because of the much large mass and lower angular 
velocity of the nucleus.  

In the absence of an external magnetic  field, the sum of magnetic moments 
of atoms of material is zero due to random orientations as shown in fig 8.1 (a). 
When external magnetic field is applied, the magnetic moments of electrons align 
themselves with applied field as shown in fig 8.1(b).The material then is said to be 
magnetized or magnetic polarization. The state of magnetic polarization is 

described by a quantity called magnetization M


, which is defined as the magnetic 
dipole moment per unit volume. 

             
0 0B M  

 
 

 (a)            (b) 

Fig . 8.1 Magnetic dipole moment in a volume v  (a) before B


 is applied,        

(b) after B


 is applied. 

Let km


 be the magnetic dipole moment of kth atom. If there are N atoms in a given 

volume v , then the magnetization vector M


 is defined as  

 

v

 

v

B

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 1

0
lim

N

k
K

v

m
Ampere

M
v meter



 

     

 


      (1) 

A medium for which M


 is not zero everywhere is said to be magnetized. For a 

differential volume 'dv , the magnetic moment is 'dm M dv


. As we know that 

the magnetic vector potential due to magnetic moment dm  is given by  

0
24

Rd m a
d A

R







 
 

        0
2

'
4

RM a
dv

R







 
 

 0
3

'
4

M R
d A dv

R







 


       (2) 

 
FIG. 8.2 

where R


 is the distance vector form the source point   ', ', 'x y z  to the field point 

 , ,x y z  and  R R


. 

Since 
3

1 1
'

R

R R R
          
   

  
       (3) 

From eqs. (2) and (3), we get  

  
1

' '
4

d A M dv
R




     
 


 

 

m
'dv

 , ,x y z
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Thus,  0

' '

1
' '

4
v v

A dA M dv
R




     
  

 
     (4) 

where 'v  is the volume of the magnetized material. 

 Apply the vector identity 

   f F f F f F    
    

 

where f is a scalar field and F


 is a vector field. Taking 
1

,f and F M
R

 
 

 

 we have 
1 1' ' '

M
M M

R R R

              

   
 

  
1 1' ' '

M
M M

R R R

             

   
     (5) 

Substituting  eq. (5)  into eq. (4), we get  

0 0

' '

'
' ' '

4 4
v v

M M
A dv dv

R R

 
 

       
  

  
 

Applying the vector identity 
' '

' '
v s

F dv F d s    
    to the second integral, we 

obtain    0 0

' '

' '
' '

4 4
n

v s

M M a
A dv ds

R R

 
 

  
  

   
      (6) 

where 'na


 is the unit outward normal vector from 'ds  and 's


 is the surface 
bounding the volume 'v . 

As we know that the vector magnetic potential in terms of surface and volume 
current is given by  

0 0

4 4
s v

K ds J dv
A and A

R R

 
 

  
 

 
      (7) 

Therefore eq. (6) becomes  

 
 
 

  
 

0 0

' '

' '

4 4
b b

v s

J dv K ds
A

R R
      (8) 
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Where  
 

bJ M (Ampere/ 2M )       (9) 

and    
  

b nK M a  (A/m)                 (10) 

 (Omitted the prime on 


 and na


 for simplicity) 

where bJ


 is the bound volume current density or magnetization volume current 

density and bK


 is the bound surface current density. Equation (8) shows that the 

potential of a magnetic body is due to a volume current density bJ


 throughout the 

body and a surface current bK


 on the boundary of the magnetic body. Therefore 

the problem of finding the magnetic flux density B


 caused by a given volume 

density of magnetic dipole moment M


 is then reduced to finding the equivalent 
magnetization current densities b bJ and K

 
, these gives magnetic vector potential

A


 and then obtaining B


 from the curl of A


 . 

8.3 Physical Interpretation of Bound Currents 
In the last section, we have seen that the field of a magnetized object is 

identical to the field produced by a certain distribution of bound currents bJ


 and 

bK


. These bound currents arise physically. Fig 8.3 (a) shows a cross section of 
uniformly magnetized material with the dipoles represented by tiny current loops. 

    
(a)          (b) 

Fig. 8.3 – A cross section of a magnetized material 

When external magnetic field is applied, the atomic circulating currents of material 
align with it and matter becomes magnetized. The Strength of this magnetizing 

8.3 Physical Interpretation of Bound Currents 
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effect is measured by magnetization vector M


. It is clear from fig 8.3 that the all 
the internal currents cancel, since every time there is one going to the right, a 
contiguous one is going to the left. However, at the edge there is no adjacent loop 
to do the canceling. The whole thing is equivalent to a single current I flowing 
around the boundary. Each of the tiny loop has area a and thickness t as shown in 
fig 8.3 (b). In terms of the magnetization M, its dipole moment is given by  

m = M a t = I a 

  I = M t 

   b

I
K

t
 =Surface current density = M      (1) 

Therefore, on the surface of the material there will be a surface current density bK


 

, whose direction is correctly given by the cross product nM a
  i.e. 

   
  

b nK M a          (2) 

It M


is uniform inside the material, the space derivatives of a constant M


vanish 

i.e. 0bJ M  
 

. Therefore the net effect is a macroscopic current flowing over 

the surface of the magnetized object. 

When the magnetization M


 is non-uniform, the internal atomic currents do not 

completely cancel, resulting in a net volume current density bJ


 i.e. bJ M 
 

. 

We know that the magnetic vector potential in terms of magnetization vector M


 is 
given by  

0 0

' '

' '
4 4

n

v s

M M a
A dv ds

R R

 
 

 
  

   


 

   (3) 

Since M


 is localized, the surface integral taken over a surface outside the region 
in which the current flows, vanish. Hence  

0

'

'
4

v

M
A dv

R





 

 


 

But we have already shown that  
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0

'

'

4
v

J dv
A

R




 



 

Therefore  bJ M 
 

         (4) 

It is net volume current density, when the magnetization M


 is non-uniform and 
localized. 
8.4  Macroscopic Equations 

When we speak about the magnetic field in matter, it means, we are talking 
about the macroscopic fields i.e. average over regions large enough to contain 
many atoms. Therefore we have to write the basic laws of magnetic fields as 
macroscopic equations.  

The first step is to observe that the averaging of the equation . microB
 

= 0 leads to 

the same equation for the macroscopic magnetic induction  B


 

 
 

. 0B           (1) 

The macroscopic equivalent of the microscopic equation, 
0

. micro microB J 
  

 can 

be read off from the equation of magnetic vector potential in terms of 

magnetization M


. The macroscopic effect of magnetization can be studied by 
incorporating the equivalent bound volume current density bJ


 into the free volume 

current density fJ


 of Ampere’s law i.e. 

   
0

f b

I
B J J J


   
    

       (2) 

= fJ M
 

 

  
0

f

B
M J


 

   
 

  
       (3) 

The M
 

 term can be combined with B


 to define a new macroscopic field H


, 

called magnetic field intensity H


, such that  

8.4  Macroscopic Equations 
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

    
 

 

0

B Ampere
H M

meter
      (4) 

The use of the vector H


 enables us to write a curl equation relating the magnetic 
field and the distribution of free currents in any medium. 

From eqs.  (3) and (4), we get  

   
  

fH J  
2

Ampere

meter
 
 
 

       (5) 

or integral from  


 . f enclosedH d l I        (6) 

where  f enclosdedI  is the total free current passing through the Amperian loop. 

It is Ampere’s law in terms of H


 or it is Ampere’s law in magnetized materials. 

Therefore the macroscopic equations are given by eqs. (1) and (5) i.e. 

  


  

 
  

. 0

f

B

H J
         (7) 

These two are the fundamental governing differential equations for magnetostatics 
in the macroscopic equivalent. 

8.5  Magnetic Susceptibility and Relative Permeability 

In free space  0M 


, the Ampere’s Law is  

0

f f

B
J or H J


 

    
 

   
      (1) 

In a material medium M


0  and as a result B


 changes so that  

0

f b

B
J J


 

   
 

  
       (2) 

Since   bJ M
 

         (3) 

Substituting eqs. (1) and (3)  into eq. (2), we get  

8.5  Magnetic Susceptibility and Relative Permeability 
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0

B
H M


 

   
 

   
 

 H M 
  

 

    
  

0B H M         (4) 

This relationship holds for all materials whether they are linear or not. When the 
magnetic properties of the medium are linear and isotropic, the magnetization is 
directly proportional to the magnetic field intensity i.e. 

M H
 

 


 

mM H          (5) 

where m is  a dimensionless quantity called magnetic susceptibility of the 
medium. It is a measure of how susceptible or sensitive the material is to a 
magnetic field. Substituting eg. (5) into eq. (4) yields 

   0 1 mB H  
 

        (6) 

  0 rB H H   
  

        (7) 

1
H B



 

         (8) 

Where  


 


  
0

1r m         (9) 

The quantity r  is another dimensionless quantity known as the relative 

permeability of the medium. The quantity    0 r  is called the permeability 

of the medium and is measured in Henry/meter. The relation B H
 

holds good 

only for linear and isotropic material like diamagnetic and paramagnetic 
substances. If the materials are anisotropic,  

then the fields ,B H
 

 and M


 are no longer parallel like ferromagnetic substances 

i.e.  B F H
 

.                 (10) 
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The phenomenon of hysteresis implies that B


 is not a single valued function of H


. In fact, the function F (H


) depends on the history of preparation of the material. 

8.6  Classification of Magnetic Materials 
The behaviour or classification of magnetic materials is described in terms 

of magnetic susceptibility and relative permeability of the materials. A material is 
said to be magnetic if 0m   or 1r   and non-magnetic if 0m   or 1.r   
Free space, air and materials with 0m   are referred as non-magnetic. 

Magnetic materials can be roughly classified into three main groups in accordance 
with their r  values. A material is said to be  

Diamagnetic, if 1r  ( m is a very small negative number).  

Paramagnetic, if 1r  ( m in a very small positive numbers). Ferromagnetic, if 

1r  ( m in a very large positive material). 

Diamagnetism arises mainly from the orbital motion of the electron within an 
atom and is present in all materials. Diamagnetism materials exhibit no permanent 
magnetism and the materials are weekly affected by a magnetic field. For most 
diamagnetic materials (bismuth, copper, Lead, Diamond, germanium), m  is of 

the order of   510 . 

Paramagnetism arises mainly from the magnetic dipole moments of the spinning 
electrons. In these materials, the magnetic moments due to electron motion do not 
cancel completely and the atoms or molecules have a net average magnetic 
moment. Unlike diamagnetism, paramagnetism is temperature dependent. For most 
paramagnetic materials (Air, Platinum, tungsten, potassium), m  is of order of 

510  to 310  and is temperature dependent.  

Ferromagnetism occurs in materials whose atoms have relatively large permanent 
magnetic moment. Iron, Nickel, cobalt etc. are mostly used ferromagnetic 
materials. They retain a considerable amount of their magnetization when removed 
from the field. Ferromagnetism can be explained in terms of magnetized domain. 
A ferromagnetic materials is composed of many small domains, each containing 

about 1510  or 1610  atoms. These domains are fully magnetized in the absence of an 
applied magnetic field. Quantum theory states that strong coupling forces exit 

8.6  Classification of Magnetic Materials 
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between the magnetic dipole moments of the atoms in domain, holding the dipole 
moments in parallel. 

They have very large and positive susceptibility and below the Curie 

temperature relationship between B


 and H


 given by  B F H
 

. The shape of 
hysteresis loops varies from one material to another. The area of a hysteresis loop 
gives the energy loss per unit volume during one cycle of the periodic 
magnetization of the ferromagnetic material. This energy loss is in the form of 
heat. 

 
Fig. 8.4 Hysteresis Loop (Typical magnetization B-H curve) 

 8.7 Boundary Condition on B & H 

When the magnetic field H


 or B


 exists in a region of space, which has 
two different media, the conditions that the magnetic field must satisfy at the 
boundary or interface of these media are called magnetic boundary conditions. 
These conditions are derived by applying the integral form of Gauss’s Law for 
magnetostatics and Ampere’s Circuit Law over a small (infinitesimal) region at the 
boundary of two media. 

Consider the boundary between two magnetic media 1 and 2 characterized by 1  
and 2 ,respectively as shown in fig 8.5. 

 B

P
Retentivity or
permanent flux
density

Initial magnetization
curve

Coercive field 
intensity

o H

Q

maxB

rB

maxH cH

rB
maxB

maxH
cH

8.7  Boundary Condition on B & H 
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                        (a)                                                      (b) 

Fig. 8.5 Boundary conditions between two magnetic media (a) for B


 and (b) 

for H


 

Applying Gauss’s law for magnetic fields to the Gaussian surface of fig 8.5(a), we 
have  

. . . 0B d s B d s B d s

Top Bottom Sides

    
            (1) 

In the limit 0y  , the contribution due to the sides vanishes, then eq. (1) 
becomes  

   1 2
ˆ ˆ ˆ ˆ. . 0n n

s s

B n sn B n s n       

   1 2 0n nB S B S     

    1 2 1 2 ˆ. 0n nB B or B B n  
 

   

   1 2n nB B          (2) 

or 1 1 2 2n nH H 
 

        (3) 

Since B H
 

and n  is a unit vector normal to the boundary directed from 

medium (2) to medium (1). 

 

y

medium    1

medium    2

S

y

1nB

x

Boundary

2nB

n̂  

medium    2

y

x

medium    1

x

a b

cd

y

K
 1

 2
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Equation (2) shows that the normal component of B


 is continuous at the boundary 

while that of H


 is discontinuous at the boundary. Similarly we apply Ampere’s 
circuit Law to the closed path abcda of fig. 8.5 (b), where surface current density K 
on the boundary or interface is assumed normal to path. We obtain  

.
ab bc cd da

H dl I        


  

   1 1 2 2 2 1
2 2 2 2

t n n t n n

y y y y
H x H H H x H H I

   
         

As 0y  , we get  

1 2t tH x H x I     

1 2t t

I
H H K

x
  


        (4) 

Here 1tH  and 2tH  are tangential components in medium 1 and 2, respectively. 

Equation (4) shows that the tangential component at boundary of H


 is also 
discontinuous at boundary by an amount equal to surface current density. This 
equation may be written in terms of B as 

  1 2

1 2

t tB B
K

 
          (5) 

The vector form of eg. (4) is given by  

 1 2n H H K  
           (6) 

Or  1 2H H K n  
           (7) 

where n  is unit vector at the boundary of two media directed from region 2 to 1. If 
the boundary is free of current or the media are not conductors, K=0 and equation 
(4) becomes  

  
 

 
   1 2

1 2

1 2

t t
t t

B B
H H or        (8) 

Thus the tangential component of H


 is continuous while that of B


 is 
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discontinuous at the boundary. 

If the fields make an angle   with the normal to the interface, then the normal 

component of B


 across the boundary can be written as 

  1 1 1 2 2 2cos cosn nB B B B          (9) 

while the tangential component of H


 across the boundary with no surface current 
can be written as 

  1 2
1 1 2 2

1 2

sin sint t

B B
H H 

 
                 (10) 

Dividing eq. (10) by eq. (9) gives 

  1 1

2 2

tan

tan

 
 

                  (11) 

This is the law of refraction for magnetic flux lines at a boundary with no surface 
current. 

8.8 Methods of Solving Boundary– Value Problems in 
Magnetostatics 

The basic equations of magnetostatics are 

  . 0B 
 

         (1) 

 and H J 
  

         (2) 

with some constitutive relation between B


 and H


 i.e. B H
 

 for linear media 

or  B F H
 

 for non linear media. 

The different techniques for solving boundary–value problems in magnetostatics 
are as follows:- 

A. Generally applicable method of the vector potential–Since the 

divergence of B


 is always equal to zero, therefore we can introduce a vector 

potential A


 such that 

B A


         (3) 

8.8 Methods of Solving Boundary– Value Problems in 
Magnetostatics 
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If the relationship between B


 and H


 is non-linear, the second equation becomes 
very complicated even if the current distribution is simple. For linear media with 

B H
 

, the eq. (2) becomes 

  
1

A J


 
   

 

   
       (4) 

If   is constant over a finite region of space, the eq. (4) can be written as 

    2.A A J   
    

       (5) 

With the choice of the coulomb gauge . 0,A 
 

 the eq. (5) becomes a Poisson 
equation i.e. 

   
 2 A J         (6) 

The solution of eq. (6) in different linear media must be matched across the 
boundary surface using the boundary conditions. 

B. 0J 


, magnetic scalar potential 
If the current density vanishes in some finite region of space, the eq. (2) becomes 

 0H 
 

          (7) 
This implies that we can introduce a magnetic scalar potential M  such that 

 MH  


          (8) 

If medium is non linear i.e.  B F H
 

, again this equation becomes very 

complicated differential equation. Assuming that the medium is linear and uniform 
i.e. the magnetic permeability is constant in space. The eq. (1) together eq. (8) 
becomes the Laplace’s equation for the magnetic scalar potential. 

  . 0M   
 

 

  2 0M            (9) 
Again the solutions in different media are connected through the boundary 
conditions. It is clear from eq. (9) that one can use methods of solving differential 

equations to find the magnetic scalar potential and therefore the magnetic fields B


 

and H


. 
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C. Hard Ferromagnets  0M given and J 
 

 

In this case, the magnetization M


 is independent on the magnetic field and 
therefore we can assume that M


 is a given function of coordinates i.e.  M r

  . 
(i) Scalar potential 

In this case 0J 


, we can again use a scalar potential. The first equation can be 
written as 

  0. . 0B H M    
   

 

Since  0B H M 
  

 

Hence . .H M 
 

                          (10) 

Now using the magnetic scalar potential form eq. (8), we obtain a magnetostatic 
Poisson equation 

     
2 .M M 

 
 

   2 .M M 
 

 

  2
M M                 (11) 

where the effective magnetic charge density is given by 

 .M M  
 

             (12) 

The solution for the potential M , if there are no boundary surface is 

      ' '. '1 1
' '

4 ' 4 '
M

M

r M r
r dv dv

r r r r




 


  
  

  
             (13) 

If M


 is well behaved and localized in space, integration by parts may be 
performed to yield 

     '1 1'' . ' ' . '
4 ' '

M

M r
r dv M r dv

r r r r



             
 

   
     

  1 1
'' . '

4 '
M r dv

r r
 


 
             (14) 
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Here the first integral vanishes by the divergence theorem is reduces to the integral 
over the surface where the magnetization is zero. As we know that 

 
1 1

'
' 'r r r r

   
         

 
               (15) 

Using eq. (15), eq. (14) can be rewritten as follows – 

    '1
. '

4 '
M

M r
r dv

r r



  


 
             (16) 

Far from the region of nonvanishing magnetization, the potential may be 
approximated by  

    1 1
. ' '

4
M r M r dv

r



   
  
    

   3

1
.

4
M

r
r m

r



    
 

   

where 
3

1 r

r r
    
 


 and 

           ' 'm M r dv 
   is the total magnetic moment. 

    3

.

4
M

m r
r

r




               (17) 

In solving magnetostatics problems with a given magnetization distribution which 
changes abruptly at the boundaries of the specimen, it is convenient to introduce 
the magnetic surface charge density. If a hard ferromagnet has volume V and 
surface S, we specify  M r

   inside V and assume that it falls suddenly to zero at 
the surface S. Application of the divergence theorem to M  (eq. 12) in a Gaussian 
pillbox straddling the surface shows that there is an effective magnetic surface 
charge density, which is given by 

ˆ.M n M 


               (18) 

where n̂  is the outwardly directed normal. Then instead of eq. (13), the potential is 
represented as follows 



177 
 

     ' ˆ. ' . '1 1
' '

4 ' 4 '
M

v S

M r n M r
r dv ds

r r r r


 


  
  

   
           (19) 

As important special case, is that of uniform magnetization throughout the volume 
V. Then the first term vanishes; only the surface integral over M  contributes. 

Note: It is important to note that eq. (16) is generally applicable, even for the limit 

of discontinuous distributions of M


. Because we can introduce a limiting 
procedure after transforming eq. (13) into eq. (16) in order to discuss 

discontinuities in M


. Never combine the surface integral of M  with eq. (16).  

(ii) Vector potential 

Since from eq. (1), we have 

. 0B 
 

 

   B A
 

             (20) 

where A


 is magnetic vector potential  

From eq. (2), we have 

  0H 
 

  Since 0J 


 in case of hard ferromagnets. 

   
0

0
B

M


 
   

 

 
 Since  0B H M 

  
 

   
0

B
M


  

  
 

    0 MB J 
  

            (21) 

where 
 

MJ M  is effective current density due to magnetization. 

From eqs. (20) and (21), we get 

    0 MA J  
   

 

     2
0. MA A J   

    
 

For the coulomb gauge . 0A 
 

, we get 
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  2
0 MA J  

 
            (22) 

The solution for the vector potential in the absence of boundary surface is 

     0 ' '
'

4 '
v

M r
A r dv

r r




 



   
            (23) 

If the distribution of magnetization is discontinuous, it is necessary to add a surface 
integral to eq. (23), i.e. 

      0 0' ' '
' '

4 ' 4 '
v S

M r M r n
A r dv ds

r r r r

 
 

  
 

  
     
            (24) 

If M


 is constant throughout the volume, only the surface integral survives. 

8.9 Uniformly Magnetised Sphere in an External Field or 
Permanent Magnet 

Let us consider a sphere of radius R with a uniform magnetization M


 along z-axis 
in the absence of an external magnetic field (because of the existence of permanent 
magnet) as shown in fig. 8.6. 

 
Fig. 8.6 Uniformly Magnetized Sphere 

(A) In the absence of external magnetic field 

(i) Potential and field at an external point  ,P r   - The magnetization sphere 
may be thought to be equivalent to two sphere – one having a north polarity and 

 z
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
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8.9 Uniformly Magnetised Sphere in an External Field or 
Permanent Magnet 
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another a south polarity, and the two spheres slightly displaced. Such a system 
is equivalent to a short magnetic dipole of moment 

34

3
m R M

   
 


       

 (1) 

The magnetic scalar potential at an external distant point P  ,r   is given by 

  0 0
3 2

. cos

4 4
out

m r m

r r

  


 
 

 
     (2) 

  

3

0
2

4
cos

3
4

R M

r

 


 
 
   

  
3

0
2

cos

3
out

MR

r

 
          (3) 

and magnetic field intensity at the outside point P ,r   is obtained as [using 
eq.(3)] 

  
3

2
0 0

cos

3
out

out

B MR
H grad

r

 
 

 
      

 


    (4) 

Thus the radial and transverse components of magnetic field intensity are 

  
3 3

2 3

cos 2 cos

3 3
r

MR MR
H

r r r

  
     

     (5) 

and 
3

2

1 cos

3

MR
H

r r





 
     

 

  
3

3

1 sin

3

MR
H

r


   
 

       (6) 

so that out r rH H a H a  
    

 
3

3 2cos sin
3

out r

MR
H a a

r
  

        (7) 
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   
3

2 2
3 4cos sin

3
out out

MR
H H s

r
   


 

  
3

2
3 1 3cos

3
out

MR
H

r
         (8) 

(ii) Potential and field at an internal point – The scalar magnetic potential is 
given by eq. (3) by putting r = R. 

0 cos

3
in

MR           (9) 

0

3
in

Mz     since z = Rcos              (10) 

Since no free poles exist inside the magnetized sphere, the potential in  must 

satisfy Laplace’s equation 2 0in  . According to uniqueness theorem there can 
be only one solution of Laplace’s equation and that it must be as given by eq. (10). 
Therefore the magnetic field intensity may be obtained as 

  
0 0

in in
in

B Mz
H

M z




      
 


            (11) 

In terms of components 

    0
3

x in

Mz
H

x

       
 

    0
3

y in

Mz
H

y

       
 

and   
3 3

z in

Mz M
H

z

        
 

Therefore    
 

3 3
in z

M M
H a  or     

   
0 0

2

3
inB H M M

       
 (12) 

Since the direction of M


 is along z-axis. The magnetic field intensity is constant 

throughout the magnetized sphere and points opposite the direction of M


. In other 

words, the H


field acts to demagnetize the sphere. 
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The lines B


 and H


are shown in fig. 8.7. The lines of B


  are continuous closed 

paths, but those of H


 terminate on the surface because there is an effective surface 
charge density M . 

              H


 
FIG. 8.7 Lines of B


 and lines of H


 for a uniformly magnetized sphere. 

(B) In presence of external magnetic field 

Let us assume the existence of uniform external magnetic field 0H


 along z-axis, 
then the resultant magnetic field intensity at external and internal points can be 
written as 

3 3

0 03 3

2 cos sin
cos sin

3 3
out r

MR MR
H H a H a

r r


  
   

       
   

          (13) 

and 0
3

in

M
H H 

 
             (14) 

Equation (14) shows that the magnetization produces a reverse field inside the 

sphere, known as diamagnetic field. It is proportional to M


. The factor 
1

3
 
 
 

 is 

known as the demagnetizing factor. 

For a diamagnetic or paramagnetic substance, we know that 

  inM H
 

 

  
0

1 inM H



 
  

 

 
            (15) 

 

B

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Since  0 1     

Substituting the value of M


 from eq. (15) into eq. (14), we get 

  0
0

1
1

3
in inH H H




 
   

 

  
 

   0

1
1

3
in r inH H H  
  

  
where 

0
r

 


  is relative permeability 

   0
3 3

in in
in r

H H
H H   

  
 

  
2

3 3
r

in inH H


 
 

 

  0

2

3
r

inH H
   

 
 

 

   0

3

2
in

r

H H


 
   

 
            (16) 

 and   0

3
1

2
r

r

M H


 
    

 
          (17) 

Thus magnetic induction at an internal point is  

  in inB H
 

 

  0

3

2
in

r

B H


 
   

 
           (18) 

Putting 
0

r




 , we get 

  0

0

3

2
inB H






 

 
 

 
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  0 0
0

3

2
inB H

 
 

 
   

 
           (19) 

 For a paramagnetic substance, r  is slightly greater than unity, so the inH


 

is slightly less than 0H


 and induction inB


 is greater than the free space value 

0 0H


. It means lines of magnetic induction are crowded together in a 
paramagnetic sphere. Reverse is the case of a diamagnetic substance for which 

1r  . For a ferromagnetic substance, we consider the case when there is no 

external field (i.e. 0 0H 


), but a finite magnetization M


 corresponds to a 
spherical permanent magnet. The external field is then purely that of a point dipole 

given by equation (7) and the internal field is just the demagnetizing field 
3

M  
 



.For a ferromagnetic substance, eq. (17) implies that the magnetization vanishes 
when the external field vanishes. The existence of permanent magnets contradicts 

this result. The non-linear relation  B F H
 

 and the phenomenon of hysteresis 

allow the creation of permanent magnets. 

From eq. (19) 

   0 0 02 3inB H    
 

 

  0
1 01 2 3nB B

 


 
  

 

 
 

   0 02 3in
in

B
B B


 
 

 

  0 02 3in inB H B 
  

            (20) 

  0 02 3in inB H B  
  

 

The hysteresis curve provides the other relation between inB


 and inH


, so that 
specific values can be found for any external field. Eq. (21) corresponds to a line 
with slope -2 on the hysteresis diagram with intercept 03B  on the y-axis as shown 
in fig. 8.8. 
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FIG. 8.8 Hysteresis curve 

Suppose the external field is increased until the ferromagnetic sphere becomes 
saturated and then decreased to zero. The internal B and H will then be given by 
the point marked P  in fig. 8.8. The magnetization can be found from eq. (14) with 

0 0.B 


 

8.10 Magnetic Shielding: Spherical Shell of Permeable 
Material in a Uniform Field 

Initially a certain magnetic induction 0 0 0B H
 

 exists in a region of 
empty space. The lines of magnetic induction are modified if a permeable body is 
placed in the region. The magnetic field is greatly reduced inside a volume covered 
with a ferromagnetic shell (permeable media) because the magnetic field lines are 
strongly shielded by the permeable material. i.e. a reduction in field is said to be 
due to the magnetic shielding provided by the permeable material. 

Let us consider a spherical shell of inner radius a and outer radius b made of 
material of permeability    and placed in a formerly uniform constant magnetic 
induction 0B


 as shown in fig. 8.9. 

 
FIG. 8.9 Spherical shell of permeable material in a uniform field 

 

P

B

 

0B


a

b

0 H

8.10 Magnetic Shielding: Spherical Shell of Permeable 
Material in a Uniform Field 



185 
 

We went to find the fields B


 and H


 everywhere in space, but most particularly in 
the cavity  r a  as function of .  Since there are no conduction currents 
present. 

  0H 
 

 

   MH 


               (1) 

Since , . 0B H B  
  

 becomes . 0H 
 

 in the various regions. Hence 

   . 0M    

  2 0M                 (2) 

Thus the potential M  satisfies the Laplace equation everywhere. The problem 
reduces to finding the proper solutions in the different regions to satisfy the 
boundary conditions at r a  and r b . 

For r b , the potential must be the form 

   1 0 1
0 0

cos
cosl

M ll
l

a
B r P

r

 







              (3) 

In order that 0 0/H B 
 

 as r   

     2 1
0

1
cosl

M l ll
l

a r b B r l P
r

  





     
 

        
 (4) 

     3
0

cosl
M l l

l

r a r P  




              (5) 

Since M  must be finite at r = 0. The boundary conditions at r = a and r = b are 
that H  and rB  be continuous. So 

  31 2 2, MM M M

r b r b r a r a

  
      

  
 

   
 

  31 2 2
0 0, MM M M

r b r b r a r ar r r r

     
   

  
 

   
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These four conditions which hold for all angles   are sufficient to determine the 
unknown constants. All coefficients with 1l   vanish. The 1l   coefficients 
satisfy the four simultaneous equations. 

  3 3 0
1 1 1

0

B
b b  


    

  3 3 0
1 1 1

0 0 0

2 2
B

b b
   
  

    

  3 3
1 1 1 0a a      

  3 3
1 1 1

0 0

2 0a a
   
 

    

The solutions for 1  and 1  are, 

  
    

  0 0 3 3
1 0 023 3

0 0 0

2
/

2 2 2 /
b a B

a b

   
 

     

  
  

     
 

          …(6) 

and  
    

 0
1 0 023 3

0 0 0

9
/

2 2 2 /
B

a b


 

     

 
  

     
  

                  (7) 

The potential outside the spherical shell corresponds to a uniform field 0B


 plus a 

dipole field with dipole moment 1  oriented parallel to 0B


. Inside the cavity, 

there is a uniform magnetic force field parallel to 0B


 and equal in magnitude to 

1 . For 0   the dipole moment 1  and the inner field -  become 

   1 0 0/b B                (8) 

   0
1 0 03

3

9
/

2 1

B
a

b


 


 

 
 

 

            (9) 
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Thus, the inner field is proportional to   1
0/  

. Consequently, a shield made of 

high permeability material with 3
0/ ~10   to 610  causes a great reduction in the 

field inside, even for a relatively thin shell. Thus, the magnetic induction in the 
cavity is given by  

  3 0 3 0 1B H                 (10) 

The magnetic shielding factor 

  
3

0 0
3

3 0 1

2
1

9
m r

B B a
h

B b


 
 

     
 

         (11) 

if 1r   

The behavior of the lines B


 through permeable media is shown in fig 8.10. The 
lines tend to pass through the permeable medium if possible. 

 

  
 

FIG. 8.10 Shielding effect of a shell of highly permeable material 

8.11 Illustrative Examples 

Example 1 Region 0 1z m  is occupied by an infinite slab of permeable 

material  3r  . If 12 6x yB ya x a 
   2/mWb m  within the slab, determine 

(a) Volume current density  J


. 

 

8.11 Illustrative Examples 
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(b) Volume bound current density  bJ


 

(c) Magnetization  M


 

(d) Surface bound current density  bK


 on 0z   

Solution:  

Given   3 212 6 10 /x yB y a xa Wb m  
    

  3 3   7 7
0 4 10 3 12 10 /r H m            

(a)  7

1

12 10
y x

z

B BB
J H a

x y  

          

   
 

 
7

310
6 10 10

12
za


      

410 16

12
za


 

   

24.24 /zJ a KA m 
         

(b)  b mJ M H  
   

 

=  m mH J  
  

     31 3 1 4.24 10r zJ a     
   

28.48 /b zJ a KA m 
         

(c) Magnetization (M) 

 mM H
 

 

      1r

B


 


 

      
  3

7

12 6 10
3 1

12 10

x yya xa







 
 



 
 

       320
12 6 10

12
x yya xa


     

       30.53 12 6 10x yya x a     
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  6.36 3.18 /x yM y a x a KA m 
         

(d) b nK M a 
  , since z = 0 is the lower side of the slab occupying 

0 1, n zz a a     , Hence 

    36.36 3.18 10b x y zK y a x a a    
     

         33.18 6.36 10x yx a y a     

        3.18 6.36 /x yx a y a KA m         

Example 2  Magnetic flux line is received at an iron-air boundary at an angle of 

incidence 60 .o  Determine the angle of refraction at the boundary in air. The 
relative permeability of iron is 350. 

Solution:  If 1  and 2  are the angle of incidence and the angle of refraction, 
respectively, then at the boundary  

  0 11 1

2 2 0 2

tan

tan
r

r

  
   

   

   2 2

1 1

tan

tan
r

r

 
 

  

Given 2 11, 350r r    and 1 60o   

  2

1
tan tan60

350
o   

  
3

350
  

  2

3
tan 1

350


 
   

 
 

  2 0.28o          

Example 3 The magnetic field intensity is 1200 /H Amp m  in a material when 

B=2 2/ .Wb m  When H is reduced to 400 Amp/m, 21.4 /B Wb m . Calculate the 

change in the magnetization M. 
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Solution: For case –I 

  
2 1

=
1200 600

B

H
    

  2 7
0

1 1

600 4 10


    


 

  1326.96r   

We know that 1 1r m m rX        

  1325.96m   

   1325.96 1200mM H    

  1591152 1591.152 /M K A m        (1) 

For case –II 

  
1.4

400

B

H
    

  7
0

1.4 1

400 4 10
r

M
    


 

  
51.4 10

50.24


  

  2786.62r   

   1 2786.62 1m r      

  2785.62m   

  2785.62 400mM H    

  1114248 1114.248 /M K A m        (2) 

Therefore change in magnetization 

 M  = eq.(1) – eq.(2) 

  1591.152 1114.248   
  476.9 /K A m         
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Example 4 If 1 02   for region  1 0     and 2 05   for region 

 2 2    with 2
2 10 15 20 /zB a a a Wb m   
    .Calculate 1B


 for region 1 

Solution: This problem is given in cylindrical coordinate system  , , z  . Both 
the regions are separated by   component, therefore the normal and transverse 

components of 2B


 are given as 

  2 15nB a
 

         (1) 

 and 2 10 20t zB a a 
  

        (2) 

As per boundary condition for normal component of ,B


 me know that 

  1 2 15n nB B a 
  

 

Since the interface between this media carries no current, therefore the transverse 

component of H


 is also continuous i.e. 

  1 2
1 2

1 2

t t
t t

B B
H H

 
  

  
 

   1
1 2

2
t tB B





 

 

   0

0

2
10 20

5
za a




  
 

  1 4 8t zB a a 
  

        (4) 

Hence magnetic flux density in region 1 is given by 
2

1 4 15 8 /zB a a a Wb m   
    .  

Example 5 The slab of magnetic material is infinite in the plane which has a 

uniform magnetization M


 oriented either parallel or perpendicular to the surfaces 

of the slab. Calculate the magnetic flux density B


 and magnetic field intensity H


 
everywhere in space. 

Solution:  Fig. 8.11Slab of magnetic material (a)  parallel to the surface and 

(b)  perpendicular to the surface 

M


M

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FIG.8.11 Slab of magnetic material (a) M


 parallel to the surface and (b) M


 

perpendicular to the surface 

It is a case of hard ferromagnetic i.e. M


 given and 0J 


. 

   0H 
 

 and  0. 0B H M    
   

 

   . .H M 
  

 

   . MH  
 

 

i.e. .M M  
 

 plays a role of magnetic charge density and H


 can be found. 

In case (a) since M


= constant 

   0M   

Therefore 0H 


 everywhere in space. 

   0B 


 outside the slab and 0B H
 

 inside the slab. 

In case (b) magnetization creates positive surface charge M M    on the top 
surface and negative surface charge M M     on the bottom surface. These 

charges generate magnetic field intensity H


 and it is given by H M 
 

 i.e. 
generated field is opposite to the magnetization within the slab and no field 

outside, 0H 


. This makes magnetic flux density 0B 


 everywhere in space. 

Example 6 The interface 2 8x y   between two media carries no current. 

Medium  1 2 8x y   is nonmagnetic with 1 4 3x y zH a a a   
   

 A/m. Find 

2M


 and 2B


 in medium  2 2 8x y   with 010  . 

Solution: Let the surface of the plane be described by  , 2 8,f x y x y    a 
unit vector normal to plane is given by 

 

M 


(a)

 

(b)

M


- - - -

+ + + + 

H

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FIG. 8.12 

  
2

5
x y

n

a af
a

f


 



 
  

     1

2,1,0 2,1,0
. 4,3, 1 .

5 5
in n nH H a a

            

     

  
28 3

5 5
x ya a         

 
 

  2in x yH a a  
  

 

  1 1 1t nH H H 
  

 

  4 3 2x y z x ya a a a a        
    

 

  1 2 4t x y zH a a a   
   

 

The interface 2 8x y   between two media carries no current, therefore 

1 2t tH H
 

 

  2 2 4t x y zH a a a   
   

       (1) 

As per boundary condition 

  1 2 1 1 2 2n n n nB B H H   
   

 

 

o x

y

1

2 na


2 010 
1 0 
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    1
2 1

2

1
2

10
n n x yH H a a




   
   

 

  2 0.2 0.1n x yH a a 
  

       (2) 

From eqs. (1) and (2), we get 

  2 2 2t nH H H 
  

 

  2 2.2 3.9x y zH a a a   
   

 

     2 2 2 2 2 21 10 1m rM H H H     
   

 

   2 9 2.2 3.9x y zM a a a   
     

  2 19.8 35.1 9 /x y zM a a a A m  
   

 Ans. 

  7
2 2 2 0 2 210 40 10B H H H      
   

 

   64 10 2.2 3.9x y za a a         

   612.56 10 2.2 3.9x y za a a        

  2
2 27.63 48.98 12.56 /x y zB a a a Wb m   
     Ans. 

8.12  Self-Learning Exercise 

Q.1   Define macroscopic effect. 
Q.2   What is SI unit of magnetization. 

Q.3 Write the relation between magnetic field intensity H


 and magnetization M


 
Q.4 Define volume current density. 
Q.5 How can arise magnetic dipole moments in the atoms of material. 
Q.6 Why the magnetic dipole moment of a spinning nucleus is usually negligible. 
Q.7  What is the surface current density. 

Q.8  In an isotropic medium, magnetic induction B


 and magnetic field intensity 

H


 at the same point in space ……………………….. 
Q.9  What is relation between B


 and H


 for ferromagnetic materials. 

Q.10  What is the magnetic flux density for magnetic materials. 
Q.11  What are the examples of ferromagnetic materials. 

8.12  Self-Learning Exercise 
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Q.12  If the magnetic field intensity H


 is 4 xa


 Amp/m, then calculate magnetic 
flux density in free space. 

Q.13 If the normal component of B


 in medium 1 is 2.5 xa
 2/Weber m , then 

calculate the normal component of B


 in medium 2. 
Q.14  Define demagnetizing field and demagnetizing factor. 
Q.15  Explain the magnetic shielding. 

8.13 Summary 
 This unit starts with the introduction of magnetization and bound current 
densities. By giving the physical interpretation of bound currents, we have derived 
the macroscopic equations of magnetostatics. Here, we study about magnetic 
susceptibility, relative permeability and classification of magnetic materials. The 

boundary conditions on B


 and H


, methods of solving boundary value problems in 
magnetostatics, uniformly magnetized sphere in an external field, permanent 
magnetic shielding and spherical shell of permeable material in an uniform field 
have also been studied in this unit. In the end, some examples on above concept are 
given. 

8.14  Glossary 

Ferromagnetic : (Of a body or substance) having a 
high susceptibility to magnetization, the strength of which depends on that of 
the applied magnetizing field, and which may persist after removal of the 
applied field. 

Shield: Prevent or reduce the effect of some physical quantity  from (something): 

8.15 Answer of Self-Learning Exercise 
Ans.1 : It is the average over regions large enough to contain many atoms of 

matter. 
Ans.2 : Ampere/meter. 

Ans.3 : M H
 

 

Ans.4 : J M
 

, a current throughout the material, when the magnetization is 
non-uniform. 

8.13 Summary 

8.15  Answer of Self-Learning Exercise 

8.14  Glossary 
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Ans.5 : There are three sources (i) orbital motion of electrons (ii) electrons spin on 
their own axes and (iii) Nucleus of an atom spin on their own axis. 

Ans.6 :  Because of the much larger mass and lower angular velocity of the 
nucleus. 

Ans.7 :  ˆK M n 
 

, a surface current on the boundary, when the magnetization is 
uniform. 

Ans.8 :  are parallel but differ in magnitude. 

Ans.9 :   B F H
 

i.e. nonlinear functional relationship. 

Ans.10 :   0B H M 
  

 

Ans.11 :  Iron, nickel, cobalt and their alloys. 

Ans.12 :  6 21.6 10 /xa Weber m    

Ans.13 :  22.5 /xa Weber m
  

Ans.14 :  When uniformly magnetized sphere is placed in an external magnetic 
field, then the resultant magnetic field intensity at internal point is given 

by 0
3

in

M
H H 

 
. This equation shows the magnetization produces a 

reverse field inside the sphere, known as demagnetizing field and the 

factor 
1

3
 
 
 

 is known as demagnetizing factor. 

Ans.15 :  Initially, there is a certain magnetic induction 0 0B H
 

 exists in a 
region of empty space. If a permeable body is now placed in the region, 
the lines of magnetic induction are modified. If the body is hollow, the 
field in the cavity will be smaller than the external field, vanishing in the 
limit  . Such a reduction in field is said to be due to the magnetic 
shielding provided by the permeable material. 

