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1.0 Objectives

® To illustrate fundamental concepts of quantum mechanics by using the

Stern Gerlach experiment
® Principle of superposition of states
® Ket vectors, Bra vectors and operators
® What is an eigenstate?

® What is an observable in quantum mechanics?

1.1 Introduction

When we attempt to apply classical mechanics and electrodynamics to explain
atomic phenomena, they lead to results which are in obvious conflict with
experiment. There is a sharp contradiction between theory and experiment. This is
very clearly seen from the contradiction obtained on applying ordinary
electrodynamics to a model of an atom in which the electrodynamics to a model of
an atom in which the electrons move round the nucleus in classical orbits. This
indicates that phenomena occurring in particles of very small mass at very small
distances demand a fundamental modifications of the basic physical concepts and
laws. Here in this unit the basic formalism of quantum mechanics is presented with

the example of the Stern —Gerlach experiment in the back of our minds.

1.2 Localized Wave Packets

Construction of a theory applicable to atomic phenomena that is, phenomena
occurring in particles of very small mass at very small distances-demands a
fundamental modification of the basic physical concepts and laws. In quantum
mechanics there is no such concept as the path of a particle. This forms the content
of what is called the uncertainty principle, one of the fundamental principles of
quantum mechanics, discovered by W. Heisenberg in 1927.In that it rejects the
ordinary ideas by classical mechanics, the uncertainty principle might be said to be

negative in content.

It is possible to imagine configurations of waves that are very localized. ( A clap of
thunder is an example of a superposition of waves leading to an effect localized in

time at a given location).Such localized “wave packets’ can be achieved by



superposing waves with different frequencies in a special way, so that they

interfere with each other almost completely outside of a given spatial region.
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Example 1: Let a wave package be described at time t =0 by
2
w(x,0)= 4 exp(~x2 + ikox}
2a
(a) Express t;/(x,O) as a superposition of plane waves.
(b)  What is the approximate relation between the width of the wave packet in °
configuration (x) space and its width in k -space ?
(c) Using the dispersion relation for de Broglie waves, calculate the function
w(x,t) for any time ¢
(d) Discuss ‘w(x,t)]z,
(e) How must the constant A4 be chosen. According to the probability
interpretation, so that w/(x,z) describes the motion of a particle?

Sol. (a) we obtain the frequency spectrum of a wave packet ly(x) by forming the

Fourier transform of the wave function :
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The maximum of this Gaussian function is at the position
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But the wave packet “flattens™: at t = 0 the width of [l//|2 is just ‘a’, and at a later

time (formally speaking : at an earlier time as well ) its width is given by
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(e) Independently of time, the normalization condition for a particle has to be

A= T v (x,2 ) dx = A2ax Te*fdaj

:|A|2a\/;
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1
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As this condition is valid only for the absolute value of A4, the phase of the wave

remains undetermined.

1.3 The Principle of Superposition

The radical change in the physical concepts of motion in quantum mechanics as
compared with Classical mechanics demands an equally radical change in

mathematical formalism of the theory.

We consider first of all the way in which states are described in quantum
mechanics. The state of a system can be described by a definite (in general

complex) function y(g) of the coordinates.

The square of the modulus of this function determines the probability distribution

of the values of the coordinates:

|t//|2dq determines the probability that a measurement performed on the system
will find the values of the coordinates to be in the element dgq of configuration
space. y is called the wave function of the system. [E. Schrodinger1926]

° A knowledge of the wave function allows us, in principle, to calculate the
probability of the various results of measurement (not necessary of the coordinates)

also. The most general form of such as an expression is

[[vl@) v'(¢) dla.q) dg dg
Where the function ¢(g,¢') depends on the nature of and the result of the

measurement and the integration is extended over all configuration space.



For example of ¢5(q,q') =0 (q —q9 )5(q' —qo), then expression (1) determines the
probability for a particle having g =g .

® The state of the system, and with it the wave function, in general varies with
time. In this sense the wave function can be regarded as a function of time also.
If we know u/(t) we also know (t+ 5t)

° .[ |'1”|2d‘9':l

e If ﬂw[qu= diverges, then ‘y/|2 at two different points of configuration space
determines the relative probability of the corresponding values of the
coordinates.

® Note that normalized wave function is determined only to within a constant

phase factor of the form e'“ (where « is any real number). This indeterminacy
1s in principle irremovable; it is however, unimportant since it has no effect upon

any physical results.

o If y, (q) _measuremen definite result 1
V788 (q) > definite result 2
Then Cyy, +Cy, gives a state in which that measurement leads to either result
1 or result 2. Moreover if time dependence of Y1 is l"'/l(q’t) and vy, is
v1(q.1)

then C, l,ul(q,t)+ Cyy» (q,t) gives possible dependence of state on this.

® All equations satisfied by wave function must be linear in v .

® Consider a system composed of two parts, and suppose that the state of this
system is given in such a way that each of its parts is completely described. Then
the probability of ¢, .the first part ,is independent of the probabilities of the
coordinates g, of the other part:
Thus%z(‘]],%): "4} (‘]1)’#’2(‘]2)
Also w5 (q1.42.t)=w1 (a1, W2(9.1)

1.4 Operations

Let us consider some physical quantity f which characterizes the state of a

quantum system. Strictly, we should speak in the following discussion not of one



quantity, but of complete set of them at the same time. For brevity, we work in

terms of only one physical quantity.

Eigen Values : The values which a given physical quantity can take. The set of

these is referred to as the spectrum of eigen values of the given quantity.
In Classical Mechanics : quantities run through a continuous series of values.

In Quantum Mechanics also, there are physical quantities. (e.g. coordinate) whose
eigenvalues occupy a continuous range. In such cases we speak of a continuous

spectrum of eigenvalues.

As well as such quantities, however, there exist in Quantum Mechanics others
whose eigenvalues form some discrete set; [discrete spectrum].We shall suppose

that the quantity f* considered here has a discrete spectrum.
The eigen values are denoted by f;, [n=0,1,..]

The corresponding wave function of the system byy,,

Each of these wave function is supposed normalized:

Jly. [ da =t

v=2av,

Conclusion : Any wave function can be, as we say, expanded in terms of the

eigenfunctions of any physical quantity. A set of function in term of which such an
expansion can be made is called a complete set.

\a,,|2 determines the probability of the corresponding value £, of the quantity f

in the state with wave function .

Ya[ =1 (3)

n

If the function ¥ were not normalized then the relation (3) would not hold either.
The sum Z|an|2 would then be given by some expression bilinear in v and v~

and becoming unity when y was normalized. Only the integral jl//t,r/* dg 1is such

an expression.

Thus Z aa = Iw v dg 4)



=y X anw,dg
n
> ayay=2.a, (W, vdq
n n

a, =[yv, dq (5)
If we substitute y => a,y, in(5)

n

a, = JW; Z An¥m dq
m

=Ya, [wrv,dq I v v dg=46

m

Thus the set of eigenfunctions v, forms a complete set of normalized and
Orthogonal (Orthonormal) functions.

® We now introduce the concept of mean value f of the quantity / in the given
state.

7 :an|an|2

We shall write f in the form of an expression which does not contain the

coefficients a,, , but the function y itself.

We introduced a mathematical operator f defined as follows.
7=[v*(7v)da
f=X/aa= Iw*[Zan /, w,z)dq
fW:fZalin :Za” fwﬂ :Zaifﬁlwlf

Comparing

Afwzzanfnw”
=2 fuWa[Waw dg

fv=[K(q.q)w(q)dg
Where K(g,q')= 2, v.(q')w.(q)

10



And K(g,q')is called Kernel of the operator

Here f is linear operator
[y, +w,)=Tfw+fy,
ay =afy
Here y, and y , are arbitrary functions and « is arbitrary constant.

Thus for every physical quantity in quantum mechanics there is a definite
corresponding operator.

If v is one of the eigenfunction v, i.e. all a, =0, except one
fu/?l = f;] WH'
We write fw:fw

Both the eigen values of a real physical quantity and its mean value in every state

are equal. This imposes a restriction on the operators; so their average is real.
[y fwdg=[y f"y"dg

® Transposed operator }
[6(7v)dq = w(deq

Note : complex physical quantities i.e. whose eigenvalues are complex.
= } = f*  Hermitian

. fw”' = ‘)(;i' w” ? fwfﬂ = fﬂi’ w“
= (f, =L )w,v,dg=0
Complete set of simultaneously measurable physical quantities /', g,... Their

operators correspond to  f,2,... . y  corresponds to simultaneous eigenstate.

e Complex conjugate quantity /"~ — f r
(F)=Tv7 wdg
=[[w' fvdql
=y [y’ dq

11



~ [y 7 wdg

Addition and Multiplication of Operators:

fe—1.8

Then f+g—>/f+§

® The significance of adding different physical quantities in quantum mechanics
depends considerably on whether the quantities are or not simultaneously
measurable.

® [f f and g are simultaneous measurable, the operators f and g have common
eigenfunctions, which are also eigenfunctions of j‘+ g, and the eigenvalues of
the operator f + g are equal to the sums f, +g,.

® But if / and g cannot take simultaneously definite values, their sum f + g has
a more restricted significance. We can assert only that the mean value of this

quantity in any state is equal to the sum of the mean values of the separate

quantities:
Sreg=f+g

® The eigen values and eigen functions of the operator f + ¢ will not, in general,

now bear any relation to those of the quantities f + g .It is evident that if f and
g are Hermitians, the operator f + g will be so too, so that its eigenvalues are

real and are equal to those of the new quantity f + g thus defined.

® The following theorem should be noted. Let f; and g, be the smallest
eigenvalues of the quantities /" and g and ( f +g)0 that of the quantity f+g,
then

(r+ghzro+go
(the equality holds if /" and g can be measured simultaneously).

Proof : Let the quantity / + g in some state has the mean values ( f +g)0 1.e. the

least value, then

mz(ftg)o

12



f+eg=f+g
2
g2 g
fre=(r+ghz/o+g
Product of Two Quantities fg :

Case I: If fand g are simultanecously measurable

f.g"')l/i} :j'gﬁ WH :gﬂ' -fwﬂ :gl'.' f” Wﬂ

éfW1;=grrﬁ1Wn
.'.W:Zanlf/r!
[fg—gf]w=o wy isarbitrary . fg—g /=0

® The converse of the theorem is also here:

If operators f and ¢ commute , then all their eigenfunctions can be taken

common to both.

® f7 (p is an integer) ------------ eigenvalues are f¥

L] ¢(f ) -------------- eigenvalue are¢(f )
. jh‘*l is defined as f‘f_] :_f_"/}ZI

® If f and g cannot be measured simultaneously, the concept of their product

does not have the same direct meaning.

® This appears in the fact that the operator f ¢ is non Hermitian and hence  can

not correspond to any real physical quantity.
2w fépdg=[w f(¢4)dq
~J(e0)7 vdq = |( 74 )26 g

=[98 fvdq
® Again

[v 7 &pdq=
.-.(fg—)z

6f Swdg

091 —,

S~y

13



*

~1

(72) =(2) (/)
(fA<g"')T =§+ ]?'+ Eéf' (if # and ¢ are Hermitian )

® We note that, from the products f g and gf of two non commuting Hermitian

operators, we can from an Hermitian operator, a symmetrical product:

Hrgrel]

® /¢ f is an anti Hermitian operator[f =— f 1
° 1[f§—§ };} Hermitian
o {f.8}=7s-8f

We notice that, if [ f, ]= [g, h]= 0 it does not in general follow that f and

g commute.

The Continuous Spectrum:

® / be a physical quantity having continuous spectrum

® f also denote the eigen values

v, eigenfunction.

*v(q)=|a,v, (q)df

where the integration is extended over the whole range of values than can be taken
by the quantity f.

2
® We try to normalize the functions y , in such a way ’af| df 1is the probability

that the physical quantity concerned, in the state described by the wave function
v, has a value between f and f +df . Since the sum of the probabilities of all

possible values of f must be equal to unity, we have

Z|a,,‘2 =1
n

fla,[dr=1"and

® Proceeding in exactly the same way as before, we write

14



Jwv* dg=]la[ af 1

and  [yy'dg=([a v, ydfdg )
. from (1) and (2)

[a;0,ar=ara; o

cap=[yrvdg

ar=[wlghv(q)dg
ap=| a}([w,r(a)w} (¢)dq)ds”
v ela)w i (q)dg=6(f"- 1) (A)

® The function v , (¢) satisfy still another relation similar to (A). To derive this we

proceed as follows:
wig)=[asw (q)df
vap= _[ wigwy (¢)dq (substituting)
= [w(q) (v @w (@)df )dg’
Here . [y (q')y (q)df = 5(q'~q)
® There is, of course, an analogous relation for a discrete spectrum:
v, (), (9)=6(d'~a)
Compare the following formulae:
wlq)=[azw  (q)df ar =[w(q)y}(q)dg

z}nd v with [wilgw (q)df =5(q'-q)
vewpdg=6(f"-f

a(Tf) — w(g)

wave function wave function
in the in the

[ representation ¢ represention
|u/(q]2 determines the probability \a(f )(2 determines the probability
for the system to have coordinates for the values of the quantity f to
lying in a given interval dg . lie in a given interval df .

15



w(q) are eigenfunctions of the wy(q) are eigenfunction of the

quantity f in g representation coordinate ¢ in f representation.

Let 45( f ): some function of quantity f (one to one relations). Each of the
functions y , (¢) can then be regarded as an eigenfunction of the quantity ¢ .

Here, however, the normalization of these functions must be changed : The
eigenfunction y f(q) of the quantity ¢ must be normalized by the condition:

Jva(r i) da=slo(f)-o(f)]

Whereas the function y , are normalized by the condition

v, vi(q)dg=5(s"-71)

® The argument of the delta function becomes zero only for f'=f. As f’
approaches f,
We have

N_dof) (o,
¢(f)—¢(f)—d—f-(f -/f)

Comparing this

Jvpvwida=5(f"-1)
We see that the function y o and v o) ATe related by

v da=slo(s)-o(1)]
L (/)

= ‘ : j':”f v dq

16



° vi(q)=Yaw, (9)+[a,w, (g)df

n

o g=[qly[ dg=[v'qydg

L g=q
® The eigen functions of this operator must be determined:
K qwg{o = qU qu

Since this equation can be satisfied either by y, =0 or by g=g¢, it is clear that

the eigen functions which satisfy the normalization condition are

v =5(q=q0)

Gy
Energy and Momentum:

The Hamiltonian Operator:

The wave function y completely determines the state of a physical system in
quantum mechanics. This means that, if this function is given at some instant, not
only are all the properties of the system at that instant described, but its behaviour
at all subsequent instants is determined (only, of course, to the degree of

completeness which is generally admissible in quantum mechanics).

: o O :
® That is, the value of the derivative a—li/ must be determined by the value of the

function itself at that instant.
. . . 0 .
® By the principle of superposition, the relation betweena—w and y must be linear,
t

. @ A AL ;
zha—w = Hy ,where H is some linear operator.
¢

® Since the integral of Iw w" dg is a constant independent of time, we have

ﬂ I oy dq+JI/I l’{/a’q 0
or _Lmj(ﬁ*w*)wdqﬂw*%wdqﬁ

1 N 1 .
or —;J‘u/*H*lydq+%J‘w*Hy/dq:0
i i

17



1 . &
—(ly' | B-F |wdg=0
or ih]{w{ }w q

Since this equation must hold for an arbitrary function y, it follows that we

~

Ay .
must have identically H = H ; the operator H is therefore Hermitian.

® | et us find the physical quantity to which it corresponds

To do this, we use the limiting expression for the wave function and write
iS

v =ae"
ow idS
o na’l

(the slowly varying amplitude need not be differentiated)

- . . oS
The operator H reduces to simply multiplying by —5 ;

—%—S is the physical quantity in which the Hermitian operator H passes
t

H : Hamiltonian of the system concerned :

0 R
ih a—y; = Hy | is called the wave equation.

The Differentiation of Operators w.r.t. Time :

® The concept of the derivative of a physical quantity w.r.t. time cannot be defined
in quantum mechanics(QM) in the same way as in Classical Mechanics(CM).
For the definition of the derivative in C.M. involves the consideration of the

values of the quantity at two neighboring but distinct instants of time.

® In QM however, a quantity which at some instant has a definite value does not in

general have definite values at subsequent instants;

Hence the derivative w.r.t. time must be differently defined in QM.

® [t is natural to define derivative f of a quantity f as the quantity whose mean

value is equal to the derivative w.r.t. time of the mean j :

f=1

18



f= =—It//qu
—jw*aft/f q+f—fu/ dg+[y"f qu

—Iw wdq+—Iwawdq+wa deq

JV{%+—UH Hﬂpmz

Since, on the other hand, we must have, by the definition of mean values,

f = Iw* f wdg, it is seen that the expression in parenthesis in the integrand is

the required operator f :
f—*fﬁhf‘ﬂﬂ

0 o= =i ]

A very important class of physical quantities is formed by those whose operators
do not depend explicitly on time, and also commute with H , so that

f=f=0
or f = constant

® |n other words, the mean value of the quantity f has a definite value

We can also assert that, if in a given state the quantity f has a definite value (i.e.

the wave function is an eigen function of the operator f ), then it will have a

definitive value (the same on) at subsequent instant also.

1.5 Stationary States

The Hamiltonian of a closed system (and a system in a constant external field) can
not contain the time explicitly. This follows from the fact that for such a system, all
times are equivalent. Since, on the other hand, any operator commutes with itself,
we reach the conclusion that Hamilton’s function is conserved for systems which

are not in a varying external field.

19




As it is well known, a Hamilton’s function which is conserved is called the
energy. The law of conservation of energy in QM signifies that, if in a given state
the energy has a definite value, this value remains constant in time.
The states in which the energy has definite values are called “stationary states”
of a system. They are described by wave function v/, (q)

Hy,=Ey

i
~LE:
n

"'Wn =€ ’ W” (q)
Hy(q)=Ey

Smallest possible value of the energy: normal or ground state of the system

v=Yae""y (q)

11‘2

The squared modulus |a of the expansion coefficients, as used, determines

that probabilities of various values of the energy of the system.

® The probability distribution for the coordinates in a stationary state is

determined by
— |2
7, =,
The same is true of the mean values
F=[vnfvdg=[y, fy,dq

® Among the various stationary states, there may be some which correspond to the

2 e .
; (it is independent of time)

same value of the energy (the same energy level of the system), but differ in the

values of some other physical quantities. Such energy levels, to which several
different stationary states correspond, are said to the degenerate.

Physically, the possibility that degenerate levels can exist is related to the fact
that energy does not in general form by itself a complete set of physical
quantities.

Theorem : If f and g are two conserved quantities then if f and g do not
commute, then the energy levels of the system are in general degenerate:
Proof: Let v wave function of stationary state in which, besides the energy, the

quantity f also has a definite value.

20



Then we can say that gy does not coincide with y; if it did, then would mean that
the quantity g also had a definite value, which is impossible, since f and g

cannot be measured simultaneously.

On the other hand gy is an eigenfunction of H corresponding to the same value
E of the energy as in /.

H(gy)=gHy =E(gy)
Thus we see that the energy E corresponds to more than one eigen function i.e.

energy level is degenerate.

It is clear that any linear combination of wave function corresponding to the same

degenerate energy level is also an eigen function for that value of the energy.
In other words, the choice of eigen function of a degenerate level is not unique.

Arbitrary selected eigen function of a degenerate energy level are not, in general,
orthogonal. By a proper unique of linear combinations of them, however, we can
always obtain a set of orthogonal (and normalized) eigen functions (and this can be
done in infinitely ways;

For the number of independent coefficient in a linear transformation of »n functions

1s 112, while the number of normalization and orthogonality condition for n

| .
function is En(mw 1) i.e. less than #

1.6 Uncertainly Relation

Let Ox =4/ (x -X )2 ,Op = ( p.—P, )2 be defined as Standard Deviations.

We can specify exactly the least possible value of their product.

Let us consider the one dimensional case of a wave packet with wave function
t,u(x) depending on only one coordinate, and assume for simplicity that the mean

values of x and p_ in this state are zero.

We consider the obvious inequality:

j

—00

2

dy
axy +—
Y

X

dx > 0,where « is an arbitrary real constant.

On calculating this integral, noticing that

21



_[xz 11//|2dx = (5):)2

j{ *Z—W+%.xw}dx
x
d 2 2 2
:Ix;‘w‘ dxzx‘l// —_Hl//‘ dx=0-1
2 *
Ofochj;ij —£axw*+%J[axw+—ij

2.2, 12 sdy  dy”
=a“x |yl +axy ——+——axy+
dx

* d* dz*
J'dwd—wdf_wl/fuj v

B dx?

; d.
dx dx dx vax

1 " 1 2
(_l_h)z J'szw dx:?(gpx)

00—

a2(5x2)—a +h—12(5p1,)220 If this quadratic (in «) is possible for all o, its

discriminant must be negative

or (5x)(5px) > %

The least possible value of the product is 5 , and occurs for wave packets with

wave functions of the form:

1 _— {i B X’ ]
1 T Fot T 2
(2n)s flox) LM 4(6x)
Where p, and dx are constants,
The probabilities of the various values of the coordinates in such a state are:

1

2 1 x?
|W‘ =\/§.(5x)€.¥p|:—2(§x)2:‘

22



® The wave function in the momentum representation

alp,)= [y " s

(&) (p, = p.)
-

= constant. exp|:—

‘a ( D, )‘j is the probability of values of momentum

1.7 The Stern-Gerlach Experiment

When we attempt to apply classical mechanics and electrodynamics to explain
atomic phenomena, they lead to results which are in obvious conflict with

experiments.

This is very clearly seen from the Contradiction obtained on applying ordinary
electrodynamics to a model of an atom in which the electrons move round the

nucleus in classical orbits.

During such motion, as in any accelerated motion of charges the electrons would
have to emit electromagnetic waves continually. By this emission, the electrons
would lose their energy and this would eventually cause them to fall into the
nucleus. Thus according to classical electrodynamics the atom would be unstable,

which does not at all agree with reality.

This marked contradiction between theory and experiment indicates that the
construction of a theory applicable to atomic phenomena — that is phenomena
occurring in particles of very small mass at very small distances —demands a
fundamental modification of the basic physical concepts and laws.

As a starting-point for an investigation of these modifications, it is convenient to
analyze the Stern-Gerlach experiment. This experiment illustrates in a dramatic
manner the necessity for a radical departure from the concepts of classical

mechanics.

Description of the Stern-Gerlach Experiment :

In the Stern-Gerlach (SG) experiment, silver atoms are heated in an oven. The
oven has a small hole through which some of the silver atoms escape. As shown in

Figure 1, the beam goes through a collimator and is then subjected to an
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inhomogeneous magnetic field produced by a pair of pole pieces, one of which

has a very sharp edge.

Figurel

The silver atom 1s made up of a nucleus and 47 electrons where 46 out of the 47

electrons can be visualized as forming a spherically symmetrical electron cloud

with no net angular momentum.

If we ignore the nuclear spin, we see that the atom as a whole does have an angular
momentum, which is due solely to the spin angular momentum of the 47" (5s)

electron.

The 47 electrons are attached to the nucleus, which is ~ 2 X 10° times heavier
than the electron; as a result the heavy atom as a whole possess a magnetic moment

equal to the spin magnetic moment of the 47" electron.

As a consequence, the magnetic moment £ of the atom is proportional to electron
spin S :
nwas

e

S (e<0)

or i =
H mec
The interaction energy of the magnetic moment with the magnetic field is :

U= —I.B
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Therefore the Z-component of the force experienced by the atom is
ou o ,_, —
Fz__a_a(‘u B)
d
= Az (u2B;)

0B,
- ﬂZ az

If S, <0, then u, >0 (Because u, = ﬁSZ and e < 0,5, <0 then atom
experiences downward force, while the u, < 0 (S, > 0) atom experiences an
upward force.

The ion beam is then expected to get split according to the values of u,. In other
words, the SG (Stern-Gerlach) apparatus “measures” the Z-component of i , or
equivalently, the Z-component of S,

The atoms on the oven are randomly oriented; there is no preferred direction for
the orientation of .

If the electron were like a classical spinning object, we would expect all values of
U to be realized between |i’| and |’|. This would lead us to expect a continuous
bundle out beams out of the SG apparatus (See figure 2a). Instead, What we
experimentally observe is more like the situation in figure (2b).
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In other words, the S.G. apparatus splits the original silver beam into two distinct

components, a phenomena referred to in the early days of quantum theory as
“space quantization”.
To the extent that u’ can be identified within a proportionality factor with the

electron spin S, only two possible values of the Z-component of S are observed to
be possible, S, up and S, down, which we call S, + and S, — . It turns out to be

S,+= %ﬁ and S,— = —-% h S:+=%h and Sz—z—%h

where h = 1.0546 x 10734 Js
This “quantization” of the electron spin angular momentum is the first

important feature we deduce from the SG experiment.

Of course we could equally choose inhomogenous field, say in the x-direction,
with the beam proceeding in the y-direction. In this manner we could have

separated the beam from the oven into an a S, + component and S, — component.

1.8 Sequential Stern-Gerlach Experiment

We now consider a sequential Stern-Gerlach experiment. By this we mean that the

atomic beam goes through two or more SG apparatuses in sequence.

Syt Component S+ Component
Oven sz sGr
/ NO S,
5,- Component é Component
(a,
a) 87+ beam 5.+ beam
Oven so7 SGx -
8, beam
8,- beamt
5yt beam S+ beam 5,+ beam
Oven sz SGx SG%
% S,- beam
S;- beamt S, beam
(c)

Sequential Stern-Gerlach Experiments (Fig. 2)

In the figure 2(a), we block the S, —component and let the remaining S, +

component be subjected to another SGZ apparatus. This time there is only one
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beam component : S, + component. This result is understandable in the sense that

if the atom spins are up, they are expected to remain so.

In the figure (2b), the S, + beam that enters the second apparatus (SGX ') is now

split into two components, an S, +component and an S, — component.

1.9 Kets, Bras and Operators

The analysis of the stern-Gerlach experiment lead us to consider a complex vector
space. In the following we formulate the basic mathematics of vector spaces as
used in quantum mechanics. We use the bra and ket notation developed by P.A.M.

Dirac.

We consider a complex vector space whose dimensionality is specified according

to the nature of a physical system under consideration.

In the Stern-Gerlach type experiments where the only quantum-mechanical degree
of freedom is the spin of an atom, the dimensionality is just two, corresponding to
the two possible values S, can assume.

Later we consider the case of continuous spectra -for example the position
(coordinate) or momentum of a particle - where the number of alternatives is
infinite, in which case the vector space in question is known as a Hilbert space
after D. Hilbert, who studied vector spaces infinite dimensions.

In quantum mechanics a physical state, for example, a silver atom with a definite

spin orientation is represented by a state vector in a complex vector space.

Following Dirac, we call such a vector a ket and denote it by |a) . The state ket is
postulated to contain complete information about the physical state; everything we

are allowed to ask about the state is contained in the ket.
Two kets can be added :

la) +18) =1y) (1)
The sum |y) is just another ket

If we multiply |a) by a complex number C, the resulting product C|a)is another
ket.

It makes no difference whether the number C stands on the left or on the right of a
ket.
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ie. Cla)=|a)C (2)
In the particular case where C is zero, the resulting ket is said to be a null ket.

One of the physical postulates is that |a) and C|a), with C # 0, represents the
same physical state. In other words only the “direction” in the vector space is of

significance.

1.10 Observable

An observable such as momentum and spin components, can be represented by an

operator such as A, in the vector space in question.

Quite generally, an operator acts on a ket from the left.

Ale)=a|a) (3)

Which is yet another ket. In general, Ala)is not a constant times |a). However
there are particular ket of importance, known as eigenkets of operator A, denoted
by

la’), la"), [a"") .. “4)
With the property
Ala') =a'la")
Ala") = a"la") 5)

! n .
where @', @ ... are just numbers.

Notice that applying A to an eigenket just reproduces the same ket apart from a

multiplicative number.
The set of numbers {a’, a”,a’”’, .... } is called the set of eigenvalues of operator A.

The physical state corresponding to an eigenket is called an eigenstate.

1
In the simplest case of spin > systems, the eigenvalue-eigenket relation is

expressed as
h
Sz ISz; +> = E |Sz; +)
h
Sz ISZ; _> =§ ISZ; _) (6)

Where are |S,; +) cigenkets of S, with eigenvalues + g
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If we consider eigenkets of S, , we can write
h
Sx Iva +) = +E |Sx; +)

R
Sy ISx; —) = 3 |Sx; -) (7)
It is to be noted that the dimensionality of the vector space is determined by the

number of eigenkets of an observable A.

More formally, we are concerned with an N-dimensional vector space spanned by
the N eigenkets of observable A. Any arbitrary ket |a) can be written as

la) = Ya Cq la’) ®)
With a’,a”, ... ....upto a®™ where C,, is a complex coefficient.

Bra Space :

The vector space we have been dealing with is a ket space. We now introduce the
concept of a bra space, a vector space “dual to” the ket space.

We postulate that corresponding to every ket |a) there exists a bra, denoted by
(a|in this dual, or bra, space.
The bra space is spanned by eigenbras {{a’|} which correspond to the eigenkets

{la’)}.

There is a one-to-one correspondence between a ket space and a bra space.

la) & (al
@), 1a"), .. (@'l, (@] ..}
) +18) & (al + (Bl 9)

where DC stands for dual correspondence.

Roughly speaking, we can regard the bra space as some kind of mirror image of

the ket space.

The bra dual to C|a) is postulated to be C*(a|, not C{a| ,which is a very important
point. More generally we have.

Cala) + CplB) & Co'(al + Cp™(Bl (10)

Inner Product:
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We now define the inner product of a bra and a ket. The product is written as a bra

standing on the left and a ket standing on the right, for example.

Blay = «BD.(la) (11)

This product is, in general, a complex number.

We postulate two fundamental properties of inner products :
() [(@|8)=(a|B) (12)
(i) |(a|a)=0 (13)

Where the equation sign holds only is |a) is a null ket.

Two kets |@) and |B) are orthogonal if

(alpy =0 (14)
The orthogonality relation also implies :
(Blay = 0 (15)
Given a ket which is not a null ket, we can form a normalized ket |&) where
S 1
@ = (725 I (16)
With the property {(@|@&) =1 (17)

Quite generally / (a|a) is known as the norm of |a) .

Operators :

We now consider a ket vector which is a linear function of a ket vector and this
will lead to the concept of a linear operator.

Suppose we have a ket |F) which is a function of a ket |A) i.e. to each ket
|F)there corresponds one ket |F)and suppose further that the function is a linear
one, which means that the |F) corresponding to |4) + |A’) is the sum of the
|F)'s corresponding to |A) and to |A'), and the |F) corresponding to C|4) is C
times the|F) corresponding to|A), C being any number.

Under these conditions, we may look upon the passage from |A)to |F) as the

application of a linear operator to |A4). Introducing the symbol @ for the linear

operator & we may write

|F) = alA)
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In which the result of & operating on |A)is written like a product of & with |A)
We make the rule that in such products the Ket-vector must always be put on the
right of the linear operator.
The above conditions of linearity may now be expressed by the equations :
af{ld)+ |40} = ald) + «|A")
a{C|A)} = C alA)
A linear operator is considered to be completely defined when the result of its
application to every ket vector is given.
Thus a linear operator is to be considered zero or “Null’ if the result of its
application to every ket vanishes.

Two operators are said to be considered equal if they produce the same result when

applied to every ket.

The sum of two linear operators is defined to be that linear operator which,
operating on any ket, produces the sum of what the two linear operators separately
would produce. Thus a + £ 1sdefined by

(a+ p)lA) = ald) + BlA) forany|A).
Linear operators can also be multiplied together, the product of two linear
operators being defined as that linear operators, the application of which to any ket
produces the same result as the application of two linear operators successively in
symbols

{ap}lA) = a{B14)}

However this triple product is in general not the same as what we should get if we
operated on |A)first with & and then with 8.

In general a B |A)differs from fa |A) .The commutative axiom of multiplication

does not hold for linear operators. It may happen as a special case that two linear
operators & and nare such that énand n & are equal. In this case we say that

commutes with 77 ,or § and n commute.

An operator & always acts on a bra from the rigid side.
(A .a = (Ala
and the resulting product is another bra.

The ket @ |A)and the bra ( A|a are in general, not dual to each other.

31



We define the symbol a T as

a |4) « { Ala™.
The operator a T is called the Hermitian adjoint or simply the adjoint of .
An operator a is said to be Hermitian if « = a 7.

Outer product :

So far, we have considered the following products :

(Bla), X|a),{ a|X and XY. Are there other products we are allowed to form? Let
us multiply |f), and ( «|, in that order. The resulting product

(18N (al) = 1B) (al

is known as the outer product of |B) and ( a| .

It is easy to see that |8) ( alis an operator as it gives a new ket when applied as a
ket |P) :
{g){al} |P) = 1B){alP)
=CIp)

= a new ket |B)
Let X = |B) (al

Then Xt = |a)(B|

1.11 Hlustrative Examples

Example 2: Consider two operators 0,and 0, and defined by the following

operations :

0,%(x)=¥(x)+ x

~ d

0,¥(x) = e ¥(x)+ 2% (x)
Check for the linearity of 0,and 0,.

Sol. Let us check for the linearity of 61 first.

0,[¥(x) + () ] = ¥1(x) + Yo (x) + x
% 0% (x) + 0, %, (x)

Thus 0, is not a linear operator. On the other hand.

" d
0x[F1(x) + #(x) | = —{#1(0) + #0003 + 2 [#1(x) + ¥2(x)]
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= [% + 2 ‘Pl(x)] + [% + 2 ‘I’Z(x)]
=0, () + 0,% (x)
It is also easy to see that
0,C¥ (x) =C 0,¥(x)

Thus 0, is linear operator.

Example 3: Use the uncertainty relation to estimate the ground state energy and
the radial coordinates of the ground state position of electron in the hydrogen atom.
Sol. If r is the radial coordinate then according to the uncertainty relation

pr ~ h This allows us to express the energy in terms of r :

2 2

_p ¢
2m r

h? e?
~ 2mrz 72

The minimum value of the energy is obtained from

oF h?  e?

—=——4—==0
ar mr3  r?
. h? h e?
Thatis, r = — = ,Wherea = —
me? mca he

and the corresponding value of E is E = —% mcla’.

As another example consider the problem of nuclear forces. These have the range

of the order of one Fermi, that is am. This 1073 ¢m. This implies

h cm
~= ~10"" gm T
p r g sec

The kinetic energy corresponding to this momentum is :

2 —28

P 10 _s
—_ o~ — ~3 x 10 rgs
2M 32x10"24 3 €rg

where M is the nucleon (proton or neutron) mass, which is 1.6 x 1072*gm. Since
the potential that gives rise to the binding must more than compensate for this
we require that
[V =3 x 107° ergs = 20 MeV.

Again this is only a rough order of magnitude, but it does indicate that the potential

energy is to be measured in MeV rather than in eV as in atoms.
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1.12 Self Learning Exercise

Q.1 Test the following operators for linearity :

@ 0¥ (@) =x¥() (b)) 0¥ () =exp(¥ )
© 0¥ @W=¥"(x) (@ 0¥ =x 2
Q.2 A certain system is described by the Hamiltonian operator.

H= — g + x2. Show that A x exp (_sz) is an eigenfunction of H and

determine the eigenvalue ; also find A by normalization.

1.13 Summary

In this unit we have introduced what we might call the “quantum mechanical way
of thinking” at a very early stage. We have introduced the concept of localized
wave packets and their propagation. We have introduced the remarkable “principle
of superposition of quantum mechanical states.” This principle is the “positive”
principle on which we have introduced the development of quantum mechanics.
The concept of stationary states has been elaborated. The concept of an

“observable” and its representation by Hermitian operator has been elaborated.

1.14 Glossary

Eigenfunction: operator A operates on function f , then in a such type of
expression ;{f =a [ , eigen function is f'and eigenvalue is a .
Orthonormal Functions: Thus the set of eigenfunctions v, forms a complete set

of normalized and Orthogonal (Orthonormal) functions if J‘lym v dg=06

n nm
Stationary States :The states in which the energy has definite values are called

“stationary states” of a system.

1.15 Answers to Self Learning Exercise

Ans.1:
(@) Oi[¥ () +¥,(x0)] =x2[¥ (%) +¥,(x)]

= x2¥}1+xij2
— éltfli'l" 61502
and
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0,C ¥ (x) = C 0, ¥(x)
Thus 0,is linear
(b) 05['¥ 1 () + ¥ ()] = exp [¥1(x) + ¥, (x)]
# exp [¥1(x) + exp ¥,(x)]
Thus 0, is not a linear operator.
(©) 03[P () + ¥, ()] =[¥,(x) + ¥,(x)]"
= Y@+ ¥
= 03 (x) + 0;%; (x)
However 05{C (¥, (x) + ¥, (x))}
={c (7, () + 7,()}
= C"¥i(x) + C" ¥a(x)
= C"{"1(x) + ¥, (0)}
= C"0:{¥ (x) + ¥, (x)}
Thus 05 is not a linear operator. 05 is antilinear operator.
Note : An antilinear operator is defined as.
o{w,¥,} = 0¥, + 0¥,
and 0 CW¥{x}=C'0¥ (x)
d) 0, ¥ (x) = x? d:—x(x). To check the linearity of 0, we proceed as

- d
0,(¥; +¥,) = x? dx (Y, +W¥,)
d¥, d¥,
— .2 2
X dx * dx
= 641111 + 6411"2

and 0,(CP ()= x> C¥ (x)

I

C xZi ¥ (x)
dx

= C 0, ¥ (x)Thus 0, is linear

1.16 Exercise

Q.1 The unnormalizd ground state wave function of a particle is given as
h?a?
— What is the potential in

—a*x®y .. .
Yo(x) = exp (T) with eigenvalue E =
which the particle moves?
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Q.2 ¥,and ¥, are two linearly independent and normalized (but not orthogonal)
eigenfunctions of H belonging to the same eigenvalue (i.c. they are
degenerate).

(a) Show that C; ¥, + C, ¥, is also an eigenfunction of H belonging to the same

eigenvalue as ¥ or ¥,.

(b) Construct two linear combinations of ¥, and ¥, that are orthogonal to each
other.

Q.3 In Yukawa meson theory of nuclear forces, Yukawa proposed that the nuclear

forces arises through the emission of a new quantum, the pi-meson (also called

pion), by one of the nucleons, and its absorption by the other.

If the mass of the quantum is denoted by u , then by uncertainty principle

calculate the order of the pc?

1.17 Answers to Exercise

Ans.3 : If the mass of the quantum is denoted by u , then its emission introduces an

energy by u and its emission introduces an energy imbalance AE ~ uc?, which can

. h h
only take place for a time At E " e
The range corresponding to a particle travelling for this time is of the order of

h
cAt ~ —.
uc

If we take for the range 1, = 1.4 X 1073 ¢m, then we find that :

, hc 10727 x 3 x 10%°

Ko T 7 14 x 1013

=130 MeV

Ergs

when the pion was finally discovered, it was found that this estimate was
remarkably accurate, since for the pion p ¢ — 140 MeV.

References and Suggested Readings

1. P.A.M. Dirac ,Principle of Quantum Mechanics, Fourth edition, Oxford
University Press,1958

2. J.J. Sakurai, Modern Quantum Mechanics (2nd Edition), Addison-
Wesley;2010

36



UNIT-2
Base Kets, Matrix Representations and

Expectation Values

Structure of the Unit

2.0 Objectives
2.1 Introduction
2.2 Eigenkets as Base Kets

2.3 Matrix Representation

2.4 Spin %systems e

2.5 Measurements, observables and the uncertainty relations
2.6 Illustrative Examples

2.7 Self Learning Exercise

2.8 Glossary

2.9 Summary

2.10 Answers to Self Learning Exercise

2.11 Exercise

2.12 Answers to Exercise

References and Suggested Readings

2.0 Objectives

In this unit we will develop a powerful, abstract way of representing and working
with the notion of a ‘state’ of a quantum mechanical system. This abstract
description was invented by Paul Dirac. Dirac’s motivation was to find a
formalism of quantum mechanics that integrated Schrodinger’s wave mechanics

and Heisenberg’s matrix mechanics.

In this chapter we will learn to replace the abstract quantities namely bra vectors,
ket vectors, and linear operators by sets of numbers with analogous mathematical

properties and to work in terms of these sets of numbers. The way in which the
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abstract quantities are to be replaced by numbers is not unique ,there being many
possible ways corresponding to the many systems of coordinates one can have in
geometry. Each of these ways is called a ‘representation’ and the set of numbers
that replace an abstract quantity is called the ‘representative’ of that abstract
quantity in the representation .In this unit we shall study the following:

® FEigenkets as base kets

® Completeness relation or closure

® Representative of a ket vector, a bra vector

® Matrix representation of an operator

® Matrix multiplication rule

® Measurements, observables and the uncertainty relations

® Examples

2.1 Introduction

The matrix representation of physical quantities was introduced by Heisenberg in
1925, before Schrodinger’s discovery of the wave equation. In the following we
shall show that an abstract ket vector will be represented by a set of numbers in a
representation in which the basic vectors of representation are eigenvectors of a
complete set of commuting observables. These set of numbers form a column
vector of a matrix. Similarly a bra vector will be represented by a set of numbers
forming a row vector. An operator will be represented by a square matrix. Matrix
representation of state vectors and observables is very convenient while solving

quantum problems.

2.2 Eigenkets as Base Kets

In the following we shall represent ket-vector, bra-vector and operators by the
matrix. For this we need basic vectors of representation. As we know that

eigenkets of an observable form a complete set, they can be used as basic kets of

representation. Any arbitrary ket |C( ) can be expanded in terms of the eigenkets of

an observable :

la) = Zar Carla’) (1)
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Multiplying ((x" on the left and using the orthonormality property of the eigenkets

of A we get

(a”l(x) — an'(a!flaf)

(’la)y = Ca
In a similar way we can write
(a'|la) = Cg, (2)

We can now write the equation (1) as

@) = ) (@lala)

= > la')a® ®

Because the ket |a)is arbitrary, we must have

2 la) =1 (4)

Where 1 on the right hand side of (4) is to be understood as the identity operator.

Eq. (4) is known as the completeness relation or closure.

If an observable & is having continuous eigenvalue spectrum denoted by &' (say)

the unit operator in this case 1s
[1gragcen =1 )
ie. Y la)al=1 J1§hag' (&'l

The relationship (4) or (5) is very important. Given a chain of kets ,operators, or

—_—
is replaced by

bras multiplied in legal orders, we can insert, in any place at our convenience, the

identity operator written in form (4).

As an illustration (@ |c) can be written as follows :
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= Ka'la)f? (6)

This shows that if |@) is normalized, then the expansion coefficients must satisfy

Dlcal? = ) @l =1 @

Let us now look at |a’}{ a’| . This is an outer product, so it is an operator. Let it

operate on |a) :

(la’ a'Dla) =la’){(a'|la) = Cqla’) (8)
We see that |a'){ a'| selects that portion of the ket |a) parallel to |a’) so

|a’){( a'| is known as projection-operator along the base ket |a@') and is denoted

by
N =laxal ©)

The completeness relation (4) can now be written as :
Yalg=1 (10)
What are base kets?

The eigenkets of an ‘observable’ form a ‘Complete set’. Any ket, whatsoever it
may be, can always be expanded in terms of the eigenkets of the observable. These

eigenkets of an observable are called ‘base kets’.

2.3 Matrix Representation

We can represent an operator, say X, by a square matrix. We write the operator X

as .
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X =) "X a"IX| ) la') @

arr al

- Z Zm”)( a"|X|a') @] (11)

arr ar
There are all together N? numbers of the form { @’’|X|a’), where N is the
dimensionality of the ket space. We may arrange them into an N X N square

matrix such that the column and row indices appear as follows :

(a” X a')
row column (12)
Explicitly we may write the matrix as :
( a(1)|X|a(1)) (a® |X|a(2))
X = (a(2)|X|a(1)) (a(2)|X|a(2)) (13)
Where the symbol = stands for “is represented by”
Using the following assumption of quantum mechanics.
(A|B) = (BlA) (14)
We can write
(@'|xla’y = (a'|xt|a") (15)
If an operator ,say B ,is Hermitian then
Bt =B (16)
Then
(a”|Bla’) =(a’|Bla")" (17)
Matrix Multiplication of Operator :
Consider the matrix representation of the operator relation.
Z=XY.
It can be written as :
(a’|Zla") = (a”|XY|a')
= Za,,,(a”|X|a’”) (a""'|Y]a’) (18)
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Eq. (18) is just the matrix multiplication rule.
We now consider the ket relation :
ly) = Xl|a) (19)

It can be represented as

(@ly) = (a'|X|a)

= ) (@IXla"}(a"|a)

ar’
But this can be seen as an application of the rule for multiplying a square matrix

with a column matrix representing once the expansion coefficients of

|a) and |y) arrange themselves to form column matrices as follows :

[(a"[7)]
7)=|{a”r)

)= {a”ar) |

(20)

A bra is represented by a row matrix:
(y| = [(}/|a(1)) ,(y|a(2)), ey e ]
= [(@®ly)* @@ly)*, ey ey ] (1)

The inner product (f|a) is written as

(Bla) = > (Bla’) (ala)

(a®]a)
= [(@®I8)" (a@B)",...,.....] |(@Zl) (22)

Finally the outer product |){a| written as

(@®paDla)*  (aD|B) (a@P|a)* ..
1BXal = [(a@|g)aD]a)*  (a@|B) (a@]a)* ... (23)
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Also the matrix representation of an observable A becomes particularly simple if

eigenkets of A themselves are used as the base kets

A= la")a"lAla')

arr al

But the square matrix
(ah'lAlaf) — af(afflaf)

= a'8,1, (i.e. diagonal matrix)

ZA= Z N |
A= Z a’ /\m (24)

2.4 Spin Half Systems

. . . . . .1
It is here instructive to consider the special case of spin ~ systems.
The base kets used are |S,; £) which we denote for brevity as | £).

The simplest operator in the ket space spanned by |+) is the identity operator,
which can be written as

1= la)al

= [N+ =M (25)

According to (24) we can write that any observable A can be written as

4= [\
a’
al

Hence we can write S, as :

5, =5 0 + (=3 ) I
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h
9z =g X+ = =X (26)
Hence it follows that
S+ =2 [0+ = [=X=1H)1=1 |+) (27)
(Since (+|+) =1and (—|+) =0)

(+[+) =1, (+]-)=0
(Because of the orthonormality properties of |+)

.[+4)=21+)
Similarly

h

$.-)=-21) 28
It is also instructive to look at two other operators :

S =hl+){-| ., S_=n|-)}{+ (29)

Which are both seen to be non-Hermitian

The operator S, acting on the spin-down ket |—), turns |—) into the spin-up ket
|4+) multiplied by A:
Sel=) =hl+H) (== =hl+).
On the other hand, the spin-up ket |+), when acted upon by S, becomes a null
ket.
SelH)y = a[+)=|+) =0
So the physical interpretation of S, is that it raises the spin component by one unit

of A. If the spin component cannot be raised any further, we automatically get a

null state.

Likewise, S_ can be interpreted as an operator that lowers the spin component by

one unit of A:
S_|=y=hl=) (+|+) =h[-).

Later we will show that Si can be written as
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S =S +iS .S =S —iS,

We represent the ket |4) of S, in the matrix form as

=(515) =)

and the S, is represented by a 2 X 2 matrix.

S :(<+|sz|+> (+15,1-) )
‘ (=1Sz1+) (=1Sz1-)
1
~ 5 h{+[+) 0
- 1
0 — 5 h{=|-)
S::E[l 0]
210 -1 (30)
Similarly
1
szh[o ] ,szh((’ 0) (31)
* 0 0 I 0
2.5 Measurements, Observables and the Uncertainty
Relations

In the words of the great master P.A.M. Dirac “A measurement always causes the
quantum system to jump into an eigenstate of the dynamical variable that is being

measured”.
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We interpret Dirac’s words as follows : Before a measurement of observable A is

made, the system is assumed to be represented by some linear combination.

|a) = Zal Carla’) = Zar a'|a’)( (Il (32)
When the measurement is performed, the system is “thrown into” one of the
eigenstates, say |a’) of observable A. In other words,

la) ————  |a’) (33)
a measurement

For example, a silver atom with an arbitrary spin orientation will change into either
|S,; +) or |S,; —) when subjected to a Stern Gerlach(SG) apparatus of type
SGZ.

Thus a measurement usually changes the state. The only exception is when the

state is already in one of the eigenstates of the observable being measured in which

case

la') ——  |a’) (34)
a measurement

with certainty.
When the measurement causes |@) to change into |a'),it is said that A is

measured to be a'.

It is in this sense that the result of a measurement yields one of the eigenvalues of

the observable being measured.

Given (32), which is the state ket of a physical system before the measurement, we

do not know in advance into which of the various the |a’) 's system will be thrown

as the result of the measurement. We do postulate, however, that the probability for

jumping into some particular |a’)is given by :
Probability for |a’)is |{a’|a)|? (35)
provided that |a) is normalized.

The probabilistic interpretation of (35) for the squared inner product |{a’|a )|2 18
one of the fundamental postulates of quantum mechanics, so it cannot be proven.

We define the expectation value of A taken with respect to state|a) as

< A>= (a|d|a)
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_ ZZ(aIa”)(a"IAIa')(a'la)

ar art

= ) dl@la)?

ar

= measured value @’ , probability for obtaining a’

2.6 Illustrative Examples

Examplel: If the set of eigenkets {|a ')} forms a complete orthonormal set then
show that Z|a'><a'| =1.

Sol. We expand and arbitrary ket ka) in terms of eigenkets {|a ’>} , which form a

complete set :
o) = ZC
Multiplying (1) by (a'| on both sides of (1) :
(@) = 2 el
{d'|a)=C, 2)
((a

From (1), we now get
)= ¥ Ja)a'|a)

or Z|a ') (a‘| =[| (Identity operator)

a') (1)

a’) =l and all other terms in the expansion are zero)

Example 2: If C and D are two arbitrary Hermitian operators, workout which, if
any of the following combinations  (i)CD, (ii)D?, (iii)CD —
DC, (iv) CDC and (v)CD + DC

(a) are Hemitian

(b)  have real nonnegative expectation value.

(c) have pure imaginary expectation value.
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Sol. (i) (CD)T = DTCT = DC.Hence CD is not hermitian.

Gi) (D®)T = (bD)t = DDt = DD = D2

Hence D? is hermitian, have real nonnegative expectation value.

(iii)(CD — DC)' = (D)t — (DC)T = DC — CD = —(CD — DC). is
Hence (CD — DC )antihermitian, have pure imaginiary expectation value.

(iv) (€DC)T = CTDTCT = CDC Hence (CDC) is Hermitian have real
nonnegative expectation value.

v) (cD +Dp0O)T = (cD)T + (DC)t =DTct +cTDT=DC +CD =
CD + DC .Hence CD + DC is hermitian, have real nonnegative expectation

value.

