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1.0 Objectives

Vector analysis is a mathematical shorthand. The vector form helps to
provide a clearer understanding of the physical laws. This makes the calculus of
the vector functions the natural instrument for the physicist and engineers in solid
mechanics, electromagnetism, and so on. To meet objectives ,we emphasize the

physical interpretation of vector functions.



1.1 Introduction

Vector algebra is introduced early in the text. The unit deals with vector functions
and extends the differential calculus to these vector functions. We finally discuss
physical meaning of three important concepts namely ,the gradient, divergence and
curl.

1.2 Scalar Product

Scalar Product (dot product) of two vectors Aand Bis defined as

A.B = ABcos0 where 0<0 <1

Here 6 is the angle between A and B. Note that 4.B is a scalar quantity.

General Properties of Scalar Product:-
(i) A.B=B.A (Commutative Law)
(i) A.(B+C)=A.B+A.C

(i) ii=].]=hkk=1

(iv) If A=Ai+Aj+Ak and B=Bi+B,j+Bk, then

(v)

(vi) A.Bis independent of co-ordinate system.

Typical Applications of Scalar Product:-

(i) IfA#0, B#0and A.B=0,then Aand B will be perpendicular.



A A

g - A
(i) Component of vector 4 along n direction is | A.n |, where nis unit

vector.

(iii) Angle between 4 and B can be found out by | cosf = % = AB

Examplel.l1 Find the angle between side AC and side AB of a triangle ABC.
Coordinates of the vertices A,B,C are(1 + 243 ,1,2),(,1,2), (1,3,2) respectively.

Sol. AB=Position vector of B — Position Vector of 4

ﬁ;=(i+}+21€)—[(1+2\/§)f+j+21€}=—2J§f

—>:2\/§

= AB
A—>C =P.V. of E- P.V.of ;i
A—C=(f+3j’+21€)—[<1+2x/§)f+j’+2]€}
=23 +2)
= ‘Aﬁc‘ _ 1/(2J§)2 122 =4
By dot product
A%B.A%C (—2x/§f).(—2x/§f+2j) \/g
€080 =r—— = .
‘AB AC (243) 4 2
=60 =30

1.3 Vector Product (Cross Product)

Vector product of two vectors Aand B is defined as| Ax B = ABsinfn | where

A - > A
0<0 <7 andn is aunit vector in direction of (Ax B j . Direction of unit victor n

is perpendicular to the plane formed by A and B and it is given by right handed
system.



General Properties of Vector Product:-

RN

(i) If A and B are parallel or antiparallel i.e. collinear , then Ax B =0

ZXZZO

xi =0, jxj=0, kxk=0

)

~.

A

(ii) A>< B= —B>< A (Anti commutative law)

mnAx( j AxB+AxC

Gv) ix]= ,]xézf,éxizl
Jxi= —k, k j=—i fxlgz—j,

v) If 4= Alf + Azj' + AJQ and B= Blf + sz + B3l€ ,Vector product of two

vectors Aand B as a determinant is represented as given below

i ]k
AxB=|4 A A,
Bl B2 B3

AxB =i (AzB3 _A3Bz)_j(AIB3 _A3Bl)+k(Ale _AZBI)
Typical Applications of Vector Product:-

(i)  Area of the parallelogram with sides 4 and B is|Ax B

A
r4

A
Figure 1.1

Area=Ah=AB sin0

~|4x B




Ax B

- - 1
(i) Area of the Triangle with sides 4 and B iSE

Figure 1.2

Area = lAh =1ABsin¢9 21 ng
2 2 2

- -

(iii)  Unit vector that is perpendicular to the plane formed by 4 and B is given by

Examplel.2 A solid sphere is rotating with an angular velocity 30 r.p.m. about a

'}
oo]}

A X
n==

!
ooT}

X

fixed axis MN. Position vectors of the points M and N of the sphere are
(f +2}'+3l€)m and(4f +5}'+6l€)m respectively. There is an insect at a point

(Zf — 2}' + SIg)m on the surface of the sphere. Calculate the speed of the insect.

Sol. Angular Velocity @ =30 rev. per minute =30x 27 rad _ T rad

0 sec sec

Figure 1.3

5
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Angular velocity @ is an axial vector. Let it be along A/?N :
MN = N-M :(4f+5j+61€)—(i+2j+31€)
=37 +3j+3k

MN _ 3i+3j+3k _i+j+k
‘AZN‘ P32+ B3

MN

_zﬁ(

MN

A

f+j+l€)

Position vector of the point P with respect to point M is

=(2§—2j+51€)—(f+2j+31€)=z°—4j'+21€

Linear velocity of P is

ik

veoxr =2l 11

Bl
:%[1{2—(—4)}—}'(2—1)+l€(—4—1)]

p= 36 +1+25 =1 22
V3 3 sec

1.4 Scalar Triple Product 4.(BxC)

A A A4 where 4 = Alf + Azj' + Ak
A.(BxC)z B B, B, B=Bi+B,j+Bk
¢ ¢ G C= le + Czj + C3/€




Note thatA.(Bx Cj is scalar quantity. We can write scalar triple product

2 (Ex E’ j as [ABC ] we read [ABC ] as box product.

General Properties of Scalar Triple Product:-
(i 2.(§X Ej - 73.(& Zj - 8.(j4>< 73) ie. [ABC] = [BCA] = [CAB]
(ii) [i}/é }: [}'/25]: [kz]] -1 & [ ] -1

(ili) Magnitude of the scalar triple product 4 ( x C | of three vectors is equal to

;/

—

the volume of a parallelepiped having sides A ,B andC
(iv) Z.(Zx 5) =0 ie. [44C]=0

5.(2&1) =0 e [c44]=0

—

(v) If scalar triple product vanishes i.e. A.(Bx Cj = 0 thenA4,B andC are

coplanar. In that case volume of parallelepiped formed by them is zero
Note: (A.Bj x C'is meaningless. Similarly(A.Bj. C is also meaningless.

Geometrical Interpretation of Scalar Triple Product: -

Figure 1.4

OA=A4 , OB=B, OC=C
ng’:BCsinQ I/’\l



— (Area of Parallelogram OBEC) 7
-Sn
n=A.1 cosa=AD = height = h
s 336 )< (53]

S A n=Sh

Volume of parallelepiped

1.5 Vector Triple Product A4x(BxC)

Ax (Ex Ej - 73(2.8) _E(Z.EJ

-

Note that Ax (B xC j is a vector quantity

General Properties:-

(1) Zx(ngjJr 73{&2}&(2&):0

(i1) We have in general ;ix (gx E’j * (Arx éjx 8

1.6 Gradient V¢

RN

Vector differentiable operator V is defined as| V =i 8£+ j—+k —

V is called ‘del’
Gradient: if ¢(x, y,z)is a differentiable scalar field then gradient of¢ is defined
0 ~ 0

N . R a
Y grad¢=v¢ [l Ox / oy 8zj¢

%qbz 5%+j%+l€%
x Ty " e




Note that V¢ is a vector field .

General Properties:-
1) V(¢1+¢2)=V¢1+V¢2
(ii) V(C ¢) = CV ¢ where C is constant

(iii) If @ =constant thenV ¢ =0

Geometrical Interpretation of gradient:-

“The magnitude of thisV ¢ is equal to maximum value of rate of change of ¢ with

distance.”

Figure 1.5

Consider a surface S, that has constant potential ¢ . At distance MN, there is
another surface S, which has constant potential @ +d¢ . Here MN is the shortest
distance between the two surface s, ands,. If we move from s, to s,, then change
in ¢ is d¢ Rate of change of ¢ with distance is highest along the normal MN. So
grad@ at point M is directed along MN.

5
“V ¢ points in the direction of maximum rate of increase of the function ¢ with

space”

5
“For any point on the constant surface, direction of vector V ¢ at that point will be

normal to the constant¢ surface.”

Directional Derivate:

The component of grad¢ in the direction of vectorb is equal toV @.b, it is called



RN

directional derivate of ¢ in direction of vector b

Examplel.3 Scalar Potential ¢ is given by ¢ =x+ y+z and an ellipsoid is
2 2

. y oz
iven by x* +=—+-—=3
© g 4 9

Find
(i) V ¢ at point (1,2,3)
(i1))  Unit vector, that is normal to ellipsoid surface at the point (1,2,3)

(iii)  Directional derivative of ¢ in the direction of the outward normal of the

given ellipsoid at the point (1,2,3)

&i(D€¢:{?éz+}gz+éééyx+y+z)
X Y z
:f—{x+y+z)+}§{x+y+z)+é§{x+y+z)
o Y oz

=i+ j+k
which is constant vector and independent of the position of point
2 2
. . . 4 z i )
(ii) For ellipsoid surfacel//(x, y,Z) =X+ T + 32 constant, then Vi will be

perpendicular to the surface y (x, V, Z)Zconstant

el A A A 2 2
Vw=i2+ji+hg PR
ox "oy oz 4 9

2 2 2 2 2 2
:$£Z;ﬁ+lL+i—+jjz;ﬁ+l;+——+k£z;ﬁ+lL+f—
ox 9 oy 4 0z 9
=2xi + Z}' + %IQ
2 9

At the point (1, 2, 3)

vl//zzhj'%lé

> |7
Vy|==
v)-3

10



) A 6 - 3.
Unit vector n = v

Vy
. . 6 o 3 A 2 r
Another unit vector normal to the surface is — 71 + - Jj+ 7k

Its direction is opposite to that above.

(iii) Required directional derivate V¢ .n

:(f + ] +l€)(§f+%]+%l€}

_6+3+2 11
7 7
kQ

Examplel.4 Electric potential due to positive point charge Q is given by J = ——
r

.Find grad V

Sol. VV— li+ i lgé kQ
ox 8y 0z

%V:kQ{fi(

oresal H(5) 252

Here r =xi + yj + zk

rr=x"+ y2 z* Partial differentiation with respect to x gives

2r@—2x+0+0 :@ =2

ox ox r
Similary =¥ 2
r oz r

11



Thus V7’ = _"_g[;" +j1+1€5}
r

r r r

k —
:——3Q 14
r
- k - A .
VV=——3Q r where rzz
r r

Physical Interpretation:

: : : k : :
Potential V decreases as r increases. Potential } = —Q remains same for all points
r

having distance r from the charge Q. Thus equipotential surfaces are spherical type

and they are shown with their values of potential.

- -~

- —

Figure 1.6

Gradient will be in the direction of increasing values of V'

Here V, >V, >V, so gradV at point A is directed towards V, surface. Rate of

change of ¢ with distance is highest along the normal AB. Thus at point A, gradV’

will be in direction of AB, that is—r direction.
Let the charge Q be located at the origin O then

K k0 kKO
,-V._oB 0B _ T (r+Ar) kQ

AB Ar Ar r (r + Ar)
At point A

W V‘ =maximum rate of change in V per unit distance

12



1.7 Self Learning Exercise-I

Very Short Answer Type Questions

Q.1 Find the angle made by vector 4 = 4i + 4}' +3k with x axis.

-> o5 o - -

Q.2 “If A, B,C are not null vectors and A.B = A.C then B need not be equal to

N
C” give an example in favour of above statement.

Short Answer Type Questions

RN

Q.3 Ifcz =%(—f+}'+l€) ,a, =%(f—}'+l€) andc?3 =%(f+}'—l€) represent the

primitive translation vectors (sides of primitive cell) of the BCC lattice then
find the volume of the primitive cell. Here a is the side of conventional cell.

Q.4 Find V7’

1.8 Divergence

If I is differentiable vector field then divergence of F' is V. F which is defined as

3.?:[53+}3+1€§j (Ri+Ej+Ff)

ox "oy Oz

> > (OF OF, OF,
V.F= ly 24 3
ox oy Oz

where F:Flf + sz+ F3]€

General Properties of Divergence:-

(@i % .(C ;ij =C %2 where C is constant

(i) %.(Znéj — V.A+V.B

13



Note that 2 ) 6 =(A —+ A4

0 0 0 ).
. ,— + A, — |is an operator
ox oy 0z

(v) If A=constant,then V .4=0

&) V.(V)=Vi=

0’y 09, 09
ox* oy’ oz’

o0 o 0

where | V? =

is Laplacian operator

+—+
o> oy oz

Physical Interpretation of Divergence:

RN

divF = Lim

AV —0

$r.as
S

AV

Here volume elementA) is bounded by the infinitesimal surface S in the

neighbourhood of a point P. §F .d S is the net out flow flux of F through
S

infinitesimal surface S.

Thus “divergence of vector field F' at the point P is equal to net outward flux per

unit volume as the volume shrinks to zero in the neighbourhood of the point P.”

5
If div F is positive, it means net flux is coming out through infinitesimal volume

element at the point P

and that point acts as a source.

S\
i

Figure 1.7

14



In the given figure 1.7, the point P acts as source.

Negative value of div F means net flux is going into infinitesimal volume element

at the point P and that point acts as a sink.

~\|/
R

Figure 1.8

If V.F =0then F is called Solenoidal vector.

Magnetic field Bis a solenoid vector V.B =0 means there is neither source nor
sink for field B . Magnetic field lines always make closed loop. Due to that fact net

out flow flux any infinitesimal volume is zero.

—

Examplel.5 Electric field inside a uniformly charged solid sphere is £ = ?/)o_r .
e0
Find divE .
sa. ¥ E[P_ WES
e | 3¢,
- £ Zi+}'i+l€— .(xz +y]+zl€)
3e,\Lox "oy z
p |0 0 0
=——|—Wx)+=—W)+=(z
AL @ 2020
Jo,
=—1I3
T3l

oo p . .
V.E =" which is Gauss’s in electrostatics

15



1.9 Curl

If F' (x,y,z) is a differentiable vector field, then curl of F’ is defined as

cul F=vxF=|i L4 4i 2 x(Fi+Fj+Fk)
ox "oy Oz

. (OF OF \ .(OF OF,\ AfOF, 0OF
Curl F=i| —=——2 |+ j| L+ —— |+k| =2 -——L
d Oz oy Oz oy Oz

ik
Curl FH: i i i

ox oy Oz

KF K

General Properties:-

(1) Curl (2+ é j =curl ;i +curl E

(i) |CurlGradg=0|  iec. VxVé=0

- - -

(iii) If c is constant vector, then curlc =0

(iv) Vx (pd) = Vx A+ ¢(5x Zj

(v) [DivCurl4=0 ie. V.(V X Aj =0
(vi) Vx [Vx Zj =§[§Z) V4

- - B -

(vii) If curl /' =0 then field ' is called irrotional field and line integral [Fdr
A

is independent of the path joining any two points A and B. In above case,

circulation(j) F .d r zero for any closed path in that region.

—

(viii) If curl F' = 0, then three components of [ are interrelated as

16



oF, OF, ofF, OoF, OF, OF
oy Oz oz ox ox Oy

(ix) If curl ¥ =0 it follows F =V ¢ i.e. vector field F can be expressed as
gradient of scalar field ¢ .

2

(x) IfdivF =0 it follows F' =Vx A4 [ diveurl A = O}
Examplel.6 A field F'is given by F = xzj' Calculate curl ' .
Sol.
]k
Curl F = 9 09
ox 0y Oz
0 x> 0

—0f +0] +2xk

Curl F =2xk
Physical Interpretation:

Value of F increases with x and F'is directed along positive y direction.It is
obvious from figurel.9, higher value of F is represented by larger arrow. Now we

calculate the line integral j;F .d ralong closed loop ABCDA in anticlockwise

direction.
N
? AY
N
A
A
A
D C .
Y A2 xy plane
A B
X x +dx
—
Figure 1.9

17



fFdr=IFdr+[Fdr+[Fdr+|Fdr
= [Fdrcos90° + [ Fdrcos0® + [Fdrcos90 + | Fdrcos180’
AB BC CD DA

=0 +F,.(BC)+0+ F,,
'+ BC = DA = Ay
AB = Ax

(= D4)

fF.dr=(F, -F,)A

[(x+Ax)2 —~ xz} Ay o F=Xx

[xz +(Ax)2 +2x Ax—xz}Ay

=[2x+Ax | AxAy

=2x+Ax
Area ABCD

WhenAx— 0, Ay—> 0, Area ABCD become infinitesimally small and
f F.dr
Area ABCD ~

component of curlF along z direction is given by

We know that area vector is perpendicular to plane of area. Here, we have

calculated in fF .drin xy plane and for anti-clockwise rotation, outward unit

RN

vector isk which is perpendicular to xy plane.

Thus curlF has component 2x along k direction. Similarly we can show that

curlF do not have components alongi and j directions.

—

. ~ooar pud .
Examplel.7 If electrostatic field £ = —- then find curl £ where a is constant
r

18



Sol. E:a[—x”yf ”kJ:ﬂhﬂ%%lé

7,3 }/,3 ]/,3] l"3
i] Kk
vxr=l2 2 2
ox Oy Oz
ax ay az
rooror

falE-HEH R )

%x g = f{az(—f’)r“‘)?—ay(—?)r_“)%} —j {az(—3r‘4)% - ax(—3r_4)@}
4

y X 0z
+k ay(—3r‘4)@—ax(—3r_4)@
ox oy
We know that #* = x° + y2 +Zzpartial differential w .r.to x gives
0 0
Lz = L 21
X ox x
- oz . .
Similarly— ==, — =— putting these values, Vx £ becomes
r o0z r
VxE =i az(-3r*) 2 - ay(=377 i} —A'{az 3 ) 2~ ax (=37 i}
faz(-3r) 2 = ay(ar )2} -3 - ax(-3r)
+hday(=3r*)E - ax (=3 Z}
(3% - ax(ar)2
=7(0)+7(0)+k(0) = 0
Note: Here E :a_:':%r: f (r)rwhere f (r‘)zi2 is function of radial
rooor r

distance. VxE = 0= Vx f(r)f

Similarly we can prove that any vector field which can be written as f (r)f ,curl of

that field will be zero. That type of field is known as central field. So curl of

19



central field is always zero and it is conservative in nature. Electrostatic field and
gravitational field are central fields.

Examplel.8 A vector field is given by ;7 :f(x) f+f(y) J +f(z)/€, then

prove that curl F'=0 where f (x) is function of x only, f (y) is function of y
only, f (Z) function of z only.
Sol.

i ik
CurlF— i 0

0z

) ) 10
L@ -Lr0 e - 2w 2 ) -2 1)

=7{0-01 - }{0-0} +£{0-0} =0

9
Ox
f(x

1.10 Self Learning Exercise-II

Very Short Answer Type Questions
Q1 If F= (x2 + 1); +3)y° ]+ 2"k then find curl F

Q.2 For particular pathj;F .dr =0 Doesitimply Vx F' =0

Short Answer Type Questions

RN

Q.3 A vector field is F =i x . Is this field solenoidal?

N a N R R
Q.4 Continuity equation is given byV.J +a—/; =0,where J =axi +byj then

find p where a and b are constants.

1.11 Summary

(i) Scalar Triple Product A.(BxC)

20



I A‘l Az A3
A.(Bx Cj =|B B, B,
Cl CZ C3

(i1) Vector Triple Product Ax (Bx C )
Ax (Z;x Ej - E(ZE) - E(Z.TB)

(iii) grad¢ = W :[ fi+j I, i}p
X

0 oy Oz
' . 22 oF OF OF, > 2 A 2
(iv) divF =V .F= ! 2 > | Where FF =Fi + F,j+ Fk
ox Oy z
W Curl Fevxp=| 124159 49 x(Fi+F,j+Ff)
ax Jay 1 2] 3
i J Kk
CurlFﬁzi s
ox 0y Oz
FoOF R

1.12 Glossary

Collinear : Lying in the same straight line
Equipotential surfaces: All points on an equipotential surface have the same

potential.
2 2 2

Ellipsoid : a geometric surface described by standard equation: x_2 + z—z +—=1
a c

where +a, +b, +c are the intercepts on the x, y, and z axes.

1.13 Answer to Self Learning Exercises

Answer to Self Learning Exercise-I

4
Ans.l: cos' —
Ja1

21




-

Ans.2: Let Azf+j’+/€ , B=i+], C:j+l€

- - -
a, .|la, xa,

Ans.4: 2r

3
a

Ans.3:

Answer to Self Learning Exercise-II
Ans.1: Crul F =0since Crul F :f(x)f+f(y)j'+f(z)l€
Ans.2: No, if§F.d r =0 for all paths then Vx F' =0

Ans.3: Yes, becauseV.F =0

Ansd: p, —(a+b)t where p,is constant

1.14 Exercise

Section A : Very Short Answer Type Questions
Q.1 Diamond unit cell consists a basis in which one atom at origin ‘O’ and
a a a

another atom at point P (2,4 ’Zj Find the angle made by OP with

X, V,Z axes.

—

e AN 3a I/- e
Q.2 F =2rr+—— Isthis field /' irrotational?
r

Q.3 If A=x"+ ] then find Div A
SectionB : Short Answer Type Questions
Q.4 A particle is displaced from positionr, = (2f + 3}' + 412) to r, = (4f + 2}' + lé)

under a constant force F' = (f + 7+ lg) .All units are in S.I. Calculate the work
done by the force on the particle for given displacement.

. . . 2r» 2m 2w .
Q.5 Reciprocal lattice vector of a unit cell are—ﬂz , Tﬂ j, —ﬂk. Find the
a c

volume of the cell formed by these reciprocal lattice vectors.

22



Q.6 A solenoidal vector field is given by F = xi —byj’+czl€. Find the relation
between ¢ and b.

RN

Q.7 Position vector of a moving particle is given by r = (tf + tzj) . Find the areal

velocity of the particle about origin at time t=2 sec. All units are in SI and

—

.. dA (* %)
areal velocity is—— = —| rx v
dt 2

Section C : Long Answer Type Questions

- - - -

Q.8 A particle of mass m is moving with velocity v = wx r, where w is constant
- - - -
vector. Angular momentum of the particle is L = m r X (W X rjthen

find curl L.
Q.9 Find curl of the following vector fields-

O)F =yi (i) F, =x j (iii) F, :(Fl+Fz):yf+x}
Q.10 A wire of radius ‘R’ carries current along positive z direction. Magnetic field

inside the wire is B = %(J X r)whereJ = J k is uniform current density.

—

Calculate the curl B inside the wire.

Q.11If v=wxr then findV.v andVM where ® =wk

1.15 Answers to Exercise

1
Ans.1: cos’ (—] with each axis

V3
Ans.2: Yes because ' = f (r)IA”
Ans.3: 2x+2y

Ans.4: W= fA7 .(rz— rlj =-2 Joule

23



(2r)’
abc

Ans.5:

Ans.6: V.F =0givesb—c=1
dr dA—2]€

Ans.7: Hint v=— ,—=
dt dt

RN

Ans.8: —3mv

Ans.9: (i) curl 131:—/€ (ii) curl 1?2 =k (iii) curl (1?;+ F j =0

Note that all these three fieldsF;,F, and F, are not in the form of

[f(x)f+f(y)}+f(z)l€},curllg1 =0 ,curllg2 # O,cur”;3 =0.Thus field

which is not in the form of [f(x)f+f(y)}+f(z)l€]its curl may be zero or

may not be zero.

Ans.10: CurlB=u,J

RN

Ansdl: V.v=0 , V X+ Yk

References and Suggested Readings

1. Murray R.Spiegal ,Vector Calculus ,Schaum’s Outline Series,McGraw-Hill
Book Company(2003)

2. George B. Arfken &Hans J. Weber ,Mathematical Methods for Physicists
,Sixth Edition, Academic Press-Harcourt(India)Private Ltd. (2002)

3. E.Kreyszig ,Advanced Engineering Mathematics ,8" Edition, John Wiley
&Sons(Asia)P.Ltd.(2001)

4. P.N.Chatterji, Vector Calculus, Rajhans Prakashan Mandir (1999)

24



UNIT- 2

Coordinate Systems

Structure of the Unit
2.0 Objectives

2.1 Introduction

2.2 Cartesian coordinate system

2.2.1 Differential Elements in Cartesian Coordinates

2.3 Cylindrical coordinate system

2.3.1 Difterential Elements in Cylindrical Coordinates

2.4 Spherical coordinate system

2.4.1 Differential Elements in Spherical Coordinates

2.5 Ilustrative Examples

2.6 Self Learning Exercises-I

2.7 Transformation between coordinate system

2.7.1 Transformation between Cartesian and Cylindrical coordinates system
2.7.2 Transformation between Cartesian and Spherical coordinates system
2.8 Illustrative Examples

2.9 Curvilinear coordinate system

2.10 Differential vector operations

2.11 Self Learning Exercises-11

2.12 Summary

2.13 Glossary

2.14 Answers to self learning exercises

2.15 Exercises
2.16 Answers to exercise

References and Suggested Readings

25



2.0 Objectives

The chapter provides a simple formalism for expressing certain basic ideas
about the coordinates system. The aim of this chapter is to enable the reader to
understand the relationship and formalisms between different coordinates system.
Topics have covered the algebra and differential calculus of various operations.
Transformation between coordinates system is also well explained. Added feature

on curvilinear coordinates system are extremely useful in the study of this chapter.

2.1 Introduction

Coordinate system is a basic idea which is used to define the position of an
object in given space. The position of an object is identified by coordinates of its
concerned coordinate system. These coordinates are based on measurements of
position (displacements, directions, projections, angle etc.) from a given location.

There are mainly three types of coordinate systems.

Coordinate Systems

Cartesian Coordinate System Cylindrical Coordinate Spherical Coordinate

System System

We are quite familiar with Cartesian coordinate system. For systems exhibiting
cylindrical or spherical symmetry, it is easy to use the cylindrical and spherical
coordinate systems respectively.

2.2 Cartesian or Rectangular Coordinate System

The idea of Cartesian coordinate system was invented by (and is named
after) French philosopher, physicist, physiologist, and mathematician René
Descartes in the 17" century. A Cartesian or Rectangular co- ordinate system
usually consists of three mutually intersecting perpendicular co — ordinate axes are
set — up which are labeled as X, Y and Z axes. The point where three axis (X,Y,Z)
cross or intersect is called the origin (0,0,0).
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In rectangular coordinates system a point P is identified by coordinates x,, y,, and z,
(three dimensions) where these values are all measured from the origin (see
figure.1).

AZ

P(X,y;, 7

“O
=2
=
<y

X

Fig.1: Location of point P in Cartesian

In a three dimensional space a point P can be identified as the intersection of three
surfaces as shown in fig. When the surfaces intersect perpendicularly we have an
orthogonal coordinate system. The point P ( x,, y;, z,) 1s located at the intersection

of three constant surfaces i.e.,

Ranges of Variables

x = const. (Planer Surface) (—00 < z < 00)
y = const. (Planer Surface) (—00 <z <0)
z = const. (Planer Surface) (—00 < z < 00)

Unit vectorsa ﬁy and 4 are perpendicular to the planer surfaces.

L V4 y = constant

X = constant

A z = constant

/

.
et ol e g

<v

X

Fig.2: Location of point P in Cartesian coordinate constant surfaces
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2.2.1 Differential Elements in Cartesian Coordinates

In Mathematical physics, there are three differential elements corresponding to
length (1), area (A) and volume (V). These three differential elements provide an
integrating function to different coordinating system.

The definition of the proper differential elements of length (d/ for line integrals)
and area (ds for surface integrals) can be characterized directly from the definition
of the differential volume or parallelepiped (dv for volume integrals) in a particular
coordinate system respectively.

@(<+dx ytdy, z+dz)
5

,djy = ay

©>
X
o
"
|
T
o
s

A dz dx

dy dz

v

Fig.3: Constants surfaces and unit vectors in Cartesian coordinates system

In order to determine the differential element (parallelepiped) corresponding to
length, area and volume in Cartesian coordinate system, let us consider a point P at
the location (x,y,z). If now each coordinate’s value is increased by a differential
amount by (x+dx, y+dy, z+dz) as shown in fig.3, then

(1)Differential Length Element

—

dl =adx+a,dy+a.dz

The distance between two points P and P' (diagonal length).

di = \(dx)’ +(dv)’ +(dz)’

(2) Differential surface area element
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ds. =dydza, ds, =dydz
d§y = dxdz&y or ds, =dxdz
ds. =dxdya, ds = dxdy

(3) Differential volume element dv=dxdydz

2.3 Cylindrical Coordinate System

In cylindrical coordinates system a point P is specified by three coordinates

(P,¢p, z), where P represents a radial distance, () an angular displacement

(Azimuth Angle) and z an axial displacement (see figure.4).

In circular cylindrical coordinate system a point P can also be identified as

intersection of three mutually perpendicular surfaces as follows:

Z a P = constant

(_/ z = constant
........................................... ~ A
ar
I
1

,
‘
’
//PU N
N
>

1
A
|

d) = constant

Fig.4: Constants surfaces and unit vectors in cylindrical coordinates system

Ranges of Variables

P = const. (A circular cylinder); (0 < p <o0)
(0 = const. (A Plane); (0L <2m)
z = const. (Another plane). (—00 <z < 0)
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Unit vectors in cylindrical coordinates system are characterized as follow:

a 0 L p = const. (Perpendicular to the circular cylindrical Surface)
a p L ¢ = const.(Perpendicular to the planer Surface)

a Lz = const.(Perpendicular to the planer Surface)

2.3.1 Differential Elements in Cylindrical Coordinate System

The differential element corresponding to length, area and volume in
cylindrical coordinate system can be found as shown in fig below;

AZ
OI
P \::\\A%B/
Ko

I az
G

—~

~

S
~v

X
©

Fig.5: Differential element in cylindrical coordinates system
(1)Differential Length Element
dl =4 dp+a rdp+a dz

(2) Differential surface area element

ds =pdpdza ds =pd@dz
ds, =dpdza, or ds, =dpdz
ds =pdpdpa, ds, =pdpdo

(3) Difterential volume element

dv=pdpdpdz
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2.4 Spherical Coordinate System

In spherical coordinates system a point P is specified by three coordinates
(r,08,0), where r represents a radius vector ( distance between origin to any point),
the second coordinate O is angle between y — axis and the radius vector r. Therefore
0 is also known as “Co-latitude” or “Polar Angle”. The third coordinate (p an
angular displacement between z — axis and y=0 plane. Therefore angle ( is also
known as longitude or “Azimuthal Angle” (see figure.6).

O = constant

X
I = constant /\

d) = constant

Fig.6: constant surfaces in spherical coordinate system

In spherical coordinate system any point can be identified by intersection of three

mutually perpendicular surfaces i.e., a cone, a sphere and a plane.

Ranges of Variables

r = const. (Spherical Surface) (0<r<0o0)
0 = const. (Conical Surface) (0<0<m)
( = const. (Plane) (0<@<2m)

Unit vectors in spherical coordinates system are characterized as follow:
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a L r =const. (Perpendicular to the spherical cylindrical Surface)
ﬁe L 0 = const.(Perpendicular to the conical Surface)
a 0 L @ = const.(Perpendicular to the planer Surface)

2.4.1 Differential Elements in Spherical Coordinate System

The differential elements corresponding to length, area and volume in

cylindrical coordinate system can be found as shown in fig.5;

A A
Z Z

rsinfdQ

0>

dr
rdo

v
v

X X

Fig.7: Differential Elements in spherical coordinate system

(1)Differential Length Element

—

dl =a,dr+aygrdd+a,rsin6de

(2) Differential surface area element

ds =r’sin0d0dQa ds =1’ sin0d0de
ds, = rsinfdrd@a, or ds, = rsin@drdQ
ds, =rdrdfa ds, =rdrd0

¢ ¢ ¢

(3) Differential volume element

dv=r"sin0drdodo

Example 1 Given two points P,and P, are located with the position vectors r, and
r, respectively. What is the distance between them in the following coordinate

systems?
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(a) Cartesian coordinate system
(b) Cylindrical coordinate system

(c) Spherical coordinate system

Sol. (a) In Cartesian coordinate system

d :\/(Xz _X1)2 +(Y2 _yl)2 +(Z2 _Z1)2

(b) In Cylindrical coordinate system

d :\/pf +p> —2p,p,cos(P, — )+ (z, —z,)°

(¢) In Spherical coordinate system

d =\/r12 + r22 + 2r1r2coselcose2 - 21r1rzsinelsinezcos((|)2 —-Q,)

2.5 Illustrative Examples

Example 2 Determine the volume of a sphere of radius ‘2a’ from the differential

volume element.

Sol. By eqn. dv =r" sin0 drd0 d

r=2a T 2T
Volume = jdv =j I I r” sin@ dr dO d@
r=0 6=0 ©=0

5 2a
’ do = . (cos 9)

¢=0 3
0

2

e 32Ta’
© 3

> (9)

Example 3 Determine the surface area of a sphere of radius ‘a’ from the

V= I r_= ' r’dr Ie_sine do

differential volume element.

Sol. Consider an infinitesimal area element on the surface of a sphere of radius a
(see fig)

The area of this element has magnitude

dA = (rd0)(rsind do) =r’ sin0d0d¢

sin0do | T dg
1t ¢=0

Surface Area = IdA :azj

A=a’ (cos 9)‘:I ((p)‘;n =4ma’

33




2.6 Self Learning Exercises-I

Very Short Answer Type Questions
Q.1 What are coordinates of origin in Cartesian coordinate system?
Q.2 What is the range of azimuthal angle in cylindrical coordinate system?
Q.3 Who invented the idea of Cartesian coordinate system?
Short Answer Type Questions
Q.4 Write the differential volume element for the Cartesian coordinate system?
Q.5 Write the differential volume element for the cylindrical coordinate system?

Q.6 Write the differential volume element for the spherical coordinate system?

2.7 Transformations Between Coordinate systems

2.7.1 Transformation between Cartesian and Cylindrical coordinates

system

If you are given Cylindrical coordinates (P, , z) of a point in the plane, the
Cartesian coordinates (x,y,z) can be determined from the coordinate

transformations and vice versa.

AZ

OI

E .

17—
| 0 R
: e | Y
) AR W X = Pcosd
i(/ P
y = psind

Fig.8. Transformation between cylindrical to Cartesian coordinates
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Cartesian to Cylindrical Cylindrical to Cartesian

X=peose .
y=psmaeo
z=z 0= tan'l(zj
X
z=7z

The unit vectors also are related by the coordinate transformations

(a) Rectangular to Cylindrical unit vectors Transformation
(A.A.4)>(a,A.4)

The transformation of unit vectors from rectangular to cylindrical coordinates

requires the components of the rectangular coordinate vector ‘A’ in the direction of

the cylindrical coordinate unit vectors (using the dot product). The required dot

products are

A=A, A =(Ad +AA +AA )3 =AA A +AA A +AA A
p Cartesian P X X y 'y z z P X X p yy p z z P
=AAA +AA A (2.4 =0)
X x p Yy P z P
A=A, A =(AA +AA +AA)a =AA A +AA A +AZ A
(0) Cartesian ~ (0 X X y y z z [0} X x @ yy © z z @
—AAA +AA A (a4 =o)
X x @ yy @ z ¢
A=A, A =(A3 +AA +A4)d =AR A +AA A +AAA
=A (va.4 =44 =0;4 4 =1)

where the a unit vector is identical in both orthogonal coordinate systems. The four

remaining unit vector dot products can be determined with the help of geometry

relationships between two coordinate systems. a, __4

A

a =cosa +sina

a, =—sinPa_+cos@a,

Fig.9: Transformations of cylindrical unit vectors in terms of Cartesian unit vectors
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A A
a_.a

A, =4, (cosQa +sinQa ) =cos@

A A
a_.a

,, =a .(cosQa +sinPa )= sin®

ﬁx.ﬁq) =a (—sin@a_+cosPa )= —sin@®

a.a, =a .(-sinQa +cosQa )= cosQ

Substituting these values in above eqn.,we have

~

a, + Ayay.ap = A cos( + Ay sin

0>

~

a,+Aa . =A cosp—A sinQ

p A
:AX

x*
X

0>

¢

> > >

a
®

z

The resulting cylindrical coordinate vector is

A =AA +A A +AA
rp o7 ¢ 7z z

Cylindrical

= (A cos@+A sin(p)ép + (A cos — Axsin(p)é(p +Aa

Also, in matrix form

Al cos@ sin@ O A
A, |=|—sn@ cosQ 0| A
A 0 0 1| A

z z

Similarly, the transformation from cylindrical to rectangular coordinates can be

found as the inverse of the rectangular to cylindrical transformation.

A cos@ sm@® 0 Al cosp —sin@ Ol A
A |=|—sin@ cos@ 0 A, |=|sin@ cos@ O A
A 0 0 1 A 0 0 L{| A,

The cylindrical coordinate variables in the transformation matrix must be

expressed in terms of rectangular coordinates.

cosP = S — and sin(p = AR
p /X +y2 P x + y2

The resulting transformation is
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X y
x2+y2 x2+y
y X
\/x2+y2 \/x2+y2
0 0

> > >

The cylindrical to rectangular transformation can be written as

0 + Ayay.ap + Azaz.ap

Cartesian

=(AA +A4 +A4 )A =A3d 4
X X yy z z p X X

= (A, cos@ — A sin() a_+ (A sin@ + A(pcos([))ﬁy +Aa

X y y X
A —A A + A
P 2 2 ¢ 2 2 P 2 2 ¢ 2 2
X +y X +y X +y x +y

2.7.2 Transformation between Cartesian and Spherical coordinates

system A,
z =rcos0
P8, P)
8/ |

0 : .

NG A Y
X = rsin0 cos@

X

y = rsin@sin@

Fig.10: Transformation between Spherical to Cartesian coordinates

Cartesian to Spherical Spherical to Cartesian
2 2 2
r=+/x"+y +z

y = rsinOsin@ (

x = rsind cos@

e:COS

)

)

z =rcosO
¢ = tan

<
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The unit vectors transformations from Cartesian to spherical coordinates can be
determined in the same way as done earlier.

(a) Cartesian to Spherical unit vectors Transformation
(A.A,A)—>(A.40.4,)

The required dot products of unit vectors to determine the transformation from
rectangular coordinates to spherical coordinates are

A=A a —_(Aﬁ +Aa +A§)§ =Aaa-+Aaa+Aaa
r Cartesian * XX y oy z z r x x'r y yoor z z" 1

A, =A_ a —_(Aﬁ +Aa +A§)§ =Aaa +Aaa +Aa.a
0 Cartesian * 0 X X y y z z 0 X X 0 y oy 20270

A=A a —_(Aﬁ +Aa +A§)§ =Aaa +Aaa +Aa.a
(0] Cartesian ~ @ XX y oy z z (0] X x Q y y @ z z

The unit vector dot products can be determined with the help of geometry
relationships between Cartesian and spherical coordinate systems as follows;

Fig.11: Transformations of Spherical unit vectors in terms of Cartesian unit vectors

Here it is considered the projection of (4 ,4a, ) into the unit vectors (& ,a, ), where

a  1s the unit vectors taken from cylindrical coordinates (See fig),

Fig.12: Relationship between spherical and cylindrical unit vectors
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The vector decomposition ofa | in to the Cartesian unit vectors (a_ ,a,);
a, =cos(a +sin@a
Therefore, 4 =sin0a_+cos®a =sind(cos@a_+sin@a )+ cosOa
r P z X y z
=sinBcos@a_+ sinBsin(pa  + cosBa
X y z
dy. = cosOa_ +cos(90°-0)a, = cosB(cos@a_+sin@a )—sinOa,
= cosfcos@a_+cosbsin@a —sinfa,

a,.= —sin@a_+cosa,

The dot products relationships are then

a_.a, =sinfcosq a .a =sinBsin@ a .a =cosh

a_.a, =coshcos® a .4, =cosBsin@ 4 .4, =—sinb

a_.a, =sinQ a.a, =cos@sin@ a.a =0

and the rectangular to spherical unit vector transformation may be written as

A sindcos(p  sinOsin@®  cosb || A
Ay |=|cosBcos® cosBsin@ —sinb || A
A, —sin cos® 0 A

2.8 Illustrative Examples

Example 4 Deduce the Spherical to Cartesian unit vectors transformation.

Sol. The unit vector transformation from Spherical to Cartesian coordinates

system can be found as the inverse of the rectangular to cylindrical transformation.

-1

A sinfcosp  sinfsin@®  cosd A sindcosp cosOsin® —sin@ || A
A, |=|cosBcos coshsin@ —sind | | A; |=|sinOsin@ cosOsin® cos | A,
A —sin@ cos( 0 A cosd sind 0 A

z ¢ ¢

We can write the spherical coordinate variables in terms of the Cartesian

coordinate variables.
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p x2+y2

V4 V4
sin =— = - and cosh = — = -
r JxX'+y +z P X +y +z
. y y X X
sin =— = and cosPp = — = —F—=
PoNx+y p X +y
The resulting transformation is
X Xz y
A \/xz-i—yz-i—z2 \/x2+y2\/x2+y2+22 \/xz-i—y2 A
y Yz X
A |= A
0
Ay \/xz-i—yz-i—z2 \/x2+y2\/x2+y2+22 \/xz-i—y2 A

z B 1/)(2-+—y2 0
\/xz-i—yz-i—z2 \/XZ-i—yZ-i—Z2

Example 5 Find the location of the point (1,1,1) in cylindrical and spherical

coordinate systems.

Sol. (a) In Cylindrical Coordinate System.

r=\/x2 +y° :\/(1)2 + (1) =+2units

0= tan” [ZJ = 0= tan” (lJ =45° and
X 1

z=1

(b)In Spherical Coordinate System.

r :\/x2 +y 427’ :\/(1)2 + (1) + (1) =/3 units

z 1
0=cos’| ——— | = cos'l(—j = 54°74'
'\’X2 + y2 +2z° \/E

O= tan'l(ZJ =>0¢= tan” (lJ = 45°
X 1

2.9 Orthogonal Curvilinear Coordinates

Curvilinear coordinate system is simply a general way to represent all coordinate
systems (Cartesian, Cylindrical and spherical etc) which may be orthogonal and

nonorthogonal. Cartesian, cylindrical and Spherical coordinate systems are only

special cases of generalized curvilinear coordinates system.
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Let us proceed to develop a general formula in generalized curvilinear coordinate
system from which the all specific coordinate system can be easily obtained by
simply putting suitable parameters.

Let us consider the eqn. of surface as

u (x,y,z) = ¢ ( constant) ... (D)
This eqn (1) represents the surface in space. It is well known that intersection of
two surfaces is line i.e., the system of two surfaces u, = ¢, and u, = c, represent a
line where the two surfaces intersect. Intersection of three surfaces is a point in

space 1.e., the system of three surfaces u, = c,, u, = ¢, and u, = c, represent a point
where the three surfaces intersect.

Therefore, in generalized coordinate system, three family of surfaces, described by

u,=c, (constant), u,=c, (constant), u,=c, (constant) which intersect at point P.
Consider these three such surfaces

ul(x, y,z) =c uZ(x, y,z)= ¢, and u3(x, y,z)= c, ... (2)
The value of u,,u,,u, for the three surfaces intersecting at P are called curvilinear
co-ordinates or curvilinear surfaces. For example the u, coordinate curves are
defined as the intersection of the coordinate surfaces u, =constant and u, =constant.
If these three coordinate surfaces intersect mutually perpendicular at every point P,
then the curvilinear coordinates (u,,u,,u;) are said to be orthogonal curvilinear

coordinates.

u, curve

Fig.13: A General Curvilinear Coordinates system
A point P can be described by curvilinear coordinate (u,,u,,u,) same as Cartesian
coordinate system.
u, = ul(x, Y, Z)
u, zuz(x, y,z) (3)

u3 = u3 (Xa Y7 Z)
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Also, we can associate a unit vector a, normal to the surface u; (x,y,2) =c (
constant) and in the direction on increasing u. In generalized curvilinear
coordinates system, the variables u,, u,, and u, are not measures of length directly
and hence each variable should be multiplied by a general function of u,, u,, and
u,, in order to determine sides of the parallelepiped as shown in fig. Therefore, we
define three new quantity h,, h,, and h, (function of u,, u,, and u3) are known as
scale factors. The scale factor h, gives the magnitude of elemental length ds when
we make infinitesimal change in coordinate u, from u, to ui+du, i.e., scale factor

relating elemental length of the sides of parallelepiped s to coordinate increments.

Hence the elemental length of the sides of differential volume (parallelepiped) can
be found as.
ds; = h;(u,,u,,u;)du, .(4)

ds, = h,du,

The infinitesimal volume element is therefore
dV =ds, ds, ds; =h,du, h,du, hydu, =h, h, h; du,du,du, ..(5)

The scale factors and variables for three coordinate systems (Cartesian, Cylindrical
and Spherical) are tabulated as

Table.1: variables, scale factors and unit vectors for three coordinate systems

S.No. Curvilinear Cartesian Cylindrical Spherical
X r r
ul
1 u, ¢ Variables Y ¢ 0
u, z z 0]
h 1 1 1
1
2 h, ¢ Scale Factors 1 f r
h 1 1 rsin6
3
: A 3 i
3 ¢, ¢ Unit Vector a a a
y ¢ 0
€, a a a
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From above results, differential volume element for three coordinate systems
(Cartesian, Cylindrical and Spherical) can be tabulated as follow:

Table.2. Differential volume element for different coordinate systems

Coordinate System Volume Element
Curvilinear h, h, h; du,du,du,
Cartesian dxdydz
Cylindrical rdrdedz
Spherical 1’ sin0dr do de

2.10 Differential Vector Operators

(1) Gradient. In curvilinear co-ordinates system grad f'is

1 of, 1 0, 1 Of,
gradeVfZ——al—i-— a,+——a
h, 8u1 h, 6u2 h, au3

3

The ‘gradf’ in Cartesian coordinates, we have h,=1,h,=1,h,=1,u,=x,u,=y,u,=z; so

we have

of of . Of

A~

grad f (cartesian) = —a_+ —a,t_—a,
Ox Oy 0z

Similarly, in cylindrical coordinates and spherical coordinates the gradf can be

written as follows;

o of . 10, Of
grad f (cylinderical) = —a_+ -~ a,t_a,
Or r 8(0 0z

d f (spherical) —i—1 & + Lo,
grad f (spherical) = —a_+— a a
Ou r 8u2 " rsind 0do ?

1

(2) Divergence. In orthogonal curvilinear co-ordinates system divA is

divA = i{@%l(Alhzm )+ %(Azhlm )+ ai(A3hlh2 )}

divA(cartesian) = |:§(AX ) + 3(Ay ) + g(‘A‘z ):|



divA(cylindrical) = %|:§(Arr) + %(A(p ) + %(A r):|

0

! . |:§(Arrzsin9) + %(Aer sine) + a_(A‘Pr):|

r’sin ()

divA(cylindrical) =

(3) Curl. In orthogonal curvilinear co-ordinates system curlA is

h

1

23 LR
0 0

curlA =

ha h
1

0
hhh, |Ou ~ Ou, Ou,
Ah  Ah, Aph,

1

(4) Laplacian. In orthogonal curvilinear co-ordinates system V’f is

) 1 O [ h,h, Of 0 [ hh, Of 0 | hh, Of
Vit = — — |[+— — |+ = =
h1h2h3 aul hl au1 auZ h2 aul au.“a h3 auS
Curl and Laplacian in Cartesian, cylindrical and spherical coordinate system can be
obtained by substitution of suitable parameters.

2.11 Self Learning Exercises-II

Very Short Type Questions

Q.1 What is the shape of constant surface corresponding polar angle in spherical

coordinate system?

Q.2 What is the shape of constant surface corresponding X-axis in Cartesian

coordinate system?

Q.3 What is the shape of constant surface corresponding to coordinate P in

cylindrical coordinate system?

Short Answer Type Questions

Q.4 Calculate the distance between two points P,(1,1,2) and P,(1,2,4) in the In

Cartesian coordinate system.