8.16 Exercise 
Section A :Very Short Answer Type Questions 

Q.1  Define magnetization vector. 
Q.2  What are magnetization charge densities? 

8.16 Exercise 
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Q.3 Write the relationship between magnetic susceptibility and relative 
permeability. 

Q.4   Write the macroscopic equations for magnetostatics. 
Q.5  Define magnetic field intensity in terms of magnetization vector with SI unit. 

Section –B: Short Answer type Questions 

Q.6  What do you mean by magnetic field inside matter. (Hint: Macroscopic field) 
Q.7   Define bound current densities with their physical interpretations. 
Q.8  Write the classification of magnetic materials based on their magnetic 

behavior. 
Q.9  What are the boundary conditions for magnetostatic fields at an interface 

between two different magnetic media. 1 2 1 2n n t tB B and H H K      

Q.10  The region 0y   (region 1) in a air and y>0 (region 2) has 10r  . If there 

is a uniform magnetic field 5 6 7 /x y zH a a a A m  
   

 in region 1. Find H


 

and B


 in region 2. 

 2
2 05 0.6 7 / 50 6 70x y z x y zH a a a Amp m and B a a a Tesla       
     

Section –C: Long Answer type Questions 

Q.11 Derive the expression of magnetic vector potential  A


 in terms of 

magnetization vector and explain the magnetization current densities. 
Q.12 Explain magnetic field inside matter and derive the macroscopic    equations 

for the same. 
Q.13  What do you understand by the intensity of magnetization M


. Establish the 

relation J M
 

 where J


 is current density in a non-uniformly 

magnetized material at a point where intensity of magnetization vector is M


. 
Q.14  Derive the expression for boundary conditions for magnetic field at the 

interface of two different magnetic media with permeabilities 1  and 2 , 
respectively, and also show that 

1 1

2 2

tan

tan

 
 

  

 Where 1  and 2  are the angles the fields make with the normal to the 
interface. 
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Q.15  A magnetized sphere of radius R is placed in uniform external field 0H


. 
Find out the potential and field inside and outside the sphere. 

Q.16 With the help of proper expression, explain the magnetic shielding provided 
by the permeable media. 

8.17  Answers to Exercise 

Ans.1 :  It is magnetic dipole moment per unit volume. 

Ans.2 : b b nJ M and k M a   
      are the magnetization volume current 

density and surface current density, respectively. 

Ans.3 :  1r m    

Ans.4 :  . 0 fB and H J   
   

 

Ans.5 :  
0

B Ampere
H M

meter
 
 
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UNIT – 9 
Energy in the Magnetic Field , 

Gauge Transformation 

Structure of the Unit 

9.0 Objectives 

9.1 Introduction 

9.2 Energy in the magnetic field 

9.3 Scalar and Vector potential 

9.4 Gauge transformations 

9.5 Lorentz Gauge 

9.6 Coulomb Gauge 

9.7 Illustrative Examples 

9.8 Self-learning exercise 

9.9 Summary 

9.10  Glossary 

9.11 Answer to self-learning exercise 

9.12 Exercises 

9.13  Answers to exercise 

 References and Suggested Readings 

 9.0 Objective 
 In the previous chapter, we discussed about the magnetic field inside the 
material. In this chapter, first we will discuss in detail about the energy and energy 
density in magnetic field. This chapter also covers vector and scalar potential, 
gauge transformation, Lorentz gauge and Coulomb gauge. 
9.1 Introduction 

In the previous chapters, we discussed the problems related to steady state 

UNIT - 9 
Energy in the Magnetic Field , 

Gauge Transformation 

9.0 Objectives 

9.1 Introduction 
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magnetic field and did not consider the question of field energy and energy 
density. The reason was that the creation of a steady state configuration of currents 
and associated magnetic fields involves an initial momentary period during which 
the currents and fields are brought from zero to the final values. For such time 
varying field, there is induced electromotive force (emf) in circuit that opposes the 
current change. An amount of work must be done to overcome this induced emf. 
Since the energy in the field is the total work done to establish it. Therefore it can 
be regarded as energy stored in magnetic field. In the previous chapters, electric 
and  magnetic phenomena were also treated as independent. The independent 
nature of electric and magnetic phenomena disappears when we consider time 
dependent problems. Faraday’s Law of induction and modified Ampere’s Law 
destroyed the independence. Time-varying magnetic fields give rise to electric 
fields and vice versa. Therefore we must speak of electromagnetic fields rather 
than electric and magnetic fields. The set of four equations known as the Maxwell 
equations describe the behaviour of electromagnetic fields. These equations are as 
follows:- 

   
 

.D   ,    
 

. 0B  

  


  


  B
E

t
 ,   


  



   D
H J

t  
 9.2 Energy in the Magnetic Field 

 When a current flowing through the circuit, an emf (electromotive force) 
induced in it opposing the change in the circuit and the applied voltage must 
overcome this induced emf, if the change in current is to be maintained. Now let 
the current increases from 0 to I (final value) Amperein t second, then the work 
done in establishing this current in the circuit is 

   
0

I

mW emf i dt L i di     

   21 1

2 2
m mW L I I        (1) 

9.2 Energy in the Magnetic Field 



201 
 

where md di
emf L

dt dt


     and the minus sign records the fact this is the work 

done against the emf. This work is stored as energy of the magnetic field. This 
energy is released when the current is brought down to zero again. It depends only 
the geometry of the loop (in the form of L) and the final current I. 

Equation (1)can be generalized to determine the magnetic energy of a continuous 
distribution of current within a volume. Now consider a current-carrying loop of 
closed path C and bounded surface S. The flux m  is linked with the circuit due to 
current I in itself and is given by  

 . .m

s s

B dS A dS    
  

     (2) 

Since 
 

B A  

  .
c

A dl  
 
  [using Stoke’s theorem]    (3) 

From eqs. (1) and (3), we get 

  
1

.
2

m

c

W I A dl 
 
        (4) 

The vector sign might as well go on the I, then eq. (4) can be written as 

   1
.

2
m

c

W A I dl 
 

        (5) 

It is work done in case of linear circuit. The generalization of eq. (5) to volume 
current is given by  

    
 1

.
2

m

v

W A J dv        (6) 

It is often desirable to express the magnetic energy in term of field quantities B


 

and H


 instead of current density J


 and vector potential A


. Therefore from 
Ampere’s Law 

  H J 
  

 or B J 
  
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    1
J B


 

 
        (7) 

Put the value of J


 from eq. (7) into eq. (6), we get 

   1
.

2
m

v

W A B dv


 
 

      (8) 

Making use of the vector identity 

       . . .A B B A A B     
      

 

        . . .A B B A A B    
      

     (9) 

Substituting eq. (9) into eq. (8), we obtain 

     1 1
. .

2 2
m

v v

W B A dv A B dv
 

     
   

 

In the first term put B A
 

 and apply divergence theorem in second term, we 

get   1 1
. .

2 2
m

v s

W B B dv A B dS
 

   
   

  

   1 1
. .

2 2
m

v

W H B dv A H dS   
   

                       (10) 

If v  is taken to be sufficiently large, the points on its surface S will be very far 
from the currents. At those far-away points, the contribution of the surface integral 

in eq. (10) tends to zero because A


 falls off as 
1

R
 and H


 falls off as 

2

1

R
. Thus, 

the magnitude of  A H
 

 decreases as 
3

1

R
, whereas at the same time, the surface 

S increases only as 2R . When R approaches infinity, the surface integral in eq. 
(10) vanishes. We have then 

    
 1

.
2

m

v

W H B dv Joule           (11) 
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Since B H
 

, we can write eq. (11) in two alternative forms 

   


 
21

2
m

v

B
W dv Joule                  (12) 

 and  21

2
m

v

W H dv Joule            (13) 

The expressions in eqs. (11), (12) and (13) are for the magnetic energy in a linear 
medium. If we define a magnetic energy density m , such that its volume integral 

equals to total magnetic energy m m

v

W dv 
 

         (14) 

We can write magnetic energy density  m  in three forms: 

    
  31

. /
2

m H B J m          (15) 

 Or  



2

3/
2

m

B
J m           (16) 

 Or  2 31
/

2
m H J m             (17) 

9.3 Scalar and Vector Potentials or Potential Functions 
 The Maxwell equations consist of a set of coupled first order partial 
differential equations relating the various components of electric and magnetic 
fields. These are as follows:- 

(i) .E


 


 
 (Gauss’s law)   

(ii) . 0B 
 

 (Gauss’s law for magnetostatics or non-existence of magnetic 
monopole) 

(iii) B
E

t


  



 
(Faraday’s law) 

9.3 Scalar and Vector Potentials or Potential Functions 
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(iv) E
B J

t
 


   



  
 (Ampere’s modified law) 

We are already familiar with the concept of the scalar potential   and the vector 

potential A


  in electrostatics and magnetostatics, respectively. Since in 

electrostatics 0E 
 

 allowed us to write E


 as gradient of a scalar potential i.e.

E  


. In electrodynamics this is no longer possible, because the curl of E


 is 

non zero as per eq. (iii). But . 0B 
 

 still hold, we can define B


 in terms of a 
vector potential i.e. 

   


B A   (Tesla)              (1) 

Putting this into Faraday’s law yields 

   E A
t


   



 
 

   0
A

E
t

     

 
               (2) 

This means that the quantity with vanishing curl can be written as the gradient of a 
scalar potential  i.e. 

  
A

E
t




  


 
 

    


  



/

A
E V m

t
            (3) 

The potential representations given by eqs. (1) and (3) automatically fulfil the two 

homogeneous Maxwell equations (ii) and (iii). The dynamic behavior of A


 and   
will be determined by the two inhomogeneous Maxwell equations (i) and (iv). 

The electric field in eq. (3) can be viewed as composed of two parts: the first part 

 


 is due to charge distribution   and the second part 
A

t

   


 is due to 

time varying current J


. The scalar and vector potentials are given as  
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'

1
'

4
v

dv
R




                (4) 

 and 



 


'

'
4

v

J
A dv

R
              (5) 

These are the solutions of Poisson’s equation for electrostatics and 
magnetostatics, respectively. These solutions may themselves be time dependent 

because   and J


 may be functions of time, but they neglect the time retardation 
effects associated with the finite velocity of propagation of time varying 

electromagnetic fields. When   and J


 vary slowly with time at very low 
frequency and the range of interest R is small in comparison with the wavelength, 
it is allowable to use eqs. (4) and (5) in eqs. (1) and (3) to find quasi-static fields. 

Quasi-static fields are approximations. Their consideration leads from field 
theory to circuit theory. However, when the source frequency is high and the range 
of interest is no longer small in comparison to the wavelength, quasi-static 
solutions will not suffice. Time-retardation effects must then be included, as in the 
case of electromagnetic radiation from antennas. 

9.4 Gauge Transformation 

 The transformation relations under which the physical quantities E


 and B


 
are always unchanged, are known as gauge transformations. 

Putting eqs. (3) into Gauss’s law (i), we find that  

   2 .A
t







    


 
              (6) 

Putting eqs. (1) and (3) into Ampere’s modified law (iv), we find  

   
2

2

A
A J

t t


  

          

   
 

Using the vector identity     2.A A A     
     

, we get 

  
2

2
2 .
A

A J A
t t


  

           

   
           (7) 

9.4 Gauge Transformation 
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We have now reduced the set of four Maxwell equations to two equations. But they 
are still coupled equations. The uncoupling can be accomplished by exploiting the 
arbitrariness involved in the definition of the potentials. Since eqs. (1) and (3) do 
not uniquely define the potentials. Therefore we are free to impose extra conditions 

on   and A


, which are not changing E


 and B


. Suppose we have two sets of 

potentials  , A


 and  ', 'A


, which correspond to the same electric and 

magnetic fields. Therefore the potentials may be written as 

  'A A  
  

                (8) 

 and '                    (9) 

Since the two vector potentials give the same B


, their curls must be equal and 
hence 

  0 
 

 

    


              (10) 

The two scalar potentials also give the same E


, so  

  0
t





  




 

Using eq. (10), we get 

  0
t

       


 

   
t


 

 


 

Therefore the vector and scalar potentials can be written as 

   


A A              (12) 

 and  
 

 


'
t

             (13) 

The transformation relations given by eqs. (12) and (13) are called gauge 
transformation and the arbitrary scalar function   is called the gauge function. 
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The physical quantities E


and B


 are unchanged under the gauge 
transformation. This invariance of fields is called gauge invariance. 

9.5 Lorentz Gauge 
Maxwell equation in terms of electromagnetic potentials are given by 

  
2

2 .
A

A A J
t t


  

              

    
          (1) 

 and  2 .A
t

 


    


 
              (2) 

Since the curl of A


 is designed  B B A 
 

, we are still at liberty to choose 

the divergence of A


. There are various ways to choose the .A
 

. These ways are 
known as various gauge transformations.  

Let 





  


 
. 0A

t
                (3) 

This relation between A


 and   is called the Lorentz condition and the gauge is 
known as Lorentz gauge. 

Using Lorentz condition, the eqs. (1) and (2) reduce to 

  
2

2
2

A
A J

t
 


   



 
             (4) 

 and 
2

2
2t

   


   


             (5) 

Hence the Lorentz condition uncouples the wave equations for A


 and for  . Eqs. 
(4) and (5) are the non-homogeneous or inhomogeneous wave equations for vector 

potential  A


 and scalar potential   , respectively. These are called wave 

equations because their solutions represent waves travelling with a velocity equal 

to 
1


. Eqs. (3), (4) and (5) form a set of equations equivalent in all respects to 

Maxwell equations. 

9.5 Lorentz Gauge 
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Since 
2

1

v
   where v  is the phase velocity of wave. In free space 0   and 

0 ,   therefore 0 0 2

1

c
    where c is the speed of light. 

Introducing 'D  Alembertian or 'D  Alembert’s operator 

   
  




2
2 2

2t
              (6) 

The eqs. (4) and (5) take the form 

   
 

2 A J               (7) 

    2               (8) 

The Lorentz gauge is commonly used because 

1) It leads to uncoupled wave equations for potential A


 and  , which treat A


 
and   an equivalent footings. 

2) It is a concept which is independent of the coordinate system chosen and so 
fits naturally into the considerations of special relativity. 

9.6 Coulomb Gauge (Transverse or Radiation Gauge) 
The Maxwell equations in terms of electromagnetic potential are  

  
2

2
2

.
A

A A J
t t

  
              

    

        
 (1) 

 and  2 .A
t

 


    


 
             (2) 

The coulomb gauge restricts the divergence of A


 as  
 

. 0A           (3) 

Form eq. (2), we see that the scalar potential satisfies the Poisson’s equation 

     2               (4) 

The solution of eq. (4) is given by 

9.6 Coulomb Gauge (Transverse or Radiation Gauge) 
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     

'

',1
, '

4 '
v

r t
r t dv

r r









               (5) 

Thus the scalar potential is just the instantaneous coulomb potential due to the 

charge density  ,r t  . This is the origin of the name “Coulomb gauge”. 

Using Coulomb gauge, equation of vector potential becomes 

  
2

2 A
A J

t t

  
            

  
       (6) 

Since 
2

1

v
  , where v  is the phase velocity of wave, eq. (6) may be written as 

  
2

2
2 2

1 A
A J

v t t


 

          

  
     (7) 

This equation may be put in a convenient form by using Poisson’s equation (4) 
with the help of eq. (5) may be expressed as 

  
   2 ', ',1

'
4 '

r t r t
dv

r r

 
 

 
    


 
       (8) 

Since Poisson’s equation holds for scalars and vectors both, therefore replacing 
scalar potential source  ',r t   by vector potential source  ',J r t

  , we get 

  
   2 ', ',1

'
4 '

J r t J r t
dv

r r 
  

   

  
       (9) 

Let 
   ',

' ',
'

J r t
dv G r t

r r

 
  


   
                (10) 

then we obtain  

     2 ', 4 ',G r t J r t  
  

               (11) 

Using the vector identity 

    2.G G G    
     
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    2 .G G G    
     

           (12) 

From eqs. (11) and (12), we get 

   . 4G G J    
     

           (13) 

Put the value of G


 from eq. (10) into equation (13), we get 

  
   

 
',',

. ' ' 4 ',
' '

J r tJ r t
dv dv J r t

r r r r


 
       

 
      

     

      ', ',1 1
', . ' '

4 ' 4 '

J r t J r t
J r t dv dv

r r r r 
 

        
 
      
   

   

 (14) 

The term 
 ',

. '
'

J r t
dv

r r



 
   may be written as 

     
', 1',

. ' . ' . ' '',
' ' '

J r t J r t
dv dv J dvr t

r r r r r r

 
         

  
     
     

        

 (15) 

Since 
1 1

'
' 'r r r r

  
 

 
     

Now using vector identity    . . .f F f F F f    
   

  

where 
1

'
f

r r


   and  ',F J r t
    

Hence equation (15) may be written as 

       ' .', ', ',
. ' ' . '

' ' '

J J Jr t r t r t
dv dv

r r r r r r

            
 

     
       

  
   ' .', ',

'. ' '
' '

J Jr t r t
dv dv

r r r r

  
  

  
     

Using Gauss’s divergence theorem in first term, we get  
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     .', ', ',

. ' . '
' ' '

s

J J Jr t r t r t
dv dS dv

r r r r r r

  
    

     
              (16) 

The first term gives zero value as J


 vanishes on the surface,  

therefore eq. (16) becomes 

 
   ' .', ',

. ' '
' '

J Jr t r t
dv dv

r r r r


 

  
  

               (17) 

Putting this value in eq. (14), we get 

      ' .1 1', ',
' '',

4 ' 4 '

J Jr t r t
J dv dvr t

r r r r 


    
  

      
     

    ', l tJ J Jr t  
               (18) 

where  
 '.1 ',

'
4 '

l

J r t
J dv

r r


  


  
            (19) 

 and 
 ',1

'
4 '

t

J r t
J dv

r r
 


  
           (20) 

We note that 
 ' .1 ',

'
4 '

l

J r t
J dv

r r


   


    
   

 0lJ 
 

  (since curl of gradient of any scalar function always vanishes) 
                 (21) 

and 
 1 ',

. . '
4 '

t

r t
J J dv

r r
 

     


    
   

 
1

.
4

tJ


 
 

 div curl 
 ',

' 0
'

J r t
dv

r r

 
   


 
           (22) 

Since divergence of curl of any vector always vanishes. 

From eqs. (21) and (22) it is clear that 0lJ 
 

 and . 0tJ 
 

. Hence lJ


 and 
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tJ


 are also known as longitudinal (irrotational) and transverse (solenoid) current 
density, respectively. 

Putting the values of   and J


 from eqs. (5) and (18) into eq. (7), we get 

   2
2

2 2

1 1 ',
'

4 '
l t

A r t
A J J dv

v t t r r


 


   

            


   
 

       

 (23) 

Using continuity equation  

   
 ',

' . ', 0
r t

J r t
t


  



    

   
   ',

'. ',
r t

J r t
t


 



               (24) 

From eqs. (23) and (24), we get 

     2
2

2 2

1 '. ',
'

4 '
l t

A J r t
A J J dv

v t r r





      

 
    
    

Use eq. (19), we get 

   
2

2
2 2

1
l t l

A
A J J J

v t
 


     



   
 

   
2

2
2 2

1
t

A
A J

v t


   


 
           (25) 

 Or 2
tA J 

 
  

where


 



2

2 2
2 2

1

v t
 

This equation indicates that the source of wave equation for vector potential A


 can 

be expressed in terms of the transverse current density  tJ


. This is the origin of 

the name “transverse gauge.” The name “radiation gauge” stems from the fact that 
transverse radiation field are given by the vector potential alone. Since the 
instantaneous coulomb potential   contributes only to near fields. Thus coulomb 
gauge allows separation of “near” and “radiation” field. The coulomb gauge is 
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often used when there is no source. Then 0  , and A


 satisfies the homogeneous 

equation 
2

2
2 0
A

A
t




  



 with the fields given by  

A
E

t


 




 and B A 


.              (26) 

9.7 Illustrative Examples 

Example 1: A very long solenoid 2 2  cm cross section has an iron core 

 1000r   and 4000 turns/meter. If it carries a current of 500 mA, find the 

energy per meter stored in its field. 

Solution: Given 4 22 2 10 , 1000,rS m     4000n  turns/meter and

3500 10I   Amp . The magnetic energy is given by 21

2
W L I  

where L is the inductance. The inductance per unit length is 2'
L

L n S
l

  , 

therefore energy stored per meter in field is given by 

  21
'

2
W L I  

  2 2
0

1

2
rn SI   

     227 4 31
4 10 1000 4000 2 2 10 500 10

2
             

  42 10 16 4 25W        
  1.0048 /W Joule meter   

Example 2  Calculate the energy in joules stored in a magnetic field of a solenoid 
30 cm long and 3 cm in diameter, wound with 100 turns of wire and carrying a 
current of 10 Amp. 

Solution:  Given 30l cm , 1.5r cm , 100N   turns and 10I   Amperes. 

The energy stored in the magnetic field is given by  

9.7 Illustrative Examples 
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  21

2
W LI  

where 
2

0 N S
L

l


  is the inductance  

  
2 2

201

2

N r
W I

l

 
  

      
 27 4 2

2

4 10 10 3.14 1.5 101
100

2 30 10

  



    
 


 

  31.47 10W    Joules     

Example 3: In a certain material for which 06.5   and 

10 25 40 / ,x y zH a a a A m  
   

 calculate the magnetic energy density. 

Solution: Given 06.5   and 10 25 40 /x y zH a a a A m  
   

. The magnetic 

density  
1

.
2

B H 
 

         (1) 

   76.5 4 10 10 25 40x y zB H a a a       
    

 

        781.64 10 25 40 10x y za a a      
 

    7816.4 2041 3265.6 10x y zB a a a    
   

    (2) 

Putting the value of B


 and H


 into eq. (1) , we get 

    71
816.4 2041 3265.6 10 . 10 25 40

2
x y z x y za a a a a a        
       

    71
8164 51025 130624 10

2
     

794906.5 10w    
3 39.49 10 /Joule m    

Example 4  Show that the electromagnetic potentials at the position defined by the 
vector r

  in uniform electric and magnetic fields may be written as 
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  .E r  
 

 and  1

2
A B r 

   

Solution: Let E


 be the electric field, then ˆˆ ˆ
y zE iE jE kE  


 

    .E E r 
    

As E


 is uniform, we can write 

   .E E r
  

         (1) 

In case of electrostatic field 

  E  


         (2) 

Compare eq. (1) and (2), we get 

   .E r  
 

    Ans.     (3) 

For second result, use vector identity (vector triple product) 

 Curl  C D C 
 

 div  .D C grad D
 

 

Put C B
 

 and D r
  , we find  

curl  B r B 
   div  .r B grad r

   

    . .B r B r   
     

Curl    3 2B r B B B   
     

    1

2
B curl B r 
           (4) 

Form the definition of A


 

  B 


 curl A


         (5) 

Compare eq. (4) and (5), we get 

    1

2
A B r 
      Ans.  

Example 5  Find the electric and magnetic fields corresponding to 0   and 

 0 sin yA A kx wt a 
 

.  Are they satisfied Maxwell’s equation in vacuum? What 
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will be the relation between w and k. Also prove that these potentials are in the 
coulomb and Lorentz gauge. 

Solution : Given  0   and  0 sin yA A kx wt a 
 

 

 Since 
A

E
t




  



 

                0 cos yA kx wt a w   
 

   0 cos yE A w kx wt a 
 

       

 and B A 


 

  

 00 sin 0

x y za a a

x y z

A kx wt

  


  


  

 

    0 sinza A kx wt
x


 


  

    0 cos zB A k kx wt a 
   

 Hence . 0E 
 

 and . 0B 
 

       (1) 

      0 0cos sinz zE a A w kx wt A wk kx wt a
x


     



     

   0 sin z

B
A wk kx wt a

t


   






 

Therefore  
B

E
t


 



 
        (2) 

    0 cosyB a A k kx wt
x


   



    

   2
0 sin yA k kx wt a  

 

  2
0 sin y

E
A w kx wt a

t


 





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So 0 0

E
B

t
 


 



 
        (3) 

      2 2
0 0 0 0sin siny yA k kx wt a A w kx wt a    

 

   
2

2
2

w
k

c
   Since 2

0 0

1
c

 
  

   w ck        Ans. 

Therefore 0 0

E
B

t
 


 



 
 provided 2 2

0 0k w   i.e. Maxwell’s equations are 

all satisfied with   and J


 (both) zero as per equations (1), (2) and (3). 

Taking the div. of A


 

  . 0A 
 

 (Coulomb gauge)     Ans. 

Also calculate 0
t





 

Hence . 0A
t





  




 (Lorentz gauge)  

Example 6 Calculate the gauge transformation using the gauge function 

0

1

4

qt

r
     
 

 for the potentials 0   and 
2

0

1

4
r

qt
A a

r
    
 

  . 

Solution: Given 
0

1
, 0

4

qt

r



     
 

  

and 
2

0

1

4
r

qt
A a

r
    
 

   

The gauge transformations are 'A A 
 

 

 and '
t

 
 

 

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  2 2
0 0

1
'

4 4
r

r

qt qt a
A a

r r 
               

 
 

  ' 0A 


 Ans. 

 and  
0

1
' 0

4

q

r



 

   
 

 


 
0

1
'

4

q

r
   

9.8 Self Learning Exercise 

Q.1 What is energy stored in an inductor. 

Q.2 Write the different forms of magnetic energy density. 

Q.3 Maxwell’s equations give the relation between……………. . 

Q.4 Write the expression for Coulomb gauge. 

Q.5 What is the origin of the name “Coulomb gauge.” 

Q.6 Write the non-homogeneous or inhomogeneous wave equations for scalar 
and vector potentials. 

Q.7 Why are potential functions used in electromagnetics. 

Q.8 What do you mean by quasi-static fields. Are they exact solution of 
Maxwell’s equations? 

Q.9 Write the Maxwell’s equations in terms of electro-magnetic potentials. 

Q.10 What is the Lorentz condition for potentials? What is its physical 
significance. 

Q.11 Which gauge allows separation of “near” and “radiation” fields. 

9.9 Summary 
This unit starts with the introduction of energy in the magnetic field. By 

giving the concept of quasi-static fields, we have derived the expression for energy 
and energy density in the magnetic field. Here, we have also introduced the 
concept of scalar and vector potential and derived the electromagnetic fields in 
terms of these potentials. The gauge transformation, Lorentz gauge and Coulomb 
gauge have also been studied in this unit. In the end, some examples on above 
concept are given. 

9.8 Self Learning Exercise 

9.9 Summary 
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9.10 Glary 

Invariant : not changing    

Homogeneous : Containing terms all of the same degree 
9.11 Answer to Self Learning Exercise 

Ans.1:  21

2
W L I

 

Ans.2:  
2

21 1
.

2 2 2
m

B
H B H 


  

 

 
Ans.3:   Electric and magnetic fields. 

Ans.4:  . 0A 
 

 
Ans.5:  The scalar potential is just the instantaneous Coulomb potential due to 

the charge density  ,r t  . This is the origin of the name “Coulomb 

Gauge”. 

Ans.6:  
2

2
2t

   


   


 and 
2

2
2

A
A J

t
 


   



 
 

Ans.7:   By the use of electromagnetic potentials  and A


, the four Maxwell’s 

equations are reduced to two equations i.e. introducing the potentials has 
dramatically reduced the complexity of the equations and corresponding 
increased the ease of finding solution. 

Ans.8:  When sources  and J


 vary slowly with time at a very low 

frequency and the range of interest is small in comparison with the wave 
length, then the fields are called quasi-static fields. These are 
approximations. 

Ans.9: 
2

2
2

.
A

A A J
t t


  

           

   
and  2 .A

t
 


    



 
 

Ans.10 : . 0A
t





  



 
, it is used to uncouple the wave equations 

9.10 Glossary 

9.11 Answer to Self Learning Exercise 
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 for vector and scalar potentials. 

Ans.11:  Coulomb gauge 

9.12 Exercise 
Section  A :  Very Short Answer type Questions 

Q.1   Give the expression for the energy stored in the magnetic field in terms of B


 

and/or .H


 

Q.2  Define the gauge transformations. 

Q.3   What is gauge invariance? 

Q.4   What is the Lorentz condition for potentials? 

Q.5   Write E


 and B


 in terms of potential functions. 

Section  B :  Short Answer type Questions 

Q.6   Prove that the electric field vector  E


 for time varying field is given by 

A
E

t
 

  



 

Q.7   Write the generalized form of Maxwell’s equations. 

Q.8   Why is the Lorentz gauge commonly used? 

Q.9   Are all four Maxwell’s equations independent? Explain. 

Q.10 Why is Coulomb gauge also known as transverse gauge? 

Q.11   A current of 5 Amp. produces a flux of 10 Webers through a coil of 200 
turns. Calculate the energy stored in the magnetic field.  

Section  C :  Long Answer type Questions 

Q.12  Derive an expression for energy stored per unit volume in a magnetic field. 




  
  2

21 1
.

2 2 2
m

B
w H B H  

Q.13  What are electromagnetic potentials? Obtain Maxwell equations in terms of 

 electromagnetic potentials. 
Q.14  What do you understand by Lorentz gauge and Coulomb gauge? Show that 

9.12 Exercise 
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 coupled non-homogeneous or inhomogeneous Maxwell’s equations are 
uncoupled by a gauge transformation. 

Q.15 Discuss the non-uniqueness of electromagnetic potentials and hence explain 
the significance of gauge transformations. 

Q.16  Obtain Maxwell’s equations in terms of scalar and vector potentials using 
Coulomb’s gauge for potentials. Discuss the usefulness of this gauge also. 

9.13 Answers to Exercise 

Ans.1:  1
.

2
m H BW dv 

 
 

Ans.2: 'A A 
 

 and '
t

 
 

 


 

Ans.3: The invariance of electric and magnetic fields under gauge 
transformations is known as gauge invariance. 

Ans.4: . 0A
t





  



 
 

Ans.5: 
A

E
t

 
  




 and B A

 
 

Ans.11:   
35 10 Joule  
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Structure of the Unit 

10.0 Objectives 

10.1 Introduction 

10.2 Displacement current and Maxwell equations 

10.3 Derivation of the equations of Macroscopic Electromagnetism 

10.4 Poynting’s theorem (Conservation of energy for a system of charged 
particles and electromagnetic fields) 

10.5 Conservation of momentum for a system of charged particles and 
electromagnetic fields 

10.6 Conservation Laws for Macroscopic media 

10.7 Illustrative Examples 

10.8 Self-learning Exercise 

10.9 Summary 

10.10  Glossary 

10.11 Answer to self-learning exercise 

10.12 Exercises 

10.13  Answers to Exercise 

References and Suggested Readings 

10.0 Objectives 
In the previous chapters, we studied the problem releated to steady state 

electric and magnetic fields, where electric and magnetic phenomena were treated 
as independent. This independent nature of electric and magnetic phenomena 
disappears when we consider time dependent problems. The Faraday’s induction 
law and Ampere’s modified law destroyed the independence i.e. time varying 

UNIT-10 
Macroscopic Electromagnetism, 

Conservation Laws   

10.0 Objectives 
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magnetic fields give rise to electric fields and vice versa. Such type of fields are 
called electromagnetic fields. In this chaper, first we will derive the macroscopic 
Maxwell equations of electromagnetism from the microscopic Maxwell equations. 
This chapter also covers Poynting’s theorem (conservation of energy) and 
conservation of momentum for a system of charged particles and electromagnetic 
fields and conservation laws for macroscopic media. 

10.1 Introduction  
The basic laws of electrostatics and magnetostatics are summarized in four 

differential equations as Gauss’s law, Faraday’s law, Gauss’s law for 
magnetostatics and Ampere’s law, respectively. These static equations will not 
hold unchanged for time dependent fields, because the Ampere’s law was derived 

for steady state current phenomena with . 0J 
 

. According to the continuity 

equation for charge and current . 0J 
 

, therefore the Ampere’s law should be 
modified. In 1865, J.C. Maxwell added a term in Ampere’s law and this added 
term was known as displacement current. The modified Ampere’s law is the 
converse of Faraday’s law. Without it there would be no electromagnetic radiation, 
hence it was Maxwell’s prediction that light was an electromagnetic wave 
phenomenon. Thus the set of four equations known as the Maxwell’s equations 
describe the behaviour of electromagnetic fields. 

Microscopically, the matter made up of electrons and nuclei. The nuclei can be 

treated as point systems for dimensions large compared to 1410 m . The equations 
governing electromagnetic phenomena for these point charges are the microscopic 
Maxwell equations. The microscopic electromagnetic fields produced by these 
charges vary rapidly in space and in time. Therefore all the microscopic 
fluctuations are averaged out to give relative smooth and slowly varying 
macroscopic quantities, and thereby obtain a set of macroscopic Maxwell 
equations. The Poynting’s theorem will explain about the conservation of energy 
for a system of charged particles and electromagnetic fields. 

10.2 Displacement Current and Maxwell’s Equations 
From Ampere’s law  

 H J 
  

             (1) 

10.1 Introduction  

10.2 Displacement Current and Maxwell’s Equations 
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Taking divergence of eq. (1), we get 

  . . 0H J    
  

           (2) 

Since divergence of curl of vector always vanishes. 

From the equation of continuity for charge and current, we know that 

 


  


 
. 0J

t
            (3) 

i.e. from eqs. (2) and (3), we get 

 0
t

 
 


= constant in time. 

Thus eq. (1) provides condition for steady state in which charge density remains 
constant with respect to time. Hence Ampere’s law is not in accordance with the 
equation of continuity for time varying fields.  

Therefore equation (1) should be modified for time varying fields. Maxwell 
suggested that the definition of total current density is incomplete and advised to 
add something to J


. Let this something is dJ


. The eq. (1) becomes 

 dH J J  
   

           (4) 

Taking divergence on both sides 

    . . dH J J    
    

 

   0 . . dJ J  
  

 

   . .dJ J  
  

 

Using eq. (3), we get 

 . dJ
t


 



 
             (5) 

From Gauss’s law .D  
 

, therefore eq.(5) can be written as 

  . .dJ D
t


  



  
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 . .d

D
J

t


  



 
 

or . 0d

D
J

t

     

 
 

This equation is valid for any volume, hence  

 0d

D
J

t


 




 

  d

D
J

t







             (6) 

Put the value of dJ


 from eq. (6) to eq. (4), we get 

 


  


   D
H J

t
            (7) 

or 
E

B J
t

  
  



  
           (8) 

This is the corrected form of Ampere’s law for time varying fields. The additional 

term 
D

t





 has the dimensions of current density. Since it results from a time 

varying electric flux density or displacement density, therefore it was termed as a 
displacement current density by Maxwell. A typical example of such current is the 
current through a capacitor when an alternating voltage source is applied to its 
plates.  

According to modified Ampere’s law a changing electric field produces a magnetic 
field and according to Faraday’s law a changing magnetic field produces an 
electric field. Thus dJ


 (displacement current density) results into unification of 

electric and magnetic phenomena. Such type of unification of electric and 
magnetic phenomena are known as electromagnetic fields. The set of four 
equations known as the Maxwell equations, describe the behaviour of 
electromagnetic fields. These equation are as follows:- 
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Differential form Integral Form Remarks 

.D  
 

  
    

.
s v

D d s dv Q  
   Gauss’s Law 

 

. 0B 
 

  
  

. 0
s

B d s 
   Non existence of 

isolatedMagnetic charge 

B
E

t


  



 
 . .

L s

B
E dl ds

t


 

 
   

Faraday’s law 

 

D
H J

t


  



  
 . .

L s

D
H dl J ds

t

     
    

Ampere’s modified law 

 

The connections of E


 and B


 with D


 and H


, respectively given by following 
constitutive relations for linear media 

      
    

0 0 0eD E P E E  

     
  

0 1 eD E E  

and         
    

0 0 mB H M H H  

      
  

0 1 mB H H  

Maxwell equations combined with the Lorentz force equation and Newton’s 
second law of motion provide a complete description of the classical dynamics of 
interacting charged particles and electromagnetic fields. 

10.3 Derivation of the Equations of Macroscopic 
Electromagnetism 
Let us consider a microscopic world made up of electrons and nuclei. The nuclei 

can be treated as point system for the dimensions large then 1410 m. The equations 
governing electromagnetic phenomena for these point charges are called the 
microscopic Maxwell equations. These equations are as follows:- 

 
0

.e



 
      

b
e

t


  



   

10.3 Derivation of the Equations of Macroscopic 
Electromagnetism 
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 . 0b 
 

    0 0 0

e
b j

t
   

  


  
      (1) 

where e
  and  b


 are the microscopic electric and magnetic fields, respectively and 

  and j


 are the microscopic charge and current densities. There are no 

corresponding fields d


 and h


 because all the charges are included in   and j


. 
The microscopic electromagnetic field functions produced by point charges vary 

rapidly in space over the atomic distances (of the order of 1010 m or less). These 
functions can be regarded as sums of delta functions. However, macroscopic 
functions only measure the averaged quantity. Hence there is a need to develop an 
averaging method to reduce microscopically fluctuating functions to 
macroscopically smooth functions, and thereby obtain a set of macroscopic 
Maxwell equations. 

If we replace each delta function  0X X 
 

 in the microscopic distribution 

function with a smooth function  0f X X
 

 subject to the condition  

  3
0 1f X X d x 

 
           (2) 

and if the width L of  0f X X
 

 is much greater than the atomic distance 

 8~10 m , then the sum of many such functions will become a smooth function 

representing the spatially average of microscopic Maxwell equations. 

 
 

FIG. 10.1 

L

 0X X 
 

 0f X X
 

0X X
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The spatial average of a function  ,F X t


 with respect to a test function  f X


 is 

defined as 

       3, ' ', 'F X t f X F X X t d x 
   

        (3) 

where  f X


 is real, non zero smooth function centered at 0X 


. 

 
FIG. 10.2 Test function  f X


 used in the spatial averaging procedure 

Therefore the macroscopic electric and magnetic field quantities E


 and B


 are 

defined as the average of the microscopic fields e  and b


 i.e. 

    , ,E X t e X t
  

 

    . ,B X t b X t
  

           (4) 

Then the averages of the two homogenous equations in eq. (1) become the 
corresponding macroscopic equations 

 . 0 . 0b B    
  

           (5) 

 0 0
b B

e E
t t

 
     

 

   
         (6) 

The averaged inhomogeneous equations from eq. (1) become 

  0 . ,E X t  
  

           (7) 

  0
0

,
E

B j X t
t



 

  


  
         (8) 

Nucleus
electron

  tes t f u n ct io nf X


8~ 10 m
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The derived fields D


 and H


 are introduced by the extraction from   and j


 

of certain contributions that can be identified with the bulk properties of the 
medium. 

We consider a medium made up of molecules composed of nuclei and electrons as 
well as free charges that are not localized around any particular molecule. 
Therefore to distinguish the bound charges form the free charges, we can 
decompose the microscopic charge density   as 

 free bound                (9) 

The averaged microscope charge density reduces to 

      , , ,f bX t X t X t   
  

 

            , . ,f X t P X t 
  

       (10) 

where f  is the macroscopic charge density and it is given by 

      
  

,f j j n n
j free n molecule

X t q X X q X X          
    (11) 

and P


 is the macroscopic polarization, which is given as 

    
 

, n n
n molecule

P X t p X X            (12) 

Similarly, the averaged microscopic current density can be expressed as 

  , f b Pj X t J J J  
   

 

              ,
, ,f

P X t
j X t M X t

t


    



         (13) 

where fJ


 is the macroscopic current density, which is given as  

    
 

 
 

,f j i j n n n
j free n molecule

J X t q v X X q v X X              (14) 

and M


 is the macroscopic magnetization, which is given as 
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    
 

, n n
n molecule

M X t m X X            (15) 

The polarization current density 
 ,

P

P X t
J

t






 


        (16) 

involves a flow of bound charge as shown in fig. 10.3 

 
 

FIG. 10.3 Polarized Material 

Inserting eqs. (10) and (13) into eqs. (7) and (8), respectively, we obtain the 
macroscopic inhomogeneous equations: 

  0 0. . .f fE P E P         
     

 

    
 

. fD           (17) 

where 0D E P 
  

 

 0
0

1
f

E P
B J M

t t



 

    
 

    
 

   0
0

f

B
M J E P

t



  

       

    
 

 


  


  
f

D
H J

t
         (18) 

where 


 
 

0

B
H M  and  

  
0D E P  

Thus, the macroscopic Maxwell equations or Maxwell equations in matter are as 
follow:- 

P


da

b ˆ.b P n P  

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 

 


   




  


 
 

 

  

.

. 0

f

f

D

B

B
E

t
D

H J
t

     …(19) 

The relations between E


 and B


 with D


 and H


 respectively are given by 
constitutive relations, i.e.  

 
 
D E  and 

 
B H          (20) 

10.4 Poynting’s theorem (Conservation of Energy for a 
System of Charged Particles and Electromagnetic Fields) 
Electromagnetic waves carry with them electromagnetic power. Energy is 
transported through space to distant receiving points by electromagnetic waves. 
The rate of such energy transportation can be obtained from Maxwell’s equations. 

 
B

E
t


  



 
            (1) 

and 
D

H J
t


  



  
            (2) 

Taking dot product both sides of eq. (2) with E


 gives  

  . . .
D

E H E J E
t


  



    
 

But D E
 

 and J E


 

   2 ..
E

E EE H
t

  
  



  
          (3) 

As we know that for any two vector fields A


 and B


 

      . . .A B B A A B    
      

 

10.4 Poynting’s theorem(Conservation of Energy for a 
System of charged particles and Electromagnetic Fields) 
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Putting A H
 

 and B E
 

 in this vector identity, we get 

      . . .H E E H H E     
       

 

       . . .E H H E H E    
       

        (4) 

From eqs. (3) and (4), we obtain 

      2. . .
2

H E H E E E E
t

 
    



      
        (5) 

From eq. (1)    . .
2

H
H E H H H

t t

          

    
 

Putting the value of  .H E
 

 into eq. (5), we get 

  
2 2

2.
2 2

H E
H E E

t t

 


 
    

 

  
 

   
2 2

21 1
.