Example 3: An electron is in a state described by the spinor given in the S 4 basis
as
A
X = (‘f) . What is the probability that the electron has spin up?
V5
Sol.

% =m0
2 | +5\0/ y5\1
= Ci]+) +Gl-)
-« Probability that the electron has spin up is

1
Ci |2 ==
|C4] c

Example 4: A particle in an impenetrable potential box with walls at x = 0 and
X = a has the following wave function at some initial time :
1 | nx 3 | 3mx
¢ (x) = —sin— + —sin— (1D

V5a a +5a @

What are the possible results of measurement of energy on the system and with

what probability would they occur? What is the form of the wave function after

48



such a measurement? Suppose immediately after a measurement, energy is
remeasured. What are now the relative probabilities of the possible outcomes?

Sol. An impenetrable potential box is shown below :
Q0 0

A A

a
X—»
Energy eigenvalues of a particle of mass m is given by
n?m?h?

ma?

E, =

withn=1,2,3......

and energy eigenfunction are

¥ (x) = Jgsin?

The given wave function (I) shows that the particle is in the superposed state of

being in the staten = 1 andn = 3.The result of measurement on energy
18
1 (m*h?\ 9 (9n*h? 1 m?h? 82
5a (Zmaz) +5 (Zmaz) ~ 5aq 2ma? 1+8= 10ma? T

After the measurement the system will be thrown into one of the eigenstates
correspondington = lorn = 3.
9

1
The probability of finding the systeminn = 1is o andinn = 3is =2

If the energy is remeasured (immediately after a measurement) then the result of
measurement will remain unchanged as the system is now in the one of the

eigenstate.
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2.7 Self Learning Exercise

Q.1 Express ( Jii |a ) in matrix form

Q.2 Show that the expectation value of an anti-Hermitian operator (C = —C")is
purely imaginary.

Q.3 Show that the operator |a'><a'| selects that portion of ket |a>which is
parallel to |a').
Note : (The operator |a '> (a'| = A is called the projection operator)

Q.4 Express the operator relationship Z = XY in the matrix form. Obtain the

matrix multiplication rule.

2.8 Glossary

B J.l//*/nlde
fwyar

Hermitian Operator: Self adjoint operators are called “Hermitian”

Expectation Value: expectation value of quantity A is <A>

Base kets: Basekets are eigenkets of an observable.

Observable: A real dynamical variable whose eigenstates form a complete set is an

observable. Thus any quantity that can be measured is an observable.

2.9 Summary

We have seen that basic vectors of representation are eigenkets of an ‘observable’
Any arbitrary ket can always be expanded in terms of the eigenkets of the
observable. These eigenkets form a complete set of vectors of representation .Any
operator in its own representation, i.e. in which the eigenvectors of the operator
are basic vectors of representation, will be a diagonal matrix. Product of two

operators will follow the matrix multiplication rule. We have illustrated these rules

by the spin % system.

2.10 Answers to Self Learning Exercise

Ans.1: (Bla) =D (Bla'}a'|a)

a
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Ans.2:

Ans.3:

Ans.4:

~((a®]8Y (a?|BY ...

(a|Cla) =]

=~a|Cla)

i.e. complex conjugate of (a|C|a)is —ve. We conclude that {a|C|a) is

purely imaginary.

Applying the operator |a '> (a ‘| on ket |a>
We gt |a') (') = a|a)| ')

=C, a')
1.e. we get the ket |a ') multiplied by some constant.
Z=XY (where Z, X, Y are some operators)

Therefore, (a "|Z|a'> = <a "|XY|a'>

Inserting the unit operator Z
get "
(@"|zla) = 3 ') 1)

=2 (a"|X|a"Ha"]Y]a’)

This is matrix multiplication rule.

(D

a“‘> <a "'| in between in the relation (1), we

2.11 Exercise

Q.1

Q.2 The matrix representation of two operators A and B are given by

Express |ﬁ )(a | in matrix form
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= )= o)

Find the matrix representation of the product C = AB.

Q.3 Show that the expectation value of a Hermitian operator is purely real.
Q.4 Consider the base kets |S_,;i> or (|i>) of spin %systems.

(a) Write identity operator :

(b) Express S _in terms of projection operator.
(c) Express |—|-) in the matrix form :

(d) Write S operator in matrix form

(e) Write S, and S operator in matrix form
Q.5 Suppose A and B are compatible observables and the eigenkets of A are

nondegenerate. Show that the matrix elements (a "| B ‘ a ') are all diagonal.
Q.6  The complete set expansion of an initial wave function ¥ (x, 0) of a system
in terms of energy eigenfunction ‘¥, of the system has three terms; that is,

n = 1,2 and 3. The measurement of energy on the system represented by

¥ (x,0) gives the values E; and E, with probability of i and E3 with
1
probability > Write down the most general expansion of ¥ (x,0) and

¥ (x,t) consistent with the data.

Q.7 Prove the completeness relation or closure.

2.12 Answers to Exercise

_<a“)|ﬁ><a|a(”> <a(”|ﬁ><a|a(2)>

Ans.1: ‘ﬁ)(a‘z

(a‘”’ ’ﬁ)(a|a“’>

Ans.2:
ety = (il4 Y Ty kBl
k
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— Z( i|Alk) k|B|j) = ZAL'R By
- K

-5 3
| dla) ={a]]a)

=(a||e) (- A" = Aas A is Hermitian)

+

Ans.3: A

T

So (a|A|et)is real.

Ansd (a) 1={[+)(+|} + {|-)(-]}

o S={Tke {2

(c)

0
and similarly spin down ket |—>will be represented as|—> = [1 J

a1 0
@ S—*_E(o —J

(e) It is instructive to look at two other operators :

.=l s =al-)

Thus,

01 00
S, =h DS =h
o o) 5= o

Ans.5: (a"|[A,B]|a'> ( "|(AB—BA)|a’):O
] (a0j
a"(a"|Bla")—(a"|B|a")a’

(a"- a')((a"|B|a )) =
We get (a "|B|a'> =0unless a"=a'.
That is B is diagonal.
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Ans.6 : The initial wave function is ¥ (x, 0) given as

1 1 1 s
lP(x,())=§ 5"1+§e7’%+ﬁe A

Since the phases are not determined by the probability data.

Asto ¥ (x,t) here is the advantage of expanding in terms of energy eigenstates.

These states are stationary with time dependence exXp (—i %) .
Therefore,
¥ (x, t) ! ( ‘Elt) b2 el ( 'Ezt)l{f
x,t) =—exp|—l— —e’ exp|—Il—
2P\ ) T2 PUTM ) 72

1 s CEst
+ﬁe exp(—zT) ¥

Ans.7: Consider a normalized ket |a>

We express the (o |a ) as follows :
1= ()= T ')

- {alaaa)

- 5o

or S =1

The above relation is a “Closure™ property.
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UNIT-3
Commutability and Compatibility,
Uncertainty Relations

Structure of the Unit

3.0 Objectives

3.1 Introduction

1
3.2 Spin 2 Systems, once again

3.3 Observables, Commutability and Compatibility

3.4 Uncertainty Relations

3.5 Illustrative Examples

3.6 Self Learning Exercise

3.7 Summary

3.8 Glossary

3.9 Answers to Self Learning Exercise

3.10 Exercise

3.11 Answers to Exercise

References and Suggested Readings

3.0 Objectives

In this unit our objectives are to discuss

1.
2.

Commutability of two observables
To find the condition for the existence of a simultaneous eigenstate of two
commuting observables

What are compatible and incompatible observables?

. Commutability and compatibility

Uncertainty relations
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3.1 Introduction

In this chapter we shall study that a state may be simultaneously eigenstate of two
observables. The chances for the existence of a simultaneous eigenstate are most
favorable if the two observables commute. We shall study the mathematical
statement of commutability and compatibility of simultaneously measuring them.

From this we shall derive uncertainty relations.

1
3.2 Spin 5 Systems, once again

1
We once again consider spin > systems. This time we show that the results of
sequential Stern-Gerlach experiments, when combined with the postulates of
quantum mechanics so far, are sufficient to determine not only the S X,y eigenkets,
|Sx; i)and'Sy; i) but also the operators Sx and Sy themselves. First, we
recall that when the Sx + beam is subjected to an apparatus of type SGZ, the

beam splits into two components with equal intensities.

S+ beam Sz+ beam

Oven SGR SGZ

Sz- beam
SX- beam

This means that the probability for Sx + state to be thrown intolSZ; i) ,simply

denoted by|t) is % each ; hence,
1
We can therefore construct the S, + ket as follows :
L4y = = L pibi|_

With 51 real. The coefficient of |+) can be chosen to be real and positive by

convention.
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The S,, — ket must be orthogonal to the ket S, + because the S, +

alternative and S x — alternative are mutually exclusive. The orthogonality
requirement leads to

1S5 =) = 1) — 5 1) 3

where we have, again, chosen the coefficient of | +)t0 be real and positive by

convention.

We can now construct the operator S x as follows :

Using the formula :

A= Zla’)(a'lA = Za’la')(a’l

af
We can write Sx in place of operator A and eigenkets |Sx; +), |Sx; —) in
place of Ia’) we get

h h
Se =315 +)S ++ (=3 ) IS5 —HSw

2
h
= E{st: +)(Sx: +| - |Sx: _)(Sx; _l} (4)
Substituting (2) and (3) in place of |S X +) and |S X’ —)respectively, we get
h i .
Sx =2 [e7 (I X+ + e (|- +D)] (5)

Notice that the S, we have constructed is Hermitian.

Similarly we can write |Sy; +)as:

as |Sy; ) = 5 14+) £ et2]-) (6)
and Sy = 2 [e~B2(| +)(+[) + 2(|-)( +1) (7)

Using the fact from sequential stern-Gerlach experiment with SG X followed by

SG V' we can write :

[(Sy; £1S; )| = |[(Sys £1Se; =) = (8)

Nl
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Inserting form (2) for|S,; +) and (6) for |Sy; + Ywe get

= L oomia) (L Loty = L
|G+ + e %) (I 0+ e o) =
or |54 04042 eiGi-da| = L
2 2 V2
1 i (51—8 _ 1
OT'E |1+ el( 1 2)l —E (9
which is satisfied only if :
8, — 6, == or — (10)

2 2

We thus see that the matrix elements of Sx and Sy cannot all be real. If the
Sx matrix elements are real, the Sy matrix elements must be purely imaginary
(and vice-versa).

It is convenient to take the Sx matrix elements to be real (this can always be done
by adjusting arbitrary phase factors in the definition of I +) and |—) and positive

s
and set 07 = 0. Ttcan be shown that §, = > Therefore

156 +) = HlH £ 5 1-) (1)
S, J_r)=\/i§|+)i\/iE |—) (11.b)
and Sy == [(| ) +1) + (1=} +D] (122)
Sy = S[=i(| +X=D) + (|-} +D)] (12)

The matrix representation of S, is :

S = ((+|Sx| +) (+|Sx| _) )
* (“lel +) (—lsxl _)

0 1
S, =
0o
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Similarly

S;o i
i o0

It is easy to verify the commutation relations between the operators

Sx p Sy ,SZ directly.

Sz =210+ +) = (=}~D]
Se = 21 +X=D + (I=) +D]

h
Sy =5 [=i(1 +)=D) + i(|=X +D)]

Then the commutator :

5..5,]=5.8,-5,8, ()

Above relation can be calculated as follows

We first evaluate the I term of RHS
h
SeSy = LA+=D+ (=) +D]
+ (=X +D]
LI +X=D + A=) DI +)X=D + il =)+

[=i(l +X=D

N v

n
2
7 LU DN =D = EA=XH XD

+i(| D=1=FD (=) F=)X+D]

hZ
=7 [l H).0.=D) = i(|=). 1.=D + il +).- 1.(+D
+i(1=).0.(+D]
2

h
= 20— i(I=)(=D + il ) +D + 0]
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Similarly

R
Sy Se=~i35;

Hence S, §,— S, S, =1ihS;
5.8, |=ins, )

It can be readily shown that in general the commutation relations involving

Si Sy , S, can be summarized in compact form as :
[SL,S]]: [ hEijk Sk (3)
wherei,j=1,2,30rx,y,2
where €; = +1,if i,j,k are in cyclic order and €; ;)=
-1, f LJ, k can be brought in cyclic order by odd permutation of indices. If

any two of the indices are same then €; j = 0.

The anticommutation relations
_ 1,2
{Si,8} =5 1?65 (4)
where the symbol {4, B} = AB + BA.

We can also define the operator S. S or S 2 for short, as follows :

2 _ @2 2 2
§°=8,+8 +8§; (5)
Because of (4) this operator turns out to be just a constant multiple of the identity
operators :
3.,
S*==nh (6)
4

3
We obviously have [S ) S":I =0
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3.3 Observables,Commutability and Compatibility

A state may be simultaneously eigenstate of two observables. If the state

corresponds to the ket vector |A) and the observables are & and 1) we should then
have the equations :

§lay = ¢'lA")
nld) = n'|A)
Where & and 77" are the eigen values of & and 1] respectively. We can now deduce.
Enld)y = &n'lAy =1n'¢la) =n¢lA)
and pé|A) = né'lA) =¢&'nlA) =¢&'n'|A)
or(§n — n§)lA) =0 (1

This suggests that the chances for the existence of a simultaneous eigenstate are

most favorable if 17 — T]f = 0 and the two observables commute.

If they do not commute a simultaneous eigenstate is not impossible, but is rather an
exception. On the other hand, if they do commute there exist so many simultaneous

eigenstates that they form a complete set.

Observables & and 1 are defined to be compatible when the corresponding
operators commute.

[&n]=0 (2)

and incompatible when

[&n]=0

For example S 2and S , are compatible observables, while S, and S y are

incompatible observables.

As an example consider the case of compatible observables A and B. As usual, we
assume that the ket space is spanned by the eigenkets of A. We may also regard the
same ket space as being spanned by the eigenkets of B. We now ask, How are the

A eigenkets related to the B eigenkets when A and B are compatible observables?
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Before answering this question we must touch upon a very important point we

have bypassed earlier - the concept of degeneracy.

Suppose there are two (or more) linearly independent eigenkets of A having the
same eigenvalue ; then the eigenvalues of the two eigenkets are said to be
degenerate.

In such a case the notation Ia’) that labels the eigenket by eigenvalue its does not
give a complete description ; furthermore, we may recall that our earlier theorem
on the orthogonality of different eigenkets was proved under the assumption of no

degeneracy.

Even worse, the whole concept that the ket space is spanned by |a’) appears to
run into difficulty when the dimensionality of the ket space is larger than the

number of distinct eigenvalues of A.

Fortunately, in practical applications in quantum mechanics, it is usually the case
that in such a situation the eigenvalues of some other commuting observable, say

B, can be used to label the degenerate eigenkets.

Now we are ready to state an important theorem :
Theorem : Suppose that A and B are compatible observables and the

eigenvalues of A are nondegenerate. Then the matrix ei’emem:s'(a”r |B |a’) are

all diagonal.
Proof : First recall here that the matrix elements of A are already diagonal if
{l a') } are used as the base kets:

(a'|Ala") = a'6qrqr 3)
Using the definition of compatible observables we note that

[A,B] = AB — BA = 0.
Hence

< a"|[A,B]la" >=<a""|AB — BAla' >=0

or <a"|ABla' > — < a''|BAla’ >=10

or a”" <a"|Bla’"> —<a”|Bla’>a =0

or (<a"”|Bla’">) (a"—a')=0

!

Hence < a''|B|a’ > must vanishunlessa’”’ = a'.
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Therefore the matrix elements < @'’ |B |a’ > are all diagonal. We can write the
matrix elements of B as :

<a'|Bla" >= 8., <a"|Bla" > (4)

So both A and B can be represented by diagonal matrices with the same set of base

kets. We can write B as :

B = Zlan S< ar.rlBl |anr S< aml

I rn

a a

= Z Zla” >< a’'|Bla’"" >< a'’| (B isdiagonal)

II rr

a
oo B =Y na" ><a’|Bla" >< a"| (5)

Suppose that this operator acts on an eigenket of A :

a

Bla >= Zla” >< d"’|Bla" >< a"|a’ >

I

a
or Bld' >=<ad'|Bld > |a' > (6)
But this is nothing other than the eigenvalue equation for the operator B with
eigenvalue :
b' =< d'|Bla" > (7)

The ket Ia’ > is therefore a simultancous cigenket of A and B. We represent the
simultaneous eigenket of A and B by Ia’, b’).

A simultaneous eigenket of A and B, denoted by |a’, b') has the property.
Ald',b"y =a'la’,b")
Bla', by =b'|d,b")

When there is no degeneracy, this notation is somewhat superfluous because it is

clear from (7) that if we specify ! , we necessarily know the b’ that appears in
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Ia',b'). The notation |a', b’) is much more powerful when there are

degeneracies.

For incompatible observables, for example A and B the commutator
AB —BA =[A,B] #0.

S%and S . are compatible observables, while S, and Sy are incompatible :

[Sz,Sz] =0 |(Compatible observables)

and [SX,S_J #0 | (incompatible observables)

3.4 Uncertainty Relations

Let us derive the rules for commutation between momentum and coordinate
operator. Since the result of successively differentiating with respect to one of the

variables X, ¥, Z and multiplying by another of them does not depend on the order

of these operations, we have
PxY —YPx =0, Py 2= 2Py =0 M
and similarly for }/J; and D,,.

To derive the commutation rule for p;c and X, we write :
) ¢
(Dyx—xPx) 0= —ih— (x@d+ihx —= —ih
We see that the result of the action of the operator P, X — X Py reduces to
multiplication by — ih ; the same is true, of course ,of the commutation of

}5; with YV and P;with z. Thus we have :

DX —Xpy = —i h , (2a)
Dyy —yby = —ih, (2b)
D,Z—272p, = —lL h (2¢)

All the relations (1) and (2) can be written jointly in the form :

p.X, —X,p, =—ihd, (i,k = x,y,z)
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x.p, = p.x, =ihd, (i,k=x,y,z)

ﬁxk—-xkﬁz _ih5ik (iszxty:Z) (3)
Before going on to examine the physical significance of these relations and their

consequences, we shall set down two formulae which will be useful later.
Let f () be some function of the coordinates.
Thenp f(F) = f(P)p = —i A Vf
Bf—fP)é= —ih[V(fé)— [V
= —ih ¢fV

As @ is arbitrary, we find
pf—fp=—-invf (4)

A similar relation holds for the commutation of 7 with a function of the
momentum operator :

f@)T-Tf @) = ~ih 2% )
It can be derived in the same way as (4) :
i b et (.. O
POV 6 @) =f @) (ih 5=) 6 )
=inf @) ;= ¢ @) @
IR o 7
Tf(p)¢(p)=thﬁ(f(p)¢(p))
=ih Ly @ +inf @) E  ®
Therefore from (A) and (B) one gets

f)r=rvf () =—-i h:—; (which is equation (5))

The relations (1) and (2) show that the coordinate of a particle along one of the

axes can have a definite value at the same time as the components of the
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momentum along the other two axes ; the coordinate and momentum component
along the same axis, however cannot exist simultancously.

In particular, the particle cannot be at a definite point in space and at the same time
have a definite momentum F
Let us suppose that the particle is in some finite region of space, whose dimensions

along the three axes are (of the order of magnitude of) Ax, Ay, Az.

Also, let the mean value of the momentum of the particle be p_o’ Mathematically,

this means that the wave function has the form, ¥ = u(?’)e_(‘/ M)po-T

where U (? ) is a function which differs considerably from zero only in the region

of space concerned.

We expand the function W' in terms of eigen functions of the momentum operator

(i.e. as a Fourier integral).
d’p Lrr  d°p
'1U ) = n EU ) ——— = n R b
@) = [ a@)t, O s = [ a @ P 50
(Where d3p = dp, dpy dp,). The expansion coefficients @ (F) are,

according to general formula,
4 (@) = f v () ¥ () dv

i —_— —
= fu ) e(ﬁ) ®o=P)T gy
If this integral is to differ considerably from zero, the periods of the oscillatory

factor € (%) ®@o-p)T

Ax, Ay, Az of the region in which the function U (F)) is different from zero.

must not be small in comparison with the dimensions

This means that (F) will be considerably different from zero only for values of

—

P such that

1
(E) (Pox — Px)Ax < 1, etc.
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Since |a (F)lz determines the probability of the various values of the
momentum, the ranges of values of Py, Py , P, in which @ (F) differs from

zero are just those in which the components of the momentum of the particle may

be found, in the state considered. Denoting these ranges by Ap,, Apy ,Ap, we

thus have
Ap, Ax ~ h,
Ap, Ay ~ h,
Ap, Az ~ h, (6)

These relations, known as the uncertainty relations, were obtained by
Heisenberg in 1927,

i.e. see that, the greater the accuracy with which the coordinate of particle is known

(i.c. the less AX) the greater the uncertainty Apx in the component of the

momentum along the same axis, and vice-versa.

In particular, if the particle is at some completely definite point in space
(Ax = Ay = Az = 0), then Apx = Apy = Ap, = ©0. This means
that all values of the momentum are equally probable.

Conversely, if the particle has a completely definite momentum Fthen all

positions of it in space are equally probable (This is seen directly from the wave

I —-—
. DT . o
function 'PF = enP , whose squared modules is quite independent of the

coordinates).

If the uncertainties of the coordinates and momenta are specified by the standard

deviations.

5= =D, pc = [[x =707

We can specify exactly the least possible value of their product.

Let us consider the one dimensional case of a wave packet with wave function
vd (x ) depending on only one coordinate, and assume for simplicity that the mean
values of X and P, in this state are zero.

We consider the obvious inequality

67



2
dx =20

[ Jexwss
_max dx

Where & is an arbitrary real constant.

On calculating this integral, noticing that

[x2|W|2dx = (6x)?
Note: 60X = X — X
v (6x)% = x? - (x)?—-2x.x
(6x)2 = x% — (x)?
= x2 (+ (¥)?*=0)

fle'fflz dx

And

1o

5u)d —fx dx——fl'PIzdx=—1

dy* dlyd _f‘P* d

1
Rz f v p% Wdx = - (8p,)°
Using these values, we obtain
1
a’(6x)? —a + ﬁ(é‘px)2 >0

If this quadratic (in &) trinomial 1s positive for all &, its discriminant must be

negative which gives the inequality.

Sxdp,=—h (7)

A
2

1
The least possible value of the product is > h and occurs for wave packets with

wave functions of the form
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1
V=—"
(2m)* V6x

where P and §X are constants.

i x?
€Xp (E PoX =7 (5x)2) ®

The probabilities of the various values of the coordinates in such a state are :

2 1 x?
J @) 6x 2 (6x)*
and thus have a Gaussian distribution about the origin (the mean value X = 0)

with standard deviation OX.

The wave function in the momentum representation is

w »
i
a(p,) = f VY (x)e ”P** dx
—co
Calculation of the integral gives

(63()2 (px - pO)Z
hZ

a (p,) = cosntant X exp [—

The distribution of probabilitics of values of the momentum, |a (px)|2, is also
h

Gaussian about the mean value 595 = Py with standard deviation 6P, = 2ox

1
so that the product 0P, . OX is indeedE h.

Finally we shall derive another useful relation. Let f and g be two physical
quantities whose operators obey the commutation rule

fg-3f=-inc )
Where C s the operator of some physical quantity C. On the right-hand side of

the equation the factor A is introduced in accordance with the fact that in the

classical limit (i.e. as i — 0) all operators of physical quantities reduce to

multiplication by these quantities and commute with one another.
Thus, in the quasi-classical case, we can, to a first approximation, regard the right-

hand side of equation (9) as being zero.
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In the next approximation, the operator € can be replaced by the operator of simple
multiplication by the quantity c.

We then have
Fg-gf=-inc
This equation is exactly analogous to the relation

Py X — X P, = —I R, the only difference being that, instead of the constant
., we have the quantity to hc.

We can therefore conclude, by analogy with the relation Ax Ap, ~ f, that in
the quasi-classical case there is an uncertainty relation

Af.Ag ~ hc (10)
For the quantities f and g.

In particular, if one of these quantities is the energy ( f = ﬁ) and the operator

( g ) of the other does not depend explicitly on time, then
. P P . .

c=gC;(Hg-gH)=g ~c=g)
and the uncertainty relation in the quasi-classical case is :

AEAg ~h g
Example : Consider the function defined by

— (< ikx
fG) = [, dk g (k)e (M

The real part of f(x) is given by f_oooo dk g (k) cos kx, and this is a linear

2m
superposition of waves of wavelength A = % since for a given K each wave
. 2T
reproduces itself when X changes to X + T
To illustrate such a wave packet, let us choose
— ,—alk—kg)?
g (k) = e7alk"ko) 2)

The integral can be done: with k' = k — ko we have
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(x) — oodk (k)ei(k—ko)x. eikox
f g

co

. . _ "2
— elkox dkfeler e ak

—0C0

ix \12

. — r_ (22
— elkoxj'oo dkr e a [k (za)] .e_x2/4a ( dk — dk’),
— 00
where in the last step we have completed squares.

It is justified to let k' — (ix/2a) = q and still keep the integral along the real

axis.

Making use of

[Z dk em@ K = \E 3)

we obtain

f(x) - \/g . ei ko x ' e—(x2/4-a) (2)

ikgx-

13 39 M i k x 2
The factor € is known as a “Phase factor”, since |e 0 | = 1. Thus the

absolute square of f (x ) 1s
2 _ T —x%/2
f()I? = e™*/2 (5)
a
This function peaks at X = 0 and depending on the magnitude of @, it represents

a broad (& large) or very narrow (& small) wave packet. As it stands, one might be

willing to consider | f (x) |2 as a representation of a particle.
The width of the packet may be taken to be 2 V2@ , since the function falls off to
1
- of its peak value.
The width of | f (X) |2 and | g (k) |2are correlated.

. 2. ) ) 2 . . .
The function | g (k)| is peaked about Ky with width ok There is a reciprocity

here : a function strongly localized in X is broad in K and vice-versa.
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The product of two “widths” is

2
Ak Ax ~ E 2\/2 =4 (6)

The exact value of the numerical constant is not important ; What matters is that it

is independent of & and of order unity.

This is a general property of functions that are Fourier transforms of each other.
We represent it by the formula

Ax Ak = 0 (7)

There, we imply by 0(1) that this number is not significantly different from 1.

3.5 Hlustrative Examples

Example 1: Consider a particle whose normalized wave function is :

P(x)= 2aaxe ** x>0
=0 x<0
(a)  For what value of X does P(x) = | ¥ (x)|? peak?
(b) Calculate < X > and < X2 >,
(c) What is the probability that the particle is found between X = 0 and
1
X ==7

a
Sol.

d
(a) The peak is P (x) occurs  when TIx P (x) = 0 that is
d - -
— (Pe?) = 2x(-lax)e?%* =0
thatis X = =

a
b <x>= fooo dx x (4a> x* e™2%%)

_1f°°d 5 _y_3!_3
da YT T e T 2a
!

2 ” 2 3,2 ,-2ax 4! 3
LX< = dx x* (4a° x“ e )=——=—
0 8as «
(¢)  The desired probability is :
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p= [a) gx (4a%)x? -2 =~ [Jdyy?e™ = 0.32
Example 2: The expectation value of an anti-Hermitian operator is purely
imaginary.
Sol. An anti-Hermitian operator C is definedas C = — C T,
Therefore < a'|C|a’’ > =< a”|C+|a’ >
=<ad’|Cla’ >* (~CT=-0)

Hence, for expectation value we get

<dlCla"> = —<d|Cla" >*
That is < a’lC |CILjr > is purely imaginary.

3.6 Self Learning Exercise

N
PERPEE Calculate  the form of f(x) Plot the two

Q.1 Given that g(k) =
functions and show that Ak Ax > 1. Independent of your choice of .

Q.2 Show that the expectation value of a Hermitian operator is purely real.

3.7 Summary

By using Stern- Gerlach experiments we have expanded |S"_; +) ket in terms of

basic eigenkets of ., we have considered S, 5_],, S., in a representation in
e & i ! : .
which S_ 1s diagonal. For spin 5 systems these are famous Pauli matrices. We

have established the relationship between wave functions in coordinate space and

wave functions in momentum space. They are Fourier transform of each other.

3.8 Glossary

Degeneracy: there are two (or more) linearly independent eigenkets of A having
the same eigenvalue ; then the eigenvalues of the two eigenkets are said to be

degenerate.

3.9 Answers to Self Learning Exercise

Ans.2: Let B be a Hermitian operator.

73



therefore

<a’|Bla' >=<ad'|Bla" >"
For expectation value, we write

< a'|Bla" >=<ad'|Bla" >*
That is

< a'|Bla’ > isreal.

3.10 Exercise

Q.1 Suppose |l) and | ] ) are eigenkets of some Hermitian operator A. Under
what conditions can we conclude that [{) =+ |j) s also an eigenket of A?
Justify your answer.

Q.2: Consider a wave packet defined by

(s 0]

flx)= dk g (k) et**

—C0

With g (k) given by

K
gk)=0 ;k<-——

2
=N : K<k<K
B 2 2
=0 K<k

— P 5

(a) Find the for of f (x)

(b) Find the value of N for which f_oooo dx | f(x) |2 =1
1
(c) How is this related to the choice of N for which fjooo dk |g (k) |2 = Py

(d) Show that a reasonable definition of AX for your answer to (a) yields

Ak Ax > 1 independent of the value of K .
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3.11 Answers to Exercise

Ans. 1: |l) and | ] ) are degenerate eigenkets. These are different eigenkets

belonging to the same eigenvalue of A.

References and Suggested Readings

1. L.D.Landau and E.M.Lifshitz ,Quantum Mechanics(Non relativistic theory)

Vol-3 ,third edition, Butterworth Heinmann
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Company,2008
3. P.A.M. Dirac ,Principle of Quantum Mechanics, Fourth edition, Oxford
University Press,1958

4, Amit Goswami ,Quantum Mechanics ,Wm.C. Brwon Publishers
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UNIT-4
Change of Basis:Similarity Transformation,

Unitary Transformation, Trace of a Matrix

Structure of the Unit

4.0 Objectives

4.1 Introduction

4.2 Transformation Operator
4.3 Unitary Operator

4.4 Transformation Matrix
4.5 Trace of an operator

4.6 Diagonalization

4.7 lustrative Examples
4.8 Self Learning Exercise
4.9 Tllustrative Examples
4.10 Summary

4.11 Glossary

4.12 Answers to Self Learning Exercise
4.13 Exercise

4.14 Answers to Exercise

References and Suggested Readings

4.0 Objectives

In this unit we shall discuss the following
® (Change of basis and transformation
® Unitary operator; infinitesimal unitary transformation

® Trace of an operator ;Trace theorems

76



® Diagonalization of matrix

4.1 Introduction

In the preceding units we developed a powerful abstract way of representing the
abstract quantities namely bra vectors, ket vectors and linear operations by sets of
numbers. There exists the similarity between the geometry of the abstract complex

vector space (Hilbert space)and geometrically in ordinary Euclidean space.

A “representation” in the quantum -vector space corresponds to the introduction of
a coordinate system in the Euclidian space. Just as we study rotations of coordinate
system in analytic geometry, we must now consider the transformation from one
representation to another in the general space. Along with the old unprimed basis
we consider a new primed basis. The new basis vectors may be expressed in terms
of the old ones. We will find the matrix of transformation coefficients. We shall

study “similarity transformation” and “Unitary transformation”.

4.2 Transformation Operator

e Suppose we have two incompatible observables A and B. The ket space in

question can be viewed as being spanned either by the set {|a')}0r by the set
{1}

.
e For example, for spin - systems ‘Szi) may be used as our base kets;
2

alternatively, [S *) may be used as our base kets.

e The two different sets of base kets, of course, span the same ket space.

e Qur aim is in finding out how the two descriptions are related.

e Changing the set of base kets is referred to as a change of basis or a change of
representation.

e The basis in which the base Eigenkets are given by {|a’)} is called the A

representation or, sometimes, the A diagonal representation because the square

matrix corresponding to A is diagonal in this basis.

¢ Qur basic task is to construct a transformation operator that connects the old

b}

orthonormal set { a’)} and the new orthonormal set{
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4.3 Unitary Operator

Theorem: Given two sets of base kets, both satisfying orthonormality and

completeness, there exists a unitary operator U such that

by =Ula®y.[p?y =Ula®), ...b"y =Ula"™) (1)

By a unitary operator we mean an operator fulfilling the conditions

@)
aswellas UU T =1 (3)

Proof: We prove this theorem by explicit construction. We assert that the operator
U =3 |6 ) a®| @
k
will do the job. To verify this we apply this U to ’a'“> ,clearly

U‘a(f')> - §|bm><a“" ‘a”’)

g (atle)=a,)
=[p) (5)
Furthermore U is unitary:
e I T Y T B g

Similarly, we prove UU' =1 ,hence proved. Following theorems concerning
unitary operators may be noted:

Theorem-1: The eigenvalues of a unitary operator are complex numbers of unit
modulus.

Theorem-2: The eigenvectors of a unitary operator are mutually orthogonal (We

assume there is no degeneracy.)

4.4 Transformation Matrix

e It is instructive to study the matrix representation of the U operator in the old
{ |a')} basis. We have

78




k
<a()

which is obvious from (5).

U}am>:<a(“’b(r}> (7)

e In other words, the matrix elements of the U operator are built up of the inner

products of old base bras and new base kets.

(k)

U |a”">is referred to as transformation

matrix from the { ‘a')}basis to the { |b'}} basis.

e The square matrix made up of <a

e We can expand an arbitrary ket ‘a) in old basis whose expansion coefficients

(a"a) are known in the old basis:
- GAVG)
|a>—;’a' ><a ‘a) (&)
How can we obtain <b”" |a> ,the expansion coefficients in the new basis? To find

the expansion coefficients <b”" |a> , we multiply (8) by (b‘“ |
(0l =50l

o (b¥]a)=2(a®[U]a®Ya®

?

a) )
In matrix notation, eq.(9) states that the column matrix for |&) in the new basis can

be obtained just by applying the square matrix U " to the column matrix in the old
basis:

(New)=(U") (old) (10)

The relationships between the old matrix elements and the new matrix elements are
also easy to obtain:

<b(k)

X‘b“)> - ZZ(bm ‘a(nr)><a(m) ’X‘aw)xa(n) ‘b“’)

m n

- Zz<a(fr) ’Uj"a“’”xa“’”

m n

X|a""><a(")’U ‘a“)>

This is simply the well-known formula for a similarity transformation in matrix
algebra:

X' =U'XU (12)
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4.5 Trace of an operator

The trace of an operator X is defined as the sum of diagonal elements:
Tr(X)zg(a' Xa'> (13)

Theorem : 77 XY =TrYX

Proof: 77 XY = ;(i‘XW

-l
=l )
= 2( jlrx /)

Trace XY= Trace (YX)

This is the cyclic property of trace of matrix.

4.6 Diagonalization

We are interested in obtaining the eigenvalueb’ and the eigenket ‘b') with the
property.
B

by=b'b) (14)

First, we rewrite this as

(a1B[XJa’Ya'[) = b'la’ ),
or Z(a” B|a')<a' b'> =b'<a" b') (15)
We can write this in matrix notation as

B B, B, .. .. Cl(” Cl(”

B, B, B, .. ..|CY Y

B, B, B, .. ..|C"|=bt|c? (16)
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with 8, =(a|Blat”) a7)

and C; =(a™ b”) (18)

As we know from linear algebra, that for nontrivial solutions for Cj{” are possible

only if the characteristic equation.
det(B - A ) = 0is satisfied
® This is an n" order algebraic equation for A, and the N-roots obtained are  to

be identified with the various b 's we are trying to determine.

® Knowing b’ we can solve for the correspondingC}(")'S up to an overall

constant to be determined from the normalization condition.

® Comparing (18) with (7), we see that they C;f)'s are just the elements of the
unitary matrix involved in the change of basis{ |a'>} - { |b'>} :
® For this procedure the Hermiticity of B is important. For example the matrix
01
§ =8 +iS~ which reads in S basis as S :?{0 0} is non

Hermitian. It cannot be diagonalized by any unitary matrix.

4.7 Illustrative Examples

Example 1:
Using the rules of bra-ket algebra, prove or evaluate the following:

(a) T r(XY ) =T r(YX ), where X and Y are operators and Tr is the abbreviation
for Trace.

()  (x¥) =r'x', where X and Y are operators.
Sol.

(a) By definition

Trace XY = Sum of the diagonal elements of the matrix XY
TraceXY =Y (ilXY|i) (1)

Inserting the unit operatorZ‘ J > ( J | in the right-hand-side of (1), we get :
J
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Trace(47) = S (1K Z1) 1719

-3 S0lx1)
- Sl

=TraceYX
(b) Consider the operator XY acting on ket|0£> . It can be written as XY|a> By

definition its corresponding bra is (a ‘(XY )+ (1)
We can write dual corresponding bra of the ket XY |a> as follows :

XY|a) o ((afr") X’

=(a|Y'X" ()
From equations (1) and (2), we find :
(x7) =v'x'
Example 2: Show that the trace of an operator is independent of the
representation.
Sol. 7TrX = Z(a’ Xa'>
= §§§<ar br><br ¥ brr><brr a;)
Now rearranging, we get
TrX = XX2(b"|a')a'|b') (b'] X [b")
Using X|a')(a'|=1
We get
TrX = X 3(b"|b')(b'| X1b")

=§(b’ X

b)=46,,)

Y

b’> , using((b”

Hence 77 X in a- representation =Trace X in b-representation

Example 3 : Prove that if A is Hermitian operator, then e is unitary operator.
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Sol. We have A=A

[(4 )] +[(5A )'] i
2! 31

[(i4")] +[(z'A*)B] N
2! 3t

(—id")  (—iA")
o 3

@A’y @4’y N

21 31!

Since A is Hermitian, therefore

(47 (4,
2! 3t

(") =1+(i4) +

Now (") =1+(A)" +

+...

=1+(=id")+

=1-id"+

(") =1-id+

— e—iA

SO el}l.(eiA)T — eiA 'e—l}f — I
Therefore € is unitary operator.

Hence proved
Example 4: Prove that, under a unitary transformation, Hermitian operator remains

its Hermitian character.
Sol. We have Hermitian / = H' (Hermitian)
By unitary transformation
H— H'=UHU'
Now we must prove
H'=H'
(H"' =(UHUNY =UH'U"
=UHU", because H = H'
- H'
Hence proved

Example 5: Prove that the fundamental commutation relation [x, p, | =i# remains

unchanged under unitary transformation.
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Sol. We consider unitary operator U that effects the transformation. Then ,We

have

x'=UxU" and p' =Up U’

[, pL]= P, — plx’
= (UxUY(Up,U")~ (Up,U")(UxU")
=UxpU'-UpxU'
=U(xp,— px)U’
= UinU"
=ih

Hence proved

4.8 Self Learning Exercise

Q.1 An operator corresponding to infinitesimal transformation can be expressed as
U =1+i¢gF', where ¢ is infinitesimal. Show that U is unitary if the operator
F is Hermitian.

Q.2 Prove that TI (A — a') is the null Operator.

Q.3 Verify that the following matrices are unitary :

1 (1] 11+ 1-i
2210 1 201=i 1+
i

Verify that the determinant is of the form " in each case. Are any of the

above matrices Hermitian?

Q.4 Express the expectation value of an operator Q in terms of its matrix elements.

4.9 Illustrative Examples

Example 6: Find out the condition when a Hermitian matrix H will also be unitary.

Sol. A matrix H is called Hermitian if H is equal to its Hermitian conjugate H' .

i.e. .

When H is Unitary, then H"is equal to H''
e [ =t
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From above two conditions
H=H"=H"
Hence, H must be equal to its inverse.
Because HH ' =1 =unit matrix :
So HH=1 or H-=L
In this case the product of matrix with itself must be a unit matrix.

Example 7: Show that

“Any two eigenvectors corresponding to two distinct eigenvalues of a unitary

matrix are orthogonal”.
Sol.  Let us consider unitary matrix A,
then property of unitary matrix we have
A'4=1
Let ¢(x)and ¢,(x)be the two eigenvectors corresponding to two distinct

eigenvalues A, and A, of unitary matrix A.
Ay (x) = 4 (x) (1
A,(x) = 2, () @)
We take the transpose conjugate of eq. (1) we get
(A (x)'" = (4, (x))
or (A =24 (3)
Post multiplying eq. (3) by eq. (2),we get
(6, ()" AN (A, (x)) = (4, (x) ) (A6, (%))
or ¢(x)' (4" A, (x) = 4 2,6, (x) ¢, (x)
or 40 (x) =414 (x) d(x)
or (=4 A)4(x)'¢,(x)=0
We know the eigenvalues of a unitary matrix are of unit modulus i.e, 4’4 =1, so
(A4 —AA)=4"(4=2,)#0 A # A,
$,(0)'6,(0)=0.
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Therefore ¢ (x) and ¢,(x) are orthogonal.

Example 8: The base vectors of a representation are

o) ()

Construct a transformation matrix U for transformation to another representation
having base vectors

1 1

Z |
1 |
7 7

and

Sol.

The transformation matrix U must be such that

1 1
I R OIS s e
N5 ;)

After solving, we obtain

1 1
UH::/?,UszE,
1 1
UIZ__ﬁ’UZZZﬁ
Then
I
uo| 7 T
RS
V22
R
And U'= \El \1/5
2 2
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1 1 1 1
Here UU'= \/51 \/15 \/15 \{5
2 2\ 2
(11+LLJ (_IIJ,LLJ
| FEEE T EE R
1 1 1 1 1 1 1 1
(_ﬁerﬁﬁ] (ﬁﬁJrﬁTEj
UUT—1 0]—1
o1

It follows that UU" =1 .

Hence U is unitary operator.

4.10 Summary

In this unit our intention has been to provide a working knowledge of the
mathematical structure which underlies quantum mechanics .We have defined

Unitary operator which transforms from one set of base kets to another set of base
kets. With the help of illustrative examples these ideas have been explained.

4.11 Glossary

Eigenfunction: operator A operates on function f , then in a such type of
expression 4 f =a f , eigenfunction is f'and eigenvalue is « .
Orthonormal Functions: Thus the set of eigenfunctions vy, forms a complete set

of normalized and Orthogonal (Orthonormal) functions if Il//m v dg=9

nm

4.12 Answers to Self Learning Exercise

Ans.4: Let us consider a ket |y, > which represents the complete set of basis

vectors.

The arbitrary key vectors |y > can be expanded in terms of the|y, > is :
) =3¢y, > (1)

In the state |y >,
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the expectation value of O can be written as
<0>=(y|0lv) @)
From eq.(1) & (2) we get
<Q>=%¢ <y, |0%¢; |y, >
i J o
=>ce <y, 0ly, >
ij
=0,
=2 60
(¥
Hence Proved

4.13 Exercise

Q.1 Consider two kets |a)and|S). Suppose(d|a), (d"|a)....... and (d'|3), (a"| B)

..... are all known, where ‘a’) ; |a"> form a complete set of base kets . Find the

matrix representation of the operator |a)(f|in that basis.

Q.2 Suppose |z> and | j) are Eigen kets of some Hermitian operator A. Under
what condition we can conclude that |i)+| /) is also an Eigenket of A? Justify
your answer.

Q.3 A certain observable in quantum mechanics has 3x3 matrix representation as

follows:
010

Lo
2

IO 1 0

(a) Find the normalized Eigenvectors of this observable and corresponding

Eigenvalues. Is there any degeneracy?
(b) Give physical example where all this is relevant.

Q.4 Evaluate the commutators
(a) [xz,pz],
) [x,.G(p)]
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© [p.F)]
Q.5 What is a unitary operator? Show that any algebraic relationship between

operators and kets remains invariant under unitary transformation.

Q.6 Prove that

|P><Q|=|0><P|
Q.7 Prove that

<nlm>=2<nl|i><i|m>
i

here|n)and |m)are two arbitrary ket vectors and the vectors|i) are the
complete set of basis vectors.
Q.8 Consider a coordinate system be transformed by a transformation matrix T.

Prove that if T commutes with the Hamiltonian H, then the Hamiltonian is

invariant with respect to this transformation.

Q.9 Show that a unitary operator remains unitary under a unitary transformation.

4.14 Answers to Exercise

Ans.6: Let us consider

a=|P><Q]| and
Let |B>=a|A>=[<Q|A4>]|P>
Therefore
<Bl=<Q|A><P|
={4|0)(P|
But <B|=<A|a,so0
a=|0><P]|
Ans.7:  The arbitrary ket vectors |n) and |m> can be expanded in terms of the
basis |i)’s.
|n>=;c,.|i), where ¢, = (i|n)

|my=3c/|i), where ¢ ={i|m)
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<n|m):Z<i|n>*|i>*;<j|m>|f>
:§<n|i><j|m><i|j>
:§<n|i><j\m>5y.
=X<n|i><i|m>
Ans.8: We know that
x'=Tx and y(x") =Ty (x).
x' represents the new coordinate system and x old one

Let us operate T'on Hy

Then we have

T'H(x) y(x) =H(x) Ty (x)

(" T commutes with H)

T HE) w(x) =H(x) w(x) (1)

T'[Hx) w(x)]=H(x") y(x) 2)
From eq.(1) and (2),we get

H(x)=H(x")

Thus Hamiltonian is invariant with respect to coordinate transformation by matrix
T.

Ans.9 :  Let us consider be operator A,
AA'=1=44.

By the unitary transformation, 4 — 4',
A'=UAU'

we have to prove the following
A'AT=A4"A"=1T.

Since U is unitary matrix, we have
vut=U'v=1

We have,
(A) A'=UAUN' UAUT
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= (UA'UNYUAU?
= UA"(U'UYAUT
=y U’
=yuut=1
Similarly, we can prove

A I(Ar)'l' — U'FU =7
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5.0 Objectives

® What are basic vectors of representation? Properties of basic vectors.

® (Coordinate representation:position eigenkets and position measurements
® Translation operator

® (Quantum Poisson Bracket

® Wavefunctions in position and momentum space

® Momentum operator in the position basis

® Momentum space wavefunction

® Connection between coordinate and momentum representations

® Gaussian wave Packet

5.1 Introduction

In the preceding units we introduced an algebraic scheme involving certain abstract
quantities of three kinds. namely bra vectors, ket vectors, and linear operators and
we expressed some of the fundamental laws of quantum mechanics in terms of
them. It would be possible to continue to develop the theory in terms of these

abstract quantities and to use them for applications to particular problems.

However, for some purposes it is more convenient to replace the abstract quantities
by sets of numbers with analogus mathematical properties and to work in terms of
these sets of numbers. The procedure is similar to using coordinates in geometry
and has the advantage of giving one greater mathematical power for the solving of

particular problems.

The way in which the abstract quantities are to be replaced by numbers is not
unique, there being many possible ways corresponding to the many systems of
coordinates one can have in geometry. Each of these ways is called a
representation and the set of numbers that replace an abstract quantity is called the
‘representative’ of that abstract quantity in the representation. We shall use
coordinate representation in which basic vectors of representation are position
eigenkets of the position operator. We can equally use the momentum basis of

representation in which basic vectors of representation are momentum eigenkets .
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5.2 Properties of the Basic Vectors

Using the notation the o -function, we can proceed with the theory of
representations. Let us suppose first that we have a single observable & forming by
itself a complete commuting set, the condition for this being that there is only one
eigenstate of & belonging to any eigenvalue &' and let us set up an orthogonal
representation in which the basic vectors are Eigenvectors of & and are written
(€].]¢)-

In the case when the eigenvalues of £ are discrete, we can normalize the basic

2

vectors, and we then have
<§i|§#>20 (5!‘;{__5")
(&g =1
These equations can be combined into the single equation

(&) =6... (1)
where the symbol & with two suffixes has the meaning

o :Owhenris}

2)

=1whenr=s

In the case when the Eigenvalues of & are continuous we cannot normalize the

basic vectors.

If we now consider the quantity <§'|§"> , with &’ fixed and &" varying, then this

quantity vanishes for & # &" and that it’s integral over the range of &" extending
through the value &' is finite and assume it to be equal to 1.

We express this by Dirac ¢ -function:
' " — 5 L -1
(&]e") =o'~ -

where 6(&'—£&")is the improper function defined as

6(&'=¢")=0 for &' ="
and T5(§’—§")d§”:1

4
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For the discrete case

2|ENE e =288, =€)

This equation holds for any basic ket |4§ ") and hence, since the basic kets form a

complete set,

;Ig")(é’lﬂ (5)

Similarly, for the continuous case, we have
.[ §f>d§r<§r|§n> :I €r>dxg—!5(§r_§n) —
This holds for any basic ket|&") and hence
J|§)dg {&']=1 (7)

5.3 Coordinate Representation: Position Eigen kets and

&") (6)

Position Measurements

The position Eigenkets |x’) of the position operator xsatisfying

!

X

x’>=x

x) ®)

are postulated to form a complete set. Here x” is just a number with dimension of

length, for example, while x is an operator.

The state ket for an arbitrary physical state can be expanded in terms of {’x’)} :

|a)=de"x’><x"a> (Sinceofdx'

¥)(el=

5.4 Translation Operator

We now introduce the very important concept of translation, or spatial

displacement.

Suppose we start with a state that is well localized around X'. Let us consider an
operation that changes this state into another well- localized state, this time around
X'+d X' with everything else unchanged. Such an operation is defined to be an

infinitesimal translation byd X' and the operator that does the job is denoted by

T(d i")
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So T(d;);'>=

where a possible arbitrary phase factor is set to unity by conversion.

;'+ d ;> 9)

Notice that the right-hand side of eq.(9) is again a position Eigen ket, but this time

- -
with Eigenvalue x'+d x" obviously

—>
r

X >is not an Eigenket of the infinitesimal

translation operator.

— Id3xr

We can examine the effect of infinitesimal translation 0n|0£> as follows:
— — e —
|a> — T[dx'ma) = T[dx’],fd o x'><x’ a>
We also write the right-hand side of (10) as
3 - —> - 3 — - -
[d*x' x'+dx’><x’ a>=fd x' x'><x'—dx’ 05> (11)
x’> is just an integration variable.

s — —
xX'+dx" ) x' a> (10)
because the integration is over all space and

This shows that the Wave function of the translated State T (d x')|a> is obtained

) %

We now list the properties of the infinitesimal translation operator 7'(d x'). It is

— > — -
by substituting x'— d x"forx"in { x’

reasonable to require that if the ket |O¢ > is normalized to unity, the translated ket

T(dx" |a> also be normalized to unity, so

(a|a)={a|T"(dx)T(d )

a) (12)
This condition is guaranteed by demanding that the infinitesimal translation be

unitary

First Property: 7" (d ;')T(d ;') =1 (13)
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For the second property, suppose we consider two successive infinitesimal

- —
translations first by ¢ x" and subsequently byd x" ,we expect the net result to be

- —
rn

just a single translation operation by the vector sumd x'+ d x” ,so we demand that

Second Property: T(d x")T(d x")=T(d x'+d x") (14)
Third Property: 7(—d ;’) =T'(d )?) (15)
Fourth Property: }imOT (dx")=1 (16)

and that the difference between 7'(d x") and the identity operator be of first order

N
ind x'.