Q.5 Calculate the distance between two points P,(1,71/2,2) and P,(2, 3TU/2,4) in

the In cylindrical coordinate system.
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Q.6 Calculate the distance between two points P (2, TU/2, TU/4) and P,(4, 3T0/2,

TU/2) in the In spherical coordinate system.

2.12 Summary

® Coordinate system is used to define the position of an object in given space.

® There are mainly three types of coordinate systems.

® In Cartesian, cylindrical and spherical coordinates system a point P is identified

by intersection of three mutually perpendicular surfaces as follows:

Coordinate Systems

Cartesian Cylindrical Spherical
x = const. (Plane) P = const. (circle) r = const. (Sphere)
y = const. (Plane) (@ = const. (Plane) 0 = const. (Cone)
z = const. (Plane) z = const. (Plane) (p = const. (Plane)

® The distance between two points in a coordinate system can be expressed as

Coordinate systems

Cartesian d =\/(x2 —x) @, —y) @ —z)

Cylindrical g =.[p +p —2p,p,cos(@, —9,) +(z, =2’

Spherical d =\/r12 + r22 + 2r,r,cos0,cos0, — 2r,r,5in0 sin0,cos(P, — @)

®The transformation relationship between Cartesian and Cylindrical coordinates
system can be expressed as

Cartesian to Cylindrical ~ Cylindrical to Cartesian

X = pPcos p= X2+y2
y = psin@
7=z O= tan'l(zj
X
z=7z
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®The transformation relationship between Cartesian and Spherical coordinates

system can be expressed as
Cartesian to Spherical  Spherical to Cartesian
X = rsin0 cos r:m
y = rsin0sin@ [ , J
0 = cos | ———oo

z =rcosb [\ +y> +2

¢ = tan'l(lj
X

® Generalized curvilinear coordinate system is simply a general way to represents
all coordinate systems (Cartesian, Cylindrical and spherical etc) which may be

orthogonal and nonorthogonal.

®The scale factors, variables and unit vectors for three coordinate systems
(Cartesian, Cylindrical and Spherical) can be tabulated as table.1.

® Differential volume element for different coordinate systems can be expressed as

Coordinate System Volume Element
Curvilinear h, h, h; du,du,du,
Cartesian dxdydz
Cylindrical rdrdedz
Spherical 1’ sin0dr do de

® Gradient for different coordinate systems can be expressed as

Coordinate System Gradient
Orthogonal 1 of 1 of 1 of
g gadf =Vf=——4 +——4a +——14,
Curvilinear h, Ou, h, Ou, h, Ou,
of, of, of,
Cartesian gradf=—a +—a +_—a
X 8y Oz
. of ., 10f, Of,
Cylindrical gradf=—a +—-———a_+—_—a

Or raqo " 0z

Soherical i 8fA+18fA+ 1 of
erica gradt = a +-— a a
P Ou r 8u2 " tsin® odo !

1
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® Divergence for different coordinate systems can be expressed as

Coordinate Divergence
System
Orth 1 1 0 0 0
Ogona leA = _(A1h2h3)+ _(A2h1h3)+ _(A3hlh2)
Curvilinear hhh, | Oy, Ou, Ou,

Cartesian  divA = {%(AX )+ (%(Ay)+ %(A)}

Cylindrical ~ divA = %|:§(Arr) + %(A(p )+ %(Azr):|

Spherical divA =
r’sin0

|:§(Arrlsin0)+ (%(Aer sin0)+ %(A@r)}

®]n orthogonal curvilinear co-ordinates system curlA can be written as

a

=

a

=

~
lal 272 373

0 0 0
curl]A =—|— - -
hhh |[Ou  Ou, Ou
Ah Ah Ah

1

=

3

®1n orthogonal curvilinear co-ordinates system Laplacian vector V’f can be

written as
) 1 O (hh, Of O (hh Of O [hh Of
V f: 23 + 371 + 1772
hhh |Ou \ h Ou ) Ou,\ h, Ou ) Ou,\ h, Ou,

2.13 Glossary

Orthogonal coordinate system: When the surfaces intersect perpendicularly we
have an orthogonal coordinate system.

Curvilinear co-ordinates: The value of u,,u,,u; for the three surfaces intersecting

at P are called curvilinear co-ordinates or curvilinear surfaces

2.14 Answers to Self Learning Exercises

Answers to Self Learning Exercise -1
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Ans.1: (0,0,0) Ans.2: (0<¢@<2m)
Ans.3 : René Descartes Ans.4 : dv =dxdydz
Ans.5: dv=pdpd@dz Ans.6 : dv =r"sin0drd0dp

Answers to Self Learning Exercise -11

Ans.1 : Conical Ans.2 : Plane
Ans.3 : A circular cylinder Ans.4 : \/g units
Ans.5 : \/E units Ans.6 : 2+/5+ 2\/5 units

2.15 Exercises

Section-A (Very Short Answer Type Questions)

Q.1 In orthogonal curvilinear coordinate system three axes are .......... to each
other.

Q.2 Write the formula to determine the base vector for coordinates system?

Q.3 In which coordinate system uses two angles and one distance?

Q.4 In which coordinate system uses two distances and one angle?

Q.5 In which coordinate system uses only distance?

Section-B (Short Answer Type Questions)

Q.6 Compute the vector directed from (1,1,1) to (2,2,2) in Cartesian coordinates
system.

Q.7 Determine the value of VA at point (1,-1,1). IfA = Xy i- X2z3 + 7k

Q.8 Find the location of the point (1,2,3) in cylindrical coordinates system.

Q.9 Write the formula of the base vectors for a coordinate system.

Q.10 Find the location of the point (1,2,3) in spherical coordinates system.

Section C (Long Answer Type Questions)

Q.11 Determine the base vectors for the cylindrical coordinate system.

Q.12 Determine the base vectors for the spherical coordinate system.

Q.13 Derive the expressions for the distance between two points in the cylindrical

and spherical coordinate systems.

48



Q.14 Evaluate the transformation relationship between cylindrical to spherical

coordinate system.

—

Q.15 Transform the vector A =Xy 1-X°Zj+ zk from Cartesian coordinates to

cylindrical and spherical coordinate systems.

2.16 Answers to Exercise

Ans.1 : Mutually Perpendicular
Ans.2 : Plane

Ans.3: Spherical

Ans.4 : Cylindrical

Ans.5 : Cartesian

—

Ans.6: A=a +a +a

Ans.7: -1

Ans.8: r=+/5units, p=6343, z=3
Ans9: b = R i=123

ou

Ans.10 : r=+/14 units, 0 =0.99", ¢ =63'43'
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UNIT-3

Gauss’s theorem, Stokes’s theorem

Structure of the Unit
3.0 Objectives

3.1 Introduction

3.2 Line Integrals

3.3 Properties of the Line Integral

3.4 Application of the Line Integral

3.5 Surface Integral

3.6 Surface Integral for Flux

3.7 Volume Integral

3.8 Self Learning Exercise

3.9 Gauss Divergence Theorem

3.10 Applications of Gauss’s divergence theorem
3.11 Stoke’s Theorem

3.12 Summary

3.13 Glossary

3.14 Answers to Self Learning Exercise
3.15 Exercise

3.16 Answers to Exercise

References ad Suggested Readings

3.0 Objectives

After gone through this unit learner will able to solve any physical problem in
which vector integration is used. Learner can apply Gauss divergence theorem &

convert surface integral into volume integral.
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3.1 Introduction

In this unit integral calculus part of vector calculus is discussed. Vector line
integral, vector surface integral & volume integral are explained. Using of Gauss
divergence theorem & Stoke theorem with various examples are explained.

3.2 Line Integrals

Suppose a continuous vector function F (x, y,z) defined at each point of the
curve C

He)=f()i+g(t)j+h(t)k, a<t<b.
We partition the curve into a finite number of sub arcs. The typical sub arc has
length As, in each sub arc we choose we point (x;,y;,z; ) and from the sum

n

S, = Flxp.vi.zi) Asy (1
=1

The sum in (1) approaches a limit as » increases, and the length As, approach
zero. We call this limit the integral of F over the Curve C from a tob.

n
Jf(x,y,z)z lim Y F(xp, 5.2, ) Asy (2)
c N9 =1
NZ
t=b
AS- {’ Plmy=zs) b

=
X a

Let F(r) be a continuous vector function, then component of F(r) along the
tangent at P is

dr (- ar is unit tangent vector at P)

Flr)—
(r) ds ds
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and J[F(r)aWJ or i/(r).dr

C ds
is called the tangent line integral of F(r) along the curve C.
Let F(r)=Fi+Fj+Fk

F=xi+yj+zk

IF.dF = I(Ff+Fj+F;é).(dxf+dyj+dzl€)
C

C

='[(Fldx+dey+Edz):J[E@+de—y+}g%}dt
2 Wohhar a7 ar

dr
=\|F (r).—dt
JFe,

3.3 Properties of the Line Integral

Let F and G be two continuous vector point function and & is any constant,
then

Where direction of ¢, is opposite to curve C.

jﬁdfzjﬁdf+jﬁdf
C

G G

R

5. If the line integral depends only on the end points of the curve,
not on the path joining them then vector field is called conservative
vector field.

Let F=V¢ ; F isconservative field and ¢ is its scalar potential.

[ Far = [ Fdi = (g,

250225, 90 k| (axi +dyf + dck)
a\lox Oy 0z
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I (ﬁqﬁd +— +%dzj
oz

b
=['dp=[g}, =4(b)-4(a)
Thus, if the curve is closed, then the line integral of conservative vector field

F(r) is zero i.c. fF.dr =0

3.4 Application of the Line Integral

(a) Circulation: If F represent the velocity of a fluid and C is a closed curve,

then the integral §F dr 1s called circulation of F around the curve C i.e.
C

Circulation = §F dr
C

(b) Work done by a Force : If F represents the force acting on a particle
moving along an arc 4B, then the work done by the force F during the
displacement from 4 to B is

B
Work done = I ) F.dr
If F is a conservative vector field and ¢ is scalar potential of F', then

Work done = L]fF dr

= [*Vp.dr

— o(8)-4(4)
If curve is closed, then work done ifF dr=0.
Example 1 Find the total work done in moving a particle in a force field given by
F =3xyf—5yj+10xl€ along the curve x =12 +1, y:2t2, z=¢ from t=1tor=2

Sol. Total work done = [ F.dr = | (3xyf —5z/ + 10xl€) . (dxf +dyj + dzl%)
c c
Since x =12 +1, y:2z‘2 and z =1
dr = dxi +dyj + dzk

= 21dfi + 4tdi] + 3t dtk
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Now work done = [ [3(t2 1122 53] 4102 + 1)k] . [2tdti +dedy + 36 dtk
= [ 12632 +1)-200% +302(2 +1)] a
= P2 +104 127 +302) an

6 5 4 3P
~Plizts0. 124305 | =303 units.
e s e T

Example 2 If F = (2x +y° )f +(2y—4x); . Evaluate ffF .dr around a triangle ABC
C

in the xy-plane with A(0, 0), B(2, 0), C(2, 1) in counter clockwise direction. What
is its value in clockwise direction.

Sol. The curve C is union of three curves C;, C, and C;

§F.dr= _[F.dr+ _[F.dr+ _[F.dr
C q G, G

=1, +1,+1, (say)
Along C;: Straight line AB, y=0, z=0 and x varies from 0 to 2.

SLr=xi=>dr=dxi

I = IF.dr = I[(2x+y)i+(3y—4x)j] . (dxi)

G

2
= _[(2x+y2)dx = _[2xdx
0

:(lx2)§=4

c(2,1)

A(0,0) C, B(2.,0)
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Along C, : The straight line BC, x=2, z=0 and y varies from 0 to 1.

sr=2i+yj=>dr=dyj

Thus, I, = JF.drz J(3y—4x)j.dyj
G, G,

= } (3y—8)dy

Along C, : The straight line CA,  z=0, 2y = x and x varies from 2 to 0

.'.r=xi+£j+0k:>dr=dxi+ﬁj= z'+i dx
2 2 2

Thus, I; :JF.dr:J[(2x+y2)i+(3y—4x)j]. [i+%}dx
C C

= | {(2x+y2)+%(3y—4x)}dx

G

0
_[ 2x +—+3x—4—x dx
5 2

0
(¥ 3 8 12 13
12 8 12 8 6

The required integral in counter clockwise direction is

§F.dr =L+, +1;= 4_2_2 _—l4
C 2 6 3
The value of the integral in clockwise direction.

IFdr——IFdr :%

1

3.5 Surface Integral

Let R is the shadow region of a surface S defined by the equation
f (x v, )— C and g is a continuous function defined at the points of S, then the

integral of g over § is the integral
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”gxyzdS ﬂgxyz ||§]]:|| dA ...(3

Where P is a unit vector normal to R and Vf.P#0. The integral itself is called a
surface integral.

3.6 Surface Integral for Flux

Suppose that F is a continuous vector field defined over a two-sided
surface S and 7 is the unit normal field on the surface. The integral of F.n over
S 1is called the flux across S in the positive direction

Flux :HF.ﬁdS

S
_ I[ &J Vel
R Vel )[Ve.P
_ Vg
= Rj F.—|Vgip| dA .. (4

Example 3 : Find the flux of the vector field

A= (x - 2z)f + (x +3y+ z)j + (Sx + y)lé through the upper side of the triangle ABC

with vertices at the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1).

Sol. Equation of the plane containing the give triangle ABC is
fleyz)=x+y+z=1

Unit normal n to ABC is

VA i+ itk

_\Vf\ “At1+1 B

z

(i+j+k)

C(0,0,1)

B(0,1,0)

'A(1,0,0)
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. dA
7]

Flux OfA:JJA.ﬁdSZJ
s s

_ H [(x—z)i+(x+3y+z)j+(5x+y)k].(l'+j§+k).dxldy

AOB _
V3

1-x

](x—2z+x+3y+z+5x+y)dxdy
0

1
0
1-x

1
:_[ _[7x+4y 1 x—y)]dxdy
0 0

5 l=x
(8x ~1)y+ %} dx

Il
O'—-n—‘

Il
S —_— —
VownY
o)
=
|
[
=
[
|
=
A —
+
N | i
T
|
=
[\
L
=

Example 4 : Evaluate _U A.nds over the entire surface S of the region bounded by
s

the cylinder x% +z% =9, x=0, y=0, z=0 and y=8 where A= 6zi+ (2x + y)i —xk .
Sol. Here the entire surface S consist of 5 surfaces, namely. S : lateral surface of

the cylinder ABCD, S, : AOED, S;: OBCE, S, : OAB, S5 : CDE.
z

Enzm 0 6 3)
v
0 B 3)
r+z =1

/P@,n,m
i
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Thus, ”A.ﬁdS:”S o A s

=[[4.hdS+[ [4. idS+..+[[A4.idS+
S S5 Ss
=1 +1,+1;+1,+15 (say)
S; : ABCD : The curved surface S) is f = x? +z% =9 The unit outward normal to
Sy 1s
Vf  2xi+2zk  xi+zk
|Vf| ) \/4x2 +4z? B

A.ﬁ:[6zi+(2x+y)j—zk]k.( 3

n=

= l(6)cz —xz): %xz

and n.k=2=
3
. A dxdy
S| A.ndS = —Xxz
i{ yJ;0x£03 2/3
83 5x9x%x8
=5 [ xdxdy = =180
00

S, : AOED : The surface S, is xy-plane i.e. z=0. Unit outward normal to the

surface is n=—k
. ) ' . dxdy
ffaias=[flow s e ) -l () B

Y3

8 3
= I .[xdxdy

y=0x=0

3

2
X g 9

=—. =—x8=36

0
S; : OBCE : Surface S; is yz-plane i.e. x=0. Unit outward normal to S5 is n=—i.
dydz
|-

”A.ﬁdSz i ? [62i + (2x + y)j — xk].(~i)
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38 2 3
=[[-6zdydz =—6 [7J (y§ =-216

00 0

S4 : OAB : The section OAB is in xz-plane i.e. y=0. The unit outward normal to
S4 is n= —j .

349-x2
I A.ﬁdS:J I 6zz (2x+y)j— xk]( J)—
Sy 0 0

S5 : CDE : The section Sj i1s parallel to xz-plane, y=8. The outward normal to S;
isn=j.

349-x2
”A.ﬁdS:J I 6zz 2x+y)j—- xk]
Ss 0 0

dxdz
U )I ]

9

S —_— W O'—-.b)

Jo_x?
J 2x + 8 dxdz
0

(204 8)( N ax

2

(x+4) 9—x?dx

O —_— W
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!9 X ’ X 5 9  x
+4.=49-x" +4.= =
250 T S
0
=18(1+7)
Thus, the required surface integral is

jjA.ﬁdS=180+36—216—18+18+18n =187
S

3.7 Volume Integral

Let V be a region in space enclosed by a closed surface S. Let ¢ be a scalar

point function and F be a vector point function, then the triple integral

[[[¢av and [[[FaV

and called volume integrals.

Example 5 : Evaluate J J J fdV where f=2x+y, Vis the closed region bounded

by the cylinder z =4 —x? and the planes x=0, y=0, y=2 and z=0.

Z
N
y=2
z=0 -——_:::;7
4/
@ B(0,0.4)
7

/A2.0.0)
X

2 4— x
IHde J [ [@xy)dzddy
y=0x=0 z=0

2

2
= I I(2xz+ yz) dxdy
y=0x=0
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:T T{2(4—x2}f+y(4—x2)}dxdy

y=0x=0
2

= I (16—8+8y—§yjdy
y=0 3

P 2
|8y 80 16,32 80
32 ) 303

Example 6 : Evaluate the value of [ [[div FdV , where F =4xi —2j+z% and V
%

is the region bounded by x? +y2 =4;z=0and z=3.

Sol. First we take
. - (,0 ~0 -0 - A -
leF=VF=(Za+]5+k§j . (4xi—2y2j+22k)
Now [ [[divFav =[[[ (4—4y+2z)dxdyd:
4 R

=II[4Z—4yZ+22dedy

= [ [[12(1-y)+9]dxay

(Taking parametric equation of the curve x>+ y> +4 ie., x=rcos, y=rsind
= dxdy = rd@dr)

= [[(21-12rsin6)rdr d6
R

2w 2

= Jpeo) o (21=12r5in0)rdrd6

2
2
:J§”|:2l£—4r3sin0:| do
0

= 1" (42-325in0)do0

= (420 +32cos O )"
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=84r +32-32-84r
=0

3.8 Self Learning Exercise

Q.1 Work done by a particle in a force field F on moving particle from point A
to point B is given by..

Q.2 Write the unit normal vector to surface x>+ y2+z2 =a® at point

)

Section — B (Short Answer type Question)

Q.3 Find the circulation of F= z_y 25 + 2x 2}' round the circle
X +y xX“+y

x*+»? =1 in xy plane.

Q.4 Evaluate [[ F.idS where F= (x2 +y° }f —2xj+2yzk &S is surface of plane
s

2x+y+2z =6 in first octant.

Section — C (Long Answer type Question)

W

Q. Evaluate I”diVF"dV where ﬁ:(yzzzf+zzx2j'+zzyzl€) & V is volume
4

bounded by sphere X2+ y2 +2z% =1 above xy -plane.

Q.6 Evaluate I f Curl Fds where F =xyi —2yzj'—le€ & S is open surface of
s

rectangle parallel piped formed by planes x=0, x=1, y=0, y=2 &
z =23 above xy-plane.

3.9 Gauss Divergence Theorem

The Gauss divergence theorem transforms double (surface) integral into
volume Integral with the help of divergence of a vector point function. Gauss’s
divergence theorem is also known as Ostogradsky’s theorem.

Statement : If F be a continuously differential vector point function and S is a

closed, smooth and orientable surface enclosing a region V', then
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j FidS = j divF.dV = j (V.F)dr
S S V

-

or ” F fidxdy = ”_[ div F dxdydz
V

N

where n is the unit outward drawn normal vector on the surface S .

3.10 Applications of Gauss’s divergence theorem

The divergence theorem finds applications in evaluating the integrals of dot

and cross products of vector fields and scalar fields.

(A)

(B)

©

(D)

Product of a scalar function g(x, y,z) and a vector field F (x, y,z)

The surface integral, with respect to a surface S, of the scalar product gF
is evaluated by using the following result:

fgF.ids = [[[|F.(Ve)+ g (V.F)lar

Cross product of two vector fields F xG :

The surface integral, with respect to a surface S, of the cross product F x G
is evaluated by using the following result :

f;;(ﬁxé).ds:jy[é.(vxﬁ)_ﬁ.(vx@)dv

Product of scalar function f (x, y,z) and a non zero constant vector

Following result exists for the evaluation of surface integral of product of a

scalar function, f, and a non zero constant vector.
ff fas = [[[vrav
N 4
Cross product of a vector field F and a non-zero constant vector

Application of divergence theorem to the cross product of a vector field F

and a non-zero constant vector, gives following result:

ffdSx F = [[[(Vx F)av
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Example 7 : Evaluate the surface integral [[ F jids , where

N

ﬁ=(x2+y2+zz)(f+j+l€), S is the tetrahedron x=0, y=0, z=0, x+y+z=2

and 7 is the unit outward drawn normal to the closed surface S .

Sol. It is convenient to use Gauss’s theorem for the evaluation of the integral.

By Gauss’s theorem

N

z

(0,2,0)

A(2,0,0)

[[ div F.av
V

[[ Fds = [

A

Here ﬁ:(x2+y2+22)(z +j+l€)

divﬁzzai(x2+y2+zz) =2x+2y+2z
x

N

[[ Fds = [[[2(x+ y+2)av

2 2-x2-x-y
:J' I I2(x+y+z)dxdydz

0 0

0

2-x[ 22 xY
J (x+y)z+z—:| dx dy
0 2

0

(x+y) (2—x—y)+%(2—x—y)2} dxdy
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Example 8 : Verify divergence theorem for F = (x2 — yz)f + (y2 — zx)j' + (22 — xy)l:t
taken over the rectangular parallelepiped 0<x<a, 0<y<b, 0<z<c.

Sol.

x“A
For verification of divergence theorem, we shall evaluate the volume and

surface integrals separately and show that they are equal

Now, div F =%(x2 —yz)+%(y2 —zx)+£(22 —xy): 2(x+y+z2)

IIIVdivﬁdV zjgjé)jg2(x+y+z)dxdydz

2 a
= I;Ié) 2 l:(x? +yx+ zxﬂ dydz

0

b
2 2 2
c b a c a a
=.[o.[0 2{7+ya+zadedz=jo 2|I7y+%+azyﬂ dz
0

2 2 2 2 27¢
-2 (¢ ﬂJrﬂJrabz dz=2 ﬂerﬂerabZ—
01 2 2 2 2 2 0

:azbc+abzc+abcz:abc(a+b+c) .. (1)

To evaluate the surface integrals, divide the closed surface S of the rectangular

parallelepiped into 6 parts.
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S; : the face OAC'B, S, : the face OBA'C, S : the face AC'PB’, S, : the
face AC'PB', S5 : the face OCB'A, S : the face BA'PC’

Also

jjs FAdS = jjs FAdS + jjs FAdS + jjs F.hdS
+ js FAadS + jjs FAdS +j _ F.ads

On 8;(z=0), we have 7= —k, F=x% +32 ] —xvk

So that F.h= (xzf +y2j— xylg). (— lg): Xy

a

= b ra b 2 2 b
”SF.ndS zjojoxydxdyzjo l:y%}dyz%joydyz 2

On S,(z=c), we have 7 =k, F= (x2 —cy)f+(y2 —cy)j'+(cz —xy)l;
So that F.h= [(x2 —cy)f + (y2 —cy)j' + (c2 —xy)l;].l; =c?—xy

~ , 2 2,2
IJSZ F.ndS zjgjo(cz —xy)dxdyzj‘é) l:cza—%y}dyzabcz - a4b

On S;(x=0), wehave ii=—i, F =—yzi +y* j+ 2%k
So that ﬁ.fz=(—yzf+y2}+zzl€).(—f):yz

. b b2 b2 2
J[, Fids =[[ yzdva: =j0672dz = 4c

On S,(x=a), wehave i=i, F :(a2 —yz)f+(y2 —aZ)j+(ZZ —ay)lg

So that F.n= [(az —yz)f+(y2 —czz)j'wt(z2 —ay)l;] i=a’—yz

- c c b? b*c?
IJS4 F.ndSzJ‘OJ‘é)(a2 —yz)ddeZ_[O[azb—TszZZ a’be— 46

On SS()’ZO), we have ﬁ=—j, F=xzf—zxj+zzl€

So that F.h= (xzf —zx) + zzlg) : (—}): zx

2.2
ac

4

On S¢(y=b), we have 7= j, ﬁ:(xz—bz)f+(b2 —zx)]+(22 —bx)l;

2
FadS = [ oxdzdx =" xdx =
s = [(J; v = [
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So that F.n= [(x2 —bz)f + (b2 —zx)j' + (22 —bx)lg] J=b*—zx
Il Fds = J{[:p? - 2x)az

2 2.2
zjc brc—"x|dx=ab’c-LE
0 7 4

2,2 2,2 22 22 22 22
=, ab b bc b a‘c a‘c
_[SF.ndSz +abc? + 2 + 2

+ab“c—

.. (2)
The equality of (1) and (2) verifies divergence theorem.
Example 9 : Verify divergence theorem for F =4xi -2 y2j+zzl€ taken over the

region bounded by the cylinder x> + y? =4, z=0, z=3.

. . = 0 0 2), 0 (.2
Sol. Since div F=—4x)+—\-2y" +—I\z7 |=4-4y+ 2z
6x( ) 6y( y) 62( ) 4
Zz
E(—a,b) z=3 y=b
C
N ,
o y

[[[, divFav =[], (4—4y+2z)dxdydz
- j j4 4y +2z)dz dy dx
—j j [42 4y+z Edydx
- Jm12—12y+9)dydx:fzu%zldydx

[since 12y is an old function .. fa12y dy=0]
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=7 42V4—x? dx=84[ V4% dx

2

_ 2
g4 VAT Ao X _gafosin ]
2 2
L 0
=84 2><ﬂ=84n (1)

To evaluate the surface integral divide the closed surface S of the cylinder into 3

parts.
S; : the circular base in the plane z=0
S, : the circular top in the plane z =3
S5 : the curved surface of the cylinder, given by the equation x>+ y2 =4

Also [[F.rds = [[ FidS+[[g FoidS+ [ F.ndS

On S;(z=0), we have R=—k, F =4xi —2y?%]

)=0

A

Fii=(axi-297}) (&

[[5, FiidS =0

So that

On S,(z=3), we have A=k, F=4xi—2y%]+9%
Fii=(axi 292 + 9k ) =9
[[g, F-ids = [[g 9dxdy=9 [[g ddy

So that

=9x area of surface S, =9 (7[.22 ): 367

On 85, X +y?=4

A vector normal to the surface Sy is given by V (x2 +y° —4): 2xi +2y)
n = aunit vector normal to surface S

B 2xf+2yj' B 2xf+2yj'

) \/4)c2 +4y2  4x4

_xi+y)
2

[since x? +y2 =4]

2
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. i i ) N
F.n =(4xi —2y2j+22k).(¥J =2x? —y3

Also, on Sj3, 1.e., x2+y2 =4, x=2cos0, y=sin6 and dS =2d0dz .

To cover the whole surface S5, z varies from 0 to 3 and € varies from 0 to 27 .
= 27 3 .
J.J.SSF.ndS = Io I0[2(2cos9)2 —(2sm9)3]2dzd9
= .[02”16(cos2 0 —sin’ 0)>< 3d6
27 2 .3
= 48.[0 (cos 0 —sin 0)= d0 =48
(since J-()Zﬂcos2 0do = _[(;r/zcosz do = 4x%x% = n,j()z”sin3 0d0 = OJ

[ F.idS = 0+367 + 487 =84x

The equality of (1) and (2) verifies divergence theorem.
3.11 Stoke’s Theorem

The Stoke’s theorem transforms line integral into surface integral with the
help of curl of a vector point function. Stoke’s theorem is the vector form of
Green’s theorem or generalized Green’s theorem.

Statement : If S is the open surface bounded by a closed curve Cand

F=fii+fj+f k is any continuously differentiable vector function, then

-

jﬁ.df - jcurzﬁ.ﬁds =j(v x F).ids
C S

Where 7 is the unit outward normal drawn to the surfaces.

Example 10 : Evaluate [f (Vx Z).ﬁds over the surface of intersection of cylinders
s

2 2

b +y2:a2

, X’ +z°=a
A =2yzf—(x—3y—2)j'+(x2 +z)l€.
Sol. By Stoke’s theorem

, which is included in the first octant given that
[[(VxA)ids=[A.dF
S C
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Here C is the curve consisting of four arcs namely C,: 4B, C, : BP, C; :

C4 : DA . Thus, we evaluate RHS of (1), along these four arcs one by one.

Along C; :  z=0, x2+y2 :azy varies from 0 to a.

IZ.d? = _[[Zyzdx—(x+3y—2)dy+(x2 +z)dzJ
G G

Along G, @ x=0, y=a; dx=0; dy=0 and z varies from 0 to a

Along C; @ x=0,z=a; dx=0; dz=0 and y varies from a to 0
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Along Cy :  y=0, x> +z>=4a?, z varies from a to 0

- 0 0
_[A.df =J(x2 +z)dz =J(a2 —z? +z)dz
Cy a a
2\0 3 2
3 2 3 2
a
Thus, the desired integral is sum of (2), (3), (4), (5)
2 2 2 2 32
ie. ”(VxA).ﬁds=—ﬂ—3i+2a+a—+3i—2a—2i—a—
S 4 2 2 2 3 2
2 3 2
=—ﬂ—ziz—a—(37r+8a) Ans.
4 3 12

Example 11 : Verify Stoke’s theorem for F = (x2 +y —5)1' +3xyj + (2xz+ 23)k over
the surface of the hemisphere X2+ y2 +2% =16 above the xy -plane.
Sol. Here S is the surface x>+ y°+z>=16 and C is the boundary of the
hemispherical surface and is given by C : X2+ y2 =16.

. x=4cost, y=4sint, z=0, 0<¢t <27

= r=4costi+4sintj+0k

dr=(-4sinti+4costj)dt
and F:(16cos2t+4sint—4)i+485int.costj

Z A

(0,0,3)

Stoke’s theorem is
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dA

iF.dr=ﬁR(VxF).ﬁm

Where R is the region in xy -plane bounded by curve C
L.H.S. of Stoke’s theorem

:§F.dr
C

2m
= I[(— 64 sint cos> t +16sin* t —16sin t)+192 sint cos® t]dt
0

2r
= _[ {12800s2 tsint —
0

2r
3
=|:ﬂ28?’cos—t)—8t+4sin2t—l6cost} =-l6r

0
i j k
o o 0
Ox oy 0z
x2+y—4 3xy 2xz+72°
=i(0-0)—j(2z-0)+k(3y-1)
=27/ +(3y-1)k
ng: 2xi+2yj+2zk :(xi+yj+zk)
|V¢| \/4)62+4yz+4z2 4

M+l6sint}dt

n=

:%[—2y2+(3y—1)z]

yvz—z 3
= =2 (v=-1
=30

R.H.S. of Stokes theorem = [[(Vx F).i ddy
R

|n.k|

dxd
= f%(y—l)- e
R

z/4
_[ (y—1)dydx

—_—
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4
= [-2416-x"dx
-4
4
=-2 E\/16—)62 +Esin_1£
2 2 4)_4

:]6(24_2}
2 2

=-167 = L.H.S. Hence verified.

Example 12 If F= (y2 +22 4 x° )i + (22 +x7 —yz)j + (x2 +5? —Zz)k Evaluate

JJS(VXF).ﬁdS taken over the surface S = x> +y* —2ax+az=0, z=0

Sol. The given surface S :x2+y2 —2ax+az=0 is bounded by the curve C :
x2+y2—2ax:0, z=0.
or (x—a)2+y2:a2, z=0
or x=a+acost, y=asint, z=0
.‘.r:a(l+cost)i+asin(j
= dr =(—asintj+acostj)dt

and

F= laz sin’ t+a2(l+cos t)3 Ji+(a2 (l+cost)2 —a” sin® t)j+2a2 (1+cost)k
By Stokes theorem

JJS(VXF).nds :ifF.dr

2m
= _[[az {sinz t+ (l +cos t)2 }(— asint+a* {(l +cos t)2 — sin* t}(a cost)]dt
0

=a’ _[ _—2sint(l+cost)2 +2(1—sin2 t+cost)cost]dt
0

27 . 2r
=2a° _[—[sint+smzztjdt+ _[ [cost+(l++0”)—2sin2tcostjdt:l
0

L O
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21 . 21
=2a3|:_[ —[sint+smzztjdt+ _[ [cost+(l++0st)—2sin2tcostjdt:l
0

2w

2r . .3
=2a2[cost+COS2tJ + 2a35int+a3[z‘+&2t}—2a3 sin” 1
4 )y 2 3 0

—27ma’

Example 13 : Use Stoke’s theorem to evaluate j c F.d 7 where

F =(sinx—y)i —cosx j and C is the boundary of the triangle whose vertices are
(0,0), (z/2,0) and (z/2, 1).
Sol. Evaluating §C17“ .dF by using Stoke’s theorem means expressing the line
integral in terms of its equivalent surface integral and then evaluating the surface
integral.

By Stoke’s theorem §C17“.d17:”Scrulﬁ.d§, where § is any open two-
sided surface bounded by C.

4

To simplify the work, we shall choose S as the plane surface R in the XY -plane
bounded by C.

§C ﬁ.F:”Scurelﬁ.lédxdy [ for the XOY -plane , =k and dS =dxdy]

For this problem,
i ok
Curl F = 9 R :(Sznx+l)l€
0x oy Oz
(sinx—y0) —cosx 0

.. The given line integral



= ”R (l + sin x)dx dy

/2
/2

Il
O —_— —

1
_[:;/22(1+sin x)dxdy = _[[x—cos x]
0

Il
S —

T 2 cos dy
2 2 2

3.12 Summary

In this unit line integral in vector calculus is discussed. After that volume
& surface integral are discussed. Conversion of line integral into surface integral &
surface integral into volume integral is explained. Use of Gauss divergence
theorem & Stokes theorem is discussed by using various examples.

3.13 Glossary

Vector : A physical quantity having both magnitude & directions.
Line Integral : An integral calculated along a curve.

Surface Integral : An integral calculated on the surface of any curve.

3.14 Answer to Self Learning Exercise

B - 1 ~ 1 -
Ans.1: F.dr Ans.2: —i+—7j
Ji R
Ans.3: 2x Ans4: - 37
Ans.5: z Ans.6: -1
12

3.15 Exercise

Section — A (Very Short Answer Type Question)
Q.1  State Gauss divergence theorem.

Q.2  State Stoke’s theorem.
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Q.3 Write value of ] (V xF ).d§ in line integral.
s

Q.4 Write value of line integral of F =2xi +x2j along x-axis from x=1 to
x=2.
Q.5 If C is closed curve then write value of §>C F.d7 where F is conservative
field.
Section — B (Short Answer type Question)

Q.6 Find the work done in the force field F = e’ (f +xj‘+2xl€) in moving the
particle from (O, 0, O) to (2, 2, 1).

Q.7 Evaluate _[ c (xydx +xy2dy) where C is boundary of square in xy -plane with
vertices (1, 0), (-1, 0), (0,1), (0, —1) using Stoke’s theorem.
Q.8 Evaluate j c FdF where F=—yi+x; & C is boundary of ellipse

[\
[\

X
2

Q

Q.9 Evaluate j SF .AdS where F =4xi —2y2j'+zzl€ & § is region bounded by
x>+y? =4 &plane z=0 to z=3.

2

Q.10 Evaluate IISF.ﬁdS where F =— & S is surface x* +y2 +z2 =42,

F
3
r
Section — C (Long Answer type Question)

Q.11 Verify Gauss divergence theorem for F = 4xzi — yzj' + yzlg over the surface of

cube bounded by n=0, y=0, z=0, x=1, y=1, z=1.

Q.12 Verify Gauss divergence theorem for F = (2x2 —SZ)f —2xy) — 4xk over the
region bounded by co-ordinate planes & 2x+2y+z=4.

2

Q.13 Verify Gauss divergence theorem for F =x*i + y2j+zzl€ over the surface

2 .2 2
of ellipsoid 5 + 25 +°5 =1.
a” b
Q.14 Verify Stoke’s theorem for vector point function F =x% + yxj round the
square in plane z=0 whose sides are along straight lines x=y=0 &

X=y=a.
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Q.15 Verify Stoke’s theorem for F = yi +(x—2xz)]‘—xyl€ over the surface of

2

sphere X2+ y2 +2% =4? above xy -plane.

3.16 Answers to Exercise

Ans.3: Icﬁ.dF Ans4: 3

Ans.5: O Ans.6 : 2¢*
4

Ans.7 : 5 Ans.8: O

Ans.9: 84r Ans.10: 4r
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UNIT-4

Tensor Analysis

Structure of the unit

4.0 Objectives

4.1 Introduction

4.2 N-dimensional space

4.3 Contravariant and covariant vectors
4.4 Self learning exercise-I

4.5 Algebraic operations with tensors
4.6 Contraction

4.7 Direct product

4.8 Quotient rule

4.9 Symmetric and anti-symmetric tensor
4.10 Pseudo-tensor

4.11 Self learning exercise-I1

4.12 Summary

4.13 Glossary

4.14 Answers of self learning exercises
4.15 Exercise

4.16 Answers to Exercise

References and Suggested Readings.

4.0 Objectives

In this unit we are going to discuss about tensors and its properties.

After going through this unit you will be able to learn
» N-dimensional space

> Contravariant and covariant vectors
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» Algebraic operations with tensors

» Contraction ,Direct product, Quotient rule

> Symmetric and anti-symmetric tensor, Pseudo-tensor

4.1 Introduction

The fundamental postulate of Physics is that the laws of nature are
covariant. The meaning of covariant is that they have the same form in all

reference frames. Tensor formulation is a mathematical tool in which all the

physical laws can be formulated in a covariant way.

The tensor formulation was originally given by G. Ricci and it became
popular when Albert Einstein used it as a natural tool for the description of his
general theory of relativity. It has became an important mathematical tool in almost
every branch of theoretical physics such as Mechanics, Electrodynamics,
Elasticity, Fluid mechanics etc. Tensor analysis is the generalization of vector

calculus.

4.2 N-dimensional space

In three dimensional space (Cartesian system), the coordinates of a point
are given by (X, y, z) where X, y, z are numbers. For the generalization of concept

of space, from three dimensions to N-dimensions this representation is not suitable.

An ordered set of N real variables X 1, X 2, e xN

in space and will be called the coordinates of the point. All the points

can be associated with a point

corresponding to all of the coordinates are said to form an N-dimensional space,
denoted byVy.

Transformation of Coordinates:-

The process of obtaining one set of numbers from the other is known as
coordinate transformation. Consider two different N-dimensional spaces. Let us

consider two sets of variables (xl,xz, XN) and (x’l,x’z, .X’N). A
transformation from (x 1,x 2, e X N) to the new set of variables
(x’l, x’z, e s X’N) through the equations

x't = fixt, x?, ... xN) (1D
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. . . i. .
gives a transformation of coordinates. Here f* is assumed to be single valued real
function of the coordinates and possess continuous partial derivatives. This ensures

the existence of inverse transformation and is given as

xt=gt(x't,x"2, ... x"N) (2)
The suffixes or indices i, j in A]l: are called superscript and subscript respectively.
Concepts of Scalar, Vector and Tensor: -

Scalar: A physical quantity that can be completely described by a real number.
Example:- Temperature, mass, density, potential etc. The expression of its
component is independent of the choice of the coordinate system.

Vector: A physical quantity that has both direction and length. Example:-
Displacement, velocity, force, heat flow etc. The expression of its component is
dependent of the choice of the coordinate system.

Tensor: A tensor defines an operation that transforms a vector to another vector. A

tensor contains the information about the directions and the magnitudes in those

directions.

4.3 Contravariant and Covariant Vectors

Contravariant vectors:-

A set of N functions A'(i = 1...N) of the N coordinates x*(i = 1...N) are
said to be components of a contravariant vector if they transform according to the

equation

ri ax’[ j
A :@AJ (3)

on change of the coordinates X Lo x'.
Covariant vectors:-
A set of N functions A;(i = 1...N) of the N coordinates x*(i = 1...N) are

said to be components of a covariant vector if they transform according to the

equation

4 (4)
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on change of the coordinates X" to X T
Only in Cartesian coordinate
ax't  dx’
9x)  ox" - (3)

So that there is no difference between covariant and contravariant

transformations in Cartesian coordinates. In other coordinate systems, eqn. (5) in
general doesn’t apply and there is difference between covariant and contravariant
transformations in other coordinate systems. This is important in the curved
Riemannian space of general relativity.

Definitions of tensors of rank 2:-

The rank goes as the number of partial derivatives in the definition:

0 for scalar, 1 for vector, 2 for a second rank tensor and so on.

A covariant tensor A; j of rank two is transformed as

ox* ox'!
A = 4 |
y Z ox" ox' M (6)

ki

A contravariant tensor AY of rank two is transformed as

ri rj
A7 = OO g (7)
T Ox" Ox

A mixed tensor is contravariant in some indices and covariant in the others. A

mixed tensor A]l- of rank two is transformed as

ri i
A,i _ ox" Ox Ak (8)

j k rj 1
T Ox" Ox

The components of a vector transform according to eqns. (6), (7), (8) yield entities
that are independent of the choice of reference frame. That’s why tensor analysis is
important in physics.

Example 4.1 A covariant tensor has components xy ,2y — z 2 xz in rectangular
co-ordinates. Find its covariant components in spherical co-ordinates.

Sol. LetA ;j denote the covariant component in rectangular co-ordinates
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Then Ay = xy = x1x?
A, =2y — z% = 2x?% — (x3)?
Az = xz = x1x3

Let A;c denote the covariant component in spherical co-ordinates

xt=rx%=0,x"3= .
dxJ
Then Ay = K",,(Aj (1)

In spherical coordinates

x =rsinfcos @

or x'=x"Tsinx'?cosx"

y =1rsinf sin @

or x%=x"tsinx"?sinx"

Z=1rcosf

or x3=x""cosx’?

Therefore equation (1) yields the covariant component.

, ox! dx? dx3
A= gyt gzt s
= (sinx"? cosx"®)(x*x?) + (sinx'? sinx"3) (2x% — (x3)?)
+ cosx'?(x1x3)
= (sin @ cos @) (1% sin? 8 sin ¢ cos @)
+ (sin @ sin ¢)(2r sin O sin ¢ — r? cos? )
+ (cos 8)(r? sin 8 cos 6 cos @)
ox! dx? dx3

dx'? Ay + dx'? Az + dx'? A3

= (r cos 8 cos @) (r? sin? @ sin ¢ cos @) + (r cos 8 sin @) (27 sin 8 sin ¢
—12¢c0s?60) + (—rsin 8)(r? sin  cos 6 cos @)
dx?! dx? dx3
dx'3 Art dx'3 A2+ dx'3 As
= (—7 sin @ sin ¢)(r? sin? O sin ¢ cos @)
+ (rsin 8 cos @) (2r sin @ sin ¢ — r% cos? §) + 0.

AIZ ==

A,3 ==
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4.4 Self Learning Exercise-I

Q.1 What is the rank of tensor A{'(j ?
Q.2 Write the transformation of covariant tensor B; j?

Q.3 Write one example of a mixed tensor of rank 3.

4.5 Algebraic Operations with Tensors

Kronecker Delta: -

The Kronecker delta is defined as

o ]’ =1 Ifi = j
o ]’ =0 Ifi1#]
So by definition of Kronecker delta we can write
6l=62=¢3=.=6N=1
The coordinates xl, xz, vy X N are independent so Kronecker delta can also be
written as
ox’ »
s
axj J

Similarly we can write
dx't .
R
dx'J J
Addition and Subtraction of Tensors:-

The sum of two or more tensors of the same rank and type (i.e. same number of
contra-variant and same numbers of covariant indices) is also a tensor of the same

rank and type. Thus the sum of two tensors
i gl i
C; = Aj+ B

1s also a tensor.
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We can also subtract two tensors provided they are of the same rank and type. The
difference of two tensors of same rank and type is another tensor of the same rank
and type.

i _ i _ pi
(j = 4= B
Theorem: - The sum or difference of two tensors of the same rank and type is

again a tensor of the same rank and type.
Proof: - Let A]i- and Bji are two tensors in coordinate system X' and having the

following transformation relations in the coordinate system X "t

I Bx’f’ dx/ 1)
q J 0xt dx'q
g = i 2 o’ (2)
q J 0xt dx'd
From (1) and (2) we get
P )
(AP + B/P) = (AL+BY) ?;;i ;;,q

Which shows that (A + B) follows the same law of transformation as in A and B.

Hence (A  B) is also a tensor of the same rank and type.

4.6 Contraction

If in a tensor we put one contra-variant and one covariant indices equal
(i.e. same) then the summation over equal indices is to be taken according to the

summation convention. The process is called contraction of a tensor.

ij

pqr and is a tensor

of rank five. If we putj = I, we get A
ij

pqr-

Theorem :- If in a mixed tensor, contra variant of rank p and covariant of rank q,

. ij
Consider a tensor A,

of rank 3 obtained by contracting A

we equate a covariant and contra variant index and sum with regard to that index
then the resulting set of N P+4=2 gums is mixed tensor, contra variant of rank (p-1)
and covariant of rank (g-1).

ij

1mn ©f rank five, contra variant of rank two and

Proof: Consider a mixed tensor A

covariant of rank three.
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/i) dx'tdx"7 ax¥* dx¥ ax”
Al = ast
imn YW 9xS dxt dx't dx'™ dx'm
Letj = n, we get
p dx'"dx'™ dxt* 9x¥ AxVW
A m — st
imn YW 9xS gxt dx't dx'™ dx'm
_ gt dx't dx® dx¥ [dxW ax'™
TUYW 5xs Ax'L dx'™m \ x' dxt
o dx't 9x* dx? axVW
YW 9xs dx't dx'™ dxt
dx't dx% dxV?
st w
UW gxs dx'tgx'm ¢
. dx't dx% dxV
w
UW axk ax't gx'™m
. dx't dx% dxV
YWoxkox'tox'™m

In this last expression we have put A,’j‘ﬁ'w = A,’i‘v. This is the law of transformation

of a tensor of rank three.

Thus A;;:lln = A;;n is a tensor of rank 3 contra variant of rank 2-1 ie. 1 and
covariant of rank 3-1 i.e. 2.

4.7 Direct Product

Let A; is a covariant vector (first rank tensor) and B J is a contra-variant vector
(first rank tensor) then component of A; and B J may be multiplied component by

component to give the general term AiBj :

k rj
A.széx. kaszl
! ox" ox
ox* ox'! ;
= axri axl (AkB )

Contracting, we get

A{B"" = AB*
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The operation of adjoining two vectors A; and B J is known as the direct product
of tensors. The product of two vectors is a tensor of rank two. In general, the direct
product of two tensors is a tensor whose rank is the sum of the ranks of the given

tensors.
inkl _ ikl
A jB = C i
Where C Lkl 1s a tensor of fourth rank. The direct product is a technique for creatin
j p q g
new higher-rank tensors.

The word “tensor product” refers to a way of constructing a big vector space out of
two (or more) smaller vector spaces. If a vector V is n-dimensional and a vector is

m-dimensional then the product of these two vector spaces is nm-dimensional.

In Quantum mechanics, for each dynamical degree of freedom we associate a
Hilbert space. For example, a free particle in has three dynamical degrees of

freedom Py, Py, Pz in three dimensional system. Note that we can specify only

Dy or x, but not both and hence each dimension gives only one degree of freedom
but in classical mechanics you have two

Example 4.2 Prove that A;B® is invariant if A; is covariant tensor and B? is
contravariant tensor.