2 2

E H
E H E

t t
  

 
     

 

  
        (6) 

Taking the volume integral of both sides, 

   2 2 21 1
.

2 2
v v v

E H dv E H dv E dv
t

  
            

  
 

Applying the divergence theorem to the left-hand side of above mentioned eq. 
gives- 

       

  2 2 21 1
.

2 2

Total power leaving Rate of decrease in Ohmic power

the volume through energy stroed in electric dissipated

its surface and magnetic fields,

respectively

s v v

E H d s E H dv E dv
t

  
         

  

  
  

             (7) 
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Equation (7) is referred as Poynting’s theorem. It is also known as the 
conservation of energy for electromagnetic fields. The first term on the right hand 
side of eq. (7) is interpreted as the rate of decrease in energy stored in the electric 
and magnetic fields, respectively. The second term is the power dissipated due to 
the fact that the medium is conducting  0  . Therefore, to be consistent with 
the law of conservation of energy, this must be equal to the power (rate of energy) 

leaving the volume through its surface. Thus the quantity  E H
 

 on the left hand 

side of eq. (7) is a vector representing the power flow per unit area or energy per 
unit area per unit time, which is defined as  

    
   2/E H Watt m           (8) 

Quantity 


 is known as the Poynting vector, which represent the instantaneous 
power density vector associated with the electromagnetic field at a given point. 
The integration of the Poynting vector over any closed surface gives the net power 
flowing out of that surface. 

Therefore Poynting’s theorem states that the net power flowing out of a given 
volume v  is equal to the time rate of decrease in the energy stored within v  
minus the conduction losses. 

Since matter is ultimately composed of charged particles i.e. electrons and atomic 
nuclei. According to the Lorentz force law, the work done on a charge q  is 

  . .F dl q E v B dl  
   

           (9) 


 

.dW qE vdt  

The magnetic field does no work, since the magnetic force is perpendicular to the 
velocity. 

  
 .dW

qE v
dt

 

    .dvE v
   

    .E vdv
   

    
  2.

dW
E J dv E dv

dt
         (10) 
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If there exists a continuous distribution of charge and current, the total rate of 
doing work by all the charges or fields in a volume v  is 

   2.
v v

dW
E J dv E dv

dt
  

 
        (11) 

The work done per unit time per unit volume by the fields  .E J
 

 is conversion of 

electromagnetic energy into mechanical or heat energy, so that 

  .mech

v

dEdW
E J dv

dt dt
  

 
         (12) 

The total energy stored in electromagnetic fields is 

  2 21

2
field

v

E E H dv           (13) 

Then using eqs. (11), (12) and (13) in Poynting’s theorem eq. (7) expresses the 
conservation of energy for the combined system of charged particles and fields as  

   .mech field
s

dE d
E E ds

dt dt
    

         (14) 

          
 

.mech field

v v

d
e e dv dv

dt
 

Where meche  and fielde  are the mechanical energy density and energy density of the 

fields, respectively. Therefore 

  
   



 
.mech fielde e

t
        (15) 

This is the differential version of Poynting’s theorem. Compare it with the 
continuity equation (conservation of charge) 

 .J
t


 



 
           (16) 

We can say that the charge density is replaced by the energy density (mechanical 
plus electromagnetic) and the current density is placed by the Poynting vector. 
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10.5 Conservation of Momentum for a System of Charged 
Particles and Electromagnetic Fields 

The total electromagnetic force on a charged particle is  

    
  F q E v B             (1) 

Denoting mech


 as the total momentum of all particles in the volume v , we can 
write form Newton’s second law 

  mech
total

v v

dP
F E J B dv fdv

dt
     

    
        (2) 

We use the Maxwell equations to eliminate   and J


 from eq. (2) 

0 0 0
0

. ,
E

E B J
t


  




    


   
 

     0 0
0

1
. ,

E
E J B

t
  




    


   
       (3) 

Substituting eq. (3) into eq.(2) the integrand or force per unit volume or force 
density becomes 

    0 0
0

1
.

E
f E J B E E B B B

t
  




         


         
 

    2
0 .

E
f E E B c B B

t
          

      
        (4) 

where 2

0 0

1
c

 
  

The term 
E

B
t







 can be written as 

  E B
B E B E

t t t

  
     

  

    
 

10.5 Conservation of Momentum for a System of Charged 
Particles and Electromagnetic Fields 
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     E B E E
t

        

  
 using Faraday’s law 

    E
B E B E E

t t

 
      

 

     
               (5) 

Substituting eq. (5) into eq. (4) and adding  2 . 0c B B 
  

 to the square bracket 

for the symmetry of equation because . 0B 
 

, we get 

         2 2
0 0. .f E E c B B E E c B B E B

t
                

            
      (6) 

          0 0
0 0

1
. .f E E E E B B B B E B

t
 

 
  

              

             
      (7) 

The total electromagnetic momentum fieldP


 in the volume v  defined as 

  0field

v

P E B dv 
  

 

                   0 0 0 0

v v

E H dv dv       
 

                      (8) 

The integrand part can be interpreted as a density of electromagnetic momentum 

 emg . It is defined by a vector 

      
 

0 0 2

1
emg E H

c
               (9) 

Now identity from vector calculus says 

          . . .A B A B B A A B B A          
            

 

If ,A B E 
  

 we get 

      2 2 2 .E E E E E     
    

 

       21
.

2
E E E E E     

    
            (10) 
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Similarly      21
.

2
B B B B B     

    
        (11) 

Putting these values into equation (7), we get 

         2 2
0 0 0 0

0 0 0

1 1 1 1
. . . .

2
f E E B B E B E E B B E B

t
   

  
  

               

             

         2 2
0 0 0

0 0

1 1 1
. . . .

2
f E E E E B B B B E B E B

t
  

 
                       

             

                (12) 

Now we can introduce the Maxwell stress tensor T


 which is a 3 3  matrix with 
components defined by 

 2 2
0

0

1 1 1

2 2
ij i j ij i j ijT E E E B B B  


         
   

     (13) 

where ij  is Kronecker delta and it is 1 if the indices are the same and zero 

otherwise. The indices i  and j  refer to the coordinates ,x y  and z . 

If we define the scalar product of the tensor with an ordinary vector to be another 
vector. 

  . i ijj i
a T a T 


          (14) 

where the subscript j  indicates the thj  component of the resulting vector, then thj  

component of divergence of T


 is  

 . i ijj i
T T    
 

          (15) 

   
 

.
j

T     2
0

1

2
i i j i i j ij i

i

E E E E E           

       2

0

1 1

2
i i j i i j ij i

i

B B B B B


           16) 

    2
0

1
. . .

2
j j jj

T E E E E E             

    
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      2

0

1 1
. .

2
j j jB B B B B


        

  
    (17) 

Comparing eq.(17) with eq.(12), we can write force per unit volume  f


 in term 

of Maxwell stress tensor  T


 and Poynting vector 


 as 

  


  


 
0 0.f T

t
         (18) 

Then the total force on the volume v  is given as 

 total

v

F fdv 


   0 0.
v

T dv
t

 
 

    


 
      (19) 

Apply the divergence theorem to the first term in the integrand, we get 

 0 0.total

s v

F T nds dv
t

  
  

 
           (20) 

where n  is the outward normal to the closed surface S . 

  0 0 . .total

v s s

F dv T nds T d s
t

  
   

   
           (21) 

Using eqs. (2) and (8), we can write eq.(21) as follows 

 .fieldmech

s

dPdP
T d s

dt dt
  
     

    
   .mech field

s

d
p p T d s

dt
        (22) 

This equation represents a statement of conservation of momentum. T


 is the flow 
per unit area of momentum across the surface S  into the volume or it is the force 
per unit area transmitted across the surface S  and acting on the combined system 
of particles and fields inside v . More precisely ijT  is the force per unit area in the 

thi  direction acting on an element of surface oriented in the  thj  direction. 
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Therefore diagonal elements  , ,xx yy zzT T T  represent pressures and off-diagonal 

elements  , ,...xy xzT T etc  are shears. 

Using eq. (9), we can write eq. (19) as follows 

  .em

v v

dg
f dv T v

dt
    
  

  
 

   .mech em

v v

dp dg
dv T dv

dt dt
    
  
   

 

where mechp


 and g


 are the density of mechanical momentum and density of 
electromagnetic momentum, respectively. Therefore 

   .mech emp g T
t


  



            (23) 

This is differential form of conservation law of momentum. Comparing it from the 

continuity equation, we can say that T


 is the momentum current density. Thus, 

the Poynting vector  


 and Maxwell stress tensor  T


 play dual role. 


 itself is 

the energy per unit area, per unit time transported by the electromagnetic fields, 

while 0 0 emg   
 

 is momentum per unit volume stored in those fields. Similarly 

T


 is itself is the electromagnetic force per unit area acting on a surface and T


 
describes the flow of momentum current density transported by the fields. 

10.6 Conservation Laws for Macroscopic Media 

The conservation law of energy or Poynting’s theorem was derived using the 
macroscopic Maxwell equations, but the conservation of momentum and the 
Maxwell stress tensor were discussed only for the microscopic equations. The 

electromagnetic energy density fielde , energy flow 


, momentum flow emg


 and 

stress tensor ijT  must be defined carefully for bulk matter because considered 

electromagnetic and mechanical concept are to some extent arbitrary. 

There are the Minkowski (1908) results based on the macroscopic Maxwell 
equations to the conservation of momentum as well as energy. There are the 

10.6 Conservation Laws for Macroscopic Media 
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previously obtained expressions for electromagnetic energy density fielde  and the 

Poynting’s vector 


, but with the momentum density and stress tensor given by 

 emg D B 
               (1) 

and   1
. .

2
ij i j i j ijT E D H B E D B H       

   
        (2) 

The medium is assumed to be linear, but not necessarily isotropic in its response. 
Since the stress tensor is not symmetric for anisotropic media. The Hertz and 
Abraham were first few physicists, who replaced eq. (2) with a symmetrised form. 

The Minkowski expression given by eq. (1) for emg


 is generally viewed as 
unacceptable as the electromagnetic momentum density. All workers agree on the 
definition. 

      
 

0 0 2

1
emg E H

c
          (3) 

This result emerges from a statistical mechanical treatment of the system of matter 
plus fields in which the electromagnetic quantities are defined as the difference 
between the quantities for the combined system and those for the matter system at 
the same equilibrium temperature T  and density  , but with zero fields. With this 
definition, the energy and momentum flow densities are given by 

 E H  
  

             (4) 

and  0 0emg E H  
 

           (5) 

For Linear and isotropic medium with D E
 

 and B H
 

, the electromagnetic 

energy density  e  and the electromagnetic stress tensor  ijT  are given by 

 2 21

2
e E T H T

T T 

 
 

                            
      (6) 

and 2 21

2
ij i j i j ij

T T

T E E H H e
 

       
 

        
                        

    (7) 
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These reduce to the Minkowski expression for electromagnetic energy density e  
and Maxwell stress tensor ijT  only for the unphysical situation in which   and   

are independent of temperature and density. 

10.7 Illustrative Examples 

Example 10.1 Show that equation of continuity is contained in Maxwell’s 
equations. 

Solution From Ampere’s modified law (IV eq.), we know 

 
D

H J
t


  



  
             (1) 

Taking divergence of either side of eq. (1), we obtain 

  . .
D

H J
t

       

   
          (2) 

Since  . 0H  
  

 because divergence of curl of any vector always vanishes, 

therefore equation (2) becomes 

 . 0
D

J
t

     

 
 

  . . 0
D

J
t


  



 
 

   . . 0J D
t


   



  
           (3) 

From Gauss’s law ( stI  eq.), we know .D  
 

, therefore eq.(3) becomes 

 . 0J
t


  



 
 

This is the equation of continuity.       

Example 10.2 Calculate the amplitudes of electric and magnetic field of radiation, 

when the earth receives 3.8 cal 1 2min cm   solar energy. 

Solution Given energy flux per unit area per second at earth is  

10.7 Illustrative Examples 
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4

1 2 23.8 4.2 10
3.8 min /

60
cal cm Watt m   

   

From pointing theorem, the energy per unit area per second is 

 E H  
  

 

 EH   

 
43.8 4.2 10

60
EH

 
  

 22660 /EH Watt m                       (1) 

But 0

0

120 376.8
E

H





             (2) 

From eqs. (1) and (2), we get 

 2 2660 376.8E    

 2660 376.8E    
 1001.14 /E Volt meter  

Substituting this value of E  in eq. (1), we get 

 
2660

1001.14
H   

 2.65 /H Amp meter  

Therefore the amplitudes of electric and magnetic fields of radiation are  

 0 2 1001.14 2 1415.82 /E E Volt meter     

and 0 2 2.65 2 3.74 /H H Amp meter       Ans. 

Example 10.3  A long coaxial cable carries current I  (the current flows down the 
surface of the inner cylinder, radius a  and back along the outer cylinder, radius b ) 
as shown in Fig. 10.4 Calculate the power (energy per unit time) transported down 
the cables, assuming the two conductors are held at potential difference V  and a 
uniform charge per unit length  . Also calculate the electromagnetic momentum 
stored in the fields. 
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
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
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








b

a

I

l

R

I 
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FIG. 10.4 

Solution The electric field a distance r  from a line charge density   is 

 
0

ˆ
2

E r
r







             (1) 

and according to Ampere’s law, the magnetic field between the cylinders is  

 0 ˆ
2

I
B

r

 





             (2) 

Therefore Poynting vector (energy per unit area per unit time) is 

  
0

1
E H E B


    
    

           (3) 

From eqs. (1), (2) and (3), we get 

 0
2 2

0 0

1
ˆ

4

I
z

r

 
  

 


 

 
2 2

0

ˆ
4

I
z

r


 

 


 

Therefore power (energy per unit time) is given by  

 
2 2

0

. 2
4

b

a

I
p d s rdr

r

 
 

   
   

    
02

b

a

I dr

r




   

V
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0

ln
2

I b
p

a




   
 

           (4)  

But 
0 0

. ln
2 2

b b

a a

dr b
V E dr p VI

r a

 
 

      
  

        (5) 

The momentum in the field is given by 

 0 0fieldP dv  


 

          0 0 2 2
0

2
ˆ

4

b

a

I l rdr
z

r

 
 

 
   

          0

2

b

a

I l dr

r

 


   

 0 ˆln
2

field

I l b
P z

a

 


   
 


           (6) 

The cable is not moving and the fields are static. In fact, if the centre of mass of 
localized system is at rest, its total momentum must be zero. In this case, it turn out 
that there is hidden mechanical momentum associated with the flow of current and 
this exactly cancels the momentum in the fields. 

Suppose that we turn up the resistance, so the current decrease. The changing 
magnetic field will induce an electric field as follows- 

 0 ˆln
2

dI
E r k z

dt




    


           (7) 

where k  is constant and it is a function of time. This field exerts a force on   

 0 0ˆ ˆln ln
2 2

dI dI
F l a k z l b k z

dt dt

  
 

            


 

 0 ˆln
2

l dI b
F z

dt a

 


    
 


          (8) 

Therefore the total momentum imparted to the cable as the current drops from I  to 
0, is 
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 mechP Fdt 
 

 

 0 ˆln
2

mech

Il b
P z

a

 


    
 


           (9) 

which is precisely the momentum originally stored in the field. The cable will not 
recoil because an equal and opposite impulse is delivered simultaneously. 

Example 10.4   Consider an infinite parallel plate capacitor with the lower plate at 

2

d
z    carrying the charge density   and the upper plate at 

2

d
z    carrying 

the charge density   as shown in fig. 10.5 

(a) Determine the Maxwell stress tensor in the region between the plates and 
display in matrix form. 

(b) Determine the force per unit area on the top plate and momentum per unit 
area per unit time crossing the xy  plane. 

Solution (a) 
0

0,x y zE E E



     and 0B 


 

 

 

 

 

 

  

 

Therefore ... 0xy xz yzT T T             (1) 

 
2

20

02 2
xx yyT T E

 


               (2) 

 
2

2 2 2 2 20
0 0

0

1 1

2 2 2 2
zz z z z zT E E E E E

 
 


              

      (3) 

z

x

y

+ 

- 

. 10.5Fig
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Therefore the Maxwell stress tensor in matrix form is written as using eqs. (1), (2) 
and (3) 

 
2

0

1 0 0

0 1 0
2

0 0 1

T



 
   
  


           (4) Ans. 

(b) .
s

F T ds 
    (Since 0 


 because  0B 


) 

Integrate one the xy plane i.e. ˆds dxdyz 
 (negative sign because of outward 

with respect to a surface enclosing the upper plate). Therefore  

 
2

02
z zz zF T ds A




    

 
2

02

F
f z

A




  
                       (5)  

   
2

02
zzT




            (6)  

which is the momentum in the z -direction crossing a surface perpendicular to z . 

10.8 Self Learning Exercise 

Q.1  Write the integral form of Maxwell’s equations and identify each equation 
with the proper experimental law. 

Q.2  Explain the significance of displacement current. 

Q.3  Are all four Maxwell’s equations independent? Explain. 

Q.4  What is the velocity of propagation of electromagnetic waves? 

Q.5  Define Poynting vector. 

Q.6  What do you mean by microscopic Maxwell’s equations? 

Q.7  Write the expression for electromagnetic energy density. 

Q.8  Write the relation between density of electromagnetic momentum and 
Poynting vector. 

10.8 Self Learning Exercise 
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Q.9  What is Kronecker delta? 

Q.10 Define the Maxwell’s stress tensor. 

Q.11 Write the expression for microscopic charge density. 

Q.12 Whether the corresponding fields d


 and h


 in the microscopic Maxwell’s 
equations mentioned. Yes or no. Explain it. 

10.9 Summary 
This unit starts with the introduction of electromagnetic fields. By giving the 
concept of displacement current, we have introduced Maxwell’s equations for 
electrodynamics and derive the macroscopic Maxwell’s equations for 
electromagnetism. We have also discussed about Poynting theorem (conservation 
of energy) and momentum for a system of charged particles and electromagnetic 
fields. The conservation laws for macroscopic media have also been discussed in 
the last section of unit. In the end, some examples on above concepts are given. 

10.10 Glossary 
Invariant: not changing    
Homogeneous: Containing terms all of the same degree 

Localized: happening in or limited to a particular area 

10.11 Answers to Self Learning Exercise 

 Ans.1:   .
s

D ds Q
      Gauss’s law 

 . 0
s

B ds 
       no isolated magnetic charge 

 . .
L s

B d
E dl ds

t dt


   

 
    Faraday’s law 

 . .
L s

D
H dl I ds

t


 

 
     Ampere’s modified law 

 Ans.2: The presence of displacement current means that a changing electric field 
causes a magnetic field, even in the absence of a current flow. It provides the 

10.9 Summary 

10.10 Glossary 

10.11  Answers to Self Learning Exercise 
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converse of Faraday’s law. Thus the displacement current results into unification 
of electric and magnetic phenomena. 

 Ans.3: No, as a matter of face, the two divergence equations can be derived from 
the two curl equations by making use of the equation of continuity. 

 Ans.4: 
0 0

1
v c

 
   

 Ans.5: The energy per unit time, per unit area, transported the fields is called 
Poynting vector. 

 Ans.6: The equations governing electromagnetic phenomena for charges and 
currents at the atomic level are called Microscopic Maxwell equations. 

 Ans.7: 
2

2
0

0

1

2
em

B
e E


 

  
 

 

 Ans.8:  0 0 2

1
emg E H

c
    

   

 Ans.9: ij  is the Kronecker delta. It is 1 if the indices are the same and zero 

otherwise. 

 Ans.10: Maxwell stress tensor  T


 is the force per unit area acting on the 

surface. 

Ans.11:    , j j
j

X t q X X t      
  

 

 Ans.12: There are no corresponding fields d


 and h


 because all the charges are 

included in   (microscopic charge density) and j


  (microscopic current density). 

10.12 Exercise 

Section A: Very Short Answer Type Questions 

Q.1 How can be obtained the macroscopic Maxwell equations from microscopic 
Maxwell equations. 

Q.2  Write the expression for Poynting vector and its SI unit. 

Q.3  Define the Maxwell stress tensor more precisely. 

10.12  Exercise 
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Q.4  How Poynting vector plays a dual role. 

Q.5  Write the differential form of conservation law of momentum. 

Q.6  How Maxwell Tensor  T


 plays a dual role. 

Section B: Short Answer Type Questions 

Q.7  Write down the microscopic Maxwell equations. 

Q.8 State the Poynting’s theorem. 

Q.9  Write the expression for Maxwell stress tensor. 

Q.10 Write the express for conservation of energy for the combined system of 
particles and fields. 

Q.11 Define the statement of conservation of momentum for the combined system 
of particles and fields. 

Q.12 Write down the Macroscopic Maxwell equations. 

Section C: Long Answer Type Questions 

Q.13 Define the equations of macroscopic electromagnetism from microscopic 
Maxwell equations. 

Q.14 Obtain the Poynting theorem for the conservation of energy in an 
electromagnetic field and discuss the physical meaning of each term in the 
resulting equation. 

Q.15 State and establish Poynting theorem for conservation of energy in an 
electromagnetic field. What is the physical significance of the Poynting 
vector. 

Q.16 Derive the expression for conservation of momentum for a system of charged 
particles and electromagnetic fields. 

Q.17 Establish Maxwell’s equations for the electromagnetic fields and obtain an 
expression for Poynting vector. 

10.13 Answers to Exercise 

Ans.1: The macroscopic Maxwell equations are obtained by taking spatial average 
of the microscopic Maxwell equations. 

10.13 Answers to Exercise 
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Ans.2:  2/E H Watt m  
  

 

Ans.3: T


 or ijT  (Maxwell stress tensor) is the force per unit area in the thi  

direction acting on an element of surface oriented in the thj  direction. 

Ans.4: Poynting vector  


 itself is the energy per unit area, per unit time 

transported by the electromagnetic fields, while 0 0  


 is the momentum per unit 
volume stored in these fields. 

Ans.5:   .mech emP g T
t


 



   

Ans.6: T


 itself is the electromagnetic force per unit area acting on a surface and 

T


 describe the flow of momentum current density transported by the fields. 
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UNIT-11 
Plane Wave in a Non-Conducting Medium 

Structure of the Unit 
11.0  Objectives 

11.1  Introduction 

11.2  Basic review of Maxwell’s Equations 

11.3  Derivation of the Wave Equation 

11.4 Solution to the wave equation  for Partially Conducting Media 

11.5  Solution to the wave equation  for Perfect Dielectrics 

11.6  Solution to the wave equation  in Free Space 

11.7  Solution to the wave equation  for Good Conductors: Skin Depth 

11.8  Illustrative Examples 

11.9  Self Learning Exercise 

11.10 Illustrative Examples 

11.11  Summary 

11.12  Glossary 

11.13  Answers to Self Learning Exercise 

11.14 Exercise 

11.15 Answers to Exercise 

 References and Suggested Readings 

11.0 Objectives  

In this chapter our objectives are 

(i)To derive wave equation, with the help of Maxwell’s equations, that propagates 
through a non-conducting medium. 

(ii)Solutions of the wave equation for good conductors; skin depth. 

(iii)Intrinsic impedance of the medium 

UNIT-11 
Plane Wave in a Non-Conducting Medium 

11.0 Objectives  
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(iv)Solutions of the wave equation for perfect dielectrics. 

11.1 Introduction 
  This chapter is concerned with plane waves in unbounded or semi-infinite 
media. The basic properties of plane electromagnetic waves in non conducting 
media-their transverse nature, are treated on the basis of Maxwell’s equations. In 
this chapter we shall start with Maxwell’s equations which are the fundamental 
equations of electromagnetic field theory. When fields are time – variable, the 

magnetic field  cannot exist without are  field nor can  exist without a 

corresponding  field. All these facts are best illustrated in the form of a 
complete set of equations, called Maxwell’s equations. 

11.2 Basic Review of Maxwell’s Equations 
 The equations grouped below were separately developed in the form of 
Ampere’s law, Faraday’s law, Gauss’s law, and non existence of monopole. 
However these laws were extended so as to include time-varying fields by 
Maxwell. Maxwell’s equations are: 

Differential form Integral form  

  (Ampere’s l) 

  

. fD  
 

  (Gauss’s law) 

  (non existence of monopole) 

 For free space, where there are no charge  and no conduction currents 

, Maxwell’s equations take the form shown below: 

Maxwell’s equations, Free-space 

Differential form Integral form  

   

H


E


E


H


C
DH J
t


  



  
. .C

S

DH dl J dS
t

 
   

 
  


BE
t


  



 
. .

S

BE dl dS
t

 
   

 
 



.
V

D dS dV 




. 0B 
 

. 0B dS 




 0 

 0CJ 


DH
t


 



 
. .

S

DH dl dS
t

 
   

 
 



11.1 Introduction 

11.2 Basic Review of Maxwell’s Equations 
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 The first and second equations (differential form) in the free-space set can 

be used to show that time variable  and  fields cannot exist independently. 
For example, if  is a function of time, then  will also be a function of 

time, so that  will be non zero. Consequently,  is non zero, and so a none 

zero  must exist. In a similar way, the second equation can be used to show that 

if  is a function of time, then there must be an  field present. 

 The differential form of Maxwell’s equations is used most frequently in the 
problems. However, the integral form is important in that it better displays the 
underlying physical laws. 

11.3 Derivation of the Wave Equation 
In deriving the wave equations, it will be assumed that charge density . 

Moreover, linear isotropic material will be assumed, with  and 

 with the above assumptions and with the time dependence  for both 

 and , Maxwell’s equations become  

         (1) 

         (2) 

          (3) 

          (4) 

Taking the curl of (1) and (2)  

  

  

Now using the identity 

BE
t


  



 
. .

S

BE dl dS
t

 
   

 
 



. 0D 
 

. 0D dS 



. 0B 
 

. 0
S

B dS 




E


H


E


0D E
 

D
t





H

 

H


H


E


0 

,D E B H 
   

J E
 

j te 

E


H


 H j E    
  

E j H    
  

. 0E 
 

. 0H 
 

     H j E      
    

   E j H      
    

11.3 Derivation of the Wave Equation 
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and  ,  

we find the vector wave equations: 

  2 2H j j H H       
  

 

  2 2E j j E E       
  

 

  is called the propagation constant and is the square root of 2  whose real and 
imaginary parts are positive: 

    

or   

or   

or   

Now, equating the real and imaginary parts 

  

and   

Solving for and we get 

       (5) 

       (6) 

Solutions in Cartesian coordinates 

The familiar scalar wave equation in one-dimension, 

  

Above equation has solutions of the form  and where 
 and  are arbitrary functions. 

    2.E E E      
  

    2.H H H      
      

j     1j  

2j j        

 2 2 2j j         

2 2 22j j         

2 2 2      

2 

 

2

1 1
2
 

 


          

2

1 1
2
  



          

2 2

2 2 2

1F F
dz u t
 




 F f z ut   F g z ut 

f g
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These represent waves travelling with speed u in the +z and –z directions 
respectively. 

For particular choices  

 ( )
xj
uf x Ce


 and ( )

xj
ug x De


  

Harmonic waves of angular frequency  are obtained  

  j t zF Ce    and  j t zF De    

In which
u
   

Of course, the real and imaginary parts are also solutions to the wave equation. 

At any fixed t, wave form repeats itself when x changes by 2


;the distance 

2


 is called the wavelength 

The wavelength and the frequency 
2

f 


 has the relation 

 f u   or Tu   

where 1 2T
f




  is the period of the harmonic wave. 

11.4  Solution to the Wave Equation  for Partially Conducting 
Media 

For a region in which there is some conducting but not much (e.g. moist earth, sea 
water),the solution to the wave equation in E


is to taken to be 0 ˆz

xE E E a


 

Then, H


is obtained from the Maxwell’s  equation 

  E j H  
 

 

 
 

The ratio  is characteristic of the medium (it is also frequency – dependent). 

More specifically for waves ,  which propagate in the +z 
direction, the intrinsic impedance, , of the medium is defined by 

0 ˆz
y

jH E e a
j

 


 



E
H

ˆx xE E a


ˆy yH H a




11.4 Solution to the Wave Equation for partially Conducting   
Media 
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 x

y

E
H

   

Thus   

where the square root may be written in the polar form, , with  

 

   

If the wave propagates in the  direction,  

Inserting the time factor  and writing  results in the following 
equations for the fields in a partially conducting region: 

  

  

The factor  attenuates the magnitudes of both  and  as they propagate 
in the  direction. 

The expression for in eq. (5) shows that there will be some attenuation unless 
the conductivity  is zero, which would be the case only for perfectly dielectric 
or free space. 

Likewise, the phase difference  between  and  vanishes only 
when  is zero. 

The velocity of propagation and the wavelength are given by 

  

 

 

j
j



 


 

| | 

2

/
| | , tan 2

4 1

  





 

    

z x

y

E
H

 

j te  j   

   
0 ˆ, j t zz

xE z t E e e a  


   0 ˆ, j t zz
y

EH z t e e a  


 



ze  E


H


z




  ,E z t


 ,H z t




2

1

1 1
2

u 


 


 
         

2

2 2

1 1
2

 


 


 
         
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If the propagation velocity is known,  may be used to determine the 

wavelength . The term  has the effect of reducing both the velocity and 

wavelength from what they would be in either free space or perfect dielectrics, 
where . Note that the medium is dispersive: waves with different 
frequencies  have different velocities . 

11.5 Solution to the Wave Equation  for Perfect Dielectrics 

For perfect dielectric , and so  

 ,  

Since , there is no attenuation of  and  waves. The zero angle on  

results in  being in time phase with  at each fixed location.  

Assuming the  of the wave in x-direction and propagation of the wave in 
direction, then the field equations may be obtained as   

  

  

The velocity and the wavelength are 

 
1u 

 
  ,  

11.6 Solution to the wave equation  in Free Space 

Free space in nothing more than the perfect dielectric for which  

  

  

For free space, 

  and   

f u 


2


 
  

0 
 u

0  0 

    0
  



0  E


H




H


E


E


z 

   
0 ˆ, j t z

xE z t E e a 


   0 ˆ, j t z
y

EH z t e a 






2 
  


 



7
0 4 10 H

m
     

9
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0
108.854 10
36

F F
m m


   

0 120     83 10 mu c
s

  

11.5 Solution to the Wave Equation  for Perfect Dielectrics 
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11.7 Solution to the wave equation  for Good Conductors: 
Skin Depth 

Materials are ordinarily classified as good conductors if  in the range of 
practical frequencies. 

Therefore, the propagation constant and the intrinsic impedance are 

 ,  

  

It is seen that for all conductors the  and  waves are attenuated. This is a very 

rapid attenuation.  will always be  equal to . At each fixed location  is out 

of time phase with  by  rad. Once again assuming  in  and propagation 

in , the field equations are  

   

  

Moreover 
 

 
 

The velocity and wavelength in a conducting medium are written here in terms of 
the skin depth or depth of the penetration 

  
1
f


 


 

11.8 Illustrative Examples 

Example1: Write the Maxwell’s equations for electromagnetic fields in a 

homogeneous medium with constant  and  . Deduce the wave equation for H


. 

Sol. In a homogeneous medium with constant and  , the Maxwell’s equation. 

 

j   
2

f
     

045



 

E


H


  H


E


4
 E


ˆxa

ˆza

   
0 ˆ, j t zz

xE z t E e e a  


  40 ˆ,
j t z

z
y

EH z t e e a
 





     


2 ,u  


 
  

2 2 2
f

 
 

  
  



11.7 Solution to the Wave equation  for Good Conductors: 
 Skin Depth 
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0divB 


 becomes 0divH 


( B H
 

 and  is constant).  

Similarly the equation 0divD


 becomes 0divE 


(because is constant and 
D E
 

)  

and 
1 DCurlH
c t







 becomes 

ECurlH
c t
 





.  

The equation 
1 BCurlE
c t


 




, becomes 

HCurlE
c t
 

 



. 

So the Maxwell’s equations for the homogeneous medium with constant and 
are: 

 0divE 


, 

 0divH 


 

 

HCurlE
c t
 

 



 , 

  
ECurlH

c t
 





 

Eliminating E


in the usual manner, we obtain  

 

2

2 2
HCurlCurlH CurlE

c t c t
   

  
 

 
 

and since 2CurlCurlH grad DivH H 
  

,  

we reach the wave equation 

 

2
2

2 2 0HH
c t
 

  



. 

Example 2: A plane electromagnetic wave is propagating in an infinite 
homogeneous material medium having permittivity  and permeability  . Find 

the general relationship between the three vectors ,k E
 

and H


. 

Sol. In a plane wave in a vacuum, the spatial dependence of the field is given by 

a factor .ik re
 

, with a real wave vector k


. In considering wave propagation in a 
matter, however, it is  
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in general necessary to take k


 complex: 

 ' ''k k ik 
  

,  

where the vectors 'k


and ''k


 are real. 

Taking E


and H


as proportional to .ik re
 

, and carrying out the differentiation with 
respect to coordinates in Maxwell’s equations for monochromatic field, viz. 

 i H cCurlE 
 

  i E cCurlH 
 

 

 We obtain 

 ( )i H c i k E  
  

 and       ( )i E c ik H   
  

 

(Here Curl operator is replaced by ik


) 

 or H ck E  
  

  E ck H  
  

 

This is how ,k H
 

and E


are related. 

In particular , taking the scalar product of these formulae with k


, we obtain 

 . 0k E 
 

 , . 0k H 
 

 

Using ' ''k k ik 
  

 we obtain for the square of the wave vector 

 
2

2 2 2
2' '' 2 '. ''k k k ik ik

c


   
 

 

We see that k


 can be real only if and  are real and positive. 

11.9 Self Learning Exercise 

Q.1 Deduce the wave equation for E


 in  a homogeneous medium with constant 
and  . 

Q.2 Write Maxwell’s equations for a monochromatic field (i.e. a plane 
monochromatic wave) and deduce wave equation. 

Q.3 Write Maxwell’s equation in free space in the integral form. 

11.10 Illustrative Examples 

11.9 Self Learning Exercise 

11.10 Illustrative Examples 
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Example 3:Assume a field ( ) ˆ1.0 z j t z
x

VE e e a
m

       
 


; with 100

2
f MHz


  , 

at the surface of a conductor, 58   Mega Siemens (MS)/m, located at z > 0, as 
shown in figure given below. Calculate the skin depth as the wave propagates into 
the conductor. 

 
Sol. At depth z the magnitude of the field is 

 1.0 1.0
zzE e e  


 

 
21 6.6 10

f f


 


   

For copper 1r  , so that 6
0 1.26 10 H

m
      

 1
6 6 6 2

1

3.14 100 10 1.26 10 58 10
m



 
       

 6.61 m  

Example 4: In fee space, 3 ˆ( , ) 10 sin( ) y
VE z b t z a
m

      
 


. Obtain ( , )H z b


. 

Sol. Examination of the phase, t z  , shows that the direction of propagation 

is +z. since E H
 

must also be in the +z-direction, H


must have the direction ˆxa
. Consequently 

 0 120y

x

E
H

   

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or  
310 sin( )

120x
AH t z
m

 


  
      

or 
310 ˆsin( )

120x x
AH t z a
m

 


    

Example 5: For the wave given in problem (6), determine the propagation 
constant , given that the frequency if 95.5f  MHz. 

Sol. In general ( )j j       ( 1)j    

 In free space, 0  , so that 

 0 0
2 fj j

c
        

 
 

     
6

1
8

2 (95.5 10 ) (2.0)
3 10

j j m 
 


 

Note that this result shows that the attenuation factor is 0  and the phase shift 

constant in 2.0 rad
m

  . 

Example 6: Examine the field 

 ˆ( , ) 10sin( ) 10cos( )x yE z t t z a t z a      
   

In the plane 0z  for 
30, , , ,

4 2 4
t      ,what is its polarization?  

Sol. At different instants, ,x yE E and E


are shown below  

 t  10sinxE t  10cosyE t  ˆ ˆx x y yE E a E a 


 

0 0 10 ˆ10 ya  

4


 
10

2
 10

2
 ˆ ˆ

10
2

x ya a 
 
 

 

2


 
10 0 ˆ10 xa  

3
4


 
10

2
 - 10

2
 ˆ ˆ

10
2

x ya a 
 
 

 

  0 -10 ˆ10( )ya  
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As shown in the figure ( , )E x t


is circularly polarized. In addition, the wave travels 

in the ˆza direction. 

Example 7: Calculate the ocean depths at which a 11 Vm  field will be obtained 
with E at the surface equal to 11Vm at frequencies of 1, 10, 100 and 1000 KHz. 
What is the most suitable frequency for communication with submerged 
submarines? 

Given that 4   Siemen per meter (or 1Sm  ) and 80r  for sea water. 

Sol. At the highest frequency (1000 K Hz), the value of 

 6 122 10 8.85 10 80        

 34.4 10   

Therefore at 1000 K Hz,   , so that  

 
2

   can be used at all. 

Four frequencies  

 At  1 KHz  
3 7

12 10 4 10 4 0.13
2

Npm 



   

   

Since 6

0

10 xE e
E

   ,  
6 13.8logx e
 

    

and      at 1 KHz, 
13.8 106
0.13

x m   

 At  10 KHz, x = 35 m ; 

 At  100 KHz, x = 11 m ; and 
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 At 1000 KHz, x = 3.5 m, where x = depth 

Although 1 KHz would appear to  be the best of the above four frequencies, an 
even lower frequency might be desirable depending on other factors including the 
efficiencies of the antennas for transmitting and receiving. 

11.11 Summary 
 Starting with Maxwell’s equations we derived the wave equations for 
propagation in dielectric/conducting media. We deduced the value of the complex 
propagation constant. We solved the wave equation for fields in conducting and 
dielectric media. We obtained solutions for perfect dielectrics, free-space and for 
good conductors. Finally we obtained expression for skin depth of penetration into 
a conductor. The unit ended with illustrative problems with solution. 

11.12 Glossary 

Induce :  to cause something to happen 

Homogeneous: Containing terms all of the same degree 

Monochromatic: having single frequency 

Dispersive: waves with different frequencies  have different velocities . 

11.13 Answers to Self Learning Exercise 

Ans.1: The Maxwell’s equation become 

 0divE 


, 0divH 


 

 
HCurlE

c t
 

 



, 

ECurlH
c t
 





 

Eliminating H


,We obtain 

 CurlCurlE CurlH
c t
 

 


 
 

or  2 Egrad DivE E
c t c t
    

       

 
 

11.11 Summary 

11.12 Glossary 

11.13 Answers to Self Learning Exercise 
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 or 
2

2
2 2

EE
c t
 

  



 

 or 
2

2
2 2 0EE

c t
  

  



 

We see that the velocity of propagation of electromagnetic waves in a 
homogeneous dielectric is 

  c
 

 

Ans.2: Maxwell’s equations for a monochromatic field are obtained by replacing 

the operator 
t




by ( )i . 

 Curl HE
c t
 

 



 becomes Curl ( )E i H

c
   

 
  

or  ( )i H cCurlE  
 

       (1) 

and  Curl EH
c t
 





becomes Curl ( )H i E

c


 
 

 

or  ( )i E cCurlH   
 

       (2) 

So, the equations for a monochromatic field are : 

 ( )i H cCurlE  
 

 

and  ( )i E cCurlH   
 

 

Eliminating H


from these equations in the usual way we find 

 

( )iCurlCurlE CurlH
c

 


 
 

or  2 ( ) ( )i igrad DivE E E
c c

         
 

  
 

or  
2

2
2

EE
c

 
 


 

or  
2

2
2 0E E

c
 

  
 

 Wave equation 
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Ans.3: The equation are (For free space 0, 0j  


) 

 . .
s

DH dl ds
t




 
  

         (1) 

 . .
s

BE dl ds
t




 
  

         (2) 

 . 0D d s 
 
          (3) 

 . 0B ds 
           (4) 

11.14 Exercise 

Q.1 Determine the propagation constant   for a material having 1, 8r r    , and 

0.25 pS
m  , if the wave frequency is 1.6MHz . 

Q.2 Write Maxwell’s equations in the differential form in free-space. 

Q.3 Write Maxwell’s equations for harmonically varying fields. 

Q.4 In free space ˆ( , ) 50cos( ) x
VE z t t z a
m

      
 


. 

 Find the average power crossing a circular area of radius 2.5 m in the plane 

  z = constant. 

11.15 Answers to Exercise 

Ans.1: In this case 

  
12

9
96

0.25 10 10 0
102 (1.6 10 )(8) 36


  







  

 
 

So that 20, 2 9.48 10r r radf
c s


     
       

 and 2 19.48 10j j m        . 

The material behaves like a perfect dielectric at the given frequency. Conductivity 

of the  order of 1
pS
m  

indicates that  the material is more like an insulator than a 

11.14 Exercise 

11.15 Answers to Exercise 



267 
 

conductor. 

Ans.2: The equations are for free space ( 0, 0j  


) 

 
DH
t


 



 
         (1) 

 
BE
t


  



 
        (2) 

 . 0D 


         (3) 

 . 0B 
 

         (4) 

Ans.3: For harmonic variation, the phasor form of Maxwell’s integral and 
differential equations are : 

 Integral form     Differential form 

 . ( ) .
s

H dl j E d s    
   
  (1)  ( jw )H E   

  
 (1) 

 . .
s

E dl j H d s  
   
  (2)  H j H  

  
  (2) 

 . f
v

D ds dv 
 
   (3)  . fD  

 
   (3) 

 . 0B ds 
 
    (4)  . 0B 

 
   (4) 

Ans.4: In complex form 

 ( ) ˆ50 j t z
x

VE e a
m

     
 


 

and since 120   and propagation is in +z-direction. 