It is now easy to demonstrate that if we take the infinitesimal translation operator
to be

Tdx)=1-iK.dx (17)

s
where the components of K, K , K}_ ,and K _ are Hermitian Operators, then all

the properties listed are satisfied.

5.5 Commutation Relation, Quantum Poisson Bracket

Accepting (17) to be the correct form for 7'(d x") ,we are in a position to derive an

— -
extremely fundamental relation between the K operator and the x operator. First,

note that
xT(dx") x’> =x|x'+ dx'>
= [x’+ d x’] x'+d x'> (18a)
and
T(dx")x x'> =x'T(d x") x’>
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—
!
=X

Xt d;'> (18b)

Hence from (18a) and (18b)

{;T(d;j_r[d;];} ;>:d;
o [;,T(d;ﬂ >d >

We therefore have an operator identity

F,T[d;ﬂ:d; (19)

& ;(1—i12.d;'j~[l—i[2.d;’);=d;’

— —
x+dx'

or —ixK.dx+iKdx'x=dx'
By choosing d x" in the direction of X, , we obtain
fo], - fof = i5jf (20)
or [x.,K_] =10,
i J t
where 0, ;1s understood to be multiplied by the identity operator.

Equation (20) is the fundamental commutation relation between the position

operators X,y,z and the K operatorK ,K ,K,.

We should remember that so far the K operator is defined in terms of the

5
infinitesimal translation operator. What is the physical significance of K .If we

—

put K = % in(20), we find

X, % - %xl_ = i5‘.j_
orx,p —p X =ihd, (21)
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where i=1,2,3 stands for X =X,X, =y, X, =z,and similarly p, = p for

Jj=1 etc.

The relations (21) can be written explicitly as
xp_—px=ih
xp —p x=0etc.

All these commutation relations can be summarized in the following form:

[xr_, pj:| =ih 5!_,. {Quantum Poisson Bracket} (22)

Thus the operator of infinitely small translation can be written as
T(dx') =1-iK.dx'

—

. P =
=1-i=dx 23
h (23)

where p is the momentum operator.

5.6 Position-Momentum Uncertainty Relation

The commutation relation (22) imply, for example, that x and p, (but not x and p,)
are compatible observables. It is therefore impossible to find simultaneous Eigen

kets of x and p :

IfFAX =X-X

(a0 =(x-%)
=X -(x)

,then the position-momentum uncertainty relation becomes

— 2

(AX)'(a9,) 22 (24)

By compounding N infinitesimal translation, each of which is characterized by a

’

spatial displacement — in the x -direction, and letting N — 00 we obtain
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_ exp[ﬂJ (25)

—ip AX'
Here exp(pT"J is understood to be a function of the operator p ;

2

X
generally, for any operator x we have expx=1+x+—+.....

It is instructive to work out the effect of 7' (d 5c") on momentum Eigen ket| f)')

T(d ;] ;>
;’> (26)

We see that the momentum Eigen ket remains the same even through it suffers a

-
!
X/,

= ip'.dx
= 1-
p)=|1- 1

ip.dx
h

= 1-

-

-
slight phase change, so unlike p'> is an Eigen ket of T (d x'], which we

anticipated because

[;,T(d;'ﬂzo

5.7 Hlustrative Examples

Example 1: Show that in the case of a stationary state with a discrete spectrum

the mean value of the momentum is ;T) =0.

Sol. From Heisenberg form of equation of motion, we know that

P = %[ﬁf’ —FH } where H is the Hamiltonian
SomE = %[ﬁf = fﬁ} where m is the mass of the particle
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The mean value of ;_; in the state y/ in the case of discrete spectrum is
< im Mgy
b=t * iy |de
In the stationary state ,we have
Hy = Ey ,H'y*=Ey *
and we thus have
im

527 [W*ﬁﬁw—w*igﬁwj}dr

:%Uw*ﬁﬁwdr—fw*ﬁﬁwdr}

:%[EIW *Fﬂ't,z/dr—EJ-q/ *ﬁwdr]
=0
L p=0
Example 2: Express in terms of f?the operator of a parallel displacement over
any finite (not only infinitesimal distance a.
Sol. We define the operator of displacement i'ﬁ"a as
Ty()=y(r+a)
Expanding the function 1//(; + (;r) in a Taylor series,

We have

w+d) =P+ il
or

Or, introducing the operator p =—i iV,

W(;+a):{1+%5.g+%a.gjx ....... }y(;)

The expression in brackets is the operator
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t'ﬁ -
A —a.p

T_ — eh

a

This is the required “Operator of the finite displacement”.

Example 3: Show that the equation of motion is X = p/m, where p is the

operator associated with momentum.

Sol. We have
ihi=[&ﬁj
RI-T1%
7 2 2
v [ x
2m ox”
62 2 2
_ h? lon o* X __i 0*
2m\ Ox~ Ox " 2m ox
2
:+h—.2i
2m OXx
hl o p R h 0
X=———=-=—,s8lnCe p>———
I1mox m 1 OX

5.8 Wave functions in Position and Momentum Space

For simplicity we consider one dimensional case. The base kets are position eigen
kets satisfying.

X'} =|x|x) 27)

These position Eigen kets are normalized in such a way that the orthogonally

Condition reads

<xrr

Any ket representing a physical state can be expanded in terms of] ‘ x') ,

o) =l av'|x') ('

x)y=8(x"-x") (28)

a) (29)
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and that the expansion coefﬁcient(x'|a) is interpreted in such a way that

(«

is the probability for the particle to be found in a narrow interval dx’ around x’.

a) dx (30)

In our formalism the inner produce(x'|a> is what is usually referred to as the
wave function (x') for state|a) :
a

(¥|a)=w (') @31)

[#4
We now consider the inner product( Ji] |a ) In the position basis we can express

this inner product as: <ﬁ|a) =fdx'<ﬁ x'><x' a> ( [dx' x')(x'l = l)

=[ax’ u;*(X')l//(X') (32)

So ( ﬁ|a> characterizes the overlap between the two wave functions.

The more general interpretation 0f< I} |a> , independent of representation, is that it

represents the probability amplitude for Stﬂt@‘d) to be found in state‘ Jij >

We now interpret the expression

|a):§|a')(a' a) (33)

using the language of wave functions. In the position basis we can write (33) as

(x' a) = ;(x'la'><a'|a> (34)
ory(x)=2CU,(x")

where U (x") = (x’

)

Let us now examine how <)3 |A|a> can be written using the wave functions for

a') (35)
and C,, =(d’

|r) and | B) clearly, we have
(plake) =T e ) e ahe)

a)

=[ax'[dx"y’ (x')(x' A x">l// (x") (36)

i a

103



So to be able to evaluate (ﬁ’A|a>, we must know the matrix element (x’|A|x">,

which is, in general, a function of two variables x" and x" .

5.9 Momentum Operator in the Position Basis

We now examine how the momentum operator may look in the x-basis-that is, in

the representation where the position Eigenkets are used as basekets.

Our starting point is the definition of momentum as the generator of infinitesimal

translations:

(1-22 ) -7(a¥)a)
=[dx'T (Ax')
=[ax'
= [ dx’

x'){xa)
a)
a)

8

_ Idx'|x')[<x'|a>—Ax'—(x'|a)) 37

x'+ Ax’> (x'

x') (x' - Ax'

ox'

A comparison of both sides yields

pla) :de'x'>(— i %{x"a)] a8)

o

where we have used the orthogonality property (28).

pa) =i (xa) (39)

For the matrix element p in the x-representation, we obtain

<X’

We can now evaluate ( Ji] ’ p|a> in the x-representation:
<,8‘p|a> =[dx"[dx'(B x’)(x’ x”)(x" o)
=Jax"[dx'(B x'>(— ih %)5(35 —x")x"

X

p

Xy = —ih%ﬂx’—x") (40)

p

@)

Integrating over x", we get
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(Blpla)=ldx'(p

x’)(—ih%)(x' )
- de’w;(x')(—ih 0 jw(x') (41)

ax ' a
where we have made use of the formula

J f(x)8(x—a)dx=f(a) (42)
Also we can obtain the following involving p"
a"
|p"a)=(=ih) ' 43
(¥l =y 2 (vla) &

5.10 Momentum Space Wave Functions

The basic Eigen kets in the p-basis specify

plp')=r'P) (44)

and (p'|p")=6(p'~p") (45)
An arbitrary state ket| o) can therefore be expanded as follows:

o) =[dp'|p')(p'|ax) (46)
We define momentum space wave function (p'|at)as

(P'la)=¢.(p" (47)

If ’O[) 1s normalized i.e.
(a |a> =1, then we obtain
[dp' (a a) =1

orldp'e, (p')e(p')=1

py(p

“dp' =1 (47a)

or f|q0a (p')

5.11 Connection between Coordinate and Momentum

Representations
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Let us take a system with one degree of freedom, describable in terms of x and p

with Eigen values of x running from —ooto o and let us an Eigen ket ‘ p’) of p.

Its representative in the coordinate representation is (x' ’ p') satisfies

r ’ ! ' ’ . d r '
p'(x|p') = (x| plp") ==in—=(x'|p)
or d<)f p: ) = iﬁdx’
¥p)  n
The solution to this differential equation for <x" p') is
(x'|p") = Nexp(ip;] (48)

where N 1s the normalization constant to be determined.

To get the normalizations constant N let us first consider
(xr xﬂ'> — J'dpf<xr|pr><pr xrr)

or S(x’—x"):Jdp’Nexp[lphx )N*e_l};x

- o] P

= 271|N| 5 (x" - x") (49)

Choosing N to be purely real and positive by convention, we finally have

"o 1 ip'x'
p)= 50
<x| } \/2 hexp( 5 J (50)

We can now demonstrate the relationship between the position-space wave

function and momentum-space wave function.

For this we rewrite

(xr a>:j'dpr<xf pr)(pr
and <p'|a>:jdx'<p'|x'><x' a) (52a)
or t,r:(x’):(\/Zlﬁ_h]fdp’exp(ip;’jqf(p') (51b)
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and t,l/(p')Z( \/;Edexexp[—lp;"Jyf(x') (52b)

o

is pair of equations is just what one expects from Fourier’s inversion theorem.
This p f equat just what pects from F ’ th

5.12 Self Learning Exercise

W o d . ..
Q.1 Show that the operator x = n’ld— is Hermitian.
p

Q.2 Ifxand p, are the coordinate and momentum operators, prove that

[x,p, 1=ni A p

5.13 Gaussian Wave Packet

Consider a Gaussian wave packet, whose x-space wave function is given by

’ ~ 1 e "2
<x ’Cf) = (m} exp{lkx 24’ ] (53)

This is a plane wave with wave number £ modulated by a Gaussian Profile

centered on the origin.

The probability of observing the particle vanishes very rapidly f0r|x'| >d,
The probability density Kx'|a>‘2has Gaussian shape with width d.

Now, we have to evaluate the expectation values ofx, x” p, p2

The expectations value of x is clearly =zero by symmetry:
<x> = T dx'(a x')x'(x’la) = T dx' (x'

2 .
For x° we obtain

c:c)’2 x'=0

= [ dx'x" (a|x'><x' a>
= [dx'x" (x'|a)|2
1 % _xfz dl
- d r_12 _ 54
n%d—L XX exp[ dzj 5 (54)
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This leads to
((ax))= () ~(x)’

((ax) =% (55

For the dispersion of the position operator.

The expectation values of p and p2 can also be computed as follows.

(p)=(a|ple)

= f(a x’)dx’(x’ p‘a)
~la x'>dx'(— i d,j@a a)
dx
=Jax'{a|x")(-in) d, (x'|ex)
dx
= hk (56)
(After substituting for (a|x"}and (x'|e)etc.) and integrating.
Similarly
(P = e (58)
2d

2

o\ 7
(")) =50 (59)
We can check the Heisenberg uncertainty relation
2 2 hz
() N(ap)) = (60)

In this case the uncertainty product is independent of d. So far a Gaussian wave

packet we actually have an equality relation rather than the more general inequality
relation. For this reason a Gaussian wave packet is often called a minimum

uncertainly wave packet.

We can also obtain
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’

(p

1 1 o0 _lp!xf ) xl‘Z
)= , dx'e + ikx"—
) ( 2nh][,r%ﬁJ_Lx Xp( no ZdZJ

[d [ -nkyd?
“Vavz ¥ { 20 }

(61)

5.14 Illustrative Examples

Example 4 : Prove that, if the wave function in coordinate space is normalized, the

momentum wave function is also normalized.

Sol. We have
[lwoPdx=1
The momentum wave function is given by Fourier transform of v (X) :

L e
$(k)=—— [y (x)e ™ dx

where (x) = ﬁ [ p(c)e™dk

Now we have

JlyeF dx =y * (ow (x)dx

v'a)

N T dx.{ \/;_ﬂ T ¢ *(k)eik*dk} {ﬁ T #(k ')ei*’*dk'}

Here, from eq. (63) we substitute for " (x) and w (x). By integration,

_I;l y(x)[* dx =£ dk¢*(k)1dk'¢(k') x{ﬁ f sitk-bx dk}

—00

TIW(X) " dx = I T¢*(k)¢(k 16 (k'-k)dk'dk,

—00  —00

By the expression of delta function

[lweor dx = [ % (0p(k) dk

—a0
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[lw oo dx = [ 1600 F dk

On using (1), we have

[1gt)Fdk=1

i.e. the momentum wavefunction is also normalized.

Example 5: Express x in the momentum representation.

Sol. The position representation |x> is defined by the eigenstates of the position

operator x by
#x)=x|x)
In its own space, operating by x is the same thing as multiplying by x.

The expectation value of x in the state |y ) is given by
(%) =(v[2]w)
= ([ [ ke (x| f o) o)
where we have introduced unit operator [|x)dx (x|and [|x')dx'(x'|. Thus
(3) = [ely ) e (x] x| )
= [ (y|x) [ dx' xS (x = x) (x| )
= [[dx[ dx' (| x) x8 (x = x) (x| )
= [dx(y | x)(x|w)x (using the property of & -function)
=[xy * )y (x) (65)

What is the form of X in the momentum representation? For this we consider the
expectation value of x in the state |u/) again, but this time we expand |l//> in the

momentum representation. This gives

(2)=(w[2lv)=(v|[|p)dp(p|2lw)
= [dp{y | p)(p|%lv)

Denoting (p|)?|l//>by (p|ﬁ> where
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|B)=%|w), we find
(£)={v|w)

= Idp v |p){p|B),and our job is to evaluate it in the representation.

For this we consider <x| Ji] > We expand it using the ket bra sum rule for the p-

basis.

( |/J’ |j| p)dp ( p | B > where we have introduced unit operator in the p-basis
viz Ildp dp dp| =1.

We find

(x] B) = [ dp (x| p){p|B)

ipx ipl

—Jdpe” (p|B) where (x|p)=e” (66)
But we can also expand (x| I} > as

(+]8) = (sl lur) = (sl

= x[dp (x| p)(plv)

ipx

= xJ.dpe "a(p)
where <p|l//> =a(p), we write

ipx

Ld "
(x[8)=] dp(—mgef ]a(p)
Now integrating by parts, we get
(lp) =1 et | A fape 2

So long as we consider bound states, a(p) — 0as p — oo and the first term goes

to zero. We are left with

i da(p)
( = Ihj.d T,

Comparing with equation (i), given above we find
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d
=2h—
(rl)=217a(r)
Hence we get for

(x)=(w[&lw)=[dp(y|p)(p|B)
= [dpa *(p)[mﬁa(p)

TR \
Thus x = thd— in the momentum representation.
D

Example 6: Find the eigenfunctions and eigenvalues of the momentum

operators.
Sol. They are determined by the vector equation

—ihVy = py (67)
The solutions are of the form

w=Ce" (68)
Where C is a constant. If all three components of the momentum are given

simultaneously, we see that this completely determines the wave function of the

particle. In other words, the quantities p,, p, p. form one of the possible complete

sets of physical quantities for a particle.
Their eigenvalues form a continuous spectrum extending from —coto +oo.

According to the rule for normalizing the eigenfunctions of a continuous spectrum,

the integral I t//;l//pdV taken over all space (dV =dxdydz) must be equal to the
delta function o6 (;’—E).

However, it is more natural to normalize the eigen functions of the particle
momentum by the delta function of the momentum difference divided by 277 :

* p'=p
w dV =0
or equivalently

[vw,av =(2zh) 8(p'- p)
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(SinceS u =5 Py — Py S py _p‘_‘, 5 p. —D.
2rh 2rch 2rch 2rh
=(27h) 8(p, - p)S(p, = p)S(P. —p.)

Now substituting for y p,ly;. , etc., we get

icf Ie;’{;'ﬁ)":dV =(27h) 8(p'- p)

We now use the well known formula

I e“ds =2m0(ar), we get

et o) o 252 |- o' o=

or|C[.(2x) W8(p' - p)=(27h) 8(p'- p)

(Here we have used the well known formula & (ax) = Lé (x))

a

Finally, we find

Thus |y, =e"

5.15 Summary

In this chapter we have studied two important basis of representing abstract
quantities like bras ,kets, operators namely position basis and momentum basis.
These two modes of representation are connected with each other. We can study

the development of quantum mechanics in either representation.

5.16 Glossary

Momentum basis : p-basis
Coordinate basis : q -basis or x -basis

Quantum Poision Bracket: [u,v]=uv-vu
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5.17 Answers to Self Learning Exercise

Ans.1: Consider arbitrary functions v ( p),¢( p) which vanish at infinity. We have

[ g3y dp
oo
= j ¢z’h(2—5dp

Integrating by parts, we get
. d¢
=idpy — | —“wd,
i {W I i p}
d _dg)
=it Ly ap =y (p)| in22 | dp = [yx* gap
dp dp

and this is the condition that the operator x = ihdi should be Hermitian.
P

Ans.2:[x, p,"] =[x, p," 'p,]
=[x, pJp," +p[x b, ]
=ihp" +p (% pp, +pxp, ]
=2ihp" +p, ([, pJIp,” +p,[x. p," ]
=3ifp " +p [x.p,"]
Continuing, we get

[x, p,"] =nifip,""

5.18 Exercise

Q.1 Prove the following

(v

!

@)

(B|xle) =Idp'¢,(p")in

L, O
x|a>:zhap,<p

0 ’
5 é,(p')
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where ¢ (p')= (p"oc> and ¢, (p')= (p" ﬁ) are momentum-space wave
functions.

Q.2 Establish a connection between momentum and coordinate representation of a
ket vector.

Q.3 Deduce an expression for the momentum operator in position basis.

Q.4 Show that the operator of infinitely small translation in space can be

expressed as
T(d;J:I—iE.d;
h

Q.5 A particle is constrained in a potential V (x) =0 for 0 < x < aand V(x) = o0

otherwise. In the x-representation, the wave function of the particle is given by

w(X)= \/zsin 27X
a a

Find the momentum function ®(p).

5.19 Answers to Exercise

1 0 _ipx
Ans.5: O(p)=—— | w(x)e "dx
szh;[
1
=
2 ipx
Where | = Jsinzyr—xe " dx
A a
Integrating by parts,
i T _ipx
I= ~£sin—2xxe 2 ﬁj H_E ¢’ 2—71-005—271-X dx
ip a , o\ 1p a a

ekl 2nx( R =T 2zai n) ™( 27) . 27x
I=—|cos——|—1]e " | —||—|e " | — |sin——dx
ipa | a ip . ipa gl ip a a

242
1=_2.”h —i](e_”’“m—l)+4j€ﬁ I
1pa 1p ap
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2 _ipa
(D(p): 1 2 ?ﬁah 242 e " —1
Jrha a p —4xh

22 2 (i
==>5——5¢ " -1
ap —4nh
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UNIT -6
Quantum Dynamics ,
Schrodinger versus Heisenberg Picture

Structure of the Unit
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6.0 Objectives

In this unit we shall study the following

® Dynamical development of the state kets or observables
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® Hamiltonian operator

® Energy eigenkets ,stationary state

® Time dependence of expectation values.
® Schrodinger versus Heisenberg picture
® Heisenberg equation of motion

® Fhrenfest’s theorem

6.1 Introduction

This chapter is devoted to the time development of state kets or observables. We
shall develop equation representing the time development of stateket vector in the
form of Schrodinger equation (the dynamical variables remaining fixed).In another
picture state vectors remain fixed in time and dynamical variables develop in time
in the form of Heisenberg’s equation of motion. We shall discuss Heisenberg

picture versus Schrodinger picture.

6.2 Quantum Dynamics

This chapter is devoted exclusively to the dynamic development of state kets and
or observables. In other words, we are concerned here with the quantum-
mechanical analogue of Newton’s (or Lagrange’s or Hamilton’s) equations of

motion.

6.3 Time Evolution Operator and Schrodinger equation

Our basic concern here is, how does a state ket change with time? Suppose we
have a physical system whose state ket at 7, be represented by|a> At later times,
we do not, in general, expect the system to remain in the same state|a > Let us

denote the ket corresponding to the state at some later time by

|at5). (1>1,) (1)

where we have written ¢,/ to remind ourselves that the system used to be
in state‘a) at some earlier reference time 7 .Because time is assumed to be
continuous parameter we expect

Lim a,to;t):|a) (2)

=1y
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and we may as well as use a shorthand notation,

|a.t:t) =|a) =|a.t, ) 3)
L Our basic task is to study the time evolution of a state ket:
|OC,IU> = |a) time evolution ‘a,tu;t> (4)

Put in another way, we are interested in asking how the state ket changes under a

time displacement ¢, —¢ .The two kets are related by an operator which we call

the time-evolution operator (tﬂ,t) :
‘a,tﬁ;t):U(t,tU)‘a,t[)) (5)

° We assume that if the state ket is initially normalized to unity, it must

remain normalized to unity at all later times:

|a,t0|a,t0>:1:><a,t0;t o,t,;t) =1 (6)
:<a,t0 U (t.,)U(2.1,) a,tﬂ>

ie. UT(n,t,)U(t.1,)=1 (7)

or in other words, unitarity is one of the fundamental property of the time evolution

operator U. Another feature we require of the U operator is the composition
property:
U (IZ’IO):U(tz’tl)U(tl’tO)’(IZ >tl >t0) (8)

L] It also turns out to be advantageous to consider an infinitesimal time-
evolution operator U/ (tu +dt, tU)

|t 51, +dt) =U (1, +du,t, )| a.t, ) 9)

0°°0

Because of continuity, the infinitesimal time-evolution operator must reduce to

identity operator as df goes to zero:

LimU(t, +dt,t,)=1 (10)
We expect
Ult,+dt,t, |=1-iQdt (11)

where Qis a Hermitian Operator.
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The operatorQ) has the dimension of frequency or inverse time. We relate Q to

the Hamiltonian operator H:
H
Q=—
h (12)

To sum up, the infinitesimal time-evolution operator is written as

Ult, +dr,tﬂ)=l—% (13)

where H, the Hamiltonian operator, is assumed to be Hermitian.

The Schrodinger Equation:

We are now in a position to derive the fundamental differential equation for the
time evolution operator U (r, 1‘0) . We export the composition property of the time-

evolution operator as follows:

U(t+dit))=U(t+dit)U(t.1,)
:(1— i]idij(t,zo) (14)

where the time difference (l‘—to) need not be infinitesimal, we have

U(t+dt,ro)—U(t,to)z—%dtU(t,to) 15)

which can be written in differential equation form:

ih%U(t,to):HU(t,to) (16)

This is the Schrodinger equation for the time evolution operator. Everything that

has to do with time-development follows from this fundamental equation.

Equation (16) immediately leads to the Schrodinger equation for a state ket.
Multiplying both sides of (16) by |a,t0) on the right, we obtain

ih%U(t,t(]]a,t()):HU(t,rO)]a,tn> (17)

But ‘a,t0> does not depend on t, so this is the same as
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. 0
l,ha\a,ro;t):ma,tn;r} (18)

6.4 Energy Eigenkets

To be able to evaluate the effect of the time-evolution operator on a general initial

ket|a> , we must know how it acts on the base kets used in expanding|a) .

This 1s particularly straight forward if the base kets used are Eigenkets of A such
that

[4,H]=0 (19)

Then the Eigenkets of A are also Eigenkets of H, called energy eigenkets, whose

eigenvalues are denoted by £, :

H|d)=E,

a) (20)

We can now expand the time-evolution operator in terms of ‘a’) (a'| . Taking? =0
for simplicity we obtain

exp (— ;Htj: ZZ a")a" exp(%mj a')a'

:§|a'>exp(_iE"'tj<a'l (21)

T

The time-evolution operator written in this form enables us to solve any initial-

value problem. Once the expansion of the initial ket in terms of ﬂa ')}is known.

As an example, suppose the initial ket expansion reads.

t =0>=Z a')(a' a>=§cﬂ,|a'> (22)

i} :
a

|

We then have

|oe,t0 = 0;t>—exp(%m)‘a,tn =0)

Sy exp| 2 @3

In other words, the expansion coefficient changes with time as

a'

C.(t=0)>C.(t)=C, (1=0) exp (‘ffa"fj (24)

121



with its modulus unchanged.

A special case of interest is where the initial state happens to be one of {\a')} itself.

We have
.t ,=0)=|a’) 25)

and at a later time
\a,rG=0;r)=|a'>exp(_i§f*”] (26)

So if the system is initially a simultaneous eigenstate of A and H, it remains so at

—iE t
all times. The most that can happen is the phase modulation, exp( £ ] .Atisin

this sense that an observable compatible with H is a constant of motion.

6.5 Time Dependence of Expectation Values

It is instructive to study how the expectation value of an observable changes as a
function of time. Suppose that at t=0 the initial state is one of the Eigenstates of an
observable 4 that commutes with H.

We now look at the expectation value of some other observable B, which need not

commute with A nor with H. Because at a later time we have.

a',t,=0;t)=U(1,0)|a’) for the state/ket, 27)
(B)is given by
(B)=(a'|U"(£,0)BU(1,0)a’)
=<a’ exp[ iE"'t]B exp(_ iE,t J a'>
T h
~(d'|Bla") (28)

which is independent of t. So the expectation value of an observable taken with
respect to an energy Eigenstate does not change with time. For this reason an
energy Eigenstate is often referred to as a Stationary State.

The Situation is more interesting when the expectation value is taken with respect

to a “superposition “of energy Eigen states, or a non-stationary state.
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Suppose that initially we have

|1, =0)=2c, |a) (29)
We easily compute the expectation value of B to be (B )

(B) = [Z C.(d| exp(li‘"tﬂﬂ{zw c. exp(_ f"'tJ a'>}

=>3>C.C,(a'|Bla") exp*:_i(E -~k “')t} (30)

h

So this time the expectation value consists of oscillating terms whose angular
frequencies are determined by Bohr’s frequency condition.
E -E,
a) s — a da
aa h

Spin Precession:

€2))

We consider an extremely simple system which, however, illustrates the basic

; . . . |
formalism we have developed .We start with a Hamiltonian of a spin — system
2

. ; eh : : N
with magnetic moment subjected to an external magnetic field B:

2m ¢

e

H

—{i] S.B (e<0 for the election) (32)
mc
We take B to be a static, uniform magnetic field in the Z-direction. We can then

write H as

H= —(ﬁ}i 33)

m,c

Because S_and H differ just by a multipliable constant, they obviously commute.
The S_Eigen state are also energy Eigenstates, and the corresponding energy

Eigenvalues are

ehB

2m c

e

E =+

Jor §_ =+ (34)
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It is convenient to define w in such a way that the difference in the two energy

Eigen values isiw

|e|B
w=—

mc
€

(35)

All the information on time development is contained in the time evolution

operator

—iwS t
U(1.0)= exp— (36)

We apply this to the initial state. The base kets we must use in expanding the initial
kets are obviously the S_ Eigen kets,

+) and|—) ,which are also energy eigenkets.

Suppose that at t=0, the system is characterization by:

la)=C |+)+C |-) (37)
We see that the state ket at some later time is

‘a,tn :O;).‘>:C+ exp(%m)|+>+Cexp(_12wt]|—> (38)
Let us suppose that the initial ket‘a > represents the spin up (or, more precisely,
S, +) state, +> which means thatC =1, C =1 (39)

At a later time, it becomes
|1, = 05) = c_exp (%“”]M (40)

that is it is still in the spin-upstate, which is no surprise because this is a stationary

state.

Next, let us suppose that initially the system is in the S _+ state:

s, +)=C |+)+C |-) (41)
1
Evidently C =C =— (42)
T2
L It is straight forward to workout the probabilities for the system to be found

in the ‘S_r i) state at some later time t:
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‘(Sx i|a,t0 = 0;t>

[t (ol
ol (2]

cosz%tfor S + (43a)
) Sillz%t for S - (43b)

Even through the spin is initially in the positive x-direction, the magnetic field in
the Z-direction causes it to rotate; as a result we obtain a finite probability for
finding s, at some later time. The sum of the two probabilities is seen to be unity at

all times.

We can write for expectation value of as§_

-5 (5

h
=—cosat 44
2 (44)

So this quantity oscillates with an angular frequency corresponding to the

difference of the two energy Eigen values divided by 71 .

In a similar way

<S‘> = gsin ot (45)

and (S.)=0 (46)

Physically this means that the spin precesses in the xy plane

6.6 Illustrative Examples

Example 1: Define differentiation of operators with respect to time and deduce

that the time differentiation of an operator f with respect to time is given by
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Sol. The derivative f of a quantity f is defined as the quantity whose mean

value is equal to the derivative , with respect to time ,of the mean value f Thus

we have the definition

f=f
Starting from this definition, it is easy to obtain an expression for the quantum-

mechanical operator f corresponding to the quantity f :
- = d i

= = — * d
f=r=—|v fvdg

—Iw wdq+J oy f“wdq+fwf qu

*

. dy 0O . ; ; . ;
Substituting for a—tj , a—"’; their expressions according to Schrodinger’s equation:

f=[w *%wdq - %f(ﬁ’*w*)fwdq —éjw*f(ﬁw)dq
Since the operator H is Hermitian, we have

[(e°y")(Jw)dg = [w Hfwdg

Thus fT:J.I// (Z+ .Hf——fH]wdq

Since, by the definition of mean values } = I v f‘l//dq , therefore

': af

f=2ok (ffH)

Example 2: Prove the relation on = °F, ;
aﬂi nn al

the Hamiltonian H (and therefore the energy eigenvalues £ ) depends.

Sol. It is proved as follows :
Differentiating the equation ([;T —E, )l//n =0with respect to A and then
multiplying on the left by , , we obtain
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o d .(0E, oH
v, (H —E,,)% =y, (a—;—a}/f”

On integration with respect to q , the left hand side gives zero, since

0
(- e

J- v, (H E ) w.dq the operator H being Hermitian.

The right hand side gives the required equation :

. OH
—y d
n aﬂ‘ W.’l q

n n

Eﬂ
O

8E 6H
6/1 EA .

6.7 The Schrodinger versus the Heisenberg Picture

The approach to quantum dynamics in which the time development is considered
by the time evolution operator that affects state kets ; this approach to quantum

dynamics is known as the Schrodinger picture.

There is another formulation of quantum dynamics where observables, rather than

state kets, vary with time; this second approach is known as the Heisenberg

Picture.,

In the Schrodinger picture the operators corresponding to observables likex, p_

S_and are fixed in time, while state kets vary with time.

In contrast ,in the Heisenberg picture the operators corresponding to observables

vary with time; the state kets are fixed, frozen so to speak, at what they were at ¢,.

It is convenient to set to in U (t,to) to zero for simplicity and work with U(t),

which is defined by

Ult.t, =0)= U(r) = exp[%m)
We define the Heisenberg Picture observable by
A" (1) =U" (1) AU (1)
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where the superscripts H and S stand for Heisenberg and Schrodinger respectively

At t=0, the Heisenberg Picture observables and the corresponding Schrodinger
respectively observables coincide.

A" (0)= A (48)

The state kets also consider between the two pictures at t=0; at later t the

Heisenberg picture state ket is frozen to what it was at t=0:
|a,t{) = O;t}ﬁ = |a,t0 :0>
Independent of t. This is in contrast with the Schrodinger- picture state ket
o1, =03) =u(t)|at,t, = 0) (49)

6.8 The Heisenberg Equation of Motion

We now derive the fundamental equation of motion in the Heisenberg picture.
We assume that 4" does not depend explicitly on time

Using A" (¢)=U" () 4°U(¢) (50)
We obtain by differentiating (50) with respect to t:

4 g 29U gy 1y g1V
dt ot ot

= —%U“)HUU*A(S’U + %U*A(S’UU "Hu
1 1

=%[A“”,U*HU]
1

Where we have used

ou 1

- HU,
ot ih

and GL = lU+H
ot ih

We define ) =U"HU ,
but U and H commute; as aresult U'HU = H
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1 :
So, we can write iA(H) = _—[A(”) ,H]
dt ih

This equation is known as the Heisenberg equation of motion.

6.9 Self Learning Exercise

Q.1 Deduce the equation of continuity using Schrodinger’s equation :

% +div;f =0
ot

Q.2 Consider a one-dimensional simple Harmonic oscillator.

. a } /mw( zpj
Using =
a’ 2h mw
and a|n>:\/;‘n—1>
a+|n>:\/n+l|n+l>

Evaluate<n11x|n>,<m‘p|n> <m‘ X, p}}n <m’x )n>and <m‘P ‘ >

6.10 Applications of the Heisenberg equation of motion:
Ehrenfest theorem

Apply the Heisenberg equation of motion to a free particle of mass m. The
Hamiltonian is
p 1 (
H = p.+pP.+D. )
2m  2m
dp, 1
D p H]=0
dt  2h
Thus for a free particle, the momentum operator is a constant of motion.
We now add potential V(J_c') to our earlier free particle Hamiltonian

2

p o
H=2 17

-tV (F)

Heisenberg equation of motion gives
a =l U
e o S v
ar in|
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(51)
On the other hand, we see that
dx,
%= [ H]
dt ih
1 p?" 1 5
= — _,—’ = x., ;
ih|:x' 2m} i P
2h 0O 2)
. - A~ \P
2mih dp,
dx, 1 ,
i Ty =4
dt 2m P m

Substituting (51), we find

d>x
dt’

This is known as Ehrenfest theorem

m——r—=-VV (%)

6.11 Illustrative Examples

Example 3: Show that in quantum mechanics, the time dependence of the

expectation value of a dynamical variable q can be expressed as

where Q 1s the operator corresponding to q and, [FI,Q] is the commutator bracket
of Hamiltonian operator with Q.

Sol. Expectation Value of q
<q>:j‘P*Q‘Pdr, (52)

where Q is operator of dynamical variable q. Because W is a function of time, the

expectation value q is also in general, a function of time.
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d o o0 ~ 0¥
—<g>=|| —O¥Y+¥Y*—=¥Y+¥*Q— |d
T I( Q a ° ﬁtJ ’

The middle term is zero except when Q involves time explicitly. Using the
Schrodinger equation,

1}‘18—?: HY
ot

and its complex conjugate is given by,

FY
—ih o =HY*

we have

A

d i A i 80
— =—[(H¥*QY - ¥ *Q(HY)|d YExE_=Yd
L <a>=—[(APNQ QUiw)de +| —Wdr

Since H is a Hermitian operator*, eq. (2) becomes
_ « Q
—<q> jw (HO - QH)‘Pdr+E

We define (HQ-QI) by the name commutator bracket of H, Q and it is given
the notation. [H,Q].

Thus finally

Example 4: Find the acceleration operator vand deduce the Newton’s equation in

quantum mechanics



my =-VU

6.12 Summary

We have studied time evolution operator and found the time development of wave
function in the form of Schrodinger’s wave equation. In Heisenberg’s picture the
state vectors remain fixed and dynamical variables vary with time. This picture is

convenient when we compare a quantum analogue with that of classical physical

system.
6.13 Glossary
J.w*/ﬂlt//d 4
Expectation Value: expectation value of quantity A is <A> = -
[v'yar

Commutator Bracket: [;1, B] = AB - BA

6.14 Answers to Self Learning Exercise

Ans.1: We know that the integral j|1// |2d V', taken over some finite volume V is the
probability of finding the particle in this volume.

We calculate the derivative of this probability with respect to time.”

d g g oy .ow
L itwfav =y 2ty 2 ay
mld I(W a ar]

= éj(wﬁ*w* —ly*[;’w)dV
Substituting here

H=H' =—£A+U(x,y,z)
2m

and using the identity
WAy *—y * Ay = div(yVy *—y * V)
We obtain

% [llav =—[divjav
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where }denotes the vector

- ih
= (yVy ¥y *V
J=o Wy -y V)

1 . .
=5 (Wp Yy py)

The integral of div:i can be transformed by Gauss’s theorem into an integral over
the closed surface which bounds the volume V:

d 2 S
EJM av =—¢j.ds
=~ divjav
The vector }'and the probability density ||/J|2 satisfy the equation
0 2 L
aﬂlﬂ +divj=0

which is equation of continuity

6.15 Exercise

Q.1 Prove the relation involving velocity operator and momentum operator of a

particle of mass m
O N
v—v—E[Hr—rH]

Q.2 Write the time dependent Schrodinger equation for a free particle in the

momentum space and obtain the form of the wave function.

Q.3 Consider a particle of mass m subjected to a one-dimensional potential of the

following form

- ;kx2 forx>0

o forx<0

(1) What is the ground state energy

(11) What is the expectation value <x2> for the ground state?
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Q.4 An electron is subjected to a uniform, time-independent magnetic field of

strength B is the positive Z-direction. At t=0 the electron is known to be in an

eigenstate of S.n with eigen VaIueE, where n 1s a unit vector, lying in the

xz-plane, that makes an angle f with the Z-axis.

h
()Obtain the probability for finding the electron in the S, =Estate as a

function of time.
(ii)Find the expectation value of S as a function of time.
Q.5 Deduce Heisenberg form of equation of motion.

Q.6 Distinguish between Heisenberg picture and Schrodinger picture.

Q.7 Show that the matrix elements of a Heisenberg operator 13H in the energy

representation are given by :
exp |:ﬁ (En - Em )ti| (ﬁs)11m

where F, is the same operator in the Schrédinger picture.

6.16 Answers to Exercise

n 2

Ans.1: Using ag=2 , U(x,y,2)
2m

We get ;zﬁ.h[pz;—;pz]

i an 0 (1
= M{(—zmﬁ(p )}

h2~£

- 2mh m

Ans.2: The Schrodinger equation in the momentum space is :

in2P@:0 _ P g0 1

ot 2m
ob  —ip’
—=——®(p,t
ot 2hm ®.0
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4o _ —ip’
® 2im

2

—ip°t

2hm

dt

Integrating, In® = +Constant

D(p, t)=Aexp it where A is constant.
2hm
Whent=0, ®(p, 0) = A. Thus
—ip’t
®mo=®mmm4gij
hm

which is the form of wave function in momentum space.

Ans.7: Let |1,f/i >, 1=1, 2..... be the eigenvectors of Hamiltonian A , therefore

Hly,)=E.|v.)- (1)
in (ia) 1
I—EHt+[£H] 2—!+---1|wm>

i i Y
:{1 _EEmt_i_[EEmj §+:||Wm>

—iHt/h

Hence ¢ ’t//m ) -

~(in)Em
=€ ) t Wm) ?
Using eq. (1). Similarly we have
i/m) A i/h)Ep
<Wnle( ) l:e( l<lt”n 2

Because an operator operates on a bra vector on the left. So the matrix elements of

Heisenberg operator F,; are

(E-l)m :<l//n El ’Wm)
:<'//n e(ifﬁ}ﬁltﬁse—(ifh)i:!t V/m>
:e(i/ﬁ)(En—Em)l <[1Un 1‘_‘73 Wm>

_ L GR(Eq—Ep)t /T
=& (FS)nm

In the H -representation or energy representation.
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UNIT -7

Simple Harmonic Oscillator ,

Creation and Annihilation Operators

Structure of the Unit
7.0 Objectives

71 Introduction

7.2 Creation and Annihilation Operators
7.3 Illustrative Examples

7.3 Linear Harmonic Oscillator

7.5  Illustrative Examples

7.6  The uncertainty product

7.7  The number operator

7.8 Self Learning Exercise

7.9  Illustrative Examples

7.10  Summary

7.11  Glossary

7.12  Answers to Self Learning Exercise
7.13  Exercise

7.14  Answers to Exercise

References and Suggested Readings

7.0 Objectives

In this unit our objectives are to introduce an operator formalism that has wide
spread applications in quantum mechanics .We shall use this formalism to find the

eigenvalues and eigen functions of simple harmonic oscillator.
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7.1 Introduction

An important problem in quantum mechanics is that of simple harmonic oscillator.
This problem can be used to illustrate the basic concepts and methods in quantum
mechanics. It has applications in a variety of branches of modern physics-
molecular spectroscopy, solid state physics, quantum field theory, quantum optics,
quantum statistical mechanics and so forth. Although understanding of the
properties of quantum mechanical oscillators is insensible for any serious student
of modern physics. To solve the problem of eigenvalues and eigenfunctions of
harmonic oscillator it is convenient to define two non Hermitian operators known
as the annihilation operator and the creation operator, respectively. We shall solve
the problem of Simple harmonic oscillator using the formalism of annihilation and

creation operator.

7.2 Creation and Annihilation Operators

In the following we describe an operator formalism that has widespread
applications in quantum mechanics, notably in dealing with harmonic oscillators
and in describing many particle systems.

We begin by formulating and solving the following simple problem: Suppose an
operator a satisfies. [a, a+]: 1 (1)
The problem is to find the Eigenvalues of the Hermitian operatorsa”a, and to

relate the Eigen vectors.

(Note: @ denotes the Hermitian conjugate of a, and [A,B]is, of course, the
commutator AB-BA.

> We first note that, if |a) is a normalized Eigenvector with
a‘ala)=ala) (2)
Then o = <a ’a+a|a> = Ha’a)Hz >0 (3)
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That is, the Eigenvalues are all real and non-negative.
»  Using the identity[4B, C]|= A[B,C]+[A4,C|B we note

[a*a,a] =[a,ala = -a 4)
and [a+a,a+]:a+[a,a+]:a+ (3)
or, equivalent by

(a°a)a=ala’a~1) (4)

(@a)a =a (a"a+1) (5)
> From eq. (4) we have, for an Eigenvector|a)

(a*a)a’a)za (a*a—l}a>:a (a—]]a>z(a—1)a|a> (6)
Therefore a|a> is an Eigen vector with Eigen valuea — 1, unless a|a> =0.

Similarly a*|a)is an Eigen vector with Eigen value (c+1), unlessa* la)=0
»  The norm ofdle) is found form
Jale| = {a|a'ale) = (ala) =
or [ala] = Ve )
Similarly,

| =~ +1 @
»  Now, suppose that a"|a) # 0 for all n, they by repeated application of (6),

a"|a> is an eigen vector ofa’a with Eigen valuea —n .

This contradicts eq. (3), because a —n < 0for sufficiently large n. therefore we
must have a”‘a) # Obuta"+'|a> =0

For some non-negative integer n.
a n ‘ a>
k]

a —1. Then fromeq. (7) and (9) V& —n = Ha‘ a— rz)” =0 and thereforecx = n

Let|a—n>=

, so that |a - n)is a normalized Eigenvector with Eigen value

This shows that the Eigenvalues of @@ must be non-negative integers, ad that
O) such thata| O> =0

there is a “ground State”
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> By repeatedly applyinga’ to the ground state we see that (a+)w0> has the

Eigen value n, and because of Eq. (8), it is never zero. Thus the Eigen values of
a'aare0,1,2,3...

» If | n) 1s a normalized Eigenvector with Eigenvalue n, then, from eq (8)

1
|n - I> = (]a n> 1s a normalized Eigenvector with Eigenvalue n-1

Jn
1
n—1>:~\/—;a a

So applyinga+to|n - 1> gives us back|s) (with a factor), rather than some other

n) = n|m)

Alsoa”

state with Eigen value n.

» We may then construct the Eigenstates ofa” a as follows:
First we find a state | 0> such thata ‘ 0> =0 (11)
Then we define

[1)=a’|0);

and in general |n> = T(cf )”
n!

(Note that we could have included arbitrary phase factor in the definition 0f‘n>,

our convention here is to make them unity).

»  With this definition, they|r) are orthonormal and satisfy
a+|n>:\/n+l|n+1> (13)
a|n)=+/n|n-1) (14)

a+a|n>=n‘n) (15)

140



» The operators @ and a are called “raising” and “lowering” operators

respectively, a’a will be interpreted as the observable representing the number of

particles of a certain kind, in which casea” and a are called “Creation” and

“Annihilation” operators, or “emission”and “absorption” operators.

> Equations (13) and (14) may be expressed in terms of matrix elements

(m|a*|n)=~/n+15,,,, (13")
(m’a\n) = \/;5”1’"_1 (14')

a+

Note that we can representa”’ as @ ora’

7.3 Hlustrative Examples

Example 1: Suppose a operator a satisfies

[a,cf] =1 (1)
Then find the eigen values of the Hermitian operator a”a .Also find eigen vectors
ofa‘a.
{Note that a" denotes the Hermitian conjugate of @, and [a, a*] 1s, of course the
commutator aa’' —a'a}.
Sol.  We first note that, if |a> 1s a normalized eigenvector with

a‘ala)=a|a) 2)
Then a :<a‘a+a|a>:Ha|a>Hz >0 (3)
That is, the eigenvalues are all real and nonnegative.

Using the identity [AB,C]= A[B,C]+[A,C]B, we observe that

|a*a,a]=]a".ala=-a (4)

|aa,a” |=a"|a,a" |=a (5)
Or, equivalently

(a*a)a=a(a*,a-1) (6)

(a*a)a’ =a(a’a+1) (7
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From (6) we have, for an eigenvector |a),
(a'a)ala)=ala'a-1]|a)=a(a-1)|a)=(a-1)a|a) (8)

Therefore a|a)is an eigenvector with eigenvalue (e —1), unless a|a)=0.

Similarly " |er)is an eigenvector with eigenvalue with (e +1), unless a” |a) =0.

The norm of a|at ) is found from

Jole)]" =
o  dala)=Va ©)
a'la)=a+1 (10)

Now, suppose that a"|er) # 0 for all n. Then by repeated application of (8); a"|a)

a‘a a>:a(a|a>:a

similarly

in an eigenvector of a"a with eigenvalue o —n . This contradicts Eq. (3), because

o — n < 0 for sufficiently large n. Therefore we must have
a'lay=0  but  a"'|a)=0 (11)

For some nonnegative integer 7.

n
Let ’a —n> = M, so that |a - n)is a normalized eigenvector with eigenvalue

")

a—n.
Then from (9) and (11)

o —n :”a|a—n>”:0

And therefore o =n. This shows that the eigenvalues ¢’a must be nonnegative

integers, and that there is a “ground state” 0) such that

al0)y=0 (12)

By repeatedly applying a'to the ground state we see that (a+)”‘0>has the

eigenvalue n, and because of Eq. (10), it is never zero.
Thus the eigenvalues of a*a are 0,1,2,3.
> If |n> 1s a normalized eigenvector with eigenvalue n.

then

142



|n—1>= =

Thus a|n>:\/;|
Also &t |n—1 :a+a|n)=n|n):\/"
soa”|n—1) I T n|n).

So applying a” to |n — l> gives us back |n> (within a factor), rather than some other

=
|
—_
Nap®

state with eigenvalue |n> ‘
We may construct the eigenstates of ¢ a as follows :
First we find a state |0)such that
al0)=0 (13)
Then we define

1

)= 1= (a0}

And in general |n> = L(a+ )” |0) (14)

In!

The |n) are orthonormal and satisfy
a*‘n>=\/n+l|n+l> (15)
n)=~In|n-1) (16)

a‘a|n)=n|n) (17)

1) =a*|0):[2

a

7.4 Linear Harmonic Oscillator

Hamiltonian of one dimensional harmonic oscillator

2

g=2 Lo (16)
2m 2
> x and p are position and momentum operators for the particle and satisfy
[x,p]=in (17)

Our task into find the Eigen values and Eigen states of H.
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»  Define|a =%{ /mw \/_pJ (18)

> Because x and p are Hermitian it follows that

y 1 mw . |
a _\/5(*/ > X l\/mwhpj (19)

From (17) we obtain [a,a*] =1 (20)
| h a+a’
It follows |x =, [— 21
mw \/E ( )
mw 5 (22)

We get, for the Hamiltonian

fiw 1
H=—/ |a'a+aa" |=hw| a'a+— 23
2 (a'aaa’)=mw{a'a+) @)

Thus, the Eigen states of H are those ofa'a

It now follows: |H ’ n) = (n + %) hw‘ n) (24)

The energy levels are thus|E = (n + %J hw

Eigen states are given by (11) and (12)

We can easily obtain the wavefunctions ¢, (x) = <x I n> follows

0=d[0 >\/; ( +m—pr|O> @5)

Applying <x| and noticing that <x ’ p‘qo) = —ih:;(x’q@ we get

mw h d
0= ,/E(x +%$J<x]0> 6)

Solving it, we get
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mw 2

(x|0>:‘4e[5;}

mw

1=Mﬁe“}a

mh
mw

A

1

- A(Mj
B h

The phase @ of A is arbitrary, and we set is equal to zero.

A
Then A= (M)
nh

Y (me)e
;@szm)euJ 7)

For the other states we apply a*

<x|n> = ﬁ(ﬂ (a+ )" ‘0><x

()

o)
(28)

We have
o= (5 (- ) o

1 [ mw % mw ) Hod\ _[%}1
) T dx ’ 29
M(”hJ(Zhj[x mwdee (29)

7.5 Illustrative Examples
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Example 2: Evaluate (0|x*|0), where x is the position operator of simple

harmonic oscillator,

h a+a’
Sol. x=,—
\ mw 2

Therefore

(o I0) = ol(a+a*) 0} 52 |

2mw

0> state 1s the ground state of simple harmonic oscillator.

: 4 . . -
Expanding (a + a+) gives is 16 terms, the only terms giving a non zero
expectation value are those with @’s and two a ™ ’s :

(0f(a+a")"|0)

:@

a'aaa+a‘aa’a+aaaa +aa’ata+aaaa +aaa a’

0)
=0+0+0+0+1+2
=3

= (0[x*[0) :[LZWT 3= 3(%}2

Example 3: Consider one-dimensional harmonic oscillator which has a

Hamiltonian of the form :
1 mw’
H=—p’+
2m P 2

Where x and p are the position and momentum operators and satisfy

[x,p] =1ih

Define a—L ‘ﬂﬂx—l-i#p and cH——L mex—i ! p
2V 7 N mwh 2 h Jmwh

(Because x and p are Hermitian)

2
X

(1) FindH in terms ofaand a”
(2)  Find eigenvalues of H

3) Find ground state wave-function

Sol. Expressing x and p in terms of a and a" , we have
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e ia+a+
\ mw \/E

=~ mwh a—a"
P 2

Substituting for x and p in the Hamiltonian

H :%(aﬁa +aa+)

:hTW(fa +a’a +1)

= hw[a"a + lJ
2

Thus , the eigenstates of H are those of a"a .