Sol. By the law of transformation of tensors we have

Then we can get

k i
A B =B X
! ox" Ox

Ik
= A B'S,
k pl
=4, (5/B")
A B"=4B"=AB

Hence A; B! is an invariant.
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Theorem: - The product of two tensors is a tensor of whose rank (or order) is the

sum of the ranks of the two tensors.

Proof: Consider two tensors A;{] and Bg . Let the product of these two tensors be a

tensor C ,f,_]qp, that is
jp _ 2lipp

Now we have to show that C ,f,_]qp is a tensor of rank 5. We know that

;j 0x™ax"™ dxk

AWV = A n - 2

w k 9xt oxJ dx'v @)
- dx'" dx1

BS - Bq dxP dx'S (3)

Multiplying equation (2) and (3), we get
i 0x™ax'” 9x* 9x'" 9x1
AWRT = A ]Bp _ _
WS k74 9xt 0xJ dx' 9xP 0x'S

Using (1)
ijp 0x"™ dx' dx* 9x'" 9x1
— ka gxt 9xJ 9x'W dxP dx'S
We may write above equation as
iip x4 9x" 0x* 9x'" 9x1
Clwr — Jp _ _ (4)
ws ka 9xt dxJ 0x'W 9xP 9x'S
Relation (4) is the law of transformation of a mixed tensor of rank five. Hence

P is a mixed tensor of rank 5.
Cy q
Hence the theorem is proved.

Example 4.3 If A"and B are compononents of a contravariant and covariant

tensor of rank one, the prove that
C’ = A"B are the components of a mixed tensor of rank two.

Sol. Using tensor transformation

_ox*
ox“

A* A”

87



ox’

B = B

v axru B

1y B
ThusC* = 4B =& 4« & g
v v axa axru yij
u B

_ ox'" Ox 4

ox* ox' P
N o't o’

v axa a xru yij
Hence above equation is transformation equation for a mixed tensor of rank two.

4.8 Quotient rule

By this law we can test whether a given quantity is a tensor or not. Suppose
we are given a quantity X and we don’t know whether X is a tensor or not. To test
X, we take product of X with an arbitrary tensor, if this product is tensor then X is
also a tensor. This is called Quotient law. The Quotient law is a simple indirect test
which can be used to ascertain whether a set of quantities form the components of
a tensor.

Theorem: - If the product of a set of quantities AY¥with an arbitrary tensor Biz;

yield a non-zero tensor CP¥ then the quantities AY* are the components of a

tensor.

Proof: We consider an arbitrary co-ordinate transformation x* — x'*, from this

' . Ny ,
transformation A% — AUk, Biz; - Bi]p, CPk — (C'Pk,

Consider the product
k _ pijkpP
CcP* = AY Bij (D
In transformed coordinates X 'i, equation (1) becomes
— A'ijkR'P
C'P* = A'VEB;; (2)
But we have
. dx'P dx'*
Cc'Pe = CT" 3
dx4q dx" (3)
p , 0x'Pax™ ox™
Bij = Bun dxt 0x't 0x'J )
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Substituting equation (3) and (4) into (2), we get

o dx'P 9x'* ik ol dx'P 9x™ 9x™
oxd dx” AT B dx' dx't 9x'J
o 9x'Pax'k 3 dx'P 9x™ 9x™
Al]kB_CI_ — All]k Bl _ _
U gxq 9x" M gxt dx't dx'J

By changing dummy indices ¢ = ;i = m and j = n, we get
dx'P dx'* . Ox'P 9x™ dx™
Amanl — A'ljk pl _ i
™ gxt 9xT ™ gxl 9x't 9x'J
dx'P i 0™ axt ax" ]
o5l —A —| By, =0 (5)

ox't dx'J ox"

We know that
xS [ax'p . ]_ xS
ox'P dx!

Wan B‘rlnn = Bmn (6)

S
ox'p
[A,l.jk dx™ dx™ dx'k

_mnr s _
ox't dx'J A axr]an =0 (7)

Multiplying equation (5) by and substituting equation (6), one gets

Since equation is valid for arbitrary By,,,, therefore the quantity under bracket is

Zero 1.e.
o 0x™ Ox™ dx'k
Uk i — mnr
ox't dx'J oxT
ax'S ax't
dx™m gxn’
dx'S x't 0x'S dx't dx'¥
1ijk _ . — gmnr
ox't dx'J dx™ dx™ ox"
L.H.S. is non zero for i = s and j = t and hence
- dx't dx"J 0x'k
1ijk _ pmnr
A =4 Ox™ dx™ dx” ®)

From equation (8), we see that A™"" is a tensor of third rank and contra-variant in

Multiplying both sides by one gets

all indices. This completes the proof of Quotient law.
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4.9 Symmetric and Anti-Symmetric Tensor

Based on permutation of the indices a tensor can be of two types:-
1. Symmetric tensor
2. Anti-symmetric tensor

A tensor is said to be symmetric in two indices of the same type i.e. both covariant
or both contravariant, if the value of any component is not changed by permuting

them. If for a tensor A;;

A =4

i Ji

Then it is called symmetric tensor.

A tensor is said to be anti-symmetric in two indices of the same type i.e. both
covariant or both contravariant, if the value of any component changes its sign by

permuting them. If for a tensor A; j

A =—A

ij Ji

Then it is called anti-symmetric tensor. A general tensor can be split up into a

symmetric and an anti-symmetric part:

ij ij

A =%<A4. +Aﬁ)+%(Aij -4,

Where the first part in the right hand side is symmetric part and second part is anti-
symmetric part.
. 1 .

Theorem:- A symmetric tensor of rank two has at most EN (N + 1) different
components in N - dimensional vector space.
Proof: Let A; j be a tensor of rank two. The number of its all components in N-
dimensional vector space is N2. All the components of A; j are

A1y Arp A1z Agg . Agy

Ayr Az Az Azgq .. Aay

Az1 Azp Azz Azyq .. Azy

ANl ANZ AN3 AN4 ANN
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Number of independent components is N (Ay; Ay Aszz Agg ... Ayy). Hence
the number of components corresponding to distinct subscripts are N 2 — N. But

the components are symmetric i.c. A1, = A,etc.

Number of different components of this form is % (N 2—N ). Thus total number of

different (i.e. independent) components
_ %(NZ ~N)+ N=%N(N +1).

Theorem: A skew-symmetric (anti-symmetric) tensor of rank two has %N (N —
1) different components in N - dimensional vector space.
Proof: Let A; j be a tensor of rank two. The number of its all components in N-
dimensional vector space isN2. All the components of 4; j are

A1y Arp A1z Agg . Agy

Ayr Az Az Azgq .. Agy

Az1 Azp Azz Azgq .. Azy

Any Anz Anz Ang - Ann
Number of independent components N (A1q Ay Azz Ay ... Ayy) will be
zero. Hence the number of components corresponding to distinct subscripts are

N? — N. But the components are symmetric i.e. A;, = —A,qetc.

Number of different components of this form is % (N 2—N ). Thus total number of

different (i.e. independent) components
= %(N2 ~N)+ O%N(N ~1).

Example 4.4 Show that any tensor of rank two can be expressed as a sum of a

symmetric and an antisymmetric tensor, both of rank two.

Sol. A tensor of A”’ of rank two can be expressed as
1 1
af _ af Pa aff _ 4Ba

=B 4+ C%
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Where B* :l(Aaﬁ+Aﬁ“) andC* :l(A“ﬂ—Aﬂ“)
2 2

By addition and subtraction laws of tensors, it is evident that B“ and C** are

tensors of rank two.

By interchanging the indices in B and C”* we have
1
B =—(4" +47)
2

=%(A“ﬁ +47) =B

Hence B* is symmetric tensor of rank two.
Similarly
|
CPe :_(Aﬂa _Aaﬂ)
2

:_%(Aaﬂ _Aﬁa):_caﬁ

Hence C* is Anti-symmetric tensor of rank two.

Thus any tensor of rank two can be expressed as a sum of a symmetric and an

antisymmetric tensor, both of rank two.

Example 4.5 If A" is arbitrary contravariant vector and CﬂvA”A” is an invariant

then prove that (Cw + CU”) is a covariant tensor of second order.

Sol. Here A* is an arbitrary contravariant vector and CﬂvA”A” is invariant, so

C' A"A" =C A"A" (1)
uv uv
By tensor transformation
ru )
Cr AI,UAIU :Cr ax_Aa aLAﬁ
m o ox® ox”
ox'" ox"

=C" A*A" =C' =A% AP
m moox* ox’

By interchanging the dummy indices w and v ,we have
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=C A4 =C — A4 )
K o ox* oxP
By interchanging the dummy indices o and S ,we have
ru o
g = DO ey 3)
Ho o ox* oxP
By adding (2)&(3)
ox"™ ox"
’ ’ o410 ’ ' a 4B
:>(CW+CW)A A _(cw+cw) oA &)

By eq.(1)
C' A"A" =C A"A° =C A" AP
v nv ap

And
C' A°A* =C A°A"=C, A" 4"
vu vu Po
By adding
' l i o __ a 4B
(c, +Cl )amav =(C,,+C, )44 5)
By using eq.(5),we can write eq.(4) as
ox"™ ox"
o 4B _ i i T qa yB
(C,,+Cp )44 _(C”“+C“”)ax“ A
, , \ox'M ox™ o« B
:{(CHU+CU”)axa 7 —(caﬂ+cﬂa)}4 A" =0

Here A and A” are arbitrary, so

{(C;w - Ct’w)aa);: Z);ﬂ _(Caﬂ "G )} =0
o o’
ox'" ox'"

o' ox" ax” o’

)8x"‘ ox? ox'™* ox" _<C"‘ﬁ

On multiplication of wit above equation ,we have

+Cﬁa

) ox” ox”

(c,+C ==
ox'" ox

uo vp

) o oxP

(€, +C)800) =(Cp+ Cp )=

B Ba
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@ Ap
(C;w + C;u) = s;cw S;Cw (Caﬂ + Cﬁa)

That is transformation law for covariant tensor of second rank.

Hence (Cw + CU”) 1s a covariant tensor of second order.

4.10 Pseudo Tensors

Levi-civita tensor: -

The Levi-civita tensor €; j is defined as follows:-

€, = If any two of the indices are equal.

€ =1 If is an even permutation of 1, 2, 3.

=-1 If is an odd permutation of 1, 2, 3.

For example

€123 = €231 = €312 =1
€132 = €213 = €321 = —1
€112 = €122 = €33 =+ =0
A change in orientation i.e. from a left-handed to a right handed system as in
reflection produces a change in sign. Such tensors which changes sign under a

change of orientation are called Pseudo tensor.

From every anti-symmetric tensor A%P of the second rank a pseudo tensor of the
same rank can be obtained by multiplying the former with a pseudo-tensor of rank
4,

. 1 o3
L.e. A = EZa,ﬁ:O EuaaﬁAaB
Properties of Pseudo tensors:-

1. The sum or difference of two Pseudo tensors f the same rank is a Pseudo
tensor.

The product of a tensor with a Pseudo tensor is a Pseudo tensor.

The product of two Pseudo tensors is a tensor.

The partial derivative of a Pseudo tensor w. r. t. X" is a Pseudo tensor.

AN

A contracted Pseudo tensor is a Pseudo tensor.
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The relation between pseudo tensor €; jj and Kronecker delta tensor O; j 1s given
as

€. € =0,0,—0,0.

ijm~ kim ik~ jl il jk

Example 4.6 Prove that
€Eitm€jim = 20;;.

Sol. We know

€itm€jkm = 5ij5zk - 5ik5zj
Taking k = [ we get

€itm€jim = 5ij5u - 5iz5zj
Now O = 011 +08,+033 =1+1+1=3

5il5lj = 5ij

So we get

4.11 Self Learning Exercise-II

Q.1 What is the value of Levi-civita tensor €517

Q.2 What is the sum of two tensors of the same rank and type?

Q.3 What is the value of Kronecker delta 5ii ?

4.12 Summary

This unit is started with the introduction about the tensor analysis. In this
we have defined N-dimensional space and the transformation of coordinates. In
tensor algebra sum, contraction, direct product etc. are defined with the examples
and theorems. We also studied the quotient rule and definition and properties of

pseudo tensor.
4.13 Glossary

Contravariant: For a vector (such as adirection vector or velocity vector) to

be basis-independent, the components of the vector must contra-vary with a
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change of basis to compensate. The components of vectors (as opposed to those of
dual vectors) are said to be contravariant

N-dimensional space: (mathematics) A vector space having n vectors as its basis

Permutation: the notion of permutation relates to the act of rearranging,
or permuting, all the members of asetinto some sequence or order (unlike
combinations, which are selections of some members of the set where order is
disregarded)

Covariant: The meaning of covariant is that they have the same form in all

reference frames.

4.14 Answers to Self Learning Exercises

Answers of self learning exercise-I

Ans.1: 3

axk ax!

!
Ans.2: Bj; = Y= -— B

Ans3: C jik is a mixed tensor of rank 3.
Answers of self learning exercise-II
Ans.1: Zero.

Ans.2: Tensor of same rank and type.

Ans.3: 1

4.15 Exercise

Section A (Very short answer type questions)

Q.1 Write the number of components of a rank two tensor in 3-dimensional space.
Q.2 Write the total number of independent components of a rank two anti-
symmetric tensor in 3-dimensional space.
Q.3 What is rank of the tensor Bii]p?
Section B (Short answer type questions)
Q.4 What is the difference between covariant and contravariant tensor?

Q.5 What do you mean by a mixed tensor and give one example of mixed tensor?

96



Q.6 Define the product of two tensors with example.
Section C (Long answer type questions)
Q.7 Prove that the contracted tensor Bii 1s a scalar.

Q.8 Show that the sum and difference of two tensors Bf 7 and Bf 7 are also

tensors.

Q.9 AYis a contravariant tensor and B; is a covariant tensor. Show that AY By, is

a tensor of rank three, but A B ; is a tensor of rank one.

4.16 Answers to Exercise

Ans.1: The number of components of a rank two tensor in 3-dimensinal space is 9.
Ans.2: 3
Ans.3: 2
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UNIT-5
Matrices

Structure of the Unit
5.0 Objectives

5.1 Introduction

5.2 Matrix and its Transpose

5.3 Orthogonal Matrix

5.4 Illustrative Example

5.5 Symmetric & Anti symmetric Matrix
5.6 Conjugate of Matrix and Transpose conjugate of Matrix
5.7 Hermitian and Anti Hermitian Matrix
5.8 Unitary Matrix

5.9 Illustrative Examples

5.10 Self Learning Exercise-I

5.11 Eigenvalues and Eigenvectors

5.12 Diagonalization of a Matrix

5.13 Self Learning Exercise-II

5.14 Summary

5.15 Glossary

5.16 Answers to Self Learning Exercises
5.17 Exercise

5.18 Answers to Exercise

References and Suggested Readings

5.0 Objectives

In this unit we will learn the basic concepts related to Orthogonal ,Hermitian
,Unitary ,Eigenvectors etc. This unit is concerned with the most important matrices
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of physics and engineering. These matrices are frequently used in classical

Mechanics and Quantum Mechanics.

5.1 Introduction

The theory and applications of the matrices have connection with the solution of
linear system of equations in engineering problems. There is a great importance of
the study of the properties of matrices. A matrix ia a rectangular array of numbers.
In this chapter emphasis is given on Hermitian and Unitary Matrices. We finally

discuss the important concepts related to eigenvectors.

5.2 Matrix and its Transpose

Matrix:

A matrix of order m x nis a rectangular array of numbers having m rows and n

columns. We can write it in the form

all a12 aln
A — a21 a22 a2n
_aml am2 amn

Each number a; in this matrix is called an element of the matrix A. Here subscripts
i and j represent respectively the row and column of the matrix in which the
element exists.
Transpose of Matrix :

By interchanging of rows and corresponding columns of matrix A, we
obtain A” (i.e. transpose of matrix)
If matrix A4 = (aij) then 4" = (aﬁ)

mxn nxm

Transpose of matrix is denoted by 4', 4, A”

2 35
A:
6+i 7 9

For example

2 6+i
A" =3 7
5 9
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Important properties of Transpose of a Matrix
(1) (4" =4
(ii) (kA)" = kA" where k is any scalar
(iii) (A+B) =4"+B"
(v) [ (4B) =B'A

5.3 Orthogonal Matrix

We consider a real square matrix A. The matrix A is called orthogonal if

AA" =1=4"4

(5.1)

Where / is unit matrix (Identity Matrix)

We can write the condition| A" = A" | for A to be an orthogonal matrix.

We can prove this condition in following way
AA" =1
or A7'(44")=4(I)
or (4'4)4" =4
or I4"=4"
or A =4" (5.2)

Any one of these relations (5.1) & (5.2) is both the necessary and the sufficient
condition for matrix A to be orthogonal.

Here |A| #0 ,s0 A is nonsingular matrix and A~ exists. Important property of
orthogonal matrix is determinant of an orthogonal matrix can only have values
+1 or -1.

Proof : AA" =1
= |44"|=]1]
= |4l|a|=1
= |4]j4]=1 |4 =4
= |4=1 = |4=41
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5.4 lustrative Examples

Example 5.1 If A and B are orthogonal matrices then prove that both AB & BA

are also orthogonal matrices.

Sol. Since A and B are orthogonal matrices, so

AA" =A"A=1
and BB =B'B=1
Let Z =AB

77" = (AB)(4B)"
= AB(B"A") = ABB") 4"
=A(NA" =(4D A"
= A4"
= 77" =1
Hence Z i.e. AB is orthogonal matrix
Similarly BA is also orthogonal matrix.

cos¢ sin¢

Example 5.2 Show that matrix 4 = { } is an orthogonal matrix

—sing cos¢
Sol. e {cos'qﬁ sing } {cos'qﬁ sin ¢ }T
—sing cos¢ || —sing cos¢

_ [ cos¢ sin(/)}{cosqf) —sin (/5}

| —sing cosg || sing  cos¢

_ _ (cos” ¢ +sin’ ¢) (—COS¢Sin¢+Sin¢COS¢)]

| (—singcos¢ + cosgsing) (sin® ¢+ cos” @)
I 0
= =1 Hence proved
0 1

5.5 Symmetric & Antisymmetric Matrix

Symmetric matrix :
We consider real matrix A

101



A square matrix A is called symmetric if | A= A"

i.e. matrix elements a;; = a,, for all values of 7 and j, where 4 = [aij]

For example

2 7 9

7 3 14 ) . .
1s Symmetric Matrix

9 14 4

Antisymmetric or Skew symmetric Matrix :

We consider real matrix A

A square matrix A is called anti symmetric if | A=—A"

i.e. matrix elements @;; =—a,; for all values of i and j, where 4 = [ai j] .

If we put i = then a, =—a, or 2a, =0 or a, =0. i.c. all diagonal elements of
the anti symmetric matrix are Zero. Trace (sum of diagonal elements of a square

matrix) of anti symmetric matrix is zero.

For example

0 -a p
o 0 —y| isan antisymmetric matrix
-8 v 0

5.6 Conjugate of Matrix and Transpose conjugate of Matrix

Conjugate of Matrix:

Conjugate of matrix A is obtained by taking the complex conjugate (i — —i)of

each element of the matrix A conjugate of matrix A is denoted by A" or A
If A=[a;,] then 4" =[a,,]

For example

2+1 4-5i
If A=|
I 3

2—i 4+ﬁ}

Then A :{ _
—i 3

102



Important properties of conjugate of a matrix:

(i) (47) =4
(i) (4+B) =4"+B

(iii) (kA)* =k'A" | wherek is a complex number

(iv) (A4B) =A'B°

Transpose of Conjugate (or Conjugate transpose) of a Matrix A :

Transpose conjugate of matrix A is denoted by A or A

A (read as A dagger)

A=) =)

1.e. conjugate transpose of a matrix is the same as the transpose of its conjugate

If 4 2 33—

4+i 5

. 2 3+1
A =

{4—1‘ —51}

* 24—
A= (4) {3“‘ —51‘1}

Important properties of the transpose conjugate of a matrix

(i) (Ae)e — A

(i) (A+ B)g =A% + B
(iif) (kA)H =k A° Where k is complex number

(iv) |(4B)’ =BA°

5.7 Hermitian & Anti Hermitian Matrix

Hermitian Matrix:

A square matrix A4 = [ai ; ] is Hermitian if | 4 = 4°
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ie. a, =a, forall values of i and j

If we put i = then a, = a;, for all values of i.

i.e. all diagonal element of a Hermitian matrix are real numbers. Thus trace of

Hermitian matrix is real number. Determinant of a Hermitian matrix is real. For

example ,Hermitian matrix is

5 3-i 7
3+1 0 I
7 - 2

For real symmetric matrix a,, = a,,

ie. A" =4
aji = aji
So (A7) =4"
ie. A" =4"
From (5.3) & (5.4)
A’ =4
1.e. real symmetric matrix is Hermitian matrix.

Skew Hermitian Matrix or Anti Hermitian Matrix :

A square matrix 4 = [ai ; ] is skew Hermitian if

i.e a,, =—a,, forallvalues of i and j

*

If we puti=j then a, = —a,

u

Let a, =a+if3 Where aand Sare real numbers, then

(a+iB)=—(a+if)
a+iff=—(a-ip)
2a0=0ie. a=0

So a,=if

A=-A°

(5.3)

(5.4)

Hence every diagonal element of an Anti Hermitian matrix is either zero or a

pure imaginary number. Trace of an Anti Hermitian matrix is either purely

imaginary or zero. Examples of skew Hermitian matrices are:
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4 |4 3 0
0 4 0 -3+ .
) . . ) 3 O _7 +1 etc.
4 0 3—-i i . .
0 7+i —i
We can prove that real anti symmetric matrix is skew Hermitian matrix.

Determinant of skew Hermitian matrix is either zero or purely imaginary
number.

Example 5.3 If Y is Hermitian matrix then prove that X 'YX is also Hermitian

matrix for every matrix X.

Sol. Since Y is Hermitian matrix

Y'=v
Let Z=X'YX
z'=(x'mx)
- x'v'(X")" - (4BC)' =C'B' 4
- X'Y'X o (47) =4
=X'vx -+ Y is Hermitian
= ARSYA

So X 'YX is Hermitian
5.8 Unitary Matrix

A square finite matrix U is unitary if UU® =1

ie. UU=1=U0U"

Important properties of Unitary matrices:

(1) Determinant of a unitary matrix is of unit modulus. Hence unitary matrix

is not singular matrix.
Proof :

Here UU’ =1

105



‘UT‘ _ |U|

(vr)

This shows that modulus of the determinant of a unitary matrix is unity.

= |ulju|=1

*

-

- ‘U*

=|U

(11) If U is Unitary matrix then

U’=U"| (alternate condition of Unitary matrix)

Proof. We have UU® =1
=  U'(uu’)=U"()
= (vupu=u"

= WU'=U"
U =U"
(iii) Real Unitary matrices are orthogonal matrices.
Proof :

U’ :(U*)T =U" { A" = A for real matrices}
UV’ =1
uu" =1

Hence U is also orthogonal matrix.

(iv) The products of two unitary matrices are also unitary matrix.
Proof: Let A and B are Unitary matrices then
A4’ =1 and BB’ =1
Let Z = 4B
Here ZZ° = (AB)(AB)’
=(AB)(B’A’) = A(B°B°) A’
= AN A’ = (4D A°
= A4’
= zz°=1
Thus Z i.e. AB is unitary matrix

5.9 lustrative Examples
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Example 5.4 Prove that Pauli matrix

o= 0 =i i Unitary matrix
i 0
~ T AT
Sol. o’ = O K = O‘ l
i 0 - 0

[o-2 0+0
10+0 —i*+0

10
o1

Example 5.5 If A is a Hermitian matrix then prove that matrix e’is unitary

matrix.
Sol. Let Z =¢"
. N\O o
ZZ@ — etA (etA) — elAe_lAe

4 —id . .
=ee™ { A= A° for Hermitian matrlx}

= zZ7°% =1

Hence Z i.e. € is unitary matrix

5.10 Self Learning Exercise-I

Very Short Answer Type Questions
Q.1 Show that inverse of a unitary matrix is also unitary.
Short Answer Type Questions

Q.2 If A is Hermitian matrix, then prove that /A is anti Hermitian matrix .

Q.3 If X and Y are Hermitian matrices, then prove that
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(1) XY+ YX isalso Hermitian matrix
(i1) XY -YX isanti Hermitian matrix

(1) (XY -YX ) is Hermitian matrix

1 .
Q.4 If matrix 4 = a{ ' j is Unitary ,then find the value of a.
_l —_—

5.11 Eigenvalues and Eigenvectors

Let 4 = (ai/ ) be an n x n square matrix and X is a column vector. We consider the
vector equation (linear translation) AX =AX (1)
where Ais a scalar.

Here zero vector X =0 is a solution for any value of A. But solution X =0 is of

no importance in practical situations.

Value of Afor which equation | AX =AX | has a solution X #0 (i.e. a nontrivial

solution) is called an eigen value of matrix A.

Eigenvalue is also known as characteristic value, latent root, proper values. Word
‘Eigen’ is German and that means ‘proper’ or ‘characteristic’.

Corresponding to each eigenvalue A, solution X #0is called eigenvector
(characteristic vector) of matrix A belonging to that eigenvalue.

Here equation AX =AX
=  AX=AIX {Where I is unit matrix}
= AX —-AIX =0
= (A-ADHX =0
For nontrivial solution

det.(A-AD)=0

This equation in A is known as characteristic equation and det.(A—Al)is known

as characteristic determinant we can write

AX =X
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all a12 aln xl xl
a21 a22 a2n x2 x2
= = ﬂ.
a4, Ay e 4, | X, ] X, |
For nontrivial solution
all ﬂ‘ a12 aln
a a,, —A .. a
21 22 2
det(4—Al)= " 1=0

a, a, e a, —A

which shows a polynomial equation of degree n in A

Operator interpretation of Matrices :

Matrix A can be thought as an operator which operates on column vector X and
produces another column vector Y i.e. 4X =Y

In general X and Y have the different directions. Here X is not an eigenvector. For
particular case in which Y has the same direction of X i.e. Y is constant multiple of
X or Y = A X where Ais number.

In that case AX =AX and X is known as eigen vector corresponds to eigen value
A
Illustrative Examples

Example 5.6 For given matrix 4 = { 31 42}

Find the eigenvalues and eigenvectors for matrix A.

Sol. We consider equation AX =AX i.e.

R M o

3x, +4x, = Ax,
—x, —2x, = Ax,

We can write above equations as
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B-A)x, +4x,=0 } (5.6)

x+2+2A)x,=0
The system will have nontrivial solution if (we can write directly also following
determinant for getting eigenvalues)

3-2 4
1 2+ A4

= (B3-1)2+4)-4=0
=  6+31-21-1"-4=0
= A-1-2=0

=  A+D)(1-2)=0

= A=-1,2

Eigen values are 4, =—1,4, =2
=-1

X # Eigenvector forﬂ’1 B

Corresponding to 4, =—1 eq. (5.6) become

4x, +4x,=0
& x,+x,=0
Le. x;, =—x,

Then eigenvector is

{xl}:{xl}:x{l} or simply{l} (5.7)
X, —X, -1 -1

J will be eigenvector of

Any vector which is scalar (constant) multiple of {
matrix A corresponding to eigenvalue A =—1

X Eigenvector f01r)L2 =2

Using A =2 in equation (5.6) we get
x, +4x,=0
& x, +4x,=0

ie. x, =—4x,
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Then eigenvector is
X, —4x, —4 _ —4
= =X, or simply
X, X, 1 1

Any vector which is scalar (constant) multiple of {

}will be eigenvector of

matrix A corresponding to eigenvalue A =2

Note : We can understand this constant multiple of { } in following way

From (5.5),we have

From (5.7) 3 4] [-4 5 —4
rom (5. =Ax
1 27| 2
3 47 [-4 —4
= = 4
Ll —2}{1} E?L}
| e —] [ —"
Matrix Eigenvector Eigenvector

Example 5.7 Find the eigenvalues and normalized eigenvector of the following

matrix A
I 1 1
A=1 2 =2
-1 -3 1

Sol. We consider equation 4AX =AX

1 1 1]|x X,
= 1 2 2|x,|=4|x, (5.8)
-1 =3 1| x X,

X, +x, +x;, = Ax,
= X, +2x, +2x, = Ax,

—Xx, = 3x, + x; = Ax,
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A-A)x, +x,+x,=0
= x,+(2-2A)x,-2x,=0 (5.9
—x;, = 3x,+(1-A)x;, =0
The system will have nontrivial solution if
1-2 1 1
1 (2-4) =2 |=0
~1 3 (1-2)
1-D)[(2-2)1-2)=6]-1[(1-2)-2]+1[-3+(2-21)]=0
1=2)2=-)1=)—6(1-2)—(1-A)+2-2+(1-2)=0
(1-MH[2-2)1-1)-6]=0
(1-M)[A*-32-4]=0
1-A)A+D)(1-4)=0

Eigenvalues are A =-1,1,4

y v 4y

+* For Eigenvectors :

Putting A, =—1 in equation (5.9) we get
2x,+x,+x,=0 (5.10)
x,+3x,-2x,=0 (5.11)
x,—3x,+2x,=0

From equation(5.10)
2[2x, - 3x,]+x,+x,=0
= X, =X, (5.12)

From (5.10)&(5.12)
X, ==X,

Thus eigenvector corresponds to eigenvalue A, =—1is

X, —X, -1 -1
X, |=| % |=x]|1 | or simply | 1
X, X, 1 1
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Normalized eigenvectors i.e. unit eigenvectors have length 1 i.e. sum of the

squares of their components is 1.

Such eigenvectors can be found out by dividing each vector by the square root of
the sum of the squares of the components.

Thus normalized eigenvector corresponding to 4, =—1 is

|
p—
— —
W

1
AT B
1
RN
a
{Note : For normalized form of | b |, we divide each element by ~/a® + 5> + > }
c

We put 4, =1in equation(5.9) for getting eigenvector
X, +x,=0
X +x,—2x,=0
-x,—3x,=0
ie. x, =-3x, & x;=-x,

Thus eigen vector corresponding to eigen value A, =1is

X, -3x, -3 -3
x, |=| x, |=x]1 or simply | 1
X, —X, -1 -1
__i_
Jit
The normalized eigenvector is %
-1

V11

We put 4, =4in equation(5.9) for getting eigenvector
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(5.13)
(5.14)
(5.15)

—3x,+x,+x,=0
X +2x,-2x,=0
-x,—3x,-3x,=0
From (5.15)
x, =-3(x, +x,)
From (5.15) &(5.13)
9(x, +x;)+(x, +x,)=0
Le. x, =—x,
From (5.15) x, =0

Thus eigenvector corresponding to eigenvalue A, =4is

X, 0 0 0

X, |=|—x; |=x] -1 or simply | —1

X, X, 1 1
0

-1
The normalized eigen vector is | —
J2

1

(V2]

2 2
Example 5.8 Obtain the eigen vectors for matrix 4 = { ) 2}

Sol. We consider equation AX =AX i.e.

EHMEN
2x,+2x, = Ax,
-2x,+ 2x, = Ax,

We can write above equations as

2-A)x,+2x,=0 (5.17)
2x,+(2-A)x, =0 '
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The system will have nontrivial solution if

So 2-2 2 ‘:0
-2 2-4

= (2-1)’+4=0

= (-1 =—4

= (2-1)’=i4

=  (2-A)==%2i

=  A=2-2i,2+2i

Eigen values are 4, =2-2i,4, =2+2i
A =2-2i

**  Eigenvector for
Corresponding to 4, =2-2i eq.(5.17) become
2ix,+2x,=0=x, =-ix
& —2x +2ix,=0=>x,=—ix, i’ =-1
Le. x, =—ix

Then eigenvector is

{xl}:[ hi }zx{l] or simply{ll (5.18)
X, —ix, —i —i

Any vector which is scalar (constant) multiple of {

} will be eigenvector of

matrix A corresponding to eigenvalue A, =2 —2i
¢ Eigenvector f01r)L2 =2+2
Using A, =2+2i in equation(5.17) we get
=2ix,+2x,=0=>x, =ix
: a2
& —2x,-2ix,=0=>x,=ix;, ‘i =-1
Le. x, =ix

Then eigenvector is
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Important properties of Eigenvalues :

(1) The product of eigenvalues of a matrix A is equal to the determinant of the
matrix |det4 =4 .4 .A,..... A

Where A,,4,,4,,....4 are ecigenvalues of a matrix. Set of eigen values{
AAy s Ay A} is called spectrum of matrix A.

(i1) The sum of eigenvalues of a matrix is equal to the trace of the matrix i.e.

Trace A=A+ A, +... 4

(iii) Eigenvalues of any matrix 4and its transpose A4’ are same.
(iv) If eigenvalues of A are A,4,,/4,,.....4 then

® Eigenvalues of pA are pA,pA,,pA,.....pA, , where p is non zero scalar.

n
® FEigenvalues of 4"are 1", 1), ....... A

: 5 1 1 1
® FEigenvalues of 4~ are —,—,....—

7 , 7 yeees 7
(v) The eigenvalues of a diagonal matrix are the elements in the diagonal.
(vi) The eigenvalues of a Hermitian matrix (or real symmetric matrix) are real.
(vii) The eigenvalues of a skew Hermitian matrix (or real skew symmetric matrix)
are either zero or pure imaginary numbers.
(viii) The eigenvalues of a unitary (or real orthogonal matrix) are of unit
modulus.
(ix) Every square matrix satisfies its own characteristic equation. This is known as
Cayley-Hamilton theorem.
Suppose characteristic polynomial of matrix A is given by
a,+ald+a A’ +.... a, A" =0
Where q,,a,,a,,.......a, are constants and Ais eigenvalue, then
a,Jl +a,A+a,A* +.....a,A" =0
(Cayley-Hamilton Theorem)
(x) Any two eigenvectors corresponding to two distinct eigenvalues of Hermitian
(or real symmetric) matrix are orthogonal.
(xi) Any two eigenvectors corresponding to two distinct eiganvalues of Anti

Hermitian (or real asymmetric) matrix are orthogonal.
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(xi1)An n x n matrix B is called similar to A if there is a non singular 7 x n matrix P

such that B= P 'AP

Similar matrices have the same eigenvalues. If an eigenvector of matrix A is

X then Y =P 'X will be an eigenvector of B corresponding to the same

eigenvalue.

5.12 Diagonalization of a Matrix

In many physical situations it is desirable to reduce the matrix to a diagonal

form (non diagonal elements all equal to zero) .Moment of inertia / of a rigid body

is direct example of this diagonalization process.

Theorem : 1If a non singular square matrix A of order nxnhas n linearly

independent eigenvectors, then a matrix X can be found such that | D = X '4X

1S

a diagonal with the eigenvalues of A as the matrix entries on the main diagonal.

Here X is the matrix with these eigenvectors as column vectors.
. .. . _al bl

For example , if distinct eigenvalues of 4 = are 4,4,

4 Dy

and corresponding eigenvectors

X xz_
X, = and X, =
32! Y

. xl x2
We can write X =
Y W

¥ A 0
Then D=X AX =
0 4
Now we can say that 4 has been reduced to diagonal form.
We can prove this in following way
Characteristic equation is given by |4 - A7|= 0 i.e. for eigenvalue 4

(@,=A)x+by =0 =ax+by =Ax } (5.19)
a,x, +(b, =4y, =0 = a,x, +b,y, = A4y,

Similarly for eigenvalue A,
a, x, +by, =4,x, } (5.20)
a,x, +b,y,=4,y,

117



o a2 84
a, b ||»n »
:{alxﬁblyl a,x,+by, }
a,x,+by a,x,+b,y,

:|:/1le 12x2:|
Ay 2y,
w o 2]
» 0 4
0
AX = XD where D =
0 A
= X '(4X)=X"'(XD)
=  X'4X=ID c XX =1

= X '4X=D
Illustrative Examples

Example 5.9 If matrix 4 = {066 }has eigenvalues 4,6.Then find the values of

o and
Sol. Trace=a+p=4+6=10
Det A=a.f+24=4.6
= a.p=0
If a=0,then f =10 or
Ifp=0,then a =10
Example 5.10 A matrix of order2x2is given by

A=
c d
For this matrix prove that

A% — ATraceA + Det. A =0 ,where Ais the eigen value of the matrix A.

Sol. Characteristic equation is given by

Det(A—AI)=0
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(a—i) b
c (d—/l)

(a—/l)(d—/l)—bc:O

‘:O

=
= ad + 2> —da—Ad —bc=0

= ﬂ.z—ﬂ.(a+d)+(ad—bc)=0
=

A = ATraceA+ Det. A=0 Hence Proved

5.13 Self Learning Exercise-11

Very Short Answer Type Questions

Q.1 Find the eigenvalues of the following matrix

8 2 4
0 20
0 6 5

Q.2 The eigen values of a Hermitian Matrix are always real. Is this statement
true?
Short Answer Type Questions

Q.3 Find the eigenvalues of the following matrix A

cosf sin6
A=| |
—sinf cos6
Q.4 The determinant of 3 x3real symmetric matrix is 18 and two of its

eigenvalues are 2 and 3 . What is the sum of the eigenvalues ?

5.14 Summary

1. The matrix A is called orthogonal if
AA"=1=4"4 or A" =4"

2. A square matrix 4 = [ai ; ] is Hermitian if 4 = 4°
i.e. a,, = a,, forall values of i and ]

3. A square matrix 4 = [ai } ] is skew Hermitian if 4 = —A4°
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i.e. .. = —q, for all values of i and j
ij Ji

4. A square finite matrix U is unitary if UU’ =1
ie. UU=1=UU"

5. Value of A for which equation 4X =AX has a solution X #0 (i.e. a nontrivial
solution) is called an eigen value of matrix A.

det.(4A-Al)=0
5.15 Glossary

Trace: The sum of the elements in the principal diagonal of a square matrix.
Skew: not symmetrical

Conjugate: having the same real parts and equal magnitudes but opposite signs

of imaginary parts.

5.16 Answers to Self Learning Exercises

Answers to Self Learning Exercise-I
Ans.1: For Unitary matrix U° =U™"
Here(U)(U™) =U° (U°)
=UU =1
Ans.2: Hint- Show that (iA)T =—(i4)

1
Ans.4: ﬁ

Answers to Self Learning Exercise-II
Ans.1: 1 =2,58
Note: eigen values of triangular matrix are diagonal elements in that matrix.
Ans.2: Yes
Ans.3: A =cos@+isind=¢"’ ,1,=(cos@—isinf)=e"’
Ans.4: Product of Eigen values=determinant of the Matrix

= AAA=18
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= 234=18 =14 =3
Sum of the eigenvalues

A+ +A4=2+3+3=8

5.17 Exercise

Q.1

Q.2

Q.3

Q4

Q.5

Q.6

Q.7

Q.8

Section A: Very Short Answer Type Questions

“If the eigenvalues of the anti symmetric matrix A is zero and its determinant

is also zero, then each eigenvalue of the matrix A must be zero.”Is this
statement true?

“If one of the eigen value of matrix A is zero, then matrix A must be

singular.”[s this statement true?

“A matrix can have real eigen values without being Hermitian™.Is this

statement true?

Section B : Short Answer Type Questions

Show that matrix L{ - 1= l} is Unitary matrix.

S+ 1

cosd —isin @

Show that { } is Unitary matrix

—isin @ cosO

Prove that for any square matrix A

) (A +4° ) is a Hermitian matrix

(i) ( A-A° ) is skew Hermitian matrix
(iii) 44° isa Hermitian matrix

Find the eigenvalues of the given matrix

1 00
A=|0 1 1
0 1 1

A matrix is given by

01 0
A=|0 0 2
2 00
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Its eigenvalues are 4, 4,, 4,
Find 1) L, +4,+4, (1) 44,4,
Section C : Long Answer Type Questions

Q.8 Prove that any complex square matrix can always be expressed as the sum of

a Hermitian matrix and a skew Hermitian matrix.

5.18 Answers to Exercise

Ans.1: No

Ans.2 : Statement is true.

Thus A is singular Matrix.

Ans.3 : Yes, See example 5.6
Ans.7: 0,1,2
Ans.8 : (i) Trace= Sum of eigenvalues=4, + 4, + 4, =0+0+0=0
(if) Det. A=A4.4,.4,
=0(0-2)-1(0-2)+0(0-0)=4
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UNIT- 6
Complex Algebra: Cauchy —Riemann

Conditions, Cauchy’s Integral Theorem

Structure of the Unit

6.0 Objectives
6.1 Introduction

6.2 Functions of a complex variable

6.3 Complex Algebra
6.4 Cauchy-Riemann Conditions

6.5 Illustrative Examples

6.6 Self learning exercise-I
6.7 Branch Points and Branch Lines

6.8 Illustrative Examples
6.9 Cauchy’s Integral Theorem

6.10 Multiply Connected Regions
6.11 Self learning exercise-1I

6.12 Summary

6.13 Glossary

6.14 Answer to Self Learning Exercises
6.15 Exercise

6.16 Answers to Exercise

References and Suggested Readings
6.0 Objectives

Complex numbers are widely used in modern mathematics and its applications. It
turns out that it is convenient to obtain many relationships between real quantities
by using complex numbers and functions in intermediate calculations. This chapter
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is intended to introduce many of the useful results of complex function theory. We
shall derive the conditions that a complex function theory. We shall derive the
conditions that a complex function W (z)has to satisfy so as to have a unique
derivative at the point z. Such a function is said to be analytic at the point z.

6.1 Introduction

In this chapter we develop some of the most powerful and widely useful tools in all
of mathematical analysis. These include Cauchy-Riemann conditions and Cauchy’s
integral theorem. We introduce some elementary function of Z and find their real
and imaginary parts. We also discuss their analyticity. We define branch points and
branch lines etc.

6.2 Functions of a Complex Variable

“The imaginary numbers are a wonderful flight of God’s spirit; they are
almost an amphibian between being and not being.”

Gotterfied Wilhelm Von Leibniz (1702)
Why complex variables are so important? It will be evident several areas of

applications :

1. For many pairs of functions U and U, both U and V satisfy Laplace’s equation :

0% Y(x, 0% ¥(x,
_0T¥xy) 0TFxY)

2
vd
v dx? dy?

Either U or UV may be used to describe a two dimensional electrostatic
potential. The other function that gives a family of curves orthogonal to those of

the first function, may then be used to describe the electric field E .
In similar case of hydrodynamics : 4 — velocity potential, ¥ —>stream function
U and v : create a co-ordinate system.

2. Second order differential equation — power series

If f(z) at zy is given, the behavior of f(Z) elsewhere is knowable (analytic

continuation).

3. The change of parameter k from real to imaginary, k — ik transforms the

Helmbholtz equation into diffusion equation.
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4. Integrals in the Complex plane have a wide variety of useful applications :

(a)  Evaluating definite integrals
(b)  Inverting power series

(c)  Forming infinite products

(d) Stability of oscillating systems

6.3 Complex Algebra

° A complex number is nothing more than an ordered pair of two

ordinary(real) numbers (a, b)

We can write this pairas a + ib.

° Similarly, a complex variable is an ordered pair of two real variables,

z=(x,y)=x+iy|All our complex variable analysis can be developed in terms of

ordered pairs of numbers (a,b), variables (x,y) and functions
[u(x,y),v(x,y)].The L is not necessary but it is convenient.

° Argand Diagram

37

Q
-
<Y

Figure6.1 Complex Plane

Complex variable|z = r[cos @ +isin O]

zZ=re

125



r=|

T is called modules of Z

6 is called argument or plane of Z .

Triangle Inequalities :

|, 1< <
‘Zl‘ ‘Zz‘—‘zl+zz‘—‘zl‘+‘zz‘

Using Polar form we can show

Also

=Rl

arg ( z,.z, ) =argz +argz,

Complex function w(z) may be resolved into real and complex parts as
wiz) = ulxy) +iv(xy)

The relationship between the independent variable Z and dependent

variable W is best pictured as a mapping operations :

N

Y

z-plane

v

V4

N

w-plane

QV

Figure6.2 The function w(z)=u(x,y)+iv(x,y) maps points

in the xy- plane into pointsin the uv plane

Complex Conjugation :
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Complex Conjugation of an expression is change from [ to —I.

Complex Conjugate Points :

. * .
z=Xx+1iy z =x—1iy

2z =(x>+y")=r

(zz') = |Z|

iz z a(x.»)

ZED (x.-y)

Figure6.3 Complex conjugate points

° Functions of a Complex Variable :

All the elementary functions of real variables may be extended into the complex

plane — replacing the real variable X by complex variable Z . This is an example of

analytic continuation.

o De Moivre’s Formula :

e’ = (cosO +isind)

cosn +isinnf = (cos@ +isin0)n

Inz=Inre®

=Inr+i0 Thisisnotcomplete
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We can add 2nm in 6 with no change in Z

Inz = In{r e!®+2"M} =Inr +i (6 + 2nn)
~ In z is a multivalued function having an infinite number of values for a single
pair of real values 7 and 6.
To avoid ambiguity, we usually agree to set n = 0 and limit the phase to an
interval of length 27 such as (—1, 7). The line in the Z-plane that is not crossed
the negative real axis in this case , is labeled a cut line. The value of [n z with
n = 0 is called principal value of [n z.
° Analytic Functions : If f(z) is differentiable at Z = z; and in some
small region around Z, we say that f (z) is analytic at z = z.
If f(z) is analytic everywhere in the (finite) complex plane, we call it an entire

function. If f ’(z)does not exist at Z = Z, then Z is labeled a singular point.

6.4 Cauchy-Riemann Conditions

We know proceed to differentiate complex functions of a Complex variables.
The derivative of f (2), like that of a real function, is defined as :

f(z+ 8z) . 0f(2)
———— = lim

m = 1
§5z-0z+ 6z — 2z §z-0 0Oz

- o p
dz
Provided that the limit is independent of the particular approach to the point Z.

For real variables we require that the right hand limit (x — X from above) and

d
the left hand limit (x — X from below) be equal for the derivative f () to exist

atx = xO.

Now with z(0or z;) some point in a plane, our requirement that the limit be
independent of path.
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dx—0 Z0
Oy=0
Ox=0
oy—0

Figure6.4 Alternateapproachto z

Consider increments 8x and 8y of the variables x and y respectively Then
6z = 6x + idy
Also 6f = ou+idv

8f _ Su+idv

that =
So tha 5Z _ Sx+ioy

For I-approach (6y = 0,6x — 0)

. Sf s (6u+i6v) _ Ou . v
Now llm52_>0 5z llmé‘x_)O 5x = o + 1 ox (1)
For II-approach (6x = 0,8y — 0)
. Su+idv . du 0dv
hm(gy_m (W) =—1 F + % (2)

.. af - S :
If we are to have a derivative 17 these two limits must be identical. Equating real
and imaginary parts we obtain
For function f(z) =u+ivto be analytic following conditions are required

Gw_ov v
o oy Oy ox

These are Cauchy Riemann conditions.
C.R Conditions were discovered by Cauchy and used extensively by Riemann in

: : : » arf :
his theory of Analytic functions. These conditions are necessary for e to exist. It
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is worth noting that the C.R. condition guarantees that the curves u = ¢ will be

orthogonal to the curves vV = ¢,.