 ( )5 ˆ
12

j t z
y

AH e a
m

 


    

 


 

Then 
1 Re(E H*)
2averageP    

          2
1 5 ˆ(50)
2 12 z

Wa
m

   
 

 

The flow is normal to the area, and so 
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   21 5(50) 2.5
2 12avgP W


   
 

65.1W  
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UNIT-12 

Waves in a Conducting or Dissipative 
Medium 

Structure of the Unit 

12.0  Objectives 

12.1  Waves in a conducting or dissipative medium 

12.2  Example 

12.3  Superposition of Waves 

12.4  Self learning exercise I 

12.5  A Pulse in the Ionosphere 

12.6  Causality and the Dielectric Function 

12.7  Self learning exercise II 

12.8  Summary 

12.9  Glossary  

12.10  Answer to self learning exercise 

12.11 Exercise 

          References and Suggested Readings  

12.0 Objectives 
After interacting with the material presented here students will be able to 
understand 

5. Waves in a dissipative medium 
6. Superposition of Waves, and 
7. Causality connection between D and E, Kramers-Kroning relation 

12.1 Waves in a conducting or dissipative medium 

Let us consider some linear medium with ܦ = ܤ,ܧ߳ = ,ܪߤ ܬ = ;ܧߪ  ߳, ,ߤ  are ߪ
taken as real. Then the Maxwell equations become 

UNIT-12 
Waves in a Conducting or Dissipative 

Medium 

12.0 Objectives 

12.1 Waves in a Conducting or Dissipative Medium 
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ܤ.∇ = 0, 
∇. ܧ = 0 

∇ × ܧ = −
1
ܿ
ܤ߲
ݐ߲  

and 

∇ × ܤ =
ߤߨ4
ܿ ܧߪ  +

ߤ߳
ܿ
ܧ߲
ݐ߲   

We have set  equal to zero in these equations. It may be that there is initially 
some macroscopic charge density within a conductor. If this is the case, that 

density will decay to zero with a characteristic time on the order of -1 where  is 
the damping constant. 

Let us look for plane wave solutions to the field equations.  

,ݔ)ܧ (ݐ  = ଴݁௜(௞.௫ିఠ௧)ܧ   
and  

,ݔ)ܤ (ݐ  = ଴݁௜(௞.௫ିఠ௧)ܤ   
The divergence equations then tell us that . 0 . 0E k and B k 

  
 as in a 

nondissipative medium. From Faraday's law we find the familiar result 

 0 0
1 ˆB k E
c

 
 

 

  and from the Ampere's law we find 

 0 0 0
4 ii k B E E

c c
 

  
   

 

From above two equations and identity (݇ × ݇ × ଴ܧ = −݇ଶܧ଴) 

−݅
ߪߤߨ4
ܿ ଴ܧ −

߳ߤ߱
ܿ ଴ܧ = −

ܿ݇ଶ


 ଴ܧ

or 

݇ଶ  = ݅
ߪߤߨ4
ܿଶ +

߱ଶ߳ߤ
ܿଶ  

Taking the point of view that  is some given real frequency, we can solve this 
relation for the corresponding wave number k, which is complex.  

If we write k = k0 + i, then the real and imaginary parts of above equation 

give us two equations which may be solved for k0 and  
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݇଴ଶ − ଶߙ =
߱ଶ߳ߤ
ܿଶ  , 2݇଴ߙ =

߱ଶ߳ߤ
ܿଶ ൬

ߪߨ4
߳߱ ൰ 

The solution is 

ቄ݇଴ߙ ቅ = ඥ߳ߤ ቀ
߱
ܿቁ

⎩
⎨

⎧ට1 + ቀ4ߪߨ
߳߱ ቁ

ଶ
± 1

2
⎭
⎬

⎫
ଵ
ଶ

 

where the + sign refers to k0 and the - sign to . 

This expression appears somewhat impenetrable although it doesn't say anything 
unexpected or remarkable. It takes on simple forms in the limits of high and low 

conductivity. The relevant dimensionless parameter is 
ସగఙ
ఢఠ

. It if is much larger than 
unity, corresponding to a good conductor, then 

  ݇଴ ≈ ߙ ≈ ඥଶగఠఓఙ
௖

= ଵ
ఋ

  ସగఙ
ఢఠ

≫ 1 

Where we have introduced the penetration depth . This is the distance that an 
electromagnetic wave will penetrate into a good conductor before being 
attenuated to a fraction 1/e of its initial amplitude. Since the wavelength of the 

wave is ߣ =  .଴,  is also a measure of the wavelength in the conductor݇/ߨ2

For a poor conductor, by which we mean 
ସగఙ
ఢఠ

≪ 1, one has 

݇଴ + ߙ݅ ≈ ߱߳ߤ√
ܿ +

ߨ2݅
ܿ ට

ߤ
߳  ߪ

Note:- In the latter case, the real part of the wave number is the same as in a 
nonconducting medium and the imaginary part is independent of frequency so that 
waves of all frequencies are attenuated by equal amounts over a given distance. 

Also,  << k0 which tells us that the wave travels many wavelengths before being 
attenuated significantly. 

For a given ,  is an increasing function of  and saturates at high 
frequencies. Therefore, if one wants a wave to travel as far as possible, one wants 
to use as low frequency a wave as possible. Then one should be in the good-

conductor limit where the attenuation varies as √߱ and vanishes as 0.  

Given that we have found the complex wave number, and letting k point in 
the z-direction, we have 
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 0 . z
0( , ) ei k z tE x t E e    

,ݔ)ܤ (ݐ  =
ܿ


(݇଴  +  ݅)(̂ݖ × ଴)݁௜(௞బ௭ିఠ௧)݁ିఈ௭ܧ  

Define the complex index of refraction 

 0
c cn k k i
 

    

so that 
ܤ = ݖ̂)݊ ×  (଴ܧ

Note that because n is complex, B is not in phase with E; to make the phase 
difference explicit, let us write n in polar form: 

݊ = |݊|݁௜ఝ 
Where  

߮ = arctan ൬
ߙ
݇଴
൰ 

We can find |n| and  in terms of other parameters; let  ߛ ≡ ቀସగఙ
ఢఠ
ቁ
ଶ

. Then 

߮ = arctan ቈ
ඥ1 + ߛ − 1
ඥ1 + ߛ + 1

቉

ଵ
ଶ

 

We know  

tan 2 =
2 ݊ܽݐ 

1 − ଶ݊ܽݐ  = 2

⎣
⎢
⎢
⎢
⎡ ඥ1 + ߛ − 1

ඥ1 + ߛ + 1

1 −
൫ඥ1 + ߛ − 1൯

ඥ1 + ߛ
+ 1

⎦
⎥
⎥
⎥
⎤
ଵ
ଶ

= ඥߛ 

Thus,  

 =
1
2 arctan 

ଵ
 ଶ =

1
2 arctan ൬

ߪߨ4
߳߱ ൰ 

And  

|݊| =
ܿ

ට݇଴ଶ + ଶߙ = ඥ߳ߤ ቈ1 + ൬

ߪߨ4
߳߱ ൰

ଶ

቉

ଵ
ସ

 

Then we have 

,ݔ)ܤ (ݐ  = ඥ߳ߤ ቈ1 + ൬
ߪߨ4
߳߱ ൰

ଶ

቉

ଵ
ସ
݁
௜
ଶ ୟ୰ୡ୲ୟ୬ቀ

ସగఙ
ఢఠ ቁ(̂ݖ ×  (଴ܧ
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The amount by which B(x,t) is phase-shifted from E(x,t) is easily seen from this 

expression to lie between 0 and 4/ߨ, it is zero in the small / limit and /4 in the 

large / limit.  

Another significant feature of the expression for B(x,t) is that in the small 

/ limit, the amplitude of B relative to that of E is just √߳ߤ as for insulators. But 

in the opposite limit, one finds that the relative amplitude is ටସగఙఓ
ఠ

 which is much 

larger than unity. Here the wave has, relatively speaking, a much larger magnetic 
induction than electric field. 

 

12.2 Reflection of a Wave Normally Incident on a Conductor 

 
Let us consider a wave normally incident on a conductor from vacuum. 

We know  

݇ =
߱
ܿ ,ݖ̂ ݇` =

߱
ܿ  ݖ̂݊

 ݊ = ඥ1)߳ߤ + (ߛ
ଵ
ସ݁௜ఝ 

The relevant boundary conditions are Ht and Et continuous.  

Let E0=E0ݔො, E`0=E`0ݔො, ଴``ܧ =  ො. The corresponding magnetic fieldݔ଴``ܧ

amplitudes are H0=E0ݕො, H``0= - E``0ݕො, and, for the transmitted wave in the 
conductor, 

଴ᇱܪ = ඨ
߳
ߤ

(1 + (ߛ
ଵ
ସ݁௜ఝܧ଴′ݕො 

12.2Reflection of a Wave Normally Incident on a Conductor 
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Our boundary conditions give immediately 

଴ܧ + ``଴ܧ =   `଴ܧ

଴ܧ − ``଴ܧ = ඨ
߳
ߤ

(1 + (ߛ
ଵ
ସ݁௜ఝܧ଴′  

Then we get  

଴ᇱܧ =
2

1 + 1)߳ߤ√ + (ߛ
ଵ
ସ݁௜ఝ

 ଴ܧ

``଴ܧ =
1 − ට߳ߤ (1 + (ߛ

ଵ
ସ݁௜ఝ

1 + ට߳ߤ (1 + (ߛ
ଵ
ସ݁௜ఝ

 ଴ܧ

Let us calculate the Poynting vector in the conductor. Its time average is 

< ܵ` ≥
ܿ

ℛߨ8
`ܧ) × (`ܪ =

ܿ
ℛߨ8

⎩
⎪
⎨

⎪
ߤ଴|ଶට߳ܧ|4⎧ (1 + (ߛ

ଵ
ସ݁ି௜ఝ

ฬ1 + ට߳ߤ (1 + (ߛ
ଵ
ସ݁௜ఝฬ

ଶ

⎭
⎪
⎬

⎪
⎫

݁ିଶఈ௭  ݖ̂

Using the interpretation of this vector as the energy current density, we may find 
the power per unit area transmitted into the conductor by evaluating < S` > .̂ݖ at z = 
0, 

ܲ` =
ܿ

ߨ2
଴|ଶඨܧ|

߳
ߤ
⎩
⎨

⎧ (1 + (ߛ
ଵ
ସܿ߮ݏ݋

1 + 2ට߳ߤ 1)߮ݏ݋ܿ + (ߛ
ଵ
ସ + ൬߳ߤ (1 + (ߛ

ଵ
ଶ൰⎭
⎬

⎫
 

 

The incident power per unit area is ܲ = ௖
଼గ

 ଴|ଶ, so the fraction of the incidentܧ|
power which enters the conductor, where it is dissipated as Joule heat, is 

ܶ =
ܲ`
ܲ  = 4ඨ

߳
ߤ
⎩
⎨

⎧ (1 + (ߛ
ଵ
ସܿ߮ݏ݋

1 + 2ට߳ߤ 1)߮ݏ݋ܿ + (ߛ
ଵ
ସ + ൬߳ߤ (1 + (ߛ

ଵ
ଶ൰⎭
⎬

⎫
 

For a good conductor  

=/4, cos = 1/2, and  >> 1. Then 
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ܶ ≈ 4ඨ
߳
ߤ ൞

ߛ
ଵ
ସ(1/√2)

൬߳ߤ ߛ
ଵ
ଶ൰

ൢ = 2√2ට
ߤ
߳
ට
߱߳

ߪߨ4 =
߱ߤ2
ܿ

ܿ
ඥ2ߤ߱ߪߨ

=
߱ߤ2
ܿ  ߜ

12.3 Superposition of Waves  

No wave is truly monochromatic, although some waves, such as those 
produced by lasers, are exceedingly close to being so. Fortunately, in the case of 
linear media, the equations of motion for electromagnetic waves are completely 
linear and so any sum of harmonic solutions is also a solution.  

 
Superposition procedure amounts to making a Fourier transform of the pulse. For 
simplicity we shall work in one spatial dimension which simply means that we will 
superpose waves whose wave vectors are all in the same direction (the z-direction). 

One such wave has the form ݁௜(௞బ.௭ିఠ௧), where we shall not initially restrict (k) 
to any particular form. Given a set of such waves, we can build a general solution 
of this kind (wave vector parallel to the z-axis) by integrating over some 
distribution A(k) of them: 

,ݖ)ݑ (ݐ =
1
ߨ2√

න ௜(௞௭ିఠ௧)݁(݇)ܣ ݇݀
ஶ

ିஶ
 

At time t = 0, this function is simply 

,ݖ)ݑ 0) =
1
ߨ2√

න ௜(௞௭)݁(݇)ܣ ݇݀
ஶ

ିஶ
 

and the inverse transform gives A in terms of the zero-time wave 

(݇)ܣ =
1
ߨ2√

න ,ݖ)ݑ ݖ݀ 0)݁ି௜(௞௭)
ஶ

ିஶ
 

All of the standard rules of Fourier transforms are applicable to the functions A(k) 

and u(z,0). For example, if A(k) is a sharply peaked function with width k, then 

the width of u(z,0) must be of order 1/k or larger, and conversely. One may make 
this statement more precise by defining. 

12.3 Superposition of Waves  
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ଶ(ݖ∆) =< ଶݖ > −< ݖ >ଶ 

and 
(∆k)ଶ =< kଶ > −< ݇ >ଶ 

Where  

< ݂(݇) >≡
∫ ଶஶ|(݇)ܣ|(݇)݂ ݇݀
ିஶ

∫ ଶஶ|(݇)ܣ| ݇݀
ିஶ

 

< (ݖ)݂ >≡
∫ ,ݖ)ݑ|(ݖ)݂ ݖ݀ 0)|ଶஶ
ିஶ

∫ ,ݖ)ݑ| ݖ݀ 0)|ଶஶ
ିஶ

 

The relation between these widths which must be obeyed is  

z k  .5 

Now, given a “reasonable" initial wave form u(z,0) with some z and a Fourier 

transform A(k) with some k, the nature of calculated by the  Fourier transform. 
One can always do these integrals numerically if all else fails. Here we shall do 
some approximate calculations designed to demonstrate a few general points. 

Suppose that we have found A(k) and that it is some peaked function 

centered at k0 with a width k. If (k) is reasonably well approximated by a 

truncated Taylor's series expansion for k within k of k0, then we may write 

߱(݇) ≈ ߱଴ +
݀߱
݀݇ ௞బ

(݇ − ݇଴) ≡ ߱଴ + ݇)௚ݒ − ݇଴) 

Where ߱଴ ≡ ߱(݇଴) and group velocity of the packet ݒ௚ = ௗఠ
ௗ௞௞బ

 

In this approximation, one finds 

,ݖ)ݑ (ݐ =
1
ߨ2√

න ௜൫௞(௭ି௩೒௧)൯݁ି௜ఠబ௧݁௜௩೒௞బ௧݁(݇)ܣ ݇݀
ஶ

ିஶ
= ݖ)ݑ − ,ݐ௚ݒ 0)݁௜(௩೒௞బିఠబ)௧  

This result tells us that the wave packet retains its initial form and translates in 
space at a speed vg. It does not spread (disperse) or distort in any way. In 
particular, the energy carried by the wave will move with a speed vg. The group 
velocity is evidently an important quantity. We may write it in terms of the index 

of refraction by using the defining relation ݇ = ఠ௡(ఠ)
௖

. Take the derivative of this 
with respect to k: 
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1 = ൬
݊
ܿ +

߱
ܿ
݀݊
݀߱ ൰

݀߱
݀݇  

Or 

௚ݒ =
ܿ

݊ + ߱ ݀݊
݀߱

 

As an example consider the collisionless plasma relation 2 21 /pn    . One 

easily finds that 

2

21 p
gv c




   

For  < p, the group velocity is imaginary which corresponds to a damped wave; 

for  > p, it is positive and increases from zero to c as  increases. 

For Example 

Let's treat a simple example in which A(k) is a Gaussian function of k - k0, 

(݇)ܣ = ൬
଴ܣ
ߜ ൰ ݁

ି(௞ି௞బ)మ
ଶఋమ  

Further, let (k) be approximated by 

߱(݇)  =  ߱଴  + ݇)௚ݒ  − ݇଴)  + ݇)ߙ − ݇଴)ଶ 

The corresponding u(z,t) is 

,ݖ)ݑ (ݐ =
1
ߨ2√

න ݀݇ ൬
଴ܣ
ߜ ൰ ݁

ି(௞ି௞బ)మ
ଶఋమ ݁௜ቀ௞൫௭ି௩೒௧൯ቁ݁ି௜ఠబ௧݁௜௩೒௞బ௧

ஶ

ିஶ
 

= ൬
଴ܣ
ߜ ൰

1
ߨ2√

݁௜(௞బ௭ିఠబ௧) න ݀݇݁௜(௞ି௞బ)൫௭ି௩೒௧൯ ݁ିቀ
ଵ

ଶఋమ௜ఈ௧ቁ(௞ି௞బ)మ
ஶ

ିஶ
 

                     =
଴ܣ

√1 + ݐଶߜߙ2݅
݁௜(௞బ௭ିఠబ௧)݁

ି
൫௭ି௩೒௧൯

మఋమ

[ଶ(ଵାଶ௜ఈఋమ௧)] 

 If  = 0, this is a Gaussian-shaped packet which travels at speed vg with a 

constant width equal to -1. 

 If  0, it is still a Gaussian-shaped packet traveling at speed vg; however, 
it does not have a constant width any longer.  
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To make the development of the width completely clear, consider |u(z, t)|2 
which more nearly represents the energy density in the wave: 

,ݖ)ݑ| ଶ|(ݐ =
଴ଶܣ

√1 + ଶݐସߜଶߙ4
݁
ି

൫௭ି௩೒௧൯
మఋమ

[(ଵାସఈమఋర௧మ)] 

The width of this travelling Gaussian is easily seen to be 

(ݐ)߱ =
ඥ(1 + (ଶݐସߜଶߙ4

ߜ  

At short times the width increases as the square of the time, while at long times it 
becomes linear with t. 

12.4 Self Learning Exercise -I 

Q.1  What is penetration depth  of a conductor? 

Q.2  Define good and poor conductors in terms of  and . 

Q.3  State Poynting vector. 

Q.4  Relate group velocity and phase velocity. 

12.5 A Pulse in the Ionosphere 

 Let us consider a wave packet propagating in the ionosphere, treating the 
ionosphere as a collisionless plasma and with k parallel to B0, that ߳(߱) = 1 +

ఠ೛
మ

ఠ(ఠಳିఠ) for one particular polarization of the wave. If  is small enough 

compared to other frequencies, we may approximate in such a way that 

݊(߱) = ఠ೛

√ఠఠಳ
, which gives rise to anomalous dispersion indeed. Defining 

߱଴ = ఠ೛
మ

ఠ ஻
, one finds that the group velocity of a signal is ݒ௚  =  2ܿ√߱/߱଴ 

We have ݖ)ݑ, (ݐ = ଵ
√ଶగ

∫ ݀݇ ቀ஺బ
ఋ
ቁ ݁ି

(ೖషೖబ)మ

మഃమ
ା௜௞௭ି௜௖మೖ

మ೟
/ఠబஶ

ିஶ  

=
1
ߨ2√

න ݀݇ ൬
଴ܣ
ߜ ൰ ݁

ି(௞ି௞బ)మ
ଶఋమ ା௜(௞ି௞బ)௭ା௜௞బ௭ି

௜௖మ௧(௞ି௞బ)మ
ఠబ

ି௜ଶ௖
మ௞బ௧(௞ି௞బ)

ఠబ
ି௜௖మ௞బమ௧/ఠబ

ஶ

ିஶ
 

=
଴ܣ

ඥ1 + ଴߱/ݐଶܿଶߜ2݅
݁
௜ቆ௞బ௭ି

௖మ௞బమ௧
ఠబ

ቇ
݁
ି

ቆ௭ିଶ௖
మ௞బమ௧
ఠబ

ቇ
మ
ఋమ

[ଶ(ଵାଶ௜௖మఋమ௧/ఠబ)] 

12.4  Self Learning Exercise -I 

12.5  A Pulse in the Ionosphere 
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This is a travelling, dispersing Gaussian. Its speed is the group velocity vg(k0). The 
width of the Gaussian is 

(ݐ)߱ = ඨ1 +
4ܿଶߜସݐଶ

߱଴ଶ
ߜ/ →  ଴߱/ݐଶܿߜ2

at long times. The packet spreads at a rate given by ݒ௪  =  ଶ/߱଴. The ratio ofܿߜ2 

this spreading rate to the group velocity is /k0 and so we retain a well-defined 
pulse provided the spread in wavenumber is small compared to the central 
wavenumber. 

Pulses of this general type are generated in the ionosphere by thunderstorms. They 
have a very broad range of frequencies ranging from very low ones up into at least 
the AM radio range. The electromagnetic waves tend to be guided along lines of 
the earth's magnetic induction, and so, if for example the storm is in the southern 
hemisphere, the waves travel north in the ionosphere along lines of B and then 
come back to earth in the northern hemisphere. 

 
By this time they are much dispersed, with the higher frequency components 

arriving well before the lower frequency ones since ݒ௚  =  2ܿඥ߱/߱଴ for  << 0. 

Frequencies in the audible range,  102 or 103 sec-1 take one or more seconds (a 
long time for electromagnetic waves) to arrive. If one receives the signal and 
converts it directly to an audio signal at the same frequency, it sounds like a 
whistle, starting at high frequencies and continuing down to low ones over a time 
period of several seconds. This characteristic feature has caused such waves to be 
known as whistlers. 
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12.6 Causality and the Dielectric Function 

A linear dispersive medium is characterized by a dielectric function ߳(߱) having 
physical origins. One consequence of having such a relation between D(x,) and 
E(x,), that is, 

(߱,ݔ)ܦ = ,ݔ)ܧ(߱)߳ ߱) 

is that the relation between D(x,t) and E(x,t) is nonlocal in time. To see this we 
have only to look at the Fourier transforms of D and E. One has 

,ݔ)ܦ (ݐ =
1
ߨ2√

න ,ݔ)ܦ ߱݀ ߱)݁ି௜ఠ௧
ஶ

ିஶ
 

And its inverse 

,ݔ)ܦ ߱) =
1
ߨ2√

න ,ݔ)ܦ ݐ݀ ௜ఠ௧ି݁(ݐ
ஶ

ିஶ
 

similar relations hold for E(x,t) and E(x,). Using the relation ܦ(ݔ,) =
 we have,(߱,ݔ)ܧ(߱)߳

,ݔ)ܦ (ݐ =
1
ߨ2√

න ,ݔ)ܧ(߱)߳ ߱݀ ߱)݁ି௜ఠ௧
ஶ

ିஶ
 

We can write E(x,) here as a Fourier integral and so have 

,ݔ)ܦ (ݐ =
1

ߨ2
න ݀߱ ߳(߱)݁ି௜ఠ௧ න ,ݔ)ܧ`௜ఠ௧݁ `ݐ݀ (`ݐ

ஶ

ିஶ

ஶ

ିஶ
 

=
1
ߨ2√

න (߱)߳] ߱݀ ݐ݀ − 1 + ,ݔ)ܧ[1 ௜ఠ(௧ି௧`)ି݁(`ݐ
ஶ

ିஶ
 

= ,ݔ)ܧ (ݐ +
1

ߨ2
න (߱)߳] ߱݀ ݐ݀ − ,ݔ)ܧ[1 ௜ఠ(௧ି௧`)ି݁(`ݐ
ஶ

ିஶ
 

                                = ,ݔ)ܧ (ݐ + ,ݔ)ܲߨ4  (ݐ

The final term, 4P(x,t), can be written in terms the Fourier transform of ߳(߱) − 1; 
introduce the function 

(ݐ)ܩ =
1

ߨ2
න ݀߱ [߳(߱) − 1]݁ି௜ఠ௧
ஶ

ିஶ
 

Then we have 

,ݔ)ܦ (ݐ = ,ݔ)ܧ (ݐ + න ݐ)ܩ `ݐ݀ − ,ݔ)ܧ(`ݐ (`ݐ
ஶ

ିஶ
 

12.6  Causality and the Dielectric Function 
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,ݔ)ܦ (ݐ = ,ݔ)ܧ (ݐ + න ,ݔ)ܧ(ܶ)ܩ ܶ݀ ݐ − ܶ)
ஶ

ିஶ
 

This equation makes it clear that when the medium has a frequency-dependent 
dielectric function, as all materials do, then the electric displacement at time t 
depends on the electric field not only at time t but also at times other than t. This is 
somewhat disturbing because one can see that, depending on the character of G, we 
could get a polarization P(x,t) that depends on values of E(x,t`) for t` > t, which 
means we get an effect arising from a cause that occurs at a time later than the 
effect. This behaviour can be avoided if the function G(T) vanishes when T< 0, 
and that is what in fact happens. 

Example, with 

߳(߱) = 1 +
߱௣ଶ

߱଴ଶ −߱ଶ − ߛ߱݅
 

Then 

(ܶ)ܩ =
߱௣ଶ

ߨ2
න ݀߱

݁ି௜ఠ்

߱଴ଶ −߱ଶ − ߛ߱݅
 

ஶ

ିஶ
 

This integral was made for contour integration techniques. The poles of the 
integrand are in the lower half-plane in complex frequency space at 

߱± =
1
2
ቈ±ට4߱଴ଶ − – ଶߛ  ቉ߛ݅

without producing a contribution to the integral, we can close the contour in the 
upper (lower) half-plane when T is smaller (larger) than zero. Because there are 
poles only in the lower half-plane, we can see immediately that G(T) will be zero 
for T < 0. That is pleasing since we don't want the displacement (that is, the 
polarization) to respond at time t to the electric field at times later than t. 

 
Applying Cauchy's theorem to the case of T > 0, one finds that, for all T, 
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(ܶ)ܩ =  ߱௣ଶ݁
ିఊ௭ଶ

(଴ܶݒ)݊݅ݏ
଴ݒ

 (ܶ)ߠ

where (ݔ)ߠ is the step function, equal to unity for x > 0 and to zero otherwise, and 

଴ݒ  = ට߱଴ଶ −
ఊమ

ସ
. The characteristic range in time of this function is −1 and hence 

the nonlocal (in time) character of the response is not important for frequencies 

smaller than about ; it becomes important for larger ones. 

One may naturally wonder whether there should also be nonlocal character 
of the response in space as well as in time. In fact there should and will be under 
some conditions. If we look back at our derivation of the model dielectric function, 
we see that the equation of motion of the particle was solved using E(0,t) instead of 
E(x,t); the latter is of course the more correct choice. The difference is not 
important so long as the excursions of the charge from the point on which it is 
bound are much smaller than the wavelength of the radiation, which is the case for 
any kind of wave with frequencies up to those of soft X-rays. Hence the response 
can be expected to be local in space in insulating materials. However, if an electron 
is free, it can move quite far during a cycle of the field and if it does so, the 
response will be nonlocal in space as well as time. 

 
Returning to the question of causality, we have seen that the simple model 
dielectric function produces a function G(t) which is zero for t < 0, as is necessary 
if “causality" is to be preserved, by which we mean there is no response in advance 
of the “cause" of that response. It is easy to see what are the features of the 
dielectric function that give rise to the result G(t) = 0 for t < 0. One is that there are 
no simple poles of the dielectric function in the upper half of the complex 

frequency plane. Another is that the dielectric function goes to zero for large  
fast enough that we can do the contour integral as we did it. 
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More generally, if one wants to have a function G(t) which is consistent 
with the requirements of causality, this implies certain conditions on any ߳(߱). 
Additional conditions can be extracted from such simple things as the fact that G(t) 
must be real so that D is real if E is. Without going into the details of the matter let 
us make some general statements. The reality of G requires that 

߳(−߱) = ߳∗(߱∗) 

That G is zero for negative times requires that ߳(߱) be analytic in the upper half 

of the frequency plane. Assuming that G(t) 0 as t , one finds that ߳(߱) is 
analytic on the real axis. This last statement is actually not true for conductors 
which give a contribution to ߳~݅ߪ/߱ so that there is a pole at the origin. Finally, 
from the small-time behavior of G(t), one can infer that at large frequencies the 
real part of ߳(߱) − 1 varies as −2 while the imaginary part varies as −3. This is 
accomplished by repeatedly integrating by parts 

߳(߱) − 1 = න ௜ఠ்݁(ܶ)ܩܶ݀ ≈
(0ା)ܩ݅
߱

ஶ

଴
−
(0ା)`ܩ
߱ଶ +

(0ା)`ܩ݅
߱ଷ + ⋯ 

This series is convergent for large . The first term vanishes if G(T) is continuous 
across T = 0. Thus 

ܴ(߳(߱) − 1)~
1
߱ଶ 

ܶ(߳(߱) − 1)~1/߱ଷ 

From inspection, one may see that the various dielectric functions we have 
contrived satisfy these conditions. 

Given that the dielectric function has the analyticity properties described 
above, it turns out that by rather standard manipulations making use of Cauchy's 
integral theorem, one can write the imaginary part of ߳(߱) in terms of an integral of 
the real part over real frequencies and conversely. That one can do so is important 
because it means, for example, that if one succeeds in measuring just the real 
(imaginary) part, the imaginary (real) part is then known. The downside of this 
apparent miracle is that one has to know the real or imaginary part for all real 
frequencies in order to obtain the other part. 

To see how this works, notice that as a consequence of the analytic properties of 
the dielectric function, it obeys the relation 
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(ݖ)߳ = 1 +
1

݅ߨ2
න݀߱` (߳(߱`) − 1))/(߱` −    (ݖ

where the contour does not enter the lower half-plane (where ߳ may have poles) 
anywhere and where z is inside of the contour. Let C consist of the real axis and a 
large semicircle which closes the path in the upper half-plane. 

 

Then, given that ߳ falls off fast enough, as described above, at large ߱, the 
semicircular part of the path does not contribute to the integral. Hence we find that 

(ݖ)߳ = 1 +
1

݅ߨ2
න ݀߱` 

(߳(߱`) − 1))
߱` − ݖ

ஶ

ିஶ
 

At this juncture, z can be any point in the upper half-plane. Let's use z =  + i 

and take the limit of  0, finding 

߳(߱ + (ߟ݅ = 1 +
1

݅ߨ2
න ݀߱` 

(߳(߱`) − 1))
߱` − ߱ − ߟ݅

ஶ

ିஶ
 

The presence of the  in the denominator means that at the integration point ` = 

, we must be careful to keep the singularity inside of, or above, the contour. Here 
we pick up 2i times the residue, and the residue is just ߳(߱) − 1. This relation 
shows identity but is not useful otherwise. However, one can also pull the 
following trick: If we integrate right across the singularity, taking the principal part 
(denoted P) of the integral plus an infinitesimal semicircle right below the 

singularity that amounts to taking i times the residue. Hence we can make the 
replacement 

1
߱` − ߱ − ߟ݅ → ܲ ൬

1
߱` − ߱൰ + `߱)ߜߨ݅ − ߱)  

where P stands for the principal part; this substitution leads to 
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߳(߱) = 1 +
1
݅ߨ ܲ

න ݀߱` 
(߳(߱`) − 1))
߱` − ߱

ஶ

ିஶ
 

Let us write separately the real and imaginary parts of this expression: 

ܴ൫߳(߱)൯~1 +
1
ߨ ܲ

න ݀߱` 
ܶ൫߳(߱`)൯
߱` − ߱

ஶ

ିஶ
 

ܶ൫߳(߱)൯~
1
ߨ ܲ

න ݀߱` 
ܴ(߳(߱`) − 1)

߱` − ߱

ஶ

ିஶ
 

These equations are known as the Kramers-Kronig relations for the dielectric 
function. They may be written as integrals over only positive frequencies because 

of the fact that the real part of ߳(߱) is an even function of  while the imaginary 
part is odd. It should also be pointed out that we have assumed there is no pole in 

߳(߱) at  = 0; if there is one (conductors have dielectric functions with this 
property) some modification of these expressions will be necessary. 

12.7 Self Learning Exercise- II 

Very Short Answer Type Questions 

Q.1  Define Causality 

Q.2  Explain the phenomena of a Pulse in the Ionosphere. 

Q.3  Write down Kramers-Kronig relations for the dielectric function. 

Q.4  Write down the the Maxwell equations. 

Long Answer Type Questions 

Q.5  State the applications of Kramers–Kronig Relations. 

12.8 Summary 
 In this chapter we firstly introduce waves in a conducting or dissipative 
medium followed by superposition of waves in one dimensional group velocity, 
causality connection between D and E, Kramers-Kroning relation. 

12.9 Glossary 

Dielectric: A substance in which an electric field may be maintained with zero or 

12.7  Self Learning Exercise- II 

12.8  Summary 

12.9  Glossary 
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near-zero power dissipation, i.e. , the electrical conductivity is zero or near 
zero. Note 1: A dielectric material is an electrical insulator. Note 2: In a dielectric, 
electrons are bound to atoms and molecules, hence there are few free electrons. 

Electromagnet: - A magnet consisting of a solenoid with an iron core, which has a 
magnetic field only during the time of current flow through the solenoid. 

Resistivity: Resistance between the terminal of unit are and unit length conductor 
is known as resistivity of that material, its unit is OHM-meter. 

Conductivity: Conductivity=1/resistivity (MHO-m-1) 

Independent equations: A system of equations is said to be independent if the 
system has exactly one solution. 

Differential equation: An equation that expresses a relationship between functions 
and their derivatives. 

12.10 Answer to Self Learning Exercises 

Answer to Self Learning Exercise-I 
Ans.1: Penetration depth is the distance that an electromagnetic wave will 

penetrate into a good conductor before being attenuated to a fraction 1/e of 
its initial amplitude. 

Ans. 2: Good conductor  
ߪߨ4
߳߱ ≫ 1 

Poor conductor 
ߪߨ4
߳߱ ≪ 1 

Ans.3: Poynting vector is a quantity describing the magnitude and direction of the 
flow of energy in electromagnetic waves. The Poynting vector S is defined 

as to be equal to the cross product  1 E B



 

, where   is the permeability 

of the medium through which the radiation passes, E is the amplitude of 
the electric field, and B is the amplitude of the magnetic field. 

Ans.4:    ݒ௚  =  ܿට1 −
ఠ೛
మ

ఠమ  

 

12.10  Answer to Self Learning Exercises 
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Answer to Self Learning Exercise-II 
Ans.1: Connection between two events or states such that one produces or brings 

about the other, where one is the cause and the other its effect, also called 
causation. 

Ans. 2: Section 12.5 

Ans. 3:      ܴ൫߳(߱)൯~1 + ଵ
గ
ܲ∫ ݀߱` ்൫ఢ(ఠ`)൯

ఠ`ିఠ
ஶ
ିஶ  

 

ܶ൫߳(߱)൯~
1
ߨ ܲ

න ݀߱` 
ܴ(߳(߱`) − 1)

߱` − ߱

ஶ

ିஶ
 

These equations are known as the Kramers-Kronig relations for the 
dielectric function. 

Ans. 4: Let us consider some linear medium with 

ܦ  = ܤ,ܧ߳ = ,ܪߤ ܬ = ;ܧߪ  ߳, ,ߤ  are taken as real. Then the Maxwell ߪ
equations become 

ܤ.∇ = 0, 
∇. ܧ = 0 

∇ × ܧ = −
1
ܿ
ܤ߲
ݐ߲  

and 

∇ × ܤ =
ߤߨ4
ܿ ܧߪ  +

ߤ߳
ܿ
ܧ߲
ݐ߲   

We have set  equal to zero in these equations. 

Ans.5:  

 The Kramers–Kronig relations allow one to calculate the refractive index 
profile and thus also the chromatic dispersion of a medium solely from its 
frequency-dependent losses, which can be measured over a large spectral 
range. Note that a similar relation, allowing the calculation of the absorption 
from the refractive index, is much less useful because it is much more difficult 
to measure the refractive index in a wide frequency range. 

 Modified Kramers–Kronig relations are also very useful in nonlinear optics . 
The basic idea is that the change in the refractive index caused by some 
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excitation of a medium (e.g. generation of carriers in a semiconductor) is 
related to the change in the absorption. As the change in the absorption is 
normally significant only in a limited range of optical frequencies, it is 
relatively easily measured. Such methods can also be applied to laser gain 
media, e.g. for calculating phase changes in fiber amplifiers associated with 
changes of the excitation level. Note that in the case of rare-earth-doped gain 
media, for example, it is not sufficient to consider only the changes in gain and 
loss around a certain laser transition, because changes in strong absorption 
lines in the ultraviolet spectral region are also important. 

12.11 Exercise 

Q.1  State and Prove Kramers-Kronig relations. 

Q.2  Explain Reflection of a wave which is normally incident on a conductor 

References and Suggested Readings 

1.  Classical Electrodynamics by J.D. Jackson, 1962  
2.  Classical Electricity and Magnetism by W. K. H. Panofsky and M. Philips,      
2005 
3.  Introduction to Electrodynamics by D.J Griffiths, 1999  
4.  Classical Theory of Field by L.D. Landau and E. M. Lifshitz, 1971 
5.  Electrodynamics of Continuous Media by L.D. Landau and E. M. Lifshitz, 1960 

6.http://www.phys.lsu.edu/~jarrell/COURSES/ELECTRODYNAMICS/Chap7/cha
p7.pdf  

  

12.11 Exercise 

References and Suggested Readings 
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13.7 Summary 

13.8 Glossary  
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13.10 Exercise 
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 13.0 Objective 
After interacting with the material presented here students will be able to  

1. Describe the development of the various types of waveguides in terms of 
their advantages and disadvantages. 

2. Compare Waveguide and Transmission Line 
3. Describe the physical dimensions of the various types of waveguides  
4. Identify the modes of operation in waveguides. 
5. Describe the basic principles of TE wave in rectangular wave guides. 

13.1 Introduction 

 Waveguides, like transmission lines, are structures used to guide 
electromagnetic waves from one point to another point. However, the fundamental 
characteristics of waveguide and transmission line are quite different. The 

UNIT-13 

Wave Guides 

13.0 Objective 

13.1 Introduction 
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differences in these modes result from the basic differences in geometry for a 
transmission line and a waveguide. 

Waveguides can be generally classified as either metal waveguides or 
dielectric waveguides. Metal waveguides normally take the form of an enclosed 
conducting metal pipe. The waves propagating inside the metal waveguide may be 
characterized by reflections from the conducting walls. The dielectric waveguide 
consists of dielectrics only and employs reflections from dielectric interfaces to 
propagate the electromagnetic wave along the waveguide. 

1. Metal Wave guides 
a. Rectangular Wave guide 
As shown in the given diagram, the rectangular wave guide is designed from 
conducting material in rectangular shape which is hollow from the center and 
fully polished from interior. The outer surface of the wave guide is coded with 
insulating material or paint in order to avoid dust and rust. These types of wave 
guides are available in different lengths and sizes in order to fulfill the 
requirements of the circuit. 

 
 

b. Circular Wave guide 
As shown in the given diagram the circular waveguide is designed from a 
conducting pipe which is hollow from the center and polished from interior 
portion. The outer surface of the wave guide is coded with the insulated paint in 
order to avoid dust and rust. These types of wave guide are available in different 
lengths and sizes in order to fulfill the requirement of the circuit. 
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2. Dielectric Wave guides 

a. Dielectric Slab Wave guide  

 
b.  Optical Fiber 

 
 

Uses of Wave Guide 

There are the following uses of Wave Guide. 

1. It is used where the transmission or reception is in the range of microwave 
frequencies. 

2. It is also used for handling the high power of energy. 

3. It is mostly used in the airborne radar. 
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4. In ground radar’s we also use the wave guide. 

5. The circular wave guide is mostly used in the ground radar to transmit or 

receive the energy from antenna which revolves in 360 bearing 
continuously. 

6. The wave guide is also used in communication system. 

7. In satellite communication the wave guide is mostly used. 

8. We also use the wave guide in the devices of navigation aids. 

9. In some cases the wave guide is used as attenuator where very high 
frequencies are involved. 

10. The wave guides are also used with the cavity resonators to carry the input 
and output signals. 

Comparison of Waveguide and Transmission Line Characteristics 

Transmission line 

 

Waveguide 

 

Two or more conductors separated by 
some insulating medium (two-wire, 
coaxial, microstrip, etc.). 

 

Metal waveguides are typically one 
enclosed conductor filled with an 
insulating medium (rectangular, 
circular) while a dielectric 
waveguide consists of multiple 
dielectrics. 

Normal operating mode is the TEM or 
quasi-TEM mode. 

Operating modes are TE or TM 
modes  

No cutoff frequency for the TEM 
mode. Transmission lines can transmit 
signals from DC up to high frequency. 

Must operate the waveguide at a 
frequency above the respective TE or 
TM mode cutoff frequency for that 
mode to propagate. 

Significant signal attenuation at high 
frequencies due to conductor and 
dielectric losses. 

Lower signal attenuation at high 
frequencies than transmission lines. 

 

Small cross-section transmission lines Metal waveguides can transmit high 
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(like coaxial cables) can only transmit 
low power levels due to the relatively 
high fields concentrated at specific 
locations within the device  

power levels. The fields of the 
propagating wave are spread more 
uniformly over a larger cross-
sectional area than the small cross-
section transmission line. 

Large cross-section transmission lines 
(like power transmission lines) can 
transmit high power levels. 

Large cross-section (low frequency) 
waveguides are impractical due to 
large size and high cost. 

13.2 General Wave Characteristics  
 Given any time-harmonic source of electromagnetic radiation, the phasor 
electric and magnetic fields associated with the electromagnetic waves that 

propagate away from the source through a medium characterized by (,) must 
satisfy the source-free Maxwell’s equations given by 

∇ × ෨ܧ =  ෩ܪߤ݆߱−

∇ × ෩ܪ = ෨ܧߤ݆߱−  

The source-free Maxwell’s equations can be manipulated into wave equations for 
the electric and magnetic fields. These wave equations are 

∇ଶܧ෨ + ݇ଶܧ෨ = 0 

∇ଶܪ෩ + ݇ଶܪ෩ = 0 

     Where ݇ =  ߝߤ√߱

where the wave number k is real valued for lossless media and complex valued 
for lossy media.  

The electric and magnetic fields of a general wave propagating in the +z-direction 
(either unguided, as in the case of a plane wave or guided, as in the case of a 
transmission line or waveguide) through an arbitrary medium with a propagation 

constant of  are characterized by a z-dependence of ࢠࢽିࢋ .  