H|n) = hw[a+a+%)|n>
(3 el

1
The energy levels are thus (n + 5) hw.

Also 0=a|0)= /%(Hi.p)m)
mw

Applying (x| and noticing that (x| p|¢> = —ih%(ﬂgﬁ), we get

0- %(Hii](xw)

mw dx
(Where x 1s now a number rather than an operator)

Solving the above differential equation, we get

i lmw d mw
p— EEMO)——"\/EMO)

o A0 fmw 2m mw
<x‘0> 2h mw h
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2
mwx

or 1r1(x|0>=— o

+1n A4

9
mwx~

. (x]|0)=Ae " ,where A is a constant. Normalization requires

2 i
1=(0]0) = [ (x|0)(x[0)dx=|d| [e > dx

—00

o0

-l |
mw

1

Thus A= [MT
h

7.6 The Uncertainty Product

We calculate the uncertainty product Ax Ap for the harmonic oscillator states. The
uncertainties Ax and Ap are given by :

and Ap=[(p2)_<p)2]
where
()=(alxin), ()=(nl ")
(py=(nlpIn), (p*)=(n|p*|n)

represent the expectation values of the operators in the n" eigenstate of the

oscillator. Now,
h 1/2
x= [—J (a"+a)
2uw

p=i(422) @ -a

1/2
Thus <x>:<n|x|n>:(2i <n|a++a|n>

i)
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_ijJm[ﬁ;ﬁ@un+n+viﬁwn—Q]
0

{ (n \ m) =0, }

and
h + o+ + +

<x2>=(n|x2\n>=—a)[<n|a a |n>+(n\a a\n>+<n|aa |n>+(n|aa|n)}
=2,uico[0+n+(n+l)+0]
e
2ue| 2

Similarly
(p)=(n|p|n)=0and <p2>=,ua)h(n+%)

This gives

AxAp =(n +%)h

The minimum value (= %h) occurring for the ground state.

7.7 The Number Operator

Consider the operator

_ +
N,=a a

H=[Nop +l)hw
2

Since H|n>=(n+%}hwn>

We have
N, |n> =n| n)
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Hence | n) are also the eigenkets of N, the corresponding eigenvalues being n and

since n takes the values 0, 1, 2,.......... , the operator N, 1s called the number

operator. For this reason, | n) are often referred to as number states. Obviously

<m | N,y |n> =no,,

7.8 Self Learning Exercise

Q1. Find the values of (m|a+ |n> and (m|a‘n> .
Q.2 Evaluate (nr.|(a+af')4 |n>

Q.3 In the linear harmonic oscillator problem, let |n) represent the set of

orthonormal eigenkets of H.

(a) Evaluate (4| x| 6), (5 Ip| 6)

(b) Are |0}, |1) and |2) eigenkets of a ?
(¢) Evaluate (i) H [a"a"|0) ] (ii) H [ aal|n)]
@ 1f |w(t ~0)) :%n 1)+ 3)]’

Then what would be |w (1))

7.9 Illustrative Examples

Example 4: For Linear harmonic Oscillator obtain the value of <3 | x| 2>

sol. (3| [2) = (ﬁf <3 (a+a’) \2)

3/2
h 3 2 3+

z(z— (3la’+d’a" +aa‘a+aa a' +a'aa+a'aa +a a’a+a'a a )|2)
maw

Since a lowers n by one unit and a raises it by one unit and we want to go up by
one unit from n = 2 to n = 3, the only nonzero contribution comes from
aaa,aaaand aaa . Now

a+a_+a| 2> — 2]/2 a+a+ | 1>: 21/.’2.'/_7a+ | 2> = 2[/221/23.’/2| 3>

aa+a+ | 2> :31/2 aa+ ’ 3>: 3].""241/2a | 4) = 3!/241/24”2 ‘ 3>
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a‘aa”|2)=3"a'a|3)=3""N|3)=3"3|3)
So that

3/2

(3 |} |2> =[27’ ] _[2(3”2)+4(3”2)+3(3”3)]

2u0
Example 5: Using equations a'|n)=./(n+1)|n+1) and|n)= QM) evaluate
n!
)
Write the matrices representing @ and @ and show that they are not Hermitian.

Sol. (mla|n)=vn(m[n-1)=ns,
and (m|5|n):x/m<m\n+1>:\/m5

m.n+l1

a+

the matrix elements (m’a|n> and <m

Thus the matrices which represent a and a are

01 0 0 0
00 2 0 0
a={0 0 0 3 0
00 0 0 4 ..
and
0 0 0 00
Joo 0 0o
a={0 V2 0 0 0
0 0 300

which are non Hermitian matrices

7.10 Summary

The operatorsa” and a are called “raising” and “lowering” operators

srespectively, because they raise and lower the eigenvalues of a ", a.

a”a will be interpreted as the observable representing the number of particles of a

certain kind ,in which case a'and a are called ‘Creation ’and ‘Annilhilation

151




‘operators. As an application of this formalism we have solved the simple
harmonic oscillator problem and found its eigenvalues and eigenfunctions. This

formalism is highly useful in quantum field theory.

7.11 Glossary

a : Annihilation operator
a” : Creation operator
@ a: Number operator

[a, a+] =1: Commutator relation

7.12 Answers to Self Learning Exercise
Ans.1: (m|a*|n)=n+1(m|n+1)
=n+16,,,
and (m|a|n)=/n{m|n-1)=ns, |
Ans.2:

(n|(a+a+)4|n> =<n

=n(n—=D+n’n(n-Dun+D)+n+1)>* +n+D(n+2)

a'a'aa+a‘'aata+a‘aaa’ +aa’a'a+aa‘aa’ +aaa‘a’ |n)

=6n°+6n+3

Ans.3: (b) Only |0> is an eigenket of a (c)(ii)\/‘n(n—l)(n—g)haﬂ n>

7.13 Exercise

Q.1 Show that

1/2
(LJ vn+1 form=n+1

2uw

h 1/2
(m[x|n)= 2—J Jn o form=n-1
o)

otherwise
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1/2
1(#)‘17@] Vn+l form=n+1

1/2
<m|p\n>= _{p!‘;w} Jn  form=n-1

0 otherwise

Write the matrices representing x and p show that they are both Hermitian.

Q.2 Show that

2
<n|%,uco2x2 | n> = <n | §—|n>
u

Implying that the expectation values of the potential and kinetic energies are
equal
Q.3 (a) Show that

B (n+1)(n+2) for m=n+2
2uw
h
. ——(2n+1) form=n
(m|x“|n>: 2uw
A n(n—1) form=n-2
2uw
0 otherwise

(b) Similarly evaluate <m Ip” | n) and show that

n> = [n + l]haﬂm“
2

Q.4 In the linear harmonic oscillator problem, let |n) represent the set of

2 I )
m p—+—,uoe)'x2
2u 2

orthonormal eigenkets of H.
(a) Evaluate (4 | x7 | 6>, <5 Ip?| 6>
(b) Are [0), [1) and |2) eigenkets of a ?
(c) Evaluate (i) H [ a"a"|0) ] (i) H [aa|n) ]

(d) If |y (t=0)) =L2[| 1)+i]3)]
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Q.5 Show that

ixti =) (v +2+3)

Then what would be |y (1))
7.14 Answers to Exercise

Ans.4: (b) Only |0) is an eigenket ofa  (¢)(ii)/n(n— 1)(n—§)hw| n)

References and Suggested Readings

. J. ). Sakurai, Modern Quantum Mechanics (2nd Edition), Addison-Wesley;2010
2. Quantum Mechanics “Theory and Applications” by Ajoy Ghatak &
S.Lokanathan,Fourth Edition,Macmillan India Ltd,1999
3. Principles Of Quantum Mechanics by R.Shankar , Second Edition ,Springer

2012
4. Eugen Merzbacher ,Quantum Mechanics ,third Edition ,John Wiley & Sons

(Asia) Pte Ltd. 1999
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UNIT-8
Schrodinger’s Equation

Continuity Equation, Potential Well

Structure of the Unit
8.0 Objectives

8.1 Introduction

8.2 Schrodinger Equation

8.3 Fundamental Properties of Schrodinger Equation
8.4 Probability Current Density

8.5 Illustrative Examples

8.6 Self Learning Exercise-I

8.7 Potential Well

8.8 Self Learning Exercise-11

8.9 Summary

8.10 Glossary

8.11 Answers to Self Learning Exercises
8.12 Exercise

8.13 Answers to Exercise

References and Suggested Readings
8.0 Objectives

This unit constitutes the basic concepts related to Schrodinger equation and

probability current density. One can learn the properties of Schrodinger equation.

Applications of boundary conditions is introduced in the potential well problem.

8.1 Introduction

Schrodinger equation is the milestone in the whole mathematical formalism of

quantum mechanics. In this unit we discuss the Schrodinger equation and its
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properties. We derive the equation of continuity for probability current density.
Finally we study the potential well problem qualitatively.

8.2 Schrodinger Equation

Wave equation for a particle in an external field

ot 2m (8.1)

Above equation is called Schrodinger’s equation which was obtained by
Schrodinger in 1926.
Here y is the wavefunction that describes the state of quantum mechanical system.

U =U(F,t)1s the potential energy of the particle in the external field.

2 2 2
0 , é + 2 — =Laplacian Operator
ox® oy" 0z

Eq.(8.1) is the basic equation of nonrelativistic quantum mechanics. It must be
remembered that this equation cannot be derived. Agreement between predictions
and experiment gives justification for eq.(8.1). Schrodinger equation i1s a

fundamental one in quantum mechanics.

Eq.(8.1) is known as time dependent Schrodinger equation. Eq.(8.1) can be

written as

where |H =———V~ +U| is the Hamiltonian operator

The Time Independent Schrodinger Equation & Stationary States:-

There are many problems in which the potential energy of the particle does not

depend on the time i.e. U(x,y,z,¢t)=U(x,y,z2)

In order to solve the Schrodinger equation ,we use the method of separation of

variables.
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w(7,0) =y (F)p(t) (8.2)

Then Schrodinger equation becomes

ih— [l//(f’)cf’(t)] [w (MO + Uy (F)d(0)

fhw(f)%qs(r) =—¢(r)h—v2w(f)+0w(f)¢(r)

1 1w
'h——¢( )———h—V w(r)+U (8.3)
¢(1) dt v (F) 2m
Here left hand side depends only on time ¢ whereas right hand side only on position
7. Therefore we have set them equal to a constant E that is equal to the total

energy of the particle.
From eq.(8.3) we have

mﬂ( )=E
or @ = —iEdt
(1) h

Ing=—i Et +InC where C is an arbitrary constant.

= cd ) (8.4)

From eq.(8.3) ,we have

1 n
——— ? +U=E
vy zm 'O
or Vzw(F)+i—T(E—U)1;/(F):O (8.5)

Eq.(8.5) is the time independent Schrodinger equation.

One dimensional time independent Schrodinger equation is given by

d’ v 2m
dx’ h2

“(E-U)y =0 (8.6)
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One dimensional time independent Schrodinger equation for a free particle is

v 2m
iven b +—FEy =0 8.7
g y PR (8.7)
Solution of the above equation has finite value in all space for any positive value of
the energy E.
d2 2
dx‘f +%w -0 (8.8)
2mE
where p =

hQ
Solutions of the eq.(8.8) will be of the form

ig.r

e’ (8.9)
Here p can take any real value between —o to oo.

From eq.(8.2),(8.4) and( 8.9) the complete wave function y (x,#) of such stationary
states are

P, _E
w(x,t) = constant. e” e " (8.10)
For three dimensional solution
r o _iE
v (F,t)=constant.e " e " (8.11)
Eq.(8.11) can be written as
y(7.0)=y(Fe ’ (8.12)

Above wave function y (7,f)describes a plane wave in which the particle has a
definite momentum p and energy E.

From eq.(8.12) ,it is clear v (7,0 (7,t) =y (F )y (¥)

Therefore probability density is constant in time and wavefunctions of the form

(8.11) represents the stationary state.

By using p = hk eq.(8.10),(8.11) can be written as
_IE

. !
v (x,t) = constant. ee "

158



il
-t

w(7,f) = constant. &* "¢ "

8.3 Fundamental Properties of Schrodinger Equation

The state of a quantum mechanical system is described by wavefunction v (7,¢)
.We will discuss the conditions that must be satisfied by solutions of Schrodinger

equation.

(i) Wavefunction  (7,t)must be single valued .

(i1) Wavefunction w (7,t)must be finite .

(iii) Wavefunction y (7,t) must be continuous in all space.

(iv) Since term 7 is present in the Schrodinger equation , therefore, in general ,its
solution will be complex.

(v) Derivative of wavefunction must remain continuous except when potential

energy U becomes infinite 1.e. if potential U makes a sudden jump of infinite

magnitude then a—l’u(m one dimensional case) has a finite discontinuity
X

whereas y remains continuous. If potential energy U becomes infinite then
w must be zero in that region.

(vi)If potential energy U is finite ,then the wave function y must be finite in all
space because Il//|2 is the probability of finding the particle .Total probability
of finding the particle in the universe i1s one, therefore Iwzdr=1 or
(wly)=1
Above condition is called normalization condition for wavefunction. Here
dt is infinitesimal volume element. Thus finiteness of |t//‘2 implies that
w(?,t)—)() as ¥ — .

In classical mechanics, it is impossible for a particle to penetrate into a region
where U > E ,but in quantum mechanics, solution of Schrodinger equation

confirms the penetration of particle into the region where U > E .

(vii) y and its derivatives occur only linearly in the Schrodinger equation i.e.
every term having y or one of its derivatives in the first power only.
Therefore linear combination (superposition) of wavefunctions is also

solution of Schrodinger equation.
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If a given system has wavefunctions v, and y, corresponding to two states,

then linear combination ¢y, +c,y, also represents a state of the system.

Hence Schrodinger equation for a free particle also gives wave packet

{ px_Et
hoh

solutions

ie. y(x,t)= I a(p)e dp will also be a solution of Schrodinger
equation.
(viii)If a particle is moving in time independent potential U ,then wave equation
. ! . : - : 2 o e
describes stationary states in which probability density ‘ly| at every point rin

the space remains independent of time.
y(x,t)=y(x)e "
w (et =l ()
(ix) Schrodinger equation and admissibility conditions on wavefunctions give ,in

general, discrete energy spectrum for system(eigenvalue spectrum of energy).

8.4 Probability Current Density

A particle is described by wave function w(?,t) ,then probability density

P(7.0)=¥ (F.)¥ (7.0) =¥ (7.1)]

P(7,t)dt is the probability of finding the particle in volume element dv about its

position v at time t when large number of measurements made. Here volume

element dt = dxdydz

The probability of finding the particle in a certain volume (region) t of the space

is given by '[1;/ *wdt .Statistical interpretation of the normalized wavefunction

T

says that the probability integral _[ v *wdr must be equal to one i.e.

Allspace

_[ w wdr =1| Here all spatial integrations extend to over all space i.e.
All space

o o0 oo

IIJ'W*(F’t)W(f,T)dXddeZI .

—00 —00 —c0
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This statement holds for all the time, because the particle will certainly be found in

the universe. Thus

By Schrodinger equation, we shall verify the above statement. To study this, we

consider time dependent Schrodinger equation

Oy (F.t) W, - B
—t=-—V !
ih— { - +U(F) |w(7.t) (8.13)
It’s complex conjugate is given by
oy ()| - v @
ot | 2m
= —ihiw*(?',t): —h—2V2+U(F) w'(F.1) (8.14)
ot | 2m

Here potential energy U(F) is assumed to be reali.e. U (F) =U(F)

Multiplying eq.(8.13) by y" (7) from left, we get

2
lhw*a—l//:—h—y/*vzl//+[]y/*w (8.15)
ot 2m
Multiplying eq.(8.14) by l//(f') from left, we get
oy’ (7.t 2 . .
—ihwmz——wvzw +Uyy (8.16)
ot 2m

Subtracting eq. (8.16) from eq. (8.15)

- * 2
ih _v/* %—"tywaa—l’;} = —;%m(w'Vzw —yVy )+ U vy —yy )

AT
{‘-‘V(W'VW—Wu/')=V(w*Vw)—V(Ww*)
=Vy Vy +y Viy —VyVy —yViy =y Viy —yViy’

161



(W“’F%V( Vy -yVy’) {r-1=r}

o, o ih .
= —(wy )=—£—mV(Ww ~y'Vy)

0 i .
= E(W*)Jrv[z’ (wWy' -y vu/)}o

m

) . .
= +V.S=0
az(W)

= %‘j+v.§:0 (8.17)

= a—P+afiv§:0
ot

Here S (F ,1,‘) 1s called “probability current density” or probability flux.

= ih . . N S
Szzl—m(wvt;/ —y Vy/) and P(F,t) =y (F.t)y (F.1)

Eq. (8.17) is known as equation of continuity for probability that is analogous to

the equation of continuity in hydrodynamics and electrodynamics. Here symbol

J (F,t) can be used for § (F,t) and p for P, then equation of continuity takes the
form % +V.J=0
ot

Some Important points:

(i) Conservation of Probability

Integrating eq. (8.17), we get
J- oP

—dr+ VSdr=0 8.18
~ | (8.18)

All space All space

By Gauss divergence theorem
_‘-V.S’df = gSS.dZ
T A4

where volume 7 is bounded by closed surface A.

We can write eq.(8.18) as
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oP

—dt+ ¢ Sdd=0 (8.19)
All space ! All space
= ° I Pdr + cj‘J r,Lth,u l/er,u)dA 0
at All space All space

We have taken whole space i.e. for surface integral, we take surface at infinity

where 1 itself is zero, so second term in above integral becomes zero. We have

j Pdr =0

All space

ax

= J Pdt = constant
Allspace

i.e. probability of finding the particle in whole space is constant (conserved). Here
potential U must be real- valued if conservation of probability is to hold. If U is not

real then absorption of particle is possible in such complex potentials.
(ii) From eq. (8.17) we get
oP =

=-V.§
ot
Integrating over volume 7
Ia—Pdr = —IV.gdr
T at T
Using Gauss’s theorem
0 " 4
P(7,t)dr=—¢S(7,t).dA 8.20
) P dr=—pS(7.1) (8.20)

Here area A encloses the volume 7 . From eq.(8.20) it is obvious that outflow of
probability current density across the surface A is equal to rate of decrease in
probability in that volume 7 . In other words if the probability of finding a particle
in some region decreases, then the probability of finding the particle outside the
region increasing by the same amount. The change of probability arises because of
the change of w(? ,t)with time.

(iii) Probability current density

h ‘
S —Elm(w Vl//)
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We can verify this in the following way

Imaginary part of complex number is given by

&

Im(z):z;z
1
) Vi )= (v' Vi)
[m(wa/):(u/ '//)2[.(‘// ‘I/)
_WVy -y vy
2i
v Vy—yVy'
2i
|y -y |
- 2i
=é[WW*-w*VW]
. ih .
Here S=i(wa/ —l//Vy/)

h ‘
S8 = —Im(y/ Vt//)
m
(iv) Probability current density

S= Re(w*ﬁopl//)

. —ih :
where V.= —— V| =velocity operator
m

Let’s prove the above relation
Real part of y 'V, y is
=B

Re(y/'\";uply) = Re[u/’ . 'Vy/}

—=h o, o
= ;Re(w/ Vq/)
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| iy + (i V) {..Rezzﬂz*

m 2

m 2

_—_h_iw*Vt//—ki*y/"Vy/'}

m 2

_—h_iw*Vv/—iWw*}

ih * * P
=—1/|yWVy -y Vy |=8
o [w v -y w]
(v) Probability current density is zero corresponding to real wave function v .

"y =y for real wavefunction

- Ih * *
S=—|uvWy —ywV
zm[w v -y Vy ]
2m

(vi) Wave function v and its derivative Vi are continuous everywhere, so

equation of continuity holds at every point of the space

(vii) If V.S is zero for any state, then probability density |t,u|2 is constant with

time and such states are called stationary states.

8.5 Illustrative Examples

Examplel: What is the probability current density corresponding to plane wave

Et

w(x.t)=Ae"e "
Sol.1: For one dimensional case

o ih| oy oy
S=— -y *
2m [W ox W ax}

7 L el oL . . o5 _m
= l_ Ae.'lcre n__| A4 e—rk\e nl— A e—h’ne no_ Ael.he I
2m Ox Ox

= ﬁ‘:AA*ehh E(é’_fh ) _ A*Ae—ik.\- Qe(ﬁa‘)i|
2m ox ox
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in . : : .
= AA* ik —ik —ikv _A"'A —ikx ik (ikx)

g (k) (e ) - A e (i)™
=£AA*[—2ik]

2m

R

mn
S =1

ikt iEt

Note : Here wy” = Ade™e " A'e™e ™
= A4 = Al=p

In fluid mechanics current density is given by J = pvwhere v represents the
velocity of the fluid and p is the density of the fluid. In this example, a similar
analogy can be made by stating that probability is similar to the fluid that flows

hk - : ) _—
with velocity v=— at point (position) 7 and density of fluid at the point is
m

p(F). But it is suggestive not to make too much similar analogy with fluid
because, in quantum mechanics, simultaneous precision measurement of position

and velocity violate the Heisenberg uncertainty principle.

. . nmwxX ., : .
Example 2: A wavefunction v = AsmTemsts in a region 0 < x < L .Potential

is given by

{0 ; 0<x<L
V =

oo otherwise
Here n=1,2,3,4,.....
By normalization condition determine the constant A.

Sol. From normalization condition
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A’ L 2nIX
= |x——si =
2 2nm L |,
2 L
:>A— L—-0- L Sm2mrL L smzim0 =1
2L 2nw L 2nm L |,
AL
= =1
2
A=
L

8.6 Self Learning Exercise-I

Q.1 What is the value of the probability current density when the wave function is
real.
Q.2 Is the given wave function admissible?

A

7

N\

»
L

X

Q.3 What are stationary states ? Show that probability current density is constant

in time in these states.
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8.7 Potential Well

We consider a square well potential with finite walls. A particle of mass m is
moving inside the one dimensional potential well. Mathematically, potential
energy of the particle can be written as
U, ;x<-a (Region-I)
Ux)=490 ;—-a<x<a (Region-II)
U, ;x>a (Region-IIT)

U(x)
0
U, U
Region-I Region-II Region-II1
_____________ . _____________>
X
—a 0 a

We study the bound state of the particle i.e. E<U, .We can write time

independent Schrodinger equations in these three regions.

For Region -1 (x < —a)

d’y, 2 2m(E-U,) _

e g =0 (8.21)
2
N a;wzl Uy =),
X h
v,
=—2 rv=0 (8.22)

 2m(U,-E) "
where ¥ = T = positive

General solution of the above equation is

168




v, =Ade" + Be” (8.23)

We apply the boundary condition on the wavefunction that wavefunction must

remain finite.
If coefticient 4 is not zero ,then v/, (x) = c0asx — —o©

Therefore in order to obtain the well behaved wavefunction ,A must be zero.

Hence

v, = Be" (8.24)
For Region Il (-a < x<a)
Schrodinger equation

d’yv, 2m(E-0)
2 4 i
dx? K v

2
d—w;+ﬂ2w2 =0 where 8 = ‘/Zsz = positive
dx h

General solution of the above equation is

v, = Csin Bx+ Dcos fx (8.25)

0

where C and D are arbitrary constants.
For Region III (x > a)
Schrodinger equation

d2W3 2m(E—U0)
+ =
dx’ h’ Vs

2 —
= dd;3 —y’w, =0 wherey = Jm(UhL;E) = positive

General solution of the above equation is

0

v, =Fe ™ +Ge"”
If G 1s not zero ,theny, — o0 asx — x.
Therefore G must be zero for well behaved wavefunction. Hence
w,=Fe (8.26)

Thus wavefunction for different regions
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Be™ ; x<-a (Region-1)
w(x)=1Csinfx+Dcosfx ; —a<x<a (Region-II)
Fe ™ i x>a (Region-/II)

We apply the boundary conditions on wavefunction at x = —a

ie. V1 =V¥2 and d;;l = a":}l;
We get

Be ™ =—Csin fa+ Dcos Ba (8.27)
and yBe ™ = fCcos fa+ BDsin fa (8.28)
Now we apply the boundary conditions on wavefunction atx = a

Le. y, =y,and a;z’ = a;;:/;

Fe ™ =Csin fa+ Dcos fa (8.29)
and —y Fe ™ = fCcos fa— Dsin fa (8.30)
Adding and subtracting eq.(8.27)and (8.29),we get

(B+ F)e™ =2Dcos Ba (8.31)

and (F —B)e™ =2Csin Ba (8.32)
Adding and subtracting eq(8.28) & (8.30)

y(B-F)e™ =2FCcos fa (8.33)

andy(B+ F)e ™ =2pDsin fa (8.34)
From eq.(8.31&(8.34)

y = ftan fBa (8.35)
From eq(8.32)&(8.33)

—y = fcot fa (8.36)

Equations  (8.35) and(8.36) are transcendental equations. Solution of these
equations(8.35)& (8.36)can be obtained graphically. Graphical solution gives
certain discrete energy levels for one dimensional finite potential well. Then

We consider the special case in which U, — o (i.e. potential box).
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Graphically obtained condition gives
Ba= % where 1=1,2,3,4...

2mE ni

n’h’ n’h’
E= > = —  where L=2a
8m(2a)” 8m(L)

We get these energy levels of the particle same as in case of one dimensional

potential box.

8.8 Self Learning Exercise-II

Q.1 Define probability current density.
Q.2 A particle of mass m is moving inside the one dimensional potential box.

Potential is given by

{0 c0<x<a
V_

o0 otherwise

The normalised wavefunction of the particle at timez =0 is
Srtx

w(x,O):asinEﬁBsin*
a a

where a and £ are constants. Find

(1) (1)
(ii) Is this wavefunction y (x,?) represent stationary state?

Q.3 A wavefunction of a particle in one dimensional potential box(0 < x< L) is

given by w(x)= %sin% ,otherwise y(x)=0.Find the probability of

finding the particle in the region0 < x < ;

8.9 Summary

1. Schrodinger’s equation
0 n’
w7 gy Ly
2m
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2

H=- m V? +U = Hamiltonian operator
m

2. Time independent Schrodinger equation
2 — 2m o
Vi (F)+ ?(E ~U)y(F)=0

3. The complete wave function v (x,t) of stationary states are

; iE
ip. _IE,

v (x,t) = constant. eh'e

2

4. Probability density P(7,t)=¥"(7,t)¥ (F.t)= |‘P (F,t)‘

Probability current density S= 2:_?1 (l;/V v —w'Vy )
m

f;f +V.S=0 equation of continuity for probability

Normalization condition I _[ _[ v (F.0)y (7.t Jdxdydz =1

8.10 Glossary

o’ " o’ N o’
ot oy oz’

Probability density: v (7,t)y (F,t) =y (F)y (F)

Laplacian Operator: V’ =

8.11 Answers to Self Learning Exercises

Answers to Self Learning Exercise-1

Ans.1: Zero

Ans.2: No ,it is not continuous function.

Answers to Self Learning Exercise-11
ih

Ans.1: S =2—(I/JVW* —W*Vl//)

m

172



. . mx . Smx
Ans.2: (i) w(x,f)=asin—e " + fsin—-e "
a a

h _ ond B,= 2511“2
Ema Ema

where E, =

(ii) No, becausey " (x,1)y (x,t) is not independent of time

L L

Ans.3: j'de = jl//*t//dx
0 0

8.12 Exercise

Section A:Very Short Answer Type Questions

Q.1 Is the given wave function admissible?
A

7

v

Q.2 “Wavefunction is always complex quantity in quantum mechanics.”Is this

statement true?

Section B : Short Answer Type Questions

Q.3 Deduce the time independent Schrodinger equation from time dependent

Schrodinger equation.
|
Q.4 Assume = o

[ where ris distance from z axis in cylindrical coordinates.

Calculate the probability current density.
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Q.5 Give the probability interpretation of the wavefunction and show that the

probability density p i.e. |¥ |* and probability current density S satisfy the

0 5
continuity equation a—f +V.5=0.

Also give the physical significance of this equation is quantum mechanics.

Q.6 Write the general properties of Schrodinger equation.

Q.7 Consider the time independent potential in which  wavefunctions
W, W, and y, that are solutions of Schrodinger equation belonging to same
energy. Here these wavefunctions are linearly independent. Show that their
linear combination is also solution of the Schrodinger equation belonging to
same eigen value.

Q.8 Consider motion of a particle of mass m in three dimensional cubic potential
box having side a. Potential for this box is given below

v {O - inside the box

o0 otherwise

Wavefunction of the particle is

8 . nmx . NAX . NITX .
w(x,y,z)=,[—sin sin ———sin——— and the eigen value
a a a a
h2 2 2 2
E=8 e (n, +n, +ny)

For state (n,,n,,n,)=(2,2,1),write the wavefunction for this state and also

write the energy eigen value for this state. What is the degeneracy of this
energy level?

Section C : Long Answer Type Questions
Q.9 Discuss the particle in one dimensional potential box. Potential is given by

{O ;0<x<a

oo otherwise

Obtain the eigenfunctions and eigenvalues of the particle in the box.

Q.10 Discuss the motion of the bound particle of mass m in the given one

dimensional potential well
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0 ;x<—a (Region-1)
Ux)=<-U, ;—-a<x<a (Region-1I)

0 ;x>a (Region-111)
Energy of the particle is £ = —|E‘ and U, > |E‘

Obtain the transcendental equations.

8.13 Answers to Exercise

Ans.1:No .it is not single valued function
Ans.2: False
Ans.4: Probability current density

B .
S=— vy -v'vy]

In cylindrical coordinates

. 1 W ik 4
VW =7 “*"—Tehh +i€1ixr
2r2 \/;

andVy = '[—13@’” - %e'”]
2r? 4

- S :%[wVw* ~1//*Vw]

A [Le.ﬁ}; R NP _(Lem); 1
2m \/; 21’% \/; r 2,,.%
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= hk .
S=—r
mr
Ans.7: Let’s consider the energy eigen value E corresponding to these eigen

wavefunctions. Therefore we have

hZ

_—Vzl//] +UW| :EWI (1)
2m
h’l

-——V’y,+Uy, =Ey, )
2m
h o,

-—Vy,+Uy, =Ly, (3)
2m

We consider a linear combination of wavefunction

V=ay +ay,+a,y,
2

Here Hy :—;—Vzw +Uy
m

2

/I
= Hl// :—EV“ (Cl]l/II +a,y, +a3 W3)+U(a]l//| tay, ta, l//3)

2 2 2
= Hy =q, {—;—mvzw, +Ut//l}- a, [—j—mvz% +Ut;/2}+a3 {—;—mvz% + U%}
From eq.(1),(2)and(3)
= Hy =aFy +a,Ey,+a,Ey,
> Hy =E(ay, +a,y, +ay,)
= Hy = Ey Hence Proved

Ans.8: For state (n,,n,,n,) =(2,2,1)

. . 2mrx . 2nx . 7mXx
Wavefunction v (x, y,z) =, /— sin——sin——sin —
a a a a

9n*
8ma

and energy eigen value £ = 5

Degeneracy of this energy level is 3, because we have three different
wavefunctions corresponding to same eigen value. We have different combinations

as
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(n]?n27n3):(23271)7(2:172)7(1:2;2)

Ans.9: v = \/gsinmwhere n=12,3,4,..
a

a
: oo,
Energy eigen value £ = L
8ma
Ans.10: y = ftan Ba and 7 =PBcotfa

where 8 =
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UNIT -9
The Linear Oscillator,
A Rectangular Potential Wall

Structure of the unit

9.0 Objective

9.1 Introduction

9.2 The harmonic Oscillator
9.3 TIllustrative Examples

9.4 Self Learning Exercise

9.5 Rectangular Potential Wall

9.6 Illustrative Examples
9.7 Summary
9.8 Glossary
9.9 Answers to Self Learning Exercise
9.10 Exercise
9.11 Answers to Exercise
References and Suggested Readings

9.0 Objectives

We shall study the following one-dimensional problems —

® The linear harmonic oscillator (its eigen values and eigen function)
® Reflection coefficient from a rectangular potential wall.

° Transmission coefficient for a rectangular potential barrier.

L Problems related to these.

9.1 Introduction

In this chapter we solve some simple problems of one-dimensional motion. They

are of interest because they illustrate some nonclassical effects and because many
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physical situations are effectively one-dimensional even though we live in three-

dimensional world.

9.2 The Harmonic Oscillator

As an example we first consider the harmonic oscillator. We consider a particle

executing small oscillations in one dimension (What is called a “linear oscillator”).
: | .
The potential energy of such a particle is Ema)zxz, where @ 1s, the angular

frequency of oscillation. According the Hamiltonian of the oscillator is

"2
g=lr 1, 25 (1)

2 m

Since the potential energy becomes infinite for x = oo, the particle can have only

a finite motion, and the energy eigenvalue spectrum is entirely discrete.

We shall first determine the energy levels of the oscillator by solving schrodinger’s
equation. For an oscillator this has the form

2
le’zu +;—’?[E—%mw2xzjw =0 (2)

Here 1t 1s convenient to introduce, instead of the coordinate x, the dimensionless

variable & by the relation

_ [[me
é—(h}c 3)

Then we have the equation

w"{[%}—éz}w =0 “)

Here the prime denotes differentiation with respect to & .

2E . ; : .
For large &, we can neglect Fv in comparison with £, the equation becomes
®

y "'y =0

This equation has the asymptotic integrals

y=e?’
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(for differentiation of this function gives y "= &%y on neglecting terms of order
less than that of the term retained).

Since the wave function y must remain finite as £ — *oo, the index must be taken

with the minus sign. It is therefore natural to make in equation (4) the substitution

=2
g2
s

y=e () (5)
We calculate y "and substitute in (4) to get the equation for the function y(&):

" [ 2E
X —2x +(——1Jx=0 (6)
ho
. 2E :
We denote the expression o —1 |by 2n, so the equation (6) becomes
0]
¥"=2E"+2ny =0 (7)
Since we already know that E>0, we have n > —% .

The function y must be finite for all finite y , and for y — too must not tend to
infinity more rapidly than every finite power of & (in order that the function y
should tend to zero).

Such solutions of equation (7) exist only for positive integral (and zero) values of n

; this gives the relation

—2E—1:2n (n=0)
ho
1
or E, =(n+5]ha), n=0,1,2,.... (8)

The solutions of equation (7) corresponding to various integral values of n are

¥ ={Constant (&)} where H (&)are what are called “Hermite Polynomials™.

These are polynomials of the n” degree in & , defined by the formula

&=’ () ©)

Determining the constants so that the functions , satisfy the normalization

condition
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[w2(ar =1

We obtain

1

mao \4 1 _mrox} mo
= | x| —
W"(.X) [ Jl'h ) 2% (n') e n [‘x h ] (10)

Thus the wave function of the ground state is

1 2
Vo(x) =(2—2’] e (11)

We may write out here the first few Hermite polynomials :

H,=1

H =2x

H,=4x>-2 ,
H,=8x"—12x

H, =16x" —48x* +12

9.3 Illustrative Examples

Example 1: Evaluate the position-momentum uncertainty product for the n" state

of a linear harmonic oscillator.

Solution :

(Ax)* = (x") = (%)’

=(n+l]i—0
2 mo

(1) h

(Ap)’ =(p")—(p)’

—(n +l)hmw—0 = (n +ljmwh
2 2

By (1) & (2) We obtain the position-momentum uncertainty product
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AxAp = (n+%]h , n=0,12....

This is in accordance with the uncertainty relation

7
Ax Ap s
=5

For n =0, reduces to
h
AxAp ==
i 2
Thus the uncertainty product is minimum for the ground state.

Example 2: A harmonic oscillator has wave function which is a superposition of
its ground state and first excited state eigenfunctions; that is,

1
V2

Find the expectation value of the energy.

Y(x)= [V, (x)+ ¥, (x)]

Solution :
(E)=[" 9" ()£ W(x)dx
:%ji[‘[’;(x) W (x)] E [V, (x)+ W, (x)]dx
=%Uw Vo (x) E W (x)dx+ [ Wi(x) EW,y(x)dx
W) B @de+ [ W) £ (x) dx]

= %[EO [ w0 () dx+E, [ ¥ (x) P, (x)dx

FE [ W0 W ()dx+E [ W)W (x)d]
Since the eigenfunctions are orthonormal, we obtain

<E)_%[EU+O+O+E,]

=1 l}‘1a)+éf‘m)}= ho
212 2
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9.4 Self Learning Exercise

Q.1 Write the schrodinger’s equation for harmonic oscillator in p-representation.
Q.2 Determine the lower limit of the possible values of the energy of an
oscillator.

Q.3 Determine the ground state energy of an oscillator using the uncertainty

relation :

oxép, =—h

| =

9.5 Rectangular Potential Wall

Reflection Coefficient of a Particle from a Rectangular Potential
Wall:

The energy of the particle £ >U,,. For this problem we take (Figure-1) the form
of U(x) to be

U(x)=0 x<0
=U, x>0

P» X

Figure9.1

The Schrodinger equation takes the form

AV 27 Gl (=0 (1)
dx h

We write, as usual
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mE_p; @
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Throughout the region x > 0 the wave function has the form for x—oo0,
ikyx

v = Ae

In the region x < 0 the wave function takes the form for x — —0

—ikyx k= \ (2mkE)

h

ik x

v(x)= Ae"™" + Be

and for x > 0,
W (x) = Ce™
The first term corresponds to a particle incident on the wall (we suppose v is

normalized so that the coefficient of this term is unity); the second term represents

a particle reflected from the wall.

The constants A and B are determined from the condition that y and %/are

continuous at x = 0.
1+B=A4, k(1-B)k,A (4)

Therefore

Zkl B_(kl_kz)
(k+k)"" (b +k)

&)

The reflection coefficient is
k—k, Y
'=[*2J (6)
k, +k,
2
— { P — P J
Pt Py

For £=U,, that is k, =0, R becomes unity, while for £ — oo it tends to

Zero as| —— | .
4E

R=|B
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From the above formulae we note the following :

l. In contrast to classical mechanics, according to which a particle going over
a potential wall would slow down (to conserve energy) but would never be
reflected, here we do have a certain fraction of the incident particle reflected.
This is, of course , a consequence of the wave properties of the particle; partial
reflection of light from an interface between two media is a familiar phenomenon.
2. For E>>U, , thatis, for k, =k, from below the ratio of the reflected
flux to the incident flux, that is |R|2 approaches zero. This agrees with intuition
which tells us that at very high energies, the presence of the ‘potential wall’ is but a
small perturbation on the propagation of the wave.
3. If the energy E is less than U, then k, becomes imaginary. If we note that,
now the solution for x > 0 must be of the form

w(x)=Ce " (7)
So as not to blow up at +o0, we see that now

R=|5f = k=il \( K, —ilk,| )
ky +ilky| )\ & +ilk, |

k2 + ||
or R=—-—""5= (8)
ki + |k, |
Thus as in classical mechanics ,there is now total reflection.
Note : however that the continuity of the derivatives implies
ik,(1-B) =ik,C (9)
Substituting for B from (5), we fin d
2k, 2k, (10)

C= = _
ki +ky,  k +ilk,|
does not vanish and a part of the wave penetrates into the forbidden region. This
penetration phenomenon is termed as “tunneling” through barriers.

Transmission Coefficient for a Rectangular Potential Barrier :
We now consider
U(x)=0 x <0
=U, ;0<x<a

=0 a<x
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0 a >x

Figure9.2

Let E be greater than U and suppose that the incident particle is moving from left

to right. Then we have for the wave function in the different regions expressions of

the form
Forx <0, w = e 4 o )
ForO<x<a w = Be' 4 Ble )
Forx>a w = Ce™ &)

(On the side x > a there can be only the transmitted wave, propagated in the

positive diresction of x). The constants A, B, B’ and C are determined from the

dy

conditions of continuity of y and I at the points x = 0 and a.
Ix

The transmission coefficients is determined as

transmitted flux
D=

incident flux
"l

¢’ )
e )
m
On calculating this, we obtain
ak’k;
(k7 — k3 )sin® ak, + 4k ;

D=

)

For E <U,, k,is a purely imaginary quantity; the corresponding expression for D
is obtained by replacing k, by ik, , where
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hk, = J2m(U, - E)
ak’k;
D=(k2—£—k2)' lzh 272 (6)
[ +k; ) sinh”(ak,)+ 4k 'k,

Thus we note that there is transmission even though the energy lies below the top

of the barrier. This is a wave phenomenon and in quantum mechanics it is also one
exhibited by particles. This “tunneling of a particle through a barrier is frequently

encountered in physics.

9.6 Illustrative Examples

Example3: Find (a) (x), (b) (x*), (c) {(p) and (d) (p°)for the eigenstates of a
harmonic oscillator.
Solution : (a) (x) = [ ¥, (x)x¥, (x)dx (1)

The harmonic oscillator wave functions have definite parity, We know that ¥, (x) s
either an even or an odd function of x. So we can say that the product ¥ (x)

Y (x)will always be even.

Therefore (X) = 0 Since x is odd, the integral(1) will zero

We can prove it by using recurrence relation for the Hermite polynomials.
20xH (ax)=H  (ax)+2nH, _ (ox) (2)

The harmonic oscillator wave functions

W _ o
() [2";1!\/;

Multiplying Equation (2) by

1/2
04 e—u2x212
2"'n!\Nw

and solving, we get

1/2
J e—aleﬂ HH(QX):n:Oa Ia 23 (3)

X (x)= L e ¥, ()+/n¥ ()] (4)
a2
Substituting in (1),we get

i+l

(x) = j” ¥ (x) W, (X)dx+

a2

n e
ARy

187

() P (¥)dx




Because the oscillator wave functions are orthonormal, both the integrals on the

right hand side vanish, so

(x)=0
) ()= [ P (0)x W, (x)dx

_ Laji‘l’; x[m Y, +\/r;‘l’”_l:|dx (using 4)

?/:|:\/FI ‘I’x‘P”+]dx+\/_J‘ ‘P x¥, dx}

Using (4),

<x2>=i,/ﬂ{ { 2, e 12 }dx]
(04
n i\/i{j“ ¥ {l\/i\{,” b fn—_l‘{‘”,}dx}
aN2|I= a\2 o 2 -

(n + 1)(;1 +2)

T

T, e D
20

n+2

+‘,n(n II ¥ dx

By orthonorma[ity of given wave functions, we get

[ v, dx

<X>—

or <x2>=22”+,1 =(n+l]i (5)
o

3 2 ) mw

© (=] ¥,(x)p¥,dx

=[ ¥ )[—m a¥ (x)}dx (6)
dx

If ¥, (x)is odd, then its derivative is even, and vice versa. The integrand in the

above integral is always an odd function of x. So

(p)=0.

We can also get this result using recurrence relation
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dH, (oex)
dx

Differentiating (3)

1/2 ., 2.2
d¥,(x) z( a J s [—lizPrexn a’x H (ax)+exp a’x” |dH, (ax)
dx X ING 2 2 dx

172 2 2 1/2 22
:gazx[ < J exp LS H, (ax)+{—a ] X o exp ax \dH,(ax)
211]/!!‘\/; 2 2” !\/; 2 d(ax)

Using (3) and (7)

=2nH,_(crx) 7

2

d¥ (x) a ) —a’x?
T:azx\{f”(x)-#(z”m\/gj aexp( 5 ][211H,!_1(ax)]

) I a (et
=—q x‘-P”(x)+(2an)m[zn_l(n_mﬁj CXP(TJH"_'(QX)

1/2
- _azqun (x) + Za (%j lIJJ.‘—I (x)

Using (4)

D LT, 0+ Vi, (O A ()

d¥,(x) o B
or ==l (=T, () ®)
By (6) and using the orthonormality of eigenfunctions, we get

(py=0
A (p)=] ¥, (0P W, (x)dx

_—h J \Pn( )d ¥ (X)
j Jn¥ o —Nn+1Y, dx (using &)

[ - *d‘l’n.dx Jazil” \P*d‘;’md}

X

Using (8)
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oy e
(p)=—"2 *FI YN -1¥, ,(x) - V¥, 1d
2 2 & .
Jr”‘”‘T ik [“wiWn=19,—Vn+2¥,, ldx

ﬁhl [q/n(n— j WV, dx— nj W ¥ dx
~(n+ )| W A Jn+D(n+2) [ W, dx]

Using the orthonormality this becomes

h2a2

(p*)=- ) O-n-(n+1)+0)

or (p2)=(n+%meh

Example.4 : Obtain the expectation value of the kinetic and potential energies for

the nth state of a linear harmonic oscillator.

R VA E
Solution. (7Y =—(p=—| n+— |hiw=—-=
)=o) 2[:1 zj 2

ety — L omary s L)
(V)—Ek(x)—z(ma) )(n.-i- J

2 )mo
=l n-l-l ha)=£
2 2 2

9.7 Summary

In this chapter we have solved the problems of eigenvalues and eigenfunctions of
simple harmonic oscillator by making use of Schrodinger equation . We have also
demonstrated the basic quantum phenomena by solving the problem of reflection
coefficient of a particle from a rectangular potential wall where the energy of the
particle E is greater than the potential energy. Here one sees the departure from the

laws of classical mechanics
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9.8 Glossary

i v apav

Expectation Value: expectation value of quantity A is (A) = j. -
vy

9.9 Answers to Self Learning Exercise

~2 2
Ans.1: H :p——lma)zh2 “
2m 2 dp

2

The corresponding Schrodinger’s equation.

}}a(p):Ea( p)for the wave function a(p) in the momentum
representation is

d’a(p) 2 P’
+ E—-—la(p)=0
dp’ mw’h’ [ 2m (7)

This equation is of exactly the same form as in coordinate representation.

Ans.2: E >> %ha)

Ans.3: Since (5)6)2 =(x— ;)2 where ‘bar’ denotes the average.
Hence 8x° = x° + (x) - 2x%

=X+ (%) - 2x)

Sx’ =x’ — (%) (1)
= (%) +(6x)° 2)
Similarly . p* = (B)? + (5 p)? 3)
The mean value of the energy of the oscillator is given by
— 1 —_ 2 1 2
E=—mao'x*+L2 > —mw* (5x)° +m
2 2m 2 2m
J— 2 2
or Ezlmco2 i + ©p) (We have used 6x6 p, 2lh)
2 20p 2m S 2
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. 242 2
Ezmwi+®m (4)

8(op) 2m
On determining the minimum value of this expression (regarded as a functiond p ),
We find the lower limit of the mean values of the energy:

dE

d(6p)
242
h™ 20
ma & p_ 0

=== 3
4(0p) 2m

ma’h*

This gives (5 p)* = 4

or (8p) = T (%)

Substituting this value of (& p)? into (4), we get E > %hw

9.10 Exercise

Section A:Very ShortAnswer Type Questions

Q.1 Represent graphically the ground state wave function of harmonic oscillator.
Also plot v, W,y ¥

Q.2 What is the ground-state energy of Simple Harmonic Oscillator.

Q.3 How much is the energy difference between two consecutive energy levels of
Simple Harmonic Oscillator.

Q.4 Write the Hamiltonian for simple harmonic oscillator in momentum p-
representation.

Section B:Short Answer Type Questions

Q.5 Find the energy levels of a particle moving in a potential field of the shape
V(x)=o0 (x<0)
mo’x*

2

V(x)= (x> 0)
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V(x)

0 X
Figure9.3

Section C:Long Answer type Questions

Q.6 Write the Schrodinger’s equation for an oscillator in the p-representation and
determine the probability distribution for different values of the momentum.

Q.7 Find the transmission coefficient through a potential of the form
V(x)=-V,0(x), V,>0

x is real. The corresponding wave function y(x) is supposed to be smooth.

9.11Answers to Exercise

1

Z _m(u.\'
Ans.1:y (x) = m_a)] e
\ mh
A J\P. (x)
W, (%)
n=1
n=0
-a 0 a X
a0 p > X
Figure9.4a Figure9.4b
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3(%)
V() “‘l’, !

n=2 n=3
_(f! 0 C;I :x 4 »
-a 0 a
Figure9.4c Figure9.4d
Ans.2: E = [n + %)ha)
1
n=0, E =—lho
2
Ans3:AE=E  —FE,
1 1
=|\n+l+—- |ho—-| n+—- |ho
2 2
=ho
7y }32 1 2-2 . - d .
Ans.4: H ==—+—mw"x" . Replace the coordinate operator x =ih—, we obtain
2m 2 dp
- p1 d?
H=L o’ iyn ==
2m 2 d,
~2 2
:p—+lma)2h2 d—z
2m 2 dp

Ans.5: The wave function should tend to zero as x — 0. For x > 0 it satisfies the
differential equation of the harmonic oscillator. It should be noted that the
wave functions of the oscillator for odd » =2k +1tend to zero as x — 0
(The Hermite polynomials /A (x) =>0 for odd n), and in the region x >0
give the solution to our problem. Consequently
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Ek—(2k+l+%Jhw (-n=2k+1)

k=0,1......
3
E :[2k+5)ha) k=0,1,2,.....
Emin - ihw
2

Ans.6: Schrodinger Equation is

A2 2
[p__ 1 ma)zhz a jan(p):Er}an(p)

om 2 op’
1 [ S )
a” ( )2 = e "t(uri H” [ j
2 | 2"n!'\rmho mah
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UNIT-10
Angular Momentum

Structure of the Unit

10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Objectives

Introduction

Relation between rotation operator and angular momentum operator
Law of conservation of angular momentum

Self learning exercise |

Commutation relations

Eigen values and eigen vectors of L, L, L,, L

Self learning exercise II

Summary

Glossary

10.10 Answer to self learning exercise

10.11 Exercise

References and Suggested Readings

10.0 Objectives

After interacting with the material presented here students will be able to

a.

Relate rotation and angular momentum operator

Law of conservation of angular momentum

Commutation relation of orbital angular momentum operator with
momentum and position operator

Eigen values and eigen vectors of L, Ly, L, I

10.1 Introduction

Angular momentum is one of the basic features of quantum mechanics. Its

conservation is a universal phenomenon independent of the nature of the reference
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frame that allows calculation of energy values of the system under different

conditions.

Angular momentum L for a particle of momentum p is defined through

L =7xp

(To understand it classically it is to be considered as moment of momentum).

In its fully expanded form

L=iL +JL, +kL,

=(ix+jy+tkz) X({ip +jp,+kp)
=i(yp.—zp) tjzp,—xp) tkixp,—yp,)
Here we have expressed vectors r, p and L in their components along the

Cartesian axes. We have also used the orthogonal properties of vectors viz.,
IXi=jXj=kXk=0,
iXj=k, jXk=i, kXi=jandj Xi=-k etc.

Let us concentrate on the z-component of angular momentum (equating
coefficients of k) we have

L=(xp,—yp,)

We can express this relation in operator form by writing a cap (* symbol) on each

of the letter under consideration.