6.5 Illustrative Examples

Example 6.1 If f(z) or w(z) = z? then find out real and imaginary part of
f(2)
Sol.  f(2) = (x +iy)?
=% —y?) +i2xy
Real part of f(z) = u(x,y) = x? — y?
Imaginary part of w(z) = v (x,y) = 2xy
Example 6.2 f(z) =x — iy ,State whether this function analytic or not
analytic.
Sol. u=x,v= -y
a_u=1a_u=0.a_v=()a_v=_1
ox 'dy "ox oy
CR equations are not satisfied.
Nowhere analytic.f (z)is continuous everywhere but nowhere differentiable.
Example 63 f(2) = zZ= x%?+y?
Is this function analytic?
Sol. u=x2+vy%v=0
L v o
ox "oy " ox "0y

are continuous everywhere, However the Cauchy Riemann equation is 2x =

0

0,2y = 0 are satisfied only at the origin. Hence z = 0 is the only point at
which f'(z) exists and therefore f(z) = zZ nowhere analytic.

The Elementary functions of z :

The exponential function e? is of fundamental importance, not only for its
own sake but also as a basis for defining all the other transcendental functions. In
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its definition we seek to preserve as many of the familiar properties of the real

exponential function e* as possible. Specifically we desire that

a. €“shall be single valued and analytic
de” Z

b. = e
dz

c. €% shall reduce to ¥ when Im(z) = 0

If we let
e“=u+iv (a)

The derivative of an analytic function can be written in the form :

ou v
'(2)= —+i—
f'@ ox ox
Now, to satisfy the condition b, we must have :
du ny v ny
—+i—=u+iv
ox ox
. a_u — b
L= U (b)
ov
Pyl (c)
Eq. (b) will be satisfied if u = e*¢ (y)
Also form (c)
v
— =7
d0x
ou
or ——=7v
dy
0%u ov .\
or 52 oy (by CR Condition)
d%u ou .
or —=——= —Uu from

02
Substituting u = e*¢@ (y) ineq. (a—y’: =—u )

e*9 () = —e*9(¥)
or ¢"(y) = -9 )
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This is a simple linear differential equation whose solution can be written down at

once .
¢(y) =Acosy+ Bsiny

fu= et ()

= e*[Acosy + Bsiny]
du

and v = %= —e*[—Asiny + B cosy]
~ef=u+iv=e*[(Acosy+ Bsiny)+i(Asiny — B cosy)]

Finally, if this is to reduce to e* when y = 0 as required, we must give
e*[A — i B], which will be true if and only if A = 1, B = 0.
Thus we have been led inevitably to the conclusion that if there is a function of Z
satisfying the conditions(a),(b),(c) then it must be :

e? = e**W = e*[cosy + isiny] (d)
That this expression does indeed meet our requirements can be checked
immediately ; hence we adopt its as the definition of €.

mod e? = |e?| = e*

andarge? =y
From eq.(d)
Ifx =0,y = 6 we have

cos@ +isinf = e

and thus 7 [cos @ + i sin 8] = re®®

'’ =cosf +isin0

¢’ =cosh —isin0

i0 —-if0 i0 —-i0
e’ +e . e’ —e
cosf =————, sinf = .
2 2i
° On the basis of these equations, we extend the definition of sine and

cosine into the complex domain by the formulas:
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elZ + e—lZ

CO0Sz =
2
. elz _ o~z
sinz = -
20
From these definitions it is easy to establish the validity of such familiar formulas
as:
cos?z + sin*z =1
cos (z; + z,) = cosz, cosz, + sinz; sin z,
sin (z; + z,) = sin z; cosz, + cosz, sin z,
d .
—C0SZ = —SInz
dt
d .
—SInZ = C0SZ
dt
ei(x+iy) + e—i(x+iy) eV eix + ey e—ix
COSZ = =
2 2
e¥te? . e¥-e” N
= CcosX — Lsmx.T = cos x cos hy — isinx sinhy
° The logarithm of Z, we define implicitly as the function w = [nz which
satisfies the equation:
eV =z (1)
Letw=u+iv,z=rei9
. eu+iv — reie
P eiv — reie
e* =r ~u=Inr
eiv — ei0 “v=0

w=Inr + i6
w = In|z| + i arg z(2)
> If we let 84 be the principal argument of Z, i.e. the particular argument of Z
which lies in the interval then - < 8 < 7, then (2) can be written as

Inz =In|z|+i(0,+ 2nm), n=0,+1,%2,.........
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Which shows that the logarithmic function is infinitely many valued.
> For any particular value of n a unique branch of the function is determined
and the logarithm becomes effectively single valued.

> If n = 0, the resulting branch of the logarithmic function is called the

principal value.
> For every N, the corresponding branch of In z is obviously discontinuous at
z = 0. Moreover, for each N the corresponding branch is also discontinuous at
every point of the negative real axis.
To verify this, we note that if n = ng, the corresponding branch of In zis

= In|z| + iargz, where 2ny, — 1)m < argz < (2ny + 1w
Hence if P is an arbitrary point on the negative real axis, the limit of arg z as Z
approaches P through the second quadrant is (2ny + 1)7. While the limit of
arg z as Z approaches P through the third quadrant is (2ny — 1)7.

Since these two values are different, it follows that on any particular branch, n z

does not approach a limit as Z approaches and arbitrary point on the negative real
axis and therefore is discontinuous at every such point.

At all points except the points on the nonpositive real axis each branch of In z is

continuous and analytic. In fact from the definition.

lnz:ln‘z‘ﬂ'argz

1
Inz= Eln(x2 +y2) +itan?!

R

=u+iv
It is easy to verify that the Cauchy-Reimann equations are satisfied everywhere at

the origin. Moreover from the preceding discussions, it is clear that

1 y
u—zn(x + y°) v=tan'

are continuous except on the nonpositive real axis.

Hence, by Cauchy Reimann theorem it follows that everywhere except on the

nonpositive real axis :
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The familiar laws for the logarithms of real quantities all hold for the logarithms of

complex quantities in the following sense. If a suitable choice is made among the

. . . VA
infinite number of possible values of In(z;z,), In Z—1 ,Inz™ ,then
2
Inzyz,=Inz; + Inz,

Z
In—=1Inz — Inz
Z3

Inz™ =milnz
For example, to show that Inz; z, =Ilnz; + In z,

01 y Zp = rzeiez. Then

Letzy = Tlei
Inz, + Inz, =[lnr;+i(0;+2n,m)] +[Inr, +1i (0, + 2n,m)]
=[lnr, +Innr,] +i[(6; + 6,) + 2 (ny + n,)m]
=Inrr,+i[(0+6,) + 2nzm]
=In|z,z,| + iargz,z, = Inz,z,
Since 81 + 05 + 2 (ny + ny)m is one of the arguments of z; Z,
However, the familiar laws of logarithms are not necessarily true if we restrict

ourselves to a particular branch of In z.

Since Inz =In|z| +iargz
3n
In[i(=1+i)]=In(-1—-1i) =Inv2 — i~
s 3n
where Ini+In(-1+41i) = iE+ (ln\/f+ lT)

=InV2 + is—ﬂ
4
Clearly, the principal value of I(n [i(—1+ i)] differs from the sum of the
principal values of In i and In (—1 + i) by 2m i.
For principal values, the proper generalization of the familiar laws of logarithms

are contained in the following theorem whose proof we shall leave as an exercise.

Note :
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Inz; +Inz,— 2in; mn<arg+argz, <2m
(1) Inzyz, = {Inz; +Inz, ; —m<argz;targz, < m
Inzy +Inz, +2im; 2m<argz,+argz, <-m

5 Inzy —Inz,— 2im ; m<argz, —argz, <?2m
In=t = Inz; —Inz, ; —m<argz;—argz, < W
& Inzy —Inz, +2inm ; —2n<argz, —argz, < -7

InzZ™ = mlnz—-2kin

m an integer

Where K is the unique integer such that

(%argz — %) <k < (%argz +%)
(2) General powers of Z are defined by the formula.
z% = exp(alnz)
Since [N Z is infinitely many valued, so too in Z%, in general specifically.
z% = exp (alnz) = exp{a [In|z| + i (6, + 2nm)]}
= exp (aln|z|)e%01. e @™l
The last factor in the product clearly involves infinitely many different values

unless & is a rational number, say —, in which case, as we saw in our discussion of
q

De Movier’s theorem, there are only ¢ distinct values.

Example 6.4 What is the principal value of (1 + i)™

a

Sol. z% =-exp(alnz) = e

21+ D)% P =exp[(2— ) In(1+ )]
= exp {(2 —1) [ln V2 +i (% + 2nn)]}
Inz =1In|z| +i (6, + 2nm)

The principal value of this, obtained by takingn = 0, is
= exp [(2 —1) (ln V2 + l%)]
= exp [(21n \/§+%) +i(—ln V2 + %)]
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= exp (ln2 +%) + [cos(g—ln \/E) + isin(g—ln \/E)]
= e14785(sin 0.3466 + i cos 0.3466)

=1.490 +4.126 i
° The inverse trigonometric and hyperbolic function
These functions we define implicitly.

For instance W = coS™ 1z

We define as the value or values of W which satisfies the equation.:
ei W e—i w

2
From this, by obvious steps, we obtain successively

e2iW _27eW 4+ 1 =0

elW=z4+z2-1

and finally, by taking logarithms and solving for W.

w= cos lz= —iln(z+ Vz%2-1)

Since the logarithm is infinitely many valued, so too is cos™1z.

Z = CoOSw =

Similarly, we can obtain the formulas

sin"'z = —iln(iz+ V1 — z2)
1 i 1+z
tan” "z = —=In

i—2z

cosh™z= In(z+ Vz%2-1)
sinh™'z=In(z+ Vz%2-1)

tanh™1z = 1ln1 tz
2 1—2z

From, these after their principal values have been suitably defined by choosing the

plus sign preceding the square root and the principal value of the logarithm in each
case, the usual differentiation formulas can be obtained without difficulty.

° Polynomial functions :
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These functions are defined by

w=aqayz"+a;z"1+a,_1z+a, =P(2) (D)

Where a, # 0,a4,a,, ... ... ... ..., ay are complex constants and 7 is a positive
integer called the degree of the polynomial.

w = az+ biscalled alinear transform...(2)

L Rational Algebraic Functions : are defined by

P(z)
w =
Q(2)
(Sometimes (3) is called a rational transform)
Z+b

z+d
is often called a bilinear or fractional linear transform

(3) P(2),Q(z2)are polynomials

Special case W = z ,Wwheread — bc # 0

. w=e?= e*W = e¥[cosy+ isiny]
If & real and positive : a* = e#1"@
o Logarithmic Functions : If z = e" ,then we write
w=Inz
=Inr+i(8 + 2kn), k=0+1,+2,......

Principal value of In z (or principal branch) of iInz = Inr + i6, where0 <0 <
2m

However, any other interval of length 2 can be used. e.g
—nm< 6 <metc.

Ifz = a%
~w= log,z,wherea > 0anda # 0, 1.

6.6 Self Learning Exercise-I

Section A : Very Short Answer Type Questions
Q.1 Write down the Cauchy Riemann condition in polar form for a function to be
analytic?
Q2 f(2)=z?=x*>—y®)+2ixy
Is this function analytic?

Section B: Short Answer Type Questions
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Q.3 Obtain the general value of the log(1+i )+log(1—i)

Q.4 Prove Z1ZyZ3 = Z1 Zy Z3

6.7 Branch Points and Branch Lines

1
Suppose we are given the function Z2

We allow Z to make a complete circuit around the origin starting from point A
1

(Counter clockwise) w=z2
z=re'f
1 .
SW = TE elf
} 1,60
at point A, w=rze'z
z plane
81
5 ...} B
Figure6.5

After a complete circuit back to A, 8 = 6; + 2m

i(61+27) A
w=Are 2z = —re?2

Thus we have not achieved the same value of w with which we started.

However, by making a second complete circuit back to 4, i.e. 8 = 6, + 4,

i(01+47'r) iﬁ
w=A+re' 2 =ire'

and we do obtain the same value of w with which we started. We can describe the
above by stating that if 0 < 6 < 2m we are on one branch of the multiple valued

1
function zz , while if 2w < 0 < 41 we are on the other branch of the function.
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Each branch of the function is single valued .In order to keep the function single
valued, we setup an artificial barrier such as OB, where B is at oo (although any
other line from O can be used) which we agree not to cross. This barrier (drawn
heavy in the figure) is called a branch line or branch cut, and point O is called
branch point.

It should be noted that a circuit around any point other than z = 0 does not lead to
different values, thus z = 0 is the only finite branch point.

6.8 Ilustrative Examples

(24

Example 6.5 Evaluate f( )[(Zy + x2) dx + (3x — y)dy] along

0,3)
the parabola x = 2t,y = t% + 3.
Sol. Integral

1

= f [2(t? + 3) + 4t?]2dt + f [3(2t) — (t% + 3)]2dt

0

[/ (13 £3\* £z ¢3 !
=|(4(= - ——2——6t
<4<3+3t>+83>0+<122 i )

[ /1 8 1 1
= 4<—+ 3)+——0+12><——2><——6]

3 3 2 3
[ 10 8 2
= -4X?+§+6—§—6:|
40 8 2 46
~3%37373

Example6.6 Evaluate fc Z dz fromz = 0toz =4+ 21 along the curve C
givenby z = t? + it
Sol. Ifz=0,thent=0
z=4+2ithent =2
J, zdz = foz(t2 — it)(2tdt + idt)

2 8

l

= f [2¢3 dt — it?dt + tdt] = 10 —3
0

Theorem : Prove that if f(z) is integrable along a curve C having finite length

Land if there exists a  positive number M  such that
|f(2)] < M on C then
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<ML

Jf(z)dz

Proof : [ f(2)dz=lim, e Xj_y [ (&) Az
Now |X7_; f(E)Az] < o4l f (€ 1Az,|

n
< MZ|Azk|
k=1

<ML
Example 6.7 Prove Green’s Theorem in the Plane i.e. prove

¢ (Pdx+Qdy) = [[, (Z—i—g—z)dxdy

.HR —dxdy— ff[fy =y2(x) P d ]d

y=y1(x) ay
= [Py Sdx = [/1PCxy,) = P(xyp)ldx
= —fefP(x,yl)dx — ffeP(x,yz)dx
=—¢Pdx ()

similarly ff g—g dx dy = %Q dy (2)
R
~ Adding (1) and (2):

dex+Qdy—ff a—Q—a—P dxdy

Y
A
h H
14
o NA—
L f > X
Figure6.6
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6.9 Cauchy’s Integral Theorem

YA

Figure6.7 Integration path

The integral of a complex variable over a contour in the complex plane may be
defined in close analogy to the (Riemann) integral of a real function integrated

along the real x-axis.

We divide the contour Z Z(,) into n intervals by picking n — 1 intermediate points

Z1yZ7, «ur +ee s, o0 the contour. Consider the sum
n
Sn= ) F(E)(5 — 701
j=1

Where &; is a point on the curve between Z j and Z;j_ 1. Now let . — 0o with

|Zj — Zj_1| — 0 for all j. If the lim;, 000, Sy, €xists and is independent of the

details of choosing the points Z; and & then

lim " f (§)(5— 7-1) = jz f(2)dz
j=1 0

Nn—>0o0 00

If a function f(z) is analytic (therefore single valued) and its partial derivatives

are continuous throughout some simply connected region R (A simply

connected region or domain is one in which every closed contour in that region
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encloses only the points contained in it), the line integral of f(z) around C is zero

J. f(@dz=¢ f(z2)dz=0
f f(z)dzzf (u+iv)(dx+idy)
=§(udx—vdy)+if(vdx+udy)

¥y

A

(]

Figure 6.8 A closed contour C within a simply connected region R

Stokes’s Theorem Proof : These two line integrals may be converted to

surface integrals by Stokes’s Theorem, then a procedure that is justified if the

partial derivatives are continuous within C.

-

Using =10 + v,J = ¢ #.dl=§ Vxi.dd
ov
_ y x
£ (vxdx+vydy)— f[ax _W] dx dy

f f(z)dz=f(udx—vdy)+if(vdx+udy)
c
_f[—av au]d p +f_[6u av]d dv = 0
B d0x ayxy laxayxy_
(Using CR condition )
Cauchy-Goursat Proof :
In the Stoke’s theorem proof Cauchy’s integral theorem, the proof is marred from a
theoretical point of view by the need for continuity of the first partial derivatives.

Actually, as shown by Goursat, this condition is not essential. An outline of the

Goursat proof is as follows :
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We subdivide the region inside the contour C into a network of small squares as
indicated in figure. Then

YA

/'\\
J/
v

et
0

2

Figure6.9 Cauchy Goursatcontours

f f(z)dz = Z ) f(z)dz
c — /¢,

For§, f(z)dz ,We construct the function :
J

_f@-1(z) df@
6f(z’zf) T z-z5 dz

,Z; is an interior point of the j*"subregion
Z=Zj

Approximation to the derivative at z = Z;

8;(z,2)~(z — z), approaching to zero as the network was made finer we may
take

|6;(z,2)| < €
Where € is an arbitrary chosen small positive quantity.

Solving for f(z) and integrating around c; , we obtain

f f(z)dzzf (z—zj)5j(z,zj)dz

J J
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The consequence of the Cauchy integral theorem is that for analytic functions, the
line integral is a function only of its end points, independent of the path of
integration :
Z2 2
[r@as=re-re = - [ o
Z Z2

again exactly like the case of a conservative force.

6.10 Multiply Connected Regions

The original statement of Cauchy Integral Theorem demanded simply

connected region.
This restriction may easily be relaxed by the creation of a barrier ,a cut line.

Consider the multiply connected region of figure (a), in which f(z) is not defined
for the interior R’

Cauchy’s integral theorem is not valid for the contour C, as shown but we can

construct a contour C' for which the theorem holds.

We cut from the interior forbidden(egion R’ to the forbidden region exterior to R
and then run a new contour C’' | as shown (b)

v A

>
X

Figure6.10 A closedcontour Cina

multiply connected region
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>
X

Figure6.11 Conversionof a multiply connected region

into asimply connected region

The new contourC’ through ABDEFGA never crosses the cut lines that literally

converts R into a simply connected region.

.. (A D
cf f(2dz= — [ f(2)dz,

f(z) having been continuous across the cut line segments DE as GA. Arbitrarily
close together

Then Sﬁc, f(2)dz = fABD f(z)dz + fEFG f(z)dz=10

Applying again equation I f(2)dz=F(z,)-F(z,)=— I f(2)dz

2 2

With ABD - C; and EFG — —C;,we obtain

gﬁc, f(z)dz = gﬁc, f(z)dz
1 1
In which €] and C; are noth travesed in the same (Counter clockwise) direction.

It should be emphasized that the cut line here is a matter of mathematical

convenience, to permit the application of Cauchy’s integral theorem. Since f (2) is
analytic in the annular region, it is necessarily single valued and continuous across
any such cut line. When we consider branch points our functions will not be single
valued and a cutline will be required to make them single valued.
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6.11 Self Learning Exercise-11

Section A : Very Short Answer Type Questions

Q.1 Evaluate fil(z + 1)2%dz
Section B : Short Answer Type Questions

Q.2 Show that for any analytic function f/=u+iv ,the following relation must hold
|Au| = [Av|
Q.3 What do you mean by Branch points?

6.12 Summary

This chapter summarizes some of the important theorem regarding analytic
functions. These are Cauchy-Riemann conditions and Cauchy integral theorem.
These are basic to further advance in the theory of functions of complex variables.

6.13 Glossary

Mar : to spoil something, making it less good or less enjoyable

Annular : Ring-shaped

6.14 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1

du _1dv ov 10u
An 01: —_——_— — = ——— 2 .
S o T a0 ar 730 Ans.2: Analytic

Ans.3: log2+4nTtli

Answer to Self Learning Exercise-11

10-2i

Ans.1:

6.15 Exercise

Section A : Very Short Answer Type Questions
Q.1 What do you mean by Analytic function?

Q.2 Evaluatef Om z cosz?dz

Section B : Short Answer Type Questions
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Q.3 Derive the necessary and sufficient condition for a function to be analytic.
Section C : Long Answer Type Questions
Q.4 Which of the following are analytic functions of complex variable z=x+iy
(i) |z| (i) Re.z (iii) sinz (iv) logz

Q.5 State and prove Cauchy’s integral theorem.

6.16 Answers to Exercise

Ans.2: — Esinﬁ2

Ans.4 : (1) Not analytic (i1) Not analytic (ii1) analytic (iv) Not analytic

References and Suggested Readings

1. George B. Artken, Hans J. Weber ,Mathematical Methods for Physics, Se,

Academic Press2001.
2. Satya Prakash ,Mathematical Physics with Classical Mechanics, , Sultan

Chand & Sons.1999
3. Erwin Kreyszing, Advance Engineering Mathematics, , Wiley student
edition2000
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UNIT -7
Cauchy’s Integral Formula, Laurent

expansion, Analytic Continuation

Mapping

Structure of the Unit
7.0 Objectives

7.1 Introduction

7.2 Cauchy’s Integral Formula
7.3 Laurent Expansion

7.4 Analytic Continuation

7.5 Self learning exercise-I

7.6 Laurent Series

7.7 lllustrative Examples

7.8 Self learning exercise-II

7.9 Summary
7.10 Glossary
7.11 Answer to Self Learning Exercises
7.12 Exercise
7.13 Answer to Exercises
References and Suggested Readings

7.0 Objectives

This chapter introduces most fundamental formulae in the theory of the functions
of complex variables. These include Cauchy’s integral formula, Laurent expansion
and the Concept of analytic continuation.

7.1 Introduction
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In this chapter we deduce a remarkable result concerning analytic function f(z)
that is analytic on a closed contour C and within the interior region bounded by C.
We shall deduce that the value of an analytic function f(z)is given at an interior
point once the values on the boundary C are specified. This result is Cauchy’s
integral formula. This result guarantees not only the first derivative of f(z) but
derivatives of all orders as well. This formula opens up the way for the derivative

of Taylor’s series.

7.2 Cauchy’s Integral Formula

We consider a function f(z) that is analytic on a closed contour C and within the
interior region bounded by C. We seek to prove that :
flz)dz .
95—2(_)20 =27i f(z,) a1
In which Zz; is some point in the interior region bounded by C.
Note : carefully that since z is on the contour C while Z;is in the interior,
Z — Zg # 0 and the integral (7.1) is well defined.

Y A

0
=4
P

e~ Contour line

> X

Figure7.1 Exclusion of singular point

: : : f(2) . : _
Although f(Z) is assumed analytic, the integral is not analytic at Z = Z.

Z—Zg
Cauchy’s integral theorem applies :
f@  _f [@dz_
¢ Z—Z ¢, Z— %o
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Where C = original contour

C,= Circle surrounding the point Z; transvered in a counter clockwise

direction.

Letz=2y+ r e'® Here r is small and will eventually be made to approach
Zero.

. f(2)dz f(zo +rei®) §

— i0
¢, Z— % . re

ie?de

Taking the limit as r — 0, we obtain

f(z)dz

Z_ZO

=tf(zo)f do =21 f (20)

C2

Since f(z) is analytic and therefore continuous at z = Zj.

If z, is exterior to C, in this case the entire integrand is analytic and either C,
Cauchy’s  integral  theorem  applies and the integral vanishes.

1 . f(2)dz f(ZO) ; z, interior

2ric (z—z,) 0 , z, exterior

(7.2)

Derivatives :

Cauchy’s integral formula may be used to obtain an expression for the derivative
of f(z). From (7.1) with f(z) analytic

f (2 — 82p) — f(20)

0z,

S (OB S (OR)

2midzg\] z—2zy— 62, Z—2Z

Then, by definition of derivative :

N s 1 8z, f(2)
f(z0) = 51z10120 2mibz, <§ (z—20)(z—2zy— 62p) dZ)

F(2) = 1 $ Z]:(j)zdz

2mi o)
This technique for constructing derivatives may be repeated :
2 f(z)dz
f(z) (ZO) = - f 3
2ni ) (z — z,)
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(e~ L

2 (Z—ZO)"+1

(7.3)

That is ,the requirement that f (z) be analytic not only guarantees a first derivative
but derivatives of all orders as well.

For example

Y

(D).

NSEw

Figure7.2

d o
I=¢ =~ , Where C is a simple closed curve.
c z

1 .
The function w(z) = 2 is analytic for any value of z except for z = 0. If

therefore, the simple closed curve C enclosed the origin, let us draw an arc C; of

small radius 7 with center at the origin as shown.

1
Since 2 is analytic in the region between C;and C we have

dz dz .
¢ —= ¢§ — ,Now on circle
c z €1 z

z=rel, dz=rie?do
@dz B @ dz |0  If C doesnotencloseorigin
z 2w If C enclosesorigin

z

c G

7.3 Laurent Expansion

The Cauchy integral formula opens up the way for another derivation of Taylor’s
series, but this time for functions of a complex variables.

Suppose we are trying to expand f(Z) about Z = z; and we have z = z; as the

nearest point on the argand diagram for which f (z) is not analytic.
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We construct a circle C centred at Z = Z with radius

|z" = zo| < |2y = 2ol

Since z; was assumed to be the nearest point at which f(z) was not analytic f(z)

is necessarily analytic on and within C.

ImZz

="

Figure7.3
From the Cauchy integral formula.
1 f(z")dz'
f&) = 2mi J, (z' —2z)
=L g 7 (z)dzr
T 2mi Yo (2'-zp)-(z—20)
1 f(z")dzr
- % c r_ _((z=2¢) ]
(#'=7o) [1 ((Z'—Zo)>

Here z' is a point on the contour C and Z is any point interior or to C.

It is not rigorously legal to expand the denominator of the integrand by the

Binomial theorem, for we have not yet proved the complex variables. Instead we

note the identity.
1

—=1+t+ 2+ + = B t"

153



Which may easily be verified by multiplying both sides by 1 —t. The infinite
series is convergent for |t] < 1.

Now for point Z interior to C,. |z — z,| < |z" — z,|, -Using (7.4) we get from
p g g

(7.1)

(z —zy)™ N
f(Z)_me Z(z Z)”“f( z)dz

Interchanging the order integration and summation

d
) =5 Z(z—zo)n S

. (@
f( )
= E Yoz — zp)". — = 2mi
(,, Sﬁ f(z)dz me”(zo))
' (z—zy)n*1 - n!

Which is our desired Taylor expansion.

Note that it is based only on the assumption that f(z) is analytic for

‘z - ZO‘ < ‘Z’ — ZO‘ . Just as for real variable power series, this expansion is unique for
a given Z.

From the Taylor expansion for f(z) a binomial theorem may be derived.

Schwarz Reflection Principle :

From the binomial expansion of g(z) = (z — x)™ for integral n it is easy to see

that the complex conjugate of the function is the function of the complex
conjugate:

9 (@)= (z—x)™ = (2" —x)" = g(2")
This leads us to the Schwartz reflection principle.

If a function f(z) is (i)analytic over some region including the real axis and
(ii)real when Z is real, then f*(z) = f (z7)
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f(z)=u(x,-y)+ iv(x,—y)
=/ (Z*): u(x,-y)- iv(x,—y)

» 1

f(z*):”(x" y) + iv(X,- y)
=)= uy)- w(xy)

Figure7.4 Schwartz Reflection

7.4 Analytic Continuation

In the foregoing discussion we assumed that f(z) has an isolated non analytic or
singular point Z = Zz;.

For a specific example of this behavior consider

f@ =1

1+z
which becomes infinite at z = —1. Therefore f(z) is non-analytic at z; =
—1 or z; = —1 is our singular point.

Using Taylor Expansion formula:

& ()
f@ = @z P2%) it follows that
~ n.
=1 —z4 22— 234 YO (—1)"z" (7.5)

1+z

Convergent for |z| < 1

If we label this circle of convergence C; eq.(7.5) holds for f(Z) in the interior of

C, which we label region S .

The situation is that f(z) expanded about the origin holds only in S; (and on
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Ciexcluding z; = —1), but we know from the form of f(Z) that it is well defined

and analytic everywhere in the complex plane outside S .

y

Figure7.5 Analytic Continuation

Analytic continuation is a process of extending the region in which a function such
as the series (7.5) is defined :

For instance, suppose we expand f (Z) about the point Z = i. we have
1 1
1+z 1+4+i+ (z—1)
1

(1+1) (1+ i—:)

_in-1
= = (1+%)
1+1 1+1

(2) = 1 1 z—i+<z—i)2
f(z =177 157 T57) e

f(2) =

Convergent for |z —i| < |1 +i| =2

Our circle of convergence is C, and the region bounded by C, is labeld S,. Now
f(2) is defined for S, and extends out further in the complex plane.
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This extension is an analytic continuation, and when we have only isolated singular

points to contend with, the function can be extended indefinities.

Permanence of Algebraic form :

All elementary functions e?,sin z and so on can be extended into the complex
plane. For instance, they can be defined by power series expansions such as

eZ=1+=+ z + = Zflozoi for the exponential.
1! 2! n!
Such definitions agree with the real variable definitions along the real x-axis and
literally constitute an analytic continuation of the corresponding real function into
the complex plane. This result is often called permanence of the algebraic form.

7.5 Self Learning Exercise-I

Section A : Very Short Answer Type Questions
Q.1  Write down the Cauchy’s Integral formula.
Section B: Short Answer Type Questions

Q.2 What do you mean by Analytic Continuation

Q3  Showthat— $z™ " dz = 8,

(with the contour encircling the origin once counter clockwise)

z+4

Q.4 Evaluate f C J212g15

dz,where Cisthecircle |z+ 1| =1

7.6 Laurent Series

We frequently encounter functions that are analytic in an annular region, say of
inner radius 7 and outer radius R.

Drawing an imaginary contour line to convert our region into a simply connected
region, we apply Cauchy’s integral formula, and for two circles C, and

Cy, centered at Z = Zy and with radii r, or 1y respectively, where r <1, <1y <
R, we have

f() = 1 f f;z’zdz’ 1 f(z")dz'

2mi z  2mi ., (2'—2)
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Contour
line

Figure7.6

Wewrite z' —z = (z' — zy) — (z — 2zp)
Note that for C; ; |z’ — zo| > |z — 2|
While for C,; |z' — z4| < |z — z,|

We find :

)d
F@) = Z( O R Cerni

Z0)n+1
+ ﬁ Z(Z —2zy)™" £2 (z' = zy)" 1 f(2)dZ'

The minus sign has been absorbed by the binomial expansion.
Labeling the first series S; and the second S,.
1 f(z")dz'
s Z( RON Bt
17 omi 0 o (2" —2zp)"t
Which is the regular Taylor expansion, convergent for |z — zy| < |z’ — zy| = 1,

That is, for all Z interior to the larger circle C;.
For the second series, we have

1

S
2 Zm

Z( “w T @ ar @)

n=
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Convergent for |z — zy| > |z’ — zy| = r,, that is, for all z exterior to the smaller

circle C,. Remember C, now goes counter clockwise.

The two series may be combined into one series (a Laurent series) by

] 1 (z)dZ'
1(2)= S ez wherea, 5L

n=—00

Note :-

Frequently our interest in a function will be restricted to its behavior at the points

of some specified part of the z-plane. However before we can undertake

discussions of this sort, we must define and explain some of the simpler properties

of the sets of points we intend to consider.

Neighborhood of a point Zy, we mean any set consisting of all the points which

satisfy an inequality of the form : [z — zy| < € ,€ > 0

Geometrically speaking a neighborhood of z thus consists of all the points within

but not on a circle having z, as center.

Important Points :-

> A point Z, belonging to a set S is said to be an interior point of S if there exists
at least one neighborhood of z; whose points all belong to S.

> A set each of whose points is an interior point is said to be open.

> A point Zy not belonging to a set S is said to be exterior to S or an exterior

point of S if there exists at least one neighbor hood of Zy none of whose points
belongs to S.

» Intermediate between points interior to S and point exterior to S are the
boundary points of S.

» A point z, is said to be a boundary point of a set S if every neighborhood of
Z contains both points belonging to S and points not belonging to S.

> A point Z; is said to be a limit point of a set if every neighborhood of the point
contains at least one point of the set distinct from z.

> A set which contains all its boundary points is said to be closed.

> Clearly, a set can be defined to contain some but a not all its boundary points;
hence it is clear that set may be neither open nor closed.
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» If a set S has the property that every pair of its points can be joined by a
polygonal line whose points all belong to the set, it is said to be connected.

» An open connected set is said to be a domain.

» A set consisting of a domain together with none, some, or all its boundary
points is called a region.

> A connected set S with the property that every simple closed curve which can
be drawn in its interior contains only points of S is said to be simply connected.

» If it is possible to draw in S at least one simple closed curve whose interior
contains one or more points not belonging to S, then S is said to be multiply
connected.

> If there exists a circle with a center at the origin enclosing all the points of a set

S, that is, if these exists a number d such that

|z| <d forallzinS  ,thenS is said to be bounded.

> A set which is not bounded is said to be unbounded.

» The set consisting of points between two concentric circles is said to be an

annular region or annulus.

Figure7.7 (a),(b)

Si: lz—zl < ny
S, < |z—zyl <my
Sy 1 < |z =zl

> S consists of all points interior to circle |z — z,| = r;. It is bounded and simply
connected. Since the points on the boundary circle |z — zy)| =1, are not
included in the definition of S; ,the set is open and is therefore a domain.
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» The set S, consists of all the points in the annulus between the circles
|z — z4| =1, and |z — z,| = r, plus the point on the inner boundary of the
annulus but not those on the outer boundary.Since S, thus contains some but
not all of its boundary points ,it is neither open nor closed and is therefore

neither a domain nor a closed region.

» Clearly, there are closed curves in S,, namely, any curve encircling the inner
boundary, which encloses points not belonging to S,, namely, the point of
S;:.Hence S, is multiply connected. Obviously S, is bounded.

The set S; consists of all points on and outside the circle |z — zy| = 1,. It is
therefore unbounded, closed and multiply connected.

Example 7.1 . If f(z) = 5= ,show that

lim,_o[lim,, ¢ f(z)] = 1 and lim,_o[lim,_, f(2)] = 1

But that lim,_, f (z) does not exist.

Sol. Clearly hmx_>0 [llmy_>0 (rt 3;)2] = hmx_>0[1] =1

And lim,_,, [limxﬁo (XZT;) ] = lim,_,[1] =1

On the other hand, for lim,_, f(z) to exist ,it is necessary that f(z) approach the
same value along all paths leading to the origin, and this is not the case, for along
the path y = mx, we have
o e 221+ m)?
hmf(z) hm 0x2+y2 = Xz [1+ m?]
The limiting value have clearly depends on m, i.e.f(z) approaches different values

along different radial lines and hence no limit exists.

Because simply connection regions are in many respects easier to work with then
multiply connected regions, it is often desirable to be able to reduce the later to the
former through the introduction of auxiliary boundary arcs, or cross cuts, joining
boundary curves that were originally disconnected. The modified region is
therefore simply connected, as desired.

Mapping :
w=f(z)=ulxy+ iv(xy)

Then for a point in the Z-plane (specific values for x and y) there may correspond
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specific values for u(x, y) and v(x, y) ,which then yield a point in the w-plane.

Our purpose is to see how lines and areas map from the z-plane to the w-plane for

a number of simple functions.
A. Translation :

w=z+2, =x+iy+ xo+iyg
=+ x0) + i (¥ + o)
=u+iv
u=(x+xp)
v=©+ Yo)
y v

Figure7.8 Translation

Rotation :

w = zz, Here it is convenient to return to the polar representation, using

w=pe?, z=re?, z,=ryel
o pel? =7, ei0+60)
y
A zZ A\f w
pIT,
(O,l) 7,
0
13
e o
» X > U
(1,0)

Figure7.9 Rotation
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The modules r has been modified, either expanded or contracted by the factor 1.

Second, the argument 6 has been increased by the additive constant 6,.This
represents the rotation of complex variable through an angle 6,.

: . . s .
Special case of z, = i, we have a pure rotation through > radians.

Inversion :

:rl , 6= —6 N 0y

The first part of (A) shows that inversion clearly. The interior of the unit circle is
mapped onto the exterior and vice-versa.

Y y

A _1

(O.1) (0,1)

\ 4

Figure7.10 Inversion

To see how lines in the z-plane transform into the w-plane. We simply return to the
Cartesian form :

1
w=-
VA
1 x—i
u+iv= — = 4
x+iy x%+y?
X
u+iv= —1i 4
x2+y2 x2+y2
X y
u= , V= —
x2+y2 x2+y2
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u X
Z = _2 1
b= 2 (1)
yE
cu= v
2 U 2
ye,z Tty
2
2( W
G I
or = —
y v
- @)
y ul+v?
u _ u X
X=——-—" since — = ——
u? + v? v y

A circle centered at the origin in the z-plane has the form :

X%+ y? =12
u? + v? 5
(u2+v2)2:r
1

uz+vz—r—2=p2

which describes a circle in the w-plane also centered at the origin.

Using (2),the horizontal line y = ¢; transforms into

—v
——=c
u? + v? 1
2 1)? 1
ot (vht) =t
2¢y (2¢1)?
. . . . . 1
which describes a circle in the w-plane of radius ;and centred at u = 0,v =
1
1.
2 b
° Instead of transformations involving one to one correspondence of point

involving one to one correspondence of points in the z-plane to the points in the w-

plane. Now to illustrate the variety of transformations that are possible and the

problems that can arise, we introduce first a two to one correspondence and then a

many to one correspondence.
Consider first the transformation :
w = z?

p = r? Non linear , &=20 phase angle of the argument is doubled
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First quadrant of z; 0 < 6 < g = upper half plane of w; 0 < ¢ < 7.

Upper half plane ofz; 0 < 8§ < m = whole plane of w; 0 < ¢ < 2m.

The lower half plane of Z maps into the already covered entire plane of w, thus
covering the w-plane a second time. This is our two to one correspondence, two
distinct points in the z-plane, Zy and z, e™ = —z,, corresponding to single point
w = 2,2 (two to one transform)
In Cartesian representation :
w=z"
=u+tiv=_(x+iy)?
=x?—y*+2ixy
U= xZ _ yZ
& v =2xy

Hence the lines u = ¢;, v = ¢, in the w-plane correspond to x? — y? = ¢y, 2xy =

c,, rectangular (and orthogonal) hyperbolas in the z-plane.

y v
A 2Xy=c, . A w
u=c
v=c,
< > 1/

Figure7.12 Mapping — Hyperbolic coordinates

To every point on the hyperbola x? — y? = ¢, in the right half plane x > 0, one

point on the line u = ¢; corresponds and viceversa.

7.7 Mlustrative Examples

Example7.2 Find the Laurent series about the indicated singularity for the
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following function. Name the singularity in this case and give the region of

2Z
z=1

convergence —_— =
g (Z_1)3 )

Sol. z—1=v

Then.z=1+v and

2z 2+2v 2

e e e

z-1° W? 3°

v

e? 2v)? (2v)® (Q2v)*
— 1
(v)3{ P2
e? 2e? 2e%  4e? 2e?

(Z_1)3+(Z_1)2+Z—1+ 3 + 3 z-1+-

z = 1 1is a pole of the order 3 or triple pole.

7.8 Self Learning Exercise-II

Section A : Very Short Answer Type Questions
Q.1 Write the Laurent series expansion formula.

Section B : Short Answer Type Questions

2T n= -1
0 n+-1

Where the contour C encircles the point z = z, in a positive (counter clockwise)

Q.2 Show that § (z — zy)"dz = {

sense. The exponent n is an integer.

1
Q.3 (a) Prove that the sequence {an

such that|z| > 2
(b) Can the region of uniform convergence in part (a) be extended ? Explain.

} is uniformly convergent to zero for all z

7.9 Summary

In this chapter we have summarized the derivation of Cauchy’s integral formula
and its application to the Taylor’s expansion. We have studied Schwarz reflection
principle and the concept of analytic continuation.

7.10 Glossary

Contour : An outline representing or bounding the shape or form of something:

166



Mapping :An operation that associates each element of a given set (the domain)

with one or more elements of a second set (the range).

7.11 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1

Ans.1: We consider a function f(z) that is analytic on a closed contour C and
within the interior region bounded by C.

f(z)dz

Z_ZO

= 2mif(2)

c
In which z; is some point in the interior region bounded by C.
Ansd4: 0

Answer to Self Learning Exercise-11

Ans.l:  f(2) = Xr_way(z—zy)"

"d
Where a,, = P gﬁ flz )z

(Z’ z )n+1

11
Ans.3: (b) If § is any positive number, the largest value of{ = in|z| =6

=1
occurs for |z| = 6 and is given by { }As in part (a),it follows that the

sequence converges uniformly to zero for all z such that |z| > 8.i.e. in any region
which excludes all points in a neighborhood of z=0.

Since § can be chosen arbitrarily close to zero,it follows that the region of (a)
can be extended considerably.

7.12 Exercise

Short Answer Type Questions

|z| = 2

in a Laurent series valid for

Q.2 Expand f (Z) = 3)

(a)lz] <3 (b) IZI >3
Long Answer Type Question
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. . . o (z+2)"!
Q.3 Find the region of the convergence of the series anl (n+1)34m

z+i

1 ©o
Q4 If Fy(2) = =0 (55

Yoo o(2)™, showing graphically the regions of convergence of the series.

n
) is an analytic continuation of F;(z) =

7.13 Answers To Exercise

1 1 1 1
Ans.2: (a) —-— -z ——z%2 ——=2z3 — ..
3 9 27 81

(b)z '+3 27492 277 +......

Ans.3: Hint: The given series converges absolutely for |z + 2| < 4.Geometrically
this is the set of all points inside and on the circle of radius 4 with center at z=—2,
called the circle of convergence .The radius of convergence is equal to 4 .
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UNIT-8

Calculus of Residues

Structures of the Unit
8.0 Objectives

8.1 Introduction

8.2 Calculus of Residues

8.3 Calculus of Residues : (Residue Theorem)
8.4 Tllustrative Examples

8.5 Evaluation of Definite Integrals

8.6 Illustrative Examples
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References and Suggested Readings

8.0 Objectives

In this chapter we define the singular point Z,of the function J(2)if f(2) is not

analytic at Z=2Z;but is analytic at neighboring points. We deduce Cauchy’s residue

theorem and use it to evaluate definite integrals.

8.1 Introduction
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Definite integrals appear repeatedly in problems of mathematical physics as well as
in pure mathematics. Three general techniques are useful in evaluating definite
integrals viz. contour integration, conversion to gamma or beta functions, and

numerical integration.

The method of contour integration is perhaps the most versatile of these methods,
since it is applicable to a wide variety of integrals. In this chapter we introduce the
different methods of evaluation of definite integrals.

8.2 Calculus of Residues

Singularities : The Laurent expansion represents a generalization of the Taylor

series in the presence of singularities. We define the point z, as an isolated
singular point of the function f(z) if f(z) is not analytic at z = z, but is analytic at

neighboring points. A function that is analytic throughout the entire finite complex
plane except for isolated poles is called “meromorphic”.

Poles : In the Laurent expansion of f(z) about z, :
f@D= ) aG-z)" @

Ifa,=0forn< —m < 0and a_,, # 0, we say that z, is a pole of order m. For

(z—2o)
series, we have a pole of order one, often called a simple pole.

instance, if m =1, i.e. if is the first nonvanishing term in the Laurent

If on the other hand, the summation continues to n = —oo, the z,is a pole of
infinite order and is called an essential singularity of f(z).

The essential singularities have many pathological features. For instance, we can
show that in any small neighborhood of an essential singularity of f(z) the
function f(z) comes arbitrarily close to any (and therefore every) preselected
complex quantity w, (Due to Picard theorem) Literally the entire w-plane is
mapped into the neighborhood of the point z,. One point of fundamental difference
between the a pole of finite order and an essential singularity is that a pole of order
m can be removed by multiplying f(z) by (z — z,)™. This obvious can not be done

for an essential singularity.
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The behavior of f(z) as z = oo is defined in terms of the behavior of f (%) as
t—0.

Consider the function :
had (—1)" z2n+1

sihz = s @n+1)!

n=

1
As z — oo, we replace the Z by 7 to obtain

sin (%) = ) L

- (2n + 1)! t2n+1
n=0

Clearly, from the definition, sin z has an essential singularity at infinity.

sinz = siniy,=isinhy whenx = 0, which approaches infinite

exponentially as y — oo.

Branch Points :

There is another sort of singularity that will be important in the latter sections.
Consider f(z) = z%, here a is not an integer.

As Z moves around the unit circle from e to e?™,

f(z) = e?™ = ¢% for nonintegral a.

We have a branch point at the origin another at infinity. The points e®and e?™ in
the z-plane coincide but these coincident points lead to different values of f(z);
that is f(z) is a multivalued function.

The problem is resolved by constructing a cut line joining both branch points so
that f(z) will be uniquely specified for a given point in the z-plane.

Note carefully that a function with a branch point and a required cut line will not
be continuous across the cut line. In general, there will be a phase difference on
opposite sides of this cut line. Hence line integrals on opposite sides of this branch
point cut line will not generally cancel each other. Numerous examples of this are

given below :

The contour line used to convert a multiply connected region into a simply
connected region is completely different. Our function is continuous across the
contour line, and no phase difference exists.
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We can take following example
Consider the function : £(2) = (22 — 1)z = (z + 1): (z = 1)

1
The first factor on the right hand side, (z + 1)2 has a branch point at z = —1.
The second factor has a branch point at z = +1.

To check on the possibility of taking the line segment joining z = +1 and
z = —1 as a cut line, let us follow the phases of these two factors.

as we move along the contour shown in Fig.

Y

A

S

3 2
4 -1 +1 1
L vy 1
vs

a

v
v
-

Figure 8.1

For convenience in following the changes of phase letz+1=re® and

letz—1=pe"
. B+¢
~.phase of f(z) is —

We start at point 1 where both z + 1and z — 1 have a phase of zero. Moving from

point 1 to point 2, ¢, the phase of z — 1 = p e’ increases by.

m (z — 1becomes negative).The phase ¢ then stays constant until the circle is
completed, moving from 6 to 7. 6, the phase of z+ 1 =r e'® shows a similar
behavior, increasing by 2 as we move from 3 to 5.

1 1011 64D iy
The phase of the function f(2z) = (z+ 1)z (z — 1)z =rz pze 2z is —.

2
This is tabulated below:

Phase angle :
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Points 6 ¢ 0+9¢
2
1 0 0 0
2 0 m T
2
3 0 m r
2
4 T T T
5 21 T 3m
2
6 21 T 3m
2
7 21 21 21

Two features emerge :
1. The phase at points 5 and 6 is not the same as the phase at point 2 and 3. This
behavior can be expected at a branch point cut line.

2. The phase at point 7 exceeds that at point 1 by 2m and the function

f(2) =(z°— 1)§ is therefore single valued for the contour shown, encircling the
both branch points.

If we take the x-axis —7 < x < 7 as a cut line, f(2) is uniquely specified.

Alternatively the positive x-axis for x > 7 and the negative x-axis for x < —/ may
be taken as cut lines. The branch points cannot be encircled and the function

remains single valued.
Generalizing from this example we have that the phase of a function.
f@) = f(2.f(2).f,(2) ..
is the algebraic sum of the phase of its individual factors.

arg f(z) =arg f,(z) +arg f,(z) +arg f;(2) +...

Wherearg f(z) = tan™' (ij
ui
For the case of a factor of the form : ]f (2)=(z —ZO) ,the phase corresponds to the

phase angle of a two dimensional vector fromz, to z ,the phase increasing by 2 »

173



as the point +z, is encircled. Conversely the traversal of any closed loop not
encircling z does not change the phase of z — z,.

Note : Liouville’s theorem : A function that is finite everywhere (bounded) and

analytic must be a constant.