The electric and magnetic fields of the wave may be written in rectangular 
coordinates as 

,ݔ)෨ܧ ,ݕ (ݖ = ,ݔ)̃݁ ఊ௭ି݁(ݕ  

,ݔ)෩ܪ ,ݕ (ݖ = ℎ෨(ݔ, ఊ௭ି݁(ݕ  

13.2 General Wave Characteristics  
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Where ߛ = ߙ +  and   is the wave attenuation constant and  is the wave phase ,ߚ

constant. The propagation constant is purely imaginary (= 0, =j) when the 
wave travels without attenuation (no losses) or complex-valued when losses are 
present. 

The transverse vectors [݁̃(ݔ, ,(ݕ ℎ෨(ݔ,  in the general wave field expressions may [(ݕ
contain both transverse field components and longitudinal field components. By 
expanding the curl operator of the source free Maxwell’s equations in rectangular 
coordinates, we note that the derivatives of the transverse field components with 
respect to z are 

డா෪ೣ

డ௭
= ෨௫ܧߛ− , 

డா೤෪

డ௭
=  ෨௬ܧߛ−

డு෪ೣ

డ௭
= ෩௫ܪߛ− , 

డு೤෪

డ௭
=  ෩௬ܪߛ−

If we equate the vector components on each side of the two Maxwell curl 
equations, we find 

෨௫ܧߝ݆߱                                            = డு೥෪

డ௬
+  ෩௬ܪߛ

෨௬ܧߝ݆߱ = −
௭෪ܪ߲
ݔ߲ −  ෩௫ܪߛ

෨௭ܧߝ݆߱ =
௬෪ܪ߲
ݔ߲ −

௫෪ܪ߲
ݕ߲  

෩௫ܪߤ݆߱− =
௭෪ܧ߲
ݕ߲ + ෨௬ܧߛ  

෩௬ܪߤ݆߱− = −
௭෪ܧ߲
ݔ߲ − ෨௫ܧߛ  

෩௭ܪߤ݆߱− =
௬෪ܧ߲
ݔ߲ −

௫෪ܧ߲
ݕ߲  

From above equations we can solve the longitudinal field components in terms of 
the transverse field components and we get 

෨௫ܧ =
1
ℎଶ ቆ−

௭෪ܧ߲
ݔ߲ − ݆

௭෪ܪ߲
ݕ߲ ቇ 

෨௬ܧ =
1
ℎଶ ቆ−

௭෪ܧ߲
ݕ߲ + ݆

௭෪ܪ߲
ݔ߲ ቇ 

෩௫ܪ =
1
ℎଶ ቆ−

௭෪ܪ߲
ݔ߲ + ݆

௭෪ܧ߲
ݕ߲ ቇ 
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෩௬ܪ =
1
ℎଶ ቆ−

௭෪ܪ߲
ݕ߲ − ݆

௭෪ܧ߲
ݔ߲ ቇ 

Where ℎଶ = ଶߛ + ߱ଶߝߤ = ଶߛ + ݇ଶ 

The equations for the transverse fields in terms of the longitudinal fields describe 
the different types of possible modes for guided and unguided waves. 

Mode Electric field Magnetic field  

Transverse 
electromagnetic 
(TEM modes) 

෨௭ܧ = ෩௭ܪ 0 = 0 Plane wave 
transmission line 
modes 

Transverse electric 
(TE modes) 

෨௭ܧ = ෩௭ܪ 0 ≠ 0 Waveguide modes 

Transverse 
magnetic (TM 
modes) 

෨௭ܧ ≠ ෩௭ܪ 0 = 0 Waveguide modes 

Hybrid (HE or EH 
modes) 

෨௭ܧ ≠ ෩௭ܪ 0 ≠ 0 Waveguide modes 

For simplicity, consider the case of guided or unguided waves propagating through 
an ideal (lossless) medium where k is real-valued.  

For TEM modes, the only way for the transverse fields to be non-zero with 
෨௭ܧ = ෩௭ܪ 0 = 0 is for h = 0, which yields 
ߛ = √ℎଶ − ݇ଶ = √−݇ଶ = ݆݇ = ߙ +  ߚ݆

or ߚ = ݇ 

Thus, for unguided TEM waves (plane waves) moving through a lossless medium 
or guided TEM waves (waves on a transmission line) propagating on an ideal 
transmission line, we have ߛ = ߚ݆ = ݆݇ 

For the waveguide modes (TE, TM or hybrid modes), h cannot be zero since this 
would yield unbounded results for the transverse fields. Thus, ߚ ≠ ݇ for 
waveguides and the waveguide propagation constant can be written as 
ߛ = √ℎଶ − ݇ଶ = ඥ−݇ଶ(1 − ℎଶ/݇ଶ ) = ݆݇ඥ(1 − ℎଶ/݇ଶ 
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The propagation constant of a wave in a waveguide (TE or TM waves) has very 
different characteristics than the propagation constant for a wave on a transmission 
line (TEM waves). The ratio of h/k in the waveguide mode propagation constant 
equation can be written in terms of the cutoff frequency fc for the given waveguide 
mode as follows. 
 

ℎ
݇ =

ℎ
ߝߤ√߱

=
ℎ

ߝߤ√݂ߨ2
= ௖݂

݂  

௖݂ =
ℎ

ߝߤ√ߨ2
 

The waveguide propagation constant in terms of the waveguide cutoff frequency is 

ߛ = ݆݇ට1 − ௙೎మ

௙మ
 

An examination of the waveguide propagation constant equation reveals the cutoff 
frequency behaviour of the waveguide modes. 

If ݂ < ௖݂ , ߛ = ఊ௭ି݁    (purely real) ߙ = ݁ିఈ௭ waves are attenuated (evanescent 
modes) 

If ݂ > ௖݂ , ߛ = ఊ௭ି݁    (purely imaginary) ߚ݆ = ݁ି௝ఉ௭  waves are unattenuated 
(propagating modes) 

Therefore, in order to propagate a wave down a waveguide, the source must 
operate at a frequency higher than the cutoff frequency for that particular mode. If 
a waveguide source is operated at a frequency less than the cutoff frequency of the 
waveguide mode, then the wave is quickly attenuated in the vicinity of the source 

13.3 Self Learning Exercise -I 

Q.1  Express Maxwell’s equations in cylindrical coordinate system.   

(1)     H j E    
 

 

(2)      E j H    
 

 

Q.2   Using the equations of Q.1, find all cylindrical field components in terms of 
Ez and Hz. 

Q.3   Differentiate between Metallic and Dielectric Wave Guides. 

13.3 Self Learning Exercise -I 
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Q.4  Define Transverse Electric Field, Transverse Magnetic Field, Transverse 
Electomagnetic Fields. 

13.4  TE Mode in Rectangular Wave Guides 
Waves propagate along the waveguide (+z-direction) within the waveguide 
through the lossless dielectric. The electric and magnetic fields of the guided 
waves must satisfy the source-free Maxwell’s equations. 
 Assumptions: 

(1)  the waveguide is infinitely long, oriented along the z-axis, and uniform along 
its length. 

(2)  the waveguide is constructed from ideal materials [perfectly conducting pipe 
(PEC) is filled with a perfect insulator (lossless dielectric)]. 

(3)   fields are time-harmonic. 
The cross-sectional size and shape of the waveguide dictates the discrete modes 
that can propagate along the waveguide. That is, there are only discrete electric and 
magnetic field distributions that will satisfy the appropriate boundary conditions on 
the surface of the waveguide conductor.  

If the single non-zero longitudinal field component associated with a given 
waveguide mode can be determined for a TM mode, for a TE mode), the remaining 
transverse field components can be found using the general wave equations for the 
transverse fields in terms of the longitudinal fields. 

General Waves in an arbitrary Medium 

෨௫ܧ =
1
ℎଶ ቆ−

௭෪ܧ߲
ݔ߲ − ݆

௭෪ܪ߲
ݕ߲ ቇ 

෨௬ܧ =
1
ℎଶ ቆ−

௭෪ܧ߲
ݕ߲ + ݆

௭෪ܪ߲
ݔ߲ ቇ 

෩௫ܪ =
1
ℎଶ ቆ−

௭෪ܪ߲
ݔ߲ + ݆

௭෪ܧ߲
ݕ߲ ቇ 

෩௬ܪ =
1
ℎଶ ቆ−

௭෪ܪ߲
ݕ߲ − ݆

௭෪ܧ߲
ݔ߲ ቇ 

TE Modes in an ideal Waveguide 

෨௭ܧ = 0, ߛ =  ߚ݆

13.4  TE Mode in Rectangular Wave Guides 
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෨௫ܧ = ଵ
௛మ
ቀ−݆ డு೥෪

డ௬
ቁ, ܧ෨௬ = ଵ

௛మ
ቀ݆ డு೥෪

డ௫
ቁ 

 

෩௫ܪ = ଵ
௛మ
ቀ− డு೥

෪

డ௫
ቁ, ܪ෩௬ = ଵ

௛మ
ቀ− డு೥

෪

డ௬
ቁ 

TM Modes in an Ideal Waveguide 

෩௭ܪ = 0, ߛ =  ߚ݆

෨௫ܧ = ଵ
௛మ
ቀ− డா೥

෪

డ௫
ቁ,  ܧ෨௬ = ଵ

௛మ
ቀ− డா೥

෪

డ௬
ቁ 

෩௫ܪ =
1
ℎଶ ቆ݆

௭෪ܧ߲
ݕ߲ ቇ ෩௬ܪ, =

1
ℎଶ ቆ−݆

௭෪ܧ߲
ݔ߲ ቇ 

The longitudinal magnetic field of the TE mode and the longitudinal electric field 
of the TM mode are determined by solving the appropriate boundary value 
problem for the given waveguide geometry. 

 
The rectangular waveguide can support either TE or TM modes. The 
rectangular cross-section (a > b) allows for single-mode operation. Single-mode 
operation means that only one mode propagates in the waveguide over a given 
frequency range. A square waveguide cross-section does not allow for single-mode 
operation. 

Rectangular Waveguide TE Modes 

The longitudinal magnetic field of the TE modes within the rectangular waveguide 
must satisfy the same wave equation as the longitudinal electric field of the TM 
modes: 

∇ଶܪ෩௭்ா + ݇ଶܪ෩௭்ா = 0 

which expanded in rectangular coordinates is 
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߲ଶܪ෩௭்ா

ଶݔ߲ +
߲ଶܪ෩௭்ா

ଶݕ߲ +
߲ଶܪ෩௭்ா

ଶݖ߲ + ݇ଶܪ෩௭்ா = 0 

The magnetic field function may be determined using the separation of variables 
technique by assuming a solution of the form 

෩௭்ாܪ = ௝ఉ௭ି݁(ݕ)ܻ(ݔ)ܺ  

 .traveling wave ݖ̂+

 Inserting the assumed solution into the governing differential equation gives 

(ݕ)ܻ
݀ଶܺ(ݔ)
ଶݔ݀ ݁ି௝ఉ௭ + (ݔ)ܺ

݀ଶܻ(ݕ)
ଶݕ݀ ݁ି௝ఉ௭ + (݇ଶ − ௝ఉ௭ି݁(ݕ)ܻ(ݔ)ܺ(ଶߚ = 0  

(ݕ)ܻ
݀ଶܺ(ݔ)
ଶݔ݀ ݁ି௝ఉ௭ + (ݔ)ܺ

݀ଶܻ(ݕ)
ଶݕ݀ ݁ି௝ఉ௭ + ℎଶܺ(ݔ)ܻ(ݕ)݁ି௝ఉ௭ = 0 

Where ℎଶ = (݇ଶ −  (ଶߚ

Dividing this equation by the assumed solution gives 
1

(ݔ)ܺ
݀ଶܺ(ݔ)
ଶݔ݀ +

1
(ݕ)ܻ

݀ଶܻ(ݕ)
ଶݕ݀ + ℎଶ = 0 

Note that the first term in above equation is a function of x only while the second 
term is a function of y only.  

1
(ݔ)ܺ

݀ଶܺ(ݔ)
ଶݔ݀ = −݇௫ଶ  ⇒

݀ଶܺ(ݔ)
ଶݔ݀ + ݇௫ଶܺ(ݔ) = 0  

1
(ݕ)ܻ

݀ଶܻ(ݕ)
ଶݕ݀ = −݇௬ଶ  ⇒

݀ଶܻ(ݕ)
ଶݕ݀ + ݇௬ଶܻ(ݕ) = 0  

Where ℎଶ = ൫݇௫ଶ + ݇௬ଶ൯ 

The original second order partial differential equation dependent on two variables 
has been separated into two second order ordinary differential equations each 
dependent on only one variable. The general solutions to the two separate 
differential equations are 

(ݔ)ܺ = ݔ௫݇݊݅ݏܣ +  ݔ௫݇ݏ݋ܿܤ

(ݕ)ܻ = ݕ௬݇݊݅ݏܥ +  ݕ௬݇ݏ݋ܿܦ

The resulting longitudinal magnetic field for a rectangular waveguide TE mode is 

෩௭்ாܪ = ݔ௫݇݊݅ݏܣ) + ݕ௬݇݊݅ݏܥ)(ݔ௫݇ݏ݋ܿܤ + ௝ఉ௭ି݁(ݕ௬݇ݏ݋ܿܦ  

To determine the unknown coefficients, we apply the TE boundary conditions. 
Given no longitudinal electric field for the TE case, the boundary conditions for 



300 
 

the transverse electric field components on the walls of the waveguide must be 
enforced. The TE boundary conditions are: 

,෨௬்ா(0ܧ ,ݕ (ݖ = ,ܽ)෨௬்ாܧ ,ݕ (ݖ = 0  (Vertical walls) 

,ݔ)෨௫்ாܧ 0, (ݖ = ,ݔ)෨௫்ாܧ ܾ, (ݖ = 0  (Horizontal walls) 

 

 
The transverse components of the TE electric field are related to longitudinal 
magnetic field by the standard TE equations. 

෨௫்ாܧ =
1
ℎଶ ቆ−݆

௭෪ܪ߲
ݕ߲ ቇ 

       =
݇௬
ℎଶ
൫−݆(݇݊݅ݏܣ௫ݔ + ݕ௬݇ݏ݋ܿܥ) (ݔ௫݇ݏ݋ܿܤ −  ௝ఉ௭൯ି݁(ݕ௬݇݊݅ݏܦ

෨௬்ாܧ =
1
ℎଶ ቆ݆

௭෪ܪ߲
ݔ߲ ቇ 

         =  
݇௫
ℎଶ
൫݆(݇ݏ݋ܿܣ௫ݔ − ݕ௬݇݊݅ݏܥ൫(ݔ௫݇݊݅ݏܤ +  ൯݁ି௝ఉ௭൯ݕ௬݇ݏ݋ܿܦ

The application of the TE boundary conditions yields 

,ݔ)෨௫்ாܧ 0, (ݖ = 0 ⇒ ܥ = 0 

,ݔ)෨௫்ாܧ ܾ, (ݖ = 0 ⇒ ݇௬ܾ = ݊) ߨ݊ = 0,1,2, … ) ⇒ ݇௬ =
ߨ݊
ܾ  

,෨௬்ா(0ܧ ,ݕ (ݖ = 0 ⇒ ܣ = 0 

,ܽ)෨௬்ாܧ ,ݕ (ݖ = 0 ⇒ ݇௫ܽ = ݉) ߨ݉ = 0,1,2, … ) ⇒ ݇௫ =
ߨ݉
ܽ  

Combining the constants B and D into the constant Ho, the resulting longitudinal 
magnetic field of the TEmn mode is 

෩௭ܪ
்ா೘೙(ݔ, ,ݕ (ݖ = ଴ܪ ቀܿݏ݋

ߨ݉
ܽ ቁݔ ݏ݋ܿ)

ߨ݊
ܾ ௝ఉ௭ି݁(ݕ  
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Note that the indices include m = 0 and n = 0 in the TE solution since these values 
still yield a non-zero longitudinal magnetic field. However, the case of n = m = 0 is 
not allowed since this would make all of the transverse field components zero. The 
resulting transverse fields for the waveguide TE modes are 

෨௫ܧ
்ா೘೙ =

1
ℎଶ
൭−݆

௭෪ܪ߲
்ா೘೙

ݕ߲
൱ =

݆
ℎଶ ቀ

ߨ݊
ܾ ቁܪ଴ ቀܿݏ݋

ߨ݉
ܽ ቁݔ ݊݅ݏ)

ߨ݊
ܾ ௝ఉ௭ି݁(ݕ  

෨௬ܧ
்ா೘೙ =

1
ℎଶ
൭݆

௭෪ܪ߲
்ா೘೙

ݔ߲
൱ =  

݆
ℎଶ ቀ

ߨ݉
ܽ ቁܪ଴ ቀ݊݅ݏ

ߨ݉
ܽ ቁݔ ݏ݋ܿ)

ߨ݊
ܾ ௝ఉ௭ି݁(ݕ  

෩௫ܪ
்ா೘೙ =

1
݇௖ଶ
൭−݆ߚ

௭෪ܪ߲
்ா೘೙

ݔ߲
൱ = −൬

ߨ݉ߚ݆
݇௖ଶܽ

൰ܪ଴ ቀ݊݅ݏ
ߨ݉
ܽ ቁݔ ݏ݋ܿ)

ߨ݊
ܾ ௝ఉ௭ି݁(ݕ  

෩௬ܪ 
்ா೘೙  = ଵ

௞೎మ
൬−݆ߚ డு೥෪

೅ಶ೘೙

డ௫
൰ = ቀ௝ఉ௡గ

௞೎మ௕
ቁܪ଴ ቀܿݏ݋

௠గ
௔
ቁݔ ݊݅ݏ) ௡గ

௕
௝ఉ௭ି݁(ݕ  

where (m = 0, 1, 2, ...) and (n = 0, 1, 2, ...) but ݉ = ݊ ≠  0 for the TEmn mode. 

Rectangular waveguide mn index pairs (TEmn) 

 

0 1 2
0 01 02 ...
1 10 11 12 ...
2 20 21 22 ...

.........      ...         ...        ...   ...

n n n
m
m
m

  
 



 

13.5  TE Mode Parameters 

The propagation constant in the rectangular waveguide for both the TEmn and TMmn 

waveguide modes (mn) is defined by   

 2 2 2 2 2
mn mn x yh k k k k     

 

 
2 2

2 2
mn x y

m nh k k
a b
          

     

2 2
2 2 2

mn mn
m nh k
a b
             

   
 

13.5  TE Mode Parameters 
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The equation for the waveguide propagation constant mn can be used to 
determine the cutoff frequency for the respective waveguide mode. The 

propagation characteristics of the wave are defined by the relative sizes of the 
parameters hmn and k. The propagation constant may be written in terms of the 
attenuation and phase constants as 

௠௡ߛ = ௠௡ߙ + ௠௡ߚ݆  

so that, 

if  hmn = k ,mn = 0 (mn = mn = 0)  cutoff frequency 

if  hmn > k mn (real), [mn = mn]    evanescent modes 

if hmn < k   mn (imag.), [mn = jmn]  propagating modes 

Therefore, the cutoff frequencies for the TE mode in the rectangular waveguide are 
found by solving 

ℎ௠௡ = ට൫݇௫ଶ + ݇௬ଶ൯ = ඨቀ
ߨ݉
ܽ ቁ

ଶ
+ ቀ

ߨ݊
ܾ ቁ

ଶ
= ݇௖೘೙ = ߨ2 ௖݂೘೙ඥߝߤ 

2 21
2mnc

m nf
a b
 

 

                 
 

Where ௖݂೘೙ is rectangular waveguide cutoff frequency. 

Note that the cutoff frequency for a particular rectangular waveguide mode 
depends on the dimensions of the waveguide (a,b), the material inside the 

waveguide (,), and the indices of the mode (m,n). The rectangular waveguide 
must be operated at a frequency above the cutoff frequency for the respective mode 
to propagate. 

According to the cutoff frequency equation, the cutoff frequencies of both the TE10 
and TE01 modes are less than that of the lowest order TM mode (TM11). Given a > 
b for the rectangular waveguide, the TE10 has the lowest cutoff frequency of any of 
the rectangular waveguide modes and is thus the dominant mode (the first to 
propagate). Note that the TE10 and TE01 modes are degenerate modes (modes with 
the same cutoff frequency) for a square waveguide. The rectangular waveguide 
allows one to operate at a frequency above the cutoff of the dominant TE10 mode 
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but below that of the next highest mode to achieve single mode operation. A 
waveguide operating at a frequency where more than one mode propagates is said 
to be overmoded. 

Example 1  A rectangular waveguide (a = 2 cm, b = 1 cm) filled with deionised 

water (r =1, r = 81 ) operates at 3 GHz. Determine all propagating modes and 
the corresponding cutoff frequencies. 

Solution 

௖݂೘೙ = ൬
1

ߝߤ√ߨ2
൰ඨቀ

ߨ݉
ܽ ቁ

ଶ
+ ቀ

ߨ݊
ܾ ቁ

ଶ
 

=
ܿ

2ඥ(1)(81)
ඨቀ

݉
0.02ቁ

ଶ
+ ቀ

݊
0.01ቁ

ଶ
 

=
ܿ

18
ඨቀ

݉
0.02ቁ

ଶ
+ ቀ

݊
0.01ቁ

ଶ
 

Cutoff frequencies - TE modes (GHz) 

 

0 1 2
0 1.667 3.333...
1 0.833 1.863 3.436...
2 1.667 2.357 3.727...

.........      ...         ...        ...   ...

n n n
m
m
m

  
 



 

13.6 Self Learning Exercise- II 

Q.1  Consider a length of air-filled copper X-band waveguide, with dimensions 
a=2.286cm, b=1.016cm. Find the cut-off frequencies of the first four 
propagating modes. 

Q.2   The cutoff frequency of an air-filed rectangular waveguide is 2.4 GHz for the 
TE10 mode.  What would be the cutoff frequency if the same guide were filled 
with a lossless nonmagnetic material whose dielectric permittivity is six 
times that of air?  

Q.3  In an air-filled rectangular waveguide, the cutoff frequency of a TE10 mode is 
5GHz, whereas that of TE01 mode is 12 GHz.  Calculate 

13.6 Self Learning Exercise- II 
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(I) the dimensions of the guide  

(II) the cutoff frequencies of the next three higher TE modes  

Q.4  In an air-filled square waveguide with a =1.2 cm,  

Ex= -10 sin (2ω y/a) sin(ωt-150z) V/m 

   (a) the mode of propagation  

    (b) frequency of operation  

     (c) the field components Hz and Ez 

13.7 Summary 
 This chapter has presented information on waveguide theory and 
application. Waveguides are the primary methods of transporting microwave 
energy. Waveguides have fewer losses and greater power-handling capability than 
transmission lines. The "a," dimension determines the frequency range of the 
waveguide, and the "b," dimension determines power-handling capability. 
Waveguides handle a small range of frequencies both above and below the primary 
operating frequency. Energy is transported through waveguides by the interaction 
of electric and magnetic fields, abbreviated E FIELD and H FIELD, respectively. 
In this chapter we firstly discussed details of wave guide and their characteristic 
which is followed by TE mode in a rectangular waveguide. 

13.8 Glossary 
Cutoff frequency: The frequency either above which or below which the output of 
a circuit, such as a line, amplifier, or filter, is reduced to a specified level.  

Transmission line: The material medium or structure that forms all or part of 
a path from one place to another for directing the transmission of energy, such as 
electric currents, magnetic fields, acoustic waves, or electromagnetic 
waves. Examples of transmission lines include wires, optical fibers, coaxial cables, 
rectangular closed waveguides, and dielectric slabs. 

Waveguide: A material medium that confines and guides a propagating 
 electromagnetic wave.  

Dielectric: A substance in which an electric field may be maintained with zero or 
near-zero power dissipation, i.e. , the electrical conductivity is zero or near 

13.8 Glossary 

13.7 Summary 
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zero. Note 1: A dielectric material is an electrical insulator. Note 2: In a dielectric, 
electrons are bound to atoms and molecules, hence there are few free electrons. 

13.9 Answers to Self learning Exercises 

Answers to Self learning Exercise-I 

Ans.1: We know that 

 

 

1

1

z r z
r

r
z

A a a
r z z r

r a
r r






  
    


  

    
       

  
 

   
 

 

Equation (1) yields (σ = 0) 

   

   j
r

j kr

z
 


  


  
1

( )
 

   
   j j k

rr
z 


 


   ( )
    

   
   j

r r r
r

z 




 




 
1 1

     
Equation (2) yields: 

  
      j

r
j kr

z
 


  




1
( )

     

  
       j j k

rr
z 


 


( )
    

   
     j

r r r
r

z 




 


1 1

     
Ans.2:  

 

    


 
r

c

z

c

zj
k r

j k
k r

  
  

 

2 2

1

   

13.9 Answers to Self Learning Exercises 
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    


 
r

c

z

c

zj
k r

j k
k r

 
  

 

2 2

1

   

 

    


 


  



 

  
j

k r r
j k
k rc

z

c

z
2 2

1 1

  

 

     


 


  
 

  


 
j

k r
j

k r rc

z

c

z
2 2

1 1

 
Ans.3:  Metallic Wave Guide is used in high frequency, microwaves and 

millimeter waves transmission. Co-axial cables and hollow rectangular or 
circular wave guide's fall in this category. 

Dielectric Wave Guide is used at sub millimeter wavelengths and optical 
frequencies. Optical fibers and thin film integrated optical devices fall in 
this category. 

Ans.4: Transverse Electric Field, the electric field is perpendicular to the 
direction of wave propagation. That is to say that the electric field does not 
have any component in the direction of wave propagation. 

For Transverse Magnetic Field, the magnetic field is transverse to the 
direction of wave propagation. That is to say that the electric field does not 
have any component in the direction of wave propagation. 

For Transverse Electromagnetic Fields, the electric and magnetic fields 
both do not have a component in the direction of wave propagation. 

Answers to Self learning Exercise-II 

Ans. 1 : Air Filled cut off frequency 

௖݂ =
ܿ
2
ඨቀ

݉
0.02286ቁ

ଶ
+ ቀ

݊
0.01016ቁ

ଶ
 

Ans. 2 :  980MHz 

Ans. 3 :  (I) a = 3cm b = 1.25cm  

    (II) TE20(10Ghz), TE11(13GHz), TE30(15GHz) 

Ans. 4 :  

(a) since m=0 it has to be TE. n=2 so it's TE02.  
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(b) Since a=b, fc02= (c/2π) sqrt(k2
x +k2

y ) = 25GHz , where ky=0. β=150 

rad/m (is  given from inside the sin(ωt-150z),  

 k2= β2+k2
x +k2

y = ω2με, then f of operation is=26.00665 = 26 GHz 

(c ) 0y z zE E H  
 

 
 7.286sin sin 150 /y

yH t z mA m
a

     
   

 
 25.43cos 2 cos 150 /z

yH t z mA m
a

     
   

13.10 Exercise 

Section A:Very Short Answer Type Questions 

Q.1  An air-filled 1.5 cm×3 cm waveguide is operated at a frequency that lies in 
the middle of its TE10 mode band. Determine cut-off frequencies in GHz. 

Section B: Short Answer Type Questions 

Q.2  In an air-filled rectangular waveguide with a = 2.286cm and b = 1.016cm, the 
y-component of the TE mode is given by 

௬ܧ = sin ൬
ݔߨ2
ܽ ൰ sin ൬

ݕߨ3
ܾ ൰ cos(10ߨ × 10ଵ଴ݐ − (ݖߚ ܸ/݉ 

Find: 

a) the operating mode. 

b) the propagation constant  

Section C: Long answer Type Questions 

Q.3 Write down disadvantages of waveguides over conventional transmission 
lines. 

Q.4  In an air-filled rectangular waveguide, a TE mode operating 

at 6GHz has  

ݕܧ         = sin ቀ2ݔߨ

ܽ
ቁ sin ቀݕߨ

ܾ
ቁ cos(ݐ − (ݖ12 ܸ/݉ 

Find: 

 a) the mode of operation 

13.10 Exercise 
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 b) the cutoff frequency 

 c) Hx 

References and Suggested Readings  

1.  Electromagnetic Waves and Antennas by Sophocles J. Orfanidis, 2008. 

2.  Fundamentals of Applied Electromagnetics by Fawwaz T. Ulaby, 2010. 

3.  Microwave Devices & Circuits Paperback by Samuel Y. Liao, 2000. 

  

References and Suggested Readings  



309 
 

UNIT -14 
Lienard –Wiechart Potentials, Power 
Radiated by an Accelerated Charge 

Structure of the Unit 
14.0 Objectives  
14.1 Introduction  
14.2 Lienard – Wiechert  potentials  
14.3 Self learning Exercise –I 
14.4 Total power radiated by an accelerated point charge  

14.5 Relativistic generalization of power radiated by a point charge-Lienard’s 
 generalization of the Larmor formula  

14.6 Illustrative Example 
14.7 Self learning Exercise -II 
14.8 Summary  
14.9 Glossary 
14.10 Answer to Self-Learning Exercises 
14.11 Exercise 
14.12  Answers to Exercise 
 References and Suggested Readings 
 
14.0 Objectives  
(i) To obtain Lienard- Wiechert Potentials for a moving point charge. 
(ii) To determine total power radiated by an accelerated point charge. 

14.1 Introduction  
  A moving charge generates electric and magnetic fields hence  scalar and 
vector potentials associated with these fields. These potential and fields must be 
known to obtain radiated    power by the moving point charge. This unit is written 
for this purpose. 
 

UNIT -14 
Lienard –Wiechert Potentials, Power 
Radiated by an Accelerated Charge 

14.0 Objectives  

14.1 Introduction  
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14.2 Lienard – Wiechart  Potentials  
 

 
Fig.-1 

 
Due to the motion of point charge(source point r ) , potential at a position r  (field 
point)at present time t are actually associated with the fields that generated at an 

earlier position r  at an earlier time '  
 r rt t

c  
are called retarded potential, 

given as   

     3

0

,1,
4






     
             

 


 
r rr t d r dt

r t t t
cr r

                   
(1)

 

    3
0 ,

,
4
 


     
           

   
 

r rJ r t d r dt
A r t t t

cr r
             

(2)

 The charge and current densities of a moving point charge of magnitude q at a 
position 0rat time 't is given as    

    0,     
  r t q r r

             
(3)

 
   0,     
    J r t q v r r

                       
(4)  

Where  0 ,  v r t is the instantaneous velocity of point charge along the path. 

Using equations (3) & (4) into (1) & (2) respectively, then  

14.2 Lienard – Wiechert  Potentials  
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 

  3
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           
      
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 
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And  
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0
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0

|

,
4

 



           
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 
  

 
 

r r
qv t t r r d r dt

c
A r t

r r
 

 
Using the property of Dirac-delta function solutions of above relation is   

   0

0 0

, )
4




               

 


 
r rq dtr t t t

cr r
 

        (5) 

 and   00

0

,
4
 


              

  
 

r rq v dtA r t t t
cr r

                    

(6)

For determination of   integral over 't , 

    Let            

0 0' '


  
       

 

   r r r r
t t t t

c c
           (7) 

So,   0
11 '

  
 

 d d r r
dt c dt  

 

 
2 2
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   
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d r r r r r
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          
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  

  
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c r r r r  
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' . .11 . 1 .
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
  

 

   

 
r v r v

c r r r r  
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 0

0

'11 .
'


 



 


 
r r

v
c r r  

 
1

  


d
dt

r̂ .


 Where r̂  0

0

' ,
'


 



  
 
r r v
r r c  

 ˆ1 .



 


ddt
r

                  (8) 

Using equations (7) and (8) into (5) and (6),  
Gives 

 
     

 0

, )
ˆ4 1 .

  
 

  
 

 
dqr t

r r  

and     
 

0,
ˆ4 1 .

  
 

 


  
v dqA r t
r r   

Using property of Dirac-delta function 

 
   0

1,
ˆ4 1 . 

 
 

 qr t
r r                

 (9)

     
     
       (10) 

   
0 0

0 ˆ4 1 .

 




 
q v

r r  

 
   2, , 

  vA r t r t
c                          

(11)  

  0 0 2
1  




c  
 
Equation (9) & (10) are the Lienard Wiechart potential for moving point charge. 
 
14.3 Self  Learning Exercise –I 
Q.1  What is charge density? 
Q.2  What is current density? 
Q.3  Write the properties of Dirac delta function? 
Q.4      What do you mean by retarded time?  

   
0,

ˆ4 1 .

 




  qvA r t
r r

14.3 Self  Learning Exercise –I 
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Q.5  How you get electric and magnetic fields from scalar and vector potentials? 

14.4 Total Power Radiated by an Accelerated Point Charge  

Since the electric and magnetic field generated by an accelerated point charge of 

magnitude q are  

 

 
 

 

2 2

22 2
0

ˆ ˆ1
,

ˆ4 1 .



 

     
 

 
 


q c a

E r t
c

r r r

r r             

(12) 

where 


 dva
dt

acceleration of charge,  

 
r =vector along the direction of emitted fields. 

 
 

 v
c

, 0 Permittivity of free space  

and   1 ˆ,  
 B r t E

c
r

              
 (13) 

Since power radiated per unit area is given by Poynting vector   

 
0



  E BS   

Using equation (13), gives 

 0
 


  E ES

c
r   2

0

1 ˆ ˆ .


 
 

E E E
c

r r                 

Since radiation fields are perpendicular to direction of propagation,  

So, ˆ. 0

Er  

and      2

0

1 ˆ





rad radS E
c

r
                                                   

(14) 

Since total power radiated is given as .  
 

radP S dA where integration is taken 
over area surrounding to point charge, so  

 
 

2
2 2

0 0 0

1 ˆ ˆ E sinθ
 




   radP d d
c

r  .r r
 

14.4 Total Power Radiated by an Accelerated Point Charge  
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 

2
2

0 00

1 sinθ
 




   radP E d d
c

r              (15) 

where  is the angle between direction of motion of charge and direction of emitted 
radiation. 

θ
dθ

r


dA

 
 

Figure 2 

Since total power radiated is given as .  
 

radP S dA where integration is taken 
over area surrounding to point charge, so  

 
 

2
2 2

0 0 0

1 ˆ ˆ E sinθ
 




   radP d d
c

r  .r r
 

 
 

2
2

0 00

1 sinθ
 




   radP E d d
c

r              (15) 

where  is the angle between direction of motion of charge and direction of emitted 
radiation. 

Now multiply equation (12) by r , gives 

  
 

 2 2

22

ˆ1 ˆ1,
4 ˆ1 .



 

     
    

  


cq aE r t
c

r r rr
r rr  



315 
 

   
 2 2

22

ˆ11 ˆ ˆ
4 ˆ1 .



 

 
    

    




cq a
c

r
r r

rr
 

               I term        II Term 

Since I term varies as 1
r

, so at large distances this term contributes nothing to 

power ,but II term is independent of distance, so it gives fields which responsible 
for power radiating at large distances, hence these fields are called radiation fields,  

So,  

  
 22

ˆ ˆ
ˆ4 1 . 

  
 

 
rad

qE a
c

r r r
r     

If point change is at rest then 0 


, so  

 
 2

0

ˆ ˆ
4

  
 

rad
qE a

c
r r r

 

 
    2

0

ˆ ˆ ˆ ˆ
4

  
  

rad
qE a a

c
r r r  . r  .r

 

 
  2

0

ˆ ˆ.
4

  
  

red
qE a a

c
r r r

 
Using this into equation (15), gives 
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2 40 00 0
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2 5 0 00

ˆ ˆ ˆ ˆ. . 2 . sin
16

 

 
 

     
 q a a a d d

c
r r r r  

 
  

2 2
22

2 3 0 00

ˆ. sin
16

 

 
 

    
q a a d d

c
r

 

 
 

2 2
2 2 2

2 3 0 00

cos sin
16

 

  
 

    
q a a d d

c  

 
 

2 2
2 2

2 3 0 00

sin sin
16

 

  
 

   
q a d d

c  



316 
 

 

2 2 2
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2 3 0 00

sin
16

 

 
 

   
      

   

q a d d
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 

2 2

2 3
0

4 2
16 3


 

   
 

q a
c  

 

2 2

3
0

2 1
3 4

 
  

 

q aP
c

 

This is Larmor formula, this gives total power radiated by an accelerated point 
charge which instantaneously at rest. 

14.5 Relativistic Generalization of Power Radiated by a Point 
Charge-Lienard’s Generalization of the Larmor Formula  
  

The Larmor’s formula is based on the assumption that the point charge is 
instantaneously at rest, so this result holds good as long as v c . 

 When 0v  , then rate of energy passes through surface, is not same as the 

rate of energy at which it is lost from the particle. If dW
dt

 is the rate of energy 

passes through the surface at a distance r  from point charge, then the rate of 
energy left from the particle was 

 .
     

dW dW dt
dt dt dt

            (18) 

Where t   is retarded time, given as  

   
rt t
c

 

After differentiation  

 
11


 

dt dr
dt c dt

 

Or   11
      

dt dr dt
dt c dt dt

 

Or  1 1
 
 


dt dr dt
dt c dt dt

 

14.5 Relativistic Generalization of Power Radiated by a 
 Point Charge-Lienard’s Generalization of the Larmor 
 Formula  
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  11 1
     

dt dr
dt c dt

 

  1
11







dt
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(19)  

Since 0 
 r r r  

Hence 
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
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 = ˆ.
r v  

Hence from eq (19) 
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ˆ1 .




 
t
vt r
c

 = 1
ˆ1 .


r
 

where  
 v
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Using this into eq. (18), gives 

 1 .
ˆ1 .

 
    

dW dW
dt dtr
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Hence power radiated by the point particle into an element of area 2 sin  r d d  
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Where sin   d d d  

Since from eq. (16) 
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and the total power 
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After solving 
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This is Lienard formula for power radiated by the relativistic point particle. 
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14.6 Illustrative Example 

Example1: Calculate total power radiated by a proton initially at rest and having 

acceleration   
6

2
10

sec
m  

Sol. Larmor formula  

P= (1/4π 0 )(2/3)(q2a2/c3) where π= 3.14 

0 = 8.85x10-12 (M.K.S.) 

q= electronic charge=1.6x10-19 C 

a= acceleration of the charge particle= 106 m/s2 

C= velocity of light= 3x108 m/s                     

Hence  

P= (1/4x3.14x8.85x10-12) x (2/3) x (1.6x10-19)2 x (106)2 x (3x108)-3 

 =9x109x2x1.6x1.6/ (3x3x3x3) x10-38+12-24 

 =5.69x10-42 W 

 =5.69x10-42/1.6x10-19 eV/s 

 = (56900/1600) x10-24 

 =35.56x10-24 eV/s 

14.7 Self learning Exercise -II 
Q.1  Is a point charge with a constant velocity, radiate energy? Give reason.  
Q.2  Give unit of  Poynting vector? 
Q.3  Write unit of power? 
Q.4  What is meant by unit vector? 
Q.5  Define Poynting vector? 

14.8 Summary  
Lienard Wiechert Potential related with moving charge are derived which shows 
velocity dependence.   
Second part of unit is dedicated to determination of  Larmor formula, i.e. total 

power radiated by an accelerated point change that initially at rest. Larmor formula 

14.6 Illustrative Example 

14.7 Self learning Exercise -II 

14.8 Summary  
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shows that radiated power depends on square of acceleration of charge, so an 

accelerating or decelerating charge particle radiates energy. 

14.9 Glossary 

Charge density:    Charge density is defined as charge per unit volume 
Current density:     Current density is defined as current per unit area 
Scalar potential:  Potential defined in scalar field 
Vector  potential:  Potential defined in vector field 
Radiated Power:  Energy radiated per unit time  
Poynting vector: Power  radiated per unit area taken along perpendicular to the 
propagation of  radiation  
14.10 Answer to Self-Learning Exercises 

Answer to Self-Lesrning Exercise -I 
Ans.1:   Charge density is defined as charge per unit volume. 
Ans.2:   Current density is defined as current per unit area. 

Ans.3:   ,
     



    AE B A
t

, symbol has their usual meaning. 

Answer to Self-Learning Exercise -II 
Ans.1:   No, 

Ans.2:   2.
J

m s   , 2
W

m
 

Ans.3:   Watt 

14.11 Exercise 

 Section-A (Very Short Answer Type Questions) 
Q.1  What is scalar potential? 
Q.2  What is vector potential? 
Q.3  How velocity of light in vacuum related with 0 0  ? 
Q.4  What is the value of 0  in MKS system? 
Q.5  What is the value of 0 in MKS system? 

 Section-B (Short Answer Type Questions) 

Q.6 Define radiation. 
Q.7 Write properties of electromagnetic fields. 

14.9 Glossary 

14.10  Answer to Self-Learning Exercises 

14.11  Exercise 



321 
 

Q.8  What is point charge? 
Q.9  Explain the term ‘retarded potential’. 

 Section-C (Long Answer Type Questions) 

Q.10  Describe Linard Wiechert potential for a moving point charge. 
Q.11  Derive electromagnetic fields for a moving point charge. 
Q.12  Discuss the Poynting vector for an accelerated point charge. 
Q.13  Obtain Larmor formula. 

14.12  Answers to Exercise 

Ans.1:  Potential defined in scalar field. 
Ans.2:   Potential defined in vector field. 