We find

L =——iny L -2

oz 0Oy
B 0 0
L =—ih(z—-x—
v (Zﬁx x@z)
L =—inx2 -2,

oy ~ ox

The magnitude (L, a scalar quantity) of the angular momentum is related to its

components in the same way that any vector magnitude can be constructed
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I=L+L0+L;

We now establish the commutation relationships of the L operators. First the

commutator of the operators L, and L, can be found:

~

[L,L,1=[(p. —2p,){zp, — xp.)]
=lwp..zp, 1-lyp.,xp.1-1zp,.2p 1+ [2p,, xp_]
=ylp..zlp,—0-0+p [z, p. ]x =ih(-yp, + xp,)
= ihl.

The other two c0m1n1;tators can be found in the same way, or can be simply

written down using cyclical permutation. In summary then

L.L, |=ihL,
LI |=ind,
_f,:, £ = z'hﬁ_l,

The remaining operator we need is that corresponding to the square of the

: 2 :
magnitude of the angular momentum, L~ . We need to know whether it commutes

with the L, components
(L, L)=[L’+L +L>L]=[L’,L]+[L],L]+[L*,L]
:[Lx ,Lz]+[Ly ,Lz]+0

Now we examine each of the two non-zero terms in turn
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The parenthesis placed in line 2 is the overall addition of zero to the RHS.
Similarly

(L2 L ]=in(L L, +L,L)

y X
’\2 ~
Therefore L aﬂdL_, commute.

Moreover, L,, L, and L, all occur symmetrically in L’ and therefore all must

commute with L°, if any one of them does. In other words

L |=0
.0, ]=0
(2.0 |=0

The commutation relations expressed are fundamental to the theory of angular
momentum, and are quite general. In fact we can usually say that an observable is

an angular momentum if its operators satisfy the above commutation relationships.

10.2 Relation between Rotation Operator and Angular
Momentum Operator

If R (0) represents an operator corresponding to an infinitesimal rotation 0 about

z-axis then
R(O) Wixyz) = Pix'y'z)
= Wxt+yOy-x0z)

Now by Taylor expansion we can write

RO ¥Yixyz) = Yayz) +0 aﬁ Yixyz) -x0 62 Yixy.z)
a y

o ROy - +0p> -2 L)) Py
ox oy
iﬁz] Yixy,2)

= 1+_
[ [

It suggests that
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R(O) = [1+ L]
: in
and similarly we can show that
R(O) =11 + L]
x P
and
R(O) =11+ = ]
v in >
In other words L, L, and L_ are the generator of rotations about z-axis.

The matrices rotating a vector by O about the x, y and z axes are

1 0 0
R(6)=|0 cosf@ —sinf |,
0 sinf cosf
cos@ 0 siné

R}.(9)= 0 1 0 |,
—sin@ 0 cos@

cosf —sin@ 0
R (0)=|sin@ cosf 0
0 0 1

In the limit of rotations about infinitesimal angles (ignoring higher order terms),

0 0 0
R(g)=1+&/ 0 0 -1},
01 0
0 01
R(e)=1+¢/ 0 1 0},
-1 0 0
0 -1 0
R(e)=1+el1l 0 0
0 0 1

It is easy to check that
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0 -1 0
[R.(e),R (e)]=¢*|1 0 0
0 0 O

=R.(&)-1

10.3 Rotational Invariance and Conservation of Angular

Momentum

Invariance dictates no change under some operation and conservation dictates

commutation with energy operator.

Rotational invariance is the property of a system such that after undergoing
rotation, the new system still obeys Schrodinger equation. Thus for any rotation,

the rotation operator and energy operator commutes.

1.€.
[R, (E-H)] =0
Since rotation does not depend explicitly on the time, it commutes with energy
operator.
Thus
R 0] -0

here H represents energy operator or the Hamiltonian of the system.

Let the system be rotated (in x-y plane) by an infinitesimal angle 4@ then the

rotation operator is

R =1+L/ihd0
Then from
[R, (E-H)] =0

we find that
[(I +Lihd0), i] =0
dat
d —
E(L) =0
It suggests that angular momentum in such rotations is conserved.
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10.4 Self Learning Exercise -1

Short Answer Type Questions

Q. 1 Calculate [L+,Lz:|

Q. 2 Calculate [L_aLz]
Q.3 Prove that | JxJ= ifJ

Hint — Write J = iJ_+ jJ + kJ, then find J xJ and find if the sum of all the
three commutations prodﬁce the desired result.

Q.4 Prove that /J, J'] =0

Long Answer Type Questions

Q. 5 Calculate the angular momentum for the following particles. Find the angle

between the position and the momentum vectors.
(a) F(4’_5 93)and p :(l 545"2)
(b) r =( 1 5_293)and p :(79'1 » 1 )

Q.6 Show that the wave function Y = (Sil'l 9)(6 l¢) is an eigenfunction of LA_ .

~ h
What is the eigenvalue? (Hint: L, = 78_(1)

10.5 Commutation Relations

~ A Iy n

A N
When two operators 4 and B are written as 4 B and B A we have an

important relation

46— B4 - [4,5]

The operator [ y y B | is called commutation operator.

AN A

Example 1 :To find what the operator [ xp_—p, x ] represents?

Sol. We must remember that an operator without an operand hardly conveys any

FASENAY A

meaning. Hence we write [ X P, — P, X ]W(x) to find what the operator is like.

Writing these operators in their usual form gives
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ix (=i L) = =il Lx] P =- [x b Y3y _ ik Y3y,
ox ox ox ox
— x ih XDy Lih Px) - xiPx) 24
Ox Ox

= —ih Y(x)
or  [x(-ifk ai)(—ih 8ﬁ)x] ¥(x) = ihP(x)
Corollary [x (—ifi i)— (—ih g)x]) = ih

ox ox

Example 2: To show that the operator /x, d/dx] = -1

Sol. Let us operate this operator on ¥,

we have

Ly 4w dy w dy  w
dx dx dx

dx
Thus [x, d/dx]¥V'=-¥
Example 3: Find /L , x/

Sol. Since L, = (rXp), = yp. — zp, here subscript suggests that the component
along that direction is considered.

Thus p, is component of p along y direction.
.. . . N0 N, L 0
Writing L_ in operator form L = y(-ih—)—z(-ih—)
' oz ay
But /L x] =Lx -xL, hence
(L] = D)2 D) - % {3 2) —2(in )
A A a A a
L .x] =- —ih—)—z(—ih—
[Lox] x {y(= az) z(—i 6‘y)}

As the first bracket is zero because it is either differentiation of x with respect to z

or with respect to y.

Example 4 Find /L _y/
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Sol.

A a A a A A A a A a
We have [L,.y] = { y(-ih a)—z(—ih 5) by - iy 5)—2(—171 5) }

Second term is meaningless.

%

First term gives 0 + ifl z—=.

Hence [L,y] =ihz.

Important Note: The commutators between linear and angular momentum are

very similar to the ones between position and angular momentum:
[p..L.]=1p,. L, 1=[p..L.]=0
[P, L, ]=[L,, p, )= ilp.
[p,,L.]1=[L,,p.]=ihp,
[p*.L1=[p".L,1=[p",L]=[p",L]1=0
[p,L[']1=—20"p —2ifip x L = 21" p + 2ik(r.p)p — 2ikr(p.p)
The following commutators are also useful:
[rxL,[*]=2ihrl’
[[r,L’],L°]=2h°(rL’ + L’r)
10.6 Eigen values and Eigen Vectors of L, Ly, L L’

Operators in polar form

To express various operators in polar form we will use following set of relations:

x = r sinfcosO
Set 1 y = r sinBsin0
z = r cosf
Set I1 o= +y2 +z
Set 111 tan’ 0= [x° +y°]/7
Set IV tan (= y/x
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. or Or Or 59 00 00 8 0 O
Now our task is to find a, 8y’ oz ° a, 5, a—zand a, 5, E
Once this is done their substitution in appropriate formulaec would yield angular
momentum operator in polar form.

Step 1

From r* = x’ +y2 +7
or

2r a =

or
B =X/

2x

or
or a = rsin O cos ¢/r
or

or — =sin O cos (b

ox

It can be shown that

or

5 = Sin QSU'I ¢
or
0z

Step 11

=COSQ

From tan’ 6= [)c'7 +y2]/zz

we have

2 tan Osec’0 [OO/Gk] = 2x/7°

o6 X

o ox 7z’ tan 0 sec’0
00 rsin 6 cos ¢

or ox 7’ cos’d tan @ sec’d
068 cosfcos¢

or =

ox r
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Similarly

59 cos@sing

By r

00  cos %)
and oz = ,
Step 111

From tan ¢ =yix

we find that
secng % . Vi
ox

rsin@sin ¢

2 2 -2
rcos” ¢ sin"@

@ ____ _rsin@sing
or Ox  r’sec’¢cos’e sin’6
d¢ cosecOsin ¢
or P —
ox r

Proceeding in a similar manner we find that
0¢ _ cos¢cosect
oy - r
0¢

and EZO

We know that x is a function of 7, @, and @. In mathematical notation we express

this fact as

x =x(r, 0. ¢

Recognizing this fact we can write

0 aar K 69 0 0¢
ox " or ﬁx 00 ox 645 Ox
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or 00  og

Substituting values of =, —=— and — in this equation we get
ox’ Ox ox
0 0 0 cos@cosd 0 cosecsec¢tan ¢
ax—ar[smgcos@Jr@—r ]+ a—¢[— :
]
or 0 — sin O cos qﬁi , cosfcosg O cosecBsing 0
ox or r 00 r op
Similarly
i:sin@sin¢—+cosesm¢i+ cc:sqﬁ a2
or r 00 rsin0@ ¢
and
0 d sinf 0
—=c0s0 —— —
Oz or r 00
We know that
n 0 0
Lz =—ih[x——-y—]
oy = Ox
we have
th// = —th[xa—y Zw]
_it[x(2Y ﬁw ﬁr 5!// 89 6!// 8¢) 8!// ar 6l,u 89 5;1/ 8¢)]
- oy aaay o oy or x 00 ax | 0 o
_ il s onsdC Y din Bisin o SV S5OBID. . OV GOSQCOREE0,
or 00 ¥ op r
—FSiI‘lQSin(ﬁ(aW sinf cos ¢ 5 Oy cosflcosg Oy smgbcosec@)]
or 1 o0 r o¢ r
Or L w =—ih ?g
It suggests that
L = ﬂhi
o¢
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In a similar fashion we can find

f,r =—ih sin¢i+cos 9(:03(,25i
: 00 op

and

fﬁ. = —ih fcosgbiwtcotesinqﬁi
: 00 o¢

A

Once we have determined all components of L we can find the operator L

(use L=ilLx+ ily tk LAZ) and also another important operator 1” using the
fact that

I’= Lx*+ Ly’ + LZ’

=Rt 0 20

[V r’ or F 8r)]
A 1 8 .. .8 1 &
’=-h’[ —(sin@—)+ ]

sinf 06 00" sin’6 06°
Eigen values and Eigen functions of Lz :

(*Eigen functions are also called Eigen vectors)

The relation

L= _in S

¢
indicates that the corresponding Eigen function could be @ = (}5( (15)

Writing Eigen value equation as

L D) =ED (P

A trial solution could be

D(p =aem
—ih ﬁ(Ae"“’fb) = EAe™
el

or i RA(-im) e"'"’qj = EAe""”é
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suggesting that Eigen value

E=mh

Eigen function

Eigen values of L_for Eigen vector (L, +iL ) ¥(m)

From LL =iRL +LL,

ad LL = -iRL +LL,

we have
L (L, i'iL‘v) =L L + iLJJJ,

= LLZi[-iRLl +LL]

+h(L, fiL)+ L(L, *iL)

(L, £iL )L, *Hh)
So L (L #iL) ¥m) = (L, LiL (L.t h) ¥(m)
But (L.+h) ¥Ym) = m=+1)h ¥m)

Hence L. (L, %iL) ¥im) =(m £1) h (L, *£iL) ¥(im)

Thus if ¥(m) is a wave function of L_ with an Eigen value of m R, then (L, T iL,)

Y¥(m) are also Eigen functions of L_ with Eigen values of (m £ 1) n.

Eigen function and Eigen values for L’

Let [ represent the largest Eigen value for L, when operated on (L, + iL ) and o’

its maximum negative value for L_ when operated upon (L, - iL,). Then

L(L,+iL) ¥ =0

and
L (L,-iL) Yu) =0

Consider
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W= . L+ L) Y
= [L’+(L,-iL) (L, +iL)—i(LL ~L L)] P
= [L+(L,-iL) (L, +iL) —ii L] ¥
= [ R - (L,-iL).0 + ) P
or L'WY = pp+1)h’ P
Similarly we can obtain
L) = pip'-n e F)
Both equations must be valid at all the time hence (L + 1) must be equal to
H - 1)
Two possible situations would be
W=p" and (u+D=p
We would disregard second solution as we have assumed that |’ cannot have
larger value than L. Hence we take L' = L to be the acceptable result.

Let us call this value of L as /. then the Eigen value of L’ are 10+ 77° .
Example. What is the magnitude for the Eigen value of L?

Sol. We can claim that it must be square root of the Eigen value for L’. Recall that

quantum number related to L is written as \/ I(1+1)

10.7 Self Learning Exercise -11

Very Short Answer Type Questions
Q.1 Write down eigenvalue for J* .
Q.2 Write down eigenvalue for J, .
Short Answer Type Questions

Q.3 Whatis [L_x] Y(x)?

Q. 4 Show that

. [Lz] =-ihy
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3. [L,p] =ihp.
Q.5 Show that

. [L, L] =-ihL,
2.[L,LJ] =0

10.8 Summary

The unit starts with the introduction of angular momentum followed by relation of
rotation and angular momentum operator. In this unit we also discussed law of
conservation of angular momentum, Commutation relation of orbital angular
momentum operator with momentum and position operator and Eigen values and

eigen vectors of L , Ly, L, L’

10.9 Glossary

Angular Momentum :also called moment of momentum, it is the cross product of
position vector and momentum.

Orbital angular momentum: an angular momentum that corresponds to the
quantum analog of classical angular momentum

Momentum :A measure of how much effort is required to stop a body, defined as
the body’s mass multiplied by its velocity. Thus, a large heavy body (e.g. a train)
going relatively slowly may have more momentum than a smaller body going very
fast (e.g. a racing car). The Law of Conservation of Momentum rules that the total
momentum of an isolated system (one in which no net external force acts on the

system) does not change.

Uncertainty Principle:

The principle in quantum theory, formulated by Werner Heisenberg in 1926, which
holds that the values of certain pairs of variables cannot both be known exactly, so
that the more precisely one variable is known, the less precisely the other can be
known. For example, if the speed or momentum of a particle is known exactly,
then its location must remain uncertain; if its location is known with certainty, then

the particle’s speed or momentum cannot be known. Formulated another way,
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relating the uncertainties of energy and time, the uncertainty principle permits the
existence of ultra-short-lived microscopic particles (virtual particles) in apparently

empty space, which briefly blink into existence and blink out again.
Eigen Value: An allowed value of the constant a in the equation Au=au
Where 4 is an operator acting on a function u (which is called eigenfunction). Also
called characteristic value.
Commute: Two operators commute with each other if their commutator is equal to
zero. The commutator of operators A and B is

[A.B]=AB-BA
Hermitian operator: Operators that are equal to their Hermitian adjoints, in other
words, an operator is Hermitian if

A'=A
Hilbert Space: Infinite-dimensional complete vector space over the complex

numbers endowed with a metric induced by a scalar product that satisfies

Schwartz’s inequality

State :A mechanical system is at any given time completely characterized in
quantum mechanics by the state W. The projection onto coordinate space,

W(r), is called a wave function. States are vectors in Hilbert space.

Superposition Principle :Any superposition in Hilbert space, ¥ =a W, +b W, of

two states W, and W, forms another physically realizable state of a physical
system.

Wave Function :The representation of the state | ¥ > in coordinate space,

W (r)=<t| ¥ >.

10.10 Answers to Self Learning Exercises

Answers to Self Learning Exercise-1
ansa: |LLL =L, +iL, L |==inL, —hL, = nL*
a2 |[LoL | =L, =il L. |==ihL, +hL =hL
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Ans. 3:
IxJ=i(JJ-0J) +idJ-1J) + k(I J-TJ)
=i[J.J,] + 0]+ K[IJ ]
=iihJ1) +jihi)+kihl)
=ih@ +j),+kl)=iRJ.
Ans. 4: [1, 1] =[]0 +1,7+1]]
=[0I 1+ 0,1+ 0,0,
=0

=(=5)(=2) = (H)B3)] - /IH(=2) = (DB)]+ £[(4)(4) - (1)(=5)]
= -2i+11j+21k

L=[(-2)+ (11 + (21)]" = 23.791 kg-m’/s
r=[(@+ (-5 +(3)1*=7.0711m
p=[(1)*+ (@)’ + (-2)']" = 4.5826 kg-m/s
@ = sin” (L/rp) = sin[ 23.791 / (7.0711 x 4.5826)] = 47.2°
(b)
i j ok
L=|]1 -2 3
7 -1 1
=i[(=2)(1) = (=D3)] = JIDD) = (NB)]+ A[(D)(=1) = (T)(-2)]

=i+20j+13k
L=[(1)+(20)" + (13)’]" =23.875 kg-m/s

r=[(1) +(-2)+(3)1"=3.7417m
p=[(7Y+ (-1 + (1)’]" = 7.1414 kg-m/s
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(p =sin" (L/rp) =sin"[ 23.875 / (3.7417 x 7.1414)] = 63.3°
Ans. 6:

>

z

=22 fin o)

i
L, = %(sin 9)(8"‘1’ Xl)
L_ = h(sin 8)(@”’)
an = hy
The eigenvalue is h.
Answers to Self Learning Exercise-11
Ans. 1: The eigenvalue for Jis given by j(j + 1) (h/ZTl:)Z. That is,
Jj, m>=iG + 1) (h/2m)’}j, m>.
Ans. 2 :The eigenvalue for J, is given by m(h/27T).That is,
J.lj, m> = m(h/27)j, m>.

Ans. 3: It is zero since P(x) is function of x and not y or z.

10.11 Exercise

Long Answer Type Questions:

Q.1 Show that if any operator commutes with two of the components of an

angular momentum operator, it commutes with the third.
Q.2 Prove that

2=l L +I13-L,gqql>=L,L_+I:-L,

Q.3 Show that Li Y ap > has the same eigenvalues for L? that | Yaﬁ > does.

Q.4 Show that L_ | Y op > has 8 —1 as an eigenvalue for L.

Q.5 Use L; = E€jjkX j Pk toshow that X ; pp —Xp pj = &5 L.
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UNIT-11
Eigenvalues and Eigenfunctions of J* and

J_, Spin Half Angular Momentum

Structure of the Unit
11.0 Objectives

11.1 Introduction
11.2 Eigenvalues and eigenfunctions of J* and J
11.3 Self learning exercise |
11.4 Spin half angular momentum
11.5 Pauli spin half matrices
11.6 Self learning exercise 11
11.7 Summary
11.8 Glossary
11.9 Answers to self learning Exercises
11.10 Exercise
References and Suggested Readings
11.0 Objectives

At the end of this chapter the students should:

1. have understood Eigenvalues and eigenfunctions of J*and J,
2. have learned the notion of spin half angular momentum and Pauli spin half

matrices.

11.1 Introduction

In quantum  mechanics, the total angular momentum quantum
number parameterizes the total angular momentum of a given particle, by
combining its orbital angular momentum and its intrinsic angular momentum (i.e.,

its spin).
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If s is the particle's spin angular momentum and / its orbital angular momentum
vector, the total angular momentum j is

f=l+s
The associated quantum number is the main total angular momentum quantum

number j. It can take the following range of values, jumping only in integer steps:

[—s<j<l+s

where lis the azimuthal quantum number (parameterizing the orbital angular
momentum) and s is the spin quantum number (parameterizing the spin).
The relation between the total angular momentum vector j and the total angular

momentum quantum numberjis given by the usual relation (see angular

momentum quantum number)

13ll= 7 (J+1)h

the vector's z-projection is given by

J.=mh

where m; is the secondary total angular momentum quantum number. It ranges

Jrom —j to +j in steps of one. This generates 2j + 1 different values of m;

11.2 Eigen Vectors of J° and J,

Let us assume that the simultaneous Eigen functions for J° and J_are W(A m) such
that

J WYAm) =h2 AP Am)

and

J (A, m)=hmy (A, m)

to find values of A and m, we use ladder operators with some well known relations

given below:

[J..J.]=nJ,

[J..J ]= —hJ.

217



[J..J_]= 2nJ.

and

J'=J \and |J. = J

( Mis spelt as dagger and so the above quantities are spelt as J plus dagger equals J
minus etc. Dagger represents complex conjugate of the quantity over which it is

super scripted.)

We will also use

JJ =J —J+n,

and

JJ, =T —J=h]

Total angular momentum is defined as sum of the orbital component and spin

component of angular momenta

J=L+8§
J follows the same commutation rules as do L. if that is so S will also behave
similarly.
Thus

(S, |= it

[J\"J:]: lh']\

[/..J,]= inJ,

Ladder Operators:

The operators|J, E(Jx + in) and [J_ E(Jx - in) are  called  ladder

operators. This will become clear in the following sections when we operate those

on appropriate Eigen functions.
1. DJl=hl
[J29J+] = JZJ_“-J_;,JZ
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=T, +il) -, +i1) 7,
=JJ +il, 1 -1J,-il],
=JJ -1, +i(0,3,-1]J)
= [LI ]+ il
= iRl +i A7)
=hJ,+1il)
=h1J.
Similarly
2. NJl=-hl
[1,J]=1J,-JJ,
=1,(0,-i1) - (J,-i1) ],
=], -iJ,3,-3J,+ilJ,
=JJ =13, -i(d,1,-1]1)
= [1J]-100,.]]
=ihlJ, -i¢-ihl)
=R (-1, +il)
=-h1

3. [J.J]
[J.J] =J.J-JJ.
= (J, +iJ) (J,-iJ) - (J,-iJ) (J, +iJ)
=J. i i, -] A T, -]
=il J] +ilJ,J]
=2i[J,J]
=2hJ

Let the eigenstates of J* and J, be denoted by [j,m >. The action of the various

operators on these states (vectors) is:

219



W) [J2 | jom>=j(j + )R | jm>| withj € [0,1/2, 1,3/2, ...].

) |/, | j,m>= mh| j,m>| where —j < m < j. Total of 2j + I values for m.

@) [/ jom>=nj(j + 1) = m(m = 1) | j, m=1>| if m >—j and 0 if m= —

@ [, | jom>=nj(j + 1) — m(m + 1) | j, m+1>|ifm<jand 0ifm =

We introduce simultaneous eigenstatesu,m) of the two commuting operators J
and J.

J|A,m) = AR’
Jz‘ A, m) =mh | A, m)

Z,m)

and we note that the states .J, M, m> are also eigenstates of J with eigenvalue A.

J. | A,m) are also cigenstates of J, with eigenvalue m:1.
T J£| A,m) = AR x| A, m)

Thus we can write

Am)—c, | 2.m)

Where c, are constants of proportionaity

A

We now observe that, for a given A, m” it A so that m must have both a maximum

value, m___and a min value m

max min*
Proof

(F-J) |Asm) =12+

/1,m>

(A-m) )Y | Asm) =17 +17) | 2,m)

(A-m’ )Y =(J7+J ) =0
So that

(A-m’) >0

VASm<VA

Hence the spectrum of J, is bounded above and below, for a given value A.
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T |Aum,) =0
J | Amg) =0
To proceed further, we will use identity
JJ =J -J +hJ
Hence T I +hJg)|Amy) =0
Since J_ |A mmm> =()

(2./ mm.,” m,,m,)| mm) =0
/1 =m,,,(m min”~ )

min

Similarly with second identity
JJ, =J -J  -hJ

Hence (' -J -hJ) [Am, > =0

max

Since J, |/’L mmu> =()

(A-m, *-m, )[Am

mda L\’

A=m,(m,  +1)

Usually m__ is denoted by j then

r=m,, (m, -1)=m, (m +1)
=m,,,(m,,;-1)

=ji+1)

This is a quadratic equation for m
m,m.nz-mm,."jg-jZO

which can be factorized as
(M, 1) (M,,77-1)=0

And we see that, since m,, Sj

By definition, the only acceptable root is

n,lmin:-j

221



Now since m___and m

max min

mfnzk’ kzOn].Z,j,..
J-Ci)=2j=k  k=0,1,2,3,..

differ by some integer k, we can write

mma.\‘-m

so that the allowed values of j are
j=0,1/2,1,3/2,2,5/2,3, ...

For a given value of j, we see that m ranges over the values
P2 R e

a total of (2j+1) values.

From the results presented above we can draw the following conclusions.

1. The eigenvalue of J° are j(i+1) A’
Where j=0,1/2,1,3/2,2,5/2,3,...

2 Since A= j(j+1), we can equally well label the simultaneous eigenstates of

J° and J, by j rather than by A so that,

J2 | jom>=j(j+1)h*| j,m>

J_|jm>=mh|j,m>

3. Thus for every value of j, there are 2j+1 values of m, thus there are 2j+1
corresponding eigenfunctions (degeneracy).

11.3 Self Learning Exercise -1

Short Answer Type Questions
Q.1 With J, =J +iJ, express J.J_and J J, in terms of the operators J’ and y

Q.2 Compute the following commutators:

a. [J.,J]
b, [J.J]
c. [JuJ]
d [J.J]
e. [J.J]

Q.3 Consider a system described by the Hamiltonian

H=A4J.+B(J +J))
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where J, J, and J, are the three components of a generalized angular
momentum 6perat0r, and A and B are constants. What are the energy levels of
this system?

Q.4 Let |j,m> be the standard simultaneous eigenstate of J° and /..
a. What are J°|j,m> and J_|j,m> in terms of j and m?
b. What are the allowed values of j?

c. For a given j-value, what are the allowed values of m?

Q.5 Compute matrix elements of S, J, J,, J,, J,

Long Answer Type Questions

Q.6 Show explicitly that J° commutes with J_, then use a symmetry argument to
show that J° must also commute with J, and J,. Then, answer the following (be
sure to explain your reasoning):
Do simultaneous eigenstates of J_and J, exist?

® Do simultaneous eigenstates of J* and J, exist?

® Do simultaneous eigenstates of J* and J, exist?

® Do simultancous eigenstates of J° J, and J exist?

® Do simultaneous eigenstates of J* and J_exist?

11.4 Spin Half Angular Momentum

If electron were a spin less particle and only described an orbital motion

about the nucleus, its magnetic dipole moment would have been

=——J/L
a 2m,

where m, is the mass of the electron. This magnetic moment then should be the
source of permanent magnetism of the ferromagnetic substance. But the observed
magnetic moment of a magnetic specimen gives a factor e/m, and not e/2m,. This
has been attributed partially to gyro magnetic effect. Further for S (/= 0) state atom

should have no magnetism. This is again against the observed fact.

Fine structure of the spectrum is also inconsistent with the orbital angular

momentum concept. Sodium D lines are well known example. Fine structure is
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possible only if there were additional energy levels. Zeeman and Paschen-Back

effects too cannot be explained without attributing spin to electron.

For S state there should be no splitting of atomic beam in Stern-Gerlach
experiment, but this also goes against the experimental observations.

To explain all above anomalies Uhlenback and Goudsmit postulated that electron
possesses an intrinsic angular momentum. He named it electron spin, which for
brevity we simply call spin. Ultimately it was noted that protons and even neutrons

possess spin.

The spin associated with an electron is quantized. For explaining doublet fine

structure of alkali atoms it was sufficient to ascribe a spin of % A1 to the electron.
Associated spin quantum number, s has only one value for the electron namely

%. We describe the quantum state of electron by ho. Assuming O to be related to
quantum number s, the multiplicity of energy levels would be (2s + 1). According
to Stern-Gerlach the atomic beam with S = 0, splits into two beams, i.e., the
multiplicity is 2. It suggests that s = /.

Recall that the angular momentum commutation relations

[L*,L,1=0,

. (13 k cyclic)
[L;,L;]=1AL,

were derived from the definition of the orbital angular momentum operator:

L=r1xp|.

The spin operator S does not exist in Euclidean space (it doesn't have a position or
momentum vector associated with it), so we cannot derive its commutation
relations in a similar way. Instead we boldly postulate that the same commutation

relations hold for spin angular momentum:

[S*,S,1=10],

[S;, S,1=ihS,

From these, we derive, that
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S$*|s,m,) = A’s(s+1)[s,m,)
g2 s,ms>= %h2|8,ms> (since s= ")
S, S,l’ns> = hm, s,ms>

SZ

&mJ= i%hth

(sincem,=—s ,ts =—1/2,+1/2)

Notation: since s = /2 always, we can drop this quantum number, and specify the
eigenstates of L* , L, by giving only the m_ quantum number. There are various

ways to write this:

sm,) = [m) = |+),

These states exist in a 2D subset of the full Hilbert Space called spin space. Since
these two states are eigenstates of a hermitian operator, they form a complete
orthonormal set (within their part of Hilbert space) and any, arbitrary state in spin

space can always be written as

0 =31} o) - ;)
Matrx nottion: | 1) = [gj 4y - (‘jj

If we were working in the full Hilbert Space of, say, the H-atom problem, then our
basis states would be |n { m, ms> . Spin is another degree of freedom, so that the
full specification of a basis state requires 4 quantum numbers. (More on the
connection between spin and space parts of the state later.)

The matrix form of S and S, in the 'm(z)> basis can be worked out element by

element.
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(Recall that for any operator A, Amn = <m|A|n) J)

2 3 2 2
(M7 1) =37, (Ts°d) =0

(1 S

SZ

1
T) - +Eh, <T

SQ:Ehz 1 0
4 (0 1

1. (1 0
S, =—h
"2 (0 -1

, €tc.

, etc.

Operator equations can be written in matrix form, for instance,

h
S, T) = +5‘T>

=30 Sa)= )

Raising and lowering operators:

S, =S _+1i8,
S =S i,
S, =4(S, +8.)
- Sy::'_li(s+_s—)

In matrix representation

S, [s,m,) = Ays(s+1)-m(m+1)

S, ms+l>

S

s,m) = fhys(s+])-m(m-1) [s, m —1)

For the case s = ', the square root factors are always 1 or 0.

For instance, s="'%, m=—1/2

gives




SGED-mmeD) = 53 CHE)
= 1

Consequently,
S, i) h\T), S T) = 0
and [$_|T) = n[d), s |¥) =0

+

leading to
(1
(1

S

+

T):o,

L)

S

h, etc.

+

and

Notice that S, , S_ are not Hermitian.

Using |[S, = 3(S, + 8. ) and S, =4(S, = S_)| yields
. - E[O 1]
2(1 0

These are Hermitian, of course.

11.5 Pauli Spin Half Matrices

The Pauli spin matrices O; are simply defined and have the following properties

giziéi |
2

where
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Properties
I. [o,,0,]=2i¢,0,
2. ol=1
3. They also anticommute
c.0,=-0,0,
0.0.=—0.0,
0.0,=-0,0,

These matrices are the Hermitian matrices
5. Pauli matrices are fraceless matrices of dimension 2.

6. Any 2X2 matrix can be written as a linear combination of the sigma

matrices and identity.

11.6 Self Learning Exercise- 11

Q.1 Which of the following spin wave functions are symmetric with respect to

the exchange of electrons?
¢, =a(l)a(2)
0, =B(1)B(2)

0, =2 [a()p(2)+ S()a(2)]
0= 2[a(1)(2)-B()e(2)]

Q.2 Show that the following spin function
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0= Y2 [al1p2) + 2]

1s an eigenfunction of the total z component of spin angular momentum for a

two-electron system. What is the eigenvalue?
Q.3 Use the Slater determinant to arrive at a wave function to describe the ground

state of a two-electron system such as He. Express the resulting wave

01, (1)

function in terms of the 1s spatial wave function for each electron

and by (2)], and of the spin wave functions for each electron
[oc(1), (2), B(1), and B(2)]

Q.4 The quantum number J represents the total angular momentum, and describes
the Russel-Saunders coupling between L and S. Determine the values of J for
two d electrons.

(Hint: the allowed values of Jare givenbyJ =L+ S,L+5—1,...,

L-S|)
Q.5 Write the complete term symbols for the following states
(a) L=4,S=1,]J=5;
(b) L=2,8S=0,1=2;
(¢c) L=0,S=0,J=0
Q.6 List the quantum numbers L, S, and J for the following terms symbols:
‘G,
o’p,
*’D,,.
Q.7 Determine the electronic configuration for an atom with the term symbol 'S, ,.

Q.8 Derive the ground state term symbol for the following configuration
(5s)'(4d)’, if given that J = 1/2.
Q.9 Give the term symbol for Li:1s’2s'.

11.7 Summary

In this unit we continued our previous chapter. In this chapter we firstly discussed
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eigenvalues and eigenfunctions of J° and J, followed by Spin half angular

momentum and Pauli spin half matrices.

11.8 Glossary

Spin: The intrinsic angular momentum of an electron, classified as up or down.
Quantum numbers: the values of quantized entities, such as energy and angular
momentum.

Angular Momentum: also called moment of momentum, it is the cross product of
position vector and momentum.

Orbital angular momentum: an angular momentum that corresponds to the
quantum analog of classical angular momentum

Spin projection quantum number: quantum number that can be used to calculate
the intrinsic electron angular momentum along the z-axis.

Spin quantum number: the quantum number that parameterizes the intrinsic

angular momentum (or spin angular momentum, or simply spin) of a given
particle.

Magnitude of the intrinsic (internal) spin angular momentum :given by

S :h,/S(S+I)

Pauli exclusion principle :A principle that states that no two electrons can have

the same set of quantum numbers; that is, no two electrons can be in the same

state.

Eigen Value :An allowed value of the constant @ in the equation
Au=au

Where 4 is an operator acting on a function u (which is called eigenfunction). Also
called characteristic value.
Commute ‘Two operators commute with each other if their commutator is equal to

zero. The commutator of operators A and B is

[A,B]=AB-BA

Hermitian operator :Operators that are equal to their Hermitian adjoints, in other

words, an operator is Hermitian if
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A=A

Hilbert Space :Infinite-dimensional complete vector space over the complex

numbers endowed with a metric induced by a scalar product that satisfies
Schwartz’s inequality

11.9 Answers to Self Learning Exercises

Answers to Self learning Exercise 1
Ans.1:
JJ = i), i)
=J+ I+ iy, Jx]
=S -J +hJ
Similarly

JJ. =r-J -hJ

Ans.2:
a. [/ J =]
=J.J —JJ,
=2hJ
b LSV,
=0
c. [V = L] =i, )]
=-ihJ+(-hJ)
=—RJ,
d. [/ =+ilJ,.J ]
=+ hJ
€. [V ] =[]
=ihJ.

Ans. 3: With J’+ Jy2= J’ - J?, the Hamiltonian becomes

231




H=B(J-J))+A4J)

The eigenstates of this are the standard |j,m> states, with eigenvalues given

by
H |jm> = BJ-J0) |jm> + AJz|j,m>

B R +j-m’) |jm> +A4 A m|j,m>
Ans. 4:

a. Jlm>=HR>G+)) |j,m>
and J_|j,m> = h m|j,m>
b. j €{0,1/2,1,3/2, 2,5/2,..}

c. mE{—j —j+l,..j}

Ans. 5:
o <mlFm> =R+ <jmlim >
=h%+1)9,,9 .
° <jm|l]j m™>=Rm<jm|j m>
=hmd,d,,
o <jmlJJj\m>=h NG+ D-m m£1) 0,;0 s
o <jmJJjm > =112 <jm|(J,+J)|j\m">
o <jmlJ i m™>=1/2 <jm|(J ~J)|j"\m™>
Ans. 6:

[ 2 =d 0, = I
=B, ~dId A LI E =Tk
=J [JJ]+ [, T,
=—ihJJ, —ihJJ,

[, 2 =0, =]
=ihJJ +ihJJ,

[12.0,] =0
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Adding these results together gives

[’J]1=0
® No, because J, and J, do not commute.
L Yes, because F and J_ commute.
L Yes, because if I commutes with J, then by symmetry, it must commute
with J.
° No, because J, and J, do not commute.
° Yes, simultancous cigenstates of J* and J_exist because J* and J_commute.

Clearly an eigenstate of J_is also an eigenstate of 7
Answers to Self Learning Exercise- 11

Ans.1 :The results of the permutator operator on the above wave functions are as

follows
f’gol = f’[a )a 2)J =a(2)a(l) =9,
_B[p(1)p z)] s 2)ﬂ(1)=
P[“ p(2)+B(1Na(2)]=a(2)(1)+B(2)a(l)=¢,
PfP = Pla(1)B(2)- ( ) ( )]=a(2)ﬁ(1)— (2)a(l)=-o,
The wave functions ?12?2°®3 are symmetric because the cigenvalue of the

permutator operator is +1. The wave function 04 i antisymmetric because
the eigenvalue of the permutator operator is —1.

Ans. 2: For a two-electron system, the total z component is given by

$.=5.()+5.(2)

where the spin operators and wave functions are related by
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Therefore

S0,=[5.00+5.)]) a5 @)+ 5 e )]

s, Z[ap(3-2) seca 21

s N2 noh hoh
50,2 [apQ)+p0)a)] 35 )0 (53]
@, 1s an eigenfunction of Sl with an eigenvalue of g—g =0
Ans. 3:
L1 e () 0, (2)a(2)
Vatle, (1) (1) ¢, (2)B(2)

v =5 [0.0a()0, (28(2)-0, )51, 2)a(2)]
Ans. 4 :
L=4,8=01=4
L=4,S=1,1=54,3
L=3,8=0,J=3
L=3,S=1,1=4,3,2
L=2,§=0,J=2
L=2,5=1,1=3,2,1
L=1,S=0,J=1
L=1,8S=1,1=2,1,0
L=0,5S=0,J=0
L=0,S=1,J=0,1
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Ans. 5:
The format for the term symbols is**"' X o

The value of L determines the letter symbol as follows,

L=0 Jfor S;
L=1 Jor P;
L=2 for D;
L=3 for F;
L=4 for G; etc.

This leads to the following term symbols:

° 3(}5
o 'D2
° 'S‘,U

The format for the term symbols is "X,

where S is the spin quantum number,

(28 + 1) is the multiplicity, and

J is the total angular momentum quantum number.

The value of L determines the letter symbol X as follows,

L=0 for S;
L=1 for P;
L=2 for D;
L=3 for F;
L=4 for G; etc.
¢ r=tg-2 3 g3
2 2
L] L—lS—E:l,J:Z
2
. zogpo i i3
2 2 2
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Ans.7: The value of the quantum number S can be determined from the

multiplicity.
25 +1=4
3
S==M
7 S

This implies that there are three unpaired electrons. The S letter symbol
givesL =M, =0. This indicates that there is one electron in each of the p

orbitals  becauseM , =(+1)+0+(-1)=0. The configuration is
(1sY(25)’(2p)'(2p,)' (2p,)
Ans. 8:

M, =L=0+(+2)+(+1)+0+(-1)=+2
Mg :S:(+%)+(+%}+(+%}+(+%J+(+%)=§
2S+1:2(§]+1:6

The term symbol 1s 6Dl -

Ans. 9:

sol it
2 2

so the term is °S ,. Note that we are only considering the unpaired electron.

11.10 Exercise

Q.1 Prove that(G.A) (G.B) =A.B+ ic.(AxB)wherecr’s are the

Pauli spin matrices , if the components of A and B commute with those of o .
Q.2 Determine the value of (O +i O y)2.
Q.3 Determine the eigenvalue spectrum of the angular momentum operators J ’, J,
,J. and J, starting with the postulate [ J,, J ] =1 h J,and its cyclic.

X

Q.4 Prove that the Pauli spin matrices anticommute.

Q.5 Giventhat[J,J,]=1 h J, and its cyclic, verify that
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[1,1]=2h1,

where J, =J, + il and J = J- 1J,.
Q.6 Prove that

Ji,m>= A V(G +1) - m@m=-1)} [ m— 1> if m > —j
Q.7 Prove that

Lim>= RN+ D—mm+ D} im+ 1> ifm<j

Q.8 Calculate the matrix elements of S, and S, and S, for S=1, 3/2 and 2 in the

basis set where S, is diagonal.
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12.0 Objectives

Quantum mechanical methods are a powerful tool for explaining the
structure of many electron systems as atoms and molecules. The problem of
ground state of Helium-atom has solved by perturbation theory and variational
techniques. The main objective of this unit is to study about the solution of ground
state problem of hydrogen atom and the approximations by which we solve
potential energy of any molecule.

12.1 Introduction

In this unit first of all we shall discuss the methods to handle the
problems of atoms particularly the central field approximation and finally we shall
discuss the methods to handle the problems of molecules with Hydrogen molecule
ion because they supply intersecting and instructive applications of quantum

mechanics.

12.2 Central Field Approximation

We know about the problem of ground state of helium atom which
consists of the electrostatic interaction between a pair of electrons. The problem
2
e
was solved by the method of perturbation by considering the interaction term —

T12
2

e
as perturbation term and separating the general equation (excluding the term r—)
12

into two separate equations one for each electron. If we have extend the equation

for N-electron atom, we write
[Zi (——‘72 - —) - ZD] ]lP EY (12.1)

This equation cannot be solved by the method of separation of variables due to
presence of interaction terms; moreover this equation as such can also not be
solved by perturbation method. Since the mutual interaction tern is too large to be
treated as perturbation term. In such a case we consider a modified field in which
all the electrons experience centrally symmetric field by superimposing the radial
components of interaction between the electrons in the coulomb interaction term

N —Ze:
2.

i=1
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The remaining part of interaction may then be treated as small interaction term and

the problem can be handled by the perturbation theory or variation techniques.
22

Let the mutual repulsion term Zz> iy be divided into two parts (1) Y3; S(77)
Tij

directed away from the nucleus (central part) and (2) remainder

Sh=Y LYo

i>] i

The first part weakens the coulomb potential when superimposed on the latter.

Therefore the central part 1s

n

N s
T '

i=1

It is often, called the screened coulomb potential. The total Hamiltonian i1s now

expressed as

H=Hg+H’

where Hg 1s the Hamiltonian of the problem with central potential, i.e.
Ho =X; [— —V; +V(r)]

where V(ri)zf + S (TI-)]

and H =) R; Zp} —2iS(r)
“Zin = [V( ) +2

When in zeroth order approximation the interaction term H’ is negligibly small; we
are left with only the problem containing the central field and hence the

approximation method is called the central field approximation.

There are two approaches which have been employed to evaluate the central field.
1. Thomas-Fermi statistical model,

2. Hartee’s self-consistent field method.

12.3 Thomas Fermi Statistical Method

This model assumes that the potential function V(r), produced by the
nucleus and all the other electrons except the one whose motion is under
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consideration is spherically symmetric and varies so slowly in comparison with
electron wavelength that many electrons may be allowed in a volume over which
the potential changes by a small fraction of itself(i.e. the potential is sensibly
constant over this volume). The electrons can then are treated by statistical
mechanics and obey the Fermi-Dirac statistics. This number of electron states in a
cube of edge length L at the walls of which the wave functions obey the periodic

boundary condition is given by

L 3
(ﬁ) dpxdpydpz
If the spin states are also included, the Pauli principle allows us at most two

electrons per state for two possible spin orientations, therefore above number of
states is modified to

L \3
2(s=) dp.dpydp,
Since electrons obey Fermi-Dirac statistics, these states are filled in order of

increasing momentum up to some maximum value pg and considering the
spherical symmetry the total number of can be expressed as

2(Z2) 7 7 (2" pedp sin6 d6 dp = 2o (123.1)
Each state expressed by above relation will be able to accommodate one electron
and 1f we assume that all these states are occupied, then expression (12.3.1) would
represent the total number of electrons in volume L?. Hence the number of
electrons per unit volume or volume density of electrons is

. Po’
3mhe
We know that for an electron to remain in an atom, the maximum kinetic energy at

(12.3.2)

any distance r from the nucleus is -V(r) i.e.

Po’ .
e —V(r)i.e.pyg?= —2mV(r)

Hence the electron density at distance r is

3
po’ [-2mv(r)]2

n(ry= 3mh 3mh’
According to the classical Poisson’s equation (V2¢p = —4mp) the electrostatic

(12.3.3)
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: V(). , -
potential d):T in terms of charge density p=e n(r) is given by

2 (VD) _ _
v ( . )— 4me n(r)
1 ii( 2 0V(r)
e r2or ar

Equation (12.3.3) and (12.3.4) may be solved to give the values of n(r) and V(r).

or ) = —4me n(x) (12.3.4)

For a neutral atom as r—>0, as field must become the coulomb field of nucleus, so
_Z 2

. As r—00, there must be no net charge inside the sphere of radius
T

that V(r) =
r or r V(r)—0, which implies that V(r) falls off more rapidly than 1/r.
12.3.1 Evaluation of Potential

Eliminating n(r) from (12.3.3) and (12.3.4), we get

3
19 ([ o a(—V)] __ 4e[-2mV(r)]2
ar [T 3 | = m_— (12.3.1.1)
If we put the approximate form of the solution as
— e2
V(r) = " XYandr = bx )
2
1(3m\3 R 0.885 ( h? 0.885a
?(—)3 = — ( )= 20 > (123.1.2)
2\ 4 = > \me? =
me’Z3 Z3 Z3
h2
where ag = o2 J
With these substitutions equation (12.3.1.3) becomes
1 de E
2 —= = y2 12.3.1.
xz-S=y (123.13)
The boundary conditions are
¥y=latx=0
x:Oatx:oo (12314)

Equation (12.3.1.3) involves no parameters and thus defines a universal function

)((x ) The most accurate by Bush and Caldwell.

0.885ayx
Wehaver = bx =—5—

73
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Thus we have the following important results:

(1) The radius of an atom is inversely proportional to the cube root of atomic

number.

(2) This model is applicable to atoms with large atomic number Z where the
number of electrons in a small volume are comparatively greater so that the

statistical calculations are valid.

(3) Electronic charge density n(r) gives smooth charge variation over atomic
dimensions and does not involve the shells structure (/-dependence).

(4) The form of potential energy function in this model is useful in the self-

consistent field calculations.

12.4 Hartee’s Self-Consistent Field Method

A more accurate method for obtaining central field for large Z-atoms is
due to D. R. Hartee. This method ignores the effect of spin on the wave function
and assumes that in a multi electron atom each electron moves in the central
field that can be calculated from the nuclear potential and the wave functions of
all the other electrons, by assuming that the charge density associated with an
electron is (-e) times the position probability density. Then Schrodinger wave
equation is formulated for the system and solved to determine the Eigen functions

belonging to different quantum states and then charged densities are calculated.
These charge densities should be consistent with initially chosen ones. This is

known as the condition of self-consistency. If the charge densities so calculated do
not agree with initially chosen ones then the above procedure is repeated by
choosing better wave functions ( which determine the probability density) again

and again until the condition of self consistency is fulfilled.

In this method the wave functions ¥ is assumed to be a simple product of one-

electron functions i.e. for a Z-electron system

¥ (r1, 12500r) = Y(r)¥(r2)......(1) (12.4.1)
If ¥ is normalised, then

[ ¥ (ndry = 1 (12.4.2)
Here k=1, 2, ......... , L.
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The Hamiltonian of Z-electron system is

W _,  Ze? 2
HXita (=0, Vi =3 + X

:—j (12.4.3)
where 13 = [ ;- 1; |

In order to find the wave equation for k™ electron first of all we find potential
energy of k" electron in the field of remaining (Z-1) electrons as follows:

«th

* — 2 o s e
The term e¥; ¥; = e| 'PJ(TJ)| represents the charge distribution of j
electron; therefore the potential due to jlh electron at the vicinity of k" electron is

)12
I—EI%(T}N dt (12.4.4)

T'jk J

Therefore the potential due to all other electrons in the vicinity of k" electron is
e|ly j(?‘ J)|2
; ———dT; (12.4.5
Z j*k f Tk j )
So the potential energy of k™ electron in the field of all other electrons is
| (r)I?
; ——2dT; (12.4.6)
Z j*k f Tk ]
Then the Schrodinger equation for k" electron is

—h? 5 Ze?
vy

KA
2 J\J ) —
m e Ze f Tk dt; Yy (re) = E W (ry)

JET:
(12.4.7)
The k™ electron is described by normalised wave function ¥, (r;,) which has been
made self-consistent. Thus each electron in the system is being considered as
moving in the self consistent field due to the nucleus together with all other

electrons.

For Z-electrons the Z-functions ¥, (r;,) are obtained by Z-simultancous non-linear
integro-differential equations similar to equation (12.4.7). These equations cam not
be solved directly. Hartee suggested the following method of successive

approximation:

(1) From the previous knowledge of the atom a reasonable guess is made of

approximate wave function ¥, of each electron.
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(2) The electrostatic potential throughout the space, V(r;) due to the charge
distribution is calculated and these potentials are summed over all values of |

excluding that for a particular value k.

(3) This potential plus nuclear potential is substituted into Schrodinger wave
equation and resulting equation 1is solved numerically for the wave

function¥,,’ (r,). The process is repeated for all values of k.

(4) In general the initially guessed wave functions 'Pj' do not agree with final ones
¥,'. Then using ¥}’ as initial wave functions, the whole process is repeated to
get¥;””” and so on. The process is repeated until the initial and final wave
functions are identical. If this is done the field is self-consistent i.e. it is identical

with the filed produced by charge distribution of electrons.
12.4.1 Equivalence of Hartee method to variational Principle
The Schrodinger wave equation in operator form is

HY¥Y = E¥ (12.4.1.1)
If wave function ¥ of whole atom represented by (12.4.1) is properly normalised
then

E=[W'HWYdr (12.4.1.2)

In variation method the best wave function ¥ is such that the variational integral

(12.4.1.2) tends to minimum 1i.e.
OE=6 [V*"H¥Y dTr =0 (12.4.1.3)

For normalised function ¥ (r,)

h? Ze? e?
'z 2
Hedizal— g Vi =3+ Zi>j;}_
z 0 e’
=2i=1H; +Zi>jr_ij (12.4.1.4)
Therefore for normalised functions ¥, equation (12.4.1.2) gives

« -h? Ze?
E=Yi [ Wi (i) [ﬁ Vi — %] Y (r)dr +

sk ) S qu*(?j')q’k*(‘l‘k)i Y, (1) ¥ () dr;dry, (12.4.1.5)
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OE=8 [ W5 (1) HY W (rp)dr +
ek W ()W (Tk) ll” i (1) ¥y () djdy,
:f ¥ (1) Hk l‘uk(rk)drk (12.4.1.6)
where H, = k+21¢kf’1” (T, !,U (r])drj

=Hk+Vk (12.4.1.7)
where H, is the effective Hamiltonian and V, is the effective potential energy
function for the k™ electron due to the its interaction with the rest of electrons.
From the fundamental concepts it is known that §E is expectation value of
operator H, in the state ¥, which is zero. This is possible only if H, is an Eigen

operator of corresponding to lowest Eigen value €},
HY, =€V, (12.4.1.8)
The comparison of equation (12.4.7) and (12.4.1.8) shows that equation (12.4.1.8)

is identical with Hartee’s equation that we conclude that Hartee’s method is
equivalent to variation approximation provided the trial function in the variation

method is chosen as the Hartee’s product type wave functions (12.4.1).
12.5 The Hydrogen Atom

Hydrogen atom may be regarded as a system of two interacting point
charges, the positively charged nucleus consisting of a proton and negatively
charged electron.