8.3 Calculus of Residues : (Residue Theorem)

0

If the Laurent expansion of a function f(z)= z a,(z—z,)" is integrated term

by term using a closed contour that encircles one isolated singular point Zonce in a

counterclockwise sense, we obtain

n+l1

n+l |71
an¢ (z—2z,)"dz = {an ﬂ} =0 forall n#-1 (i)
However, if n=-1
ire'’do

-1 _ _ .
aﬁlcﬁ(z —z,) dz= aﬁgﬁ o 2ria_, i)

From (1)&(ii)

L z)dz =
..27Ti<_|5f( )iz =a.,

The constant a_,, the coefficient of (z —ZO)_lin the Laurent expansion, is called
the residue of f(z) at z = Z,.

y
A

P

» X
Figure 8.2 Excludingisolated Singularity
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A set of isolated singularities can be handled very nicely by deforming our contour
as shown in figure8.2. Cauchy’s integral theorem leads

The circular integral around any singular point is given by

¢ f(@)dz+§ f(2)dz+§ f(2)dz + f (2)dz +...=0

<J.>f (2)dz =-2mia_,, (Clockwise assuming a Laurent expansion about the
C;

singular point Z =Z;.

4) f(z)dz = 2zi[Sumof theenclosed residues |
C

This is the residue theorem.

The problem of evaluating one or more contour integrals is replaced by the
algebraic problem of computing residues at the enclosed singular points.
For example if we take
1 O+ (-]
z(z-1) (z-1)°

For
O<‘Z—1‘<1
1 1 ) 3
2(z—-1)° :(2_1)2 {1_(2_1)+(2_1) —(z-1) +}
1 1
Ty eopTEDE

This function has a pole of order 2 at - = 1 and its principal part there is
11
-7 (z-)

In fact if the Laurent expansion of f(z) in the neighborhood of an isolated singular

point z = a contains only a finite number of negative powers of (z—a), thenz=a is

called a pole of f(z).If (z—a)™" is the highest negative power in the expansion,
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the pole is said to be of order m and the sum of all terms containing negative

powers namely

_ ) _
am o +-2 >+ a is called powers of part of f(z) atz=a
(z—a)" (z—a)” (z—-a)

The Laurent expansion of f(z) in the neighborhood of an isolated singular point z =

a contains infinitely many negative powers of z—a ,then z = a is called essential
singulars of (z).

1
On the other hand e? is represented for all values of z except z= 0 by the series

1
er =1+—+—0

1
et
z ]_z 3 22

It has an essential singularity at the origin.

8.4 Illustrative Examples

-3z+4

Example 8.1 What is the integral of f(z) =
z(z-1)(z-2)

Around the circle ‘Z‘ =—

A B C
Sol. Let f(z)=—+——+
z z-1 z-=-2

—3z+4  Az-D)(z-2)+B(z)(z-2)+C(£)(z-1)
2(z-1)(z-2) z2(z=1)(z=2)
A{2 =3z+2}+ B(Z" - 22)+ C(* - 2)
z(z-1)(z-2)

By comparing powers of z
34-2B-C=-3, 24=4, A+ B+C=0
Solving this we get4 =2,B =-1,C = -1
1) _£+i+ c 2 1 1

Zzlz2zz—lz—2
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In this case, although there are three singular points of function namely, the three
first order poles at z=0,z=1 and z=2. Ones z = 0 and z = 1 lie within the path of

integration.
Hence the core of the problem is to find the residues of f(z) at these two points

We write

@)=t

z z—1 z-=-2

=z+(l—z)_1 +(2-2)"

2
=2+(l+z+zz +...)+21(1+£+(£j +...)
z 2 2

2 5 1 z zZ°
=—+(I+z+z"+. )+ (=+—+—= +...
z ( ) (2 4 8 )

2 35 9,
=S+t .
z 8

1
Thus the residue of f(z) at z = 0, that is the coefficient of the term — in the last
z

expansion is 2. Also in the neighborhood of z =1, we have

f@)=2[1+E-D]" —i+[1—(z—l)]_l
=1—(z=1) +(z—1) +...]—%1+[1+(Z—1)+(Z—1)2 +....]

S S VN I
z—1

Hence the residue of f(z) atz=1 is —1.

Therefore according to the residue theorem

J' —3z+4

I 2)dz = 27i[2+ (-1)] = 27i

c
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Since the determination of residues by the use of series expansions in the manner
just illustrated is often tedious and sometimes very difficult, it is desirable to have
a simpler alternative procedure. Such a process is provided by the following
considerations. Suppose first that f(z) has a simple or first order, pole at z = 1. It

follows that we can write :

a—l

f(@)=

If we multiply this identity by (z— a) , we get

z

(z—a)f(z)=a_ +a,(z—a)+a(z—a)’ +.....

Now let z —» a , we obtain for the residue

For firstorder pole,residueis a_ =lim(z—a)f(z)

If f(z) has a second order pole at z = a, then

a., N a_,
(z—a)* (z-a)

f(z) = +a,+a(z—a)+a,(z—a)’....

To obtain the residue @_, we must multiply this identity by (z—a)’, getting
(z—a) f(z)=a,+a (z—a)+a(z—a)’ +a(z—a)’ +a,(z—a)" +....

and then differentiate w.r.t. z before we let z — a . The result this time is

For Second order pole,residueis a | = limi [(z - a)2 f (z)]

z—a Z

The same procedure can be extended to poles by higher order.

m—1

For poleof order m,residueis a | = (ml—l)llzgl:zl jz’"—l [(z—a)m f(z)}

8.5 Evaluation of Definite Integrals

2
[ £(cos0,5in0)d0

0

The calculus of residues is useful in evaluating a wide variety of definite integrals
in both physical and purely mathematical problems. We consider, first, integrals of

the form :
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27

1= j. f(cosO,sin0)dO Where fis finite for all values of 6.

0

We also require f'to be a rational function of sin@and cos @ so that it will be single

valued. Let
=’ dz=ie'’dO
idz idz
Sdf=———=——
e z
-1 -1
) z—z Z+z
sinf = ,cos0 =

I

z—z" z4+z" \dz
S == , —
(ﬁf( 20 2 ] z

With path of integration the unit circle. By the residue theorem

I =(-i)2ri Z residues within the unit circle.

z
Note that we evaluate the residues of (2)
z
8.6 Illustrative Examples
2
do

Example 8.2 [ = j.— ‘8‘ <1

o 1+&cosf

Sol. LetZ =€i9 S.dz=id0Oz

—idz

&’ +e
z| 1+ €.

n1=¢ {

B
<JS —idz CJS —2idz

-1 2
Zﬁ?le Z|:1+ €. z +ZZ :| z| 2+ € |:Z+1:|

z
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_iyé__ji__
2z+e(z7+1)

__21' dz
€’ 21422
IS
I 21'95 c;z
< (zz+z+lj
e
The denominator has the roots
2
Z+5z+1=0
e
ENE
e S
z =
2
1 1
=——=,[——1
IS e’
1 1
Z =———— 1- &
e €
1 1
Z,=——+— 1-¢&
e €

As ‘e‘ <1, z, is within the unit circle and Zis outside.

For first order pole at z = z,,residue is

2i dz
I= e¢(

z +2Z+lj
e

2i
I:—g@ﬂﬂﬁ

1= —g{2m' (Sum of enclosed residues)}
€

f() =

(z-2z,)(z—z)
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For firstorder pole,residueis a , =lim(z—z,)f(z)

1
=1 -
B T
4 = 1 B €
h (Zz - Z1) 21— 62
2
s = ——l{2m' (Sum of enclosed residues)}
€
nr=-2 2m‘(LJ
€ 2\1-¢€’
2

Example 8.3 Evaluate

2 c0s20d6
I -l<p<l

< 1-2pcosO + p?
Sol. We note first that by adding and subtracting 2p, the denominator of the

integrand can be written in either of two equivalent forms.
1-2pcos@+p° =1-2p+p*+2p—2pcosd =(1- p)* +2p(1—cosH)
=1+p*+2p—2p—2pcosO=(1+ p)* —2p(l+cosh)
From the first of these it is clear that if 0< p< lthe denominator is
different from zero for all values of fand from the second it is clear that if

~1< p <0, the denominator is also different from zero for all values of 6. Hence
if —1 < p < 1the integrand is finite on the closed interval 0<0 <27

2i6 -2i0 2 -2
e’ +e zi+z
cos20 = =

2 2

and thus the given integral becomes

[_J‘ZZ+Z_2 1 dz
- : -1 T
v 2 1_2p(z+z )+p2 iz
_¢24+1 z dz

27 z-p—-p+p’z iz
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=Cj> (1+z%)dz
2iz*{(z - p) - pz(z - p)|

=Cj> (1+z")dz

2iz* {(z—p)(l—pz)}

of the three poles z= 0,z =p ,z = 1/p of the integrand, only the first order pole at

z = p and the second order pole at z = 0 lie within the unit circle C .

For the residue at the pole z = p, we have

1 4
lim,_,(z — p)f(2) =lim,_,(z — p) 2iz’ {(z( —+pz)(i—pz)}
__+pt
2ip>(1-p?)

For the residue at the second order pole z =0 we have

(1+2%) ]

2iz2%2(z—pz%-p+p?z)

d
lim,_,— [zz
z—0 dz

1 [(z—pz2—p+p?2)4z3 — (1 +zY)(1 - 2zp + p?)
= lim—
z-0 20 (z — pz? — p + p?z)?
_ 1 l—l-p2
2| p’

1 =2ri(Sumof enclosed residues)
4 2
S =2mi 12+p 5 _1+pz
2ip~(1-p~) 2ip
2z p’
1-p°
Example 8.4 Find the residues of the function

Z

w(z)=—— atits poles
zZ +a

z

e
(z+ia)(z—ia)

Sol. w(z) =

Has two simple poles, one atz =ia and another atz = —ia

182



To evaluate the residue at z=iawe write

a,

w(z) = ta,+a(z—z)+a,(z—2z,)" +.....

0
Sag =lim,,, (z — zo)w(2)

= lim,_,;,(z — ia)w(z)

] ) ez eia
= lim (z-ia) =
z-ia (z+ia)—(z—ia) 2ia
- . e
Similarly the Residue at z = -ia is ——
2ia
F
Residues at Simple Poles of w(z) = (2) :
G(2)
Frequently it is required to evaluate residues of a function w(z) that has the form
F
w(z) = £
G(2)

where G(z) has simple zeros and hence w(z) has simple poles. If Z=2Z;is a simple
pole of w(z), then we have
Res.w(2)._. =lim,_,, [(z — zy) w(2)]

F(z)

= lim,_,,_ [(z — Zp) @

Since z = zyis a simple pole of w(z), we must have G(ZO)=0, so that

expression (A) becomes % . To evaluate we use L' Hospital’s rule and obtain

 lim {I-F <z>+(z—zo)F'(z>}

Resw(z),_, =

zZ—2Zg G'(z)
) F
Residueof w(z) at z = z, is ,(ZO)
G'(z)
For example, we can find the residue of W(z) =——— at the simple pole z=ia
z +a

In following way
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e” _F(2)
(z+ia)(z—ia) G(z)
_F(z)) €™ e
G (z,) " 2ial  2ia

w(z) =

.. Res.w(z)

z=ia

Example 8.5 Find the residue of w(z) = % at the third order pole z = a.
z—a

Sol. Using the formula

L& [z—z) )]

a,= —
(m—1)!dz"
1 d°
—m—{w - aﬂ
1 d

:Eg[ze +1l.e }

=%[l.ez +z.e +ez}

zZ=a

=%[e" +a.e” +e“}

:e_[2+a]=2+a.e“ =(1+£)e“
2 2

8.7 Self Learning Exercise- I

Section A : Very Short Answer Type Questions

Q.1 Write Residue theorem.

Section B: Short Answer Type Questions

Q.2 Determine the poles and residue of the following function

2z+1

2 —z-2

f(2)==

8.8 Illustrative Examples

Example 8.6 If a>b > 0, prove that
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2 -2
1= SO0 M h]

< (a+bcosO) b’

, 0 -6 A
Sol. Let ele =z c.sin@ = © ©c _f7Z
2i 2i
ié° d0=ck
1dz
:.do =—-—
i1z

( l)zldz ( 1 jldz

z——| == +— -2

:¢ 1 z z__ 1 z iz
4

(i)’ | (2i)° [2612 +b(z> + 1)}

a+b 2z

1
+
2

1
z
ol o)l

1 Z

- §— 2
(2i)° [2az+bz2 +b}

2z

4 2

SIS
z'[2az+bz"+b] —4

_ +i (" =1)’dz

2 bzz[zz+2baz+l]

qa (z°=1)dz

2’[Z°+ 2b z+1]

(i)
For poles z° (zz + 2%2 + 1} =0

i (z* -1)’dz

T2 2z p)z—q)

For poles z° (zz + 2%z+ 1} =0
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-+, -4
z=0& z= b b’
2
a |a*
:—Zi ?—1
_ —a+\a’-b
L p=
b
_—a- a* —b?
1 b

.~ a>b>0itis seen that p is the only simple pole of the integrand inside the unit
circle and the origin is a pole of order 2.

We must now compute the residues of {by (i)}
(22 -1y’

z*(z=p)z—9q)

at the poles z=p and z=0.

S(z)=

The residue at z = p.

1}2
2 132 2 1\2 (p—
Res. S(z) =limE D - 7 =D L P

op - rz(z=q) pp-9) (P9

2 v pg=1
_(r-9) —p—g !
(r—q) ~'-q=;
_2\/czz—b2
b

The residue at the double pole z = 0.

Res. S(z) = i[zzs(z)]z_o

z—0 dZ

:nmi{ 222-(22—1)2 }
20 dz| z°(z— p)(z—q)
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(2= p)z=q)2(z" ~1).22 - (2" = 1)’[22 = (p+q)]

=lim

20 (z-p)*(z—q)’

-5

_(p+q) | b 2a

p2q2 12 b

2 2

) _2_a+2 @ —b

2b b b

8.9 Evaluation of Certain Integrals between the Limits —«

and .

We shall now consider the evaluation of integrals of the type :

T O(x)dx =1

Where Q(z) is a function that satisfies the following restrictions :

(1)  Itis analytic in the upper half plane except at a finite number of poles.
(2) It has no poles on the real axis.

3) z(Xz) = OUniformly as ‘Z‘ — o0 for 0<argz<x

(4)  When x is real, XQ(Z) —0as x >+ insucha way that

0 0

j O(x)dx and j Q(x)dx both converge

then | Q(¥)dx=27iy R

Where Z R* denotes the sum of the residues of @(2)at its pole in the upper half

plane.

Proof.
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P <

Z Plane
2K
X
—
—R R >
Figure 8.3

Then by Cauchy’s residue theorem we have

R

[ 0Godx+ [ 0@)dz =271y R*

-R C
Now by condition (3), if R is large enough, we have

‘zQ(z)‘ <e
for all points on C and so

[o@)dz| =] Q(z)izd@‘ = [0(2)2d6| <€ [d0 =e =

c 0 0 0

Hence R — oo the integral around C tends to zero and if IV is satisfied we have
[ oydx =27y R

dx
1+ x*

Example 8.7 Evaluate /= j

Sol. According to theorem / = j = 27rinesidueS (upper half plane)

1+x*

Rewriting the integrand as

1 1
2241 (z+i)(z—i)

We see that there are simple poles (order 1) atz =i, and z = -i

A simple pole atZ=2; indicates (and in indicated by) a Laurent Expansion of the

form
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f(Z)— +a0+Za (z—z,)"

The residue d_, is easily isolated as

=)/ ()

2y
. Residue atz=11is
1 1
(z+i)z—i)|z=1 2i
1
Similarly residue at z = -i is —2—
1
T odx 1
g =2niy R"=2ni—=r
J; 1+ x° Z 2i
Here we have used a _;=— for the residue of the one included pole at z = i.

2i
Example 8.8 Prove that

T dx _ 7
0x4+a4 2\/5g3

1
Sol. Consider (z2) =———
zZ +a

i 37i Smi Tri

For poles Z' +d" =0 This function has simple poles at ae* ,ae * ,ae* ,ae*
Only the first two of these poles are in the upper half plane.

The function Q(z) clearly satisfies the conditions of the theorem.
in 3im

y =27riZ(Res. at ae* andae )

o0

Therefore j y
S X +a

F(z)
G(z

_ F(z,)
T G(z)

. 1
. Res. Q(Z)z:zo =llrrlz_,z0 )

w(z) =

= Res.w(z)
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. Res.O(z o =——e 4
Q( )Z:aeA 4613
1 -
and .. ReS'Q(Z)z:ag”% Fe 4
Toodx S
=2ri|—e * +——e *
_-[ x*+at {4(13 4a’ }
i RY/4 RY/4 or o

=— COS— —iSIn— + cOS— — i Sin—
2a 4 4 4

_ T
V24

Since the function Q(x) is an even function of x, we have

]3 dx _2]3 dx
—0 0

4 4
xt+a xt+dt

]3 dx o«
"0x4+a4 2\/5g3

8.10 Jordan’s Lemma

1= j f(x)e“dx  with a real and positive.

This is a Fourier Transform.
We assume the two conditions.

a. F(z) is analytic in the upper half plane except for a finite number of poles.
b. lim;5 f(2) =0 0<argz<m

A very useful and important theorem will now be proved. It is usually known as
Jordan’s Lemma.

Let Q(z) be a function of the complex variable z that satisfies the following

conditions.

1. Analytic in the upper half plane except at a finite number of poles.
2. Q(Z) —0 Uniformly as ‘Z‘ —oofor O<argz<rm

3. m is a positive number
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Then limg_., [¢"Q(z)dz =0

This result is known as Jordan’s Lemma
Where C is a semicircle with its center at the origin and radius R.
Proof. For all points on C we have

z=Re"’ = R(cosh +isinO)

& =iRe’ dO

imR(cos@+isin€
:et (cosO+i )

imz

e

—mRsin 0
:‘e m

Now

By condition 2, if R is sufficiently large, we have for all points on C

0(z)| <6

j O(z)e™ dz j O(z)e™ Re'? db| < § j Re "&"%40
c 0 0

T

2
=2R5 [ e"""d0
0

sin
It can be proved that decreases steadily from 1 to — as @increases from 0
T

o X H
- n
(0) 2 ence
SN0 S 2 hen 0<0<2
0 T T
Therefore
. ™ _Zm(i@]
[O(z)e™dz|<2R5 [e "o
c 0

o . o
<

From which its follows
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limp._,,, [¢"0(z)dz =0

Note : Following type of integrals may be evaluate

N(z)
z)=——F=
Q(2)=—7 )
Where N(z) and D(z) are polynomial and D(z) has no real zeros.
Then if (i) the degree of D(z) exceeds that of N(z) by at least 1 and (i1)) m > 0 we
have,

T a(x)e™ dx = 27riZ:R+

—o0

Where Z R™ is sum of the residues of a(z)e"” at its poles in the upper half plane.

To prove this integrate O(Z)e™ around the closed contour of figure

Y
A
Z Plane
7
X
—>
—R R >
Figure 8.4

We then have

R
I Q(x)e™ dx +I Q(z)e™dz =2ri) Res.inside the contour
-R C

Since O(Z)e" satisfies the conditions of Jordan’s Lemma, we have on letting
R — o0, we get the result

I Q(x)e™ dx = 27riZ:R+ (s J‘Q(z)e"mzdz — 0 for infinite arc)
s C
Taking the real and imaginary parts
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we can evaluate integrals of the type

T O(x)cosmxdx and T O(x)sinmx dx

a

tcosxdx me
Example 8.9 Show j. 5 = where a > 0
oy X +a 2a

iz

Sol. We consider the function >, and since it satisfies the above conditions,

2
z +a

—27nZ:R+

o0

we have I

x +a
—a

e
The only pole of the integrand the upper half plane is at ia, the residue there is 2—
ia

2 2 .
* X +a 2ia  a

Taking the real part of & ,we have

cosxdx _me ™ T cosxdx
e

S X +ad X +a

Tcos xdx _me*
xX’+d’  2a

8.11 Self Learning Exercise - 11

Section A : Very Short Answer Type Questions

sin z
Q.1 Find the poles for the following function —
z

Section B : Short Answer Type Questions

cosh z ]
dz = 1i

if C is the square with vertices at +£2,+2;

Q.2 Prove that (j)

8.12 Summary

We have discussed Cauchy’s residue theorem and its application in evaluating
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definite integrals. We have given several illustrative examples to clarify its use in
evaluating the integrals.

8.13 Glossary

Lemma : A subsidiary or intermediate theorem in an argument or proof

Singular : Relating to or of the nature of singularity.

8.14 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1

z=-1,2;1/3,5/3
Ans.2:

Answer to Self Learning Exercise-11

Ans.1: z=0,

8.15 Exercise

Section A : Very Short Answer Type Questions

Q.1 Write the statement of Jordan’s-Lemma Theorem

cosS7mz

dz where C is the circle‘z‘ =3

Q.2 Find j

v z—1

Section B : Short Answer Type Questions

T sin360
Q.3 Evaluate j.—

o 5—3cosf

Section C : Long Answer Type Questions
Q.4 Find the residues of

2
z° =2z

A s e B

(b) f(z)=¢€ csc’ z
At all its poles in the finite plane.
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T odx
Q.5 Find
;[ x°+1

8.16 Answers to Exercise

Ans. 2 : —2r1i

Ans.3: 0
' 14 ' T+
Ans. 4(a) Residue at - = -1 is — ,Residue at z = 2i is ,
25 25
. . T1-i
Residue at z=-2i is
eZ

(M) f(z)=€"csc’ z= has double poles at

sin® z

z=0,r7,12rx,...i.ez=mamwherem=0,+1,+2,...

A 5 2n
ns. P—
¥ 3
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UNIT-9

Partial Differential Equations

Structure of the unit

9.0  Objectives
9.1 Introduction
9.2 Order of a partial differential equation
9.3  Degree of a partial differential equation
9.4  Linear and non-linear partial differential equations
9.5  Illustrative examples
9.6  Self Learning exercise |
9.7  Partial differential equation-Notations
9.8  Classification of first order partial differential equations
9.9  Linear partial differential equation of order one
9.10 Illustrative Examples
9.11 Non- Linear partial differential equations of order one
9.12 Method of Separation of variables
9.13  Illustrative Examples
9.14  Self learning Exercise-11
9.15 Summary
9.16 Glossary
9.17 Answers to self-learning exercises
9.18 Exercise
9.19 Answers to Exercise
References and Suggested Readings
9.0 Objectives
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The simplified analysis of physical systems with various assumptions leads
to ordinary differential equations, but when more realistic approach is adopted the
partial differential equations arise. The formulation of problems in most of the
areas of physics leads to partial differential equations. Thus to know about partial
differential equations and methods of solving them is of great significance for a
physicist. The objective of this unit is to define partial differential equations and to
describe the methods for solving them.

9.1 Introduction

The problems in physics involve changing entities which are known as
variables. The variables may change with respect to other variables; therefore the

rate of change of one variable with respect to another variable is called as
derivative.

For example in a problem, velocity v (one variable) is changing with respect to

—

: : dv . o
time t (another variable), then 7‘} is the derivative.
t

When an equation is written which shows relation between variables and their
derivatives, this equation is known as differential equation.

When a differential equation involves derivatives with respect to a single
independent variable only, it is known as ordinary differential equation.

And when a differential equation involves partial derivatives with respect to more
than one independent variable, it is known as partial differential equation.

s, d*x (dxY . ) ) )

For example dy=(x+x"+e )dx and 7+ Z =¢' are ordinary differential

t t

equations.

Whereas Z—p+2—p:3x (Partial derivatives with respect to X, y) and
X oy

o’y N o%v N o%v
o’ oy’ oz’
differential equations.

=0 (Partial derivatives with respect to X, y, z) are partial

Thus partial differential equations involve dependence on two or more
independent variables. Partial differential equations arise in connection with
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various physical problems in different areas of physics such as heat transfer,
electricity, fluid mechanics, electromagnetic theory, quantum mechanics etc.

9.2 Order of a Partial Differential Equation

The order of a partial different equation is the order of the highest derivative

involved in that equation.

0’u  0u
~ 2 + - 2 = 0
ox~ Oy
The order of the above equation is 2
2
Whereas for [a—uJ [a—uJ =0 the order is one.
Oox Oz

9.3 Degree of a Partial Differential Equation

The degree of Partial differential equations is the degree of the highest
derivative in that equation, after removing radicals and fractions from the

concerned derivatives in that equation.

\E[g—ij-l‘ % =1

5 =
o
Multiplying a%x on both the sides
oz \’ oz
\/E[_J +0z/ Y%
ox Ay ox
Thus this equation is of second degree because the order of the highest

derivative 2—2 is one and the highest degree is 2.
X

9.4 Linear and Non-Linear Partial Differential Equations

A partial differential equation is known as linear if following conditions are
satisfied.

(i) Every dependent variable and each derivative in the equation is present in
the first degree only.

(i) There should not be products of dependent variables and/or derivatives.
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A partial differential equation for which the above conditions are not satisfied
is called as non-linear partial differential equation.

2 2
e.g. z[%j = 3[%j + & the above equation is non-linear as derivative @,
ox ox oy ox

Z—Z occur in second degree and also there is product of z and 6z/0x.
Y

Note: The above definitions for order, degree and linearity are true for both
ordinary and partial differential equations.

9.5 Ilustrative Examples

Example 1 Find the order and degree of the following partial differential equations

(1) 2x26_p_36_p:0
ox Oy

2 2
(i1) [%j + & =Xy
ox oy
2 2
(iii) 2x28—f+[@J o &
ox ox oy

o’u ou %
(V) —=|1+—
ox oy

Sol.

: : : . .. 0Op 0O :
(1) Order is one and degree is also one as the derlvatlve—p,—p occur with one

Oox Oy
degree.

(i1) Order is one and degree is two.

2

(ii1) Order is two (%J and degree is one.
X

1
. . . o’u ou % .
(iv) On squaring the equation — =|1+— to remove radical we get-

ox’ oy
ou\ 0
_Lzl =1+ _1/!
ox oy

Thus for this equation order is two and degree is also two.

199



Example 2 Check the following partial differential equations for linearity.

) G_u_38_u: 0
ox Oy

... Op ,Op
) —+3—=p+x
(i1) oo p+xy

(ii1) z(@J + % _ y
ox) Oy

. oY (&)
) | — | +|— | =xy
ox oy
Sol. Eq. (i) and (ii) are linear but (iii) and (iv) are non-linear as e.q (ii1) consist of

product of z and 2—2 e.q. (iv) is of second degree.
X

9.6 Self Learning Exercise-I

Very Short Answer type Questions

2 2 2
Q.1 Check the order of equation (g—(bj + % + Z—? =2x
Y X

3 2 2
Q.2 Check the degree of equation Qu + 6_@; =2
oy ox

P
Q.3 Is equation linear? ou = 1+8_“
ox oy

Short Answer type Questions

Q.4 Why equation % + z% =5 is non-linear?

x Oy
. . . .0 0 ov
Q.5 Name the dependent and independent variable in equation —+—=2x—
ox~ Oy ox
Q.6 How many independent variables are present in ordinary differential
equation?
9.7 Notations

Let us consider the one of two independent variables x and y and let us assume the
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dependent variable as z, then usually following notations are used in the study of
partial differential equations.

Independent variables  x,y

Dependent variables z
0z oz 0’z 0’z 0’z
p=—,q=—",r=—5,5= and t=—
ox oy ox ox0oy oy
If there are n-independent variable such asx,, x,............. x, and the dependent

variable is z then following notations are generally used:
Independent variable x,,x,,X;............. x

Dependent variable z

_ Oz _ 0z _8_2 Oz

pl_é_xl’ pz—aa P or, ox

Another way of expressing partial differential equations is by making use of
suffixes, such as

ou ou 0*u 0’u o%u
U, =—,U,=—,U, =_——,U, =_— and u,=-——>
Ox oy Ox0y ox oy

9.8 Classification of First Order Differential Equation

(i) Linear equation :— The equation is linear if it is of the form
P(x,y)P+ Q(x,y)q = R(x,y)z +S(x,y)
Fore.q. x’yp+xyq =xy°z+xy’
(i)  Semi-Linear equation:- An equation which is of the form
P(x,y)p + Q(x,y)q = R(x,y,z) is semi-linear
Fore.q. x’yp+xyq=x"y°z’
(i) Quasi-Linear Equation: — An equation which is of the form
P(x,y,z) p+ Q(x, y,z)q =R (x,y,z) is quasi-linear
X’ yzp+xy’zq=xy+z

(iv) Non-Liner equation: — An equation apart from above three types is non-

linear
Fore.q. p>+q°> =1
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9.9 Linear Partial Differential Equation of Order One

A quasi-linear Partial differential equation of order one of the form

P(x, v, z) p+ Q(x, v, z)q = R(x, v, z)is known as Lagrange’s equation

& _dy_d

Equation of form I 0 R are known as Lagrange’s auxiliary or

subsidiary equations.

Theorem (without proof): If u(x,y,z) =a and v(x,y,z) =b are two

independent solutions of the system of differential equations d—; _b_ % then

d(u,v)=0) is a solution of Lagrange’s equation Pp + Qg = R

Lagrange’s method of solving Pp + Qg =R

(1) Convert the linear Partial differential equation of order one to standard from
Pp+Q0q=R (1)

(1)  Write the Lagrange’s auxiliary equations d—; = d_Qy = % (2)

(1i1) Let u(x,y,z)=a and v(x,y,z)=b be the two independent solution of (2) obtained
by solving (2).
(iv) The general solution of (1) is then ¢(u,v)=0, u=¢(v) or v=¢(u)wheregis

arbitrary function.

9.10 Illustrative Examples

Example 3 Solve 2p+5qg=1

Sol. Given 2p+5q=1 (1)
Here P=2, Q=5, R=1 thus Lagrange’s auxiliary equations as

de dy dz

@& 2

2 5 1

. . dx dy

Taking first two fractions of 5" 5 or 5dx-2dy=0 3)
Integrating (3)
we have 5x-2y=c,, where c, is an arbitrary constant. 4)
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Taking last two fractions of (2)

Y % or dy-5dz=0 5
Integrating (5) y-5z=c, 6)

Where c, is an arbitrary constant From (4) and (6) the required general solution is

¢(5x -2y,y— 52) =0, ¢ being an arbitrary function.

2
Example 4 Solve (y %Jp+xzq =y’

Sol. the Lagrange’s subsidiary equations for the given equations are
dr _dy_d:

W xz  y° (1)
X
Taking first two fractions and rearranging

x’zdx = y*zdy Or x°dx = y’dy )
Multiplying (2) by 3 both the sides

3x°dx =3y%dx or 3x’dx =3y dx 3)
Integrating (3) x° —y’ =c, where ¢, is an arbitrary constant 4)
How taking first and last fractions 2d_x = d—i

v 7 v
x

Rearrange xdx—zdz (%)
Multiplying (5) by 2 both the sides 2xdx—2zdz or 2xdx—2zdz=0 (6)
Integrating (6) x* —z° =c,, ¢, is one arbitrary constant (7)

From (4) and (7) the general solution is ¢(x3 -y, x> - zz): 0 where ¢@is an
arbitrary function.

Example 5 Solve z(z2 + xypr —qy)=x"

Sol. Rearranging the given equation

)cz(z2 Jr)cy)p—yz(z2 +xy)q =x' (1)
The Lagrange’s auxiliary equations for (1) are given by
dx d dz
-— == 2)

xz(2+xy) —ye ) x
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Taking first two fractions and rearranging

@_{_d_y:() (3)
Xy

Integrating (3) we have

log x + logy=logc,, or xy=c, 4)
Using (4) and taking first and last fractions of (2) we have
cix =d—j0rx3dx—(z3 +clz)d =0 (%)
xyiz +c, ’ X
Integrating (5)
LA =c, or x' —z'-2¢z" =4c (6)
4 4 2 7 : ?

From (4) and (6) the required solution is ¢(xy,x4—z4—2clzz)=0where ¢ is an
arbitrary function.

Example 6 Solve (bz—cy)p+(cx—az)g =ay—bx
Sol. Writing the Lagrange’s auxiliary equations for the given equations

dx  dy  dz
bz—cy cx—az ay—bx

(1)

Taking x,y,z as multipliers of each fraction respectively and adding

xdx + ydy + zdz _ xdx+ ydy +zdz

x(bz—cy)+ y(ex—az) +z(ay —bx) - 0
xdx+ ydy+zdz =00r 2xdx+2ydy+2zdz =0
Integrating x> + y*> +z° = ¢,, ¢,is as arbitrary constant ()

Now taking a,b,c as multipliers of each fraction respectively and adding

adx +bdy + cdz _adx+bdy + cdz
a(bz—cy)+b(cx—az)+c(ay —bx) 0
= adx+bdy +cdz=0 3)
Integrating (3)= ax+by+cz=c,, ¢, is an arbitrary constant 4)

From (2) and (4) the required solution is ¢(x2 +y° +z%,ax+by +cz): 0 where ¢ an
arbitrary constant.
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9.11 Non-Linear Partial Differential Equations of Order
One

Let a relation ¢(x, v, z,a,b) =0 be derived from partial differential equations

f(%y,2,p,7)=0

: : 0
Have x,y,zare variables such that z is dependent on x and y and p = 6_2
x

0 .
and g = 6_2 .aand b are two arbitrary constants.
4

Complete Integral or complete solution

The solution ¢(x, V, z,a,b):Oconsisting of as many arbitrary constants as
the number of independent variables is called the complete integral of equation
f(x,y,z,p,r):O
Particular Integral

If we give particular values to the constants a and b then the solution
becomes particular integral

Singular Integral or Singular Solution

The relation formed by eliminating a and b between ¢(x, V, z,a,b) =0 ,—Z¢ =0
a

do ) ) )

i 0 is called the singular integral

2

(i) Charpit’s Method

(General method of solving partial differential equations of order one but of

any degree)
Let the partial differential equations be f (x, V,Z, P, r) =0 (1)
since z depends on x and y, thus
dz:%dxwtﬁdy:pdxwtqdy (2)
ox oy

The Charpit’s auxiliary equations are given by

dp _ dg _ dz :dx:dy :ﬁ 3)
forof. fLra. -of,-9f, -f, -f, O
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of of of of of
Where f =—.,f =—,f.=—,f, =—, f, =—,
S, ox Sy oy /. Oz Sy op Jy oq

Select two proper fractions such that a simple relation involving at least one of
p and q is found

/(p.q)=0 @)
The relation (4) is solved along with the given equation to determine p and q.

putting these values of p and q in (2) and integrating will give the complete integral
of the given equation.

Example 7 Find complete integral of z = px+qy + p*> +¢°
Sol. The given equation f(x,y,z,p,q)=z—px—qy—p*—¢* =0 (1)
The Charpit’s auxiliary equation are written as

dp dq dz dx dy

= = = = 2
¥,,9 ¥,9 ¥ F -4 & @
ox P 0z Oy 1 oz P op 1 oq Op oq

Thus P =94 _ & - b G)
0 px+2p)+q(y+2q9) x+2p y+2q

From first fraction dp=0= p=a 4)

From second fractiondg =0=¢ =5b 5)

Putting p=a and g =bin (1) the complete integral is z = ax+ by +a’ +b*, where a
and b are arbitrary constant.

Example 8 Find complete integral of p*> —y’q =y —x
Sol. The given equation is f(x,y,z, p,q)=p* —y’g—y*+x* =0 (1)
Writing the Charpit’s auxiliary equations
dp  dq dz _dx dy
forpf. fordl. —ph-df, ~f,

Thes @ d0__ e dx
2x  -2qy=2y 2p +qy° -2p y

Taking first and fourth fraction and rearranging

2)

pdp+xdx =0

Integrating p* + x*= constant
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Let constant be a’thus p* +x* =a’ (3)

Solving (1) and (3) and obtaining values of p and q
2
p:(az—xz)% And q:(a—z—lj 4)
y
Using (4) in dz = pdx+ qdy

2
dz = (a2 —xz)%der(%—ljdy

2 2
Integrating z =§w/a2 —x2 +%Siﬂl[£j—a——y+b

a y
2
{ [Va* = x*dx =§\/a2 —x* +%sin{£}+cons tant}
a

2

1 2 _
Thus z:i(az—xz)é+a—sinf1 bl I
2 2 a

2
is required complete integral where a,b are arbitrary constants

(ii) Standard Methods

Charpit’s method is a general method, however many equations can be reduced to
four standard forms and their complete integral can be found by inspection or short

methods.

Standard Form I: Equations involving p and q only f(p,q) =0 (1)
The complete integral is given by z =ax+by+c¢ (2)
Where a and b are related by f(a,6)=0, b=F(a) 3)

The equation of standard form I do not have singular solution.

Example 9 Find the complete integral of p+¢q = pg
Sol. The solution is z = ax + by + ¢ according to standard form I provided a+b = ab

2

Lz=ax+ y+c is the complete integral

(a=1)

Standard Form II Clairaut equation
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A first order partial differential equations is said to be Clairaut equation if it can

be written as
z=px+qy+f(p,q)

The complete integral is of z=ax+by+ f(a,b)

Example 10 Find complete integral of (px+gqy—z) =1+ p* +¢°
Sol. Rewriting the given equation px+qy =z =%./1+p° +¢°

Or z=ax+qyF+l+p>+¢q° (1)

The complete integral is given by z =ax+by Fv1+a’ +b* (2)
Standard Form III — Equation of the form f(p,q,z) =0. To solve equation of the

: : d.
form f(p,q,z)=0 take u =x+aywhere is an arbitrary constant. Put p = d_z and
u

q= a2 in the equation and solve the resulting ordinary differential equation.

Example 11 Find Complete Integral of pg =4z
Sol. The given equation pg =4z (1)
is of standard form Il i.e f(p,q,z)=0. So therefore taking, u = x+ay, where a is

an arbitrary constant and putting p = % and ¢ = a% in (1)
u u

Integrating + Jaz =u+b
Or az=(u+by
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Or az= (x +ay +b)2 is the complete integral.

Standard Form IV Equation of the form f;(x, p)= £i(1,q)

Such equation are solved by using f, (x, p) =a and fz(y, q) =a
Solving p and q and putting their values in dz = pdx + qdy
Integrating (2) we obtain the complete integral.

Example 12 Find complete integral of p—-3x*=¢° -y

Sol. This equation is of standard form IV thus equating each side to arbitrary
constant a, we have
p-3x’=a And ¢ -y=a
p=a+3x" And q:(a+y)%
Using these values in dz = pdx + gdy
dz = (a +3x2)dx+(a+y)%dy
Integrating (3)

z=ax+x’ +§(a + y)% + b 1s the complete integral

Note: Charpit’s method is a general method for solving equation with two
independent variables. It is used mainly when the given equation is not of any
standard forms I-IV.

9.12 Method of Separation of Variables

The partial differential equation involves the dependence on two or more
independent variables which may be space or time coordinators. By use of method
of separation of variable the given equation is separated into differential equations
where each differential equation contains only a single variable. For this the given
function ¢ which depends on coordinates (x, v, z) is written as ¢ = xyz where X is
function of x only, Y is fraction of y only and Z is function of z only.

9.13 Illustrative Examples

Example 13 Solve 2x%—5y% =0

ox oy
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Sol.  The given equation is 2x% -5 y% =0 (1)
ox oy

Where ¢depends on xand y . Now writing ¢ = (x, y) as product of functions X(x)
and Y(y)

Where X is function of xonly and y is function of Y only.

#x.y)= X () () @
Putting (2) in (1)
2 9 s y o) _
ox oy
2Y 6_Y -5X ﬂ =0
ox oy
Dividing (3) by XY

2x 0X SyoY

2x0X SyoY
Xl _Jyot 4)

X ox Y oy
In this equation L.H.S. is function of only and R.H.S. is function of Y only.
Equating each side to some constant (say m)

2x 0X

—_—=m

X ox

syor_

Y oy

Integrating log, X = %loge x+logc,

log, X =log, x% +logc,

=X = clx% (7)
Similarly solving (6) we have
Y=c, y’%
Therefore solution of given differential equation is

m, m
¢=xy= clczxéy >
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Or ¢= cx’%y’%
Where c¢=¢c,

0’ ¢

Example 14 Solve —-+—-=0
o’ oy’
2
Sol. The given equation is —¢+ 09 =0 (1)
o’ oy’
Since ¢ is a function of variable x and y therefore we can write
#x,y)=X(@)Y(y) @
Using (2) in (1)
2 2 2 2
a({y)+a({y):00rya)2(+Xa§:O 3)
ox oy ox oy
Dividing (3) by XY
1 0°X -10%Y
Vv 2 T v A2 (4)
X ox Y oy

Each side of equation (4) is function of one variable only and therefore we can
equate each side to some constant (say k%)

i&X k2:>aX—kX 0
X Ox?
2 2
—%af:kzzgfwzy:o
Y Y

The solution of equation (5) is given as

X=4e" + Be™ (7
[Ordinary differential equation of order two solutions]
Similarly solving equation (6) gives

Y = A4, cosky+ B, sinky
Therefore the solution is given by

¢(x,y)= XY = (4" + B,e™™)x (4, cosky + B, sin ky)

o’u  0u N o’u B

Example 15 Solve +
B ox® oy’ oz’
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Sol. This equation is most commonly used and very important differential equation
in physics such as in study of gravitational potential, electrostatic potential,
magnetic potential, thermal equilibrium, hydro-dynamics etc.
o’u 0u Ou

=5 t+—5=0
ox~ 0Oy~ 0Oz

is known as Laplace’s equation

(1)

The equation V’u =

Here u is a function of X,y,z. by method of separation of variables

u=X(x) Y(y) Z(2) 2
Where X,Y and Z is function of x,y,z only respectively.
Using (2) in (1)
0°X oY 0’z

> +ZX—2+XY

YZ .
ox oy oz

)

Dividing (3) by XYZ and rearranging

1EX_ 107 152 W
X ox’ Y o* Z oz’

L.H.S. is function of x only whereas R.H.S. is function of y and z.

Equating each side to some constant say m,° we have

2 2 2 2
X
%2)2( cmtand 10T 102 _ 2 Z—z—m12X=0 5)
X z x

Solution of (5) is X = C,e™* Where C,is an arbitrary constant
Now taking other part
10%Y  10Z

= =—— —ml’ 6
Y oy’ Z oz’ " (6)

Here L.H.S. depends on y only and R.H.S. is function of z only therefore, we can

equate each side to some constant m2’.

1 0%Y , 0Y

?W:mz or ay—z—mzzYzo (7)
2 2
And —la—f—mlz or 10 { =—(m’ +m,’)
Z 0Oz Z Oz
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0’z

2
z

-my’Z =0 (8)

And m’+m," +m; =0 9)
Solution of (7) and (8) is

y=C,e"y (10)
And Z =C,e™ (11)
This general solution of Laplace’s equation is

U=XYZ=CC,C, ™ ™ ™"

=C,C,C, e™mrims (12)

Where m,, m, m, are related by (9) and ¢, c, ,c, are arbitrary constants.

9.14 Self Learning Exercise-11

Very Short Answer type Questions
Q.1 The standard form of equation Pp + Qq =R is known as
Q.2 Equation of form Pp + Qq =R is linear or non-linear?
Q.3 What is equation of form z = px+qy+ f(p,q) known as?
Short Answer type Questions
Q.4 What is the complete integral of equation in standard form I f(p,q)=0 ?
Q.5 What is the complete integral of equation in standard form II

z=px+qy+ f(p,q)?

Q.6 Charpit’s method is used for solution of which equations?

9.15 Summary

The unit presents an introduction of partial differential equations. The
order, degree, linearity and non-linearity of partial differential equations have been
discussed. Method of solutions for linear and non-linear partial differential
equations of order one have been described and explained through illustrative
examples. The method of separation of variables has been described which is very
important in solution of many problems in physics. Many second degree partial
differential equations occur in physics such as Laplace equation, wave equation,
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heat conduction equation, Schrodinger equation etc., which may be solved through
method of separation of variables.

9.16 Glossary

Arbitrary: Mathematics (Of a constant or other quantity) of unspecified value.

Quasi: Being partly or almost

9.17 Answers to Self-Learning Exercises

Answers to Self-Learning Exercise-I
Ans.1: Three
Ans.2 : Two
Ans.3: No

Ans.4 : Because dependent variable z is multiplied with Z—Z
Y

Ans.5 : Dependent variable v, independent variables x, y.
Ans.6 : Single independent variable
Answers to Self-Learning Exercise-II
Ans.1 : Lagrange’s equation
Ans.2 : Linear
Ans.3 : Clairaut equation
Ansd: z=ax+by+c, f(a,b)=0
Ans.5: z=ax+by+ f(a,b)

Ans.6 : Equation of order one but of any degree

9.18 Exercise

Section A (Very Short Answer type Questions)

Q.1 Isequation x’p+ y°q =2z linear or non-linear?
. dx dy d
Q.2 What are equations ?x =2 ?Z known as?

0
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Q.3 What is the order and degree of equation p’>+¢> =1 where p=% and

x
e
q Py
. . 0u Ou
Q.4 What is the order and degree of equation —+—-=1
o’ oy’

Section B (Short Answer type Questions)
Q.5 Define partial differential equation
Q.6 What is the difference between ordinary and partial differential equations?
Q.7 What is the significance of partial differential equations in physics?
Q.8 Give four examples of second order partial differential equations which
commonly occur in physics
Q.9 Define complete integral and particular integral.
Q.10 What do you understand by singular solution of a partial differential
equation?
Section C (Long Answer type Questions)
Q.11 Find complete integral of z* = pgxy using Charpit’s method.
Q.12 Solve yzp+zxqg=xy
Q.13 Solve Helmholtz equation (Vz +k’ )u =0

2 2 2
0 L; + 0 L; + 0 L; +k*u =0 by method of separation of variable
ox~ oy~ 0Oz

Or

Q.14 Find complete and singular integral of z = px+ gy —2./ pq
Q.15 Solve py+qy+pg=0

9.19 Answers to Exercise

Ans.1 : Linear
Ans.2 : Lagrange’s auxiliary equation
Ans.3 : Order one, degree two

Ans.4 : Order two, degree one
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Ans.1l1: z= x"y%b
Ans.12 : ¢(x2 -y, x° —zz): 0

u=XYZX = Ae™ + Be™, Y = A, cosk,x + B, sin k,x,
Z = A,cosk,x+ B, sink,x

Ans. 13 :

Ans.14: Clairaut equation solution complete integral z =ax+by ~2yab Singular
integral (x—z)y—-z)=1
Ans.15 : Standard Form IV

2 2
z :[ a j%— a; +% Where a, b are arbitrary Constants.
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UNIT-10
Series Solutions- Frobenius Method,

Recurrence relation

Structure of the Unit

10.0 Objectives
10.1 Introduction

10.2 Solution of second order differential equations with constant coefficients
10.3 Self learning exercise |

10.4 Power series solution; Frobenius' Method

10.5 Linear Independence of Solutions

10.6 Recurrence relation

10.7 Self learning exercise 11

10.8 Summary

10.9 Glossary

10.10 Answer to Self Learning Exercises

10.11 Exercise

References and Suggested Readings

10.0 Objectives

In this unit we briefly discuss series solution of second order differential
equations. We will solve the differential equation by power series method and

Frobenius method.

10.1 Introduction

Differential equations may be divided into two large classes
(1) linear equations and,

(1)  nonlinear equations
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Nonlinear equations of second and higher orders are rather difficult to solve
while linear equations are much simpler in many respects. The linear differential
equations play an important role in theoretical physics for example, in connection

with mechanical vibrations, electric circuits, networks etc.

A linear differential equations of order # is having the form

n n—1

d"y Y
—Z 4
dx” @ (%) dx™!

where 4,,4,,4,,....d, and f{x) are given functions of independent variable x and

ay(x) bt (0D 4, )y =f ()
X

a, # 0. This equation is linear in y and its derivative.

If n = 2, we have the linear differential equation of second order; this is
written in the form

2

4L P2 1 )= F(v)
dx dx
The characteristic feature of this equation is that it is linear in y and its derivatives
while P(x), O(x) and F(x), may be any given functions of independent variable x.
The function on the right F(x) represents a source (Ex. electrostatic charge) or a

driving force (Ex. driven oscillator).