Ans.3:   
0 0

1
 

c  

Ans.4:   
212

20 8.85 10 -   coul
N m  

Ans.5:   7
20 4 10   N

A  

Ans.10:   35.56x10-24 eV/s 
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UNIT-15 

Radiation Emitted by a Charge in Arbitrary 
Extremely Relativistic Motion 

Structure of the unit 

15.0  Objectives 

15.1  Introduction 

15.2  Radiation Emitted by a Charge in Arbitrary Extremely Relativistic Motion 

15.3  Angular Distribution of the Radiation from a Rapidly Moving Charge 

15.4  Thomson Scattering by Free Charges 

15.5 Thomson’s Scattering Cross-Section in the case where the Incident Wave is  
 Unpolarized (Ordinary light) 

15.6  Illustrative Examples 

15.7  Self Learning Exercise 

15.8  Illustrative Examples 

15.9  Summary  

15.10 Glossary 

15.11 Exercise 

 References and Suggested Readings 

15.0 Objectives  
 Our objectives in this chapter are : 

1. Radiation emitted by a charge in extremely relativistic case 

2. Angular distribution of the radiation from a rapidly moving charge 

3. Thomson scattering by free charges 

4. Illustrative problems. 

 

UNIT-15 
Radiation Emitted by a Charge in 

Arbitrary Extremely Relativistic Motion 

15.0 Objectives  
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15.1 Introduction  

 We now consider the radiation emitted by a charged particle moving with a 
velocity which is not small compared with the velocity of light. The motion of 
charged particles in external force fields necessarily involves the emission of 
radiation whenever the charges are accelerated. The emitted radiation carriers off 
energy, momentum, and angular momentum and so must influence the subsequent 
motion of the charged particles. Consequently the motion of the sources of 
radiation is determined, in part, by the manner of emission of the radiation. We 
derive an expression for the total four momentum radiated during the time of 
passage of the particle through a given electromagnetic field. We also derive an 
expression for the effective cross-section for scattering by a system of free charges. 

15.2 Radiation Emitted by a Charge in Arbitrary Extremely 
 Relativistic Motion 
We now consider the radiation emitted by a charge particle moving with a velocity 
which is not small compared with the velocity of light. 

The formulas derived under the assumption v<<c, are not applicable to this case. 

We can however, consider the particle in that system of reference in which the 
particle is at rest at a given moment; in this system of reference the formulas 
referred to are of course valid (we call attention to the fact that can be done only 
for the case of a single moving particle; for a system of several particles there is 
generally no system of reference in which all the particles are at rest 
simultaneously. 

Thus in this particular system of reference the particle radiates, in time dt, the 

energy d ,where
2

2
3

2
3

ed w dt
c

   

where e is the charge, c is the speed of light and w is the acceleration of the particle 
in this system of reference. 

In this system of reference, the total radiated momentum is zero: 0dP  

Infact, the radiated moment is given by the integral of the momentum flux density 
in the radiation field over a closed surface surrounding the particle. But because of 
the symmetry of the dipole radiation, the momenta carried off in opposite 

15.1 Introduction  

15.2 Radiation Emitted by a Charge in Arbitrary Extremely 
 Relativistic Motion 
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directions are equal in magnitude and opposite in direction; therefore the integral is 
identically zero. 

For the transformation to an arbitrary frame, we rewrite the formulas (1) and (2) in 
four dimensional form. It is easy to see that “the radiated four momentum” idP  
must be written as 

  
22

3

k
i ikdue dudP dx

c ds ds
   

           

22
3

k
ikdue du u ds

c ds ds


  

where
kdu

ds
 is four acceleration, and 

2

2

1
c
vcdtds   is the differential interval  

and

2

2

1

1

c
v

 is the relativistic gamma factor  ,  

i
i

u
ds
dx

 is four velocity.  

In fact, in the reference frame in which the particle is at rest, the space components 

of the four velocity iu  are equal to zero: 

































2222 /1
/,

/1
1

cv
cv

cv
u i  

and  4

2

c
w

ds
du

ds
du k

k

 . 

This is because in the reference frame in which the particle velocity is 0v , the 

components of the four acceleration 





 0,0,,0 2c

wwi (where w is the ordinary 

three dimensional acceleration, which here is assumed to be directed along the x-
axis). 

  From (3) it follows that the space components of idP become zero and time 
component gives equation (1): 
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To see this we write  

 
dtc

c
w

c
ed

c
dP 







 
 4

22
0

3
21

  

 

2
2

3
2
3

 
ed w dt
c

 

The total four momentum radiated during the time of passage of the particle 
through a given electromagnetic field is equal to the integral, i.e. 

 
ik

k
i dx

ds
du

ds
du

c
eP 

2

3
2

 

We rewrite this formula in another form expressing the four-acceleration 
idu

ds
 in 

terms of the electromagnetic field tensor, using the equation of motion. 

 l
lk

k uF
c
e

ds
dumc  , 

 where l
k

k
l

lk x
A

x
AF








 is electromagnetic field tensor . 

We then obtains     i
m

kml
kl

i dxuFuF
cm
eP 


 52

4

3
2

 

 The time component gives the total radiated energy  . Substituting for all the 
four dimensional quantities their expressions in terms of three-dimensional 
quantities, we find.  

 

4
2

23

32

2

2
3

1



 





  
    

 
 

 

v w
e w dt

cc
v
c            

(6)  

Where vw 


is the acceleration of the particle. 

In terms of the external electric and magnetic fields: 
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2 2

4 2

22 3

2

1 1 .
2

3 1


  





        
    



 E v H E v
e c c dt

vm c
c           

(7)  

The expressions for the total radiated momentum   4.eq differ by having an extra 

factor 

V in the integrand. 

Note that  

(i) From formula (7) we note that for velocities close to the velocity of light, the 
total energy radiated per unit time varies with the velocity essentially like 

1

2

2

1





















c

v , that is, proportionally to the square of the energy of the moving 

particle. 

(ii) The only exception is motion in an electric field, along the direction of the 

field. In this case the factor 









2

2

1
c

v standing in the denominator is cancelled by 

an identical factor in the numerator, and, therefore, the radiation does not 
depend on the energy of the particle.  

15.3 Angular Distribution of the Radiation from a Rapidly 
 Moving Charge 

In order to solve the question of the angular distribution of the radiation from a 
rapidly moving charge, it is convenient to use the Linear-Wiechert expression for 
the field, namely, 

 

2

2

3 3

2

1

..


  


 

  


                              
         

   
   

vv v e R R R ve R R
cc c vE R R

c
v R vR R c R
c c

            (8)  

 and 1  

 H R E
R                  

(9)  

15.3 Angular Distribution of the Radiation from a Rapidly 
 Moving Charge 



327 
 

At large distances we must retain only the term of lowest order in 
R

1 (the second 

terms). Introducing the unit vector 

n in the direction of the radiation. R n R

 

 , 

 we get 32 ,
.1

vn n w
ceE

c R
n v
c


  



 

           
 
 
 
 

 

 

  

 H n E                      (10)  

where all the quantities on the right side of the equations refer to the retarded time 

 
c
Rtt   

The intensity radiated into the solid angle d  is  

 







 dREcdI 22

4
. 

Expanding 2E , we get 










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
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
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
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
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
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























d

c
nv

wn
c
v

c
nv

w

c
nvc

wvwn

c
edI 6

2

2

2

4

2

53

2

.1

.1

.1.1

..2

4

       

(12) 

If we want to determine the angular distribution of the total radiation throughout 
the whole motion of the particle, we must integrate the intensity over the time. 

In doing this, it is important to remember that the integrand is a function of time t ; 
therefore we must write 

  t
c
tRt 


 , 

 where      R t c t t                (13)  
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Differentiating the relation    ttctR  with respect to t, we get 

 R R t
t t t

  


  
 

        

.R v t
R t

 
 




 

 

       
R tC
t t                 

(14)  

(the value of R
t




is obtained by differentiating the identity 2 .R R R
 

 and 

substituting )()( tv
t
tR 

 


 . 

The minus sign is present because R


 is the radius vector from the charge e to the 
point P, and not the reverse.) 

From Eq.(14) we get  

 

tdt dt
t

 


 

 

.1
  

   
 
 

n vdt dt
c

                 

(15)  

Making use of (15), the integration over t is immediately done. Thus we have the 
following expression for the total radiation into the solid angle d : 

22

2 2
2

4 3 53

1 .2 . .

4
. . 1 .1 1

n

v n wn w v w ce wd d dt
c

v n v n v nc
c c c




    

     

 
                            

             
            



    

(16) 

As we see here, the general case of angular distribution of the radiation is quite 
complicated. 

In  the  ultra-relativistic Case,  














  11

c
v   it  has  a characteristic  appearance, 
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which is related to the presence of high powers of the difference

















c
vn .1  in the 

denominators of the various terms in this expression. 

Thus, the intensity is large within a narrow range of angle in which the difference 


















c
vn .1  is small. 

Denoting by  the small angle between


n  and


v  we have 
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

 2
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2
1


c
v  

This difference is small for 

 

2

2~ 1 
v
c                 

(17)  

Thus an ultra-relativistic particle radiates mainly along the direction of its own 
motion, within the small range (17)of angles around the direction of its velocity. 

It may also be pointed out that, for arbitrary velocity and acceleration of the 
particle, there are always two directions for which the radiated intensity is zero. 

These are the directions for which the vector


















c
vn  is parallel to the vector w , so 

that the field(10) becomes zero. 

Finally, we give the simpler formulas to which (12) reduces in two special cases: 

If the velocity and acceleration of the particle are parallel, 
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 the intensity is  dRHcdI 22
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or  


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
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 d

c
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w
c

edI 6
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cos1
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4






  

It is naturally, symmetric around the common direction of 


v and


w  vanishes along 
 0  and opposite to    the direction of the velocity.  

 
Figure: Radiation pattern for charge accelerated in its direction of motion. The 
two patterns are not to scale. 

In the ultra-relativistic case, the intensity as a function of  has a sharp double 

maximum in the region 2
2

1~ c
v  with a steep drop to zero for 0   

If the velocity and acceleration are perpendicular to one another, we have form 
(12): 

 

2
2 2
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4 63
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4
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    
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v
ce wdI d

c v v
c c

           (19)  



331 
 

where  is the angle between n


and v


, and  is the azimuthal angle of the vector n


 

relative to the plane passing through v


and w


. 

 
Figure: Angular distribution of radiation 

 The intensity is symmetric only with respect to the plane of v


and w


 ,vanishes 

along the two directions in this plane which from the angle 1cos v
c

     
 

 with the 

velocity. 

15.4 Thomson Scattering by Free Charges 

If an electromagnetic wave falls on a system of charges, then under its action the 
charges are set in motion. This motion in turn produces radiation in all directions. 
There occurs, as we say, a scattering of the original wave. 

The scattering is most conveniently characterized by the ratio of the amount of 
energy emitted by the scattering system in a given direction per unit time, to the 
energy flux density of the incident radiation. This ratio clearly has dimensions of 
area, and is called the effective cross-section (or simply the cross-section). 

Let dI be the energy radiated by the system into solid angle d   per second for an 

incident wave with pointing vector S


. Then the effective gross-section for 
scattering into the solid angle d  is 

 
dId
S

 
         

 (1) 

15.4 Thomson Scattering by Free Charges 
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where the dash over a symbol means a time average. 

We consider the scattering produced by a free charge at rest. 

Let a plane monochromatic linearly polarized wave be incident on this charge. Its 
electric field can be written as 

 
0 cos .E E k v wt 

       
 

 

We shall assume that the velocity acquired by the charge under the influence of the 

incident wave is small compared with the velocity of light 1v
c

 
 
 
 . This is usually 

the case. 

Then the force acting on the charge due to electromagnetic field incident on it can 

be taken to be e E


; we can neglect the force e v H
c

 

  due to magnetic field. 

In this case we can also neglect the effect of the displacement of the charge during 
its vibrations under the influence of the field. 

If the charge carries out vibrations around the coordinates origin, then we can 
assume that the field which acts on the charge at all times is the same as that at the 

origin, that is,  0 cos . 0E E wt r
       

 
 

Since the equation of motion of the charge is therefore Eerm
  ,

m
Eer


   

Since the dipole moment of the charge is d e v
 

  ( d


 stands for dipole moment of  
the charge), then 

 

2

 
   e Ed er

m                 
(2)  

To calculate the scattered radiation, we use formula for dipole radiation, namely  

 
  2 22

3 3
1 sin

4 4


 
    

  ddI d n d d
c c                

(3)  

where   is the angle between d


 and n


. 
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This is the amount of energy radiated of the charge in unit time into the element of 
solid angle d . The use of the formula for dipole rotation is justified since the 
velocity acquired by the charge is assumed to be small. 

We also note that the frequency of the wave radiated by the charge (i.e scattered by 
it) is clearly the same as the frequency of the incident wave. Substituting(2) into 
(3), we find  
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where n  is a unit vector in the scattering direction. 

 On the other hand, the Poynting vector of the incident wave is 

 
2

4
cS E
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           (4)  

From this we find, for the cross-section for scattering into the solid angle d ,  
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(5)  

where   is the angle between the direction of scattering (the vector n


), and the 

direction of the electric field E


 of the incident wave. We see that the effective 
scattering cross-section of a free charge is independent of frequency. 

We now determine the total cross-section . To do this, we choose the polar axis 

along E


. Then sin ;   d d d  substituting this and integrating with respect to   
from 0 to ; and over  from 0 to 2 , 
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Using the value of the integral 

 3
4sin3

0
 



d , we get  
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(6) 

This is the Thomson’s formula 

15.5 Thomson’s Scattering Cross-Section in the case where the 
Incident Wave is Unpolarized (Ordinary light) 

If the incident wave is ordinary light i.e. unpolarized, then to calculate d  we must 

average (5) over all directions of the vector

E in a plane perpendicular to the 

direction of propagation of the incident wave (direction of the wave vector

k ). 

Denoting by

e  the unit vector along the direction of


E , we write: 

 
2

2 .1sin 








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       (7) 

The averaging is done using the formula 
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 and gives  
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2
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1
2
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k

kn
  

where   is the angle between the directions of the incident and scattered waves 
(the scattering angle) 

15.5 Thomson’s Scattering Cross-Section in the case where     
 the Incident Wave is Unpolarized (Ordinary light) 



335 
 

Thus the elective cross-section for scattering of an unpolarized wave by a free 
charge. 

 
  







 d
mc
ed 2

2

2

2

cos1
2
1


 

15.6 Illustrative Examples 

Example1: Determine the effective cross-section for scattering of a linearly 
polarized wave by a charge carrying out small vibrations under the influence of on 
elastic force (oscillator). 

Sol. Let the incident field be representation by 

  


wtEE cos0  

Under the influence of this field, the equation of motion of the charge is 

  


wteErkrm cos0
  

 or  


wtE
m
erwr cos0

2
0

  

where 2
0

kw
m

 is the frequency of its free vibrations. 

For the forced vibrations, we then have 
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Calculating the dipole momentd


 from this we get  
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2
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The effective cross-Sections is dId
S

   using the formula  d
c

ddI 


2
3 sin

4

2
 

where is the angle between d


and n   
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15.6 Illustrative Examples 
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   




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
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 d
wwm

wEe
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On the other hand, the Poynting vector of the incident wave is 
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4
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We find  

   dId
S
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2
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
 
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  

 

 is the angle between

E  and n   

Example 2: Determine the frequency w  of the light scattered by a moving charge. 

Sol. In a frame of reference in which the charge is at rest, the frequency of the light 

does not change on scattering ( ww  ). This relation can be written in invariant 
form as 

 
i

i
i

i ukuk    

where iu is the four velocity of the charge. From this we find without difficulty. 

 



 



   cos1cos1

c
vw

c
vw  

where  and   are the angle made by the incident and scattered waves with the 
direction of motion (v is the velocity of change).  
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Note that
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Similarly 
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Equating these two, we get 
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15.7 Self Learning Exercise

 

Q.1 Define scattering cross section for scattering by a free charge at rest. Show 
that scattering cross-section of a free charge is independent of frequency. 

Q.2 Show that an ultra-relativistic particle radiates mainly along the direction of its 

motion, within the small angle range
2

2~ 1 v
c  around the direction of its 

velocity                             

15.8 Illustrative Examples 

Example 3: Determine the effective cross-section for scattering of an elliptically 
polarized wave by a free charge. 

Sol. The electric field of the elliptically polarized wave can be represented as 

  E = A cos wt + α  + B sin(wt + α)
 

, 

Where A


 and B


 are mutually perpendicular vectors.  

15.7 Self Learning Exercise
 

15.8 Illustrative Examples 
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Since the equations of motion of the charge is 

 Emr e
 , 

and its dipole moment d ev
   is then 

    
2 2E A cos wt + α  + B sin wt + αe ed ev
m m

     

     

  Scattered radiation 
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On the other hand, the Poynting vector of the incident wave is 
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4
CS E


   

Using the formula
dId
S

  , 

 we find,  
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Example 4: Determine the effective cross-section for scattering of a linearly 
polarized wave by an oscillator, taking into account the radiation damping. 

Sol. We write the equation of motion of the charge in the incident field in the 
form 

 
2

2 –
0 0 3

2
3

iwte er w r E e r
m mc

  
   

In the damping force, we can substitute approximately  

  2
0–r w r
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then we find 
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From this we obtain 
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0 2 2
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The effective cross-section is 
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15.9 Summary  

 In this chapter we have derived an expression for the total four-momentum 
radiated during the passage of the particle through a given electromagnetic field. 
We have also studied the question of angular distribution of the radiation from a 
rapidly moving charge. We have found that for arbitrary velocity and acceleration 
of the particle, there are always two directions for which the radiated intensity is 

zero. These are the directions for which the vector vn
c




  is parallel to the vector 

W


, so that the field becomes zero. We have also derived an expression for 
Thomson scattering cross-section by free charges when incident radiation is 
unpolarized and also when the incident radiations is polarized. 

15.10  Glossary 

Relativistic: speed is order of speed of light 

Elliptical polarization: It is the polarization of electromagnetic wave such that the 
tip of the electric field vector describes an ellipse in any fixed plane intersecting, 
and normal to, the direction of propagation. 

15.11 Exercise 

Q.1 Derive an expression for the angular distribution of the radiation from a 
rapidly moving charge. Discuss the case when the velocity and acceleration of 
the particle are parallel. 

Q.2 Consider a charge moving along the direction of the election field. Show that 
in this case the radiation does not depend on the energy of the particle.  

15.9 Summary  

15.10  Glossary 

15.11 Exercise 
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UNIT -16 

Special Theory of Relativity 

Structure of the Unit 

16.0 Objectives 

16.1 Introduction 

16.2 Preliminary 

 (a) Galilean Transformations 

 (b) Michelson-Morley Experiment 

 (c) Conclusions from Michelson-Morley Experiment 

16.3 Postulates of special theory of Relativity 

 (a) Principle of physical Equivalence 

 (b) Constancy of speed of Light 

16.4 Lorentz Transformation 

16.5 The Quasi-Euclidean Geometry of the four dimensional world 

16.6  Illustrative Examples 

16.7  Self Learning Exercise 

16.8  Relativistic Equation of Motion Minkowski Force 

16.9  Applications of Energy-Momentum Conservation  

16.10  Summary 

16.11  Glossary 

16.12  Answers to Self Learning Exercise 

16.13  Exercise 

 16.14  Answers to Exercise 

 References and Suggested Readings 

16.0 Objective 
 The objectives of this unit are : 

UNIT -16 
Special Theory of Relativity 

16.0 Objectives 
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(i) To study postulates of special theory of relativity 
(ii)  To derive Lorentz Transformation 

(iii) To study Relativistic equation of motion 

(iv) To study application of energy momentum conservation 

16.1 Introduction 

Galileo and Newton through experiments arrived at certain laws covering 
motion of bodies, known as classical mechanics. They proposed that length, time 
and mass are fundamental and absolute quantities. These remain the same for all 
moving and stationary observers. Also they found that physical laws of mechanics 
remains invariant in all inertial frames of reference. However this did not hold true 
for the laws of electrodynamics. 

In 1905, Albert Einstein proposed a revolutionary theory of relativity in 
which he postulated that physical Laws are universal and a single theory should 
govern mechanics and electrodynamics. He also postulated that the velocity of 
light in vacuum is universal and is the highest achievable velocity for moving 
objects. This theory revolutionized the world of science. Infact, all major 
researches in the 20th century are based on this theory of relativity. 

No doubt, this theory reveals much more newer ideas and questions of the absolute 
character of length, mass and time. But its results are  not much different from 
classical results. When velocity of object v is far less than the speed of light c. 
This is called classical limit. When v = c ,we call it relativistic limit and 
Mechanics is known as relativistic mechanics. 

 16.2 Preliminary 

(a) Galilean Transformations 

The classical theory mainly involves Galilean transformations. Consider two 

frames of references S and S  such that their origins O and O  coincides at 

' 0t t  i.e. initially. The frame S  moves with constant velocity v relative to S 

along x-axis as shown in figures (16.1). After time t, S  travels a distance vt along 
x, From  figure (16.1) it is seen that for given point P 

16.1 Introduction 

16.2 Preliminary 



343 
 

 
Figure16.1  

 

'
'
'

& '

x x vt
y y
z z

t t

 





       (16.1)       

Where ', ', 'x y z are the coordinates observed from frame S  at time t  whereas x, 
y, z are the coordinates observed for the same point P from frame S at time t. 

Equations (16.1) establish interrelation between coordinates observed in the two 
frames. These are known as coordinate transformations. Differentiating eq. (16.1) 
w.r. to time, we find 

 ' ' ', ,
' ' '

     x y z
dx dy dzv v v
dt dt dt

 

 
x x

y y

z z

v v v
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v v

  
 

 

        (16.2) 

Equations (16.2) are known as Galilean transformation for velocity or the law of 
Galilean addition of velocities. 

Differentiating eq. (16.2) with respect to time, we find  

 
 

 

x x

y y

z z

a a
a a
a a

        (16.3) 
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Equations (16.3) are known as Galilean transformation for acceleration. It is clear 
that acceleration remains same or force remains same in both frames. So all 
physical laws also remain invariant under Galilean Transformation.  

(b) Michelson-Morley Experiment 
Classical mechanics postulates absolute length , mass and time and so there 

was a search for absolute frame of reference. Michelson Morley attempted to 
identify the hypothetical ether proposed by Fizeau to be an absolute frame of 
reference. They modified Michelson’s interferometer to 

(i) Identify ether as an absolute frame of reference and 
(ii) determine the velocity of the earth with respect to stationary ether using 
Galilean transformations. 

They oriented the instrument so that one arm of the interferometer becomes 
parallel to the tangential velocity of the earth while other remains perpendicular to 
it but in the plane of the earth’s velocity. While going in the direction of the earth’s 
motion, the velocity of light will be (c+v) and in opposite direction it will be (c−v) 

Also the velocity of light is the perpendicular direction will be 2 2c v . Thus 
there will be a phase difference   and a definite interference pattern due to 

earth’s revolution. On rotating the instrument by 090 in its plane, because arms are 
interchanged a phase difference of 2  is introduced, this will shift the fringe 
pattern 

(c) Conclusions from Michelson-Morley Experiment 

The instrument was sensitive to measure 1
100

th
 
 
 

of a fringe shift and the expected 

fringe shift was 0.37. All attempts made to identify expected fringe shift failed; 
there was no measurable fringe shift .The result of Michelson-Morley 
experiment was negative. The outcome of the experiment was formulated as 
follows : 

 (i) Absolute frame does  not exist. Motion relative to some material object   only 
is meaningful. 

(ii) Velocity of light in free space is absolute, it is not subjected to relative motion. 

 As we know that Michelson and Morley performed experiment in relation 
with velocity of light. In the similar manner many experiments were performed 



345 
 

such as Fizeau’s experiment, Aberration of star and Noble and Trouton experiment 
etc. But nobody was able to find a principle which can explain all these 
experiments. So in 1905 Einstein had given the following new idea “The motion 
through ether is a meaningless concept, only the motion relative to  material 
bodies has physical significance”. 

Due To this reason we cannot find the velocity of earth in ether 
experimentally. On the basis of this concept, The special theory of relativity was 
brought by Einstein in 1905. Einstein modified the Newton’s space-Time concept 
and put forward the new principle, known as special theory of relativity. In 
classical mechanics, equations of motion are applicable only on those particles 
whose velocity is less than velocity of light. While equations of motion in 
Newton’s mechanics modified by Einstein is also applicable on those particles 
which travel with velocity of light. In classical Physics the space and time are same 
for all observers, but it varies for moving observers in relativity theory. 

16.3 Postulates of Special theory of Relativity 

Einstein introduced his special theory of relativity proposing drastic 
revision in Newtonian concepts of space and time. The special theory of relativity 
has made wide ranging change in our understanding of nature, but Einstein based it 
on just two simple postulates. 

(a) Principle of physical Equivalence : According to this all laws of physics are 
the same in all inertial frame of reference. The consequence of this postulate 
is that all inertial frames are completely equivalent. 

(b) Constancy of speed of Light : According to this the speed of light in 
vacuum (free space) is same in all inertial frames and is independent of the 
motion of the observer or its source. 

 The universality of Laws of physics and the absolute character of the speed 
of light in free space immediately questions the absoluteness of length, mass and 
time. This could be understood using mathematics of Lorentz transformation. 

16.4 Lorentz Transformation 

We know that Galilean transformation is used to transform the coordinates 
of an event from one inertial frame to another inertial frame in classical principle. 

16.3 Postulates of Special theory of Relativity 

16.4 Lorentz Transformation 
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But these transformations are not applicable in Michelson’s Morley experiment 
with regard to velocity of light. So Galilean transformation was replaced by a new 
set of transformation to preserve the invariance of Maxwell’s equations 
(Electrodynamics) under relative motion as well as invariance of Mechanical laws 
should also be established as earlier. Such type of transformation equations are 
known as Lorentz transformation. These transformation express the fundamental 
properties of space & time. 

 Derivation of Lorentz Transformation : 

Suppose S and S  are two inertial frames. S  is moving along x-axis with uniform 
velocity v with respect to S. Initially at ' 0t t  the origins of both frames 

coincide with each other. The coordinates of a given point P observed from S are 
(x, y, z, t) where as in S , these are ', ', ', 'x y z t

 
Figure16.2  

Now the basic requirements for transformations between S and S  are 

(i) Principle of Homogeneity of space and time requires that transformation 
should be linear. 

(ii) Transformation should obey both the postulates of special theory of relativity. 
(iii) All the coordinates perpendicular to the direction of motion of frame should 

remain constant. 
(iv) Under non-relativistic limit v c , these transformations must coincide with 

the Galilean transformation. 

Let a flash of light is generated at time ' 0t t  at the origin O which 
grows  in form of spherical wave front in the space. If the time taken by this light 
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flash to reach at point P is t and t  for the observer sitting at the origin O and O  in 
frames S and S respectively. Let ( , , , )x y z t and ( ', ', ', ')x y z t are the position and 
time coordinate of the event (flash) in frame S and S respectively. When the flash 
is observed from origin O of the frame S, then we have 

Velocity of light tandis ce
time

  

 
1

2 2 2 2
2 2 2 2 0

 
       

x y zOPc x y z c t
t t

   (16.4) 

When the same flash is observed from origin O  of frame S  then we have 

 
1

2 2 2 2' ''
'

 
 



x y zOPc
t t

     (16.5) 

Moreover ', 'y y z z         (16.6) 

From equations (16.4) and (16.5) using equations (16.6) we have 
2 2 2 2 2 2' 'x y t x c t         (16.7) 

The transformation between x  and x  can be represented by the simple 
relationship 

' ( )x x vt          (16.8) 

Where   being independent of x and t. 

The Law of equivalence tells us that the motion of S  w.r.t. S with velocity v is the 
same as the motion of S w.r.t. S  with velocity –v, then 

( ' ') x x vt        (16.9) 

Putting the value of x  from equation (16.8) in equation (16.9) we have 

 x ( ) '   x vt vt  solving this for t  , we get 

2
1' 1


  
    

  

xt t
v

      (16.10)   

Putting the value of x  from equation (16.8) and t  from equation (16.10) in 
equation (16.7) we get 
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2
2 2 2 2 2 2 2

2
1( ) 1 


  
       

  

xx c t x vt c t
v

   (16.11) 

This is an identity and hence comparing the coefficient of 2t and 2xt on both side 
of equation (16.11) we shall get 

2 2 2 2 2c v c v    

So 2
2 2

2 2

1 1

1 1
or

v v
c c

  
 

      (16.12) 

Now substituting the value of  from equation (16.12) in equation (16.8) and 
(16.10), we have Lorentz transformation of space i.e. 

2

2

'
1

x vtx
v
c


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       (16.13) 

  and 
2

2

2

t'
1

vt x
c

v
c

  
 



        (16.14) 

If we assume that the system S is moving with velocity –v relative to S  along the 
x-direction. Then the Lorentz transformation equations can be expressed as 

2

2 2

2 2

' '' ' , ' , '
1 1

vt xx vt cx y y z z and t
v v
c c


   

 

  (16.15) 

So equations (16.15) are known as inverse Lorentz transformation equations. It can  

be easily seen that if v <<c then 0v
c

  then ' , y' y,z' zand t' tx x vt       

These are the Galilean transformation. Thus Lorentz transformation 
reduce to Galilean transformation if v <<c (Non-relativistic). 

From equations (16.13) (16.14) and (16.15) it is seen that in the domain of the 
theory of relativity, space and time cannot be separated. In other words, space is 
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four dimensional in which three space coordinate and fourth is time coordinate. 

The fourth coordinate time is imaginary and it is equal to ict, where i 1  . 
This follows from the equation. 

2 2 2 2 2 2 2 2 2 2' ' ' ' 0x y z c t x y z c t            (16.16) 

16.5 The Quasi-Euclidean Geometry of the four dimensional  
World 

We have already seen that the fundamental invariant of the homogeneous 
Lorentz transformation is the quantity  

2 2 2 2 2 2 2 2 2 2 2' ' ' 'S x y z c t x y z c t           (16.17) 

If we employ the new coordinates 

1 2 3 4, ,x x x y x z and x ict         (16.18) 

in S and the corresponding ones 

1 2 3 4, , and          x x x y x z x ict      (16.19) 

In S  ,then (16.17) assumes the form 
2 2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4S x x x x x x x x              (16.20) 

Written in this manner, the formal analogy with the three dimensional case 
becomes rather complete, except for the fact that the fourth square in the sum here 
is actually  negative. Nevertheless, the form (16.20) enables one to apply rather 
freely the rules of the usual Euclidean geometry to that of the four-dimensional 
continuum of , ,x y z and ict . However, because of the imaginary character of the 
fourth coordinate employed in this continuum, its geometry is not realty ,but only 
formally, identical with the Euclidean geometry: that is why it is usually referred to 
as quasi-Euclidean. 

The immediate advantage of the transition from the form (16.17) to the 
form (16.20) is that now the rotation of the axes of one observer with respect to the 
other would not lead to an oblique coordinate system. On the other hand ,these 
rotations would now be concerned with only rectangular coordinate system. The 
Lorentz transformation would therefore, become linear orthogonal. 

16.5 The Quasi-Euclidean Geometry of the four 
dimensional  World 
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Confining ourselves to the case of homogeneous transformation i.e. those not 
involving any displacement of the origin, we can write 

4

1
i ik k

i
x a x



     where i = 1, 2, 3, 4 

Where the ika are the coefficient of our transformation, geometrically the 
coefficient ika  may be understood as the cosine of the angle  between the ix -axis 
and the kx -axis. In view of the very nature of the coordinate (16.18) and (16.19), 
the coefficients pqa (p,q=1 ,2, 3, 4) and 44a must be real, while the coefficients 4pa
and 4qa must be purely imaginary. 

Our problem now consists in studying the question of the invariance of the 
quantity. 

2   i i i iS x x x x        (16.21) 

Under the transformations i ik kx a x  , i = 1, 2 , 3, 4   (16.22) 

Substituting (16.22) in (16.21) we get 

  
 

i i ik k il l

ik il k l

x x a x a x

a a x x




 

When a comparison of coefficients on the two sides gives 

ik il kla a            (16.23) 

Here, kl is the well known Kronecker delta symbol 

1kl    if k = l 

      =0  if k l                                                                         (16.24) 

Condition (16.23) are the so called orthogonality conditions which our 

coefficients of transformation must satisfy in order that 2S be invariant, they also 
imply that the transformation under consideration are orthogonal, i.e. the ones 
among rectangular coordinates. These conditions are, in all ,ten in  number, four 
for k = l and six fork l ,consequently, they leave for the sixteen coefficients ika   
six degree of freedom, as it must be for the case of homogeneous transformation. 
From (16.22) , (16.23) and (16.24) we obtain 

 ik i ik il la x a a x   
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 ik il l kl l ka a x x x      

k=1,2,3,4        (16.25) 

which are the transformations inverse to the former ones. The invariance of 
(16.21), when required under the transformation (16.25) leads to the orthogonality 
conditions. 

ik jk ija a          (16.26) 

These conditions, however, are not materially different from those embodied in 
(16.23) 

From the transformation coefficients ika we can construct the determinant 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

ik

a a a a
a a a a

a a
a a a a
a a a a

               (16.27) 

 For the evaluation of this determinant, let us consider its square : 
2

il ika a a         (16.28) 

Of course if we write one of the two factor determinants with its rows and columns 
interchanged it would  not make any quantitative difference to the result. Equation 
(16.28) would, however, become 

 2
li ik il kla a a or a a       (16.28)’ 

Which on making use of the conditions (16.23) or (16.26) gives 
2 1ika           (16.29) 

Thus the value of the determinant, a is equal either to +1 or -1. 

16.6 Illustrative Examples 

Example 16.1 If ( , , , )x y z t be the coordinates of an event in S-frame and 

( ', ', ', ')x y z t be the coordinates of the same event in S -frame which moves 
relative to S-frame with a uniform velocity v along x-direction. Show that 

2 2 2 2 2 2ds    dx dy dz c dt is invariant under Lorentz Transformation. 

Sol. Using the Lorentz transformation equations in differential form 

16.6 Illustrative Examples 
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2

2

' ' , ', '
1


  



dx vdtdx dy dy dz dz
v

c

 

 
2

2
21

 




vdt dx
cdt
v

c

Where velocity v is constant 

 2 2 2 2 2 2ds dx dy dz c dt      

 

22

22 2 2

2 2
2 2

' '' dt' ' '
1 1

vdt dxdx v cdy dz c
v v

c c

     
      

   
   

 

      

2
2 2 2 2 2 2 2 2

2 4
2

1 2 2 ' '
1

vdx v dt vdx dt c dt dx vdx dt dy dz
v c

c

 
               

  
 

 

   2 22
2 2

2 2 2 2
2 2

2 2

1 1

1 1

  
     

 

v vdx c cdy dz c dt
v v

c c

 

       
2 2 2 2 2 2        dx dy dz c dt ds  

Thus 2ds is invariant under Lorentz transformation. 

16.7 Self Learning Exercise 
Section A: Very Short Answer Type Questions 

Q.1  What is Inertial frame? 

Q.2  Write down Relativistic equation of motion? 

Section B:Short Answer Type Questions 

Q.3  State and explain the fundamental postulates of special theory of relativity. 

Q.4  Prove that three dimensional volume element dxdydz is not Lorentz invariant 
but four dimensional volume element dxdydzdt is Lorentz Invariant. 

16.8 Relativistic Equation of Motion Minkowski Force 

We know that Newton’s equation of motion is invariant with respect to the 
Galilean transformations but are not invariant under Lorentz transformations. Thus 

16.7 Self Learning Exercise 

16.8 Relativistic Equation of Motion Minkowski Force 
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in order to make Newton’s second law conform to Einstein’s principle of relativity, 
we have to seek its generalization. However, these generalized equations must 
reduce to the following Newtonian equation in the limit v c  

 ( )i i
d mv F
dt

         (16.30) 

The four dimensional generalization of equation (16.30) is obviously. 

 
d p

F
d


 




  Where 1, 2,3, 4      (16.31) 

 is the proper time, 


P is four momentum of particle and F is a force four-

vector known as Minkowski force. 

. .u u u

dP dP dPds dsF
dt ds dt dt ds

  
          (16.32) 

The interval between two events in the four-dimensional space 
2 2 2 2 2 2ds c dt dx dy dz   

 2 2 2
2 2 dx dy dzdt c

dt dt dt
               

       
 

2 2 2 2 2
x y zdt c u u u       

2 2 2[c u ]dt   
2

2 2 2
2ds 1 uc dt

c
 

   
 

 Where 
2

2

1

1
u

u
c

 



 

2 2

2
u

ds c
dt 

   
 

 So 
u

ds c
dt 

  

u
ds c
dt

          (16.33) 

From equations (16.32) and (16.33) we have 

 
 dF c P

ds
        (16.34) 

We know that  
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0 0 u

dx dx
P m m

d dt
 

 


 


 

So 0




 
  

 

 dx
P m c

ds
       (16.35) 

From equations (16.34) and (16.35) we have 

0




 
  

 

 dxdF c m c
ds ds

       (16.36) 

Thus equation (16.36) is the fundamental relativistic equation of motion. 

16.9 Applications of Energy-Momentum Conservation  

It is proposed to treat the application of the energy momentum conservation 
in the following two problems: 

(1) Kinematics of decay products of an unstable particle. 
(2) Centre of momentum system and Threshold energy. 

Let us take these applications one by one : 

(1)Decay of an Unstable Particle 

In particle physics, the study of decay process of unstable particles constitutes an 
intensive field of research. In order to illustrate the method, we consider the two 
body decay of an unstable particle at rest. These are exemplified by the decay of 

charged meson’s ,  K , hyperons  etc. A charged pi-meson decays into a   
meson and a neutrino. 

    v         (16.37) 

Experimentally it found that the rest energy of   is 139.6 MeV and that of 
105.7   MeV . The rest mass of neutrino is zero. 

Thus the energy balance for the decay is 33.9 MeV. This energy is to be shared 
between the products. Let us treat the kinematics of decay through the use of the 
energy-momentum conservation. 

Let the rest mass of the unstable particle be m and those of the products 1m and 2m
. Defining the excess of mass m as 

1 2( )   m m m m        (16.38) 

16.9 Applications of Energy-Momentum Conservation  
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From equation (16.38) it clear that such a spontaneous decay is possible only if the 
mass excess is positive. Since the decay takes place at rest, the decay particles 

must have equal and opposite momenta i.e. 1 2p p p  
  

 

According to the law of conservation of energy we get 

2 2 2 4 2 2 2 4 2
1 1 2 2c p m c c p m c mc        (16.39) 

We can utilize this result to find the magnitude of momentum p and the 
energy of decay particles. For this we can make use of the invariance of the scalar 
product of two four-vectors. 

The conservation of energy and momentum in two body decay can be expressed 
through a four-vector equation. 

1 2   
  p p p        (16.40) 

Where 1 2,  p p and p stand for the unstable particle, the decay particle no. 1 and 
decay particle no. 2 respectively. We get 

2 1   p p p        (16.41) 

and forming the Lorentz invariant of the 4-vectors on both sides  

2 2 1 1 1. . . .2         p p p p p p p p     (16.42) 

Putting the values of these terms which are invariants as 
2 2

2 2 2

2 2
1 1 1

2 2

1 1

.

.

.

.

 

 

 

 









p p m c

p p m c

p p m c
p p mE

       (16.43) 

We know that the term 1. p p  is also Lorentz invariant and in the rest frame 

of m, its space part vanishes. 1E  is the total energy of particle of mass 1m  .From 
equation (16.42) we get 

2 2 2 2 2 2
2 1 12m c m c m c mE    which gives 

2 2 2 2 2 2
1 2

1 2
m c m c m cE

m
 

  and similarly 
2 2 2 2 2 2

2 1
2 2

m c m c m cE
m

 
  (16.44) 

Let us obtain the expressions for the kinetic energies 1T  and 2T of the decay 
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Products . Now 
2

1 1 1T E mc   
2 2 2 2 2 2

21 2
1 12

m c m c m cT m c
m

 
 

 
2 2 2 2 2 2 2

1 2 12
2

m c m c m c mm c
m

  
  

2 2 2 2 2
2 21 2 1 1 2

1
2 ( )

2 2
m m m mm m m mT c c

m m
    

   

  21 2
1 2( )

2
m m m

m m m c
m

 
  

 
2 1 1 22 2

2
m m m m mmc

m
        

 

2 1
1 1

2
m mT mc
m m

       
      (16.45) 

Similarly 2 2
2 1

2
m mT mc
m m

       
     (16.46) 

Here m is the excess of mass, 
2

m
m

 is the relativistic correction. If 
2

m
m

 is not 

negligible as compared to unity, then the product particles must be treated 
relativistically 

For example , We can take the case of     v  decay ,we have  

139.6 , 105.7
   m MeV m MeV and 0vm   

Therefore from equation (16.45) the kinetic energy of the   meson 

105.7 33.933.9 1 4.1
139.6 2(139.6)

 
    

 
T MeV  

It was the unique value of the meson kinetic energy (4.1 MeV) from  meson 
decay that led Powell and coworkers in 1947 to the discovery of  meson through 
the nuclear emulsion technique. The mass of the incoming particle m is determined 
with the help of equations (16.42) by putting the values of different terms from 
equation (16.43) and evaluating the scalar product 1 2. p p in the lab Frame. 
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2 2 2 1 2
1 2 1 22

2 2 cosE Em m m p p
c

        (16.47) 

However in a three or more body decay, the resulting decay products do not have 
unique momentum and are distributed in energy ,but these decays have some upper 
end points which pertain to the maximum values of energy. These  maximum 
energies can, however be determined in the manner as illustrated for a two-body 
decay. 

(2) Centre of momentum system and threshold energy 

A common problem in nuclear or high energy physics is the study of 
scattering of a projectile from a Target. Incident particle called projectile of mass 

1m ,  momentum 1p  and energy 1E is made to impinge on particle 2 called target of 
mass 2m at rest in the lab frame. The collision may give rise to elastic scattering 
when the incident particle is scattered at a certain angle and target recoils at some 
other angle. By applying the laws of conservation of momentum and energy this 
process can be analyzed to have complete information about the particles involved. 
However, the collision could also give rise to a reaction resulting in the production 
of two or more particles at least one of which is different from the incident 
particles. The study of such problems many  times becomes much easier if we 
transform the energy and momentum of the interacting particles from Lab frame to 
the centre of mass frame. This system called the zero momentum system has the 
advantage that the projectile and target have equal and oppositely directed 
momenta. Alternatively we can employ the concept of the invariance of the scalar 
product of two four-vectors. 

 Let us consider the invariant scalar products of the four vectors in the Lab 
and the C.M. systems, we get 

1 2 1 2 1 2 1 2( ).( ) (p p ).(p p )              p p p p    (16.48) 

The unprimed quantities refer to the lab system. Where the spatial momentum 

2p 0 and the primed quantities on the right hand, pertain to the CM system where 
the total spatial momenta 1 2p 0  p . 