For a system of two or more particles the equation of motion can be more

conveniently written in the form
HY =E¥ (12.5.1)

where H is Hamiltonian operator, ¥ is the Eigen function and E is the energy of

the whole system.

If (x1,¥1,21),(x3,¥2,25) are the Cartesian co-ordinates of the nucleus and

electron and m; and m; their masses respectively. The Hamiltonian of the system
is given by
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h? [ 82 ik 92 h? [ 02 92 92
= _ﬁ(axlz + dy,? * 6212) _%(axzz + dy,*? * 6222) +¥

(12.5.2)
where V is the potential energy.

So the Schrodinger wave equation for the whole system is written as

h2 (9% 92 97 h2 /92 92 92
_ﬁ(axlz ’ 0y,? ¥ 3212) o _ﬁ(aﬁﬁz . 0y2* K 8222) S S = S

(12.5.3)
where W and E7p are total Eigen function and total energy respectively.

Equation (12.4.3) may be written as
1 [0*Y, 0°¥, o0*W 1 [o*¥, 0°¥, 0%
Aty | - b — ot —
0x, ay, 0z,2 0x,%2  0y,2  0z,°

2
) + h_z(ET_V)IIUT =0

my m;
(12.5.4)
In general the potential energy V of the system may be written as
_(Ze)(ze) _ (Ze)(=e)
[ 7] | 271 |
_ze (12.5.5)

Vxa=x1+(¥=y1)+(2,—21)}
Equation (12.5.4) can be separated into two equations one of which represents the
translation motion of the whole system that means the centre of mass and the
relative motion of the two particles. In order to separate the two equations let us
introduce the new variables x’, y’,z' and the Cartesian co-ordinates of the centre
of mass of the system and (r,,) the polar co-ordinates of the electron relative to the
nucleus. These new co-ordinates are related to the Cartesian co-ordinates of the
two particles by the equations. ~

x! = mMyX1+My X,
mq+m,
myy1+m,y,
y’ = —— s (12.5.6)
m1+m2
’ MyZy+MyZ;
= — W,

X, — X, = rsinf cos¢
Y2 — Y1 = rsinf cos¢g (12.5.7)

Z, — Z; = 1rcosf
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Introducing these new variables in equation (12.5.4), we get
1 0%y Y, 0w
IT + J'T + ! T
ox'?  oay'? = 0z?
1(1 0 av 1 av 1 9%y
2 91T . T T
— i 0.
* 7 {'rz or (r or ) T sing (sm a6 ) T sing a¢p? }

2

my +ms,

(12.5.8)

mym

When 4 = 2 = reduced mass of the system. (12.5.9)

Now we apply the principle of separation of variables to separate the two
equations. For the purpose we consider

Y.(x",y',z',r,0,0) = f(x,v,2)(r,0,d) (12.5.10)
Substituting this value of ¥ in equation (12.5.8) and dividing by f¥, we get
1 a%f N *f . %f
f(my + my)\ax'2  ay'?  0z'"

1{16 26‘1’ 1 d /. oV 1 22y
+ (r )+ (smB )+

ww \rzar\" ar) " rzsingae 30/ ' r?sin0 d¢p?
2
+§(ET -V)=20
1 (azf % f . azf) 2 _
flmy +mo)\ox? " 9y " 8z?) h2
e 20 [ 2.0% 1 _9 (g a_‘*") : 32"”} 2
uw {rz ar (T Br) + r2 sinf 90 (Sln 6. a6 = r2 sin6 d¢? 3 h2 v

(12.5.11)

In above equation L.H.S. in a function of (x’,y', z") while R.H.S. is a function of

(r,,) and is independent of (x',y’,z"). Therefore if above equation is to be
2
satisfied both sides must be equal to a constant, 0 Er.ie.
1 02 92 02 2 2
[0 PN 2 2,
f(m, +my)\dx'?  0y? 0z

h2 T h2

or

O%f  9*f 9 f\ 2
axlz +ayrz +62'2 +ﬁ(ET _E)(ml-l—mZ)f =0

(12.5.12)
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and

1 16(26W)+ 1 6( BBLP) 1 621P+2V ZE
uy (r2or " r) T 12 sin6 06 =i 28/  r?sin@ d¢p? h? h?

or

2
1 a(rza_‘P}L I a( nga_w] ; aq: L2 p yy -
r* or or ) r’sinf 00 00 ) r’sin’0 o¢ h

(12.5.13)

Equation (12.5.12) represents the equation of motion of a free particle of mass
(my +my) and en energy(Er — E); thus the translational motion of the centre of
mass is the same as that of a free particle of mass (m, + m,) and energy (E; — E).
This result corresponds to the classical result that the centre of mass moves in a

straight line with constant speed. Equation (12.5.13) is identical with the

Schrodinger wave equation for a single particle of mass U and total energy E
(exclusive of the translational energy) moving under the influence of a potential

function

V(r) = -e*/r since for hydrogen atom Z=1. The energy E of the relative motion is

determined as the Eigen value of this equivalent problem.

In order to solve equation (12.5.13), let us assume Eigen function ¥ (r, 8, ¢) as the
product of three functions R(r) ©@(8) ®(¢) each of which is function of the one

indicated variable: thus

¥ (r,0,0)=R(r)O(0)D(p) (12.5.14)

Substituting this in equation (12.5.13) and dividing by RO P, we get

1 0 ( 2 6R) 1 d ( ) 1 92 cp}
——\r*=)+5—==sinb.2 ) + 5———
{TZR ar ar + r2 sinf @ 96 a6 + 2 sin'6 @ d¢? +

;—f{E V()Y =0 (12.5.15)

Multiplying this equation by r? sin’f and rearranging, we get

{Si“BE(TZ a_R) 4 204 0 ( ing. —)} + 72 Sm?E? S{E - V()

R Odr ar e 26
16¢

XYr:
In this equation L.H.S. is function of r and 8 and is independent of ¢, while R.H.S

(12.5.16)
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. is function of ¢ alone. Therefore if this equation is to be satisfied each side must

be equal to same constant m? i.¢.

{ﬂ 0 ( 2 6R) + ﬂi(smé’ )} + r? sinzai—f{E -V} =m:

R or ar e 96
(12.5.17)
102 5
and T e m
or [T g0 (12.5.18)

Dividing equation (12.5.17) by sin?0 and rearranging, we get

li 2 R 2 2,u _ _ 1 d oo
ROr (T ar) {E V( )} sin@ @sinf 00 ( ing. )
(12.5.19)

The L.H.S. of this equation is a function of variable r only while R.H.S. is a
function of the variable 8 only. Therefore if above equation is to be satisfied each

side must be equal to the same constant, [3, i.e.

lﬁ[rz a—R]w2 ‘;“ (E-V(r)}=8

R or or
or
10 (2 a_R) _BR | o2 _
"2 ar ("” ) 2t EE-V(@)IR=0 (12.5.20)
LI [Sin9@)+ - _lo=0 (12.5.21)
sin@ 00 o0 sin 260
and

12.5.1 The Solution of @ equation

As discussed in last article the solution of equation (12.5.18) can be written as

D(P) =——e™ (12.5.1.1)
N2
where the constant m= 0, £1, £2, £3,........ and is called the magnetic quantum
number.

12.5.2 The Solution of & Equation:

Now for the solution we substitute a new variable X such that
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X =cosé@ (12.5.2.1)

In equation (12.5.21), then we have

-3+ (-5

his equation is same as equation (12.5.3.1) of last article.

)@ =0 (12.5.2.2)

Therefore we must have
B=Il+1) (12.5.2.3)
wherel =10,1,2,3,........ and 1s called the azimuthal quantum number.

Also solution of equation (12.5.21) may be written as

l - !
0_(0)- \/{ZZ—H%} P™ (cos6) (12.5.2.4)

where Pllml is called the associated Legendre function.

12.5.3 Solution of Radial Equation

Substituting value of £ in equation (12.5.20), we have

10/ .0R\ II+1DR 2u
il 09 el W i Tl ¢ - —
rZar (T ar) T2 + h? E—V(r)}R =0

or

R 20R [l(H—l)R

2p
or: r or T2 +¥{E—V(r)} =il

(12.5.3.1)

2

—Ze
This equation with V(r) = e is called the radial equation for hydrogen-like

atoms and for Z=1 it is radial equation for hydrogen atom.

_Z 2
Substituting V(r) = . in equation (12.5.3.1), we get
d:R 20R Il+1)R 2 2uze?
L20R | WA+1DR 2u . 2uZe’l o
or: raor r? h? h3r

(12.5.3.2)

According to classical mechanics E<0, i.e. negative energies correspond to
elliptical orbits representing bound states in atomic system: while E>0, ie.

positive energies correspond to hyperbolic orbits representing unbound states.
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In this case let us assume that the electron is bound in the hydrogen atom, i.e. E<0.
Then let us substitute

2 —2UE
==
and A= % (12.5.3.3)

In this equation (12.5.3.2), so that we have
0:R 20R I(l+ 1R - 2«

- 2z 2 p
ar: t ror r? B r k=0
(12.5.3.4)
Now we consider a new independent variable p such that
p = 2ar (12.5.3.5)
OR _OR dp _ . OR
So that we have or ~apor 2a o (12.5.3.6)
0%R d (OR a dRrR) dp 282
a2 ar{ } ar {ZCZ }ar a ap? (12.5.3.7)
dR  0°R , e
Substituting these values of O and— 972 in equation (12.5.3.4) and dividing by
4a?, we get
d°R 2 0R L(I+1)R 1
— T [ (i+1) + —— —] R=0 (12.5.3.8)
dp:  padp p? p 4

12.5.4 Asymptotic behaviour

If p — ©0 equation (12.5.34) approaches the form
0% R(p)

+ - R( )=20
The solutlon of above equation is
0 =
R(p) =e2 and R(p) = e

As p may vary from 0 to o0, former of these solutions will increase as p increases

and so it will lead to an unacceptable wave-function. On the other hand second

solution decreases to zero as p and hence r increases to infinity. Consequently

second solution is satisfactory.

12.5.5 Recursion Formula

To seeing the asymptotic solution, the exact solution of equation (12.5.3.8) must be
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form R(p) = F(p)e_ziL1 (12.5.5.1)
where F(p) is another function of variable p .

Substituting this in equation (12.5.3.8), we get

2 , I(l+1DR 2 1
F”+{——1}F +|-————+—-——|F=0
P p p P
(12.5.5.2)
where F' =% gnd F"' = 2£
dp dp’
Let us now find a solution for F in the form
F(p) = p°G(p) (12.5.5.3)
where G(p) is a power series in p, beginning with a non-vanishing constant, i.e.
G(p) =ag+a.p+azp:+azpd+. =¥ oarpt,ap # 0
(12.5.5.4)

Differentiating equation (12.5.5.3) with respect to p, we get

F(p) =sp*~'G + p°G’
or F'"®) = s(s — 1)pS2G + 2sp°~1G + p°G"
Substituting these values of F, F* and F’” in equation (12.5.5.2), we get

S(S— 1)psG +25ps+1Gr _*_‘Ds+26u+ 2p5+1GJ + ZSpSG _ps+262 +Sps+1G+(ﬂ.—
Dpst6 -1+ 1)pG =0

Dividing above equation byps and arranging the terms, we get

p?G" +[2(s+ 1) —plG'+[p(A—s—D+s(s+1)— I+ 1G] =0

(12.5.5.5)
If p is a set equal to zero in above equation, we get
{ss+1)—-1l(l+D}a, =0
s(s+1)—-Il(l+1)=0 (12.5.5.6)
This givesus s=lor-(l+ 1) (12.5.5.7)

The boundary condition that R(p) be finite at p = 0 requires that S = [ so that
pG"+2(0l+1)—plc"+(A-1—-1)G=0 (12.5.5.8)

Differentiating equation (12.5.5.4) with respect to P, we get
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G' = a, + 2a,p + 3asp? +....... =¥® a;ipt?

=Yoo Q41 (k + 1)pk (12.5.5.9)
and G = 2a, + 6azp + 12a3p*....... =¥, a;(i —1)p‘?
=¥% o ra(k + D (k + 2)pk (12.5.5.10)

Substituting value of G, G” and G’ from (12.5.5.4), (12.5.5.9) and (12.5.5.10), we
get

oo

Y esalle+ D0k + 28+ 20+ 1) = p] Y. @k + D"
k=0

k=0 .
+(A—l—1)Zakpk =0
k=0

or

co [se]

D sl + D+ 2p5 = @y + DpF + 20+ 1) Y g (e + 1p*
k=0

k=0 k=0
+(A—l—1)Zakpk =0
k=0
(12.5.5.11)

If this equation is to be satisfied the coefficients of various powers of p must

vanish separately.

Now equating zero the coefficients of pk and equating them to zero, we get
ak+1k(k + 1) - akk + 2([ + 1)ak+.1 + (A -_— l —_ 1)ak = 0
or
Gk + D)+ (k+DQL+2)}+A-1-1-k)a, =0
k+l+1-p

or U1 = Gorn e (12.5.5.12)

This expression is called as recursion formula. Here k is an integer or zero.

For any value of A and [ the series for F(p) consists of infinite number of terms

and does not correspond to a satisfactory wave function ; because value of the

series as shown below, increases rapidly with increasing p and consequently with

P
increasing r, with the result that the function R(p), i.e. ezp® G(p) increases

without limit as p increases.
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To prove this consider the series

S.p 51 pz pa pk pk+1
pef = p°| ottt T+m+ ......... ]

ak+1 k! 1
So that = =
a (k+1)! k+1

If k is large k + 1 = k, then

. At 1
lim - -
k—o00 a k

Also from (12.5.5.12), we have

Hence the series for F(p) i.e. p*G(p), for large values of p behaves like peP . If

this is the case, the function R(p) for large values of p will behave like

2 P
ez p°eP = ezp®; which approaches infinity: thus making the wave function

physically unacceptable. Thus the series governed by the recursion formula
(12.5.5.12) does not lead to a satisfactory wave function unless some restriction is

introduced which makes the series break off finite number of terms.

12.6 Energy Eigen Values for Hydrogen Atom

We know from the previous knowledge that in order to obtain a

satisfactory wave function the series will break off after a finite number of terms.
The series will break off after pk’ if we set the nominator in the recursion
formula(12.5.5.12) equal to zero, i.e.

k+1+1-2=0

or A=k+1+1=n(say) (12.5.6.1)

Here k is called the radial quantum number and can have the values 1, 2, 3, ....... ;
while n is called the total quantum number and can have the values 1, 2, 3,......

- wzet pzet

ha h4(—2EM)2

2

h2
uzet
E, = —
o n 2hA:
Ze*
Sothat E,, = —‘Zhw (12.5.6.1)
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This equation gives the energy Eigen values for hydrogen atom with Z=1 and is in

agreement with the old quantum theory and experiment.

12.6.1 Radial wave function

Substituting A=n in equation (12.5.5.8), we get

pG" + 20+ 1) -plG'+(n—-1-1)G=0 (12.5.6.2)
Now substituting
20+1=p
n+l=n' } (12.5.6.3)
in equation(12.5.6.2), we have
pG"+[p+1—-plG'+ (' —p)G =0 (12.5.6.4)

The solution of this equation will be the associated Laguerre polynomial or more

correctly the associated Laguerre polynomial multiplied by a constant factor i.e.
G(p) =CL),(p)
=GN ) (12.5.6.5A)
where C is a constant and may be made equal to the normalization factor
k
12141 (p) = Z (DY + DY
gt L [(n—1-1-NEL+1+)] k!
(12.5.6.5B)

n—-Ii—1

Thus the total wave-function R(r) is given by

2 1 2 1 r20+1
Ry(r) =ezp'G(p) =Cezp’ Ly (p) (12.5.6.6)
The normalization condition, for the physically significant interval of zero to

infinity is

[R(r)R (r)r2dr =1 (12.5.6.7)
0
Here the factor 1 is necessary to convert the length dr into an element of volume.
_ _ &ef __ 2uZe:
We have p = 2ar = 2. e T = T
2Zr 1
== = (12.5.6.8)
n ag
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1 pe: . .
where — = —, ag being Bohr’s radius.
ap h:
_ nag
From (12.5.6.8) 1 = >z P

Sothat dr = -2 dp
27

Substituting this values R(r), R* (), r and dr in equation (12.5.6.7), we get

co

c2 [ e ot [5G (Gpp) (Gp)deo =1
0

1.e.

na
Cz(zzo) n—1=1)

2Z\* (n—1-1)!
S \/l(nao) 2n{(n + l)!}3]

Substituting this value of C in (12.5.6.8), the radial wave-function may be

represented by
3 - !
(29) (-l o () iz (2
nay/ 2n{(n+ D'} nay/ ™' \na,

3 (o]
nao J’e P p2lt2 [Lazrfftl(P)]zdP =1
0
2n{(n + l)!}3] 3

Rnl(r) = \/

(12.5.6.9)
The first three radial functions. Found from equation (12.5.6.9) are
2 _zr =~
R = 2e @
100(T) = ( 0) e =o
3
Z\2 Zr\ _Zr
not= (2 (22
200(7) . e e % >
3
Roro () (Z )E Zr _Zr
r)=|—— e Qo
210 2ay) agV3 _
(12.5.6.10)

12.6.2 Complete wave function

The complete wave-function or the normalised Eigen functions for hydrogen atoms
are
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¥, (r.0.9)=R (r)0 (0)® ($)=0 (125.6.11)

2+ 1) (- |m|)!

With @ml(9)=J R ]Pllml(cosﬂ)

1 .
@, (@) = Nz g'me

e =\/ (jci,)g 2(1?{(—:11; z;!)}!a] e (f,,—i:)l Lt (i—z:)

The real forms of the complete Eigen functions¥y,,, exclusive of spin, for

and

various values of n, [ and m are given below:

n |1 m | State | Eigen function
1 /0 o] 1 /75 _zr
'4 _—(—) 2e Go
100 = \ag
2 0 0 |2s 3
w 1 (Z)z( Zr) _i_'"
= — ——]e %
200 4\/E a, a,
' ——(—) e %rcosd
210 4/ \ag
2 1 |12 1 rgve
17 ——(—) e %sinfe'®
211 4\/E a,

If Z=1, these wave functions represent specifically the Eigen functions of hydrogen

atom.

12.7 Self Learning Exercise

Q.1 Determine the energy levels of a particle moving in a centrally symmetric
field with potential energy

A B
VORTE

Q.2 Obtain the energy levels and corresponding Eigen functions for an infinitely

deep spherically potential well defined as
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V()= 0 r<a
= 00 r>a
Q.3 Show that the addition of a small 1/r’term to the coulomb potential removes
the degeneracy of states with different [.
Q.4 Find an expression for the electron density n(r) in the Thomas-Fermi model in
terms of the Thomas-Fermi function y(x).
Q.5 For hydrogen atom in an stationary state defined by quantum numbers

n, l and m, prove that

<r>:f0DO 3| Ry |2dr

12.8 Summary

In this unit we study various knowledgeable topic and about the ground state
of the atoms. This unit contains some very important topic named as Central field

approximation, and its two approaches
1. Thomas-Fermi statistical model,
2. Hartee’s self-consistent field method.

Mainly we study about the Hydrogen atom and its Eigen values and Eigen

functions, radial wave equation etc.

12.9 Glossary

Electronic charge density: Charge per unit area 1s known as Electronic Charge

density.

_Zez
Radial equation for hydrogen-like atoms: V(r) = -

Hamiltonian Operator: The expression for the classical Hamiltonian function of a

particle of mass 711, moving with a momentum P in a potential field V(?‘) is

pZ

H=—+V(r)
2Zm
Orthonormal Functions: These are the functions which hold good for both

conditions of orthogonality and normalisation.
Operator: An operator is a rule by means of which the element of one linearspace

may be mapped on elements of other linear space.
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12.10 Answer to Self Learning Exercise

Ans.1: For the given potential the radial equation becomes

£ -2 2eo
or +P{E+} “i”u=0 (1)

where —A +I(l+1)=s(s+1) ()

L1
W =0 with

Equation(1)is similar to equation Z— + [— {E + }
replaced [ and by s. Substituting (q +s + 1)~ = % and K = B in equation

mK:?
E = ——— weget
2hm? g

E= —r:—h":-f(q+s+1)_2

Where s is the positive root of equation. Thus we get

2
Eq=_2m’3 ’[2 +1+{21+1}2+8m ‘

The radial Eigen function may then be written

2r\° 2ry _r
R, (r) = B, (—) F (—n +s+1,2s+ 2,—) e na
an na
hZ

where @ = —
mB

Ans. 2:  In the region r<a, the radial equation is given as

242y R=0

2
d?R  2dR [1 B 1(1;1)

1
2mE\2 o
= )2, may be solved under the boundary condition

With p = kr and k = (
that R—0 atr=0

Since potential well is infinitely deep. Thus the solution i.e.

Ry(kr) = Ayji(kr)

Vanishes at r=a. It gives
ji(ka) =0

Its root for first few values of | may be determined as follows:
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sinp
p
And hence equation (1) reduces to  sinka = 0

For 1=0, jo(r) =

(1)

Which has the roots as ka=nm

nhr:

Giving &, = Py

Forl =1 Jilp) =

Hence equation (1) becomes

sinp cosp

p p

tan ka = ka

Solution of which gives the energy Eigen values. Similarly, energy Eigen values

may be obtained for the higher values of 1.

Ans.3: The potential, referred here, has been used in question 1 with the Eigen

energy given by equation which is Balmer-like formula but here 1 differs from an
integer by | — dependent quantity (i.e. quantum defect in the terminology of
one electron spectra). It shows that states corresponding to different values of [
will have different Eigen energies in this case and hence the degeneracy of states
with different [ in coulomb potential is removed by the addition of 1/12 term to the

potential.

Ans.4: We already know,

3
: [-2mV(r)]2
The electron density n(r) = ——————

3mhs
- : Zey(r)
Substituting the value of V(r) from equation V(r) = — , we get
) 3
[ZmZe i((r)]z
n(r) = 3

Replacement of r with the help of equation r=bx, gives
3

_ [ZmZe-’]% ()( )E

bx

n(r)

3mh?
" 2 0.885a,
Substitution of the value of b from equation b= T gives
Z3

261



3

32Z: (x\2
n(r) = (—)
9miag’ \x

Where ag is the Bohr radius. This is the required result.

Ans.5: In a stationary state,

<r>:ffflp?:lm r l’Unlm dr

T2

= [ 1Rtz ar [ [1¥n25n0 a0 ag
0

00

Since the spherical harmonics are normalized, the value of angular integral is

unity, i.e.

<t>= [ | Rt |2 r3dr

12.11 Exercise

Q.1

Q.2

Q.3

Q4

Q5

Q.6

Q.7

Q.8

What is central field approximation method for evaluation potential energy
function of many electron atoms?
Find an expression for the electron density in Fermi-Thomas model and

show that the radius of sphere enclosing a fixed fraction of all electrons is

proportional Z . :

Discuss Hartee’s self consistent method for determining the potential
energy V(r) in central field approximation.

Why Hartee’s method of determining the potential energy is called as self
consistent method? Give answer with reason.

Solve the Schrodinger wave equation for the case of hydrogen atom and
discuss its radial wave equation.

Solve the radial wave function of hydrogen atom to obtain the expression
for bound state.

Solve the radial wave equation of hydrogen atom and obtain an expression
for Eigen value and normalised wave functions for the lowest state.

Obtain the Eigen values and Eigen functions for the hydrogen atom.
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Q.9 Obtain ground state wave functions for hydrogen atom using Schrodinger
wave equation. Obtain the most probable distance of electron from nucleus.
Q.10 The wave function of the hydrogen atom for 1s state is

3 r

N 0 U
(IS)_ \/E(ao) € i
where ag=N%me? is the Bohr radius. Calculate the expectation vale of

energy of the electron in the 1s state.

Given

[oe]
f x"e~%dx = n!
0
Q.11Calculate the expectation value of the radius vector r of the electron for the

ground state hydrogen atom.

Q.12 Calculate the size, 1.e. <r*>, for the hydrogen atom 1n its ground state.

12.12 Answers to Exercise

Ans. 11: The wave function of the ground state is given by

3. r
1 1\2 —
Y100 =ﬁ(:ﬂ) e
<r>= fllulo()rqlfoodf
T2

1 [ —2r _
<r>= onf rexp (a—o)drff sinB do d¢
0 00

The integration over the angular coordinates gives 47. Using the relation in the

appendix, the r-integral can be evaluated. Thus

o A 3 3
"7 ar2la)t 20

. . . 3
Hence the expectation value of r in the ground state of hydrogen atom is > ag.

1,

Ans.12: qlloo = (L)Z e_g

A,

1 —2r
<r?>= fffexp (a—)r‘* sinf d6 d¢ dr
0

1'[(1_03
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The angular integration gives 47T. Use of the integrals in the appendix gives

4 —2r
<r? >=—fffexp(—)r4 dr
ay’ ag

— 2
= 3a;

1
<1r?>2=3q,
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UNIT-13
Time Independent Perturbation Theory :
First and Second Order Correction

Structure of the Unit

13.0 Objectives
13.1 Introduction
13.2 Stationary perturbation theory
13.3 First order perturbation
13.4 Calculation of first order energy
13.5 Calculation of first order correction to wave function
13.6 Second order perturbation
13.7 Calculation of second order energy correction
13.8 Calculation of second order correction to wave function
13.9 Physical applications of perturbation theory
(a) Normal helium atom
(b) Perturbed harmonic oscillator
13.10 Self Learning Exercise
13.11 Summary
13.12 Glossary
13.13 Answer to Self Learning Exercise
13.14 Exercise
13.15 Answer to Exercise

References and Suggested Readings

13.0 Objectives

The potential energy of most of the real systems are different from those

considered, and an exact solution is not possible different approximate methods
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have therefore been developed to obtain approximate solutions of systems. One
such method is the time-independent perturbation theory. The objective of this unit
is to define time independent perturbation theory and it’s properties. We also study
the use of Schrodinger wave equation.

13.1 Introduction

In quantum mechanics as in classical mechanics exact solution of problems
are rare and one must frequently resort to approximation. Approximations are
therefore expected to play an important role. Therefore, various methods of
approximate solution of the wave equation have been explained, leading to the
more or less accurate approximate evaluation of energy values and wave functions.
The simple wave mechanics perturbation is developed by Schrodinger.
Perturbation theories are of two kinds: time independent or stationary perturbation

theory and time dependent perturbation theory

13.2 Stationary Perturbation theory

The stationary perturbation theory is related with finding the change in the
energy levels and Eigen functions of a system when a small disturbance is applied.
In such cases ,the Hamiltonian can be split up into two parts, one of which is large
and represents a system for which the Schrodinger equation can be solved exactly,
while the other part is small and can be treated as perturbation term. If the potential
energy is distributed by the influence of additional forces, the energy levels are
shifted and for a weak perturbation, the amount of shift can be estimated if the

original unperturbed states are known.

Consider a physical system subjected to a perturbation which shifts the
energy levels slightly: of course the arrangement remains the same.
Mathematically the effect of perturbation is to introduce additional terms in the
Hamiltonian of the unperturbed system (or unchanged system). This additional
term may be constant or it may be function of space or both space and the

momentum co-ordinates.

In other words, the Hamiltonian H in the Schrodinger equation can be

written as the sum of two parts ;one of these parts H' represents to unperturbed

system and other part H ’represents to perturbation effect. Let us write
Schrodinger wave equation
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HY = E¥Y (13.2.1)

In which Hamiltonian / represents the operator

— K 1
H = TZLEVI +V (13.2.2)

E is the Eigen value and ¥ is the eigen function of operator H.

H is the sum of two terms Hg and H ! already defined

HeH'+H' (13.2.3)

Here H' is small perturbation term.

Let lekO and Ek0 be a particular orthonormal eigenfunction and eigenvalue of

unperturbed Hamiltonian Hg, 1.e.

H'Y) =E'¥)

Let us consider non-degenerate system that is system for which there is one

eigenfunction corresponding to each eigen value. In the stationary system, the
Hamiltonian H does not depend upon time and it is possible to expand H in terms

of some parameter yielding the expression

H=H'+AH +2’H"+... (13.2.4)

In this A has been chosen in such a way that equation (13.2.1) for A=0 reduces to
the form

HOWO- g0 (13.2.5)

It is to be remembered that there is one eigen function ¥0 and energy level

E° corresponding to operator HO. Equation (13.2.5) can be directly solved. This

equation is said to be the “wave equation to unperturbed system” while the terms
AH +A2 0"+ are called the perturbation terms.

The unperturbed equation (13.2.5) has solutions

powowo .. PO
called the unperturbed eigen functions and corresponding eigen values are
ELCEC ES,.. JEC,



The functions lpko form a complete orthonormal set, i.e. they satisfy the condition
Jwowlar=5, (13.2.6)
where 51 ;1s Kronecker delta symbol defined as

8., =0 for i%#j
=1 for i=j

Now let us consider the effect of perturbation. The application of perturbation
does not cause large changes :hence the energy values and wave functions for the

perturbed system will be near those for the unperturbed system. We can expand the

energy E and the wave function ¥ for the perturbed system in terms of A, so

¥, =) + AP, + AP +... (13.2.7)

E =E +AE,+A’E] +... (13.2.8)

If the perturbation is small, then terms of the series (13.2.7)and (13.2.8) will

become rapidly smaller i.e. the series will be convergent.

Now substituting (13.2.6),(13.2.7) and (13.2.8) in equation (13.2.1), we get
HAH A2 H' )@l AY + 1P 4.

On collecting the coefficients of like powers of A
(H'W O g W O (1OW + H'Y °-E W g W %2+
HP'+HY + H'V - W' £ W E" ¥ O%+....=0
(13.2.9)
If this series is properly convergent i.e., equal to zero for all possible values

of A, then coefficients of powers of A must vanish separately. These equations will

have successively higher orders of perturbation . The coefficient of A° gives
H°-E%) ¥ °=0 (13.2.10a)
The coefficient of A gives equation

(H°®P' + H'P °- g °®’ —£" ¥ %=0
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or H-EHY +«(H-EH)¥ =0 (13.2.10b)
The coefficient of A2 gives the relation
HY" + HY' +H""W %" £ W -E", W0
m-EHWY' +(H —E )W +(H" —E")¥ =0 (13.2.10c)
Similarly, the coefficients of A3 yield
(HO_ Eko) Lpfflk+( H!_E’k) [Pllk+( HI.F _E”k) q]’k+(HH!_ EIH') lpkozo
(13.2.10d)

But if we limit the total Hamiltonian H upto A H', i.e. if we put H=H"+ H’,
then equations (13.2.10) will be modified as

TN
H’-E%) ¥ =0 (a)
(HO_ Eko) SU’}C‘“( H’ - E!k) lPkOZO (b)
(HOH Eko) lpﬂﬁ (H’ - E’k) "U’k“ E”k l]jkozo (c)
(HO— Eko) qu!fk+( H’ - E’k) '1U"k B E”k (P’k—E’”k L‘UkO:O d

-

(13.2.11)

13.3 First order Perturbation

Equation (13.2.11b) is
H-EO W +(H'-E') ¥, %~0

For solving this equation here we use expansion theorem. As perturbation is

very small, therefore deviations from unperturbed state are small. So, the first order

perturbation correction function l]J’k can be expanded in terms of unperturbed

functions
1/ 0 Y 0 07 0 L 07 0 .
A o . s ) e ;since 1, form a normalized orthonormal set.
Hence we write
’ 0
V' =¥ (13.3.1)

Substituting lP'k from (13.2.12) in (13.2.11b), we get
0 0 0 ’ 0
H-E )X, a H —E WP =0
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ie. Y, aHWP-EOY, aWO+(H —E ¥ =0
Using equation HOIP,OZ E,Oqj,o ,we get

3, B ¥ —E Y, a ¥ P+ H —E )W, %=0

Mot €~ B =E' HHP.° (13.3.2)
Multiplying above equation by qjmo* and integrating over configuration space, we
get

3o, EL-EY [ W 0 wlar=[ W OxE' - H') ¥ dr
Using orthonormal condition of orthonormalisation of ,.0 is

Jworwolar=5, | &,=0fori

=1 for i5j
we get Y2, E -ENS ~ W %€ W[ ¥ % H' ¥ Car
Z =09 (EJO* Eko)m.' - E’k(smkuf lpmo* H' lpkodr

Using the notations

[w % H' W% —<m| H |k
We get

Soa (B~ E?),, =E"\ 8, ~<m| H' |k> (1333)

mk

13.4 Calculation of first order energy

Setting m=k in equation (13.3.3), we observe that
ZI=O 4 (EIO_ Eko) 5k,': E,k_<k | H , | k> always.
Since for /=k, E,O* EkOZO and for [#k, §,,=0 so that,

Weget 0=E' —<k| H' |k>
k

or E; = (k|H'|k)= W] H"¥}dr (13.4.1)

Above equation gives first order perturbation energy correction. Accordingly

the “first order perturbation energy correction for a non-degenerate system is just
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the expectation value of first order perturbed Hamiltonian (H ’) over the
unperturbed state of the system.”

13.5 Calculation of first order correction to wave function

Equation (13.3.3) may be expressed as
a (E,E%=E' 6, —~<m| H |k (13.5.1)
since 3,8 (E°~E" ) 8, =0+a,(E,°~ E )+0

m/ m\""m

=0 for k¥m
=] for /=m

Since O

mk

For m¥k, equation (13.5.1) gives
a,(E,"—E )=—<m| H'|l

or a_=—<m| H' |k>/(E °-E>°)

a, = <m| H' | kx>/(E -E,%

m

Setting m=/, a~+ <! | H' | k>/( EkO—E,O) Jor lZF k (13.5.2)
If we retain only first order correction terms, then

E=E%AE, ..

Y =Wo+tAW' (b (13.5.3)

<. Keeping in view equations (13.3.1) and (13.5.3), we get form (13.5.3.b)
Y o= PO a0
P =POoAY <t H' k> P2 (EC-EL)} +Aa W0 (13.5.4)
where prime (or dash) on summation indicates that the term /=k has been omitted

from the summation (or it reminds that /%k )

The value of constant a, may be evaluated by requiring that ¥, is normalised, i.e.

Y'Y dr=1 (13.5.5)
/
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Substituting ¥, from 13.5.4 into 13.5.5and retaining only first order terms in ; we

get

JPow 2 4rida fWOW P + A0 [W OW Odr +

AT (<t | H' x> 8, (EP-E+AY {1 <1 H'| k>1*8, (B —E )} =1
or  1+Aa +Aa*+0+0=1 ie. a, +a *=0 (13.5.6)

(Since [WOW P4r=6, , [W oW dar=6, , [w oW ar=1
This equation indicates that the real part of a, is zero and still it leaves an arbitrary

choice for the imaginary part.
Let us take a, =i}.
From 13.5.4 The wave function ¥, can then be expressed as
Y=oy W+ A, <i| H' |x>W¥° 1(E-E);
= 20+ i+ AY, <t| H' |1 W2 (E-E)
(13.5.7)

The term containing ) merely gives a phase shift in the unperturbed function lPko

and for normalisation , this shift can be put equal to zero, so that equation (13.5.7)

gives
P=wO A <t H x> ¥ (B2E) (13.5.8)
E, =E’+{k|H'|k
=B HHHTR) ..(a)
< (I|H'|k)¥]
¥, =9+ A _<———’ (13.5.9)
k k % (Ef _Efo)
...(b)
P, =904 A
= (I|H'|k)¥,}
¥, =)+ {2y

The arbitrary A can be put equal to 1 and it may be included in symbols, i.e.
A H'— H'; then eigen values and eigen functions of the system upto first order
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perturbation correction terms are expressible as above.

Where the prime over the summation indicates that we have omitted the term /=k.

13.6 Second Order Perturbation

The second order perturbation (13.2.11c) is
H—E YY" +«H' —E )W ~E" ¥ =0 (13.6.1)

. . n . . .
Expanding second order wave functions " as a linear combination of

unperturbed orthonormal wave function qjmo by expansion theorem i.e.

P’ =% p O (13.6.2)

substituting ", =Y, {</| H' |k>W (ELED); W =Y b W °
andE' =<k | H' |k>in (13.6.1); we get
MHO-EAHN,b, WO+ H' —<k | H' [k)Y, <t | H [ k>¥° (B E )]
~-e" ¥ =0
Using unperturbed Schrodinger equation

HOquO :Emo YO we get,

m 2

BbaBa Vo — B 2oy ¥
+(H —<k| H'|e)Y, (<] H [P (E°-E® 11-E", W,%=0
or Y b EEOW H(H —<k H'k»Y i<t H P 2B £
~g" ¥ %=0
Multiplying by ano* and integrating over all space , we get
S, .b, (E,°-E% [ WO ¥ Odr+
[P H —<k H'k>Y' <1 H x>® % B -E %) jar-E" JW O+ @
dT =0
Using orthonormal property of unperturbed wave functions pog ,we get

3 b E-E0S, X {<n | H'| 1><i| H' | k> /(EL -E )

nm

- i<k |H' 1<t | H |x>6,, /(EP-E%)-E" 8 =0 (13.6.3)
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13.7 Calculation of Second order Energy Correction

Setting n=k in(13.6.3), we get

D buEn - B+ i<l | H | k><k | H' | >/ (E°-ES))

—Z’ <k | H’ | k><l | H' |x>6,/(E’-E%-E"5,=0 (13.7.1)
AsO, =land Y, b (E - Eko)(skm:O for all values of m,
Equation (13.7.1) gives

E"= X' <l H' i<k | H' | 1>/(E By
X<k | H' [le<t| H' |16,/ (B -E))
(13.7.2)

Considering the second term in equation (13.7.2), we note that this term is zero

since 5k, =0 for all values of / except for /=k and this term is not included in the

summation. Then equation (13.7.2) gives
’ 0 0
E" =3 {<l|H'|\><k |[H"|1>/(E -E)}

r. . :
If we assume that ' is Hermitian Operator, we may write

e (1] k)

(5 (13.7.3)

!;e:‘.

r < <I|H'|k>|2

1=0

= 3

E=E+AE, +’E]

p . q . n .
This equation gives second order energy correction term E . The prime on

summation reminds the omission of the term /=k in the summation.

13.8 Calculation of second order correction to wave function

For m=n, equation (13.6.3) gives

b,(E, "~ EO+Y, (<l | H'|k><n | H' | 1>/(E-E°)}
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— i<k | H' |k><i| H' | x>6.,,/(E -E )1=0
or  bE-EY (<l H'k><n|H'|1>/(E -E)
~{<k|H' |i><n | H' | k>/(B,-E,°)}=0
This gives
b=X",<I|H'|k><n|H" |1>/(E-E ) E°-E°)
<k |H' |kx><n|H' |x>/(E°-E °y=0
Setting n=m, we get
b= <t H'|\><m | H'| 1> /(BB (B - E,°)}
—{<k |H' |k><m | H' |x>/(E%-E,°Y}=0 (13.8.1)
This equation determines all coefficients b_’s but not b,. The coefficient b, is

determined by the normalisation condition for ¥, retaining only terms up to

second order in A.

Y= AW AW = OAY 422N b, L °
WO Q2o WO+ 2 S (S, (<t | H |k><m | H' | 1>/(E-E ) E -
E )} —{<k | H' [k><m | H' |i>/(E*-E, Y P, ° (1382)
The normalisation condition for ¥, gives

[ @y qr=1

Substituting , from (13.8.2); we get
@ 0w O A [ W 0«9’ dredz b JW 0w Car+

23 S < H k><m |H' | 1>/(E-E2(EL -E )

—<k|H' |k><m | H' |k>/(EL -E 7 [ W 0 W O4r]

AfE #W Oar+ A2 b x [P O Odr

2% S < H er<k | H' 1>/ (E2E (B - E,°)

—<k | H' |1*<m | H' | k>*/(E°-E %)) [ W O« @ 041

AW A gr=1
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or 140+ 2 b+ 1S <t | H'|k><k |H'| 1>/ E-ENEL-E %) —<k | H' |
k><m | H' |k>/(E -E 7} 6, +0+ A2 b*
+ 2T X < H <k | H' [ 1>* /(B -EP)(E - E,)
—<k|H' |k>*<m | H' | k>*/(E-E %216,
+A2X° Y <1| H'| k>*<m | H'| x>/ (E°-E°) EL - E_°)
[l 04—
Using equation 13.6.1b)
Or  A*b +A2b.*
XS <t H' k>*<m | H'| k1B £ )(E - E,%)8,,=0
or A[b+b*+Y <l H' | k>*<I| H'|k>/E,°-E%)(E - E,°)=0
As A250, therefore, we have
bt b=, 1<t| H' | x>}/ EL-EL Yy (13.8.3)
The real part of b, is fixed by this equation but the imaginary part is arbitrary. The
choice of imaginary part simply affects the phase of the unperturbed wave function

and it does not affect the energy of the system. Hence the imaginary part of b, may
be equal to zero. Thus, we have

b= -2, <t | H' |k>pr2( By (13.8.4)
Then lP"kZZ b ‘Pmo

=, P+ b WO
=S <1 H x> ¥ 02(E-E Ly
S 3 <t H'\k><k |H' | 1>/(E°-E%(E-E%
—<k|H' |k><m |H' |x>/(E By} ¥ ° (13.8.5)

Thus the complete eigenvalues and eigen function corrected upto second order

perturbation terms are given by
E~=E"+AE +AE",
E=E +A<k| H'k>+ A=Y, 1<k | H'| 1>p/(E-E") (13.8.6)
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and W =W AW A P"
~Y %< H /(B -ESW?
22 <t | H' [k P22 E°-E )
+ 3 S <1 H'|\o<k | H' | 1>/ (B -E ) EC-E,

0

)
—<k |H' |x><m |H' |x>/(EL -E_ %2} W 9 (13.8.7)

If we chose arbitrary A=1 or included A in symbols, i.e. A H'— H'; the above

equations take the conventional form
E=E,+<k|H [k>+Y [<k | H' | 1>p/(E°-E") (13.8.8)
Y =¥+ < H |1 /(E-EDP)

“[Z’f </ | Hr | k> llUkO/z( EkouEzo)
0

+3 (S <1 H'|\><k | H' | 1>/(E’-E°)(E - E,°)

Op1 @ 9 (13.8.9)

m m

<k|H' |k><m|H' |k>/(E -E

13.9 Physical applications of perturbation theory

(a) Normal helium atom

In this case we considered normal Helium atom without spin as an application of

first order perturbation theory for a non-degenerate system.

A normal helium atom consists of a nucleus of charge Ze (Z=2) and two electrons

circulating about the nucleus.

The potential energy for a system of two electrons 1 and 2 in Fig. and a nucleus

of charge +ze 1s

NUCLEUS
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V=—ze’/r,—ze’/r, +e%/1,, (13.10.A.1)

Where r, and r, are the distances of electrons 1 and 2 and r, is the separation of the

electrons. Then the Hamiltonian of the system

H=-h3V +V,)2mg —ze*r, —ze*r, +e*/r,, (13.10.A.2)
The wave equation for unperturbed Hamiltonian
ie.  HOWO-gOWO (13.10.A.3)
can be solved easily, taking as sum of two hydrogen atoms.

The wave equation for two electrons in helium atom is
HY¥Y={-hx(V, +V,)2mq —ze*r, —ze*r, +er,, } P=E¥
(13.10.A.4)

This equation is applicable for He, Li*, Be* Tetc.withZ=2,3.4,etc respectively.

Equation (13.10.A.4) can be written as
HY¥Y={-hV +V,y2mg—(ze*/r, +ze*r, )} W+ e W /r,, = E¥

If we write the Hamiltonian in the form H=H,+ H ’, we note that unperturbed
Hamiltonian

H, = {-h2(V +V,)2mg —(ze*/r, +ze*r, )}
And perturbation correction term
H'=¢ 1,
The wave equation for unperturbed state would then be
—he(V,+V,)2mg —(ze*/r, —ze/r, )\ W O=E PO (13.10.A.5)

If we substitute IPOZ'*P:')UZO and energy EC= E10+ Eo O,then equation(5) may be

split into two component equations one for each hydrogen like atom, viz.
The equation for '1”10 1s

V. ¥, v2mhe (£,%+ zen )P, =0 (13.10.A.6)
And equation for IPZO is

V, W, +2m/he (£,°%+ ze2r,) ¥, =0 (13.10.A.7)
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These two equations are hydrogen-like wave equations and their solutions for

eigen values and eigen functions are

E°= E,°=2me*nhiw=—2W m? (13.10.A.8)

where  W,=m,e*/2h =e*/2a, (13.10.A.9)
—Z7T1 2 —ZT>

And W, —\/(—)e a ' (13.10.A.10)

where ag=N?/mge> (13.10.A.11)

So total unperturbed energy is

E’-E 10+ Ezo=—2z2 W, for n=1(ground state).
The first order perturbation energy E’ is the average value of the perturbation
function H Jr=f:2/r12 over the unperturbed state of the system,

E=[WxH W, at=[ (er,,) W, pdr,

_Zrz

Where ¥o=

—P1 —_Pz
ez e

=

Where pq =2zr1/a, , pP2=2zr,/a,

i.e. lpo = _pz)

Tay®

volume element for two electrons in spherical polar coordinates (r,9,¢)) is

dT=r, dr,sinf,d01d¢ 1, dr,sin6,d60,d¢,

so that
21 2n co g Pie P2
" 32ma, f f f f f f ———p, dp,sin6,d6,d,
.P. dpzsin92d92d¢2
2Z T2
Where pPq2=
Ao
This may be expressed as
, Ze2 e_P1.ePz
E = [f dV4 dVy (13.10.A.10)

32mao P12
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Where dVi=p,dp,sin8,d8,d¢,
dVy=p,dp,sin6,d0,d¢,

2

. Z .
The integral (neglect from the factor 7 )represents the mutual electrostatic

energy for two spherically syrnmetricall;f gfstribution of electricity with density
functions € P'and e P2 respectively.

The integral may be evaluated by calculating to potential due to first of these
by integrating over dV, and then finding the energy of second charge distribution
in that potential field.

The potential at a point r due to a spherical shell of radius P4 and thickness
dp.i.e. of total charge 47T p e P1 dp falls off with distance outside the shell as
if the total charge were concentrated at the centre, so that for r>p 1, the potential

Cl)(r>p1) =q,/r
amtp,2e~Pidp,

T
Within the shell the potential is constant and has value equal to that at shell’s
surface
4mp,e”Pidp,

P1
=4mp1e~Prdp,

ie.  Pu<pi)=a/r =

The potential due to the whole charge is given by

d() :4711 for e Pipidp, + 41rf:o e Pipidpq

4m -r —-r
= [(-*2r-2)e " +2]+4m[rtl] e
T

41T —r
- [2—e ' (r+2)]
The energy of second charge distribution in this potential is,

[poe™r* avm[ ="~ E~P(p,2neP2av,

= 0“‘;—’; [2 — E™P2(p, + 2)]e P24mp,2dps
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—16m [, [2 — E7P2(pz + 2)]e~P2padp.

=16712.5/4

=201

The value of the integral in equation (13.10.A.10) is 20772

q B zex:20m
ence —_—
32mag

=5/8 ze2/N2/mge?
=5/8 21noe4/h2
=5/4 zZW
The total energy E=E0+E'
=—272*W,+5/4 zW,
For helium atom z=2
E=—(2.4. 2. 5/4)W
=—11/2 W,
E=11/2 mge*/2h?

=-2.75 e*/ag

The energy of helium atom in ground state without perturbation is

(13.10.A.12)

(13.10.A.11)

—27°W =8 W,=4e?/ag, which is less than the corrected energy by

means of perturbation theory.

(b) Perturbed harmonic oscillator

Case 1:The Perturbation Energy term is proportional to x

Let the Hamiltonian of harmonic oscillator is given as

H=-h22m 02/0x? + ' kx*+ 2 bx

H=H,+ H'

(13.10.B.1)

where H, is unperturbed Hamiltonian and H 'is the first order perturbation.

H,=-h?2m 02/0x? + % kx?
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H'= vbx (13.10.B.3)
Equation (13.10.B.2) can be easily solve by Schrédinger method

H,=-h?2m 02/0x? + ' kx?
But HW¥ =EW¥,
(-h22m) 0Wn/0x? + % ke W =E ¥,
0¥n/0x? +2m/h? (E~% kx»)¥ =0
This is a simple harmonic oscillator equation having the energy values
E=n+1/2)h (k/m)%
=(n+1/2) how, n=0,1,2,........

Where Wis angular frequency of oscillations given by

1
w=(k/m)z
E~=1/2 hw (for n=0) (13.10.B.4)

Similarly E,=(n+1/2) hw
Ist Order Perturbation Energy:

E'=<m \ H’| m>
E'=<¥ox) | H|¥ox)>
Where Wo(x)=N,e ~*x7/2 (13.10.B.5)
N, =V (\%) and or*=mk/h> (13.10.B.6)
But from (13.10.B.3), H'= % bx
E=<Wo|H|Wy>
=<Wy |1abx| o>
=f Noe_a!zx:/2 Y5 bx Noe—azxZ/Z dx
=0
Since fxe'x‘? dx =0

282



We should remember that if function H' in E” is odd like X,X2,X",.......,Then E will
be zero definitely. Hence 1™ order energy E is zero.

2nd Order Perturbation Energy:
We know that
E'=Y {<n|H'|m>F/(E,-E,)} (13.10.B.7)
The prime on summation shows that m=n term is omitted.
We have <n | H’| m>=<¥ x| ¥ >
From the knowledge of eigenfunctions of harmonic oscillator, we know that
" Va (n+1/2)”  for m=n+

<V x| le>2 1/ (n/2)"” for m=n—1 (13.10.B.8)

0 otherwise

N—

<¥ x| 'Pm>=(1/05) (m/2)"”? for m=n+1

If n=0, m=1, then
<Y, x| ¥ >=(1/a )(1/2)"?
So  <W | H'|W>=%b.(1/ )1/2)"
={b2/(2 a0 )}(1/2)"”
<W,| H'| ¥ >p=b2/(8a)

On substituting (13.10.B.8), in (13.10.B.7) we get E”” for zero state
b:/8a:
gro b7
20—
=b¥(8athw ) (13.10.B.9)
Hence total correction for ground state up to second order is given by
E=E,+E"+E"

=1/2 hw+ v/8azhw)
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But in general
E=E+E +E"
Where E”n:z’m<n |H ’| m>?2/(E_—E,)
=3 b2 <n | H'|m>p/(E -E)
Substituting (13.10.B.8) in above expression, we get

4

(b¥4) .(1/a? )(m/2)/ (E,—E,) for m=n+l

m m

n

E", =23, (b74).(1/o7) (n/2)/ (E,~E,)  form=n-1 (13.10.B.10)

n

0 otherwise
For m=n+1, (E_—E ) =(n+1+1/2) hw—(n+1/2) hw
=hw

And for m=n—1, (E_-E,)=-hw

m

(S b)) ()2 hw)  for ment)
E" = » 3. b4a)] (n/2).(1/ ho ) form=n-1
0 otherwise
= _/ (13.10.B.11)

So total corrected energy for nth state E_ is

E.=(n+1/2) haw+E", where E” is given by (13.10.B.11).