Any equation of second order which cannot be written in above form is said

to, be non-linear equations.

For example

d’ x
f +4y=e"sinx
dx and
d’y _dy
2 2
X + X +(x"-1)y=20
dx’ dx ( )y
are linear equations, while
d’y dy d’y
+ =0and + =0
dx’ 4 dx dx’ 4

are nonlinear equations.
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Linear differential equations of second order play an important role in many
differential problems of theoretical physics. It may be noted that some of these
equations are very simple because their solutions are elementary functions; while
others are more complicated and their solutions are important higher functions as
Bessel, Legendre and hypergeometric functions.

If the function F(x) on the right hand of the equation is zero, it is said to be
homogeneous and if F(x) is not zero, it is said to be non homogeneous.

The linear homogeneous differential equations with constant coefficient can
be solved by algebraic methods and their solutions are elementary functions. On
the other hand, in case of linear homogeneous differential equations with variable
coefficient, the situation is more complicated and their solutions may be important
higher non elementary functions. Bessels, Legendre's and hypergeometric
equations are of this type. Since these and other such equations and their solutions
play an important role in theoretical physics, we shall now consider a method for
solving such equations. The solutions will appear in the form of power series and
the method is, therefore, known as power series or series integration method.

Zcm(x—xo)’" =c,+c(x—x,)+c,(x—x,)°...
m=0

where ¢, ¢, ¢, ..... are constants, called the coefficients of the series, x is a
variable and x, is a constant called the centre.

The expression
S (x)=cy+c(x—x,)+..... +c,(x—x,)"

is called the nth partial sum of the series. Clearly, if we omit the terms of S, the

remaining expression
_ n+l n+2
R,(x)=c,,(x—x))"" +¢,,(x—x)"" +...
This is known as remainder, after the term ¢, (x).

It may happen that for x=x,, the sequence of partial sums S,(x), S,(x), ....

S (x) .... converges, say

LimS (x,)=S(x,)
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Then we may say that the series is convergent at x =x,, the number S(x,) is called

the sum of x, and we write

S(x,) = icm('x_ x)"

If this series is divergent at x=x,, then the series is said to be divergent at x=x,.

10.2 Solution of Second Order Differential Equations with
Constant Coefficients

Consider the differential equation

d’y  dy
+a,—+a,y=f(x
e N ,y=f(x)
Let us introduce the symbol of operation
r 2
Dr:d '.e.D:iana’Dzd2
dx’ dx dx

Then above equation may be expressed in the form :
(D*+a,D+a,)y= f(x)
L(D)y= f(x)

If f{x) = 0, then equation reduces to L(D)y =0

This is called the reduced equation and its solution is called the complementary
function denoted by y.. Then we may specify

L(D)y.=0
The general solution of equation of equation consists of them sum of two parts:

® The complementary function y. and

® The particular integral y,; which may be seen as follows :

The particular integral y, satisfies equation, i.e.

L(D)y, = f(x)

Adding above equations; we get
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LD)(yp +yc) = f(X)

LD)(yp+yc)=f(x)
If we substitute Yy=Yctyp

We obtain
L(D)y = f(x)

This proves the proposition that the general solution of a linear differential
equation with constant coefficients is the sum of a particular integral y, and the
complementary function y.

If L and B are the roots of auxiliary equation.
(D*+aD+a,)y=0
then we may write equation in the form
(D-0)(D—P)y =fx)
Substituting (D _,B)y =u
then (D—Q)u = f(x)
W o= f )
dx
This is a first order linear equation and solution of this equation with p(x) = - and

y(x) = u(x)
u=Ae” + e“xJ.e_“xf(x)dx

=e“[4, + P(x)]
Where

X

$(x)= e [ (x)dx

0
If we substitute this value of u# in equation; we get

(D - Py =e"[(4,+ D)
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(D- By =1x)
where f(x)=e™ [(4, + D(x)]

Equation is again first order linear differential equation; hence its solution is
y = A,e™ +e J e P F(x)dx
Substituting value of f(x); we get.
y = A,e”™ + eﬁxJ.e_ﬂxeﬂx[A1 + @(x)]dx
= A" +e™ j e Y[ A, + ¢(x)]dx
= A’ +e™ 4, J e P dx + eﬂxje(“ﬁ)x¢(x)dx

Ae™
+—

= A,e™
a-p

ey eﬂxj e P p(x)dx
On changing the meaning of constant 4 ,; solution may be written as
y=Ae™ + A,e” + e J e“ P G (x)dx

In this solution the first two terms represent the complementary function while

remaining last term represents the particular integral.

10.3 Self Learning Exercise 1

Very Short Answer Type Questions
Q.1 Write down the uses of linear differential equation in theoretical physics.
Q.2 Solve y’-2xy=0

Short Answer Type Questions
Q.3 Define linear differential equation.

Q.4 Define nonlinear differential equation.

10.4 Power Series Solution; Frobenius' Method

The standard form of linear homogeneous differential equation of second order
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d’y dy
—+ P(x)—+0(x)y=0
X dx (1)
We shall confine our discussion to a solution of (1) in the neighborhood of x=0.

When coefficients of series P(x) and Q(x) at point x = a i.e. P(a) and Q(a) are
finite, the point x= a is called an ordinary point of (1). When (x-a)P (x) and

(x—a)2 QO(x) remain finite at x=a, then the point x=a is called a regular point of (1).
Otherwise x=a is called a singular point of (1). The following method is
applicable when x=0 is ordinary or regular point of (1).

m_m

y) =x' =(c,tex+cx+ N+ )

m=0 m=0 (2)

where the exponent k and all the coefficients ¢, are undermined. By differentiating
(term by term) twice is succession, we obtain

[ee]

dy k+m—-1
— = k+m) x
VoY ke,

m=0

= x*" ke, + (k + Dcx+...4(k +m)c, x"+.....] (3)

2 0
4’y > (k+m)(k +m—1)e,x""

dxz :m=0
=37 [k(k-De+[k+ De .+ (erm)(etm-Dx"+ ..] — (4)

when x=0 is a regular point, then xP(x) and X Q(x) are finite at x=0; so we can

write

xP(x) = p(x) o

2 —
and X Q(x) - Q(.X) (6)
Substituting P(x) and Q(x) from (5) and (6), (1) takes the form

2
d §+p(x)ﬂ+q(;c)
dx x dx x

y=0
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d*x

5 dy
—+ —+ =0
N ¥ xp(x) e q(x)y

(1)
p(x) and g(x) may be expanded as a power series as

p() =p,+px+px +px"+

q(x) =qy+ qx + qx" + g x" + .. (7)
Inserting values from (2), (3), (4) and (7) in equation (1'), we obtain
X [kk-1) ¢, + (k+Dke x+ ...+ (k+m)(k+m-1)c, x"+.....]
+p AP X H . Ap X)X ke, (k1) ¢ x +. A ktm)e X"+ L]
Hg g xtgx g X+ ) X e e xtex e XL =0 (8)

This is a power series and will be equal to zero if the coefficients of various

. . k k+1
powers of x are separately zero. Hence equating the coefficients of x, x ...,

k+ . . . .
x",.. equal to zero, we obtain a system of equation involving the unknown

coefficients c,, viz.

[k(k-1) + pk +q, =0 (9a)

[(k+ Dk + py(k+1) + qgfc, + (pk + q,)cy =0 (9b)

[(k+2)(k+D+py(k+2)+q et [p,(k+1)+q,[c;* ... +(pktg)cy =0 (9¢)

In general

[(k+m)(k+m-1)+p (k+m)+q,jc,+[p,(ktm-1)+ql]c, *..*(p,k*q,)c, = 0
(9d)

Since ¢, = 0, equation (9a) implies

k(k-1) + pk + q,=0i.e. K + (p, -1k q,= 0 (10)
This is an important quadratic equation and is called the indicial equation of (1) or
(1"). Let its roots be Ol and B Equation (9d) gives two sets of coefficients ¢, which

are determined by Ol and B respectively. Thus two independent solutions of (1) can

be derived.
Let us consider the following three possible cases :

Case (i) The roots of the indicial equation are distinct and do not differ by an

integer i.c. A3, |0l-3] is not a positive integer.
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If we substitute £ =QL into the system of equations (9) and determine the

coefficients ¢, c,, ... successively, then we obtain a solution.

yx) =x(c, textex o o)X+ )

If we substitute k =f into that system of equations and determine the
coefficients ¢, successively then we get another independent solution.

V(x) = Aﬁ(co* te e+ e+ L)
Case (ii). The indicial equation has double root : i.e. a=.
The indicial equation (10) may be written as

K+ (py-Dk+ +q,=0

Its roots are given by

—(po - D)t J(py - 1) - 4gq,
2

Obviously, the indicial equation has double root k=Ct=p is the only if  (p,-/ 7y
4q, = 0 and then

Then we may determine the first solution y,(x) as usual

Y, (x)=x%(c, +ex +c, X +...4c, x"+....) (11)

To find another solution we apply the method of variation of parameters i.e.
we replace the constant ¢ in the solution cy, by a function u(x) to be determined
such that.

Yox) = u(x)y,(x) (12)
is a solution of equation (1).

Differentiating Eq. (12) twice successively, we get.

dx dx dx dx dx dx (13)
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2 2
by _du di b
dx” dx dx dx dx (14)

Substituting values of y and its derivative from (12), (13) and (14) in (1) we get

d’u du dy dzy (du dy)
| =y 42— =Ly L1+ + + 0
) (dxz W e T P T )T T

(15)
As y, 1s a solution of (1'), therefore the sum of the terms involving ¥ must be zero

ie.
,d’ a dy,
u +xp—+ =0
|: A2 P dx qy,
Consequently equation (15) reduces to
du

d’u 2 dy, du
+2x + —=0
dx’ de de P

Dividing throughout by ny , and inserting the power series for p(x), we obtain

2+ (dyl/dx p0+p1+p2x+ @:O
dx b2 X dx

xyl

(16)

Now from equation (11) if follows that

(dy, /dx _ x“_l[aco +(a+ l)clx+....]|

b2 x“[ey +cx+...]
:l ac, + (o + Dex+.... o
X [c, +cx+... _;Jr """

In the last expression and in the following the dots denote the terms which

are constant and involve positive powers of X.
Hence eqn. (16) can be written as

2
d?+[2a+p°+ ..... }@:0
dx X dx (17)

From equation (11)
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d*u/ dx* 1

du/ dx X

Integrating we get
du
log—=—-logx +...
dx

—_— = —e
dx x

Expanding the exponential function in powers of x and integrating again,
the expression for u# will be of the form.

u = logx+kx +kx + ...
Substituting this in (12), we get the second solution

Vo(x) = (logx+hkx+kyx, + ... y,(x)
Using (11) this may be written in the form.

y2(x) = yl logx—i-valmxm
m-0 (18)

Case (iii) The roots of the indicial equation differ by an integer i.e., a8,

|o-B| is a positive integer.

If the roots of the indicial equation (10) differ by an integer, say p=o-/,
where / is a positive integer. Then we may determine the first solution y,(x)

corresponding to root O as

v, (x) = xa(co + clx+czx2+....)

To determine the second solution y,(x) we proceed as in case (ii). The first
steps are literally the same and yield equation (17). From elementary algebra we
known that in indicial equation (10) the coefficient.

Po-1) =-(a+p)
Here B=o.-/; therefore (p,- 1) =1-2a
From 17,
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dx? X dx
dzu/dxz__{l+l+ }
du / dx X

Integrating we find
logd—u =—(/+1)logx+....
dx

d_u
dx

where dots denote some series involving non-negative powers of x.

= x D)

Expanding the exponential function in powers, of X, we obtain a series of the form

du 1 k k
= +x—§+....+;’+ k. +k, x+..

Integrating again we get

1 k,
u= + —...+k logx+k, x+...
(-1 1108 1+1

Substituting this in second solution y,(x) = u(x)yI(x), we obtain

1 k
T - 13x” —..+k, logx + k,+1x+..}yl(x)

Y, (x) = |:

Using (19) and remembering that Ol-/ =/, we get the second solution y,(x) in the
form

[e'e]

Y (x) =k, y(x)logx + xﬂz A,x"
m=0 (20)
Conclusively if the indicial equation (10) has roots that differ by an integer, then
there are two independent solutions, one corresponding to the larger root (o) is
given by (19) while the other corresponding to the smaller root (p) is given by (20).

It may be noted that for a double root of indicial equation (10) the second solution
always contains a logarithmic term ; but in the case (iii) where roots differ by an
integer, the coefficient k; may be zero and consequently the logarithmic term may

be missing.
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10.5 Linear Independence of Solutions

Let y, be set of functions. These functions are linearly dependent if there exists a
relation of the form

Z/liyi =0

in which not all of the coefficient (7%) are zero. On the other hand, if the only

solution is A, = 0 for all values of i, then the set of functions y, are said to be
linearly independent.

Let us assume that the functions y, are differentiable as needed. Then
differentiating above equation repeatedly, we generate a set of equations

2 Ayi=0 YAy =0 D Ay =0

. d . d?
where we have used vy, (d_z)’ y; (d_x}; and so on 1.e., the order of derivative is

indicated by the number of dashes.

Thus we get a set of homogeneous linear equations in which Ki are the unknown
quantities. This system of equations has a solution Ki # 0 if and only if the

determinant of the coefficients of the A.'s vanishes. This means.

Y Vs Y,

VR T

(n—1) (n-1) (n—1)
b SRR - SRR 1

This determinant is called the Wronskian.

® [f the Wronskian is not equal to zero, then above equation has no solution

other than A, = 0. The set of functions y, is therefore linearly independent.
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® [f the Wronskian is zero over the entire range of variable, the functions y,
are linearly dependent over this range.

In particular in the case of second order linear homogeneous equations, the two
solutions y, (x) and y, (x) are linearly independent if the Wronskian of y, and y,1.e.,
iV

, 1=#=0
Vi W

10.6 Recurrence Relation

Example 1 Find the power series solution of linear oscillator equation.
d’y
dx’

in powers of x.

+0’y=00r y"'+0’y=0

Sol. The given differential equation is

dzy

—+w’y=0

(D
The point x = 0 is a regular point; therefore power series Frobenius' method is

applicable. Let the solution be

[ee]

y(x)=x" = xkz a,x",a, #0

m=0

o0
_ k+m
SR

m=0

Differentiating equation twice we get

0

4 _ Z a, (k+m)x"""

dx m=0
d2 ) .
2= a, (k+m)(k+m—-1)x""?
dx m=0
%y
Substituting these values of y, ) in equation (1), we get.
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Zam(k+m)(k+m—l)xk””*2 +a)22amxk+’” =0 2)

m=0 m=0
From the condition of uniqueness of power series, the coefficients of each power

of x must vanish individually.

The lowest power of above equation is x"? for m = 0 in the first summation: The
requirement that the coefficients of %’ vanish, yields,

aj(k—-1)=0

As a4, # 0 being the coefficient of lowest non-vanishing terms of the series;

hence.

k(k-1)=0
This is called the indicial equation and gives k = 0 or k = 1. Now equating the
coefficients of x** " in equation (2) to zero (m = r + 2) in first summation and in m
= r in the second summation (since both summations are independent), we get.

a, ., (k+r+2)k+r+)+w’a, =0

0)2
ar+2 == ar
(k+r+2)(k+r+1 3)

This is a two term recurrence relation. 1f a, is given, then a,,, a etc. are

r+2 Uy oo

calculated throw above equation.

It is obvious that if we start with a,, equation leads to the even coefficients
a, a, ... etc. and ignores a,, a;. a; etc. Since q, is arbitrary, it may be set equal to

zero and then by above equation
a,=a;,=a,..=0
i.e.., all the odd power coefficient vanish.

Case (i) When k = 0; the recurrence relation (3) becomes.

2
@

- a
(r+2)(r+1) ’

r+2

This leads to
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(0 (0

2 = L_Zao = _2_! 0
> 4

4 _—§614 —+4—!Clo
o’ o’

G756 T T M

and so on

The general term is

a)2n

2y 0

Substituting these even coefficient in series solution [keeping in mind k =

as, = (=1)"

0], we get the solution.

(@x)°  (ox)"  (ox)’

y(x)=a,|1- 51 + Al + ol +...|=a,coswx

4)
Case (ii) When k = 1, the recurrence relation (3) gives
W 2
ar+2 == ar
(r+3)(r+2)

Substituting r = 0, 2, 4 successively, we obtain

o’ o’
az = —an = —?(10
o’ o
T TSy T S
w’ °
YT T T T
and so on. The General term is
2n

n [0}
_ _1 - -
a5, =(-1) Qn+

Substituting these values [keeping in mind k = 1] we get.
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B (cox)2 (cox)4 (cox)6
y(x)—ao){l— Y + PR +}
&)
_ a—o{(a)x) — (@x)’ + (@x)° — (0x)’ } = Do sinwx
0] 3! 5! 7! 0]

Thus the Frobenius' method gives two solution (4) and (5) of the linear oscillator

equation.
Example 2 Solve the differential equation

d’y

2

I +(E—x2)t//:O

such that ¥ =0 as |x] —0

Sol. The given differential equation is

d 2
l/zl + (E —x’ )l// =0

dx (1)
This equation often occurs in quantum mechanics.
Substituting

-x*/2
w(x) = §(x)e :
2)

d £2 d 2

GV _ i a9 d.x.e "

dx ex
And

d’ o d’ ond 2 :
V::ex/z qf—erX/z ¢_¢ex/2+¢x2e—x/2
dx dx dx
Substituting these values in equation (1), we get.

exz/{d%_ 5y 39

dx’® E

+P(x’ —1)+(E—x2)¢}:0

2

—x* 2
Dividing throughout by € T we get
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¢ 5 49k _1yg-
20 (E-1)g =0

Let its series solution in descending powers of x be

(3)

then

Ci¢ - k—-r—1

— = a (k—-r)x

o Z‘a ,(k=r)
and

d’¢ koro2

= k — k—r—1 :
T ;)ar( r)(k—r-1)x

substituting these values; we get

iar(k_r)(k—r_l)xk_r_z _zxiar(k_r)xk—r—l +(E— l)zarxk_r ~0
r=0 r=0 B

or

o0

S a(k=r)k—r—Dx""7+ Y a {(E-D=2k-r)l"" =0 @4

r=0
This equation is an identity; therefore coefficients of various powers of x must

vanish.

Let us first equate the coefficients of x", the highest power of x to zero (by
putting =0 in second term, we get

(E —1-2k)a, =0

As a, # 0; being the coefficient of the first term of the series; therefore, we must

E—1—2k:0=0rk=E—_1
have 2 (5)

Now equating to zero the coefficients of X' to zero [by putting =/ in
second term of (4)]; we get
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[E—-1-2(k-1)]a, =0
As [E—1-2(k —1)] # 0 ; therefore we must have
a, =0 (6)

Now equating to zero the coefficient of xk”’ the general term in equation (4), we
get

a(k-r)k-r-D)+[E-1-2(k-r—-2)]a,,=0
. _a(k=-r)k-r-1)
" E-1-2(k-r-2)]

I
]

Substituting r =0, 2, 4, 6 ... successively in equation (7); we get

SR TR TR

“T 22 G 8224 %
(E —9)(15 —11)
a = - 2 2 ,
2.6
(E-1)(E-3)(E-5)(E-T)E-9)E-11)
- 872, 4, 6 %o
and so on
Also since a, = 0, we have from (7) d3 = ds = d;... = 0

Substituting this values in (3); we get

(b(x) _ a0|:x(E—1/)/2 B (E - 1)(E — 3) (-9

8.2
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(E-1)(E-3)(E-5)(E-7)

+
8224

)

of Y in equation (2), the series solution of given differential equation (1) becomes

w=ae ™" |:x(E1)/2 _ (E - 18)(2E -3) (55

n (E B 1)(E B 3)(E B 5)(E B 7) x(E9)/2:|
82.2.4

10.7 Self Learning Exercise 11

Very Short Answer Type Questions:
Q.1 Define Wronskian.
Short Answer Type Questions:
Q.2 Find a series solution around x,=0 for the following differential equation.
y-xy=0
Q.3 Find a series solution around x,=2 for the following differential equation.

v -xy=0

10.8 Summary

The unit starts with the introduction of nonlinear and linear differential
equations and then solved second order differential equations with constant
coefficients. We solved the differential equation by power series method and
Frobenius method and understand them with many examples.

10.9 Glossary

Differential equation:

An equation that expresses a relationship between functions and their derivatives.

Recurrence relation:

In mathematics, a recurrence relation is an equation that recursively defines a

sequence, once one or more initial terms are given: each further term of the
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sequence is defined as a function of the preceding terms. The Fibonacci numbers
are the archetype of a linear, homogeneous recurrence relation with constant
coefficients. The logistic map is another common example.

Dependent equations:

A system of equations that has an infinite number of solutions

Independent equations:

A system of equations is said to be independent if the system has exactly one

solution.

10.10 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1
Ans.1 : Mechanical vibrations, electric circuits, networks etc
Ans.2: Yy =a, +ax+a,x’ +...
Ans.3 : A linear differential equations of order » is having the form

n n-1

Y
dx—"+ a,(x)

a,(x) y+....+an,1(x)d—y+an(x)y:f(x)
dx

dx n—1
where 4,,4,,4,,....4, and f(x) are given functions of independent variable

xand @, # 0. This equation is linear in y and its derivative.

Ans.4 : Any equation of second order which cannot be written in above form is

said to, be non-linear equations. For example

d’y .

e +4y=e"sinx
d’y dy

2 2

X + X +(x*=-Dy=0
dx? dx ( )y

are linear equations, while

2 2
d J2}+ydy:Oande;
dx dx dx

are nonlinear equations.

+4y =0
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Answer to Self Learning Exercise-11

w x3k
Ans.2: X)=a,q1+ '
y(x) 0{ 2 2.3.5.6...(3k—1)-3k}

o0 3k+l
{ " 27355, 3k(3k+1)}

Ans.3: y(x)=a, {1—(x+ 2)? +%(x+ 2)’ +...}+

a, {(x+ 2)—%(x+2)3 +%(x+2)4 +}

10.11 Exercise

Q.1 Use Frobenius method to obtain the general solution of the equation.
2..n ' 2 9
x y"+xy'+(x —Z)y:0
Q.2 Use the method of Frobenius to solve the homogeneous differentia equation.

y"+2xy'+(x*+2)y =0

References and Suggested Readings

1. Mathematical Physics with Classical Mechanics by Satya Prakash, 2014.
2. Mathematical Physics by H.K. Das, 1997.
3. Special Functions and their applications by N.N. Lebedev, R. Silverman, 1973
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UNIT-11
Bessel Functions of the First Kind,
Generating Function, Orthogonality

Structure of the Unit
11.0 Objectives

11.1 Introduction

11.2 Solution of Bessel equation

11.3 Self learning exercise |

11.4 Recurrence Formulae

11.5 Generating Function

11.6 Orthonormality of Bessel's Functions
11.7 Self learning exercise 11

11.8 Summary

11.9 Glossary

11.10 Answer to self learning exercise
11.11 Exercise

References and Suggested Readings

11.0 Objectives

In this unit we briefly discuss Bessel equation and their solution. After reading this
unit students can solve a special kind of differential equation.

11.1 Introduction

The differential equation

2
xzccllx{+xz,§:+(x2—n2)y=0
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is called the Bessel's differential equation and particular solutions of this
equation are called Bessel's functions of order n.

We find the Bessel's equation while solving Laplace equation in polar
coordinates by the method of separation of variables. This equation has a number

of applications in engineering and science.
Bessel's functions are involved in
1. Theory of plane wave
Cylindrical and spherical waves
Potential theory
Elasticity
Fluid motion
Propagation of waves

Planetary motion

® 2 ke w Db

Oscillatory motion

Bessel's functions are also known as Cylindrical and Spherical function.

11.2 Solution of Bessel Equation

Bessel differential equation

2
xzd )2;+xdy+(x2—n2)y=0
dx

dx
This equation can also be put in the form
d’y 1 dy n’
+ ———+|1-—1]y=0 1
dx’ x dx ( x’ 4 M

The solutions of this equation are called Bessel's functions of order 7.

Let the series solution of equation (1) in ascending powers of x may be written as

yzxk(ao+alx+a2x2+ ...... a2xr+....)=Za x
r=0 2
d o0
£y _ Z a, (k+r)yx* !
dx = 3)
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2 0
d f =Y a,(k+r)k+r-1xF7?
and 94X r=0 4)

Substituting these value in (1), we get

o0 o 2
Y a4 )k +r = DX 43 (k) +[1—n_2]za,x’”’ _0
r=0 X r=0 X

simplification, we get

S o Pk 7)o (o - T s b o
r=0

r=0

ARSI RIIEVA RS WIS
=0 r=0

o0

Yoa,l(k+r)=n?lx""+ > ax"" =0 (5)
r=0

r=0

This equation is an identity, therefore the coefficients of various powers of
x must be equal to zero.
Equating to zero the coefficients of lowest of x i.e. X in eq (5); we get

a, (k> —n’)=0
But a, # 0, therefore.

kz—n2=00rk=in (6)

Now equating to zero the coefficient of x¥in (5), we get

a,[(k +1) -=n?*]1=0

But (k+1)° - n° # 0 since k = + n; hence we have ¢; = 0.
Again, equating to zero coefficient of general term i.e. X in (5); we get

a, ((k+r+2) —n*]+a,=0

r

a, k+r+2+n)k+r+2-n)l+a, =0

a

a”z:_[(k+r+2+n)(rk+r+2—n)] ™

Since @, =0, therefore, eq (7) gives all odd & coefficient to be zero.

Now for k = +n; there are two cases :
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Case (i) when k& = n; we have

_ a,
e T T an s 2)(r+2) &
Substituting r =0, 2, 4 ... etc. we get
a, a, 1
a, = = - =—= ay
2n+2)2 22.(n+1) 271 (n+1)
a, 1 1
a, = — =+ = = a,
(2n +4)4 221 (n+2) 2°(n+1)
1
:(_1)2 4 a,
221 (n+1)(n+2)
Similarly,
a, = — !

263!(11 + 1)(n + 2)(11 + 3)

Substituting & = n and the values of @,,4a,,d5,....d, etc. in equation (2); we get

x° 2 x*
= " 1 _1 N N _1
y=aoxt T+ )221!(n+1)+( )242!(n+1(n+2))
x2r
(=1
+ +( ) 22r (n+1)(n+2)(n+l") .....
)
If we substitute
P B
©2'T(n+1)

2

then the solution of Bessel's equation represented by eq (9) is called Bessel's
function of first kind and is symbolized by

x" x° 2 x'
Jn(x)=m 1+(_1)m+(_1) 221 (n+1)(n+2)
. x2r
+....+(—1) 22rr!(n+1)(n+2),,,.(l/l+r) .....
. x2r
"t E Y T e
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J (=3 (-1 — [ij r (10)

) ri(n+r+1)I 2

Case (ii) When k = -n; then the series solution is obtained by substituting -# for n

in equation (10) i.e.

an(x):i (_l)r 1 )(;_)Hzr

o r!F(—n+r+l

(11)
If n=0,
w x2r ¥ 2r xz x4 x6
Jo(x) = -1’ — =1- + - +
(%) ;()ﬂmiﬂ 27 2247 2%24%67
If n=1
3 5
X X X
Jl(x):__

+ + ..
2 2%4 2°4°6
We draw the graph of these functions. These functions are oscillatory with period
and decreasing amplitude.

1.0 J,(x)

J,(x) ====
0.8 \ JL(x) ===~
0.6

0.4 T
! \ II'.
! - \ -
i f\ \ \" /.\J/ \'1"-‘\ e
.z 7 ) L} 7 F = F N
! . . N Y » Y
ff , '|1I A #r' T : ! A '
. Il § - L '\ rd k L \ JIJ
ﬂ D 3 i u Fi LY
- \ ] . \ ! . \ 7
\ / ! \ o ! \ *
I v N b4
—0.2 \ L ! A : T

- \ ?{ ; N =
| WA
—0.4
o 5 10 15 20
X

Case L. If n is not an integer or zero, then the complete solution of Bessel's

equation is

y =A4J,(x) +BJ_, (x) (12)
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where 4 and B are two arbitrary constants.

Case II. If n=0, then y,=y, and complete solution of Bessel's equation of order
Zero.

Case I1I. If n is positive integer, then y, is not solution of Bessel's equation and y,
fails to give a solution for negative value of n. of order zero.

Example 1 Show that Bessel function J (x) is an even function when # is even and
odd when 7 is odd.

Sol. We know

I, =3 (-1 — [gj

r'(n+r+1)!
jn+2r

Replacing x by —x

J(~x) =Y (-1 — 2 [—

par r'(n+r+1)!

N | =

Casel

If n is even then n+2r is even

J(-x) =Y (1) (gj = J,(x)

rl(n+r+1)!

Hence J (x) is even function

Case 11
If n is odd then n+2r is odd

2r

J(=x)= =3 (1) —% (%) = 7, (%)

ri(n+r+1)!

Hence J (x) is odd function
Example 2 Show that

(1) J 1 (%) = ( 2 )sinx

(ii) J_,,,(x)= /(ﬂzx) cosXx

(iii) [Juz ]I+ [J 1/2 ]I = i
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Sol. We know that

n+2r

x" x? x?
= 1 - + > — (1)
2"Tn +1 22(n+1) 242°(n+1)(n+2)

(i) Substituting n = 1/2 in equation (1) we get

1/2 xZ x4 1/2 x3 xS
Jl/z(x)=T 1__+ e =—X' X——+ oo
2r(3)| 23 2345 27 1p(4) 23 2345

2 X3 x° 2 )
= e X—?-f- ?4- = E Sin x
X ! !
(2)
(ii)  Substituting n =—1/2 in equation (1), we get
x—1/2 x2 x4
J = 1 - +
-2 (%) 2-”2r(1/2)[ 2 234

x—l/2 x2 x4
-2

(=)

= — | cosx

X 3)
(iii)  Squaring and adding Eq. (2) and (3); we get

(T (X)) + (J_ 1 (x))? = %

Example 3 Show that

(D Jyn(x) = L(Sinx_cosxj

T X X

2 T ou(x) = «/2—(—sin x - °°”j
T X X

Sol. We know that

n+2r

Jn(x):iryr((_l)r (%)

pr n+r+1)
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x" x’ x*
= 1 - + > — | (1)
2'Tn + 1 22(n+1) 2.42%n+1)(n+2)
(1)  Substituting n =3/2 in (1), we get

x3/2 )C2 )C4 )C6
Jin(x)= —5—=]|1- + + +...
(%) 2“%(;){ 25 2457 24679 }

~ x 32 1_ N x4 .\ x6 ~ %8 .\ ]

) Lz x 2.5 2457 2.4.6.5.7.9 |
2°2

_ 1 1 L s x* N x° B x® N ]

272 r " x"? 73 2.5 2457 246579

x? x? x$ x®
- + - +...
3 235 23457 2.34.6.7.9
( 2 2x% 4x* 6x° 8x®
= — + - ...
X 3! 5! 7! 91
(

B A CEUICET ONCET RSCET N

51 T 91

( 2 x> xt X x> xt x°
= - + +.. 0+ - + — +...
X 21 4! 6! 3! 5 7
{Adding and subtracting 1}

2 x’ 1 o ox0 x
Taa(¥) = (7)[12— T ] ;[ ST 5—7—]

(=) “lm) [ o)
= — —COS)C+_SIHX — COS X
TX TX (2)

2) We have from (1)

n

72(¥) = ) {1‘ 5301 242 1 +2>}
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Multiplying the nominator and denominator by (n+1)

0= t"(n—%l) {1__ S X }

J

n

—_

2'T(n+1)|  22(n+1) 242%(n+1)(n+2)

Substituting n = -3/2

’ ——COSX—SII’IX:|

11.3 Self Learning Exercise 1

Q.1 Write down Bessel equation of order 7.

Q.2 Bessel's functions are also known as .........
Q.3 Write down applications of Bessel equation.
Q.4 Draw J(x)

Q.5 Draw J,(x)

Q.6 Draw J,(x)

11.4 Recurrence Formula For Bessel Function

These formulae are very useful in solving the questions.

(1) XJ;(X) = an(x) — Jn+1(x)

Proof. We know that Bessel's function of first kind is

T e A

,zor!F(n+r+l) 2

n+2r
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Differentiating above equation with respect to x, we get.

Ji(x) =Y (=) (n+2r)(§)mr_1%

o r!T(n+r+1)

Multiplying both sides by x:

, = . n+2r x (x)"
w1, ()= 3 (-1) 3]
r=0

r!l“(n+r+1)'?
B - (_l)r (ij"”r o (_l)rzr i(ij
_;"'r!r(mrﬂ) 2 +,Z=:0r!r(n+r+1)'2 2
B ® (_1)r (ijnJrZrl
_an(x)+x';0 (r =1 (n+r+1)\2

nd,(x)+ x.Y o 1)!(r_(1,zr+ - (gjzl

r=1

n+2r—1

Now substituting -1 =s

I =g, (x)+ 5.y (-1) (i)mm

=0 S!F(n+s+2) 2

o (_1)r IENCERER
nd,(x) - x;) sIT{(n+1)+s+1} (5)
W) = md, () e, ()

Hence
2) xJ,(x)=-nJ, (x)+ xJ,  (x) ()
Proof. We have

T Y

ri(n+r+1)!

Differentiating above equation with respect of x, we get
n+2r-1

J,;(x)zir!r(_l)r )(n+zr)(§j 1

~ (n+r+1

Multiplying both sides by x; we get.
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n+2r

Z‘*’: n+2r))(§j

Or'r n+r+1

n+2r

i 2n+2r—n)(§j

— r'I n+r+1)

Or'F n+r+1

_ N &(i) x—nJ, (x)

,ZOF!F(ner) 2
o . 1 x n—1+2r_
=x;0(—1) r!(n—l—(r+1))!(?} nJ, (x)

= x‘]n—l(x) o an(x)
Hence
xJ,;(x) =-nJ (x)+ xJ, (x)

3) 2xJ,(x)=-nJ, , +xJ, (x)

Proof. Recurrence relation 1 and 2 are
xJ, (%) = nJ,(x) - xJ,., (%)
xJ (x)=-nJ, (x)+xJ,  (x)
Adding above equations, we get
2xJ,() = x[J, (%) - J,...] ()]
Hence 2J (x) =J _,(x) - J,.,(x)
@ 20 =x[J, (%) +J,. ()]
Proof. Recurrence relations 1 and 2 are
xJ, (x) = nJ,(x) - xJ ., (%)
XJ, (%) =-nJ,(x) + 3J, ()
Subtracting (2) from (1); we get
0=2nJ,(x) - xJ,.,(%) - xJ, /(%)
nd, = x[J,,(x) +J,,(6)]
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d

(S)dx [x Jn(x)jl——x JH](x) )
Proof':
d ) R _ \
T [ J(x )] —nx " (x)+x7"T(x) = x [—an (x)+xJ, (x)]
Using recurrence relation
xJ,(x)=nJ,(x)-xJ,, (x)
We have

g (= " [end (x) + i (x) —
dx

i.e.j—x[x_"Jn(x)] = —x_"JHl(x)

X‘];z+1(x)] = _x_’l‘]n+1(x)

d

(6) E[X"JH(X)F x"J, (x) (6)
Proof:

di[x"Jn(x)] =nx"""J (x)+x"J,(x)=x""[nJ, + xJ,]
X

=x""'[nJ,(x)+ {—an(x) + xJn_l(x)}

=x""[xJ _,(x)] (using recurrence relation 2)

E[x J( )] x”Jn_l(x)

11.5 Generating Function For J_(x)

Theorem: When n is a positive integer, J (x) is the coefficient of z" in the
x(z_l)
)/

in ascending and descending powers of z and also J_(x)
or (-1 )"Jn'(x) is the coefficient of " in the above expression i.e

W/ Zz J,

expansion of €

(1)
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Proof : We know that :

2)

1 X 2 1 x )
—-x/2z — 1__ _ﬂi__+ I A + ...+ —-1 n_ | + ... 3
¢ 2z 21\ 22 R E ®

(4)

Coefficient of z" in the above product is:

%(%J"-<nil)!(%J"”wi‘—iiﬂ(%)"”ﬂ
R e IR
E )(gj

_Z n%r)'(%)z - r°°0 AT E;?; 1) (%)2 = ()

Similarly, coefficient of z" in the product (4) is
n n n+l n+2 n+2 n+4
ﬂ(ﬁ) +&(1) +L(1) .
n! (2 (n+1)1\ 2 2!(n+2) 2
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Since J,n(x) = (—l)n Jn(x)

Combining (5) and (6), we may write

ex{ IV ZZJ

n=-—oo

Hence

Cor.I We have

/ Zz J

=Jyx) +zJ,(x) + 2T ,(x) + 2 T0) + 2T ,x) + .+ 2T (x)+ 2T () + .
Using the property J_ (x) = (-1)"J (x),; we get

S YRS IS N ESER P

z z
w1 .
+|:z" +(-1)". n}] (x)+
- ®)
Cor. II. The coefficient of z’ in the expression (4) is
2 4
X, X
I ER o
Therefore from equation (7), we get
2 4
X X
J(x)=1-—+——-
0 ( ) 2 2 2 24 2 (10)
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11.6 Orthonormality of Bessel's Functions

If L and [3 are the roots of the equation J (1Y) = 0 then :
The condition of orthogonality of Bessel's function over the interval (0,1) with

weight function x is:

Jol Jn(ax)Jn(,Bx)xdx =0 fora=p )

with the condition of normalization is

j;x[Jn (ax)]*dx = %Jszrl(X)

2)

Both the above equation represent the condition of orthonormality and may be

written in the form of a single equation as

[ 7, (ax)J, (Bx)xdx = %sz(a)(saﬂ

)

where d,p 1s Kronecker delta symbol.
Proof. We know that J (x) is the solution of Bessel's equation
2 1 2
d_y + _d_y +| 1= n_2 y = 0

dx*  x dx X

(4)

Let us consider two Bessel's function of first kind of order »

u=J(ox)and V=J (px) (%)

Substituting ax for x and u for y in equation (4)

d’u 1 du n’
-+ + l-—
d(ax) ox d(ax) (ax)

2 2
1du+ ! d_u+(1_ n ]u:O

a’ dx* a’x dx

dx’ X (6)

Similarly, substitute Bx for x and v for y in Bessel's equation (4)
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2
x2d‘:+x2—:+(ﬂ2x2—n2)v=0 (7)

dx

Multiplying equation (6) by T and (7) by Zand subtracting, we get
X =

2 2
){vd u—ud v}+(vd—u—uj—vj+(a2—ﬂ2)xuv:0

dx’ dx’ dx X

j—x{x(v Z—Z—ufl—:ﬂ +(a’ = B*)xuv =0
d d d 2 2
— X{Jn(ﬂX)—J,,(W)—J,,(GX)—JH([?X)HvL(a - B)xJ,(ax)J,(Bx) =0
dx dx dx (8)
Integrating above equation with respect to x between the limits 0 and 1, we get

1
R AN AR (ﬁX)H
dx dx dx 0 (9)
+[ (@ = p)d, (@x)], (fx) =0

Case (i)

If o and B are different roots of J, (1) = 0 when J ()=0, J (B)=0 and also J, (0) are
all finite; the first term in equation (9) vanishes for both the limits. Hence equation
(9) give

(a? - ﬁz)J xJ,(ax)J,(Bx)dx =0

as o#P; we have the condition of orthogonality
1

JxJn (ax)J,(Bx)dx =0
‘ (10)
Case (ii)

If a=P then equation (9) gives
['xJ, (@x)],(Bx)

1

a%ﬁﬂZ_aZ

-~ lim ;{x{h(ﬂx)ih(ax)— Jn(ax)iJn(ﬂX)H
dx dx

0

- 9([3 - a)
0 (11)
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To evaluate this we let J (a) = 0; but let 8 approach o as a limit. Then we can use
L Hospital's rule to evaluate the right hand side of (11). With J (e)=0 R.H.S. of

(11) s

1

(8 ()|
pr-a’

Recurrence relation (5) for J (x) is

Lim B— « 0

d -n -n
E[x Jn(x)]lz -X Jn+1(x)
or
. d Cnl —n
X _Jn(x)_ nx Jn(x)_ X Jn+1(x)
dx
Or
d
x—J, (x) = nJ”(x) - xJHl(x)
dx

Replacing x by (ax), we get

ax d(izx) J,(ax)=nJ (ax)—axJ,, (ax)
Or
xiJn(ax) =nJ,(ax)-axJ,,, (ax)
dx
RH.S. of (11)
[7,(Bx){nT, (ax) - axJ ., (ax)}]
Lim g
_ Boa ﬁZ _ a2
[~amt, (Bx)J, . ()],
Lim 5 : 0
B—a ﬁ S

[using ] =(0)=0forn=1,23..]

0 aJn(,B)
_7[aJn(ﬂ)Jn+l(a)] _7Jn+l(a)
%—l;m dBa" - %im 5,32 B
%(,3 —a”)

Substituting 3 for x in recurrence relation equation (13); we get
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ﬁ—J (B)=nJ,(B)=BJ,.(B)

op
1.e.
aJ,(B) _1 _
% "5 [nJ,(B) = BJ,..(B)]
Substituting this in (15); we get
R.H.S. of (11)
1
= %_Z)I’Zl %E[n‘] (ﬁ) - ﬁ‘]nﬂ(ﬁ)]l‘]nﬂ(a)
20{ [I’ZJ ( ) aJrH—l( )]Jn+1(a)
=%J2n+1(a)

using this relation, equation (11) becomes
1
_[ xJ (ax)dx =+ J (a)
0

This required normalization condition for Bessel's functions.

Combining (10) and (16) we may express orthonormality condition of
Bessel's functions as

J.XJ ,Bx) =7 nz+l(a)5aﬂ

11.7 Self Learning Exercise 11

Q.1 Write down the condition of orthogonality of Bessel's function

Q.2 Prove Recurrence formulae.
¢ xJ,(x)=n](x)-J, (%)
o xJ (x)=-nJ, (x)+xJ, (x)

11.8 Summary

The unit starts with the introduction of Bessel’s equation and its solution.
The solution of Bessel’s equation explains many differential equations. In this
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chapter we also understand the properties of Bessel’s equation like Recurrence
Formulae, Generating Function and Orthonormality of it.

11.9 Glossary

Differential equation:

An equation that expressesa relationship between functions and their derivatives.
Recurrence relation: In mathematics, a recurrence relation is an equation that
recursively defines a sequence, once one or more initial terms are given: each
further term of the sequence is defined as a function of the preceding terms. The
Fibonacci numbers are the archetype of a linear, homogeneous recurrence relation
with constant coefficients. The logistic map is another common example.
Spherical coordinates:

(Also called polar coordinates in space, geographical coordinates.) A system
of curvilinear coordinates in which the position of a point in space is designated by

its distance » from the origin or pole along the radius vector, the angle (p between
the radius vector and a vertically directed polar axis called the cone angle or
colatitude, and the angle 6 between the plane of ¢ and a fixed meridian plane
through the polar axis, called the polar angle or longitude.

Dependent equations:

A system of equations that has an infinite number of solutions

Independent equations:

A system of equations is said to be independent if the system has exactly one

solution.

11.10 Answer Self Learning Exercises

Answer Self Learning Exercise-I

Ans.1 : The differential equation

2
xzcjix};+xji+(x2—n2)y20

is called the Bessel's differential equation
Ans.2 : Cylindrical and Spherical function.

Ans.3 : Bessel's functions are involved in

Theory of plane wave, Cylindrical and spherical waves, Potential theory

257



Elasticity, Fluid motion, Propagation of waves, Planetary motion

Oscillatory motion
Ans.4 : If n=0,

© x2r x 2r xz x4 xa
J.(x) = -1)" — =1-—+ - + ...
() ;0( ) r!r)!(2j 22 2747 2%4°6°
Ans.5: Ifn=1

3 5

X X X
J(x)=—- +
(%) 2 2%4  2%4%6
Ans.6 : refer section 11.2

+ ...

Answer Self Learning Exercise-I1
Ans.1 : The condition of orthogonality of Bessel's function over the interval (0,1)

with weight function x is:
Jol Jn(ax)Jn (ﬁx)xdx =0 fora=#p

11.11 Exercise

Q.1 Show that x/2 =J,(x)+3J,(x)+5J,(x)....
Q.2 Show that xsinx /2 =2%J,(x)—4>J,(x)+ 67 J (x)....
Q.3 Show that xcosx /2 =17J,(x)—3*J,(x) +5°J (x)....

References and Suggested Readings

1. Mathematical Physics with Classical Mechanics by Satya Prakash, 2014.
2. Mathematical Physics by H.K. Das, 1997.

3. Special Functions and their applications by N.N.Lebedev, R. Silverman, 1973.

258



UNIT-12

Bessel Functions of the Second kind

Structure of the Unit
12.0 Objectives

12.1 Introduction

12.2 Bessel functions of the Second kind
12.3 Limiting values of J (x) and Y (X)
12.4 Self learning exercise |

12.5 Differential Equation Reducible to Bessel’s Equation
12.6 Recurrence relations

12.7 Wronskian formulas

12.8 Spherical Bessel’s Functions

12.9 Self learning exercise 11

12.10 Summary

12.11 Glossary

12.12 Answer to self Learning Exercise
12.13 Exercise

References and Suggested Readings

12.0 Objectives

In this unit we briefly discuss Bessel functions of the Second kind,
recurrence relations, Wronskian formulas. After reading this unit students can

solve a special kind of differential equation.

12.1 Introduction

When # is not an integer, J (x) is distinct from J (x), hence the most general

solution of Bessel's equation is

y = AJn(x) +B J_, (x)
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where 4 and B are two arbitrary constants.

However, when n is integer and since n appears in the differential equation only as
n’, there is no loss of generality in taking n to be positive integer. Then J  (x) is not
distinct from J (x), In this case the denominator of the first n terms of series of J.
(x) for values of r=0,1,2, ...,(n-1) will have gamma function of negative numbers.
As the gamma function of negative numbers is always infinite, so
1
=0
I-n+r+1)

thereby indicating that the first n terms of the series for J (x) vanish. Therefore, we

shall have the terms left for r=n and onwards, i.e.

T Y O e e o I

p— r!F(—n+r+1)k?

Substituting s =r n, i.e. r = n+s, we get

. N 1 ¥ n+2s
J—"(x)_;)(_l) n+s!F(S+1)(?]

As n+s!=I (n+s+1) and I'(s+1)=s!, we have

n ) S 1 n+2s
J_,(x)=(-1) Z:; (-1 F(n+s+1)s! (%)

ie. |J.(x)=GED"J,(x)

Thus, in this case we no longer have two linearly independent solutions of Bessel’s
equation and an independent second solution must be found.

We have seen that when 1 is an integer, then [,, (x) are not independent
since they are related as [, (x) = (—1)"J,,(x). Therefore, it is necessary to find
a second solution of Bessel’s equation. Let us first consider the simplest case of

n = 0; for which the two solutions J,, (x) and J_,, (x) are identical.