Putting the values of different terms, we get 

   
2 22 2

1 2 1 22 2
1 1     E m c p E E
c c
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or    2 22 2 2
1 2 1 2    E m c c p E E     (16.49) 

Putting  
1

2 4 2 2 2
1 1E m c c p  , The total energy in the CM system is given by  

1 2   E E E  

 
1

2 2 2 2 2
1 2 2 12   E m c m c m E c      (16.50) 

The separate energies 1E and 2E can be determined from the scalar products like 

1 1 2 1 1 2( ) p (p p )         p p p      (16.51) 

Putting the values for different Lorentz invariants, yields the result. 
2 2 4 2 4

1 2
1E

2
   


E m c m c

E
      (16.52) 

Similarly 
2 2 4 2 4

2 1
2E

2
   


E m c m c

E
      (16.53) 

Lastly we apply the concept of the invariance of the scalar product of two four-
vectors to the problem of the calculation of the threshold energy for the production 
of particles. 

In a reaction, the initial particles of mass 1m and 2m are transformed into two or 
more particles with masses im , i =3,4… etc. 

Defining m as the difference between the sum of the masses of the product and 
reactants. 

3 4 1 2( .....) ( )m m m m m           (16.54) 

If m is positive the reaction will not take place unless the projectile has certain 
minimum kinetic energy thT ,called the threshold energy of reaction. At the 
threshold, the products are produced with zero kinetic energy. This implies that  

2 2 2
1 2    thE m c m c mc       (16.55) 

Substituting this value of thE in Eq (16.50), we get 
12 2 2 2 2 2

1 2 1 2 2 1(m m m)c (m c m c 2m E ) c         (16.56) 

The incident kinetic energy of the projectile at threshold is 
2

1 1thT E m c         (16.57) 
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Evaluating the value of 1E from equation (16.56), we get 

2 21
1 1

2 2

m mm 1
m 2m

E c m c
 

     
 

    (16.58) 

therefore 1

2 2

m mm 1
m 2mthT

 
    

 
      (16.59) 

Let us applying Equation (16.59) to the production of a proton -antiproton pair in 
proton-proton collisions 

    p p p p p p       (16.60) 

Where pand pstand for proton and antiproton respectively. 

The mass difference 2 2mc 2 1.8777  pm c BeV  

Hence from Eq. (16.59) we have 

1.877[1 1 l] 5.631Be   thT V  

Lastly let us calculate the threshold energy for the production of a 0 meson 
according to the reaction when a high energy photon strikes a proton at rest. 

0p p           (16.61) 

The rest mass of the 0 is 135 MeV. Hence 

135.0135.0 1 0 144.7
2(938.5)

 
    

 
thT MeV  

Therefore the minimum energy that the photon must have in the Laboratory for 

producing 0 by striking a proton at rest is 144.7 MeV. 

16.10 Summary 

Newton’s equations of motion governing the dynamics of particles are 
invariant under Galilean transformation, whereas Maxwell’s equations governing 
the electrodynamics are not. This implies that the velocity of light (in vacuum) is 
not the same in all inertial frames ,while Michelson- Morley experiment 
established that the velocity of light is not affected by the motion of the reference 
frame i.e. the velocity of light is the same in all inertial frames and has the value 
obtained from Maxwell’s electromagnetic wave equations 

16.10 Summary 
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8

0 0

1 3 10 / secv m c


   


. This led to doubt the correctness of Galilean 

transformation and hence Newton’s law say motion. Einstein Sought to resolve the 
contradictions by enunciating two postulates of the special theory of relativity: 

(i) All physical laws are same in all inertial reference frames. 

(ii)The velocity of light in free space has the same value equal to c in all 
inertial frames. 

The above postulates easily explain negative result of the Michelson-Morley 
experiment. Using his postulates, Einstein in 1905, rederived Lorentz 
transformation equations: 

( )x x vt       Where 
2

2

1

1 v
c

 


 

y y      

z  z  
2

2
vt t x
c


    
 

 

In Lorentz Transformation space and time co-ordinates are intermixed. We 

note that the L.T. reduces to G.T. for 1v
c

 . The special theory of relativity limits 

the maximum attainable velocity of a particle to the velocity of light (c) in empty 
space. 
According to the principle of the special theory of relativity, if momentum is 
conserved in one inertial frame, then it must be conserved in all inertial frames. 
Energy will also conserved in all frames if momentum is conserved. Similarly it 
can  be shown that momenta is conserved in all frames, if the energy is conserved. 
Thus conservation of energy and momentum go together in the relativity Theory. 
The laws of conservation of momentum and energy can  now be coalesced to 
give a composite law of conservation of four momentum. The law of conservation 
of energy-momentum is used in the kinematics of decay products of an unstable 
particle and centre of momentum system and threshold energy for the production 
of particles in a reaction. The quasi-Euclidean geometry of the four dimensional 
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world is discussed to explain Lorentz transformation as orthogonal 
transformation in 4 dimensions. The chapter includes the relativistic equation of 
motion using the concept of proper time d and four momentum  four vector by 

modifying the classical equation of motion dpF
dt

 as 
 


dp

F
d

 . 

16.11 Glossary 

Equivalence : The condition of being equal or equivalent in value ,worth ,function 
etc. 

Invariant: A function, quantity, or property which remains unchanged when a 
specified transformation is applied. 

16.12 Answers to Self Learning Exercise 

Ans.1 : The frame in which Newton’s Law of Inertia holds good. 

Ans.2 :  0




 
  

 

 dxdF c m c
ds ds

   

16.13 Exercise 

  Section – A (Very Short Answer Type Questions) 

 Q.1  What is Relativistic Mechanics ? 

Q.2  What do you mean by proper time? 

Q.3 In what condition Lorentz Transformation reduces to Galilean 
Transformation? 

      Section – B (Short Answer Type Questions) 

Q.4  Derive relativistic equation of motion. 

Q.5  If a photon strikes a stationary electron giving rise to an electron position pair 
as well as a recoil electron, show that the threshold energy for the reaction in 

2
04m c where 0m is the rest mass of an electron. 

Q.6  Calculate the threshold kinetic energy in MeV for the following process 
op p      

16.11 Glossary 

16.12 Answers to Self Learning Exercise 

16.13 Exercise 
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 Rest mass of 0andp are 1836 and 264 electron masses respectively. (Ans. 
145 MeV) 

   Section – C (Long Answer Type Question) 

Q.7 What was the dead lock between theoretical conclusions and experimental 
results in classical electrodynamics and how did Einstein resolve it by 
revising our fundamental ideas of space and time. 

Q.8  State the fundamental postulates of special theory of relativity and deduce the 
Lorentz transformation. 

Q.9 State Lorentz transformation and show that the result of two successive 
Lorentz transformation is a Lorentz transformation form a group. 

Q.10 Discuss the spontaneous decay of unstable particles with particular reference 
of charged pi-mesons.  

16.14  Answers to Exercise 

Ans.1:  When v c then this type of Mechanics in known as Relativistic. 

Ans.2: It is the time measured by an observer which is at rest with respect to  
event. 

Ans.3: When velocity of frame v is very-very less than c i.e. 1v
c

 then L.T. 

reduces to G.T. 
 References and Suggested Readings 

1. Classical electrodynamics by J.D. Jackson (John Wiley &Sons) 

2. Classical electricity and magnetism by Panofsky and Philips (Indian Book, New 
Delhi) 

3. Introduction to Electrodynamics by Griffiths. 

4. Element of Electromagnetics by Mathew N.O. and Sadiku (Oxford Univ. Press) 

5. Classical theory of Electrodynamics by Landau-Lifshitz (Pergaman press, New 
York) 

6. Electrodynamics of continuous media by Landau&Lifshitz (Pergaman Press, 
New York) 

7. Electrodynamics by S.P. Puri. 

16.14  Answers to Exercise 

References and Suggested Readings 
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UNIT -17 

Four Vectors in Electrodynamics 

Structure of the Unit 

17.0 Objectives  

17.1 Introduction 

17.2 Minokowski space and space time continuum 

17.3 Four vectors in electrodynamics 

17.4 4-current density four vectors 

17.5 4-potential four vector 

17.6 covariant continuity equation 

17.7 Wave equations 

17.8   Self Learning Exercise 

17.9   Covariance of Maxwell’s equations (Four Tensor form) : 

17.10   Illustrative  Examples  

17.11  Summary  

17.12   Glossary 

17.13   Answers to Self Learning Exercise 

17.14   Exercise 

17.15   Answers to Exercise 

  Reference Books and Suggested Readings 

17.0 Objectives 
 The objectives of this unit are  

 To study Four vectors in electrodynamics 

 To study 4-current density and 4-potential 

 To study covariant continuity equation and wave equation 

 To study covariance of Maxwell’s equations 

UNIT -17 
Four Vectors in Electrodynamics 

17.0 Objectives 
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17.1 Introduction 

 Through the Lorentz transformation equations for space and time 
coordinates we have learnt about the basic concepts of space-time continuum. The 
physical phenomena do not appear the same to observers in relative motion with 
respect to each other, although the physical laws must be the same for all 
observers. The equations of electrodynamics must be invariant i.e. retain their 
form on transformation from one inertial frame to another under Lorentz 
transformation. However ,we will first show that equations of electrodynamics 
can be formulated in the four dimensional form as relations between four vectors 
and four tensors which posses the invariance properties under L.T(Lorentz 
transformation). These sets of four components will be introduced in the pseudo-
Euclidean space which puts time on a different footing than the space coordinates. 
To this end let us develop the four vector formalism which is ideally suited for 
electrodynamics. 

17.2 Minkowski Space and Space Time Continuum  
 The idea of four dimensional space was first of all suggested by Minkowski 
to which he called as space-time continuum. According to Minkowski, the external 
world is not formed of ordinary three dimensional space known as Euclidean 
space, but it is four dimensional space time continuum known as Minkowski space, 
where the time or more conveniently ict may be regarded to be fourth dimension. 
Thus an event in Minkowski space can be represented by four coordinates 

1 2 3 4(x , x ,x ,x )  out of which the first three are space co-ordinate. This four 
dimension al Minkowski space can  more conveniently be represented (3+1) 
dimensional space time continuum. Let 1 1 1 1(x , , , )y z t and 2 2 2 2(x , , , )y z t are the 
coordinates of two events in four dimensional space, then the quantity. 

2 2 2 2 2
12 2 1 2 1 2 1 2 1( ) ( ) ( ) ( )S c t t x x y y z z          (17.1) 

is called the interval between  the two events . The interval between two 
infinitesimally close event is  

2 2 2 2 2dS c dt dx dy dz         (17.2) 

17.1 Introduction 

17.2 Minkowski Space and Space Time Continuum  
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The interval between two events is Lorentz invariant in inertial frames. The 
invariance of an interval is a mathematical expression of the invariance of the 
velocity of light. 

17.3 Four Vectors  

 Having introduced the idea of four dimensional space it is possible to 
extend ordinary vector analysis to four dimensions to derive generally valid laws in 
the form of equations between four dimensional vectors, these four dimensional 
vectors are called four vectors. 

The coordinates of a point in a reference frame S at time t is given by ( , , )x y z . 

The coordinates ( , , )x y z  are the space components of ordinary vector r


 in three 
dimensional space. If (ict) is supposed to be the fourth coordinate, then the space 
expressed by ( , , , )x y z ict is known as four dimensional space. Where ( , , )x y z are 
position component and ( )ict is time component. For these components we can use 
tensor notation in which we represent 1x x , 2y x , 3z x and 4ict x . For the 

length of 
four vector 
x  
 
Similarly in frame 'S  

4
2 2 2 2 2 2 2 2 2 2 2

1 2 3 4
1

S x y z c t x x x x x


                     

Since 2 2S S   

Therefore 
4 4

2 2

1 1

x x 
  

        (17.3) 

From Lorentz Transformation the components of the four dimensional radius 
vector, transform according to 

' ( )
' [x i (ict)]

x x vt
x


 

 
   

4
2 2 2 2 2 2 2 2 2 2 2

1 2 3 4
1

S x y z c t x x x x x


         

17.3 Four Vectors  



366 
 

Where v
c

  and 
2 2

2

1 1
11 v

c




 


 

'
'

y y
z z




 

2' vxt t
c

    
 

       (17.4) 

Or ' ( )ict ict i x    

Using tensor notation system use Lorentz transformation reduces to 

1 1 4

2 2

3 3

4 1 4

( )

( )

x x i x
x x

x x

x i x x

 

 

  

 

 

   

                 (17.5) 

Writing the following Lorentz equations in Matrix form 

1 1

22

33

44

0 0
0 1 0 0
0 0 1 0

0 0

x xi
xx
xx

i xx

 

 

    
            
          

       (17.6) 

Any set of four components of vector 1 2 3 4( , , , )A A A A A which transform under 
Lorentz transformations like the four components  1 2 3 4( )x x x x  i.e. Equation 
(17.6) is called a four vector. 

 In four dimensional space the four vector A should posses the following 
properties 

   (1) 
4

2

1
Lorentz InvarientA



  

   (2) It should follow the following transformation uA a A    
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   (3) Three components of it are real and one component is imaginary. 

   (4) The scalar product of this four vector with another four vector is a Lorentz 
Invariant quantity. 

So we can write the transformation equation of four vector A


in accordance with 
equation (17.6) as follows : 

11

22

33

44

0 0
0 1 0 0
0 0 1 0

0 0

AiA
AA
AA

i AA

 

 

    
            
          

    (17.7) 

4

1, 1
or A a A  

  

          (17.8) 

Examples of Four Vectors : 

(1) Position four vector 1 2 3 4( , , , )x x x x x  
(2) Displacement four vector 2 3 4( , , , )dx dx dx dx dx  
(3) Velocity four vector : for this first of all we define proper time. It is the time 

measured by an observers which is at rest with respect to the event and it is 
denoted by  . In relativistic mechanics time t is not absolute but the 
proper time  is invariant. The proper time of a particle is a measure of the 
length of the time track. If v is the velocity of  a particle, the proper time 
interval  is given by 

2

21 vt
c

                         (17.9) 

The components of velocity four vector or four velocity are given by 

i
i

dxu
d


                       

 (17.10) 

where idx  displacement four vector. 
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1 1
1 2

2

.
1

xudx dx dtu
d dt d v

c
 

  



 

2 2
2 2

2

.
1

yudx dx dtu
d dt d v

c
 

  



 

3 3
3 2

2

.
1

zdx dx dt uu
d dt d v

c
 

  



 

4
4 2

2

( )

1

dx d ict dt icu ic
d d d v

c
  

   



 

Or in brief 
2 2

2 2

,
1 1

i
u icu

v v
c c

 
 
 
 

  
   

(4) Acceleration four vector: the acceleration four vectors is defined as 
1

2 2

21i i
i

dv du va
d dt c


 

   
 

      (17.11) 

(5) Energy – Momentum four vector :  

The momentum four vector is obtained by multiplying the velocity four vector by 
the rest mass om  so that 

1 1 2

21

o x
o

m up m u
v
c

 

  

 

2 2 2

21

o y
o

m u
p m u

v
c

 



 

3 3 2

21

o z
o

m up m u
v
c

 


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and 4 4 2

21

o
o

im c iEp m u imc
cv

c

   



 

In brief the momentum four vector is written as , iEp p
c

   
 

             (17.12) 

17.4 Current Density Four Vector  

 In electrodynamics in the context of special theory of relativity that a 
charge distribution that is static in one frame, will appear to be a current 
distribution in another interval frame. It implies that the current and charge 
densities are not distinct entities and their relationship may be presented though the 
definition of the four current density four vector J . 

1 2 3 4( , , , ) ( , )J J J J J J ic        (17.13) 

To justify this consider the charge contained in a small volume dV i.e. 

dq dV         (17.14) 

Multiplying both sides of the equation (17.14) by dx , we get 

.
dx

dqdx dx dV dVdt
dt


         (17.15) 

Now as dq is a scalar and dx is displacement four vector, so L.H.S. of equation 
(17.15) is a four vector. So R.H.S. must also be a four vector. But as 

1 2 3 1 2 3
1 [ ( )]dVdt dx dx dx dt dx dx dx d ict
ic

   

1 2 3 4
1 dx dx dx dx
ic

       (17.16) 

So dVdt is Lorentz invariant. So 
dx
dt

 must be a four vector  

Let  
dx

j
dt


   is 4-current density four vector  

Then  1
1 1

dxJ u
dt

    

17.4 Current Density Four Vector  
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 2
2 2

dxJ u
dt

      

 3
3 3

dxJ u
dt

    

4
4 ( )dx dJ ict ic

dt dt
      

i.e. the components of the 4-current density four vector J are given by 

( , )J J ic                    (17.17) 

As J has been specified as four vector it must transform from one inertial frame S 
to the other inertial frame S  moving with velocity v relative to S along x-axis under 
Lorentz transformations as 

J a J      

So that 

1 1 11 1 12 2 13 3 14 4J a J a J a J a J a J        

1 1 2 3 40 0J J J J i J       

  1
1 4 2

21

J vJ i J
v
c

  
  



              (17.18 a) 

2 2 21 1 22 2 23 3 24 4 J a J a J a J a J a J        

2 1 2 3 4 0 1 0 0J J J J J      

2 2J J                  (17.18 b) 

3 3 31 1 32 2 33 3 34 4J a J a J a J a J a J        

3 1 2 3 40 0 1 0J J J J J      

3 3J J                  (17.18 c) 

4 4 41 1 42 2 43 3 44 4J a J a J a J a J a J        

1 2 3' 0 0vic i J J J ic
c

         
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12

2
2

'
1

v J
c
v

c





 


                          (17.18 d) 

Discussion of Results : 

(1)  Equation of continuity in covariant form. The continuity equation is 

. 0J
t


  


 

can be written as ( ). 0
( )
icJ
ict


  


 

i.e. 31 2 4

1 2 3 4

0JJ J J
x x x x

  
   

   
 

where 4ic J   
and 4ict x  

0.J
J

x






 


        (17.19) 

Where 
x





  is the four dimensional divergence operator. 

Equation (17.19) is covariant form of continuity equation. This is unaltered 

under Lorentz transformation. This equation also shows that four divergence of 

the current density four vector J vanishes. 

(2)  Special case : Let us consider that charge distribution is at rest in frame S. 
The current density J in frame S is zero. i.e. J=0, 1 2 3 0J J J   Then 
transformation equations (17.18) take the form 

1 2 32 2

2 2

, 0, 0 '
1 1

vJ J J and
v v
c c

       

 

              (17.20) 

Invariance of charge : If 1 2 3'd dx dx dx     is the volume element in frame S , 
then charge contained in the volume element in system S  is 

1 2 3
1 2 3 1 2 32

2

''
1

dx dx dxdq dx dx dx dx dx dx dq
v
c

       


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i.e. charge measured in frame S  is the same as that in frame S i.e. electric 

charge is invariant under Lorentz transformations, but 
2

21 v
c

 



;  the 

electric charge density is not relativistically invariant. 

17.5   4-Potential Four Vector  

 As we have study that magnetic vector potential A


and scalar potential 
are known as electromagnetic potentials because their variations with space and 
time are responsible for electromagnetism. The Lorentz condition relates the space 

variation of A


(magnetic vector potential) with time variation of  (scalar 
potential). This condition for free space is  

2
1. 0A
c t


  




                     (17.21) 

We know that source of   is  (static charges) and that of A is J


(moving 
charges). Thus   and J are the two different forms of charge and expressible in 
terms of four current J . The electric field in any inertial frame appears as 
magnetic field in another frame moving with constant velocity with respect to first 

frame. In this way in four dimensional system   and A


can be expressed as the 
components of a four vector A . This four vector is known as four vector potential 
or electromagnetic four potential. We can then define this four vector potential 
( )A as   

, iA A
c
   

 
                      (17.22) 

Note : The Lorentz condition 2
1. 0A
c t


  


 

0
( )

yx z

i
AA A c

x y z ict

 
   

   
   

or 31 2 4

1 2 3 4

0AA A A
x x x x

  
   

   
  

 

So . 0A   or , iA A
c
   

   

17.5   4-Potential Four Vector  
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Since the Lorentz transformations govern the law of four vector transformation 
hence electromagnetic four potential must transform as 

uA a A                     ( 17.23) 
So that 

1 1 11 1 12 2 13 3 14 4A a A a A a A a A a A        

1 1 2 3 40 0A A A A iB A       

1 1 1( ) ( )vA A i ic A v
c

         
 

            (17.23 a) 

2 2 3 3A A and A A                  (17.23 b) 
But 

4 4 41 1 42 2 43 3 44 4A a A a A a A a A a A      
 

1 2 3
' 0 0i ii A A A

c c
        

1' ( )vA                    (17.23 c) 

Lorentz condition in Covariant form will be 0
A
x








 where 1,2,3,4    

31 2 4

1 2 3 4

0AA A A
x x x x

  
   

   
  or   . 0uA   (17.24) 

Similarly  
2 2 2 2

02 2 2 2 , ( , )
( )

iA J ic
x y z ict c

  
                  

 
  (17.25) 

Or 2
0uA J         (17.26) 

Where 
24

2
2

1 x 


 


 
D’Alembert operator and equation  (17.26) is known as  

'D Alembert equation and this is covariant form of Maxwell’s equation. 

D’Alembert operator is Lorentz invariant, where 
x





 is four dimensional 

divergence operator. Equation (17.24) is covariant equation and is known as 
Lorentz condition in covariant form. This equation expresses that the four 
divergence of the electromagnetic four potential vanishes. 
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17.6  Covariant Continuity Equation  

The law of conservation of charge is mathematically expressed by the continuity 

equation  

0divJ
t


 


       (17.27) 

Where J is current density and represents flow of charge per unit area per sec 
,whereas   is volume charge density and represents charge per unit volume. So it 

is clear that  and J


 are merely two forms of charge, hence can be represented as 
components of current density four vector ( J ). The equation (17.27) contains 

space and time derivatives  and 
t




respectively. Thus it can be conveniently 

transformed into covariant form. 
Equation (17.2) can be written as 

( ). 0
( )
icJ
ict


  


 

Or ( ) 0
( )

yx z
JJ J ic

x y z ict
  

   
   

 

If we use the following four dimensional system in which we have  

1 2 3 4 1 2 3 4, , , and J , J , J ,x y zx x x y x z x ict J J J J ict         

31 2 4

1 2 3 4

0JJ J J
x x x x

  
   

   
  or 

4

1,2,3,4

0
J
x


 







                  (17.28) 

. 0J   

Where 
x




is four dimensional divergence operator and J


is four current 

density vector. Equation (17.28) is covariant continuity equation i.e. its form in 
unaltered under Lorentz transformation. This equation expresses that the four 
divergence of the current density four vector J vanishes. 

17.7  Wave Equations  

   Consider two systems S  and 'S . Where 'S is moving with velocity v relative 

17.6  Covariant Continuity Equation  

17.7  Wave Equations  
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to S along (+ve) direction of x-axis. If a wave is travelling in a space with velocity  
v in systems S, then the propagation wave Equation for such a wave is of the form 

2 2 2 2

2 2 2 2 2
1 0

x y z c t


            
                (17.29) 

Where   is known as wave function and differential operator 

 
2 2 2 2

2 2 2 2 2
1

x y z c t
           

 is called D’Alembert’s operator and it is 

denoted by 2 . Here  is function of x, y, z and t and thus it may be written as 
( , , , )x y z t . 

Now in frame 'S  which is moving relative to S, the propagation wave equation of 
same wave is given by 

2 2 2 2

2 2 2 2 2
1 0

x y z c t


               
               (17.30) 

where c is not primed, because according to the second postulates of special theory 
of relativity c is always constant. Thus  may be written as 

( ', ', ', ')x y z t  
If ( ', ', ', ')x y z t  and ( , , , )x y z t are coordinates of any event in S  and 'S
respectively then 'D Alembertian operator in system S is 

2 2 2 2
2

2 2 2 2 2
1

x y z c t
   

   
   

  and 'D Alembertian operator in 'S  is  

2 2 2 2
2

2 2 2 2 2
1'

' ' ' 'x y z c t
   

   
   

  

According to transformation of differential operator we have  

22

1
' 1

v
x x c t

        
 

'y y
 


 

 

'z z
 


 

 

and  

2

1
' 1

v
t x t

          
Which gives 



376 
 

2 2 2 2 2

2 2 2 4 2 2
1 2

' (1 )
v v

x x c t c x t
             

 

 
2 2

2 2'y y
 


 

  and 
2 2

2 2'z z
 


 

 

And 
2 2 2 2

2
2 2 2 2

1 2
' (1 )

v v
t x t x t

             
 

Therefore 
2

2 2 2 2

2 2 2 2 2
1

' ' ' 'x y z c z
   

   
   

  

 
2 2 2 2 2 2

2 2 4 2 2 2 2
1 2

1
v v

x c t c x t y z
                         

 
2 2 2

2
2 2 2 2

1 1 2
(1 )

v v
c x t x t

           
 

2
2 2 2 2

2
2 2 2 2 2

1
x y z c t

   
     

   
   

Thus we may say that 2 is invariant under Lorentz transformation. But 
2 2 2

2
2 2 2x y z

  
   

  
i.e. Laplacian operator is not invariant under Lorentz 

transformation. 

17.8  Self Learning Exercise 

Section A : Very Short Answer Type Questions 

Q.1   What is Minkowski space? 

Q.2   What is four vector? 

  Section B : Short Answer Type Questions 

Q.3   Express Lorentz condition and equation of continuity in covariance form. 

Q.4   What is a four vector? Explain with examples. 

17.9  Covariance of Maxwell’s equations (Four Tensor form)  
 In order to obtain covariance of Maxwell’s equations we have to represent 
these equations in terms of four vectors. Maxwell’s field equations in free space 
are 

17.8  Self Learning Exercise 

17.9 Covariance of Maxwell’s equations (Four Tensor form)  
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0

0 0

( )

0 ( )

( )

( )

divE a

divB b

BCurlE c
t

ECurlB J d
t






  


 




  
        







 

(17.31)
 

Writing these equations in component form by introducing the coordinates  

1 2 3, y ,zx x x x    and 4ict x . 

0

yx z
EE E

x y z
 

  
   

                          17.32(a) 

0yx z
BB B

x y z
 

  
  

                         17.32(b) 

 4

0BcurlE ic
x


                             17.32(c)

 0
4

i EcurlB u J
c x


 


                   17.32(d) 

31 2

1 2 3 0

EE E
x x x

 
  

   
                 17.32(a’) 

31 2

1 2 3

0BB B
x x x

 
  

  
                        17.32(b’) 

Now considering the non homogeneous pair of equations i.e equation (17.32 a) and 
(17.32 d) in terms of components we get 

 0 1
2 3 4

0 y xz
B EB i J

x x c x


 
   

  
             17.33 (a)  

 0 2
1 3 4

0 yxz
EBB i J

x x c x



    

  
                        17.33 (b) 

 0 3
1 2 4

0y x z
B B i E J
x x c x


  

   
  

                        17.33 (c) 
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and  
1 2 3 0

0yx z
EE E

x x x
 

   
   

 This can be written as 

0 4
1 2 3

0yx z
EEi i i E J

c x c x c x


 
   

  
             17.33 (d)   

Considering 1 2 3, ,J J J  and 4J  in the R.H.S. of equations (17.33) as the 
components of current density four vector J . Now we introduce the 
electromagnetic antisymmetric field tensor by  

AAF
x A




 


 

 
                  (17.34) 

 where A or A 

 
is electromagnetic potential four vector. 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

0

0

0

x
z y

y
z x

z
y x

yx z

iEB B
c

F F F F iE
B BF F F F cF

F F F F iEB B
cF F F F

iEiE iE
c c c



   
                      
 
  

  (17.35) 

Now equations (17.33 a, b, c,d) may be written in a more compact form by single 
equation : 

 
4

0
1

F J
x  

 







                   (17.36) 

For example if 2   equation (17.36) takes the form. 

 
4

2 0 2
1

F J
x 

 







  

Or  2321 22 24
0 2

1 2 3 4

FF F F J
x x x x

  
   

   
 

Now putting the values of 21 22 23 24, ,F F F and F  and form (17.35) 

We shall get 
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0 2
1 3 4

0 yxz
iEBB J

x x x c


            
 

0 2
1 3 4

yxz
EBB i J

x x c x


  
       

  

This is same as equation (17.33b). Similarly for 1,3 4and    we get equations 
(17.33a), (17.33c) and (17.33d) respectively. Now writing homogeneous pair of 
Maxwell’s equation i.e. equation (17.32b) and (17.32c) in terms of four 
dimensional components. 

 
1 2 3

0yx z
BB B

x x x
 

  
  

                         17.37(a) 

 
4 2 3

0yx z
iEB iE

x x c x c
              

                 17.37(b) 

 
4 1 3

0y xz
B iEiE
x x c x c

                
                    17.37(c)

 
4 1 2

0y xz
iE iEB

x x c x c
                    

                       17.37(d) 

Using electromagnetic field tensor F  these equations (17.37) can be written as. 

 23 31 12

1 2 3

0 0F F F
x x x

  
   

  
               17.38(a) 

 34 2342

2 3 4

0 0F FF
x x x

 
   

  
              17.38(b) 

 43 3114

1 3 4

0 0F FF
x x x

 
   

  
               17.38(c) 

 24 41 12

1 2 4

0 0F F F
x x x

  
   

  
               17.38(d) 

All the equations (17.38) can be written by a single equation in tensor form as 

 0
F F F
x x x
  

  

  
  

  
                    17.39 

For example if , and    and take the values as any combination of (1,2,3) we 
always get 
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 23 3112

3 1 2

0F FF
x x x

 
  

  
 

 1 2

3 1 2

0zB B B
x x x

  
  

  
 

This is same as equation (17.37a). Similarly we may get equations (17.37b) 
(17.37c) and (17.37d) from equation (17.39). 

Hence equation (17.36) and(17.39) represents Maxwell’s equations in terms F  
(electromagnetic field Tensor). As tensor equations are invariant under Lorentz 
transformation. So Maxwell’s equations (17.36) and (17.39) are invariant under 
Lorentz Transformation. So equation (17.36) , (17.39) and consequently equations 
(17.33) and (17.37) represent Maxwell’s field equations in covariant form.  

17.10 Illustratetive  Examples  

Example. 1  Prove that the law of conservation of charge i.e. continuity equation 
is self contained in the inhomogeneous pair of Maxwell’s field equations. 

Sol.  The inhomogeneous pair of Maxwell’s field equation in terms of 

electromagnetic tensor F  is given by  0

F
J

x











    (1) 

where J is the current density four vector. 

Now differentiating equation (1) w.r.t. x  we get 

 
2

0

F J
x x x

 

  


 


  

        (2) 

Since F  is antisymmetric i.e. F F   then equation (2) reduces to 

 
2

0

F J
x x x

 

  


 

 
  

        (3) 

Interchanging dummy indices and   in equation (3) we get 

 
2

0

F J
x x x

 

  


 

 
  

        (4) 

Using the property of perfect differentials i.e. 
2 2

x x x x   

  
      

 

17.10 Illustrative  Examples  
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Equation (4) can be written as 

 
2

0

F J
x x x

 

  


 

 
  

                   (5) 

Now adding equation (2) and (5) we get 

 02 0
J
x










  i.e. 0
J
x








 

i.e.  31 2

1 2 3

0u

u

J JJ J
x x x x

  
   

   
 

or 31 2

1 2 3

( ) 0
( )

JJ J ic
x x x ict

  
   

   
 

or 0divJ
t


 


  This is continuity equation 

17.11 Summary  

 In this unit we have learnt about Minkowski space and space time 
continuum. We develop the four vector formalism which is ideally suited for 
electrodynamics e.g. four current density four vector and four potential four vector. 
Then using the law of conservation of charge we have derived covariant continuity 
equation. Then we derived covariance of Maxwell’s equations in four dimensional 
form. We show that these equations of electrodynamics are invariant i.e. retain 
their form on transformation from one inertial frame to another under Lorentz 
transformation. 

17.12  Glossary 

Continuum : A continuous sequence in which adjacent elements are not 
perceptibly different from each other, but the extremes are quite distinct 

Invariant : A function quantity, or property which remains unchanged when a 
specified transformation is applied 

Antisymmetric : Unaltered in magnitude but changed in sign by exchange of two 
variables or by a particular symmetry operation. 

 D’Alembert : French physicist and mathematician Jean le Rond d'Alembert. 

17.11 Summary  

17.12  Glossary 
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17.13 Answers to Self Learning Exercise 

Ans.1:  Four dimensional space time continuum is known as Minkowski space. 

Ans.2:  Any set of four components A which transform under Lorentz 

transformation like the four components  1 2 3 4, , ,x x x x  is called a four 
vector. 

17.14 Exercise 

Section – A (Very Short Answer Type Questions) 

Q.1 Give two examples of four vectors in electrodynamics. 

Q.2 Write covariant continuity equation. 

Q.3 Write homogeneous pair of Maxwell’s field equations. 

Q.4 Write inhomogeneous pair of Maxwell’s field equations. 

Section – B (Short Answer Type Questions) 

Q.5 Discuss Minkowski’s four  dimensional space-time continuum. 

Q.6 Derive expression for electrmagnetic potential four vector and give its 
Lorentz transformation. 

Q.7 Show that D’Alembertian operator 
2

2 2
2 2

1
c t


  


 is invariant in 

mathematical form for Lorentz transformation. 

Section – C (Long Answer Type Questions) 

Q.8 What is a four vector? Obtain Lorentz transformation of the components 
current density and charge density .Hence show that these form a four 
vector. 

Q.9 Explain how the Minkowski’s four dimensional space time description of 
events and intervals is consistent with the postulates of special theory of 
relativity. State Lorentz transformation in a four vector dimensional space 
representation. 

Q.10 Using continuity equation, define four vector of current density. Write the 
equation in terms of operator  . Interrelate the components in two inertial 
frames and establish the invariance of charge. 

17.13  Answers to Self Learning Exercise 

17.14 Exercise 
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Q.11 Define electromagnetic field tensor and derive Maxwell’s field equations in 
covariance form.   

17.15  Answers to Exercise 

Ans.1:   (1) J i.e. current density four vector 

   (2) A i.e. electromagnetic potential four vector 

Ans.2 :  J. 0    or  31 2 4

1 2 3 4

0JJ J J
x x x x

  
   

   
 where 

&
J ic

x ict







 

Ans.3:  0
F F F
x x x
  

  

  
  

  
 where , and    and can take the values any 

combination of (1,2,3) 

Ans.4:   
4

0
1

F J
x  

 







  where J is the current density four vector. 

Reference Books and Suggested Readings 

1. Classical electrodynamics by J.D. Jackson (John Wiley &Sons) 

2. Classical electricity and magnetism by Panofsky and Philips (Indian Book, 
New Delhi) 

3. Introduction to Electrodynamics by Griffiths. 

4. Element of Electromagnetics by Mathew N.O. and Sadiku (Oxford Univ. 
Press) 

5. Classical theory of Electrodynamics by Landau-Lifshitz (Pergaman press, New 
York) 

6. Electrodynamics of continuous media by Landau&Lifshitz (Pergaman Press, 
New York) 

7. Electrodynamics by S.P. Puri. 

  

17.15 Answers to Exercise 

Reference Books and Suggested Readings 
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UNIT- 18 
Electromagnetic Field Tensor 

Structure of Unit 
18.0 Objectives 

18.1 Introduction 

18.2 The Electromagnetic field tensor 

18.3 Lorentz Transformation of electric field and magnetic field 

18.4 The invariants of the electromagnetic fields 

18.5 Maxwell’s equations in Tensor form 

18.6  Illustrative examples  

18.7   Self Learning Exercise 

18.8 Summary 

18.9  Glossary 

18.10   Answers To Self Learning Exercise 

18.11  Exercise 

18.12  Answers to Exercise 

   References and Suggested Readings 

18.0 Objective 
 The objectives of this unit are : 

 To study electromagnetic field tensor. 

 To study Lorentz transformation of Electric and magnetic fields. 

 To study invariants of the electromagnetic fields. 

 To represent Maxwell’s Equations in Tensor form. 

18.1 Introduction 
We know that the Lorentz transformation was introduced by consideration 

of the propagation of an electromagnetic wave. Actually the homogeneous 

UNIT- 18 
Electromagnetic Field Tensor 

18.0 Objectives 

18.1 Introduction 



385 
 

equation governing electromagnetic wave propagation is already in covariant form, 

since D’Alembertian operator 2 .
 

 


 


x x
is invariant. In general Maxwell’s 

equation and their consequences lend themselves very simply to covariant 
description. This follows from the fact that no modifications at all are necessary in 
the laws of electrodynamics to make them agree with the requirements of 
relativity. The covariant formulation of space-time coordinates in the equations 
automatically puts the rest of equations into covariant form. Therefore now we 
introduced the electromagnetic field tensor which gives the correct description of 
the electromagnetic field, since it accounts for the intermingling of electric and 
magnetic fields. 

18.2 The Electromagnetic Field Tensor 

The electromagnetic field vectors 

E  and 


B  are written in terms of 

electromagnetic potentials 

A and  as 

 B A curlA  
 

       (18.1) 

 A AE grad
t t

  
      

 

 
     (18.2) 

Here 

E  and 


B  are not four vectors, but the six components 

y z 1 2 3,E ,E (E ,E ,E )xE  and y z 1 2 3,B ,B (B ,B ,B )xB may be used to develop an 
antisymmetric tensor of rank two by relating it with four electromagnetic 
potentials A . This Tensor is known as electromagnetic field Tensor F . 

From equation (18.2) x component of E is written as 

 
 

  
 

x
x

AE
t x

       (18.3) 

 Now 1

1

 
  

 x
AE
t x

 

 1

1

xiE i A i
c c t c x

 
  

 
 

 1 1 4

1 4 1( )
   

   
   

xiE A i A A
c ict x c x x

  

18.2 The Electromagnetic Field Tensor 
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 1 4

4 1

xiE A A
c x x

 
  

 
       (18.4) 

Similarly 2 4

4 2

yiE A A
c x x

 
 

 
       (18.5) 

  3 4

4 3

z AiE A
c x x

 
 

 
      (18.6) 

Similarly from equation (18.1) the components of 

B  can be expressed as in terms 

of the electromagnetic four potential as 

   
  

  



x y z

i j k

B A
x y z

A A A

 

 3 2

2 3

yz
x

A AA AB
y z x x

  
   

   
     (18.7) 

 31

3 1

x z
y

A AA AB
z x x x

  
   

   
     (18.8) 

 2 1

1 2

   
   

   
y x

z

A A A AB
x y x x

     (18.9) 

From equations (18.4) to (18.9)it is clear that these equations can be expressed by a 
single equation as 

AAF
x x




 


 

 
             (18.10) 

With 

41 12

42 23

43 31

,

,

,

 

 

 

x
z

y
x

z
y

iE F B F
c

iE
F B F

c
iE F B F
c

      (18.11)
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Also   F F and 0 F  
So F is anti symmetric Tensor of rank two where 1,2,3,4 and 1,2,3,4    
and  

11 22 33 44 0F F F F    and 

 41 14   xiEF F
c

,  

42 24   yiE
F F

c
, 

 43 34   ziEF F
c

, 

  23 32   xF F B ,  

31 13   yF F B and 

  12 21   zF F B . 

So 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

0

0

0



   
                      
 
  

x
z y

y
z x

z
y x

yx z

iEB B
c

F F F F iE
B BF F F F cF

F F F F iEB B
cF F F F

iEiE iE
c c c

    (18.12) 

This tensor is called the electromagnetic anti symmetric tensor of rank two. This 
is the covariant tensor form of equations (18.1) and (18.2). 

As an example let 1   and 3  or 3   1  then equation (18.10) yields 

3 1
13 2

1 3

A AF B
x x

 
   

 
from equation (18.8) 

Similarly 31
31 2

3 1

AAF B
x x


  

 
 

In this way we can write field equations for any components of

B   and 


E . 
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18.3 Lorentz Transformation of Electric Field and Magnetic 
Field 

Since the fields 

E  and 


B  are the elements of a second rank tensor F and for the 

Maxwell’s field equations to be invariant under Lorentz Transformation, then 
necessary condition for this is that the electromagnetic field tensor F   must have 
the same form in all inertial frames. The values of F in frame S  can be 
expressed in terms of the values in another inertial frame S according to  

             
    

 

   
 
x xF F a a F
x x

     (18.13) 

Equation (18.13) can be derived in this manner. We know that the transformation 
of x and A are written as 

   x a x         (18.14) 

And A a x             (18.15) 

The inverse transformation of x is written as 

   x a x         (18.16) 

i.e.  








x a
x

        (18.17) 

Therefore 

 


 

  
  

AAF
x x

 

 
A Aa a a
x x
 

  
 

 
 

  
  

 Using(18.15) 

 
A xx Aa a a
x x x x
  

   
   

  
 

    
  

 Using(18.17) 

 

A Aa a a a
x x
 

   
 

 
 

 
 

18.3 Lorentz Transformation of Electric Field and Magnetic 
Field 



389 
 

or  
A AF a a
x x
 

  
 

     
   

 

i.e. F a a F             (18.18) 

Where 

0 0
0 1 0 0
0 0 1 0

0 0



 

 

 
 
 
 
  

i

a

i

 and   

0

0

0

0



   
 
   

  
  
 
 
 
  

x
z y

y
z x

z
y x

yx z

iEB B
c

iE
B B

cF
iEB B
c

iEiE iE
c c c

 

So  

Transformation equations for magnetic field components :- 
(1) X Component of Magnetic Field 

23xB F
  

So in equation (18.18) taking 2  and 3  we get  

 23 2 3F a a F     
  2 31 1 32 2 33 3 34 4a a F a F a F a F         

 21 31 11 32 12 33 13 34 14a a F a F a F a F     
 22 31 21 32 22 33 23 34 24a a F a F a F a F     
 23 31 31 32 32 33 33 34 34a a F a F a F a F     
 24 31 41 32 42 33 43 34 44a a F a F a F a F     

23 22 33 23 F a a F  Since 22 33 1 a a      So 23 23 F F  
And all other coefficients are zero. 