Case 2: When Perturbation energy term is proportional to X

Let the Hamiltonian be given by
H=p*2m + % kx*+ % bx? (13.10.B.12)

=Ho + H' (13.10.B.12a)
Where unperturbed Hamiltonian H'= p/2m + % kx?

And perturbation correction term H'=1/2 bx?

Angular frequency

o2 JEC+ D)
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k
Where W o= ‘;:angular frequency of free vibrations.
So we shall get corrected energy E ,

E,=(n+1/2) hwo (1 +—— — g;}‘l‘ -

E]—(n+l/2)hf(1+—— = %%)

As H '=(1/2) bx? ; so first order energy
E'=<n|H'|n>=(b/2)<n|x*|n>
We have [n>=¥ =N H (ax)e —@xf2
/(7T 2" n)"]
<n|x*|n> :f'nun* x* ¥ dx
~N*N, [ H e %¥/2 xay e =¥%/2 44
— N, Pf H x* e”%¥gx
Solving integral by the help of generating function, we get
<n|x?|n>=(2n+1)/(2Q?)
So E’. =b/2<n|x?|n>=(b2) 2n+1)/207)
= (2n+1)(b/4a?)
and we know & = (mk/h?)"
E’ =(b/4) (h¥mk)"” (2n+1) (13.10.B.13)

Hence E = Enﬂ + E'"

=m+12)h \/: + (b/4) (h?/mk)"” (2n+1)
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wo J
PaEy
3|~

E =(@+1/2)h

{k
=m+12) h —

L3

|

b
1 2k] (13.10.B.14)

By adding the value of E”na we get correction up to second order for nth state.
So

E =m+1/2)h k 1+3—1£? 13.10.B.15
.= (nt1/2) m{2k 21«} (13.10.B.15)

13.10 Self Learning Exercise

Q.1 Calculate the ground state energy up to first order of the anharmonic oscillator

having a potential energy

V=1/2 m@w*+ax> ax3<<1/2 ma>>
where a is independent of x.

Q.2 Evaluate the first and second order correction to the energy of the n=1 state of

an oscillator of mass m and angular frequency w subjected to a potential

Vix) = 1/2 ma)Px’+ bx, bx<<l1/2 marx>.

Q.3 A particle of mass m,and charge e oscillates along the x-axis in a one

dimensional harmonic potential with an angular frequency @. If an electric

field € is applied along x-axis, evaluate the first and second order corrections
to the energy of the nth state.

Q.4 A simple harmonic oscillator of mass m, and angular frequency @ perturbed

by an additional potential bx3. Evaluate the second order correction to the

ground state energy of the oscillator.

13.11 Summary

In this unit we have detailed study of stationary perturbation theory non degenerate
case and physical application of non degenerate perturbation theory using the

Schrodinger wave equation
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13.12 Glossary

Kronecker Delta: 1t 1s given as:f qjiolpjod‘[=5ij

Here & i 1s known as Kronecker Delta.
Hamiltonian Operator: The expression for the classical Hamiltonian function of a

particle of mass 1M, moving with a momentum P in a potential field V(T') is

pz
H=—+V(r)
2m

Orthonormal Functions: These are the functions which hold good for both

conditions of orthogonality and normalisation.

13.13 Answer to Self Learning Exercise

Ans.1: E’0=<Orax3|0>. The integrand of this integral is an odd function of x and,
therefore, the first order correction to the ground state energy is zero.

Ans.2: The first order correction to energy for the n=1 state is given by

1
E’=<1|bx|1>=b(h/2mw)2 <I |a+ta’| 1>

1
=b(h/2mw)2 [<1a/1>+ <l[a"|1>] =0

Since aln>=Vn [n—1[> and a’[n>=Vn(n+1) [n+1j>
E v (h/2mw)Y; <1 ata’| k>P/ E'~ E,
=v> (h/2mw) [IVE, "~ E, + 2/ E'~ E,"]
=b? (h/2mw) (I/hw - 2/hw)

_bz

2maw:?

Ans.3: The potential energy due to the field E=—e€x
The perturbation H'= —e€x

. . 1
First order correction £, =—e€<n [x| n>

1
Interms of g and a , x= (h/2mow)z (a+a’)
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1
E,—e€(h/2mow)z <n | ata’| n>=0
E, =Y. l<n| H'|m>F/E, -E,’
1
<n| H'|m>=—-c€(h/2mow)2z <n|at+a’| m>

Here, m can take all integral values except n. The non-vanishing elements
correspond to m=(n+1) to (n—1). Hence
2
(n+1): (Vn)
~hw  ho

E,=eex(h/2mow
=— e*€*2mpw*
Ans.4: The second order correction to the ground state energy is given by
E, =Y |<0|H'\m>piE,"-E," , H'=bx®

In terms of @ and a'

1
x=(h/2myw)2 (ata’)
3
<0 [x3 m>=(h/2mow)2z <0|(a+a’)(a+a")(a+a )m>, m=12,3,...

3
=(h/2m0w)5 [<0 |aaa| 3> + <|aaa'+aa’a\ 1>]

The other contributions vanish. For the non-vanishing contributions, we have

<Oaaa3>=V6,  <Olaaa’+aa’a| 1>=2+1=3
E, =b(A/2mow)3 (L+i) —11 b?hz/8m* w*
0 —-3hw -hw 0
13.14 Exercise

Q.1 What do you mean by perturbation theory ? discuss the perturbation theory for

non-degenerate levels in first and second orders.

Q.2 Apply the perturbation theory to derive the energy of helium atom in its

normal state.

Q.3 Discuss the first order perturbation theory for a non-degenerate level.
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Q.4 A Harmonic oscillator of natural frequency @ is placed in a small external

potential %2 Ax*. By how much is the energy of the ground state changed?
Q.5 A particle moves in a potential field given by

Y(x)=1/2 kx2+ax ™. Treating the term ax* as a perturbation, calculate
ground state energy for the particle.
Q.6 A one dimensional harmonic oscillator of charge e is perturbed by an electric
field of strength E in the positive x-direction. Calculate the change in each
energy level to second order in the perturbation for three dimensional isotropic

oscillator. Define also polarizibility.
Q.7 By using first order time-independent perturbation theory obtain the correct

eigenfunctions and eigenvalues.
Q.8 Consider the infinite square well defined by
V(x)=0 for0<x<a

V(x) = 00 otherwise

Using the first order perturbation theory, calculate the energy of the first two
states of the potential well if a portion defined by

V(x)=V,x/a, where Vg is a small constant, with 0<x<|a being sliced off.
Q.9 Calculate the first order correction to the ground state energy of an

anharmonic of mass m and angular frequency @ subjected to a potential
V)= 1/2 max*+ bx*
where b is a parameter independent of x. The ground state wave function is

1
0 (Mw - -m wx-
o= (—)4

Q.10 Describe the behaviour of the wave function near origin if the field becomes

; ; a .
infinite as — ,with s>2, where r—>0.
T
Q.11 (A) The nucleus of an atom in the normal state receives an impulse which

gives it a velocity. Assuming the duration 7 of the impulse as very short in

comparison both with the electron periods and with a/v (where a is atomic
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dimension), determine the probability of extinction of the atom under the
influence of such a jolt.
(B) determine the total probability of excitation and ionisation of an atom of

hydrogen which receives a sudden jolt.

Q.12 A Hydrogen atom in the ground state is placed in an electric field € along the

z-axis. Evaluate the first order correction to the energy.

13.15 Answers to Exercise

Ans.9: The first order correction to the ground state energy

—Mmawx:

)dx

1
v 0 o maw- = (o8] 4
Ey =¥, H W, >=(—-)2 ) x"exp (
Using the result given in the appendix, we get,
1 5
. ,mw\= 3m, h .2
E =b(—)22.— (—)z
0 (n:h) 8 (mw)
_ 3bke

amew:
Ans.10: For small r the approximate wave length is given by

S
2mh  2mh r2

A= =~
V2m|v| V2ma
dA msh 22
— r 2 <<]
dr 2ma

which gives

which satisfies the condition (6.10) for quasi-classical case. For attractive field V,

=-00 , as r—>0 and the region near the origin is classically accessible and the
radial wave function is

1
u——
Vp
S—4

giving T o4 (6.10)
In a repulsive field, the region of small r is classically inaccessible and the wave

function tends to zero exponentially as r—>0. Thus we have

¥xexp %1 f; p dr
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N 2vV2ma 0572
or exp (s—z)hr 2 (6.11)

Ans.11: (A) Since the duration of impact T<<a/v, the nucleus may be regarded as
practically stationary during the impact and hence the coordinates of the nucleus in
the frame K’(moving with nucleus after impact) are the same as in the original

frame K, the initial wave function in K’ is
' =W, expliq er
]

where g=mv/h and ¥ is the wave function of the normal state with the nucleus at
rest. The summation over j for all electrons in the atom. The required probability of

transition to the nth excited state is

P,i=t<n [exp(=ig. Yr) | I>P
J
(B) In hydrogen atom the atomic number is unity and hence the required
probability is
1-Pi=1-| [ Wre " 4r p

Where Pi1 is the probability that atom will remain in the ground state
-1 -r

Wi=(wa’)7 e .

Thus we have

Pii= —5——
(1+;qa)*

1

Now the required probability is |
q p ty 1 +§q2a2)4

Ans.12: Consider an atom situated at the origin. If r is the position vector of the

electron, the dipole moment

W =—cr
The additional potential energy in the electric field € 1s —L.€, where 0 is the angle

between vectors r and €. This energy can be treated as the perturbation
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H":erEcosg

The unperturbed Hamiltonian
—R: 2

Ho _ i V2 _ e
2uU 41TENT

The unperturbed wave function
-r
1 R
V1 3%
T2 ag2
The first order correction to the energy

E'=<100 |er€ cosB| 100>

The angular part of this equation is

f;r cosf sinf df =0

1.e. the first order correction to the energy is zero.
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UNIT-14
Perturbation Theory for
Degenerate Systems

Structure of the Unit

14.0 Objectives

14.1 Introduction

14.2  Stationary perturbation theory: degenerate case

14.3  Energy correction and secular equation

14.4  Application of stationary degenrate perturbation theory

(first order stark effect in hydrogen atom)

14.4.1 First order stark effect in ground state of hydrogen atom
14.4.2 First order stark effect in excited state of hydrogen atom

14.5 Correct Eigen Functions

14.6  Self Learning Exercise

14.7 Summary

14.8 Glossary

14.9  Answer of Self Learning Exercise

14.10 Exercise

14.11 Answers to Exercise

Reference and Suggested Readings
14.0 Objectives

In this unit, we study about the degenerate case of the stationary perturbation
theory. When in a system in which a number of orthogonal eigenfunctions
correspond to the same eigenvalue, then this system is known as degenerate
system. So the main objective of this unit is to study the characteristics of

degenerate case of the stationary perturbation theory.
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14.1 Introduction

When a degeneracy exists, a linear combination of the degenerate wave
functions can be taken as the unperturbed wave function. As an example, consider

the case in which E’ is two-fold degenerate.

Let ¥°, and W°, be eigenfunctions corresponding to the eigenvalues EnO:E,0 and

let the linear combination be
¢:a1\P10+a2\on

({1 and (7 be constants.

14.2 Stationary perturbation theory: degenerate case

We have assumed that there is one Eigen function for one eign value and have

found for the first order correction to wave function as
Yk =>a

Where, a, =< [ |H’|m >/ (E O_Eto)

m

This causes difficulty if the two states m=/ correspond to same energy
E'=E’unless <[ |H'|m >=0. As< [|H'|m >+ 0,

In this case, there are systems in which a number of orthogonal eigen
functions correspond to the same eigenvalue . Then the system is called degenerate
system ; the order of degeneracy being equal to the number of eigen-states
corresponding to same eigen value. In such case the perturbation method is as
follows :

- 0 0 . ’ ;
Suppose two eigen states l,bl and 1/)2 having same eigenvalue in unperturbed
system i.e.E10=E2 0=E0(Say);so that
HOW, °=E°W, %and HOW,°=E°P,° (14.2.1)
Eigen function is linear combination of these two will also be an eigenfunction
corresponding to this energy . Thus

Yoo, ¥, %0, P,° (14.2.2)

and HO\POZHO( 0(1\P10+O(2\P20)
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= (XlHO\P10+a2HO‘PZO: (XJ_EO\P]_O‘FazEO\PZO

=E%( o, V1 +a %)
ie. HOWO-g0WPO (14.2.3)
Applying orthonormal properties of \Plo and \on, we have

O *0+0p*0p=1 (14.2.4)
There may be an infinite number of eigenfunctions which may be built out of these

: : : : 0
two eigenfunctions corresponding to same eigenvalue E° . Then a set of n-
functions is linearly independent if there exists no relation of the form

o W10 Vo O rog ot W 0=0 (14.2.5)
If there are linearly independent eigen functions corresponding to the same
eigen value , the state is said to be n-fold degenerate and any other function

possessing the same energy can be expressed as

Yoo, W, O+, W0+ +a W O (14.2.6)

1 * 01+ 0 * 0o ... +O O *=1 (14.2.7)
Let us we take the perturbed system for which the Schrodinger wave equation is
HY=E¥
Where H=H’+AH’
So that (H*+AH") W=EW (14.2.8)

For A—0 the system tends to the unperturbed state and let for this case the system
be s-fold degenerate.Then the unperturbed schroedinger equation

HOWPO-goWO (14.2.9a)
Has the solutions

lpollalpolzulPOlS""LIJOlsa w021,qjozz,qjoz3----qjozs -----

Wo L WO, Wl Wl (14.2.9b)

Coresponding to eigen values
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Eq1 E2 ...... ,Eok ...... respectively. (14.2.9¢)

Let WO, WO, WO, WO represent some arbitrary chosen orthonormal set
of eigen functions . The problem in degenerate system is to find the set of
unperturbed wavefunctions to which the perturbed functions reduce when the
perturbation vanishes i.e. the evaluation of the coefficients in the linear
combination converting the initially chosen wavefunctions into the correct zeroth

order wavefunctions .

Let the correct eigenfunction in zero approximations be represented by the linear

combination
WO, WP (14.2.10)
The eigenvalue and eigenfunction of perturbed system may be expressed as
E=E +AE +A2E"+... (14.2.11)
P-YUiW 2P ..
= ¥ a WY+ AW +A12 W+ (14.2.12)

Using (14.2.10)

Substituting theses values in (8), we get

(14.2.13)

Comparing coefficients of like powers of A, we get
1y a ¥ ~E°% a WP, (14.2.14a)
or  (H°-EOHW =%, a E -H)P°, (14.2.14b)

And so on.

The perturbed wavefunctions may be expressed in terms of unperturbed wave

functions like

¥, S, w° (14.2.15)

mj

0
where C,; are constants and b4 m correspond to state.
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Then
HO l-IJ’k:I_IO Zcqujomj

_ 0 0o OO
- Ecmj H ll) mj _Z ij E Lp mj ( 14216)
Substituting these values in (14b), we get
0 0 0 ’ r 0
(H - E, )Zcquj m— X(E, —H )lp K
i E-EOHWC -F a F WO - H WO
1.€. Zcmj( m k ) mj Z ak} k ki Z akf ki

(14.2.17)

Multiplying both sides by Lponp* and integrating over all configuration space, we

get
3C, B, 2-E%) JWO,* WO, dr
= akak’f LIJOnp * qjok; dr-Y a, f L]JOHP* H 1_[;0“ dt
or Y, (€ -E%. 8- akE 5.6, -Sa,fJP° H PO, dr
(14.2.18)

14.3 Energy Correction and Secular Equation

Let us chose n=k, then
0 0 ’ 0 o
Zcmj (Em —E, )km6pj:2 aE, 5pf_zak!f ¥ kp*H ¥ Kl dt (14.3.1)
In above equation L.H.S. is always zero since when k=m , it is zero due to
(EmO—EkO) and when k#m it is zero due to 5km‘ So, equation (19) gives
0 "wo ’
Zak.ff E 4 kp H W, dT- Z aE, 5p.f =0
By using notations
0 s 0 r _ !
SO s WO ar=<p|H'|l>=H',
I r
Weget > (H',-E'S,) a,~0 (14.3.2)
These simultaneous equations can be written as
’ I ! r
(H,,— E,) ak1+H 1 Aot H 13 k3T +H s A =0

! r ! r
H 21 akl+( H22_ Ek ) ak2+ H 23 ak3+ """ +H 28 aks:o
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(14.3.3)

If neither of coefficients &, is zero , the determinant of coefficients of &,

(/=1,2.....s)must vanish 1.e.

(Hn_Er:) H;z H1'3 HI’S
H.;.l (sz_E::) Hés Hés
=0
H,, H, H, .. (H,-E)

Since H ’p, are known , it is an equation of sth degree in E, and has s-solutions
of Ek’given by Ekl’,EkZ',Ek;, .......... E,
equation and the perturbation of this type is called secular perturbation .

r

.- Such an equation is called secular
If this equation gives all the roots Ek' different , the solutions have

completely , removed degeneraey : but it may happen that not all the roots Ek'

are distinct in which case perturbation has not completely removed degeneracy.

It is remarkable that in case the secular equation has the form

(H,- E;) 0 0 .. 0
0 (H,—E) 0 .. 0
=0 (14.3.5)
0 0 0 .. (H,—E)

Initially we chosen functions ‘Pko are correct zeroth order functions for the

perturbation H' . For such an equation the roots of Ek’ can be given by following

equations
(H,,— E.)(H,= E,)......... (H.~ E,)=0 (14.3.6)

Sothat H =E, , H =E, ... and H =E,
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For solving the eigenfunctions corresponding to roots E,,” , By, , ....... E..,a
particular root is substituted in (14.2.20) and solved for the ratios

@ Zi=y Hr (143.7)
a Er o
From the normalisation condition, we get
(o A A0 o N A S A7 A
It helps in determining &, .
For p >s, @ =0, so that we get from (14.2.18)
0 0._N\'S I
Cnp(En _Ek )_2[.:1 akl H pl
Yi=1 o Hrpy Yi=1 0kt Hjp
ie. ¢ =i =P e o (14.3.8)
(En—Ep) (Ex—Em)

Normalisation of ¥ C,,=0 for p<s and we can write the first order perturbation
eigen function and eigen value as

0
lPﬁZfﬂ 20K llUkl + 4
and  E=E’+AE/ (14.3.9)

14.4 Application of stationary degenrate perturbation

theory (first order stark effect in hydrogen atom)

This phenomenon was discovered by Stark in 1413 , while observing Balmer
lines of hydrogen with an electric fields of strength 10° volt/ecm. It states that
“The splitting of energy levels of an atom caused by a uniform external electric
field E is called Stark-Effect.” In this, we shall discuss the energy shifts of Stark
effects by perturbation theory . As in Zeeman effect let us choose the unperturbed
initial states with a direction of the perturbing electric field along the Z-axis and
use the eigen states of L,.

The force apply on electron of charge g=—e, (¢ being positive quantity) in an
electric field of strength E is

F.=qE= —¢E

Field is along Z-axis , therefore extra-energy of electron in
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electric field =F .z= —eEz
The Schrodinger wave equation for this case is

2u(W4Z—f+eEZ)S’J

VY + - =0 (14.4.1)

—-7Ze:2

where W is the total energy and , —eEz is the potential energy ofelectron in
atom.

Equation (1) may also be written as
—he Ze:
(— V2 — ——cEn)V=wWW¥
2u r

ie. (HO+HHWP=-WYW (14.4.2)
where the unperturbed Hamiltonian;
—he Ze:

oy Vz— - (14.4.3)

Ho=
and the first order perturbed Hamiltonian term
H'=—¢Ez
If we use polar co-ordinates (r,0 ), then z = rcos@

andso H'=-eEz=-eErcosf (14.44)
e being again a +ve quantity.

The potential energy is spherically symmetric. We know that the wave functions
for any spherically symmetric potential energy . When expressed in spherical
harmonics , have even or odd parity according as the azimuthal quantum number is

even or odd.
14.4.1 First order stark effect in ground state of hydrogen atom:
The ground state of Hydrogen atom is specified by
n=1, [=0, m=0
The ground state (n=1, I=0, m=0) of hydrogen atom is non-degenerate state and
the corresponding spherically symmetric wave function is given by

-r

e

¥100=R10(r) Y1000, ®) =

Vray®
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2

n? . : . .
where ag=~=5 IS the radius of Bohr's first orbit.

The first order perturbation energy correction is given by

sz "P*lggH lpl()()dT

=[ff L ea (—eEr cos @) \/%ﬂ.ﬁ e rdr sinddOBdg

Vray’

—-2r
= _:E; fooo r3e a dr fonsiné)cosadé) fozn dp =0

T
Since fon sinfcosfdh = 0

Hence for ground state of hydrogen there is no first order Stark effect. Thus we

may say that only the non-zero matrix elements of H' are those that have odd

parity since the perturbation term H' is odd with respect to inversion (odd parity).

14.4.2 First order stark effect in excited state of hydrogen atom:

Let us know consider the first excited state n=2 for hydrogen atom , Since n=2,
therefore /=o0,1 and m=1, 0, —1 and hence the quantum number (/,m ) can have the
following combinations.

(0,0),(1,0),(1,1) and(1,~1)

Thus the wave-function ¥ jmn is four-fold degenerate , i.e., the wave — functions
Y100, ¥210,.¥211and ¥51-1 all have same energy .

The secular equations refer eqn. (14.3.4) for the first order stark effect in the form
of determinant is

(<0,0[H10,0>-w1)  (<LO|H]0,0>)  (<L1H]0,0>)  (<L-1|H0,0>)
(<0,0/HL0>)  (<LO|H|L0>-) (<LO|H11>) (<L-1|H1,0>)
=0
(<0,0|H1,1>) (<LO[HLI>)  (<LIHLI>-W)  (<L-1|H|L1>)
(<0,0|H1,-1>) (<0.0[H|1L-1>)  (<LUH|L-1>) (<L-1|H|1,-1>-7)
(14.4.2.1)
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Now we shall calculate the elements of the secular determinant , we have

-r

200 /3277405 & F)e ¢

-1

VYoo = —cosH e2a
210 \/32 ( )
V11 = ! ( . Sinﬂe_i‘p)e;_;;
V32ma,?® “a%v?2
1 r . —ip\ 50
Vo1 17— (aoﬁsmﬂe )eza (14.4.2.2)
< 0,0H'10,0> = Wp00H Wa00 dT=0 (14.4.23)

[Since (W*200, ¥200) have even parity.]

On similar grounds all the elements except < 1,0|H’|0,0> and < 0,0\H’|l,0> * of
the secular determinant are zero.

The Non-vanishing element of H' are
<1,0/H’|0,0> =< 0,0[H|1,0> *

Zflluzj_o*(—eET COoSs 9) quoo dT

-ﬂf\/nm - (— cos@)eZau(eEr cos 0) W(z——)emrorzdr sinfdrdfde¢
[since dT = dr rd6 rsinf d¢p = r=sinfdrdfde]

f (2 ——)r eaodrf Smé’cosﬁdBf dp  (14424)

32na
We have
[ OH sin9c0329d9—;31 [ cos81,=%4 (14.4.2.5)
fozn de =2m (14.4.2.6)

fooo(z — aio)r4€a_0dr=fooo(2 . T])(nao) 48—U(a0dn) where ;_0 =1]
=ao’2f, n*e Man-[ " n° e Man]
— ap°[48-120]=- 72 4y’
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Using equation (14.4.2.5),(14.4.2.6),(14.4.2.7) equation (14.4.2.4) yields
<1,0/H"|0,0> =< 0,0[H|1,0> *

—eE 5
m (-72a9”).%B.2TC

=3¢Fag (14.4.2.7)

So the secular equation to

Wi 3eEap, 0 O
3€Ea0 —W1 0 0
0 0 —-W; 0
0 0 0 —-W,

ie.  (-W12)[ W12 — (3eEag)?]=0

=0 (14.4.2.8)

this gives W1=0,0 and W= 1+ 3eEag.

This splitting of energy levels is shown in fig. 14.1. the electric potential energy of

a dipole of moment p is —p.E.

ORIGINAL 3eEag SPLITTED

LEVEL 3eEaqg LEVELS

Figl4.1:first order splitting of energy level.

The energy of splitted levels is £3eEaqg. Thus the behaviour of hydrogen
atom in first excited state (n=2) is like a permanent electric dipole moment of
magnitude 3eag ;which can be oriented in three different ways :

(1) One state parallel to the external electric field.
(2) One state antiparallel to the external electric field and

(3) Two states perpendicular to external electric field.

14.5 Correct Eigen Functions
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To find the correct unperturbed eigen functions corresponding to W, = 0,0,

3eEag and —3eEag. we use secular equation and proceed as follows :

1. When W 1=0,the secular equation (14.4.2.7),gives,
0 3eEa, 0 0] a1¥200

3eEay 0O 0 O a2¥>10 =
0 0O 0 O as¥;11
0 O 0 O a‘l-lIUZr 1, -1

This is equivalent to
3eEa0a2'1U210=0 and 38Ea0a2qj200 = 0
It results a, =a,=0

But there is no restriction on the values of &3 and @4.The corresponding linear

combination is written as
V=a3¥3, 1,110 €s¥ 2,1, 1

From the normalisation condition f’x”*qj dT=1 gives
Q3+A 471

1 1
We get X3 = ——, 4= in first case
g =
d o ! a L d
an = ——, @4=— —— in second case.
3TVt V2
Hence the correct linear combinations for W1=0 are

1 1
\/_'E (l1U211 + lIUZJ 1, —1) and \/—E (llU211 - lpzl_l) .

2. When Wq=3eE a, the secular equation gives

—3eEa, 3eEa, O 0 @1%¥ 200

3eEa, —3eEa 0 0 az2¥310
0 0 —3eEa, 0 asWary

0 0 0 —3eEao] as¥21-4

This is equivalent to

—3€Ea0a1 IIUZOO +3eEa0 azlp210:0 or alquoo — az‘sz:O
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3€Ea0a1 ‘ong —3€Ea0 azlpzu) =0 or alqugo — azlpgl():()
_3€Ea0a31}’211:00r a3 = 0

and _3€Ea0 0649”21_1 =0 or a4=0.

Thus we get required linear combination is
Y= a1¥200 - @2¥210
From the Normilisation condition gives &1°+Q2*=1
Th a,=a :
us =0 o= —-
172\
Thus the correct linear combination for W1=+3eEag is
= (W200-¥210)
N 200 210
3. Similarly when W ,=—3ea, the correct normalised linear combination is

1
NG (W200+¥Y210)

14.6 Self Learning Exercise

Q.1 A rigid rotator in a plane is acted on by a perturbation represented by

H'=V0/2 (3cosl¢)—1), V,=constant.
Calculate the ground state energy up to the second order in the perturbation.

Q.2 A plane rigid rotator in the first excited state is subjected to the interaction
H'=V,/2 (3 cosqu— 1), V,=constant.

Calculate the energies to first order in H.
Q.3 The energy levels of the one-electron atoms are doublets, except the s-states
because of spin-orbit interaction. the spin-orbit Hamiltonian
1 1dV
T 2mecr dr

S0

Treating H_, as a perturbation, evaluate the spin-orbit interaction energy. For
hydrogenic atoms, assume that the expectation value is

1 2273
(r_3)= nSagl(1+1)(21+1)
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where ag is the bohr radius.

Q.4 A rotator having a moment of inertia I and an an electric dipole moment
executes rotational motion in a plane. Estimate the first and second order

corrections to the energy levels when the rotator is acted on by an electric

field € in the plane of rotation.

14.7 Summary

In this unit we study about the degenerate case of stationary perturbation
theory and its application. This unit includes some important topic as Energy
correction , Secular equation, correct Eigen function and Stark effect on hydrogen

atom.

14.8 Glossary

Degenerate System:When in a system in which a number of orthogonal eigen
functions correspond to the same eigen value, then this system is known as
degenerate system.When a degeneracyexists, a linear combination of the
degenerate wave functions can be taken as the unperturbed wave function.

The problem in degenerate system is to find the set of unperturbed wavefunctions
to which the perturbed functions reduce when the perturbation vanishes.

Secular Perturbation: The perturbation theory of the Secular equation is known
as Secular Perturbation.

Stark Effect:The splitting of energy levels of an atom caused by a uniform
external electric field E is called Stark-Effect.The behaviour of hydrogen atom in

first excited state (n=2) is like a permanent electric dipole moment of magnitude

3eap

14.9 Answer of Self Learning Exercise

Ans.1: The energy eigen values and eigen function of a plane rotator are given by
m-h:
E = m=0,12,..............
m 2[

and m=0,—1,-2.............

1
"Ijm(q‘))— \[Z_n_exp(imqb)
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Except the ground state, all levels are doubly degenerate. The first order correction

to the ground state energy is
E,=<¥Y H|¥Y>=(¥|V,/2@cosp-1)| V)

=¥ 3 Vocos /2 | W)—(W | V2 | W)
=3 Vy/4 = V,/2
=V, /4

The second order energy correction

E,=Y,,|<0| H'|m>/(E, -E,)
- 1) \[% eMmPdg
=3V,/ATT fozn cos:pe™Pdp — V,/4n fozn elMbdg

' 2w 1
< > = R 2
0H'|m>=Vy2J m(3005¢

We can write cosqu:( I+cos 2(}5)/2. Also, the second integral vanishes. Hence,

' 2m -

<0|H'|m>=3V,/8m fo (1 + cos2¢)e™? dg
21 i
=3 V87 [ cos2¢pe™® dg
Since the other integral vanishes. Putting cos2¢ in the exponential, we get
r 21 i(m+2 2T _i(m-2

<0 H'|m>=3vy16m [ e' M2 dp +3vyiem [ et M dep
The first integral is finite when m= —2, the second integral is finite when m=+2
and their values are equal to 3 V/8.

E,=2h%1, Eg=0. Hence

E,-E,’=-2h1

Thus
3v0 3v0
. & &
Eg = +
—2he/I  —2h/I
-9yl
64 h

Ans.2: For a plane rotator,
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m-h?
E —— m=0,1,2,...............
21

m

and m=0,—1,-2,...........

1
qjm(¢ )_mexp(lm¢)

Except the ground state, all levels are doubly degenerate.the energy and wave

function of the first excited state are
E. =h221,
__L ,tig
lp(d))_ m e
The first order energy corrections are given by the roots of equation (8.6):
H'y—En H'y,
H’21 HIZZ — E’l
1 21
H’11:H’22=E fU V0/2(3C052¢ - 1)d¢

=0

=Vo/4m 3m-2m)
=Vo/4
H'y;=H'p i fozn e %V,y/2(3cos:p — 1)e”?dd
=3V,/8
The secular determinant takes the form
Vo/4—E'4 3V,/8
3V,/8 Vo/4 —E'4
(E'1)>-Vy/2 E'; -5Ve2/64 =0
The roots of this equation are —V /8 and —5V/8. The corrected energies are
E—+5Vo/8and - - Vo/8,

Ans.3: for the valence electron in a hydrogen- like atom, the potential

( ) —ze’
V(r) =
4TENT

av ze?

= (1)

dr A4meyr:

or
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av
Substituting the value of prp we get

ze’ L.S.

e = 2
° 8mweymec’ 13 (2)
Since J=L+S
]z_Lz_Sz
P=L2+82+2L.S orL.S = — (3)
Using the basis |Isjm>, the expectation value of J> — L> — S? is given by
<(J2 = Lz = )i+ D10+ D=s(s+D1he “4)

Since the first order correction to the energy constitutes the diagonal matrix,
substituting the values of <1/r3> and <( J2 — L2 — S2)>, we get

zehr  [j(j+1)-1(1+1)—s(s+1)]
- 8meomeciay’ n3(1+1)(21+1)

(3)

50

The Bohr radius ag and the fine structure constant & are defined as

41€ph? e:
40~ me: ' 4me,ch 6)
By equation (6), we get
zteh:  [j(j+1)=-1(0+1)—s(s+1)] )

S"_Snﬁomfc»’a(ﬁ n3(i+1)(21+1)
This make the state j=/—(1/2) to have a lower energy than that with j=/+(1/2)

Ans.4: the energy Eigen values and Eigen functions of aplane rotator are
E =hme2l | ()= IA2T expim@p) m=04122.....
The perturbation H'= —lL€ cos¢h = —lE/2 (eiqb + E_i(p)
E,"=<n |H'| n>=-penm fozn cospdgp =0
E2=Y "|<nH'|m>[/E°-E°
<n [H'| m>=—UE/4TT fozn e~ P (e + i) eMmPdg
e [fozﬁ elm=—n+Ddge 4 fozﬂ' elm=1-m¢ g4,

The integrals are finite when m=n—1 (first one) and m=n+I1 (second one).

Therefore,
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E,%=(-penamy4myE° -E ° +4mvE°-E °

]
=(—pE/ATTY 4221/ (1/2n—=1 +1/2n+1)

=p2e/R(4n*—1)

14.10 Exercise

Q.1 Give the theory of first order stark effect on the basis of quantum mechanics

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

and discuss the splitting of the energy levels.

Discuss the effect of a weak external magnetic field on the energy states of an
atom using perturbation theory. How is this effect modified when the
magnetic field is strong?

Give the stationary perturbation theory for the degenerate case and use it to
explain the first order stark effect in hydrogen.

Explain the stark splitting of n=2 level of hydrogen atom in the presence of
an electric field using first order time independent perturbation theory.
Calculate the first order stark effect for the first excited state (n=2) of
hydrogen atom. Show that you result would imply that a hydrogen atom in its
n=2 state behaves as though it has a permanent electric dipole moment of

magnitude 3ea,. Sketch the arrangement of the energy levels and indicate the

wave functions associated with each.
The matrices for the unperturbed (HO) and perturbation (H') Hamiltonians in

the orthonormal basis | ¢, > and | ¢b, > are
o_(E0+e 0 ) ,_(0 A)
H™ = 0 H =
0 EY—€ A 0
Determine (a) the first order correction to energy, (b) second order correction
to energy, and (c) the wave function corrected to first order.
A particle in a central has an orbital angular momentum quantum number

[=3. If its spin s=1, find the energy levels and degeneracies associated with

the spin-orbit intraction.

14.11 Answers to Exercise
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Ans.6:

(a) The first order correction to the energy is zero since the perturbation matrix

has no diagonal element.
b  E’=3,|<nH|m>PAE, -E,)
E’=|<1H'| 2>P(E, -E,)
= | AJ/2€
= A%2€
E,” =| <2 [H'| 1>P/E, -E,")
=—-A?2€
E, =E,t€+ A%2€
E,=E,—€— A%2€
(¢) The wave function corrected to first order is given by
Y, =¥ +3, <mH|n=¥ ">(E,-E,)
V=1 p>+ Al (E-E,)
¥ =19+ \2e)dy>
V.= 19>+ (20>
Ans.7: The spin orbit interaction H_ =& (r) L.S
Where E (r) is a constant. The total angular momentum
J=L+SOr LS=%(0*-L1-8?
Hence H, =% &(r) (12— L*- $?)
In the [jm,/> basis, the first order correction
E,=<jml | % &) (> - L= $?)| jm/>
=15 EM[iG+D)—I(H+1)—s(s+1)]h2

Since /=3 and s=1,the possible values of j are 4 , 3, 2,. Hence
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3&mh2, =4

E,= —$Oh%j=3
Emhe, j=2
The degeneracy d is given by the (2j+1) value
9, =4
d = 7, =3
5, j=2
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UNIT-15

Time Dependent Perturbation Theory

Structure of the Unit

15.0 Objectives

15.1 Introduction

15.2 Time-Dependent Perturbation theory
15.3 Zeroth order calculation

15.4 1% order calculation

15.5 Perturbation constant in time
15.5.1 Physical interpretation

15.5.2 Transition probability

15.6 Harmonic perturbation

15.7 Second order perturbation

15.8 Effect on first order transitions
15.9 Adiabatic approximation

15.10 Sudden approximation

15.11 A charged particle in an electromagnetic field
15.12 Self Learning Exercise

15.13 Summary

15.14 Glossary

15.15 Answer to Self Learning Exercise
15.16 Exercise

15.17 Answers to Exercise

References and Suggested Readings

15.0 Objectives

In this unit, we shall study about those systems whose Hamiltonian contains the
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time dependent part and energy Eigen states depend upon the time and modified
Eigen function. For the study of such type of cases we use the theory of time
dependent perturbation. This unit includes some important topics as time
dependent perturbation theory, adiabatic approximation and sudden approximation.

15.1 Introduction

Here the Hamiltonian of a system depends on the time, So there are no stationary
state solutions of Schrodinger wave equation. Hence the identification of a bound
state with discrete energy level and stationary Eigen function must be modified. In
this unit we shall discuss three ways in which this modification can be made, given
below:

1. Time dependent perturbation theory or method of variation of constants :

In this method Hamiltonian is divided into two parts as given
Ho+H'

where Hg = simple unperturbed Hamiltonian
H' = small time dependent perturbations term

Both has the effect of causing transitions between Eigen-states of Hg that would be
stationary in the absence of H'.
2. Adiabatic Approximation :

In this method we assumes that the Hamiltonian of the system (H) contains
the parameter that change very slowly with time. So the system is expected to be

described approximately by means of stationary Eigen functions of the

instantaneous Hamiltonian.
3. Sudden Approximation :
In this method we assumes that the Hamiltonian of the system (H) is constant

for the time except for a very short time interval in which it changes from one form

to another form.

15.2 Time-Dependent Perturbation Theory

It is generally impossible to obtain exact solution of the Schrodinger equation

when the Hamiltonian depends upon time. Therefore such an equations solved by
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Time-Dependent Perturbation Theory. This theory is also known as the method of

variation of constants.

The total Hamiltonian is expressed as
H=Ho+H’ (15.2.1)

where the unperturbed Hamiltonian Hg can be solved for it’s normalized Eigen

function ¢, and its Eigen value E, i.e., we have

Ho ¢,= E, ¢, (15.2.2)

Time dependent perturbation term H’ is small. Since H* depends upon time, the
stationary solution of the actual Schrodinger equation does not exist. The time

dependent Schrodinger equation is
1 0¥
ih o =HY (15.2.3)

The energy Eigen-states of such a system are stationary; the time enters only in the

phases according to

—fEnt)

Y ()= a,(t) cbn(r)e( h

Where a ’s are time-dependent constants and ¢(r) 1s time dependent.

(15.2.4)

This equation represents solution of (15.2.3), therefore substituting value of ¥
and H from (15.2.1) and (15.2.4) , we get

: (5, 1o s 1 (42
h—(¥ a0 et * /]=Ho+H) [Fa0) P met 7 /]
—iEnt —iEnt
o [Ziha0dmelh 1T o pmelTH)
—iEqnt —iEnt
S wel # hTan gmel )

Where d a (t)/dt=a,

From equation (2), we have Ho an = B, (]5[1,

—iEnt —L'Ent)

S ihamdmel & i3 ak, ¢mel

—iEnt —iEnt)

=2 a,E, an(r)e( B )+Z a,H’ gbn(r)e( R

315



—iEnt —iEnt)

Siha, dwel & )= o ¢mel s

By multiplying both sides by ¢k* and integrating over configuration space, we get

(15.2.5)

—iEnt —iEpt

Sihael 7 )f g prar=Sa eCH ) poiwpar

Now by applying orthonormality condition of qb’s, 1.e.

f ¢k* ¢n dT:é‘kn

=0 for n¥k
=1 for n=k

—iEnt —iEnt

We get ), ih a, 6’( h )kn ==>a 6( h )f ¢ H P dT
Because in L.H.S. all terms will be zero except kth term From the properties of
Kronecker delta 8, , we have

—iEjt —iEn
iha, e( = )6kn =Y a e(%)f ¢, *H ¢ dt (

15.2.6)

The integral f b.* H’q')ndT at right hand side 1s a matrix

<k|H |k>=H',

Ep—En
. t ’
So ihak=Zan8( R ))Hkn (
15.2.7)
But E,-E/k =w,, (15.2.8)

Here w,, Bohr’s angular frequency. Wyp

So time dependent constants a_s are given by

iwkn
a,=(ih) 71X a, e 2t u,

lWpn
a,~(i0) 71T o, <k |1 (> e 0"

If we replace in equation (15.2.1) H by AH', where A is a parameter, then

(15.2.9)

coefficient a’s can be expressed in parameter A as follows :

=a'+Aa'+A7a ... (15.2.10)
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Substituting the value of a_ in equation (15.2.4) and equating the coefficients of A

on both sides,
_\

Equating coefficient of A, iha," =0 (a)
(iwkn )t
Equating coefficient of A, ifla,' =Y, a"e" H,, >- (b)
(iwkn )t
Ingeneral iha’" =)a’e* b " H', (c)
-
where s=0, 1,2 ,.cueeee...e. (15.2.11)

so we can get desired order in the perturbation.

15.3 Zeroth Order Calculation

From (15.2.11), we have

iha'=0 or a =01i.e. % a'=0
Integrating, we obtain
a. = constant in time.
For convenience without loss of generality, we may put
a, =<k |m>=0,,
According as the initial state m is one of a discrete or continuous set.
Accordingly ako =1 for k=m 1.e. amO:l

and a,’ =0 for m#k

Thus in the sum we have only one term and equation (15.2.9) may be expressed as

a,=(ih) ™! <k | H' | m> e'@km? (15.3.1)

15.4 1% Order Calculation

Integration of (15.3.1) gives

a'(n=(ih)"1 f_too <k|H |m>e'@kmty (15.4.1)

The constant of integration is taken to be zero in order that a, br zero at t=—00
(before the perturbation is applied)
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15.5 Perturbation Constant in Time

Let us consider a perturbation that is constant in time and that it operates only
during the time 0 to t, i.e.

0 for —co <t'<0
<k|Hm>=< <k|H m> foo<t <t (15.5.1)
0 for t >t

Substituting (15.4.1) in (15.5.1), we get

a'0= ()71 [ <k |H |m>el@kmta

iw mt’
(i)t < k| H | m > ],

lwkm

eiwkmt -1

=(ih) ™! <k |1 |m>

]

iwkm
<k |H |m> ;
ak'(t)=#(e““km‘t -1) (15.5.2)
Thus, to first order, the probability of the system from mth state to kth state is
given by
<k |H' | m>| i
|akl(t) |2_| | v | | |(ezwkmt_ 1)|Z (15.5.3)

Using the relation
: ; L.
lim,_,(e™ — 1)=2ie2 sin
X
=21SIn—
2
ix 2 gty
or e” —1 = 4S1n*—
(e™ = 1) :
i . Wrmt
ie. (e'@Wkmt — 1)|2:451n2(%)
equation (16) takes the form

<k |H | m> . Wrmt
o, ) p ALY 4 e Ly
“)kmh

(15.5.4)
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15.5.1 Physical Interpretation

In order to interpret equation (15.5.4) physically, we plot Sinz( > )/ w2km
as a function of W, and find the curve is as shown in fig. 9.1.
i Wrmt
sin?( %)/ wi 1
-8mr -—-6m —4m 27 0 2n 4T émr 8nm
t t t t t t t t

The major maxima of probability curve occurs at | =0 i.e.

2

For E, = E_. If we substitute @, =x in Sin( )/ w*km .

We note that

2

sin?( ) Wz, =si1r1f’~(x?t)/x2

1

1 xt xt\33 xt)> .
=L G) G T
:l(x_t)zztzm
x 2

Thus the height of the main peak is proportional t*/4 and the intensity or
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. xt
probability curve touches the @,  axis at points where Sll’lz(?)/ X*  =0. This

. xt 21T
occurs at points where ? = ‘|_'r71' or x=i T

where r is an integer i.e.(r=0,1,2,3,.......... )

27r 21 41T 671
== T =0, + T’ + T, + T, ........... i.e. width of the peak is

proportional to 1/t. As the height of peak is proportional to t* and width

Thus x= W,
proportional to 1/t ; the area under the curve is proportional to t i.e. time of
application of the perturbation. These results derived under constant perturbation
for a definite time are analogous to single slit diffraction experiment and are
applicable to problems of excitation and emission of radiation in elementary

systems.

Now we seek the physical interpretation from the figure: For sufficiently
large t, the area under the central peak is much greater than that under the
neighbouring peaks and hence most transitions take place to states under the main
peak.

If we have a system with the Hamiltonian H, and if this system interacts with an

external agency with an interaction Hamiltonian H', then there are transitions in
the system and it is observed that there is a definite transition rate from a fixed

initial state to a final state.

15.5.2 Transition Probability

Now we suppose that unperturbed Hamiltonian H, has a continuous spectrum
and the transition are take place to the states in the continuum. This is the situation
in most of physical problems e.g. in scattering problem the scattered states belong

to the continuum Eigen values of the Hamiltonian.
If the transition takes place to states k energy between E, and E, + dE, and

the energy density of states is given by pP(k) at this stage, then the transition

probability per unit time is defined as

1 !
== J1a 0 r 0 dE, (15.5.5)

where (k) dE, gives the number of final states in the energy interval from E, + dE,.
If t is large enough, the central peak in the probability curve is sharp and then the
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quantities <k | H'| m> and (k) may be regarded as sufficiently independent of dE,
so that they may be taken out the integral, therefore

1 400 4|<k|H | m>]2 . Wimt
— e ALY i ) () dE,

tv—oo wf:mhz
|<k |H' | m>|p(k) p+oo ) Wrmt
= - Jo 4 sinr(—)hvw,, dw,,

[since dE,= E, - E,=h dw,,,

Wrmt

<k |H' > k
<kl ' m>leCo [77 4 sine (240, (@, 12) dw,,
(15.5.6)
We have the standard integral
+ o0 .
J_ 4sin(x)/xdx=-m
Substituting (W, /2)=x, i.e. W, =2x/t, so dw, =2/t dx
+OO . wkmt + oo . 2
[ 4sin (=) (@,02) dwy,, =t 4 sine(x)/e0? (Sax)
+co .
=2t [ sin(x)Ae dx =2mt (15.5.7)

Substituting this in (15.5.6), we get

_I<k[H |m>]p(k) 5
ht '

This is an important rule of time dependent perturbation theory and is called the

Fermi Golden Rule. This relation has been successfully employed to calculate the

m— p(K) | < k|H |m>|]  (1558)

transition probabilities between two states and their corresponding life times. In

particular in [5- decay it has given the results actually observed experimentally.

There may be several different groups of final states k,, k,, ks .......... all of which

posses nearly the same energy ,
E =E_ + Rw for which the perturbation matrix elements

<k; | H | m> and density of states (k;) although nearly constant within each group,
differ from one group to another. then the transition probability per unit time for jth
group (replacing k) by k; in (21) is given by

w = %ﬁ p(K)|<k|H |m>|3j=123..... (15.5.9)

321



The spread of energy of final state to which transitions occur is connected with
uncertainty relation AE.At=Hh in the given manner:
According to perturbation H' as a device that measures the final energy of the

system by transferring it to one of the states k. The time available for the
measurement in £ so that the uncertainty in energy predicted by the relation

AE =~ R/t and this is in agreement with the width of the main peak. Thus there is

no need to insert separate assumption for it.

15.6 Harmonic Perturbation

Here we assume a different but physically important case when the perturbation is
harmonic of frequency , i.e.

0 for
<k|H |m>|>H )= 2for . (15.6.1)
km
0 for t >t

where | < k | H' | m >| is independent of time.

Hicm
1

Q to ‘:"—a-

U U Ut

The first order amplitude akl(t') at time t , would then be given as

8 20 = (i) [ < k| H' |m>el@kmtq

(i) [J2 <k | H'o | m > sinot'el@kmt at

2 < k| H'o | m >hf {e!@m+)t 4 oil@m=o)tq
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el(@mtw)t’ {ei(wkm—w)t'

< k|Hq|m>hL

(Wgmtw) (Wgm—w) l
T O
ie.a'(t)=-< k| H"|m >/ih| )~ T
(15.6.2)

This equation suggests that
(1) The first order amplitude depends on perturbation duration t and not on time t’ .
(2) The amplitude is appreciable only when the denominator of the other terms is
practically zero.

The first term is important when W, =-@ or E, = Em-h and the second term

=w or E,~ E_+ hw. Hence the first order harmonic

perturbation (i.e. of perturbation that varies sinusoidally with time ) with angular

is important when @

km

frequency @ is to transfer to or receive from the system on which it acts the plank
quantum energy hw.

In the special case in which the initial state m is a discrete bound state and the final
state is one of the continuous set of dissociated states. Then E, > E  and only the
second term in (15.6.2) need be considered. In this case the first order probability
of finding the system in kth state after the perturbation is removed is given by
(wkm—w))

4|<k | H' | m>|>sin3( > (15.6.3)

1 r
a (t'=1) P=
2, | W (wpm—w)?

15.7 Second Order Perturbation

From equation (15.2.11), we have
ha =3 < k | H' |n>a’ ei®nt

S, e (@it

By Putting s=1, we have
a,”=ih" Y H’

where a,' (t)=—H',_ (e (@km)t_yhw

kn “n

km

By putting in equation k=n, we get
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a'(=—H"_(et@rm)i_hw

Therefore a,” = i/h2 Y, H H /W (e (lwrm)t _ o (iwkn)t)

Integrating this equation subject to mitial condition a, ®(0)=0=0
Gives for the second order amplitudes at time t.

a’ =ih2YH  H _/w (15.7.1)

nm

Wrm Wkn
this equation shows that transition for which probability increases linearly with the

time can be obtained by putting either
W, =0 orw, =0
Suppose that perturbation gives no transition in first order. This means that there is

no state n in the first order that conserve energy (i.e. @, =0 ) this means also that

r

H ., = 0 whenever | =0 So second term in equation (15.7.1) is never
appreciable. Therefore second order may be calculated by a,' by replacing H’km by
second order matrix element Y, H,_ H /E.—E_.

nm

15.8 Effect on First Order Transitions

The second order amplitude at time t is

e@pm)t_q  pliogn)t_q

ak2 = I/hz Z H’kn H’ / Em- En ((

nm'
Wim Wrn

(15.8.1)
It is still correct that the second term in the bracket of  equation (15.4.1)

1s negligible for states n that have energies appreciably different from E,

(or E ), since W, is large

w. =E-E/M
The energy states E, E_are all close together and neither H',,, nor
H', is zero

., =E,—E_/Q is small

W,,=E,-E/N issmall.
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Since @, is small, so second bracket term of (15.7.1) cannot be neglected
without the summation, integration over n would have a singularity, when

. 18 zero.

As W, . . -w,.=E—-E/M-E-E/h

=E,-E/h

It is easy to see that for any value of w_,(zero or otherwise). The entire bracket is

when @ __ is small; this removes the @ __in the denominator

mn* mn mn

proportional to W

and makes the summand or integrand finite where @ _, =0 .