12.2 Bessel functions of the Second kind

The Bessel’s equation of order zero (n = 0) is
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d?y 1dy

——+-—+y=0

dx? " xdx Y
The solution of this equation is J (x). As this is a second order equation, it must
have two solutions. By power-series solution method: the second solution of this

equation must be of the form

y(x) =Jo(x)logx + z Apx™
m=1
So that
dy 1 m-—1
dx =Jo(x)logx + ;]o(x) + Zl MAm X

and
2

d*y

2
dx? =Jo(x)logx + ;]O(x) + Z m(m — 1) A, x™2
m=1

Substituting these values in Bessel’s equation of order zero; we get

2 1
Jo()logx + =7, () = () + Z m(m = 1) Ay

z Apx™ =0

m=1

Jo 1 1 B
+¥logx+F]0(x) +;Zm/1mxm L+ Jo()log x +
m=

Or
2
logx [d Jo(x) +1 dJo(x)

dx? x dx

2
+10(x)] +2,@)

1
+ z m(m — 1) A, x™ 2 + — z mA,x™ 1 + z Apx™ =0
m=1 xm=1 m=1

The first term in bracket is zero, since Jo(x) is the solution of Bessel’s equation of

order zero; therefore, we have

2 1
;]O(x) + z m(m — 1) A, x™ 2 + y z mA,x™ 1+ z Apx™ =
m=1 m=1 m=1

Or2J,() + Speg m(m = 1) Lpx™ 1 + Ty MApx™ 1+ 3001 Apx™ =0

(_1) mx 2m

2 Zm(m !) 2

or Zj—me=o + Zm:l {fm(m —1) + m} Amxm+1 + Zm=1 lmxm“ -0

or
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(=1) ™m2m x ?m-1 ~
2 2T (m 1) 2 + z m?i, x™ 1+ Apx™tt =0
m=0 m=1 m=1
or
(_1) m x 2m-—1 ~
sz—zm'(m—l)'+ Zmz/lm x™ 14+ Apx™tl =0
m=1 ) ) m=1 m=1

Above Equation is an identity, therefore the coefficients of various powers of x
must separately vanish.

Equating coefficients of x° to zero i.e. 1; =0

Equating the coefficients of x 2D to zero, we get

(2p + 1)? Azpr1 +A2p-1 =0
1
Aaps1 = —lep_l

Since 1; = 0; therefore if we substitute p = 1,2,3, etc., we get

/11 =/13 =/15 = ....=0
Again equating to zero the coefficients of x%P+L e get
(_1) p+1
220(p+ D! p | + (2p+2) 212p+2 + 2, =0
Substituting
p=0, ———+ 22 3,=0

ETen)

1 1

L=y T e !

Substituting p = 1, ———+ 424, + 1, = 0
_ 1 1
A6d = =T T T
1 1
(-pm-1 1 1 1 (-1)™ 1h,,
Ingeneral A,,,, = W (1 + E+§ + .- +E) = W

here hy = 142424 oo —
(where h,, = > +3 m)
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Hence ,the Bessel’s function of second kind of zero order are given as

m _2m
22m(m !)2

Yo(x) = Jo(x) logx + CD"

m=!

Where

1 1 1
o = 145+ o4+ —

Therefore the complete solution of Bessel’s equation of zero order is

y = AJo(x) + BYy(x)
In the case of Bessel’s equation of nth order, the complete solution of Bessel’s
equation is

y = Aln(x) + BY, (x)
where

Y, (x) = %(log;+y)

1 (DT S
T m!(n+m)! (;k +zk )

k=1

n-1
21 Z &y-mezm (Rm = D!
T X 2 m!
m=

where Y is Euler’s constant defined by

1 1 1
y = lim (1 +§+—+ +E_ logn) = 0.57772157

n—->o0o 3
n+m m n
and for m = 0 instead of(z k=1 + z k=1) we write z k1
k=1 k=1 k=1

The form of'Y,, is not the usual standard form. The usual standard form of Bessel
function of second kind Y,,(x), also denoted by N,,(x), is obtained by taking the
particular linear combination of J,(x) and J_,(X) as

cosnrw J,(x)=J_,(x)

sin nrx

Y,(x)=N,(x)=
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This is also known as Neumann’s function. For non-integral n, Y (x) clearly

satisfies Bessel’s equation because it is a linear combination of known solution

J (x) and J- (x). However for integral n, we have

Jn®) =(-1)" J_n(x)
So that above equationbecomes indeterminate. Evaluating Y (x) by L Hospital rule
for indeterminate forms, we obtain

L fcosnm J,(0) = Jiomy )

Ya(x) =
g Sinnn
aj-
—sinnm J, (x) + cosnn% _Yem) dnri(x)

cosnm

_ l d]n(x) . (_1)nd]n(x)
“n| dn dn

A series expansion using % (x™) = x™logx gives result Y (x). The logarithmic
dependence of Y (x) verifies the dependence of J (x) and Y (x). It is seen fro Y (X)
diverges at least logarithmically. Any boundary condition that requires the solution
to be finite at the origin, automatically excludes Y, (x). Conversely, in the absence
of such a requirement Y (x) must be considered. Thus we conclude that the most

general solution of Bessel’s equation for any value of m may be written as

Y=AJ (x)+BY (x)

12.3 Limiting Values of J (x) and Y (x)

A precise analysis shows

lim J,(x) = \/ﬁ;}z 2
. T N
sin(x —+——-)
- _ 4 2
Jim ¥ (%) = N=AT,

That is, for large values of argument x, the Bessel functions behave like
trigonometric functions of decreasing amplitude.
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Also lim,_ /,(x) = i

2Mn!

and lim,_, Y, (x) = «

Since for small values of x, Y (x) is of the order 1/x" of n#0 and of the order logx
if n=0.

Example 1 Derive Bessel equation from Legendre differential equation.

Sol. The Legendre differential equation is the second-order ordinary differential

equation

dzy
dx?

(l—xz)—2x2—y+l(l+l)y=0
X

which can be rewritten

d [dy 5 _
| a—w| i+ ny=o

The above form is a special case of the so-called "associated Legendre differential
equation" corresponding to the case m=0. The Legendre differential equation

has regular singular points at -1, 1 and oo.

If the variable x is replaced by cos0, then the Legendre differential equation

becomes

d?y cosOdy
162 +Sin9E+l(l+ 1)}/— 0

derived below for the associated m#0 case.

Since the Legendre differential equation is a second-order ordinary
differential equation, it has two linearly independent solutions. A
solution P,(x) which is regular at finite points is called a Legendre function of the

first kind, while a solution Q,(x) which is singular at 1 is called a Legendre
function of the second kind. If 1 is an integer, the function of the first kind reduces
to a polynomial known as the Legendre polynomial.

Differentiating m times by Leibnitz theorem
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dm+2y dm+1y

2 m m a™y
(1—x2) T G (—2x) R +™C, (—2) —
2% s T O @ g+ DI =0
1.e.
dm+2y dm+1y zm(m _ 1) dmy dm+1y dmy
— 52 _ _ _ _
1-x )dxm+2 + ( meziglxmﬂ T T 2x il 2Mmo
y
+ TL(TL + 1) dx_m =0
m+2 m m
Or (1 -2 —2(m+ Dx 2+ [(n+ D —m(m+ 1DEZ=0
o _dhy
Substituting f = o
We get

(1—x2)%—2(m+1)x3—z+[n(n+1)—m(m+1)f=0

Now using g = f(1 — x2)

ie f=g(1 - x2)¥

df _ - dg 221

a—(l—x )2 a+mx(1—x )2 g
d? -m (2 m_,d
a7 _ (1—x2)Td—x‘Z+2mx(1 _x2)z 1Y

dx
+m{l1+ (m+Dx231-x2)"2%g

dx?

Now
2

“m d m_, d
(1—x)[(1 - xD) 7 =2 + 2mx(1 — x2)2* =2
dx? dx

+m{l + (m+ Dx2}(1 - x2) 2 2. g]
—Z(m + 1)x {(1 - xz)%j_i + mx(l — x2)%—1 g}

4 n(n+1) —m(m + D]g(1 —x2) 2 =0
2 dg

d°g
— vy < — _<
(1-x )dxz + {2mx — 2(m + 1)x} Iy

+ln(n+1)—m(m+1)—

2m(m+ 1x? m{1 + (m+ 1)x?}
1—x? 1— x? g

=0
Or
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2

d%g m
(1—x)d2+{2x}—+ n(n+1)+ x2g=0

Now to change independent variable x, we put

Z=ny1—x2

2 _ Z°
Or 1—x°= -
n
dz nx
dx — V1—x2
dg dg dz nx dg

dx dzdx  Ji_x2dz
d’g d (dg d nx dg
W:dx<dx) dx( WE)

dg dgdz nx dg

dx dzdx  1—x2dz

=-n (1 ~x’ )_;j—g—lo —x’ )_; (—2x)xd—g+ x(l ~x’ )_; d’g dg

i Iz 2 dz dz* dx
2 dg Ld’g nx
=-n (l—xz) 2(l—xz+xz)—+ x(l—xz) 2=l -
i dZ dZ 1_x2
3 d? nx?
n?x? -3 g
= 1—x2
T 1—x2 dz? [ ( )

(1_xz){_lnj§22%{n(1—x ) 3‘?}}% }{ T cjzi}
+{n(n+l)+lm22}g:0

- X

When n — o0, above equation becomes

d? 1d m?
_9+__9+<1__>g:o

dz?  zdz 72

d%g dg

2 2 2 —
z —dZ2+Z—dZ+(Z -—m?)g=0
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This is required Bessel’s equation.

12.4 Self Learning Exercise 1

Q.1 Define Bessel equation.
Q.2 Define Legendre differential equation.

Q.3 Write down singular points of Legendre differential equation

Q.4 The behavior of Bessel function

(a) For large value of x

(b) For small value of x
Q.5 Plot Bessel function of the second kind.

12.5 Differential Equation Reducible to Bessel’s Equation

In various branches of Physics there occur differential equations which can be
reduced to Bessel’s equation. Some of such equations are listed below with
substitutions to reduce these equations in the form of Bessel’s equation for

convenience of solution in terms of Bessel’s function.

L x2y"+xy '+ (A%x2—n?)y =0 (Ax = z)
2. x%y"+xy'+4(x*—n?)y=0 (x?=2)
3. 4x%y"+4xy' + (x —n?)y =0 (Wx = 2)
4. xy"—y +xy=0 (y = xu)
3
5. y'+xy=0 [yzux/Y,gxizz]
xy"+ (1 +2k)y' +xy=0 (y= %)

7. x2y"+ (1 =2)xy +n?(x*"+1-n?>=0
(y=x"u,x" =2)
Example 2 Starting from the relation

AR e

n=—oo

Hence deduce that
k=400

WG+ = ) S

k=—o0

Sol. The generating function for J (x) is
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n=+oo

exT =n= z J,(ot™

n=-—oo

L Z Jn G+ YL
1.e. T
ex(f;%) > (f—l) Z P
1.e. T
kz Je @)t Z Js)ts = Z Jax + e
ki Z Je @) Jtkrs = Z Jalx + yt"

Equating coefficients of t™ on both sidesi.e. k +s =n
(ors=n-—k

we get

I+ = D J@n k)

k=—o0

This is the required result
Example 3 Starting from the generating function for J,, (x), find the Jacobi series
and hence show that
(1) cosx =jo— 2/, + 2], —
and
(i) sinx =2J; —2J5 + 2Js —
Sol. We know that

owfe(e=2) 2=t (= () (4 )

i

Substituting z = e'”, we get

0 __ —19
exp{ ( > )} ]O + (eiQ _ e—iQ)jl + (eZiQ _ e—ZiG)]Z + (e3i9 _ e—3i9)]3
+ vee
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or
exp. {xi sin8} = J, + (2isin 0)]; + (2 cos20)J, + 2isin36 J; + -+
or

cos(xsin @) + isin(xsin ) = (Jo + 2cos 26 J, +2cos46 J, +...)
+i(2sinf]; +2sin360 J; + )

Equating real and imaginary parts, we get
cos(xsinf) = J,+ 2cos20 ], + 2cos40 J, + -+
sin(xsin@) = 2sinf J; + 2sin36J; + 2 sin560 Js +
Above equations are known as Jacobi series
Substituting 8 = g in equations (1) and (2) ; we get

cosx =Jo— 2/, + 2], +
sinx = 2J; —2J3 + 2J5 — -

12.6 Recurrence Relations

These formulae are very useful in solving the questions.
G 27(x) =7, (x) - ¥, (x)
Proof. Recurrence relation 1 and 2 are
xY, (x) = nY,(x) - xY,., (x)
XY, (x) = =n¥,(x) +xY,_,(x)
Adding above equations, we get
2, (x) =x[Y,,(x) - Y,., (x)]
Hence 2Y'n(x) =Y ,(x)-Y, (%)

(6) 2n Yn(x) = x[Yn—I(‘x) + Yn+](x)]
Proof. Recurrence relations are

XY, (x) =nY (x)-xY,. (x) (D)

XY (x) =-nY (x) +xY,_(x) . (2
Subtracting (2) from (1); we get

0=2nY (x)-xY ,(x)-xY _,(x) ...(3)

2nY =x[Y . ,(x)+7Y (x)] .. (4)
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12.7 Wronskian Formulas

If y,(x) and y,(x) are solutions of a self-adjoint ODE of the form
P+ q(x)y” + 1(x)y =0,

for which q(x) = p’(x), we can use Abel's Theorem to obtain the Wronskian

p'(x)
fp(x)dx -

Wy y2)(x) = y1(x)yz (x)- y2(x)y;1 (x) = Ce )

where C is a constant.
By writing the Bessel equation in the form
xy" + vy + (x—0v*/x)y = 0;

so that it is self-adjoint, we obtain, for non-integer U,
A,
]U(x)],—u(x) - ],U(x)]—u(x) = 7

where Ay, is a constant that depends only on U, not x.

This constant can be determined by considering any convenient value of x, such as
x = 0. Examining the leading terms of the series representations of the Bessel
functions, which yield approximations for small x

X 19
]U(x)~l—( + 1) (E)
XN\ U~ 1
] U(x)~21—( + ) (E)
X -0
S~ U) )
X\ U~ 1
(x)~ U) (g)
We obtain
" B 20V _ 2sinurz
(]ur]—u )(x) - xI(1+ l))(]. - V) - X
We conclude that
2sinvr
A,=—
X
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When v is an integer, we obtain A, = 0, and therefore the Wronskian is zero. This
is expected, since J and J are linearly dependent when n is an integer.

12.8 Spherical Bessel’s Functions

In some physical problems (e.g., Helmholtz equation is spherical polar coordinates

when separated, the radial equation) the following equation is encountered

2 R
dr?

This equation is not Bessel’s equation; but if we substitute

r + ZrZ—I: + [k?r2—=n(n+ 1R =0 (1)

__ Z(kr)
R(kr) = )12 ...(2)
Then equation (1) reduces to Bessel’s equation of order (n + %) i.e.
2 2
r2d§+rd—z+ kzrz—(n+lj Z=0 ...(3a)
dr dr 2
Or
2
@z 14z [o (m3)],
dr2+rdr+[k — Z=0 ...(3b)

The solution of this equation is Z(kr). The solution of equation (1), i.e.

Zn+1/2(kr)

R(kr) = e ..(4)

is called Spherical Bessel function and because of importance of spherical

coordinates this combination often occurs. The spherical Bessel functions are
defined in terms of Bessel functions of different kinds as follows:

Ja(x) = ]n+(§) \/g (5a)
70 = (27,00 = (-1 Jgfn_(l)m (sb)

The spherical Bessel functions j,, (x) of first kind may be expressed in series form
by using series expansion of [, (x), i. e.

1.€.
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> (_1)7" X\ t2r
Jn(x) = ;r!f‘(n+r +1) (E)

1
Replacingn by n + >

(-1)" (E)n+2r+(%)

— (0.0)
]n+(%)(x) N Zr:Or T(n+r+1) \2 -++(6)
Using Legendre duplication formula
I(z+1r (z + 3) 27221, (27 + 2) (D)
2 2
3\ 272 27=1nT(2n + 2r + 2)
I (n +7r+ —) =
2 'ln+r+1)
272=2r=1/r(2n + 2r + 1)!
- (n+r1)!
Substituting this value in equation (6), we get
(x) = 3o C 22n+2r+1(n 1 p)) (E)’”Z”G) q
]n+(%) X) = Zr=o0 Vi 2n+2r+1)ir! \2 --(8)

Substituting this value in (5a); we get

( 1)7" 22n+2r+1(n + I')'
Jn () = / 3)
4 T Cn+2r+1ir!
_ on.nvoeo (EDTAD! o
= 272" Lrzo rIT(2n+2r+1) X --0)

n+2r+(%)

Which is series expansion for J,, (x)

NowY ® = (=)™ _n_@1/2)(x) and from definition of J,, (x) (substituting

2

-n-— ; for n); we find that

_ o (_1)T x 2r—n—(1/2)
Jon-@y2) = Zr:om (g) (10)
This yields
2T O (- X\ 27
() = (M T —(5)
=orl(r—n —7)!
Using again Legendre duplication formula, we get
(-p™t (=D (r—m)!
yn(x) = ann+1 ZT 0 x (11)

ri(2r—2n)!

273



However, for positive integral values of n, it is awkward to use equation (11)
because of the factorials in both numerator and denominator.

These spherical Bessel’s functions are closely related to trigonometric functions as
may be seen by considering the special case for n=0. Then we have from (9);

)'rt r' _1 AN *1 sinx
]O(X) - Zr 0 r'(2r+1)' Zr 0( ) (2r+1)' T x -(12)
And from(11)
(Do DT op cosx
Vo) = Xm0 ¥ = .(13)

12.9 Self Learning Exercise 11

Q.1 Prove that

Ity = D J@n k)

k=—c0

Q.2 Using J,,(x), find the Jacobi series.
Q.3 Define the Spherical Bessel function of first kind of order 1.
Q.4 Define Spherical Bessel function of second kind.
where 1 is non-integer.
Q.5 Prove Recurrence formulae.
XY, () =Y, () - Y, (%)
xY (x)=-nY (x)+xY, _ (x)

12.10 Summary

The unit starts with the introduction of Bessel functions of the Second kind
and its solution. The solution of Bessel’s equation explains many differential
equations. In this chapter we also understand the properties of Bessel’s equation
like Recurrence Formulae, Wronskian formulas, Spherical Bessel’s Functions.

12.11 Glossary

Differential equation

An equation that expresses a relationship between functions and their derivatives.

Recurrence relation:
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In mathematics, a recurrence relation is an equation that recursively defines a
sequence, once one or more initial terms are given: each further term of the

sequence is defined as a function of the preceding terms.

Legendre polynomials:

Legendre polynomials P (x) are polynomial of degree n defined as:

P )=t (1)

12.12 Answers to Self Learning Exercises

Answers to Self Learning Exercise-I
Ans.1 : The ordinary differential equation of the form

2
xzcéx);+x;{i:+(x2—n2)y=0

Is called Bessel equation of order n, n being a nonnegative real number.
Ans.2 : The Legendre differential equation is the second-order ordinary

differential equation

d*y dy
— ¥2) — - =
T2 (1—x2%)—2x P +I(l+1)y=0
which can be rewritten
d

d
| a—m| i+ ny=o

The above form is a special case of the so-called "associated Legendre
differential equation" corresponding to the case m=0.

Ans.3 : The Legendre differential equation has regular singular points at -1, 1 and
00,

T Nt
. cos(x————)
Ansd:  limy_ e Jp,(x) = —2+2—

VTX/2
. 4 2
limY,(x) =
x—0 n(¥) Vmx/2

a. for large values of argument x, the Bessel functions behave like
trigonometric functions of decreasing amplitude.
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Also  lim,_ ¢/, (x) = =

2nn!

And  lim,_ Y, (x) = o

b. for small values of x, Y, (x) is of the order 1/x" of n#0 and of the order logx
if n=0.
Ans.5 :

Tn(X)

2.5

-2

Answers to Self Learning Exercise-II

Ans.1 : See example

Ans.2 : See Example

)'rt r' x2r sinx
Ans'3 : .]O(x) = ZT 0 T'(2T+1)' - ZT 0(_ )r (2T+1)' = x
. _ Q w DT o __cosx
Ans4: yy(x) = " Yrto X = "
Ans.5 : See section Recurrence formula
12.13 Exercise

Q.1 Use the definition of Neumann function Y,(x) to show that Y,(0) is

unbounded for any real L (LV#0).
Q.2 Use the series representation of Y (x) to derive the principal asymptotic form

for large order, where x is fixed and n—>00 for Neumann function of

integer order n.
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Y(x)~ = [@/mn) (ex/2n) ™"

Q.3 Use the series representation of Y (x) to Find the asymptotic expression for

Y, (x) when x—> 0.

References and Suggested Readings

1. Mathematical Physics with Classical Mechanics by Satya Prakash, 2014.
2. Mathematical Physics by H.K. Das, 1997.

3. Special Functions and their applications by N.N. Lebedev, R. Silverman, 1973.
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UNIT-13
Hankel functions, Modified Bessel

functions

Structure of the Unit
13.0 Objectives

13.1 Introduction

13.2 Bessel’s Functions of third kind : Hankel Functions
13.3 Bessel’s Integral

13.4 Self learning exercise [

13.5 Spherical Bessel’s Functions
13.6 Modified Bessel’s Functions
13.7 Self learning exercise 11

13.8 Summary

139 Glossary

13.10 Answer to self learning exercise
13.11 Exercise

References and Suggested Readings

13.0 Objectives

In this unit we briefly discuss Hankel functions, modified Bessel functions.

After reading this unit students can understand third kind of Bessel function.

13.1 Introduction

The standard form of Bessel function of first kind [, (x),

R N T

rl(n+r+1)!
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Bessel function of second kind Yy, (x), also denoted by N,,(x), is obtained by taking

the particular linear combination of J,,(x) and J_,(x) as
cosnm J, (x)— J_ (x)

sin nrx

Y (x)=N, (x)z

This is also known as Neumann’s function.

13.2 Bessel’s Functions of Third kind : Hankel Functions

In some physical problems there arise complex combinations of Bessel’s
functions of the first and second kinds so frequently that it has been found
convenient to define the new functions known as Bessel’s functions of third kind

or Hankel functions. The Hankel functions H,(ll) (x) and H,(lz) (x) are defined as
H"(x)=J,(x)+iY, (x) (1)

H,” (x)=J,(x)-iY,(x) @)

Series expansion of Hankel functions may be obtained by combining definitions of

Jn(x) and Y,,(x). Since Hankel functions are linear combinations, with constant

coefficients, of J,, (x) and Y;,(x) ; they satisfy the same recurrence relations.

For large x, i.e. , fixed x>>n
HP () = J@/mx) e 57)
HP () = J@2/nx) e 757)
13.3 Bessel’s Integral
Example 1 Show that

(i) J.(x) = %fon cos(nd — xsin0) do
(ii) Jo(x) = %fon cos(x cos @) db

and hence deduce that

x2+ x4 x6 N z(_l)err
22 1 22 42 24262 (2r71!1)2

r=0

Jo(x)=1-

Sol. From Jacobi series we have
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cos(xsin®@) = J, + 2J, cos 260 + ---+ 2J,,, cos2mb + -+ (1)

sin(xsin@) = 2sin@ J; + 2sin36J; + 2 sin50 Jc + ...+ 2Jy,41 Sin(2m +
1)6 + - )

(i) Multiplying both sides of (1) by cos(2mé )and integrating between the limits 0
to U

T
f cos(x sin @) cos2mb = J, f
0

0

s s

cos 2m@deo + 2], f cos 26 cos 2mOdeo + ---

0
T

+2]2mf cos?2mOdo + -
0

s
=O+O+---]2mf (14 cos4m)d + -
0

=om-T
or fO" cos( x sin 8) cos 2mOdo = . Jo,, (3)
Again, multiplying (1) by cos(2m + 1) 6 and integrating between limits 0 and TT;
we get
fO" cos(x sin @) cos(2m +1)8d6 =0 4)

Now multiplying (2) by sin (2m+1) 8 and integrating between the limits 0 and ;
we get

Vs
f sin (xsin@)sin (2m + 1)0 do
0

v

=0+4+0..+ 2]2m+1f sin?(2m +1)0dO +0 + ---
0

or

Vs Vs
f sin(x sin @) sin(2m + 1)8 d6 = J,,,41 f {1 —cos(2m+1)6}deo
0 0

= Jam+1 (5)
Again multiplying (2) by sin 2m#6 and integrating between the limits 0 and ; we
get
fO" sin(x sin §) sin2mf df = 0 (6)

Now adding (3) and (6); we get
fO" cos(2mé@ — x sin0) do =/, (7)
adding (4) and (5); we get
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fO" cos{(2m + 1)0 — xsin 0} d6 = 1)y, 41 (8)

Equation (7) holds for even integers (2m) and (8) holds for odd integers (2m+1);
therefore combining (7) and (8); we have for all integral values of n

Vs
f cos(nf — xsin0) db = nJ,
0

ie. Jn = %fon cos(nf — xsin8)d6 %)

(ii) Substituting 6 = g + @ in equation (1); we get
cos(x cos@) = J, — 2], cos 2@ + 2], cos 4@ — -

v

f cos(x cos @) d@ =]0f do —ijf cos2Q0 d@ + -
0 0 0

:]0.71—_0‘}'0...
o= %fon cos(x cos @) d® (10)
Deduction: Equation (10) may be expressed as
1 (" x?cos?@® x*cos*@® x®cos®@
_ - _ _ o ld
Jo(x) n_fol 21 a4 T
Using the definite integral
f" 2 g gg < 135 @r =1
, T 246..2r "
We get
) = xzn_}_x4 1.3 x% 1.3.5 N
S = T2 4124 T 61 246"
x?  x* x®
Sleatap mee T
_ xZ x4— x6 _ (_1)Tx2r
=l-5t 24(2)21  26(31)?2 = 2o [2771]2 (1)
Example 2 Prove that
s
1
e *J,(bx)dx = ————;a,b =0
fo ° J(@+b?)

Sol. From Jacobi series we have

cos(xsin®) = J, + 2], 0820 + - + 2Jom cos 2m8 +--- (1)

Integrating above equation with respect to 8 between limits 0 to , we get
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s s

2], cos260dO + - +f 2J,mcos2mb do + -
0

Vs Vs
f cos(x sinf) dO = f Jodb + f
0 0 0

=Jom+0+0+ +0+-

v

o Jo(x) = %f cos(xsin @) db

0

1 Vs
I = fe‘ax Jo(bx)dx = fe‘ax l—f cos (bx sin H)del dx
0 0 TJo

1 Vs
= —f Ue‘ax cos(bx sin8) dxl do
0 0

T
—ibx sin6

1 (™ eibxsin9+e
=—f fe‘ax' dx|df
)y |Jo 2
1 T

N f{e—(aﬂb sin )x + e —(a—ibsin Bx} dx1do
2 )y [Jo

1 I e—(a+ib sin 6)x e—(a—ib sin 8)x

do
2n ), |—(a+ibsinf * —(a — ibsin HL

RN 1 N 1 ] 0
~2rn), la+ibsin® a—ibsind

B 1]” 2a 20
~2m), a%+b2sin26

2a (™ 1
=—2 dae
2m fo a? + b? sin? 0

2a (™/? cosec?6
=— dao

w J, a?cosec? 6 + b?
3 ZaI"/2 cosec?6 dé
o (a%?+b?)+ a?cot?6

A
/2

_2a acot @

1
————cot ™ ——
T law/ a’ + b?) V(@ + b))l
2

= n\/ﬁ [cot™"0— cot™']
2
Sl

1

V(@ + b?)

fora,b >0
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Example 3

If n > -1, show that

1
! - x_n]n(x)

f X ]n+1(x)dx = oy

0

Sol. We have

d -n — 41
a[x ]n(x)] =X ]n+1(x)

Integrating this between limits 0 and x, we get
X
[ 5 s @x = e Ol
0
= x"n(x) + liInx_n]n(x)
x—0

: -n — (i Jn(x) (0
o 0 = g2 for)

dn
. W]n(x) _ 1 n n!
}cl—% n!l  nl'" 2n(n+1)
n! 1
~2n(nD? 2™

< Equation (2) gives

J| s dx = =G0 + s

13.4 Self Learning Exercise 1

Q.1 Show that

f X2 ()dx = X (5)
0

Q.2 Prove that

n

Jn0) = (2" oo

Jo(x)

Q.3 Prove that

Jn(x) = ;1) (g)n foxcos (x sin®) cos*™@ d@

Va|(n+3

Q.4 Write down the standard form of Bessel function of first and second kind.
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Q.5 Define Hankel function.

13.5 Spherical Bessel’s Functions

The spherical Bessel functions are defined in terms of Bessel functions of different

kinds as follows:

W =10 (5

2 [T
) = \/;Y’”G)(x):(_l) \/%]n_(%)m

1"
R

2

j(x)= J (%) +iy,(x)

T
SR e

2

)(x)= Jo ()= 1y,(x)

Spherical Bessel’s functions are closely related to trigonometric functions as may

be seen by considering the special case for n=0.

0]

. _ Dt 1 C L XA sinx
JO(x)_Z r!(2r+1)!x _x;( 2 @Qr+1)!  «x

r=0

And

(-1) & =" ,  cosx
Fo (Zr)!x T x

Yo(x) =
Spherical Hankel functions
1 1 .
ho™M(x) = = (sinx + i cosx) = —e*
X X
- 1 _ 1
hy 7 (x) = ;(smx +icosx) = 2¢ x

Recurrence Relations

The recurrence relations for spherical Bessel functions may be obtained from
known recurrence relations for j,(x). The recurrence relation for j,, (x) is

2n
jn—1+jn+1 = 7]11 (x)

Replacing n by n + %; we get
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(2n+1)
Jn-cy2) T -2 = T]n+(1/2) (x)

Multiplying both sides by f(i) ; we get

i3 T 2Zn+1) [/m
(ﬂ) Jn-a2) + (ﬂ) Jn-@3/2) = —x (ﬂ) . ]n+(1/2)(x)
and therefore the recurrence relation for spherical function takes the form
(Zn+1)

]n—1(x) +]n+1(x) = T]n(x)

Similarly, in recurrence relation III for J,, (x) and multiplying with ’(%) we get
Njp-1(x) = (N + Djns1(x) = @n + 1)jn (x)

Similarly, from recurrence relation; we get

[, (0] = Xy ()

d
(O] = 2 )
Similar recurrence relations hold for y, (x), hn(l) (x) and hn(z) (%)
Substituting n=0 in above equation; we get
d . .
dx Uo(¥)] = —j1(x)
. d .
s () = —E[Jo(x)]

d [sin x] __sinx  cosx
dx X

x2 x

Substituting n=1; we get

e 2 e
] d [sinx cosx
2 = g[S -5
= (%——)sinx —%cosx

Similarly, if we use recurrence relation for Y, (x): we get

cosx sSinx

yi(x) = — 2 x
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3 1 3
ya(x) = <F_;) cosx — 5 sinx

By mathematical induction, we have in general

G0 = (—1)"x n(l d ) (sinx)

x dx x
=i (4 €9

Obviously, the spherical Bessel’s functions j,(x) and y,(x) may always be
expressed as sinx and cos x with coefficients that are polynomials involving

negative powers of x. For spherical Hankel functions

h, P (x) = i(-1)"x (1 ddx)n <exj>
h,P(x) = i(-1)"x (;15 ddx)n <e:x>

13.6 Modified Bessel’s Functions

a) First Kind: [ (x) in the solution to the modified Bessel’s equation is referred to

as a modified Bessel function of the first kind.
b) Second Kind K (x) in the solution to the modified Bessel’s equation is referred

to as a modified Bessel function of the second kind or sometimes the Weber

function or the Neumann function.

In physical problems the equation

d?y 1dy n?
W*M*(‘l‘x—z)y—o

..(1)
Occurs frequently. This is not quite Bessel’s equation; but it may be put in the
form of Bessel’s equation by the substitution of x = —it, so that dx = i dt,i.e,,
dt 1
dx i

dy dy dt dy
dx _dtdx dt
and
d’y d (dy d (dy\dt d/ dy\y . d?%y
dx? _ dx (dx) dt (dx)dx dt( dt) ~ae?
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Substituting these values (1); we get

d?y 1 dy n?
_'___'+'__f__l___ -1 T TN y ::O
dtz = (—it) dt (—it)?
or
d’y 1dy n?
ar T (1‘72 =

2)

This is Bessel’s equation whose solution is

y(t) = J, ()], (ix) [since t= —%x = ix] 3)
The equation (1) which has been reduced to Bessel equation (2) is called modified

Bessel equation.

We have

n+2r

Jn(®) = Z(—nﬁ(g)
Julix) = Z(—l)ﬁ(%)

> 1 n+2r
- ZO(_DT r'(n+r)! Ol (E)

_n - (—1)7(2) (x)””r

n+1ir

~ ri(n+r)\r
o > (_1)27" X\ 2T
—! Zl r!(n+r)!(§)

(Since i? = —1)

0]

1
7 (ix) = Z rl(n+r)! (g)

r=0

n+2r

(Since (-1)*" =1
The function i ™/, (ix) is denoted by I,(x) , i.e.,

() = i) = B (5) @)

2
Choosing the normalization so that I,,(x) is defined by equation (4); then I,,(x) is a

ri(n+r)!

real function and being the solution of modified Bessel equation (1) is called the
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modified Bessel function of first kind of order n. Often I,,(x) is written in the form

I.(x)= e_i%an (xei;J )

Another fundamental solution to equation (1) is known as modified Bessel function
of second kind and is defined as

Kn(x)z /2

sin nm
where 1 is non-integer.

[, (x)—1,(x)] (6)

The general solution of equation (1) is then

y=Al, (x)+BKn(x) (7)

Where n is non- integer. A and B are arbitrary constants.

In contrast to the Bessel function J,(x) and Y, (x), the functions I, (x) and K, (x)
are not of oscillating type; but they behave like exponential functions.

For large value of x, we have

X T \¢ X
Iy(x) = NeTT and Ky(x) = (ﬂ)

And for small values of x; we have

Iy(x) = 1and K,(x) = —logg

13.7 Self Learning Exercise 11

Q.1 Define the modified Bessel function of first kind of order 1.
Q.2 Define modified Bessel function of second kind
/2
[[_n(x) — L,(%)]

Kn(x) = sinnm

where 1 is non-integer.
Q.3 PlotJ1,]J4,J7,0<x<20.

3 3 3

Q.4 Define Spherical Hankel functions

Q.5 Write down recurrence relation for y,, (x), J,, (x), h,, (%)
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13.8 Summary

The unit starts with the introduction of Bessel functions of the third kind
and its solution. The solution of Bessel’s equation explains many differential
equations. In this chapter we also understand the Bessel’s Integral, Spherical
Bessel’s Functions and Modified Bessel’s Functions.

13.9 Glossary

Differential equation:

An equation that expresses a relationship between functions and their derivatives.

Recurrence relation:

In mathematics, a recurrence relation is an equation that recursively defines a
sequence, once one or more initial terms are given: each further term of the
sequence is defined as a function of the preceding terms. The Fibonacci numbers
are the archetype of a linear, homogeneous recurrence relation with constant
coefficients. The logistic map is another common example.

Legendre polynomials:

P (X) are polynomial of degree n defined as:

Py = ()

13.10 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1

Ans. 1: From recurrence relation, we have

d
a[x ]n(x)] =X ]n—l(n)

integrating this equation with respect of x between limits 0 and x, we get
X

s = [ 2y

0

Or

X

X () — 0 = f X1 (X)dx

0
Hence we get

f xn]n—l (x)dx = xn]n(x)
0
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Ans. 2: Bessel’s equation of zeroth order is

d?y 1dy
a2 Txae Y0

The solution of this equation is J, (x).

Changing the independent variable from x to t by the relation x? = t;
. dt —
n =

dy dy dt_2 dy_2 tdy
dx dedx Xar - c|Yae

dzy_d<d_y):i 5 td_y
dx dx dt

2x
So that

And

dx?  dt

_d , tdy dt
Cdt dx | dx

d’y 1dy

Substituting these values in equation (1); we get
2

d°y dy 1 dy

4tP+ZE+ﬁ2ﬁE+}1_O
d’y  dy

4tP+4E+}/—O

Differentiating above equation n times w.r. to t by Leibnitz’s theorem, we get

dn+2 dn+1y dn+1y dnt
4 tdtn+2+ncl.1.dtn+1 +4dtn+1+d—tnzo
Or
n+2 n+1 n
y "ty - d'y
4t dtn+2 4(n+ 1) dtn+1 +W =0
. dm dm .
Substituting @ = d—ti/ = dt{f, equation becomes
d2o l0)
4tP+4(TL+ 1)%‘}‘@ =0
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.l(a)

As ], (x) is the solution of Bessel’s equation of nt"order
d?yr = 1dyr n?
trmt(1-%)y =0

dx? x dx

Substituting y' = x"z;s0 that
dy' dz -
=x"—+nx""1z

dzy’ air dxdz

Tz x”w +2nx™ 1t P +nn—-1)x"2%z=0
we get

x“d—zz— 2nx"1z +1<x“%+ nx”‘lz) + (1 —n—2>xzz =0
dx? X dx x?
Or
x”d—zz +(@2n+ 1)x™1 %x”z =0
dx? dx

Or

d’z (2n+1)dz

dx? + x dx +z=0
Substituting x? = t, equation, becomes
4td2Z+4( +1)dZ+ =0
dt? " dc 2T

...(b)

Comparing equations (a) and (b); we get

o dMo(x)  d"]o(x)
z=0Q=

dtr d(xH)n

Buty=x"z

_ n dn]O (x)
Hence J.(x) = Cx e

Where C is a constant to be determines.
As

3 had (_1)rx2r
Jo(x) = ;W
d"o(x)  d* ~o(=1)"x%
Cod@x)n d()r & (277 1)?
3 dn had (_1)n+r(x2)n+r
d(x)n o [27*T(n + 1) ]2
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[Since all those terms in which index of x is less than 2n will vanish on
differentiation n times with respect to x?]

_ i D™ (n+r—-1).... (r+ 1)(x2)r

22n+2r(n +r !)2

R;O
_ Z(—l)(””) (n+nr)! x%r
4 r!  22n+2r{(n 4+ r) 1}2
r=
(_1)n+rx2r
- 22n+2r(p+r) 1 1!

r=0

. IR T = A G ) LR S B
) = Cx 22m42r (n ) 1L C ;(_1) rl(n+r) !(E)

i (— )"

Jn(X)

Hence

d"J,
Ja) = (~2)ynn L1

d(x2)n
Ans. 3:  From trigonometric expansion of cosine, we now that
2¢in2 4oind 27 @iy 21
x“sin“@ x*sin*Q x“'sin*" @
cos(xsin®) =1 — + + ot (1)) ——
(x sin @) 72! 4| (-1) D

sm

Z( Dl
Hence

f cos(x sin @) cos*"@ do
0

27"

f Z( " (2 )smzr(Z) cos?™"@ d@

/2
Z( 1)r(2 N f sin 2r® cos*™ @ do
S B0
1
(2 ’ 2K2:+1r 27‘)—1 2r—3 31711
|4 3713}

Z( 2 2 2 "2
(2 D 2[(n+r+1)
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> 2r 1 1
N S

[(m+r+1) 2" 2r.2r—2)(2r — 4) ... 4.2

_ i(_ly (E)”M Vm

2/ [(n+r+1) r!
1 ({)n fﬂ cos(x sin ®)cos*™@ d@
0
1

”KH%) :
i( 1)r 2r (n+2) ‘/E

(_1)7" x\ 27
Z r'[(n+r+1) (E) = Ja(2)

r=0
1 norx
o Ja(x) = — (;) f cos(x sin @) cos?™ @ do
va|(n+g) =
Ans. 4: The standard form of Bessel function of first kind J,,(x),
o 2r n+2r
x x
J,(x)= -1)" —
(%) ;)( ) r!(n+r+1)!(2j
Bessel function of second kind Y,,(x) is obtained by taking the particular

r=0

linear combination of J,(x) and J_,,(x) as
cosnrw J,(x)-J_,(x)
sinnrw
Ans. 5: The Hankel functions Hr(ll) (x) and Hr(lz) (x) are defined as
HP () = Jn () +1 ¥ ()
H () = Jn(2) = i Y (%)

Y,(x)=N,(x)=

Answer to Self Learning Exercise-11
Ans.1: The modified Bessel function of first kind of order M.
L(0) = e 7 Jy, (xe'™2)
Ans. 2: Modified Bessel function of second kind

Kn(3) = (1) = ()]
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where N is non-integer.

Ans. 3 :
.0
o.
&
£
-._":" .
]
~
B
o |
0 3 10 15
.
Ans. 4: heP(x) = i(sinx +icosx) = ieix
1 1
ho(z)(x) =—(sinx +icosx)=—e %
X X
Ans.5: y, (x) = —o5x _snx

x2 x
3 1 3

Jn(x) = (=D"x" <li)n (Sin x)

xdx X

Jn(x) = —(—1)"x" (x dx)” (con)
h, P (x) = i(-D)"x n< ) <T>
G (%)
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d
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RI= RIF

20



13.11 Exercise

Q.1 Plot modified Bessel functions.
Q.2 Prove orthogonality of spherical Bessel’s function.

Q.3 Use the formulas for derivatives and recurrence relations to show that:

Jo(x) = —J1(x)
16 = 314~ Jo 0]

fxvjv—l(x)dx = xvjv(x) +C
[ #h@ar = =g + ¢

[ I = josGdx - 2,0 + €

there C denotes an arbitrary constant.

Q.4 To evaluate

1. [ Js(x)dx
2. [ J3(x)dx
3. [ x3]o(x)dx
4. [ Js(x)dx

References and Suggested Readings

1. Mathematical Physics with Classical Mechanics by Satya Prakash, 2014.
2. Mathematical Physics by H.K. Das, 1997.

3. Special Functions and their applications by N.N. Lebedev, R. Silverman, 1973.
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UNIT-14

Legendre Polynomials

Structure of the Unit

14.0 Introduction

14.1 Objectives

14.2 Legendre Differential Equation:

14.3  Solution of Legendre Equation:

14.4  Generating Function:

14.5 Rodrigue’s Formula

14.6  Illustrative Examples
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14.11 Summary
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14.14 Exercise

14.15 Answer to Exercise

References and Suggested Readings

14.0 Objectives

After reading this unit, Student can understand Legendre polynomial & its
properties. Student can able to use Legendre polynomial & its properties in

different physical problems.

14.1 Introduction

It is not always possible to obtain the closed form of solution to a differential
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equation in whish dependent variables are functions of x. Therefore it requires
obtaining the solutions of such series in terms of infinite series. In this chapter we
will solve some differential equations in terms of typical infinite series, which can
be put in terms of some function of special characters. These functions are called
as special function. These are also called as power series solutions.

14.2 Legendre Differential Equation

The differential equation, frequently occurring in the magneto
hydrodynamic problems, of the type

2\dy . dy
(l—x )y—z‘x’a‘f‘n(}’l‘f‘l)y:o

d 2 a’y
— 1= — |+ =
(( X ) n(n+1)y 0

is known as Legendre’s equation. It’s solution is called as Legendre polynomial &
denoted by P (x).

14.3 Solution of Legendre Equation

The differential equation of the form

=) o y=0

or (l—xz)d—zé/—2x@+n(n+l)y=0 (1)
dx dx

is called Legendre’s differential equation where 7 is any real number. This

equation can be solved in series of ascending or descending powers of x, but the

solution of (1) in descending power of x is more important, so we apply the

Frobenius method in descending power of x . Assume that the solution of (1) is
y=ZA,,xm_r,A0 # 0 )
r=0
Now using (2) in (1), we get

(1 —xz)i A, (m - r)(m —-r— l)xm_r_2

r=0
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—2x§: A (m=r)x"" "+ n(n +1)§: A4, x"" =0
r=0 r=0

= i‘)AF (m—=r)(m—r—1x"""2 - é)Ar (m—r)(m—r—-1)x""

—2§:Ar(m—r)xm_r +n(n+l)§:Ar X" =0
r=0 r=0

= i‘)AF (M—r)(m_r_l)xm—r—z
_ éAr [(m—r)(m—r=1)+2(m—r)-n(n+1)]x"" =0

= éAr (m—r)(m—r—1)x"""2 éAr [(m —r)(m—r+1)-n? —n]xm_r =0

= é)zﬁlr(m—r)(m—r—l))cm_r_2 —~ éAr [(m—r)2 —n? +(m—r —n)]xm_r =0

= izﬁlr(m—r)(m—r—l)xm_r_2 — iAr [(m—r—n)m-r+n+1)]x"" =0  (3)
r=0 r=0

Equating to zero the coefficient of highest power of x (i.e. x™), we get the
indicial equation is

Ay(m—n)m+n+1)=0, Ay # 0
= m=n, —(n+1) 4)
This shows that the roots are distinct. The difference of the roots is (27+1) and is
assumed to be a non-integer; hence two independent solutions can be obtained

corresponding to the roots.

Equating to zero the coefficient of the general term, i.e. x™ ", we obtain the
recurrence relation is

A,_z(m—r+2)(m—r+1)—A,(m—r—n)(m—r+n+1)= 0

N 4= (m—r+2)(m—r+1)

' (m—r—n)(m—r+n+1)Ar_2 ©)

Here, 4 is to be evaluated. It can be done by equating to zero the next lower

power of x,ie. x™ ', which gives
4 (m—l—n)(m+n)=0
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= 4 =0 [ neither m —1-»n=0 nor m +n =0 by virtue of (4)]

From (5), it follows that

and 4=

(m—n-2 (m—n—4)(m+n—l)(m+n—3)Ao
and so on.

Now substituting the above values in (2), we get

_ X1+ m(m—l) x_2+
Y= {1 (m—n—2)(m+n—1)
m(m—l)(m—2)(m—3) 4,
(m_”_2)(m_”—4)(m+n—1)(m+n_3)x } (6)

When m=n, we get one solution of (1) as

nn-1) + n(n—1)(n—2)(n _3)x_4 - }

y=4 xn{l—z(zn_l)x 2.4(2n-1)(2n-3)

n!

Now, if we take 4, = L(Zn—l), then the above solution is denoted by P, (x),
n

1.e.

25 o o) o lotlo-o) e ]

2(2n-1) 2.4(2n-1)(2n-3)

P,(x) is called the Legendre’s function of first kind. When 7 is a positive integer,
the series in (7) terminator and therefore P,(x) is also called Legendre polynomial

of degree n.We can also write

szg@ﬁ (2n—2r): -
! o 2Mn=2rh(n-r)
2if niseven
Wh _Jn
o N {(n —1)/2,if nisodd ®
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Further, when m = —(n +1) the other solution of (1) is

(n + 1)(n + 2)x_2 N (n + 1)(11 + 2)(11 + 3)(11 + 4)x_4 N
2(2n+3) 2.42n+3)(2n+5)

y=dyx"! {H

n!
4..(2n+1)

Now if we take 4, = , then the above solution is denoted by ¢, (x),

1.€.

et (n 1) (e 2)x_,,_3

(2n+1){ ’ 2(2n+3)

(n+1)(n+2)(n+3)(n+4) —n-5
2.402n+3)2n+5) +} ©)

0,(x)=13

J’_

0, (x) is called Legendre’s function of second kind. @, (x) is an infinite (or non

terminating) series as 7 is positive integer.

Hence, the complete solution of (1) given by
y= CIPn(x)+ Can(X)

Where C, and C, are arbitrary constants.

On puttingn=0, 1, 2, ... in (7), we get

P (x)=1],
B(x)=x|,
3x* -1
])2(x) xz ?
p (x) 5x° —3x
3 9 )
P,(x) 2%(35x4 ~30x" +3)), etc.

14.4 Generating Function

12
To show that P,(x) is the coefficient of " in the expansion of (I—th +t 2) in

ascending powers of ¢, i.e.
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Proof. Since

13 135
(l—z)_l/2:1+%z+2 22,2223

Therefore, we write

""" 2.4.6.....(2n—2)t 2.46...2n

The coefficient of /# in the term 135...(2n-1) t"(2x—t)' is

2.4.6....2n
_135..(2n-1) ()’
2.4.6....2n
_135..(2n _1).x”
n!