Or   x xB B          (18.19) 
(2) y Component of Magnetic Field 



390 
 

 31yB F   

So in equation (18.18) taking 3  and 1  we shall get 

31 3 1   F a a F   
The only surviving coefficient are those for which 3  and 1  and 4   

31 33 11 31 33 14 34  F a a F a a F   
Putting the values of different coefficients 

31 21 1       
 

ziEF i
c

 

2     
 

y y z
vB B E
c

       (18.20) 

(3) z Component of Magnetic Field 

12zB F
  

So in equation (18.18) taking 1  and 2  we shall get  

12 1 2   F a a F  
The only surviving coefficients are those for which 1  , 4   and 2  . 

12 11 22 12 14 22 42  F a a F a a F  
Putting the  value of different coefficients 

12 31 (i ).    ziEF B
c

 

Or 2     
 

z z y
vB B E
c

      (18.21) 

Transformation equations for Electric field components : 
(1) X Component of Electric Field 

 41 xiE F
c

    So in equation (18.18) taking 4  and 1  we shall get

41 4 1   F a a F  the only surviving coefficients are those for which 4  , 1   
and 1  , 4   

41 44 11 41 41 14 14  F a a F a a F  

( )( )  
       

 x x xiE iE Ei i i
c c c

 

2 2( )(1 )   x xE E   2
2

11 


   
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2
2

1( )


 x xE E    x xE E     (18.22) 

(2) Y Component of Electric Field 

        42 yiE
F

c
So in equation (18.18) taking 4  , 2  we shall get 

42 4 2   F a a F  the only serving coefficients are those for which 
1, 2 4, 2      and  

42 41 22 12 44 22 41  F a a F a a F  

( )(1) (1) 


  y y
z

iE iE
iB B

c c
 

    y y zE E vB        (18.23) 

(3) Z Component of Electric Field 

 43 ziE F
c

 , so in equation (18.18) taking 4  and 3  we shall get 

43 4 3   F a a F the only surviving coefficients are those for which
1, 3 4, 3      and   

43 41 33 13 44 33 43  F a a F a a F  

( )(1)( ) (1) 


   z z
y

iE iEiB B
c c

 

    z z yE E vB        (18.24) 

Equations (18.19)(18.20), (18.21), (18.22) , (18.23) and (18.24) represents required 

transformation (Lorentz) equations for magnetic and electric fields 

B  and 


E . 

These equations can be inverted to give inverse Lorentz transformation of 

magnetic and electric fields 

B  and 


E  i.e. 

 

 

 

2

2

,

,

,

x x x x

y y z y y z

z z y z z y

B B E E
vB B E E E vB
c
vB B E E E vB
c

 

 

  

        
 
        
 

   (18.25) 
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18.4 The Invariants of the Electromagnetic Fields 

As we know these are two invariants of the electromagnetic field which are 

(i) .
 
E B  

(ii) 2 2 2c B E  

(1) Invariance of .
 
E B :  

According to transformations of magnetic and electric field components. 

2

2

x x

y y z

z z y

B B
vB B E
c
vB B E
c





 

    
 
    
   

x xE E   

 y y zE E vB    

 z z yE E vB    

Therefore ˆ ˆˆ ˆ ˆ ˆ. ( ).( )           
 

x y z x y zE B iE jE kE iB jB kB  
B B B       x x y y z zE E E  

   2 2.B                      
      

x x y z y z z y z y
v vE E v B B E E v B B E
c c

  

2

2 2

2.
1 

 
          

  

y y y z z y z z

x x

v vE B E E vB B B E
c cE B E B  

                      

2

2 2

21 

 
       

  

z z y z y z y y
v vE B E E vB B B E
c c  

   
2

22 1
1

y y z z
x x

E B E B vE B
c

  
     

  

 .x x y y z zE B E B E B E B   
 

      (18.26) 

i.e. .
 
E B  is invariant under Lorentz transformation. The importance of this 

18.4 The Invariants of the Electromagnetic Fields 
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result lies in the facts that if . 0
 
E B  (as in the case of a plane electromagnetic 

wave) in one frame, it will be zero in all inertial frames i.e. if vectors 
 
E and B  and  

are mutually perpendicular in any frame S then they are mutually perpendicular in 
another inertial frame S  . 

(2) Invariance of ( 2 2 2c B E ) : 

Therefore     2 2 2 2 2 2 2 2 2 2             x y z x y zc B E c B B B E E E  

   

2 2
2 2 2 2

2 2

2 22 2 2

x y z z y

x y z z y

v vc B B E B E
c c

E E vB E vB

 

 

             
     

       

 

2 2
2 2 2 2 2 2 2 2

4 2 4 2

22
           
   

x y z y z z y y z
v v v vc B c B E B E B E E B
c c c c  

          2 2 2 2 2 2 2 22 2      x y z y z z y z yE E v B vE B E v B vE B  

   
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

          x y z y z z y z y x
vc B c B c B E E E E c B c B E
c

 

 
2

2 2 2 2 2 2 2 2 2 2
21

 
       

 
x y z y z x

vc B c B c B E E E
c

 

2 2 2 2 2 2 2 2 2     x y z y z xc B c B c B E E E  
2 2 2 2 2 2 2( ) ( )     x y z x y zc B B B E E E  
2 2 2 c B E         (18.27) 

i.e. the quantity  2 2 2c B E is invariant under Lorentz transformation. The 

significance of this result lies in the fact that if the magnitude of 

E  and 


B  vectors 

in any reference system are given by E cB i.e. 0
0

 
EH cE

c
(as in the case 

of a plane electromagnetic wave in free space) then they are related to each other 
by the same relation in any other system. 

So the orthogonality of 

E  and 


B  i.e. . 0

 
E B and the relation E B c i.e. 

0
0

1


 H E cE
c

are the invariant properties of a plane wave.  
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Nevertheless the frequency and direction of the waves will vary with frame of 
reference and this leads to the phenomenon of the Doppler effect and aberration. 

18.5 Maxwell’s Equations in Tensor Form 

 Maxwell’s equation are : 

 

. ( )

. 0 ( )

(c)

E 0 ( )

D a

B b

DH J
t

B d
t

  


  
    

    

 




 



    (18.28) 

If for simplicity we take r 1and 1   r i.e. in free space Maxwell’s equations 
reduces to 

 
02

.E ( )

. 0 ( )
1 ( )

E 0 ( )

a

B b
EB J c

c t
B d
t





   
  




    


    




 



    (18.29) 

Now non-homogeneous pair of equations i.e. equations (18.29 (a)) and (18.29(c)) 
may be written more compactly in a single equation in terms of electromagnetic 
field tensor F as follows : 

4

0
1




 








F

J
x

       (18.30) 

Now homogeneous pair of equations i.e. equation (18.29(b)) and (18.29(d)) may  
be written more compactly in a single equation in terms of electromagnetic field 
tensor F as follows : 

0  

  

  
  

  
F F F
x x x

      (18.30) 

18.5 Maxwell’s Equations in Tensor Form 
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Where , &   can take the values of any combination of (1,2,3). These equations 
we have already derived in unit (17). Thus equations (18.29) and (18.30) represent 
Maxwell’s equations in Tensor form and these equations are the covariant form of 
Maxwell’s field equations.  

18.6 Illustrative Examples  

Example.1 Show that the self product of electromagnetic field tensor is given 
by 

 
2

2 2
22

 
  

 

EF B
c

 

 Where B, E and c are magnetic field, electric field and velocity of light. 

Sol. The self product of electromagnetic field tensor F is given by 
2 2 2 2 2

1 2 3 4.F F F F F F F            

 
2 2 2 2 2 2 2 2 2 2 2 2

11 12 13 14 21 22 23 24 31 32 33 34

2 2 2 2
41 42 43 44

           

   

F F F F F F F F F F F F

F F F F  
Since electromagnetic field tensor F is an anti symmetric tensor, hence 

11 22 33 44F F F F 0     

F  F   

For     or 2 2
 F F  

2 2 2 2 2 2 2
12 13 14 23 24 342[ ]      F F F F F F F  

But 1
12 3 13 2 14, , ,iEF B F B F

c
    

 
32

23 1 24 34, , iEiEF B F F
c c

      

or 
22 2

2 2 2 2 31 2
3 2 12 2 22

 
      

 

EE EF B B B
c c c

 

   2 2 2 2 2 2
1 2 3 1 2 32

12 B B B E E E
c

        
 

2
2

22 EB
c

 
  

 
 Hence proved 

18.6 Illustrative Examples  
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Example 2 Show that a purely electric field in one frame appears both as an 
electric and magnetic field to an observer moving with respect to first. 

Sol. Suppose in frame S, 0E   but 0B  . Then in the 'S  frame, we have from 
transformation equations 

 E E    

and E E    

 0B   

But B B E    
  

  

Thus B B B E E           

     
    

 E E E 
  

  

Since || 0v E 


 

So electric field in frame S, appears as electromagnetic field in frame S  

18.7  Self Learning Exercise 

Section A : Very Short Answer Type Questions 

 Q.1 What is the electromagnetic field tensor? 

Q.2 Write down the transformation formula for F . 

Section B : Short type Answer Type Questions 

 Q.3 Show that .
 
E B  is Lorentz invariant ? 

 Q.4 Give physical significance of .
 
E B and 2 2 2c B E . 

Example 3 Prove that a field that is purely magnetic in one frame cannot he 
transformed into one that is purely electric in a different reference frame. 

Sol. Suppose in frame S, 0E  , but 0B  , then in frame S ,  

We have 0E   

 E B   
 

 and B B    

 B B          
 B B B   

So that E E B B       
    

 

18.7  Self Learning Exercise 
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Thus a purely magnetic field to an observer in one frame appears both as an 
electric and a magnetic field to a relatively moving observer. 

Example 4 Show that the four-tensor F  for the electromagnetic field must be 
totally anti symmetric. 

Sol. In the instantaneous rest frame of a particle of charge q, the force acting on it 

must be qE


. Since E  


, we can rewrite it as :  

 

4

1

4

2

4

3

x

y

z

AE
x
AE
x
AE
x


   


   


  

 

        (18.31) 

Equating this force  to the time rate of change of the momentum P of the particle in 
this frame of reference 

  4 1,2,3k
k

dP qF k
dt

        (18.32) 

Generalizing this result for the suffixes  1,2,3,4  , we get  

 4

dP
qF

d



         (18.33) 

Now  00,0,0,P i m c  , the above equation (18.33) is rewritten as  

 
4

10

dP q P F
d m c


 

 

         (18.34) 

Multiplying both sides of the equation (18.34) by 2P , we get  

 
4 4 4

1 1 10

22
dP qP P F P
d m c


   

    

        (18.35) 

The L.H.S. of Eq. (18.35) is  
4 4

2 2 2
0

1 1

2 0
dP d dP P m c
d d d


 

    

      giving 

 
4 4

1 1

0P F P  
  

        (18.36) 
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Since the L.H.S. of this equation (18.35) is a scalar. Thus the equation holds in any 
reference frame which can related to our rest frame through a Lorentz 
transformation. However, it is possible only if F  is antisymmetric. Hence 
Proved. 

Example 5 Starting from the four dimensional form of homogeneous Maxwell’s 
equations, viz  

  
44

1 1
0 1,2,3,4

F
x


  


 


 

  obtain the wave equation for the field in a 

vacuum in the tour dimensional form. Further show that this equation reduces to 
the following equations for the potentials in the absence of charges and currents 

(i.e. 0   and 0J  ), i.e. 
2

2
2 2

1 0AA
c t


  




 and 

2
2

2 2
1 0
c t

 
  


. 

Sol.  We know that Maxwell’s equations in the absence of charges and currents are        
4

1

0
F
x


 




  and  1,2,3,4       (18.37) 

Now putting the values of F  in terms of electromagnetic potential Since  

AAF
x x




 


 

 
       (18.38) 

We get  
4

1
0

AA
x x x



   

 
      

  

Or  
24

1

A
x x



  


 

24

1
0

A
x x



  


 

        (18.39) 

Now 
24 4

1 1

A A
x x x x

 

     

 


           (18.40) 

If the four potential is subject to the Lorentz condition then 

 
24

1

0A
x


 




 31 2 4

1 2 3 4

0AA A A
x x x x

  
   

   
  

So equation (18.39) becomes 
24

1
0

A
x x



  




    1,2,3,4    (18.41) 
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Making use of D Alembertian operator 
2

2 2
2 2

1
c t


  


  (or Four dimensional 

Laplacian operator), the above equation (18.41) can be expressed in the four 
dimensional form, as 

 2 0A    1,2,3,4   

for 4  , it reduces to 2 0   and by putting 1  , we get 
2

2 1
1 2 2

1 0AA
c t


  


 

Similarly for 2   and 3  . We get 

 
2

2 2
2 2 2

1 0AA
c t


  


 

 
2

2 3
3 2 2

1 0AA
c t


  


 

Combining these three equations. We shall get 2 0A   

18.8 Summary 
In this unit we have defined electromagnetic field Tensor and derived 

expression for this in terms of electromagnetic potential. Then we derive 
expression for components of electromagnetic field vectors 

 
E and B    in terms of 

electromagnetic field tensor F . Hence we obtain Lorentz Transformation of 
electric and magnetic field vectors. Then we discuss the invariants of the 
electromagnetic fields. In the last we obtain Maxwell’s equations in Tensor form. 

18.9 Glossary 

Invariant : A function quantity, or property which remains unchanged when a 
specified transformation is applied 

Antisymmetric : Unaltered in magnitude but changed in sign by exchange of two 
variables or by a particular symmetry operation. 

Inertial Frame : a frame of reference) in which bodies continue at rest or 
in uniform straight motion unless acted on by a force 

18.10 Answers To Self Learning Exercise 

Ans.1:  It is an anti symmetric tensor of rank two. 

18.8 Summary 

18.9 Glossary 

18.10 Answers To Self Learning Exercise 
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Ans.2:     F a a F  

 
1,2,3,4 & 1,2,3,4
1,2,3,4 & 1,2,3,4

 
 

 
   

Ans.4: The importance of this result lies in the facts that if . 0
 
E B  (as in the case 

of a plane electromagnetic wave) in one frame, it will be zero in all inertial frames 
i.e. if vectors 

 
E and B  and  are mutually perpendicular in any frame S then they 

are mutually perpendicular in another inertial frame S  . 

The quantity  2 2 2c B E is invariant under Lorentz transformation. The 

significance of this result lies in the fact that if the magnitude of 

E  and 


B  vectors 

in any reference system are given by E cB i.e. 0
0

 
EH cE

c
(as in the case 

of a plane electromagnetic wave in free space) then they are related to each other 
by the same relation in any other system. 

18.11 Exercise 

 Section A : Very Short Answer Type Questions 

Q.1 What is anti symmetric tensor? 

Q.2 What are invariants of electromagnetic fields? 

Q.3 What is covariant form of Maxwell’s equation? 

 Section B : Short Answer Type Questions 

Q.4 Define electromagnetic field tensor ? 

Q.5 Write down Maxwell’s equation in Tensor form. 

Q.6 Derive the transformation formula for F . 

 Section C : Long Answer Type Questions 

Q.7 Define electromagnetic field tensor and obtain an expression for it and 
demonstrate its each element. 

Q.8 Using the transformation property of electromagnetic field tensor, obtain 
the Lorentz transformation equations for electric and magnetic fields. 

Q.9 What are the invariants of the electromagnetic field ? Prove their invariance 
and give their physical significance. 

18.11 Exercise 
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Q.10 Define electromagnetic field tensor and derive Maxwell’s equations in 
tensor form. 

18.12  Answers to Exercise 

Ans.1:    F F  

Ans.2:   (i) .
 
E B  (ii)  2 2 2B c E  

Ans.3:  Tensor form of Maxwell’s equation is covariant form. 

 References and Suggested Readings 
1. Classical Electrodynamics by J.D. Jackson (John Wiley & Sons). 

2. Classical Electricity and magnetism by Panofsky & Philips. (Indian Book, 
New Delhi). 

3. Introduction to electrodynamics by Griffiths. 

4. Elements of Electromagnetic by Mathew N.O. Sadiku (oxford Univ. Press). 

5. Classical theory of Electrodynamics by Landau & Lifshitz. (Pergaman press, 
New York). 

6. Electrodynamics of continuous Media by Landau & Lifshitz. (Pergaman press, 
New York). 

7. Relativistic mechanics by Prakash. (Pragati Prakashan Meerut (India)) 

8.    Electromagnetics by B.B. Laud (Wiley Eastern Limited,New Delhi)   

 

 

  

18.12  Answers to Exercise 

References and Suggested Readings 
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UNIT -19 

Energy and Momentum Tensor of the 

 EM Fields and Conservation Laws 
Structure of the Unit 

19.0 Objectives 

19.1 Introduction 

19.2 Lorentz force in covariant form 

19.3 Energy and momentum tensor of the EM fields 

19.4 Conservation Laws 

 (a) Conservation of energy 

 (b) Conservation of momentum 

19.5  Self Learning Exercise 

19.6 Lagrangian and Hamiltonian of a charged particle in EM fields 

19.7  Illustrative Examples 

19.8 Summary 

19.9 Glossary 

19.10 Answers To Self Learning Exercise 

19.11 Exercises 

19.12 Answers to Exercise 

19.8 References and Suggested Readings  

19.0 Objectives 

 The objectives of this unit are : 

 To derive Lorentz force in covariant form 

 To obtain expression for energy and momentum tensor of the EM fields 

 To study conservation Laws 

UNIT -19 
Energy and Momentum Tensor of the 

 EM Fields and Conservation Laws 

19.0 Objectives 
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 To obtain expression for Lagrangian and Hamiltonian of a charged particle 
in EM fields. 

19.1 Introduction 
 In the previous unit (18) we introduced the electromagnetic field tensor 
which gives the correct description of the electromagnetic field, since it accounts 
for the intermingling of electric and magnetic fields. Subsequently, we introduce 
the energy momentum tensor of the electromagnetic field and will deduce the Law 
of conservation of linear momentum and energy for a combined system consisting 
of the electromagnetic field and the charge particles. Then we will also find 
expression for Lagrangian and Hamiltonian of a charged particle in an 
electromagnetic field. 

19.2 Lorentz Force in Covariant Form or (Force density 
four Vector)  

We know that when a charged particle is placed in an electromagnetic field, it 
experiences a force given  by Lorentz force equation 

 F qE qu B  
   

       (19.1) 

                     q E u B  
  

 

Where q is electric charge on the particle and u  is the velocity of the particle. In 
order to obtain Lorentz force equation in covariant form, we consider the force 
acting on a unit volume of charge density  ; if f is the force per unit volume then 
equation (1) yields 

   
   F q E u B
V V

 

or  F E u B  
   

  

E u B   
  

  

F E J B  
  

       (19.2) 

In terms of components above equation (19.2) may be written as 

19.1 Introduction 

19.2 Lorentz Force in Covariant Form or (Force density 
four Vector)  
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1 2 3

2 3 1

3 1 2







  

  

  

x z y

y x z

z y x

f E J B J B
f E J B J B
f E J B J B

      (19.3) 

Using electromagnetic field tensor F given by

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

F F F F
F F F F

F
F F F F
F F F F



 
 
 
 
 
 

  

 

0

0

0

0

x
z y

y
z x

z
y x

yx z

iEB B
c

iE
B B

cF
iEB B
c

iEiE iE
c c c



   
 
   

  
  
 
 
 
  

     (19.4) 

Equation (19.3) can be written as 

1 11 1 12 2 13 3 14 4

2 21 1 22 2 23 3 24 4

3 31 1 32 2 33 3 34 4

f F J F J F J F J
f F J F J F J F J
f F J F J F J F J

   

   
   

     (19.5) 

Where current density four vector ( , ) J J ic  

Equation (19.5) can be written in the form of a single equation as 

 k kf F J  (with k=1,2,3)      (19.6) 

It is clear that the R.H.S. of equation (19.6) is evidently the space component of a 
four vector. So fk must be a space component of a four vector f such that 

  f F J         (19.7) 

Here f is called the force density four vector. This equation can also be written as 

(using 0










F J
x

) 

0 0

1 1 
  

  
  

    

F Ff F F
x x

     (19.8) 
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Equation (19.7)or (19.8) is a tensor equation, So it is invariant under Lorentz 
transformations i.e. these equations (19.7) and (193.8) represents the covariance 
form of the Lorentz force equation. 

Physical meaning of the fourth component of the force density four vector : 

We can write the fourth component of force density four vector 

4 4 41 1 42 2 43 3 44 4     f F J F J F J F J F J  

1 2 3 0yx z
iEiE iEJ J J

c c c
     

1 2 3[E J E J E J ]x y z
i
c

    

   . .
 

   i iE J E u
c c

      (19.9) 

Since the fourth component of force density four vector is imaginary and contains 
i
c

factor, So it represents the amount of work done by the electric field on the 

charge per unit volume per unit time. Hence the Lorentz force equation in 
Covariance form, gives the rate of change of mechanical momentum per unit 
volume as its space part and rate of change of mechanical energy per unit volume 
as its time part. 

19.3 Energy and Momentum Tensor of the EM fields 
We have derived Lorentz force equation in covariant form in (19.2) article as 
follows : 

f   F J         (19.7) 

Using equation for Maxwell covariant form of non-homogeneous pair we get 

0










F

J
x

 

or 
0

1 







F

J
x

 or 
0

1 







FJ
x

     (19.10) 

Thus equation (19.7) takes the form 

0

1 
 






Ff F
x  

19.3 Energy and Momentum Tensor of the EM fields 
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0 ( ) ( )    
 


 

 
 

f F F F F
x x

 

or 0
1( )
2

 
    

  


  

       

F F
f F F F F

x x x
 

or 0
1( )
2

 
   

  


  

       
u

F F
f F F F F

x x x
 

(We can inter change( )  dummy suffixes) 

or 0
1( )
2

 
   

  


  

       

F F
f F F F

x x x
   (19.11) 

But we know that homogeneous Maxwell’s equations in Covariant form is given 
by 

0 

  

 
  

  
F FF
x x x

 

  

  

  
  

  
F F F
x x x

 

Therefore equation (19.11) becomes 

0
1( )
2


   

 


 

    
   

Ff F F F
x x

 

1 2
4






 
  

  

FF
x

 

 1 .
4  







F F

x
  

   0
1
4   

 


 

 
 uf F F F F
x x

 

 1
4   









F F
x

 


 


  

 
   

Where
x x

 



407 
 

When    then 1   

If   then 0   

0

1 1
4     






          
f F F F F

x
 

or  


     
f T

x
       (19.12) 

Where 

0

1 1
4     


     

  
T F F F F     (19.13) 

is called electromagnetic energy momentum tensor. The characteristics of this 
tensor are 

(i) It is symmetric tensor i.e.  T T  
(ii) It has only nine independent components because sum of diagonal elements is 

zero. 

i.e. 11 22 33 44 0   T T T T 0 T  

 11 22 33 44
0

1 1. . .
4      


       

L H S F F F F  

(iii) Evaluation of different elements :- 

Electromagnetic field Tensor is 

0

0

0

0



   
 
   

  
  
 
 
 
  

x
z y

y
z x

z
y x

yx z

iEB B
c

iE
B B

cF
iEB B
c

iEiE iE
c c c

 (19.14) 

Now we have for 4  and 4   

41 14 42 24 43 34 44 44     F F F F F F F F F F  

0
                    

       
y yx x z z

iE iEiE iE iE iE
c c c c c c
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2 2 2 2

2 2
x y zE E E E

c c
 

 
and  

2 2 2 2 2 2 2 2
11 12 13 14 21 22 23 24

2 2 2 2 2 2 2 2
31 32 33 34 41 42 43 44

F F F F F F F F F F
F F F F F F F F

         

       
22 2

2 2 2
2 2 22 

 
        

 

yx z
x y z

EE EF F B B B
c c c

 

2
2

22 EB
c

 
  

 
 

 44 4 4 44
0

1 1
4   


     

T F F F F  

2 2
2

2 2
0

1 1 1 2
4

  
      

  

E EB
c c

 

2 2 22
2 0 0 0

2
0 0 0

1 1
2 2 2

 
  

  
    

 

H EEB
c

 

2 2
44 0 0

1 1
2 2

T E H U          (19.15) 

This is called energy density of electromagnetic field. 

(v) Now if we put 4  and 1  then 

41 4 1 41
0

1 1
4   


    

T F F F F   Since 41 0   

 41 41 11 42 21 43 31 44 41
0

1 0


    T F F F F F F F F  

   
0

1 0 0


            
   

y z
z y

iE iEB B
c c

 

0
    y z z y

i E B E B
c

 

    y z z y
i E H E H
c

 

1      
 

xx

i E H N
c c
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or 41
iT
c

  (x component of Poynting vector 

N )   (19.16) 

Similarly 42 y
iT N
c

    and  43 z
iT N
c

     

So this given the momentum density. Hence energy momentum tensor is given by  

11 12 13

21 22 23

31 32 33



  
 
  

  
 
 
 
 
  

x

y

z

yx z

iNT T T
c

iN
T T T

cT
iNT T T
c

iNiN iN U
c c c

     (19.17) 

Where ,x yN N and zN represents the Poynting vector along x, y and z direction 
respectively and U is energy density of electromagnetic field. 

19.4 Conservation Laws 

(a) Law of Conservation of energy 

We know that Lorentz force tensor is given by 

 








T

f
x

 Let 4   then 

 4 4341 42 44
4

1 2 3 4





   
    

    
T TT T Tf
x x x x x

 

 
1 2 3 ( )

  
    

   
yx zNNi i i N U

c x c x c x ict
 

 . . 
   



i i UN
c c t

 

We know that  4 .
 if E J

c
from covariant form of Lorentz force equation. 

 Or  . . 
   



 i i i UE J N
c c c t

 

 Or . . UE J N
t


   



  
      (19.18) 

19.4 Conservation Laws 



410 
 

Integrating above equation (19.18) overall space volume we get 

 . .    
  

  

V V V

E JdV NdV UdV
t

     (19.19) 

Using Gauss’s divergence theorem to change volume integral of second term of 
equation (19.19) into Surface integral  

   2 2
0 0

1 1. ( ).d
2 2

            
    

V S V

E JdV E H s E H dV
t

  (19.20) 

This equation (19.20) is known as Poynting theorem i.e. conservation of energy 

in electromagnetism. Here term, ( ).d
  

S

E H s represents the energy flowing out 

from the surface per second and .
 

V

E JdV represents work done by the electric 

field on moving charge. 

(b) Law of Conservation of Momentum 

For this substituting 1   in Lorentz force equation  

 1 1311 12 14
1

1 2 3 4

T TT T Tf
x x x x x




   
    

    
 

 1.
( )


  



xNiT

c ict
 

 Or 1 2
1. 

  



xNf T

c t
      (19.21) 

Integrating equation (19.21) over space volume, we get 

 1 2
1 .x iJ

V V

f dV N dV T dV
c t

  
  


     (19.22) 

Using Gauss divergence theorem in R.H.S. of equation (19.22) we get 

 1 2
1

x iJ
V v S

f dV N dV T ds
c t

 
        (19.23) 

Here first term in equation (19.23) represents mechanical momentum and second 
term represents electromagnetic field momentum. 
 Now equation (19.23) becomes. 
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 1 2

1
x iJ

V S

P N dV T ds
t c

 
    

       (19.24) 

This equation (19.24) represents the conservation of momentum. The volume 
integral of the force density 1f gives the total force which is expressed as the time 

derivative of the mechanical momentum 1P Thus 1
1 

V

dPf dV
dt

. In case the field 

vanishes outside the volume V, then it also vanishes at the boundary surface S 
which encloses the volume V. Thus. 

1 2

1 0
 

  
 


V

d P NdV
dt c

  1 2
1 constant  

V

P NdV
c

 (19.25) 

Which expresses the law of conservation of the momentum for the combined 
system of particles and fields. However, if the field does not vanish on the 

boundary of V, the . iJ
S

T ds represents the outward flow of momentum per unit area 

of the surface S surrounding the volume V. Term 2
N
c

represents the momentum 

density of electromagnetic field. 
19.5 Self Learning Exercise 

Section A: Very Short Answer Type Questions 

Q.1 What is Lorentz force? 

Q.2 What is electromagnetic energy momentum tensor ? 

Section B: Short Answer Type Questions 

Q.3 Using expression of electromagnetic energy momentum tensor, explain 
Law of conservation of energy. 

19.6 Lagrangian and Hamiltonian of a Charged Particle in 
EM Fields 

(a) Non Relativistic Case: 

We know that the total force on a charged particle moving with velocity v  in an 
electromagnetic field is given by 

19.5 Self Learning Exercise 

19.6 Lagrangian and Hamiltonian of a Charged Particle in 
EM Fields 
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 F q E v B    
   

       (19.26) 

Where q is the charge of the moving particle, E


is the electric field and B


is the 
magnetic field induction. 

The field vectors E


and B


in terms of electromagnetic potential 

A  and  are given 

by B curlA
 

 and 
AE grad
t




  



    (19.27) 

Now putting the value of B


 and E


 from (19.27) in (19.26) we get 

  
  

      
   

 AF q grad v curl A
t

 

  
 

       

 Aq grad v A
t

 

    . .
 

        

   Aq grad v A v A
t

 

    . . . .
              

   Ai e F q grad v A v A
t

   (19.28) 

Since vector potential A


is the function of both space and time 

 i.e. ( , , , )A A x y z t
 

 

We have dA A x A y A z A
dt x t y t z t t

      
   

      
 

 x y z
A A A Av v v
x y z t

   
  

   
 

  ˆ ˆˆ ˆ ˆ ˆ.    
          

x y z
Aiv jv kv i j k A

x y z t
 

  . 
  


 Av A

t
       (19.29) 

Putting values from (19.29) in (19.28) we get 

 .d AF q v A
dt


 

     
 

  
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  i.e.  . d AF q v A
dt


 

    
 

  
    (19.30) 

Equation (19.30) expresses the Lorentz force in terms of electromagnetic potential 

A


 and  . Since Force  d p dF mv
dt dt

 
 

 

 So.    .
 

     
 

  d d Amv q v A
dt dt

 

 i.e.     . 0    
   d mv q A q v A

dt
    (19.31) 

This equation (19.31) has the general form of a set of Lagrangian equation given  
by 

 0d L L
dt x x 

    
        

      (19.32) 

Now comparing equations (19.31) and (19.32) we get 

 

  

( )

. ( )

L mv qA a
x

L q v A b
x x

 


 
 




   


       


    (19.32) 

 Where
xx
t








  

Now integrating equations(19.32a) and (19.32b) we get 

  2
1

1 .
2

L mv q v A c  
 

      (19.33) 

   2.L q v A c   
 

       (19.34) 

Where 1c and 2c are constants of integration such that constant 1c is independent of 
position and constant 2c is independent of velocity . A glance at equations (19.33) 
and (19.34) reveals that the proper Lagrangian for the charged particle is 

  21 .
2

L mv q v A q  
 
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 i.e.  21 .
2

L mv q v A  
 

     (19.35) 

This is the desired value of Lagrangian  

As we know Hamiltonian function is defined as 

 .H p x L p v L 


   
 

  

    21. .
2

mv q A v mv q v A q      
 

    
 

 21
2

mv q   

 
 2

2
mv

q
m

   

 
 2

2

p q A
q

m



 

 

 

So Hamiltonian  21
2

H p q A q
m

  
 

     (19.36) 

Equation (19.35) and (19.36) represent expression for Non relativistic Lagrangian 
and Hamiltonian of a charged particle in E.M. field. 

(b) Relativistic Lagrangian and Hamiltonian of a charged particle in   
an electromagnetic field :  

The x-component of force is given by equation (19.30) 

  . x
x

x

dAF q v A
dt

      

 
 

Or    . .            

  
x

dF q v A v A
x dt x

   (19.37) 

   . .
  

    

   
 x

x

Since v A v A A
x v

 

As the scalar potential  is independent of velocity x , i.e. 0
x





Therefore 
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equation (19.37) is equivalent to x
U d UF
x dt x

        
   (19.38) 

Where  .U q v A 
 

 

Clearly U is the function of x and xThis is known as velocity dependent potential. 

 .U q v A 
 

       (19.39)

 The Lagrangian L given  by *L E U   

Where *E is kinetic energy given by 2 2 2
0 0* mc (m m )cE m c     

Or 20
02

2

*
1

mE m c
v

c

 
 

  
 

 

  

2
02

2

1* 1
1

E m c
v

c

 
 

  
 

          

   (19.40) 

The relativistic Lagrangian of the charge particle in an electromagnetic field is  

 2
02

2

1 1 .
1

L m c q q v A
v

c



 
 

    
 

 

 
    (19.41) 

Or  2 2
21 1 .vL mc q q v Ac        

 
    (19.42) 

Differentiating equation (19.41) with respect to v the relativistic momentum of the 
charged particle in a electromagnetic field is 

 
3

2 2
21


  




L mvp qA
v v

c

      (19.43) 

or 

 
3

2 2
21

mvp q A
v

c

 



 
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The Hamiltonian is defined as H p x L 


       (19.44) 

Substituting value of p and L in equation (19.44) we get an expression for the 
relativistic Hamiltonian of a charged particle in electromagnetic field as 

   
20

03 3
2 22 2

2 2

1 1 ( . )
1 1



    
   
        
   

        

m vH qA v m c q q v A
v v

c c

 

 
2

20
03 2

2 2 2
2

1 1
11


  
            

m vH m c q
vv cc

   (19.45)  

So, Equations (19.42) and (19.45) represents expression for relativistic Lagrangian 
and Hamiltonian of a charged particle in E.M. field. 

19.7 Illustrative Examples 

Example 19.1  Express the Lorentz force formula in terms of electromagnetic 
potentials. 

Sol. The force on a charged particle in electromagnetic field is given by 

 [ ]F q E v B  
   

       (19.46) 

The field vector E


and B


in terms of electromagnetic potential A


and  are given 
by  

 


  


 AE grad
t

 and curlB A
 

    (19.47) 

 So equation (19.46) reduces by using (19.47) 

  AF q v A
t


  

        
   

  
 

    . .AF q v A v A
t


 

        

    
 

19.7 Illustrative Examples 
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    . .AF q v A v A
t


           

    

    
    (19.48) 

Since vector potential 

A  is a functions of time and space both .So 

 . . .dA A A x A y A z
dt t x t y t z t

      
   

      
 

 .x y z
dA A A A Av v v
dt t x y z

   
   

   
 

 i.e.  .dA A v A
dt t


  




      (19.49) 

Putting value from Equation (19.49) in Equation (19.48) we get 

  .
 

     
 

  d AF q v A
dt

 

 or  . d AF q v A
dt


 

    
 

  
     (19.50) 

This is the required result. 

Example 19.2 Using the Lorentz force equation in covariant form derive the 
transformation law for the force. 

Sol. Lorentz force equation is covariant form is 

   f F J         (19.51) 

Here F is electromagnetic field tensor, f is force density (force per unit volume) 
four vector and J is current density four vector. 

As we know that in a frame in which charges are at rest with respect to the frame, 
no work is done on moving charges i.e. fourth component of the force density four 
vector 4f is zero i.e. 

 4 0f   

Hence according to law of transformation of force density four vector, 

    f a f         (19.52) 

Where a are element of transformation matrix.  

 1 11 1 12 2 13 3 14 4 1 4      f a f a f a f a f f i f  
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 Or 1 1f f    since 4 0f   

 2 22 2 2  f a f f   and  3 33 3 3  f a f f  

Now the components of the total force exerted on a given volume of the charge 
distribution is given 

 '



  k k
V

F f dV  

So that 

 
2

1 1 1 21
 

     
V V

vF f dV f dV
c

  
2

21   vdV dV
c

 

[Here V is volume and v is velocity of frame S in the respect to S  ] 

 Or 1 1 1 
V

F f dV F   or  x xF F  

 

2 2

2 2 2 22 2

2

2

1 1

1



      

  

 
V V

y y

v vF f dV f dV F
c c

vor F F
c

 

 

2 2

3 3 3 32 2

2

2

1 1

1



      

  

 
V V

z z

v vF f dV f dV F
c c

vor F F
c

 

We can write F F    and 
2

21   
vF F
c

   (19.53) 

Where 11F and F are the components of force parallel and perpendicular to the 
direction of motion of the frame S  

Example 19.3  Show that 
(i) The momentum of charged particle is an electromagnetic field is given by 

 P mv qA 
  
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(ii) The Lagrangian function of the charged particle in an electromagnetic field is 

given by 21 ( . )
2

L mv q v A  
 

 

(iii) The Hamiltonian function of the charged particle in a electromagnetic field 

given by  21H
2

P q A q
m

  
 

 

Sol. (i) The Lorentz force on a charged particle in electromagnetic field in terms 
of electromagnetic potential is given by 

 . d AF q v A
dt


 

      
 

  
      (19.50) 

According to Newton’s second law  dF mv
dt


 

,so equation (19.50) reduces to 

   .d d Amv q v A
dt dt


 

      
 

  
 

 i.e.   .d mv q A q v A
dt

      
   

     (19.54) 

This equation (19.54) has the general form of a set of Lagrangian equation given 
by 

 0
 

  
    

d L L
dt x x

       (19.55) 

So comparing equations (19.54) and (19.55) we shall get 

 
 

( )

. ( )

L mv qA a
x
L q v A b
x x




 
 



    
         


   (19.56) 

From classical mechanics by the definition of Lagrangian we know that 





L
x

is the 

th  component of momentum So Lp
x






 

Hence Lp mv qA
x 



  


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 or   
  
p mv qA       (19.57) 

(ii) Integrating equations (19.56) (a) and (b) we get 

 2
1

1 ( . ) c
2

L mv q v A  
 

      (19.58) 

 2( . ) cL q q v A   
 

      (19.59) 

Where 1c and 2c are constants of integration such that 1c is independent of position 
,while 2c is independent of velocity. A glance at equations (19.58) and (19.59) 
reveals that the proper Lagrangian for the charged particle in electromagnetic field 
is  

 2 21 1( . ) ( . )
2 2

      
   

L mv q v A q mv q v A    (19.60) 

(iii) As Hamiltonian function is defined as 

 H .x .p L p v L    
 

       (19.61) 

So substituting the values of p and L from equations (19.57) and (19.60) in 
equation (19.61)  

we shall get 

   21. ( . )
2

       

    
H mv q A V mv q v A  

 21
2

 mv q  

 
2(mv)

2
q

m
     mv p qA   

 
 2

2

p qA
q

m



 

 

 

 So  21
2

H p q A q
m

  
 

      (19.62) 

  This is the required result. 

19.8 Summary 

In this unit we have derived Lorentz force in covariant form. Then using this 

19.8 Summary 
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covariant form we derive expression for energy and momentum tensor of the E.M. 
fields. Then we discuss law of conservation of energy and law of conservation of 
momentum, using energy and momentum tensor of the EM fields. In the last we 
derive Lagrangian and Hamiltonian of a charged particle in EM fields, in both non 
relativistic and relativistic form as follows. 

(a) Non relativistic expressions for Lagrangian, Momentum and Hamiltonian 
for a charged particle in an electromagnetic field are 

Lagrangian,   2
0

1 .
2

L m v q q v A  
 

 

Momentum,  0p m v qA 
  

 

Hamiltonian, 2
0

1
2

H m v q   

(b) Relativistic expression for Lagrangian, momentum and Hamiltonian for a 
charged particle in an electromagnetic field are 

Lagrangian,    2 2
21 1 .vL mc q q v Ac       

 

 
 

Momentum, 

 
3

2 2
21

mvp qA
v

c

 



 
 

Hamiltonian,  

 
2

20
03 2

2 2 2
2

1 1
11

m vH m c q
vv cc



  
  

     
     

  

19.9 Glossary 

Homogeneous: Consisting of parts all of the same kind, in mathematics 
containing terms all of the same degree. 

Antisymmetric : Unaltered in magnitude but changed in sign by exchange of two 
variables or by a particular symmetry operation. 

19.10 Answer to Self Learning Exercise 

Ans.1: It is the force experienced by a charge particle moving in electromagnetic 
field. 

19.9 Glossary 

19.10 Answer to Self Learning Exercise 
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Ans.2:  
0

1 1
4     


     

  
T F F F F

 
19.11 Exercise 

Section –A (Very Short Answer Type Questions) 

Q.1 What is covariant form of Lorentz force? 

 Q.2 Give relativistic expression for Lagrangian. 

Q.3 Give relativistic expression for Hamiltonian. 

 Section –B (Short Answer Type Questions) 

Q.4 Derive Lorentz force formula for a charged particle moving in 
electromagnetic field. 

 Q.5 Define electromagnetic energy momentum tensor and gives its various 
properties. 

 Q.6 Using expression for electromagnetic energy momentum tensor, explain Law 
of conservation of momentum. 

Q.7 Derive 2
0

1 ( . )
2

L m v q q v A  
 

 
 Section –C (Long Answer Type Questions) 

Q.8 Derive the Lorentz force equation in covariant form and explain the meaning 
of the fourth component of the force density four vector. 

Q.9 Derive an expression for electromagnetic energy momentum tensor of the 
E.M. Field using covariant form of Lorentz force and discuss it. 

 Q.10(a) Starting from the Lorentz force equation   f J F and using covariant 
form of Maxwell’s equations. Show that the Lorentz force equation can be 

written as 






v

T
f

x
Where J is the current density four vector, F is the 

electromagnetic field tensor and T is the energy momentum tensor. 
(Einstein’s summation convention used)  

 (b) Obtain the various components of the energy momentum tensor. 

19.11 Exercise 
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Q.11 Choose a suitable Lorentz invariant Lagrangian for the relativistic description 
of motion of a classical particle of mass m and charge q in an electromagnetic 
field given by four vector potential ( )A x .  

19.12 Answers to Exercise 

Ans.1: 
0 0

1 1 
    

  
 

     

FFf F J F F
x x

is the covariant form of 

Lorentz force. 

Ans.2:   
2

2
21 1 .vL mc q q v A

c


           
  

 
is required expression. 

Ans.3:   
2

20
03 2

2 2
2

2

1 1
11



  
  
     
           

m vH m c q
vv
cc

 is required expression. 
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