We have to evaluate equation (15.8.1) if Z can be replaced by an integral over

w,_ or E . We divide the integrals into two parts according as | @, | is large or is

mn

not large in respect of 1/t. In the first region the second bracket term in equation

(15.8.1) can be neglected. Since | W, | =| W,,, —W,, | is large in respect of 1/t.

mn

Thus we obtained this part of integral,

(0pm)t_1 .t H'ymH’
(e [;—mInm o) de,, (15.8.2)

Wkm 0 Wnm
Since (n) dE, the number of states of the particular group n under energy range dE_

, the prime over integration excludes the integration region.

S <ch,

- mn -—

Where c is constant number that is large in comparison with unity.

In the second region where @, <c/t, we assume that t is large enough so that
H H
must now take both terms in the bracket of equation (15.8.1) in order that the

P(n) can be treated as a constant, taken outside and solved at W, =0. We

nm mn

integrand be finite. This part of the integral is then

[h H’kn H’nm p(n)] wmn =0

% (e@km)t_q  Uiwgn-wnm)t_q
f_E Wkm - Wkn ]d wmn/ w
t

(15.8.3)

This equation (15.8.3) can be solved by considering the contour in complex @,

plane shown in fig. 9.3 which contains no pole of the integrand.

325



Thus the integrand over closed contour is zero and the integral in (15.8.2) is equal

to integral around the semicircle of radius c/t taken in the counter clockwise

direction. The magnitude of @ __is great enough over this semicircle. Therefore

mn

contribution of second term can be ignored in comparison with first. The integrand
in (15.8.3) is then easily solved and becomes
(e (iwkm)t_ 1
Ti(———) (15.8.4)
Wkm
-c/2 } Wnm PLANE 4c/z
Ol ~REAL AXIS &

IMAGINARY
AXLS

i 2N

Fig 15.3 : Closed Contour

For large time t, prime on integral (15.8.2) is equivalent to taking its principal
value. Therefore if we substitute(15.8.4) in (15.8.3) and add the result to (15.8.2),

we get an expression like (15.8.2) except that primed integral is replaced by
principal value of the integral plus 7Ti times the residue of integrand at the pole

w__ =0. This is equivalent to evaluating the integral along a counter in the

mn mn

complex plane. It passes along the real axis —00 £0 + ©0 except for passing
beneath the origin. We thus get finally

(g2 km7—1 [ n

a’(t) = oH o/E-E, p(m) T dE, (15.8.5)

km
where the contour C is over the real axis of E_ except for passing under the pole of
the integrand at E =E

Equation (15.8.5) is used to be in place of (15.8.1) whenever E can be represented
by J (n)dE,.

15.9 Adiabatic Approximation
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In this approximation case, we expect on physical grounds that solutions of the
Schrodinger wave equation can be approximated by means of stationary Eigen
functions of instantaneous Hamiltonian, so that a particular Eigen function at one

time goes over continuously into corresponding Eigen function at a later time.

If the equation
H(t) P, () = E,() ),(0
Can be solved at any time. Now we assume that a system that is discrete non-

(0) at t=0 is likely to be in the state qbn(t)
with energy E_(t) at time t, provided that H(t) varies very slowly with time.

degenerate state ¥_(0) with energy E

m

The wave function ¥ obeys the time- dependent Schrodinger wave Equation
ih Z—f =HH Y
Y=Y, a0 exp [1/ihf0t E(t")dt'
Then  Y,ih [a* @, +a, ¢*] [exp 1/ihf0t E(t)dt'] =o.
Multiplying by @, we have
T, [a*< ¢, | P> +a< P, | d*>Ilexplih [ {EW) - E,(t)}dt']=0
or  a*,==a <@, | P >Lexplih [ (E(t) - Et)}dt]

To evaluate < b, | ¢, >, we have

JH
a l+H¢l*:EI*¢n+En¢n*

JH
or <@, P +E<P,[P*>=E<P,| p*>

0H
or < ¢n| ¢)l*> =% ¢n ‘El ¢l| /El - En

To find < @, | ¢b*>, on differentiating < ¢ | ,> =1 w.r.t. time,

<P *P>+<,| P F>=0
<@, *| P >=i(t), a—>real.

For new Eigen function ql')'n =, etV

327



We have < (p'n \ qbn> =i(a+y).
Choosing Y suitably , we can make this vanish. Hence

; JH ) ’
a*= Z al’/hwnl % ¢n |§ | d)] > exp[lfol W, dt ]

Let the system be initially state , and the time variation be small : thus
’ 0H .

’ 0H
Or a’n z Z 1/ihwﬂll < ¢ﬂ |§ | ¢lﬂ > exp[i wmnt]_l

with the above approximation this equation indicates that the probability
amplitude for a state over than the initial states oscillates in time and show no

steady increase over long periods of time even though H changes by finite amount.

15.10 Sudden Approximation

The sudden approximation consists of the change in Hamiltonian discontinuous on

different times.
Suppose that H= H, for t<0
and H=H, for >0
Then Hypu,=Eu, fort<0
Hyv,=Eyv, fort>0
1/ Z# au e—iEnt/h
and  W=Dubuvy e~ tEut/h
Equating the two solutions at t(0) = 0
bu = Dop a, <uy | u> (15.10.1)
the sudden approximation consist in using above equation (15.10.1) when the

change in the Hamiltonian occupies a very short finite interval of time t, suppose
that

H=H, for t<0
H=H, fort0

and H=H, for O<t<t,
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The intermediate Hamiltonian H,, which is taken constant in time, has a complete

set of energy Eigen functions :
H W, =E W,

The exact solution can be expressed in terms of the u’s with constant coefficients
Y =3, C W, exp (-iEth) ; for 0<t<ty

Using the application of the continuity condition at t=0 gives

C=2, 2, <W, | W,> =% a, <w|n>

n-n n-n

And at t=t, gives
bu =D C, <p | k> exp {=i(E, —Ep)to/h}
= Yua, < | k> exp {=i(E, - Ep)io/N} <k | n>
When tg=0, the exponential is equal to unity and b is given by (1).

The sudden approximation will be best only when tg is small.

So on expansion exponential term in above equation.

ag = Y, a Y.<p | k> {1-i(E, —Ep)to/h} <k | n>
or  au™ N a, < [ito(H~H)h]n>
Hence error in sudden approximation is proportional to tg for small tg. If H.

t
depends upon time, then fO °H i dt can be taken in place of H; to.
If H,=Hp, then

B, =0, ito/h <k | H,— H,| m>.

km

This can be used even when (H, — H,) 1s not small as compared to H,, taking tg

small.

15.11 A Charged Particle in an Electromagnetic Field

If we apply the time- dependent perturbation theory to the charged particle, Then

the effect of electric and magnetic fields on the particle must be calculated.
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The electromagnetic force(E.M.F.) on a particle of charge e, and mass

‘m’ moving with velocity ‘v’ in an electromagnetic field characterised by electric

field ‘E’ and magnetic field ‘B’ (or scalar potential ‘¢’ and vector potential ‘A”) is

vXB
F=cE+e—— (15.11.1)

where c= speed of electromagnetic waves.

The electric and magnetic field can be expressed in terms of scalar and vector
potentials as

194
E—Ta—t—quandB—VXA (15.11.2)

Substituting these values in (15.11.1) and using
dr

F=m—
dt:

dr -10A e
We get m——=e(——— Vo) U X (VX A)

Writing the above equation in terms of Cartesian components
r=ix + Jy +kz,
=iA, +JA, tkA,, etc.

And comparing coefficients of i, j and k, we get
dx —edAx a¢ aAy JAx 0Ax 0Az ]

ay z dz dx

where  y*=dy/dt z* =dz/dt

and similar equations for y and z-components of force.

dx d ,o0T

Writing m a6 dt (—) where T is the kinetic energy, we get
a oT _—_eBAx_ a_¢ e x[ aAyl *aAz)
dt “dx+ ¢ ot [(X Y ax ¢ ax

_( LOA *aAool =k6Aoo
X D Ty ay TZ Py )]
ap dAoo  dAc0
e 22,48 ()2 2=
ox C[a ( ) dt ot )
d e dAw

dx Cdx v. C dt
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d 0T e ob e @
— (——A00)= —f —}—— .

dt ~0xx* cA ) € 0x Cox (17 A)

d JdT e d e

dt _\_‘__ m-_- +_ : - . .
— (G Ao e (V. A)]=0 (15.11.3)

As kinetic energy (K.E.) is velocity dependent and does not depend on position

coordinates (x , y, z) and the scalar potential (f) is position dependent and does not
depend on velocity coordinates (x*, y*,z*)
L.e.
dp 0d¢ d9¢ or 9T  OaT
— = =0 Ad—=—=—=10 15.11.4
dx* Ody* Jdzx 4 dx ay dz ( )

We may also write

d

dxx*

AGO=—2 (x*A_+ y*A 17*A )= (v.4) 15.11.5
_aX*(X X yAy 4 z)_ " ( b )

By using (15.11.4) and (15.11.5) equation (15.11.3) may be expressed as

i[a
dt "0x*

9
(T — e+ E‘(V.A)}-&[T—eqb-l—g (v.A)] =0 (15.11.6)

There are two similar equations for y and z. These equations are in form of
Lagrange’s equation, with the Lagrangian function L given by

e
L= [T—eq5+E (v.4)) (15.11.7a)
e
= 5 m(x*2 +y*2 +7*2 )-e(f)+;[x*Ax +y*A, +z*A,] (15.11.7b)
Then canonical momentum associated with x, 1s
dL .. 8
P A )
s oL e
Similarly py—a—y*—my +EAW \ (15.11.8)
L -\
| Az % =mz c )
The Hamiltonian function in terms of Lagrangian function is
H=7Y, p,q.— L= (x*p, +y* p, +z*p,)-L (15.11.9)

e e e
= * A * 4 * * 4 * e A *
(mx - JX* H(my p Ay)y (mz - J)Z

~ MO 1y 47 e XA, YA, 127A )
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=V m(x*2 +y*2 +7%2 )+e (b (15.11.10)
From equation (15.11.8), we have
x*=p/m —e A, /mc, y*=p/m —e A /me, z*=p,/m —e A, /mc
By using these values in equation (15.11.10) gives
H=12m [(p/m —e A /mc )* +( p/m —¢ A /mc )?
+(p,/m —e A, /mc)]+ep (15.11.11)
. . 0 .
Replacing px=h/1 %’ we note that for a wave function ¥

(p,—e A, /c )P=— h?— +2ihe/c A, —Wﬂh(aix)‘lf AzlP

and we get similar expression for (p, —e A, /c ) and (p, —e¢ A, /c)

By using these expression equation (11) gives

H——V2 eh the (15.11.12)
In electromagnetic field, accordmg to Maxwell S equatlons

divA=V.A=0
in view of this equation (12) takes the form

V2+eqb+lehA Y (15.11.13)

This may be expressed as H=H'+H’

H' +H :—V2+ qb+lehA v+ CA (15.11.14)
Where H' is unperturbed Hamiltonian given by

e —Re
HO—Zm V2+eqb:%V2+V (15.11.15)

V being potential energy and ‘H’ is perturbation or interaction term given by

q’ ieh

(15.11.16)

e:
For weak field terms of higher order in A 1.e. m—- A2 may be neglected. Therefore

for a weak field the interaction part of the Hamiltonian is
= ieh/mc A.V = —e/mc A.(-ihV)
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ie. H =-e/mcAp (15.11.17)

In the case of a number of such particles, the Hamiltonian for the system will be

the sum of such Hamiltonians for individual particles. In the case of electron e may

be replaced by —e (if e is to be maintained as positive quantity.

15.12 Self Learning Exercise

Q.1 A system in an unperturbed state n is suddenly subjected to a constant
perturbation H'(r) which exists during time 0—t. Find the probability for
transition from state n to state k and show that it varies simple harmonically
with angular frequency (E, — En)/Zh and amplitude 4| H',m| /(E,—E,)

Q.2 For Hydrogenic atoms, the states are specified by the quantum numbers n, I,
m. For a transition to be allowed, show that

An =any value, Al =1, 1=0,£1
Q.3 Obtain the selection rule for electric dipole transitions of a linear harmonic

oscillator.

15.13 Summary

In this unit we discussed about the identification of a bound state with
discrete energy level and stationary Eigen function with the help of Method of

variation of constants, adiabatic approximation, and sudden approximation.

15.14 Glossary

Adiabatic Approximation :

A method in which the Hamiltonian of the system (H) contains the parameter that
change very slowly with time.

Sudden Approximation :A method in which the Hamiltonian of the system (H) is
constant for the time except for a very short time interval and changes from one
form to another form, known as Sudden Approximation.

15.15 Answer to Self Learning Exercise

Ans.1: Equation (10.6) gives the value of ¢,'(t). When the perturbation is constant

in time, H’, (r) can be taken outside the integral. Hence
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¢ /() =H" (ryih [ Ot exp (iw,t)dt’
= -H' /hw,, [exp(iw,, H)—1]
=—H' /hw, exp(iw, t/2)] exp(iw, t/2)— exp(—iw,, t/2)]
==2iH" /AW, exp(iw, t/2)sin(iw,_ t/2)
e, '(H) P=4H" w2, sin?(iw,, t/2)

which is the probability for transition from state n to state k. From the above

expression it is obvious that the probability varies simple harmonically with
angular frequency W, /2=(E, — E,)/2h. The amplitude of vibration is
40 Phew?, =40 /E, — E ).

Ans.2: the form of the radial wave functions are such that the radial part of the
integral <n'1'm’ |er | nlm>is nonvanishing, whatever be the values of n’, 1",n and 1.
Hence An = any value is allowed.
By the Laporte selection rule , for a transition to be allowed, it is necessary that

I, +1 =odd
Therefore,

I -1 =A1==1

To obtain the selection rule for the quantum number m, the matrix element may be

written as
<n'l'm’ Ir | nlm>= i<n'l'm’ Ir | nlm>+j<n’l'm’ Ir | nlm>
+k<n’l'm’ [r | nlm>
If the radiation is plane polarized with the electric field in the z- direction, the z-

component is the only relevant quantity, which is <n'I'm’ Ircos@ | nlm>. The (f)—

part of this integral is

2m .
" expli(m — m')¢] dep
which is finite only when

m-m =0 ordAm=0
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if the relation is polarized in the xy- plane, it is convenient to find the matrix
elements of x+iy since it is always possible to get the values for x and y by the

relations
x =4 [(xHiy) + (x—iy)], y=1/2i [(xHiy) —(x—iy)]
in the polar coordinates,
x+iy=r sin@cos+i r sinBsing =rsin e L4®
The matrix elements of x+iy are
<n’l'm’ rsinf et? |nlm>= f(r,)fozn exp[lilm —m' + 1)¢] d¢
This integral is non vanishing only when
m-m+l=0 orm —m=+l1 or Am ==l

for arbitrary polarization, the general selection rule is
Am =0, +1
Thus, the selection rules for hydrogenic atoms are
An= any value, 1==1, Am =0, £1
Ans.3: Consider a charged particle having a charge r executing simple harmonic
motion along the x- axis about a point where an opposite charge is situated. At a

given instant, the dipole moment is ex, where x is the displacement from the mean

position. The harmonic oscillator wave function is

1
mw,=
V) =NH@) exp (-y2) y = (F-)2 x
The dipole matrix element is given by

<k |y |n>=constant [ H,(y) y H,(y) exp (-y?)dy

For Hermite polynomials
y Hn(Y) = an-I + 1/2 I_]:n+l (y)
substituting this value of y H (y), we get
<k |y| n> = constant [H,(y)[ nH,., + % H,., (y)] exp (-y’)dy

In view of the orthogonality relation, we have

JH) Hy(y) exp (—y?)dy = constant 8,

335



<k |y| n> is finite only when k=n—1 or k=n+1, i.e. the harmonic oscillator selection

rule is K —n=+1 or An==+I.

15.16 Exercise

Q.1 Give the time dependent perturbation theory for the case of a perturbation

which is constant in time except that it is switched on at t=0 and switched off

at time t.
Q.2 Prove that the transition probability per unit time is

21t/h (k) | H

‘2
km

where (k) denotes the density of final states and H', is the matrix element of

km

the perturbation H’km.

Q.3 Show that the transition probability per unit time for a system to make a

transition from an initial state to a final state in the continuum is given by
w,, =21/ (k) | <k [H'| k>]2
where the symbols have their usual meanings.
Q.4 Give the theory of induced emission and absorption of radiation on the basis
of time dependent perturbation theory.
Q.5 A small time dependent perturbation H,(t) is applied to a system in the state

Y. Obtain the expansion coefficient C,(t) for the new state function. When
the perturbation is kept on for a small time t. Calculate the transition
probability per unit time when
H,(t) = cost.
Q.6 Prove the following:

(a) If the source temperature 1s 1000K, in the optical region (lZSOOOA), the

emission is predominantly due to spontaneous transitions.

(b) If the source temperature is 300K, in the microwave region (A=1 cm), the

emission is predominantly due to stimulated emission. The Boltzmann

constant is 1.38 X 107 JK ™,
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Q.7 Obtain Einstein’s A coefficient for a one-dimensional harmonic oscillator of

angular frequency @ in its nth state.

15.17 Answers to Exercise

Ans.6:  Spontaneous emission/stimulated emission= exp(Rv/kT)-1

(a)In the optical region,

3x10°
V= C/A:—_U
5000%107¢
=6X 10’4 Hz
6.626x10"
AvkT=———
1.38x107 >
=28.8

exp(28.8) -1 =3.22X 10
Thus, spontaneous emission is predominant.

(b) In the microwave region,

3x10°8
= _3x101%H;
10°:
6.626x10 *x3%x10"°
1.38X107 %300

=48X%X 107
exp(4.8 X 107%) -1 =0.0048

Therefore, stimulated emission is predominant.

v=c/A

hv/kT =

Ans.7: A s, =4w, e?3hc? <k [x| n>]?
For linear harmonic oscillator, |[<k |x| n>| is finite only when ~ k=n-1 or k=n+1
For emission from state n, k must be n-1. Hence

|<k [x] n>| =<n-1 [x| n>

1
=<n-1 |(2‘:flla))5 (a@+ax*)n>
h 1
=(=—)2 [(n-1)[ajn> +<(n-1)[a*|n>

2mw
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nh

h 1 1
G A O-Gs e

Substituting this value of <k x| n>|

nh
2maw

)2

A - =4w, e*3he (

=2e2wW?n/3mc?
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UNIT-16

Quasi Classical Case : Bohr and

Sommerfeld’s Quantization

Structure of the Unit
16.0 Objectives

16.1 Introduction

16.2  The quasi classical condition

16.3  Principle of the W.K.B. approximation

16.4 Connection formulas for penetration of a barrier
16.4.1 Case (a). barrier to the right
16.4.2 Case (b). barrier to the left

16.5 Application of W.K.B.- probability of penetration of a barrier

16.6 Bohr Sommerfeld quantization rule

16.7 Self Learning Exercise

16.8 Summary

16.9  Glossary

16.10 Answer of Self Learning Exercise

16.11 Exercise

16.12 Answers to Exercise

References and Suggested Readings

16.0 Objectives

The main objective of this topic is to study about W.K.B. approximation
in detail. In this chapter we shall study all things which is related to the WKB
approximation method. In this topic we use the Schrodinger wave equation and

study about its importance.
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16.1 Introduction

The WKB approximation is based on the expansion of the wave function in

powers of A. This method invented by three scientists named as Wentzel-Kramers—
Brillouin. This method is applicable when the potential V(x) is slowly varying. In
this the solution of wave equation is two type

l:exponential, 2: oscillatory.

Therefore we study the connection formula of the solution also.

16.2 The Quasi Classical Condition

It is also known as W.K.B. approximation. W.K.B. stands for Wentzel-
Kramers—Brillouin approximation. WKB approximation is a final type of time
independent approximate calculations. It applies to only situations in which the
potential energy is slowly varying function of position. Problems of one
dimension and also of three dimensions reducible in one dimension (radial) are
solved by this method.

A slowly changing potential means the variation of potential energy V(r)
slightly over several wavelengths (De Broglie waves) of the particles shown in
fig.16.1.

The De Broglie wavelength associated with a particle moving with energy E
in a region of potential V is

h

A=h/p= (16.2.1)

2m(E-V)]z

Since Y2"mv?=E-V
m?v? = 2m(E—V)

p=mv =2m(E-V)

The propagation constant

= 27 _ [2mlE -V ()] (16.2.2)
A j
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A\
1 T A

Fig.(16.1)“Slowly  changing” one  dimensional potential and its

associated wave function.

Mathematically slowly varying potential can be expressed by the conditions

[1/k* dk/dx | << 1
Substituting value of k form (1), we get
av
hm| 23] av
= << 1or Aa—XM(E—V) << 1 (16.2.3)
[2m(E-V)]2
This equation gives the validity of W.K. B. approximation.

16.3 Principle of the W.K.B. Approximation

W.K.B. approximation consists in introducing an expression in the powers of

h and neglecting the terms in higher order of h. Hence Schrodinger wave equation
( in some regions of space) is reduced in its classical limit. However, the method
has a wider range of applicability than the classical approximation, because this

procedure can be carried out even in regions of space where classical interpretation

1s meaningless (region E<V is inaccessible to classical particle).

Let ¥(x) be the wave function satisfying Schrodinger wave equation

O M Vx)]=0 16.3.1
9z T p B V1= (16.3.1)
Let the solution of equation (16.3.1) be of the form
i (x)
Y-ce h (16.3.2)
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where C is a constant, (,b(x) is yet an undetermined function of x, we have

ay i (x) ¢
fnim—— : h X
= cih e ™
—_— = 2 h — ] +C h LI,
T c/hze (ax) cih e o (16.3.3)
W 09 ¢
Now substituting ox = ¢’ and e P
Equation (16.3.3)takes the form
oW i (x) ip(x)
%=—C/h2 e n ¢p'xcihe n ¢ (16.3.4)
e
Now substituting the values of ¥ and a from (16.3.2) and (16.3.4) in (16.3.1),
we get
ipx) | 9x)  2m ip(x)
-chze b ¢p'+cihe b ¢ —[E-V) Ce h =0
i (x) , ' ig(x)
or chre v [—¢+ihe"+2m[E -V (x)]Ce n ] =0
ip(x)

As  W=Ce n #;
Therefore above equation yields

[ih ¢" — ¢'=+2m[E —V(x)]=0 (16.3.5)
To get an approximate solution of (16.3.5), we apply W.K.B. method and hence
expand ¢(x) in powers of hie.

P (x)= o(x)+ h,(x) + h22 P, (x)+...... (16.3.6)
where the subscripts (0’s are independent of . Let us assume that on account of
the smallness of N, the first two terms in equation (16.3.6) give a sufficiently good

approximation to qb

Differentiating equation (16.3.6), we obtain

O (0= ) +hd",(x)+h2 (0.
(16.3.7)

") =¢" x)+hd" x)+h22 P, x)+......

342



Substituting the values of (f)'(x) and (P"(x) from (16.3.7) in equation (16.3.5), we
get

ih[@" (x) +he" ) +h22 ¢",x)+....]
~[¢ ) +hep"\x) + b2 @', x)+.... +2m[E — V (x)]=0

Comparing the coefficients of various powers of R, we see that up to second order
in D, the result is
2mE-V) -¢, [hii ¢" =2 @', @'} +hli @", =" =@, @',}1=0
(16.3.8)
In order that equation (16.3.8) may hold identically in R, the coefficient of each

power h must vanish separately. This requirement leads to the following series of

equations
2m(E-V)- ¢, =0 (a)
ip"—2¢ P =0 (b) (16.3.9)
i¢" ¢ - @m0 ()

and so on.

These equations may be solved successively. That is, the first equation defines (,l‘)O
in terms of |( E-V )|, the second equation defines @, in terms of ¢, the third
defines @, in terms of ¢»,and @, etc.

From equation (16.3.9a), we obtain

¢ == 2m(E — V) (16.3.10)
Integrating above equation yields
¢o=f; J2m(E — V) dx (16.3.11)

where xq is an arbitrary fixed value of x.

From equation (16.3.9b), we obtain

d)’1 =1 d)uo/z d)’o

Integration of above equation yields
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¢, =i2log’ -+ C1 (16.3.12)

where C4 is a constant of integration. This result is convenient is ¢b, is negative.
Therefore keeping in mind that the logarithm of a negative function differs only by
an imaginary constant from the logarithm of the absolute value of the function, we
replace equation (16.3.12) by

¢, =i21log| P, |+ Ca (16.3.13)

where C5 is an arbitrary constant.
Similarly
av av
m(z%) x Mgy
¢) 221/2 #3 VA I __9Xs

(16.3.14)
[2mE-V]Z °[2m(E-V)]

5
2
From equation (16.3.13) we see that qbl is represented as a logarithm of | q5’0|,
therefore it 19s not, in general, small compared with (]50. Consequently ¢0 and d)l

both must be retained. On the other hand from equation (16.3.14) we see that qbz

av
will be small whenever a is small and (E-V) is not too close to zero. Further it

can be seen easily that the smallness of the higher approximation( ¢3,¢4, ______ etc)
requires the smallness of all derivatives of V. Hence the W.K.B. approximation
will be suitable in cases where V' is a sufficiently smooth and slowly varying

Sfunction of position.

Now the approximate W.K.B. solution of equation (16.3.5) may be expressed in

the form
P= P(x)+ihlog| P’ | (16.3.15)
Assuming constant Cy is absorbed in ¢0(x).

Substituting value of ¢(x) from (16.3.15) in equation (16.3.2) and rearranging the

result. We finally get the approximation solution lPﬂpp of equation (16.3.1) in the

form

-1
— ) X
Y, =c{2m|E — V(X)|}* exp[zi/h fxO V2m[E — V(x)] dx]
(16.3.16)
where C remains arbitrary. The two solutions contained in (16.3.16) and differing
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sign of the exponent are linearly and hence the approximate general solution,

according to W.K.B. approximation, is

W —c{2m|E — V(x)l}_Tl (A exptih [ \/2m[E — V(x)] dx}

+Bexplifh [ \/2m[E — V(X)] dx}] (16.3.17)

where A and B are arbitrary constants. The positive exponential corresponds to a
wave moving in the positive direction and the negative exponential corresponds to
a wave moving in the negative direction. For the special case when V(x) is a

constant, these reduce respectively to the plane waves
exp{ipx/h} and exp{—ipx/h}.

The alternative form of equation (16.3.17) may be expressed as

-1
Y.~ 2m|E - VX)[}# costi/h [ y/2m[E — V()] dx + 6]

(16.3.18)
where C and @ are arbitrary constants.

The approximate solutions (16.3.17) and (16.3.18) of the Schrodinger wave
equation are usually called W.K.B. ¥-functions.

16.4 Connection Formulas for Penetration of a Barrier

W.K.B. approximation is applicable so the problems only where the potential
function does not change too rapidly; because in the regions approximations
considered do not apply. In the problems where the potential function vary slowly
in some regions, so that W.K.B. approximation holds and the potential function
varies rapidly in other regions, so that W.K.B. approximation is inapplicable; we
find the solution in the regions of inapplicability of W.K.B. approximation by
some other approximations and carry it to the regions where W.K.B.
Approximation is applicable. In order to connect these two solutions: we need for

the connection formulas.
To treat the problem of barrier penetration where W.K.B. approximation is
valid, we must find how to connect solutions in the region where E<V with those

V<E.
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Fig : 16.2 Potential Barrier

Consider the potential barrier shown fig(16.2). Suppose the energy E of
particle is such that E =V at point x=a.

Classically, the particle should slow down to zero velocity at this point and turn
back. Quantum mechanically we know that the wave penetrates some distance
further into the barrier. Obviously we cannot use the W.K.B. approximation in the

region near x=a because when E=V, the condition for applicability breaks down.
Hence if we start with a given solution at some distance to the right of x=a (in 1
region)say

Y 1\ p, exp( f; p.dx/h) (16.4.1)
where p, =+/2m[V — E]

From W.K.B. method, we know that a sufficient distance to left of x=a(in 2"

region), the approximate solution will be

Y~ A, exp(+i ], p2dx/h)+BAp,exp(-if) p2dxh)  (16.4.2)
where p,=,/ 2m[E — V] and A and B are unknown constants.

The values of A and B cannot be found by W.K.B. method alone, because
they determined by the nature of the solution in the region of inapplicability of
W.K.B. method. To obtain the values of A and B we need an exact solution near
x=a; but it is too complex problem to be solved. If the W.K.B. method is applicable
at some distance from x=a and inapplicability at small enough region x=a ; then the
potential function can be represented approximately by a straight line within the

region, with slope equal to that of potential curve at the classical turning point x=a.
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As E=V, at x=a, we can write
V=E =(C(x—a)

av
where C is a constant, equal to (a) - Hence in region x=a the Schrodinger wave

equation reduces approximately to

o M a0 1643
e T (x—a)= (16.4.3)

The difficult equation can be solved by Bessel’s function of order 1/3. The solution
of equation (16.4.3) is carried far enough from x=a, so that W.K.B. approximation
becomes applicable. In this way, we may determine the constants A and B. Here

we shall simply write the results without going through the complex procedure.

16.4.1 Case (a). Barrier to the right
Let V>E to the right of x=a

p1=1/2m[V — E] ; and p,= 2m[E — V]

Here we consider that far to the right of x=a, the W.K.B. approximate solution,

which is exponential, namely

W, ~ BAp, exp(- [ p1dx/h) (16.4.4)
For to the left to x=a, the connection formula states that this solution approaches

Y, ~BAp, Cos(f, pzdx/h - g) (16.4.5)
Hence the connection formula may be expressed as

1V pexp(- [ prdx/hy= 2Vp, Cos( [, p2dx/h - %) (16.4.6)

Similarly if the approximate solution is an increasing exponential to the right of

x=a, the following connections hold
. a T . X
1p, Sin([f,, p2dx/h - o ~1\p,exp(f, p1dx/h (16.4.7)
16.4.2 Case (b). Barrier to the left

For the solution which decays exponentially to the left of x=a, the following

connections hold

1V, exp(- [, padx/hy = 24V, Cos(f], pzdx/h ‘5 (16.4.8)
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If the solution increases exponentially to the left, we obtain the following

connection formula
1\p, Sin(f, p2dx/h - E)v—-‘ ~1Vp,exp([; p1dx/h) (16.4.9)

It may be noted that the connection formulas enable us only to obtain the relation
between the solutions in a region at some distance to the right of the turning point
x=a, with those in a region some distance to the left. In order to obtain the form of
wave-function in the intermediate region, we should consider the exact solution,

which involves Bessel functions of order 1/3.
For applying W.K.B. approximation, the following requirements must be satisfied.

1. On either side of the turning point, there exist regions when potential functions

changes slowly so that W.K.B. approximation is applicable.

2. In the region near the turning point x=a where W.K.B. method becomes
inapplicable, the kinetic energy can be represented approximately by a straight line
(E-V) = C (x-a). In other words the potential should not undergo a large fractional
change in slope within this region. Inside the barrier W.K.B. approximation begins
to hold after

%
fa 1/ 2m[V - E] dx/h becomes appreciably greater than unity.

16.5 Application of W.K.B. Probability of Penetration of a
Barrier

In order that W.K.B. approximation may be applied within a barrier, it is necessary
that the potential function must vary slowly. For the application of connection
formulae, it is also necessary that the barrier be thick enough and high enough, so
that

(> ZmE

[V-E] . ;
o m dx canbe considerably greater than unity.

By the application of these conditions we can calculate the probability of

penetration of the barrier.
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Fig.6.3: Slowly changing potential with boundaries

The barrier is shown in fig. 16.3 and the energy of particles is such that the
turning points are at x=a and x=b. Let the beam of particles of energy E be incident
from the left side. The beam of particles of energy E be incident from the left side.
The beam of particles is partly reflected and partly transmitted at x=a due to wave
nature of particles. The beam transmitted at x=b. The beam transmitted in region
3 continues propagating along positive X-axis and is never reflected back.
Therefore in 3" region, there is only transmitted beam. According to W.K.B.
method the solution of Schrodinger wave equation in one dimension

¥ 2m
T ¥(E—V)’~P=O (16.5.1)
is written as

Y~ ANp,exp(i [, p2dx/h —g) (16.5.2)

where p,= 2m[E — V] and the phase factor (—7T/4) is included in exponential
for convenience in applying connection formulae. As the constant A is a complex;
such a phase factor may be absorbed in it. To apply the connection formula, we

write equation (16.5.2) in the form

Y ~anp,[Cos([, P2 dxfh—-})ﬁsm( Iy pde/h—z—f)] (16.5.3)

On applying the connection formulae of the barrier to the left of x=b, the solution

. nd . .
in 2" region is expressed as

W~ AN, [1/2 expl(- f: p1dx/h )— i exp( fxb p1dx/h)] (16.5.4)
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where p, =+/2m[V — E] since in region 2", V>E.

The next step is to apply the connection formulae to find the wave-function in 1*
region. To do so equation (16.5.4) must be modified accordingly. For this we use

the property of definite integrals, viz.

f; % dx = fax p.dx/h +fxb p.dx/h

b b p,
ic. [ pidxh- [ %dx- f; p.dx/h (16.5.5)

and write equation (16.5.4) as
b p,
W~ AN, [1/2 exp(- I, %dx i f; pidx/h)
— exp(fb&dx - [ padx/hy] (16.5.6)
A1 exp(—f = dx) — exp(f p.dx/h)
—i exp(fa g‘dx). Eexp (— fa p1dx/h)]

Corresponding to region 1%, the barrier is to right, therefore applying connection
formulae for the barrier to the right, we get the wave function in region 1" region

as

Y = A[-112 exp(—f‘;b % dx) é sin(fxa pzdx/h—% )
b p4
- exp(fa % dX) é COS (fxa pde/h—%)]

b b, exp [ [A T —exp [i [FE-1)

=~ —A/\[pz[ 1/2 exp(—fa %dx) { » }
b p, exp [i [{ (22T +exp [—i [{ (22T

+21 exp(fa %dx){ 5 — } ]

~—-iA/ [Vp, - —)}{exp(fa 2 dx) — %exp ( fb % dx)}

. zd 1 b 1
+ exp {—l f;(% — g) {exp(fa pgdx) + %exp (— fa 1%dx)}]

(16.5.7)
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In this expression the term containing positive exponential

ie. —iANp, expli fxa(m: = — D) Hexp(f, 2dx) — zexp (- [} Bdw)}
(16.5.8)

is the wave travelling along positive X-axis in 1" region, i.e. incident wave while

the second term containing negative exponential i.e.,

apldx mw b p1 b p1
—~iaA/Vp,lexp {—i J. (% — Z) {exp(fa % dx) + %exp (— fa % dX)} ]
(16.5.9)

is the wave travelling along negative X-axis, i.e. wave reflected at x=a.

The transmission coefficient which is just the ratio of transmitted flux to incident
flux is given by

_ transmitted flux

incident flux
(transmitted intensity)xvelocityof particles

(incident intensity)xvelocityof particles

(transmitted intensity)(&)

(incident intensity) (pz)

(transmitted intensity)

16.5.10
(incident intensity) ( )
From (16.5.2), transmitted intensity =AA*/\/p2\/p2*
_|AP
P2
From (16.5.8) incident intensity
_lar _ 2 b p: 2
= {ex (fa L dx) exp( I, 5 dx)}
So transmission coefficient
14V
T=- Pz
M exp(J e —exp(- J, )
bp1 1 ( bpl }_1
T={ex —dx) —-exp(— | —dx 16.5.11
{exp(f, Tdx) —cexp(— [, T dx) (165.11)
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If W.K.B. approximation is applicable, then
b
[T R dxo>1
a h

So negative exponential may be ignored in comparison with the positive

exponential. Hence the transmission coefficient is given by
b
T=exp(—2 [ %dx)
b /2m[V-E]
=exp [('—2 fa T dX)

(16.5.12)

16.6 Bohr Sommerfeld Quantization rule

Consider, a bound stationary state in a potential well. Let the energy of state be E

and assume that the particle is classically allowed in the region a < x< b. Hence
then region of x is divided into three parts namely:

(a) x<a, region 1

b) a< x <b, region 2™ and
(b) g

(c) x>b, region 3"

The classical turning points are at x=a and x=b. Therefore the wave function ¥

decays exponentially to the left of x=a and to the right of x=b. In regions 1* and 3%

, V>E and in region 2" V<E. Let p,= 2m[V — E] and p,=/ Zm[E — V]
4

FIG. 16.4 Potential barrier

Obviously in region 1%, the wave function by W.K.B. approximation is
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WY~ AW, exp(- [ pzdx/h) (16.6.1)

Applying connection formula of barrier to the left of x=a, we get the solution in

region 2" as
X
Y, 2a1p, Cos( [ pzdx/h—g) (16.6.2)

This equation may be written in the form
W ~ 2ANp, Cos[{ ff podx/h+ fbx podx/h) - g]
Now by adding and subtracting g
W~ 240, Cosl{(f], P2dxhD)-(f) padxh - 5))
W~ 24p, [Cos(f, p2dxh-D)cos( [, pdxh -2)
isin( [, podx/hD) sin(f)] podxh-2)
W~ 24p, [Sin( [, pzdx/h)cos( [ pzdxh -2)
+Cos( f; p2dx/h) Sin( f: pde/h—g) ] (16.6.3)

Applying connection formulae of barrier to the right x=b, we get the solution in 3"

region (x>b) as
W= Ap, Sin(f], padxh)exp(— [ padx/h)
+2Cos( f; p1dx/h) exp(f, p1dx/h) ] (16.6.4)

In 3" region (x>b), i.e. boundary condition is that | ¥ |—0 as x—00, therefore in
the solution ¥'3, there must be the term containing decreasing exponential only.

Consequently the second term in (4) must vanish in order that %3 be an acceptable

solution for bound state. This gives
) b
sin(J ' p2dx/h)=0

b
or fa podx/h = +12)m (16.6.5)
where n=0,1,2,3,.......
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or ff p2dx = (n+1/2)yh = (n+1/2 )%

= (n+1/2 )% (16.6.6)

In the semi classical approximation the period of the particle is the time taken by

the particle to move from a to b and back. Therefore writing p for pz, we get

@pdxzszdx:[n%]h (16.6.7)

This is known as Bohr Sommerfeld Quantization Rule.

16.7 Self Learning Exercise

Q.1 An anharmonic oscillator is described by the Hamiltonian

_hz d:
+ Ax*

H ==
2m dx:

Determine its ground state energy by selecting

)

A being a variable parameter as the variational trial wave function.

1
A2 —A2%x2
Y= — exp(
T4

Q.2 Consider a particle having momentum p moving inside the one-dimensional

potential well shown in fig . If E<V(x), show by the W.K.B. method, that

X2
fx pdx =n+1/2)h, n=0,1,2, ........
1

Vo) A

E = V(x)) E = V(r)

Region 1 Region 3
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Figure: A potential well with linear turning points at x4 and x5.

Q.3 Estimate the ground state energy of helium atom by taking the product of two
normalised Hydrogenic ground state wave functions as the trial wave
function, the nuclear charge Z’e being the variable parameter. Assume that

the expectation value of the interelectronic repulsion term is (5/4) ZW,, W,
=13.6eV

Q.4 Obtain the energy values of harmonic oscillator by the W.K.B. method.

Q.5 Solve the following one-dimensional infinite potential well:
V(x) =0 for —a<x <a; V(x) =00 for | x | >a
Using W.K.B. method and compare it with the exact solution.
Q.6 Estimate the energy levels of a particle moving in the potential
V(x)= o, x<0
Ax, x>0

A being a constant.

16.8 Summary

In this chapter mainly we study about the WKB approximation method. We
also study the connection formula of the solution of the wave equation. This
chapter contains some important topic named Bohr-Summerfield quantisation rule,

Quasi classical condition and application of the WKB approximation method.

16.9 Glossary

WKB approximation: 1t is based onthe expansion of the wave function in powers

of A. This method invented by three scientists named as Wentzel-Kramers—
Brillouin.- WKB approximation applies to only situations in which the potential
energy is slowly varying function of position.

Bohr-Sommerfeld Quantisation Rule:

$p dx = 2ff pdx=(@+1/2) h

Here a and b is the boundaries (limits) of the integration.
_ transmitted flux

incident flux

355



(transmitted intensity)xvelocityof particles

(incident intensity)xvelocityof particles
(transmitted intensity)22) (transmitted intensity)

(incident mtenswy)( %)  (incident intensity)

16.10 Answer of Self Learning Exercise

Ans.1: With the trial function ¥, the expectation value of H is

-1 —Ax: —Ax:
= 4o -h> d
<H>= A 2 f
Using the values of the first three integrals from the appendix, we obtain
h2A: 34
<H>= + —
4m  4A*

Minimizing <H> with respect the variable parameter A, we get

6 <H> hf/‘L 34

6mA

2= (s

Substituting this value of A, we obtain

6mA L 3A h? E

<H>__( h- ) 4 6emA

1
<H>——( )3A3+—(—)3A3
4
33 R2 2 1 h: 2 1
=5 (5-)343 =1.082(5 )3 4s

It may be noted that numerical integration gives a coefficient of 1.08 ,

illustrating

the usefulness of the variation method. It may be noted that perturbation technique

is not possible as there is no way to split H into an unperturbed part and a

perturbed part.

Ans.2: Classically, the particle will oscillate back and forth between the turning

points x1 and x2. Quantum mechanically, the particles can penetrate into regions 1

and 2. The wave functions in regions 1 and 2 are exponentially decreasing. When

we move from region 1 to region 2, the barrier is to the left of the turning point
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and, when we move from region 2 to region 3, the barrier is to the right of the

turning point. The wave function in region 1 is

2m[V(x)—E

Wy -=exp (= [ ydx), y- LR (1)
2Zm|E-V

Y, = \/_cos(f kdx——) kz—w )

The wave function that connects region 2 with the decreasing potential of region 3
being of the type

Cos( [, kedx — ),

Hence, equation (2) should be modified as
2 X4 X T

Y, -7 cos( fxz kdx + fxz kdx — Z) (3)

Since Cos(-q.')):Cos(;b and sin(-d)) = sinq'), equation(3) can be written as
2 Xo X2 T
W2 == cos( J; kdx)Cos ([, kdx + )
2 A X3 : X2 T
+ = Sin( fx1 kdx)Sin([_" kdx + ",

2 X2 ] X3 T
=—COS kdx)Sin kdx — =
2 . X2 X2 T
+—Sin kdx)Cos kdx —— 4
7= Sin( [, " kdx)Cos(]; 7) )
Here second term of equation (4) is the one that connects with the decreasing
exponential of region 3, while the first term connects with the increasing
exponential. Since an increasing exponential in region 3 is not acceptable, the first

term has to be zero. This is possible if
X2 X3
Cos( fx1 kdx)=0or fxl kdx= (n+1/2)T, n=0,1,2,....... (5)

Substituting the value of k, we get

X2 2
]2 dx = (m+1/2)1T, n=0,1,2,....... (6)

Which gives the allowed energy value. Classically, since the linear momentum
1
p=[2m(E — V)]z, equation (6) can be written as
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2 fxxlz pdx = (n + %)n'h n=0,1,2 ... ™

The LHS is the value of the integral over a complete cycle.

Ans.3: The Hamiltonian of the helium atom having a nuclear charge Ze is given

—h: kze:. —h: kze? ke:
= (—— 2 —_ — ) (— 2 —
by H (Zm Vi1 Ty ) (Zm Va2 r2 ) + T12 0
1
where k=
4‘TEEO

In terms of the variable parameter Z’e, it is convenient to write the Hamiltonian as

kzre:, -h: 1 1 ke:
vlz — )G, V2 —Dke*(+ )+ -
@)
__e
2

1
The product of the two normalized Hydrogenic ground state wave functions is

Y= (r1)W (1) = [— (ri+712)] 3)

Where ¥4(r1) and lP;g(rz) are the normalized Hydrogenic ground state wave
functions with Z replaced by Z’. The expectation value of H with the trial wave

function, as seen from Eq. (3), is

kz'e? kz'e?

R
<H>:<IIU1|LV12 — |'1Ul>+<'1U2|_V2 - |'1U2>
+(Z’ Z)<'1U1 >+(Z,—Z)<qu |LIJ2
+<¥, |l]!111!2>

The value of the ﬁrst and second terms are equal and each is

-2*W,,, and W = k?me*/2h2
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ke?

1= Zrke: f2m T . oo =27
<y iyt > [ de, [ sinf1d¢p, [ riexp ( dry
wag’ Y0 0 0 Qo
_Zrker, 1
may’ (22" /ao):
=27"W, (4)
where the value of ag is substituted. Given
ke? /
<, ¥, . |P1¥o>=542"W, (5)
12
Using equation (4) and (5) in equation (3), we have
<H>=-Z""W, +4(Z -2)Z' W, +5/4 Z'W, (6)
Minimizing <H> with respect to Z', we get
—47 "W, +8Z "W, —4 ZW,+5/4 W, =0
p 5
Zieg 5 %)

16
With this value of Z', equation (6) gives

E=<H>= -2(Z i)ZW
= = "2Z-T2 )Wy
Substitution of W,; = 13.6 eV leads to a ground state energy of —77.46eV.

Ans.4: The classical turning points of the oscillator are those points at which the

potential V(x)=E, i.e. 1/2mw>x><E or

1 1
x1=—(2E /Mmw?) 2and x,=(2E/mM?)2. For a particle constrained to

move between classical turning points x1 and x2 in a potential well, the energies

given by

p: 1 1 1

E=——+—mw>x?orp=2m[(E — -—mwx?)]2
2m 2 2
X 1
Substituting this value of p in equation 2 fx ’ pdx = (Tl + 5)7’[1’1
1

We get

1
2 [ 2m[(E - 2mox)]zdx = (n+)wh n=012,..
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1
Writing Sinf = (mw?/2E)2x, the above integral reduces to

m ’ )
f_zz(sz)E Cos0(2E/mw?)2df = (n+1/2)h
2

(2E/w) [ %< Cos0dB = m+1/2)mh
2

2E T 1 1
— X —=(n+ —)T.'.'h or E= (n+—)ha)
w 2 2 2

Ans.5: V(x) =0 for —a< x <a and V(x) = 00 for | x |[>a, the turning points are x{=-a

and x2 = a. The allowed energies can be obtained using the relation

fkdx =(n +%)1r

12
[n+(=) m?h?]
E, = ) n=0, 1,2, ccevrrrrnre,
8ma’
The exact solution gives
[n'm?h?)
E =—7" 1=1,2,73, siriesnns
8ma:

The WKB solution has (n+1/2) in place of n. Another major difference is in the
allowed values of n.

Ans.6: The classical turning points are at x1=0 and at x,=E/A. Now
X2 1 Zm
kdx = (n+>)m, k=—E-V
fxl ( T 2) ! h- ( )
In the given case,

k= (2m/h?)z(E — Ax)z

1 2 1 1
(2m/h?)z f (E - Ax)zdx = (n+)m

1 3n:A(2n+1)

f(—) [——

13, n=0,1,2,.......



16.11 Exercise

Q.1

Q.2
Q.3
Q4

Q.5

Q.6

Q.7

Q.8
Q.9

Describe W.K.B. method for the solution of Schrodinger wave equation in a
potential field and discuss its validity.

Define W.K.B. approximation method and give an application of this method.
What is the principle of W.K.B. approximation method. Define in detail.
Show that the W.K.B. approximation method gives exact energy values for a
harmonic oscillator.

Outline W.K.B. approximation method for a one-dimensional case and derive
the connection formulae.

Apply the W.K.B. approximation method to obtain the quantisation condition
for a bound state.

Prove that the sums of reflection and transmission coefficients are unity for
penetration of a barrier.

Derive an expression for transmission probability through a potential barrier.
Comment on the statement “ W.K.B. approximation is a link between

quantum and classical mechanics”.

Q.10 Use the W.K.B. approximation method to find the transmission coefficient of

a particle through a barrier.

Q.11 Find the energy levels of a particle moving in the potential V(x) = Vg[x|, Vg

being a positive constant.

Q.12 Consider a particle of mass m moving in a spherically symmetric potential

V=kr, k being a positive constant. Estimate the ground state energy using a

trial function of the type (;b=exp(—afr), where & is the variable parameter.

Q.13 Using the W.K.B. method, calculate the transmission coefficient for the

potential barrier

V(x) = Vo (1 — %) x| <A

0, x| >A
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Q.14 Use the W.K.B. method to calculate the transmission coefficient for the

potential barrier
Vix)=JVo—ax x >0
0, x <0

16.12 Answers to Exercise

Ans.11: The turning points are given by
E=Vp(x)or|x|=E/Vg orx=+E/Vg

X2 1 z_ 2T
fxl kdx = (n + z)n, k? == [E-Vo(x)]
E
Vo
1 1 1
(2m/h?)2 f [E —Voe(x)]2dx = (n +z)7r
E

Vo
As the integrand is even,

E
Vo

(2m/h?)z 2 f [E — Vo(x)]2dx = (n +%)1r
0

3 1 2 n L
E, = [Z (n + —2~)7TV0]3 (%)3 =0, 1,:2; 3ysscsivaci

Ans.12: The Hamiltonian operator is

h? o
H=—V* + kr
2m
As the trial wave function is not normalized

<¢ [H| p> —ar
== p=e
<plp> "’ ¢

_ ©  _2qr 3 _ 2! _ 1
<plp>=[, e **rdr B i

<H>

Now,
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<¢H|p>=-—— f ““Tl[d (TZ;—T)e_“T]TZdr

dar
+k [ ree=2T dr

—he: 00
-——— [ re 2“’"dr+— re 2“’"dr+kf r3e 2 dr
2m -0 0

Using the standard integral in the appendix, we get

-ha: 1 ha 1 3!
<O H ¢ >= e e ey
w3k
8mo  8a*
<¢|qub>:h2a2+£
<p|p> 2m 2«

For <H> to be minimum, it is necessary that

<H>=

3<H>_

Ja
h« 3k 3km L
——-—=0o0or & —(—
m 2a2

With this value of (, the ground state energy

3km. 2 Z 3 9r2p2 1

E=om 2@) B Gk

Ans.13: The transmission coefficient is

2 2
T=exp(=2 [, 'y dn),  y=TVE-E

Where x1 and X3 are turning points. At the turning points

E | x|

E=VxX)= Vg(l——) or —=(1-—)
Vo

X =+ )

Here X1 = -( ) and X3 = +A( O_E)

—2 f;zy dx=-2 fxz(Vo _M — E)zdx
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=—zﬁ( 5 (~2)Wo - E):

-16vm A 3
T=expl—; —;- (Vo= E)Z]

Ans.14: The transmission coefficient is

T=ep(=2 [Py dx)  y="TIV() -]

From the value of V(x), it is clear that the turning point x1=0. To get the other

turning point, it is necessary that
E=V(x)=Vgp—axs

x2 =Vo—FE/a
y=?(V0 —ax —E)%
-2 f:y dx:—zﬁfxz(Vo —ax — E)% dx
—2‘/:3(_—) [(Vo—ax — E)z — (Vo — E)z

—4+/2
3ha

[Vo—E]

3
T = exp[ (Vo E)z]
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