Also, the coefficient of /" in the term ;'3'2“'”8"_?2’))¢”‘1(2x_¢)”‘1 1S
1.3.5....(2n=3) [, 2
2.4.6.....(2}1—2)[ 25

_1.3.5...(2n-3)(n —1)2,,_236,,_2
~ 246...(2n-2)

1.35...(2n-3)(2n-1)(2n)(n-1) 2 -2
~ 246...(2n-2)(2n)(n-1)
C1.35...(2n-3)(2n-1)(2n)(n—1) S22
- 2" n!(2n—1)
1.3.5....2n-3)(2n-1) n(n-1) -2
n! 2(2n-1)
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1.3.5....2n=5) ,_,

Again, the coefficient of /" in the term = t (2x —t)”_z is

2.46....2n—4)
_1.35...2n-1) n(n-1)(n-2)(n-3) ,4
T T 24@a-D2e3)

Proceeding in similar manner, we see that the coefficient of ¢" in the expansion of

(1—2xt+t2)_1/ ? s

_ 1.3.5.....(2nm _1){{’ 3 n(n—l) 2 n(n—l)(n—2)(n—3)xn_4

n! 2(2n-1) 2.42n-1)(2n-3) ~ 7
= P, (x)
Thus, it can be observed that B(x), A(x), ....., P,(x) etc. are the coefficients of ¢,
2, ....., t" etc. respectively.

Hence, we have

(120042 ]2 214 B()+ 2P (3) 4 ot 1By (3) ...
or (1—2xz+t2f/ P2 p, ()
n=0

-1/2
The function (1—2xt+t2) / is called the generating function of the Legendre
polynomials p,(x).

14.5 Rodrigue’s Formula

To prove that

b= n!lzn Z" (1)

Proof: Let y= (x2 — 1)4

which on differentiation gives

% = n(x2 —I)H.Zx

or (xz - 1)% =2nxy

Now differentiating the above equation with respect to x, (n+1) times by using
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Leibnitz theorem, we get

n+2 n+l n
(xz—l)d y+2(n+1)xd y+n(n+1)dy

dx}’l+2 dx}’l-H dx}’l
n+l n
=2n xd J1}+(n+1)d |
dx"* dx"

Leibnitz theorem for the »” derivative of product of two functions of x states that

Where D" stands for d—
X!

n+2 n+l n
(xz—l)d y+2xd y—n(n+1)ﬂ=0

or

dx}’l+2 dx}’l-H dx}’l

n+2 n+l n

or (l—xz)d ;/—2xd {+n(n+1)ﬂ=0

dx"* dx"* dx"
Here, on substituting z = d 3; , we get

X
2
(l—xz)d—zz—2x£+n(n+l)220 (1)

dx dx
Which is Legendre’s equation and its solution is

z=cP,(x)
or b =cPh, (x)

dx"
2
Now on taking x = 1, we have

d}’l
c=|: ﬂ [+ P,(1)=1] A3)
dx’ | |

Since =2 1) =(x+1y (-1

Differentiating n times by using Leibnitz theorem, we obtain
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or

dx"

+n.n!(x+1)"71.%(x—1)+(x+1)" n!

Putting x =1, we have

d’y =2"nl=c [using (3)] 4)
dx" | |
Now, from (2) and (4) we arrive at the required result
Rl)=-2
¢ dx"
1 d" (,
or P x)= x°—1
() 2" n! dx" ( T

This is called Rodrigue’s formula.
Put » =0 in Rodrigue’s formula
Py(x)=1

Put » =1 in Rodrigue’s formula

Pl(x) L i(xz —l):%x@x): b

TN dx
= Pl(x)z X
2 J—
Similarly B (x)= 3x2 !
3 J—
B(x)= >x 5 3x ,  Py(x)= é(35x4 ~30x? +3)

From above results

1= Py(x), x = Pi(x)
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31 2P +1

Pz(x) :>2Pz(x)=3x2—1:>x2

2P+ P .
—x? = % (Putting 1= P, (x))

In similar way

x3=%, x4=%(8P4+20P2+7P0)

14.6 Illustrative Examples

Example 1  Express f(x)=x*+3x*-x?+5x-2 in terms of Legendre

Polynomials.
Sol.  As found above 1=pP,, x=P, 2= ZPZ;PO
3 _2R+3R
5
and as Py = é(35x4 ~30x% + 3)
50 xt = %{8& +20P, + 7Ry}

Substituting these values in f(x),

F()= 35 P+ L B x)- 5 P ()= 2o R(2)

Example 2 Express f (x)= x3 =5x% + x+2, in terms of Legendre Polynomial.

Sol. Using p, =1, x=PR, PZZZPZ—"'PO and x3:2P3+3P1
f(x)z%(2P3 +3Pl)—§(2P2+P0)+Pl +2P,
2 10 1
:gP:;(X)—?Pz(X)'FEP()(X)

14.7 Self Learning Exercise

Section — A (Very Short Answer type Questions)
Q.1  Write Legendre Differential equation.
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Q.2 Write generating function for p,(x).

Section — B (Short Answer type Questions)

Q.3 Express f (x) =5x> —x? +3x -4 in term of Legendre polynomial.
32 &2
Q4 Provethat (1-x2J1-2xr+42) 77 = 3 (20 +1)B, (x)"
n=0
Section — C (Long Answer type Questions)

2
Q.5 Solve Legendre equation (1 —x* )% - 2x% +n(n+1)y=0
X X

—1/2
Q.6  Prove that (l—2xt+t2) / is generating function for Legendre Polynomial.

14.8 Recurrence Relations for Legendre Polynomial

@A) @rn+1)xp,=(m+1)P,, +nP,_; O (n+1)P,.,=@2n+1)xP,-nP,_,

Proof : By generating formula of the Legendre’s function,
1 o0
(1—2xz+zzyé =>z"P, (1)
n=0
Differentiating both sides of (1) w.r.t. z,
3 ®
—1(1—2xz+22) A(—2x+2z)= ann_an (2)
2 n=0
Multiplying (2) throughout by (1 —2xz+2° ),

(x - z)(l —2xz+2° )_% = (1 —2xz+ 22) i nzn_an

n=0
or (x—z)ZznPn =(1—2xz+22)2nzn_1Pn [by (1)]
n=0 n=0
or x> zZ"P,->z"p, = n"'P, —2x > nz"P,+ > nz""'p, (3)
n=0 n=0 n=0 n=0 n=0

Comparing the coefficient of z" on both the sides, we get,
xP,~ P, ,=(n+1)P,, —2xnP, (n-1)P,_, [Note]
By transporting the required formula is

@n+1)xP,=(m+1)P,,,+nP,_, 4)
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Another form :

Replacing 7 by (n-1) in (4), we get the following useful form
nP,=02n-1)xP,_,-(n-1)P,_, (%)
()  ap,=xP P

Proof : By generating formula of the Legendre’s function

1 0
(1—2xz+22) A = ZznPn(x) (1)
n=0
Differentiating (1) w.r.t. x and simplifying
3 0
(x—z)(l—2xz+22) % = ann_an(x) )
n=0

Again differentiating (1) w.r.t. x, and simplifying,
3 o
z(l—2xz+22) % =>=z"P,
n=0

where dash () denote the differentiation w.r.t. x

Multiplying both sides by (x-z),

z(x—z)(l—2xz+22)_% =(x—z)§:znPn' 3)

n=0
Now by (2) and (3),

o0 o0
z ann_an =(x-z2)> z"P,
n=0 n=0

[e0] [e0] [e0]
of, S Bz =x> Pz =Y Pz
n=0 n=0 n=0

Comparing the coefficients of z” on both sides, the required results in obtained.
(110) @n+1)P, = Ppy - P,y
Proof : By recurrence relation LR 1,
@rn+1)xP, =(m+1)P,, +nP,_, (D
Differentiating (1) w.r.t. x
@n+1)xP +(@2n+1)P, =(n+1)P,,, +nP,_, )

Again by recurrence relation I,
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xP,=nPB,+P,_,
Using (3) in (2), we have

@n+1)(nP, + P, )+ (2n+1)P, =(n+1)P,,., + nP,_,
or, @rn+1)m+1)P, =(m+1)P —(n+1)P_,
or, @n+1)P, =P, — P,

Deduction. Directly by integration,

e+ [ P = oy (B = )
¢ 1is the constant of integration.
(Iv) (n+1)P, = P),, - xP,
Proof : By recurrence relation LR II and LR III,
nP, =xP, - P,_,
and (n+1)P, =P, - P,_,
@)-)= (n+1)B, = P\ - 2P,
V) (1-x2)p; = n(p,_, - xP,)
Proof : Multiplying recurrence formula LR II throughout by x,
xnP, = szn' -xP,_
Replacing 7 by (n-1) in recurrence formula IV,
nP, =P, —xP,,
@)-0)= n(p,1-58)= -5
VD (1 - xz)P,; =(n+1)xP,-P,,,)
Proof : The recurrence formula LR I is
@n+1)xP,=(m+1)P,., +nP,_,
or, [(n+1)+n]xP,=(n+1)P,., +nP,_,
or, (n+DxP, =Py ]= 0[P,y - 2P, ]
again by recurrence formula LR V,
(1 —x? )Pn' =n[P,_; —xP,]

The required result is obtained by (2) and (3).
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(VII)  Beltrami’s results

(2n+ 1)(x2 - 1)P,; =n(n+1)P, - P,_)
Proof : By recurrence formula LR V,

(1-x2)P; =n(p,_, —n) (1)
and by LR VL, (1= x2)B, = (1 +1)(n - P, ) )
Multiplying (1) by (z+1) and (2) by 7 and adding, we get

(n +1)(1—x2)Pn’ +n(1—x2)Pn'

=n(n+1)P,_ —n(n+1)P,,,
or, @n+)1-x2)P =n(n+1)(B, - Pp.))

or,  @n+1)(x2 1) =n(n+1)(Bpy - Po))

14.9 Illustrative Examples

Example 3  Prove that
OB AES

i  pA(1)=(1)

(i) B, (~x)=(-1)"P,(x)

Sol. (i) We know that (1 —2xz+¢° )_1/2 = it”Pn (x)
n=0
Putting » - 1, we get (l—2t+t2 Tl/ Po(-)'= it”Pn(l)
n=0
= 1+t+t2+...+t”+...:it”Pn(l)
n=0

= it” =Y t"P,(1)
n=0 n=0

Equating the coefficients of ", we get P,(1)=1

(ii) Againifweput x = -1, we have

(1+ 2t +1 Tl/z =(1+1)" = it”Pn (1)
n=0
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- 1—t+12 =12+ +(=1)"¢" ZtP()

M8

N ) T 3 Y )

n=0

Now equating the coefficients of ", we get

P

)= (1)

i) Wehave (1-2xr 4222 = 3P, (x)
n=0

(1+2xz+z2)_l/2 - [1—2X(—f)+(—f)zy

12

Since (1+2xt+t2) [1 2 t+t ]»1/2

Equating the coefficients of ¢", we get

B (=x)=(D"F, (x)

Example 4 Show that
(i) (2n+l)xP(x) (n+1) +1(x)+n ,l(x)

2n

(i) IxPn Wby =5

-1

2n (n + 1)

(ii) jx x)dx = (2n-1)2n+1)(2n+3)

Sol.  (i)We know that

(1—2xz+tzfl/ g it”Pn(x)
n=0

Differentiating both sides with respect to ¢, we get
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_71 (1 —2xt+1° )_3/2 (—2x+2t)= i P,(x).nt"!
n=0

or (x—t)(l—2xt+t2x_)_1/2 = (1—2xt+t2) inPn(x)z‘n_1
n=0

or (x—t)éPn(x)t” (12042 )3 B, ()
of (x_t){PO(x)HPI(x)JF---JFPn—1(x)t"_1+Pn(x)t” ..... }:(1—2xt+t2)

B)+ 28 () + ot (= 1)P, ()" 2 By (x)e" (4 1)By ()
Now equating the coefficients of " from both the sides, we get
xP, (x)- P, (x)=(n +1)P,, 1 (x)-2nxP, (x)+ (n - 1)P,_; (x)
or @2n+1)xP, = (n+1)P,,, (x)+nP,_(x) ()
(i)  Replacing n by (n-1) in the above equation (2), we have
(2n—-1)xP,_; = nP,(x)+ (n-1)P,_,(x)
Multiplying the above equation by P,(x) on both the sides and integrating with
respect to x between the limits — 1 to 1, we get
@n+ 1) 2 P, ()P, (2)dx = n [ P2 (x)dx +(n=1) [ P, (x)P, 5 (x)ax

2
n
2n+1

(other integral becomes zero by virtue of orthogonality property of the Legendre’s
function)

2

(2n-1)(2n+1)

(iii) Againreplacing n by (n-1)and (n+1) in the equation (2), we have
(2n=1)xP,  (x)=nP,(x)+ (n = 1)P, ,(x) 3)
(27 +3)xP, 1 (x)= (n+2)P,.5 (x)+ (n + 1)P, (x) (4)

Multiplying the above equations (3) and (4) and integrating with respect to x

J.il xE, (X)Pn_1 (X) dx =

between the limits -1 to 1, we have
(2n-1)(2n+ 3).[11 x*P,, (x)P,_; (x)dx = n(n + l)ﬁ1 P? (x)dx

(using orthogonality of Legendre’s function)
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zn(n+l).

2n+1

J- 2 +1 )dx— 2n(n+1)

(2n-1)2n+1)(2n+3)

Example S Prove that

O B,0)=(-1)" 1'3'25,422%’;;1_1) e 22;5?;:/)2

(ii) P2m+1(0): 0

Sol. (i)We have i P, (x)t” (1 —Oxt+12 )_1/2
n=0

Putting x=0, we get
(1+t T/ 113 t4 (1Y 1.3.5.....(2r—1)t2r
= 2.4.6...2r
Comparing the coefficients of " on both the sides, we get
m1.3.5...2m~1)
Py, (0)=(~1
n(0)= (1) 2.4.6.2m
[~ all the power of # on R.H.S. are even]
(1) 1.3.5..2m—1)2.4.6..2m
- 2.4.6.2m—2.4.6..2m
(1 1.2.3.4.5.6..(2m—1)(2m)
2"m!2.4.6..2m

. 2m!
=(-1) 2" m!(2.1)(2.2)(2.3).... 2gm

m 2ml (—1)"2m!
:(_1) m m_ 1 ~2m 2

2"mi2"m! 2°" (m!)
N (=1) 2027 X"

i Blx)=>

=0 2"r!nl-rin!-2r

where N = %, when » i1s even and N :nT—l when » is odd.

Putting » = 2m + 1, the last term willbe N = » and the last termin  P,,,,,(0)=0

when x=0.
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1

Example 6 If m # n, then show that 7, j(l X )Pn’ P, dx=0
-1

Sol. Integrating by part taking (1 —x? )Pn’ as first function

I, = [(l—xz)Pn’ Pm()c)l1 —;[((l—xz)P,;'—2xl’,;)Pm dx

=0

But (l—xz)Pn"—2xPn' =—n(n+1)P,

—(0)(n +1)_}p,, P dx

As n#m soitis =0 .
Example 7 Prove that

=2 S ) ()"

3
(1 —2xz+zz)/2 n=0

Sol. The generating formula of the Legendre’s function

(1—2xz+zzy% = iznPn (1)
n=0
Differentiating both sides of (1) w.r.t. z, we get
—% (1 —2xz+ 22)_% (— 2x+ 22) = inzn_an
n=0
Multiplying throughout by 2z,
2z(x—z) (1—2xz+22)_% = §:2nznPn )
n=0
1 2z(x z) n n
1)+(2)= —+ Zz P, +22n2 P,
(1—2xz+zzy/2 (1—2xz+z ) /
or 1-2xz+z +2z_(;c/ z) 2(2’7"'1) P
(1—2xz+zz) 2 n=0
1-22 & n
or =Y (2n+1)z"P, Hence Proved.

(1 —2xz+z° )_% n=0
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Example 8 Prove that

1+z 1 &

__:Z(Pn+E1+l)Zn
Zw/il—2x2+22i Z  p=0

Sol. LHS =l(l—2xz+zz)_%+(l—2xz+zzy% 1

z z

1 > 2P (x)+ Y 2" B, (x)- 1 [By generating function] (1)
Z n=0 n=0 z

[e 0]
> 2"P, =By +zR+z* P+ 2Pyt 2" P
n=0

:1+z(P1+zP2 +2°P, +...+z”Pn+1+...) [Py =1]
=1+z) z"P,
n=0
Using (2) in (1), we get
1 © °° 1
LHS =T 1+ZZZ n+l +2Pn__

z n=0 n=0 z

=>zZ"P +>.2"P,
n=0 n=0

- Z(pn +P, +1) z" = RHS Hence Proved.
=0

Example 9 Prove that

| O,m#n, mmneN
j_l(l—xz " P dx =4 2n(n+1)
2n+1

m=n

Sol. Casel. When m = n

Integrating by parts taking P, as the second function in the given integral, we

obtain

ﬁl (l—xIZ)P,;Pi[}cﬁc: [(1—x2)P,;1 PnL - flpn %{(1—x2)19,;1}dx

=0 —ﬁl [(1 —xz)P,Z —-2xP,, ]Pndx
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=0- j 1).P, |P,dx

[by Legendre’s eq.] [(1 —x )P,,’; —2xP, +m(m+1)P, = OJ

:m(m+1j P, P, dx

1 m n
0, “n#*m
=m(m+1){ 2 [By orthogonality]
when n=m
2m+1
| 0, whenn+m
Therefore j_l (1 —x? )P,;q Pydx=42m(m+1) om n—m
2m+1

Example 10 Prove that all the roots of p, (x)=0 are distinct,

Sol.  Suppose all the roots of P, (x)=0 are not different, then at least two roots

must be equal.
Let the equal root be «, then by the theory of equations,

P,(a)=0 and  Pj(ax)=0 (1)
Since P,(a ) is the solution of Legendre’s equation, therefore

(1-x2)Pr 22 + n(n+1)P, =0 @)

Differentiate (2) 7 times w.r.t. x with Leibnitz theorem, and simplifying, we
obtain

(1 —x? )Dr+2 [Pn (x)] - 2x(rC1 + I)Dr+1 [Pn (x)]

- [2. "Cy+2"Cp—n(n +1)JD”[P,,(x)] =0 (3)

Now putting »=0 and x = in (3) and using (1), we get

(-a2)p,(@)-0-0=0 = P, "(@)=0 @)
Again putting » =1 and x =a in (3) and using (1) and (4), we have

(-a?)p"(@)-0-0=0 = P (a)=0 (5)
similar replacing » = 23,.....(n —3)(n - 2) in (3) and simplifying as above, we obtain

Pa)=0=PW(a)= cco.c..... = P"(a) (6)
But Pn(x)=—1'3 """ n Szn_l){x” —% xR
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IO 202D (y-13....20-1)20

= D'[P.(a)]#0 (7)
Example 11 Prove that

0, m<n, ne”Z

I X" P,(x)dx= 2" (n )

2ntn) "

Sol. By Rodrigues formula, the given integral

[ B (e} = [ 5" {W (x2 —1)} dx

:L J-llx}nDn(xlz]—ly‘ dx, D zd/dx

2" (n) -
_ 1 mez)’”(x2 ~1f }11 [ e (2 - dx}

2" (n)

[Integrating by parts]

(—1).m m-lpn-l
2"(n .[1 7 D (xH lr dx,
(-

1).
2"

)
m(m
(n)

[Again integrating by parts]

o) p sl g,

St ol
[(m—2) times, when m<n] (1)
_ (_ 1)m (m)/ n—m-— :
T ) L l(xz‘lﬂ_l

=0 [because n > m +1]

Part II. When m = n then by (1).
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Elan )dx—— ( lrdx—— (l—xzy'dx

-2 j (l—xzrdx [integrand is even function]
2"l
- 2’11_1 (;r/2coszn+1 0do [on taking x = sin 6 ]
1
F(n+1)F(2)
= . [By Gamma Formula]
ol (2n+3)
2r
2
_1 ni\m b +1)= ]
27 2n+l 2n-1 3 1 \/;
S Ty oty
T2 2n+1)(@2n-1)......3.1,
_ (o) (2n)(2n-2)......4.2.
)

e )2n)2n-1)2n-2)...432.1.

_(2n) (2n)[2.(n-1)}..(2.2)(2.1)

(2n+1)/

n+l 2
=(2n /\2(2( )), 2(2 (”1’)), Hence Proved.
n)l n+1)

Example 12 Prove that :
2,n=0

G )dx_{O: neN

Sol. Casel. when =0

We know that Py(x)=1
I
Therefore, [ Py(x)dx = I ldx=[x], =2

Case II. when » € N : By Rodrigues formula

P(x)=——D"(:*-1).  p=dfax

2" (n!)

Integrating both sides w.r.t. x between the limits -1 and 1,
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ﬁla(x)dhzn(m) ! (2 1)
“Fat L, 0

Now D”_l{( 1)’} D"l{x+1 (—1)”}
Using Leibnitz theorem in RHS.
= (e 1) DM (=1 (= 1) (4 1) D2 (1)
(=1 D" (x+1)]
~es 1) O enenoneny @Y e

v
1P () @
(x—1) and (x+1) exist in each terms of (2), therefore for x = 1 or 1, the RHS of
(2)=0.

Therefore {D”_l (xz - IY}I =0
-1

Hence by (1), j x)dx=0.

14.10 Orthogonal Property for Legendre Polynomial

The Legendre polynomial Pp,(x) satisfy the following orthogonal property

1 0 ,m=#n
IPm(x).Pn(x)dXZ
e ,Mm=n

\S}

2n+1

1
[ PP (d ==,
2n+1

Proof: Casel (m=n)
Let the Legendre polynomials P, (x) and P,(x) satisfy the differential equations

(l—xz)Pn’;—2xPn’1 +m(m+1)P, =0 (1)

(l—x —2xP, +n(n+1)P, =0 (2)
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Multiplying (1) by P,(x) and (2) by P, (x) and subtracting we obtain
(1 —x? IP,;;Pn — PP, |-2x[P,P, - PP, |+ {m(m+1)-n(n+1)}P, . P, =0

Combining the first two terms, we obtain

%[(l—xz XP,,’,Pn -PP, )]+m(m + 1)—n(n + I)PmPn =0

= en)nen0rn, = L2 - )

Integrating from -1 to 1 we obtain

(m-1) (m+n+1)j'Pm(x).&(x)dxz[(l—xz)(Pn’q—Pn—Pn’Pm)L _o

=X ij(x).%(x)dxzo

Case 11 (m = n)

This part can be proved using Rodrigue’s formula or using generating function.
Using the generating function we have

(l—2xt+t2)_1/2 =3 B (x)." (1)
n=0

Sparing both sides and then integrating w.r.t. x from -1 to 1 we obtain

dx
E— d.
J11—2xt+t I[EP ]2 ) ?
Now [ dx 1n(1—2xz+z2)1
L —2t .

:_Zit[1n(1—2t+t2)—1n(1—2t+f22)]
:_Zit[ln(l—t)2 ~in(1+ )]
:%[ln(l—t)—ln(l"'t)]
:%[1n(l+t)—ln(1—t)]
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2 4 2n
=2 1+t—+t—+...+ ! +... 3)
3 5

Also I[an(x).tn]zdx= j

=y J' P2(x).t*"dx [using the 1% part]

0 1
= > 2" [ Bl (x)dx )
n=0 -1

From (2) using (3) and (4) we obtain

2 4 2n
2+ —+—+...+
3 5 2n+1

o 1
+o = anz(x)dx
n=0 -1

Equating the coefficients of " from both sides we obtain

Example 13 Prove that

1 n
P,(x) s 2

icawmen) 2nel
Sol. We have

L p () P .
| ” dx = [P,(x) Y B, (x)h™ | dx
e I R e
1
= _[Pn(x).Pn (x)n"dx  [Other terms vanish due to orthogonality]
-1

2h"
2n+1

1
=h" _[Pnz (x)dx =
-1
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Example 14 Show that (2n + 1)(x2 - I)Pn’ =n(n+1)(P,,, - P,_;) and hence prove
that

1
j(xz —1)Pn+1P,; dpe_ 2N (n+1)

° (2n+1)(2n+3)
Sol.  We know that
(1 —x? )Pn’ =n(P,_,—xP,)  [Recurrence relations] (1)
and (l—x2 )Pn’ =(n+1)(xP, - P,,,) )

multiplying (1) by (n+1) and (2) by » and then on adding we get
)P'+n( )P'—n(n+l)P  —n(n+1)P

( n+1
) n(n+1)(P,_ = P,)

1)p; +

(

(n+1

or 2n+1(

—_—

or 2n+1 (xz +n n+1 P.- Pn—l)

or ( ) - 1)( B~ Pn—l)

Multiplying both sides by P,,, and integrating w.r.t. x from -1 to 1, we have

(x —1)Pn B dx= n+1 J. n+l P—l)dx

2::11 l:f i — I i1 1dx}

_n(n+1){ 2 _0}

C@n+1)| 2(n+1)+1

1
{.‘IPmPndx:Oifm#n}
-1

14.11 Summary

In this unit Legendre polynomial & its properties are discussed. Solution of
Legendre differential equation is explained. Generating function & Rodrigue
formula for obtaining Legendre polynomial are discussed. Recurrence relations &
orthogonal property of Legendre polynomial are explained.
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14.12 Glossary

Polynomial : An expression in integer power of variable.
Differential equation : An equation involving independent variable, dependent
variable & its derivatives.

Generating function : A function when expanded gives values in coefficients of
powers of variables.

Recurrence relation : A relation by which we can find next value by using

previous value.

Orthogonality :1s a property in which curves intersect each other at right angle.

14.13 Answer to Self Learning Exercise

Ans.1: (1 X )C:;;/ 2x%+n(n+l)y 0

Ans.2: (1 2xt+t)

Ans.3: %[6}’3 (x)—2Py (x)+18B(x)-13By(x)]

14.14 Exercise

Section A (Very Short Answer type Questions)
Q.1 State Rodrigue’s formula for Legendre polynomial.
Q.2 Write the value of p(x)
Q.3 Write the formula for Legendre polynomial
Q.4 Write Legendre differential equation.
Q.5 State orthogonal property for Legendre polynomial.

Section B (Short Answer type Questions)
Q.6 Using Rodrigue’s formula. Evaluate p(x)

Expend the polynomial in a series of Legendre polynomial (Q. 7-8)

Q.7 x*+3x>-x2+5x-2
Q8 1+x-x?
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-~ S (2n+1)P, (x)e"

Q.9 Prove that 5=
(1—2xt+t2)3/ n=0

1
2n(n+1)
.10 Prove that ’p P . dx=
Q10 Prove tha _jlx et l4x? —1)(2n+3)

Section C (Long Answer type Questions)

Q.11 State & Prove Rodrigue’s formula.
Q.12 Prove that

(1) (n+1)P,, =@2n+1)xP, —xP,_,

(i1) @n+1)P, =Py~ P
Q.13 Prove that

i oD@ -1B =nl+1)(By - Piy)

(i1) nP,=xP,-P_,
Q.14 State & prove Orthogonal property for Legendre polynomial.
Q.15 Prove that

1 0 ,m#n, mmneN
(i) [ (1—x2)P,;1P,; dx=12n(n+1)
m=n
- (2n+1)
; 2n(n+1)

G) [0 -1)BB =

° (2n+1)(2n+3)

14.15 Answers to Exercise

Ans.1: Pn(x)— L d (xz—lyl

2" dx”
3x% -1
Ans.2 : Pz(x): )
" if is even
N1y (@n-2r) . 2
Ans.3: Pn(X):Zr/z(n()_(zn),( 7’3 )/ K2 N = n_1
r=07!2"(n=2r)\n—r) Tifisoa’a’
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Ans.4 : (l—xz)d——2x@+n(n+l)y=0

x2 dx

1 0 ,m#n
Ans.5:  [P,(x)B,(x)dx=1 2 ~

- 2n+1 e
Ans.6: %(63x5—70x3+15)

8 6 2 34 224
Ans.7: —P —Plx)—-—P —PBlx)-———F,
ns 35 4(x)+5 3 (x) 3 ) (x)+ 5 1 (x) 105 o(x)

Ans8 : %po(x)m(x)_%pz(x)
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UNIT -15

Hermite functions, Hermite Polynomials

Structure of the Unit
15.0 Objectives

15.1 Introduction

15.2 Rodrigues’ formula for Hermite polynomial H,, (x)
15.3 Recurrence Relations

15.4 Generating function for the H,, (x)

15.5 Tllustrative Examples

15.6 Orthogonality relation for Hermite polynomials

15.7 Recurrence relation for the Harmonic oscillator energy Eigenfunctions
15.8 Tllustrative Examples

15.9 Self learning exercise

15.10 Summary

15.11 Glossary

15.12 Answers to Self Learning Exercise

15.13 Exercise

15.14 Answers to Exercise

References and Suggested Readings

15.0 Objectives

In this unit we are going to discuss about another type of polynomial i.e.
Hermite polynomials and its properties.

After going through this unit you will be able to learn
» Hermite differential equation

> Rodrigues’ formula for Hermite polynomial H,, (x)and Recurrence Relations
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> Generating function for the H,, (x)
> Orthogonality relation for Hermite polynomials

» The Harmonic oscillator energy Eigenfunctions

15.1 Introduction

In the treatment of the harmonic oscillator in quantum mechanics,

Hermite’s differential equation arises and which is defined as

y'=2xy"+2ny =0 (D
d? d . . . .
Where y'' = d—x); L,y = d—z .n is a real number. For n is a non-negative integer,

i.e.n=0,1,2,3,..., the classical set of solutions of Hermite’s differential equation
are often referred to as Hermite Polynomials H,, (x). These polynomials are
useful in solving physical problems using algebraic and analytic methods. Hermite

polynomials are defined by

H,0) =1y’ e @
Let y = 3% a,x™*" 3)
y' =X(m+r)ax™" ! (4)
y'=Ym+r)((m+r—1)ax™m"2 (5)

Putting equation (2)-(4) in (1) we get

Ym+r)(m+r—1Dax™7"2 2% (m+r)a,x™" +

2n Yy a,x™*" =0

Ym+r)(m+r—1Dax™" 2 +¥Y(2n—2m—2r)a,x™" =0

m-—2

Comparing coefficient of x ,m(m-2)ay =0

Since ag#0, m=0orl

Comparing coefficient of X m-1. m(m+1)a; =0oradq =0

Finally, comparing coefficient of x™*7,

(mtr+2)(m+r+1) A4 p+2(n-m-1) A =0
2(n—-m-r)

- a
(m+r+2)(m4+r+1) 7
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Case I: m=0.
2(r-n)

Ar+2 = (r+2)(r+1) T

2(4—n)n(n-2)
6.5.6 0
25n(n-2)(n—4)
- 6! %o
Now, y=Xa.x" = ag+ azx?+ a,x*+ agx®+ -

6:

2n 22n(n-2) 23n(n-2)(n—-4)
Y= ao[l— —=x*+ " x* — S x® + -]
Casell : m =1.
_ 2(1+r-n)
Art2 = r+3)(r+2) T
_2(1-n) _ 2(n-1) )
a, = . ag = . ag ,
_2(3-n)2(1-n) _ 2%2(n-1)(n-3)
=75 P 5! %o
. 2(n-1) 2%2(n-1)(n-3)
Sy = aox[l—Tx2+Tx4+]

Hence we can write the solution for m = 0 and m =1 in more general form

an

y = ao[l — Zx? 4 TR0 D s ZnODOD 6y oy
(2 n(n=-2)(n=4)...(n—Er+2) '
nin— ;lr' n—~2r 2T+ ] (6)
_ 2(n—-1) X2 22(n-1)(n-3) X
y=aox[l— —/—x"+————x"+ -+
(-2)"(n-1)(n-3)...(n—-2r+1) 2r
(2r+1)! t ] 7

and the general solution of Hermite equation is the superposition of (6) and (7).

15.2 Rodrigues’ formula for Hermite Polynomial H (x)

The Hermite polynomials are given by the formula
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dﬂ

H — _1” .X'Z —X2
()=t — e

Ifweputn = 0,1,2, ... in
H, (x)=1

H (x)=2x

H,(x) =4x" -2

H (x)= 8x* —12x

H (x) =16x* —48x* +12

4

H5 (x) =32x" —160x" +120x

Proof : Letp = e ™", then

Dp+2xp=0, Where D = %

Differentiating (n+1) times by the Leibnitz’ rule, we get
D™"*%p + 2xD™p + 2(n + 1)D"p = 0
Writing y = (—1)"D"p
D%y + 2xDy +2(n+ 1)y =0
Substitute u = e*"y then
Du = e** (2xy 4+ Dy)And
D2u = e*’ (D2y + 4xDy + 4x%y + 2y)
Hence by equation (8), we get
D?*u— 2xDu + 2nu = 0

Which indicates that

u=(—1)"e* Dre*

is a polynomial solution of Hermite equation.

)

15.3 Recurrence Relations
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Hermite polynomials satisfy the following relations :-

L Hp(x) = 2xHp(x) — Hpy1(x)
Proof: We know the Rodrigues’ formula

n

d
Hy(x) = ()" e™ ——e™

2

Differentiating this with respect to , we get

2 dn+1

' — (_1\n x2 A" _x2 _q\n ,x% & _x?
H,(x) =(—1)"2xe e+ (-D"e i@ )
Which gives us
Hp(x) = 2xHy (x) — Hyy1(x) (10)

2. Hy(x) =2H,(x) + 2xHy(x) — Hpy1(x)

Proof: Again differentiating equation (9) with respectto X , we get

" _ n ,x? d” —x? Nga2 ,x2 d” —x?
H)(x) =2(-1D"e We + (—D"4x“ e We

. n+1 o ) dn+1 o
+ (—1)"2x e* e 4+ (—D"2x e* Tt x

) n+2 )

+ (=1 e” T e™”

From this, we get

Hy (x) = 2Hp(x) + 2xHp(x) — Hpy1 (x) (11)

3. Hpp(x) = 2(n+ DH, (x)
Proof: We know that Hermite function H,, (x) satisfies the Hermite’s equation
H, (x) — 2xH,(x) + 2n)H,(x) =0 (12)
Putting the value of H, (x) from equation (11) to equation (12), we get
2H,(x) + 2xH),(x) — H),.,(x) — 2xH,,(x) + 2nH,;,(x) =0
Which gives us the result

Hpy1(x) = 2(n + 1H, (x) (13)
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4. Hn+2(x) = 2XHn+1(x) —2(n+ 1)Hn(x)
Proof: Replacing n by n+1 in equation (10) we get
Hyyq(x) = 2xHp 1 (x) — Hpy2(x)
Putting the value of Hj ;(x) from equation (13), we get
2(n+ DH, (x) = 2xHpy1(x) — Hpyo(x)
Then we get the following result
Hn+2(x) = 2XHn+1(x) —2(n+ 1)H, (x)

From this relation, we can get the higher polynomials.

15.4 Generating function for the H (x)

The generating function for the Hermite polynomial is given by

g(xr)=e " = = 'f—th”,(x)
n=0 n:

Differentiating g(x,t) = e* F(t=0° with respect to t

ag

E=(2x—2t)g

0 2d _,2
a_i|t=0 =2x =H(x) = —e* —e™

Where H, (x) is defined by the Rodrigues’ formula.

Now to establish the general term

(_1)n+1ex2 ar+ e~x = (_1)n+1ex2i ar
dxn+1 dx dx™
d 2 21 d* _
— (_1)n+1 [_ex _ zxex ]_e X
dx dx™

—x?2

2

d
=— aHn(x) + 2xH, (x)

Using recurrence relation, we get

1
(—1)"t1ex’ n—+e-x2 = —iH (x) + 2xH, (x)
dxntl dx ™ n
= n+1(x)

In general, n*™ differential of function g(x,t) att=0
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N (e—t3+2tx
H, (x) = ( o )
2 dt 2
= (=1)eX  Z_p—X
(=Dre* —e
So the function g (x, t) is known as the generating function of Hermite
polynomials. Using the generating function, we can also prove the recurrence

reation:
Hp(x) = 2nH,_; (x)
Proof: We know that

[0}

gor-st = 3 )

n!
n=0

Differentiating above equation with respect to X, we get

[0}

t"H,' (x)
2xt—t% _ n
2te B Z n!
n=0
t" H,(x) t" H,/(x)
or 2 Tiog i = g

Now equating the coefficient of t™* , it follows that
Hy(x) = 2nH,_q (%)
And H(x) = 2nH',,_; (x)

15.5 Illustrative Examples

Example 15.1 Calculate the first three Hermite polynomials by using the
generating function.

Sol. We know that generating function for Hermite polynomial is given by

[}

glx, t) = e2¥t-t* = Z —tn Hn ()

n!
n=0

Expanding the left-hand side of the above equation and combining equal power of t
yields

1+ 2xt + (2x? — 1)t? + higher degree

Comparing the coefficients of powers of t in both sides, we get
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Hy(x) = 1,
Hi(x) = 2x,
Hy(x) = 4x% -2
These are the first three Hermite polynomials calculated by using the generating
function.
Examplel5.2 Calculate the third Hermite polynomial by using the recurrence
relation.
Sol. We know that recurrence relation
Hyy1(x) = 2xHy(x) — 2nHy_q (x)
Setting n=1 , we get
Hy(x) = 2xHy(x) — 2H, (x)
But we know that
Hy(x) = 1,
Hi(x) = 2x
Putting the values of Hy(x) and H; (x), we get
H,(x) = 2x.2x — 2
=4x? -2
The same result for the third Hermite polynomial can also be obtained by using the
generating function.

15.6 Orthogonality Relation for Hermite Polynomials

We know that Hermite function satisfies the Hermite differential equation
H)'(x) — 2xH, (x) + 2nH,(x) =0

This equation can be written as

e <= (7% Hy,(x))+ 2nHy () = 0 (14)
Changing the index n by m, we can write

e = (7% Hpp (X))+ 2mHpy (x) = 0 (15)

Multiplying equation (15) by H,, (x) and equation (14) by H,,,(x), we get the
following equations
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Hy ()e™” - (7™ Hyn (x))+ 2mHy (<) Hyn (x) = 0 (16)
And

Hyn(0)e* 7 (€7 Hy(x))+ 2nHp (x)Hy (x) = 0 (7
Subtracting equation (16) and (17), we get
2(m — n)e ™ Hy () Hn(x) = Hy(x)e** = (e Hj(x)) -
2 d 21y
H,(x)e* — (e x Hm(x))

Integrating the above equation from —©oo to o, we get

2(m —n) j e'szm(x)Hn(x) dx

=/ i(t‘—’"‘ZILIm(X)Hr’l(JC) = Hn(x)H,’n(x)) dx =0

—00 dx

Which gives

j e(_XZ)Hm (X)H (x)dx=0 form=n

—00

This is known as the orthogonality relation of Hermite polynomials.
Let us define

I = Joo €% Hoy () Hy, (x) dx
Then

(e @)

Ln-1n+1 = f_oo e_xZHn—1(x)Hn+1(x) dx

We know the recurrence relation

Hyy1(x) = 2xHy(x) — 2nHy_q (x)

= [7 e ¥ Hy_y (x) (2xHy (x) — 2nHy_y (x) )dx = 0
= [% 2xe™ Hy(x)Hy—y (X)dx = 2nly_g g ()

. . . 2 dv 2
Putting the value of Hermite polynomial Hy,(x) = (=1)" e* € -
we get

0 x2 dat  _,2 avt o o2 _

—J__ 2xe e ——e dx=2nly_10 (x)
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2 dv _,2 d"
co ex Fe x Fe
=>—f_oo x x

) o d* _.2d 2 dv1 .2
Fdx — [ —e™* —|e* ex]

—00 dxn dx dxn—1
= 2nln—l,n—l (x)

Which gives us
Inn (x) =2"nl,
Where
0
Ioo = j e dx =1
—o0
Then

Iy, (x) =2™"n!Vrm

So the orthonormality relation can be written as

je_"sz (x)Hn (x)dx = Z"n!\/;5mn

15.7 Recurrence relation for the Harmonic Oscillator
Energy Eigenfunctions

The harmonic oscillator energy eigenfunctions Y, (x) satisfy the recurrence

relation

n+1 n
@) = [P + @ as)
Where a = %

We can prove this in following manner

The energy eigenfunction for harmonic oscillator is defined as

v, (x) =N H (ocx)e_"‘z"z/2

n=2012,..
The recurrence relation for the Hermite polynomial is
Hyy1(x) = 2xHp(x) — 2nHy_q (x)
Then
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ax, (x) = axNyH,(ax)e * **/2

1 -
= Ny [E Hyyq(ax) + an—1(0—’x)] e =% X/

2.2 nh, 2.2
= —nNn+1Hn+1(ax)e @x/z + Nn—lHn—l(ax)e X2
2Nn 41 Np—1
Which gives us

1
axy,(x) = %lpnﬂ(x) + \/glpnq(x)

15.8 Illustrative Examples

Example 15.3 Using the recurrence relation calculate 15 (x)

Sol. The recurrence relation for the energy eigenfunction for harmonic oscillator is

i@ = [ |ea = [Fonao)]

Setting n =2, we get

s(x) = f [y () — 1 ()]

\f [ax<ax¢1(x) f wo(x)) wl(x)]

_ \E(azxz — D (1) = Eo ()

By knowing the wave functions ¥y (x) and ¥, (x) we can the value of 5.
Examplel5.4 Prove that

1,0 =&, ©0=0

2n+l

Sol. Using the Generating function ,we have

= H (%)

2,

n=0 n'

t4 — eth—t2 (1)

Replacing x by 0 in equation(1),We have
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= H (0 & (Y

Z n( )t4 — -t :Z( t )

n=0 n' n=0 n'
© H O o 1\

Or Z n( )t4:Z( 1) t2n (2)
n=0 n' n=0 n'

Equating coefficients of #*” on both sides of (2) ,we have
H,(0) 1y
2n n
—-1)"|2
Or H2 (0) — %
' n

The right hand side of equation (2) does not contain odd powers of # . Then

2n+1

equating coefficients of +*" on the both side of equation (2) gives

a0 _

2+l
So |H,, (0)=0

Example 15.5 Express H(x)=x" +2x’ +2x* —x—3 in terms of Hermite’s
polynomials.
Sol. We know that

H, (x)=1

H (x)=2x

H (x)= 4x* -2

H (x) =8x’ —12x
And H,(x) =16x" —48x” +12

From these,we have

1 3
x* ZEH4(X)+3XZ 2 (1)
; 1 3x
x =—H (x)+— 2
2 5 (x) 5 )
, 1 1
x ' =—H (x)+— 3
2 ,(x) 5 3)
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x=H, () @

1=H (x) (5)

- H(x) :%H“(x)+3x2 —%+2x2 —x—3 by(l)

1 15
=—H, (x)+2x +5x" —x ——
16 () 4
By using(2)
1 1 3 ) 15
Hx)=—H,(x)+2|-H,(x)+—x |+5x" —x——
(x) T ,(X) {8 (%) 5 } 1

1 1 15
=—H (x)+—H (x)+5x" +2x ——
T (%) 2 5 (X) 2

By using(3)

1 1 1 1 15
H(X) :EH4(X)+ZH3(X)+5|:ZH2(X)+5j|+2x—?

1 1 5 5
=—H xX)+-H,(x)+—H (x)+2x——
g )+ 7 H () + 2 H, (%) 2

By U.Sing(4)
Ii (x) — 1 Ii (x) 1 Ii (x) li (x) ji (X) 11 (x)
16 4 4 3 4 2 1 4 0

The above equation represents the expression of H (x) in terms of Hermite’s

polynomials.
Example 15.6 Express H(x) =5x” +2x in terms of Hermite’s polynomials.
Sol. We know that
2
H, (x)=1, H(x)=2x and H (x)=4x" -2
From these we have

, 1 1
x=—H (x)+—=
4 (%) 2

1
X = EHl(x) then
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H(x)=5x"+2x
H(x)= 5(%H2(x)+%j+ 2%Hl(x)

5 5
:ZHZ(X)+E+H1(X)

5 5
:ZHZ(X) +H1(X)+E
Example 15.7 Prove that

T xle™ [Hn (X)T dx = (\/;)2”@(” . %j

—00

Sol. From the recurrence relation ,we know that

H (x)=2xH (x)-2nH _(x)

1

Or xH (x)=nH _(x) +§Hn+l(x) (1)

Or szn (x)=nxH _(x)+ %H’M (x) )
Replacing n by n—1andn +1 successively in eq(1).
We get

1
an_l(x)=(n—1)Hn_2(x)+§Hn(x) 3)
1

and  xH _ (x) =(n+1)Hn(x)+§Hn+2(x) (4)

Using(3) and (4),(2) becomes

szn (x)= n{(n — I)Hn_z(x) +%Hn(x)}
+%{(n +1)H (x) +%Hn+2(x)}

=n(n—I)Hn_z(x)+%Hn+2(x)+(n+%)Hn(x) (5)

Multiplying both sides of (5) by e H _(x)and then integrating with respect to x

from —o0 to oo ,we get
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T e ™ {Hn (x)}2 dx=n(n-1) T e_XZHn (VH _ (x)dx

o0

+%Ioe—x2Hn (X)H _ (x)dx + (n + %) I e {Hn(x)}2 dx

—00

:O+O+(n+%j\/; 2" |n

T e H (0)H, (x)dx=(N7)2"|n 5,
T xle™ [Hn (x)]2 dx = (n + %)(\/;) 2"|n

—00

Example 15.8 Show that
i H (x)H (y) H_ (WH (x)-H  (x)H (y)
k=0 zklk 2n+1|ﬁ(y_x)

Sol. From the recurrence relation

H (x)=2xH (x)-2nH _(x)

Or xH (x)=nH _(x)+ %Hm(x) (1)
Replacing xby y in equation(1l),we get
VH, () =, () + 2 H, () @)
Multiplying equation (2) by H (x)and equation (1) by H (y)then subtracting, we
get
(v =) H, H, () =3[, (O, ()~ H,, () H, ()] 5
—2[H, (OH,(»)-H _(H, (%]
Putting n=0,1,2,...(n —1),n in eq(3),we have
(y=X)H,(x)H () = %[Hl (»)H,(x)—H (x)H,(y)|-0 4)
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(y—x)H,(x)H,(y) = %[Hz (»)H,(x)—H,(x)H,(») ]
- H,(0)H, ()~ H,("H,(x) |
(y=x)H,(0)H,(y) = %[Hg () H,(x)— H,(x)H, () |

—2| H,(\)H,(y)—H,(y)H,(x) |

(6)

(y=xH _(0)H, (y)= %[H,, (WH, (x)-H ()H, ()]

i o, o1, 0]

(7)

(= )H, OH, () =3[, (W, ()~ H,, ()H, ()]
—2[H,_(OH,(»)-H _(»H, (%]

Multiplying (4),(5),(6),(7),(8) by 1, ! ! ! !

1
2012272837 2" n—=1"2"|n

(8)

Respectively and adding ,we get
~H (0H (y) H (WH (x)-H  (x)H ()
(y N x)z k k — 1 1

pr zklk 2n+1|ﬂ
) Z H (x)H (y) H_ (WH (x)-H  (x)H (y)
k=0 zklk - 2n+l|ﬁ(y —X)

Example 15.9 Prove that H (-x)=(-1)"H (x)

LPIT,
Sol. We have H (")=Z( 1)° n!(2x)
! 5=0 (n_2S)'S'

B 2 (=1)’ n!(=2x)""*
7,0 = ;‘ (n—2s)!s!

= % (=D’ (= l)n_zs n !(2x)n—2s

= (n—2s)!s!

B S e

= (n—2s)!s!
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=(-D"H (x)
Thus | H (x)=(-1)"H (x)

Example 15.10 Prove that for m<n,
d"” 2"n

X) = H (x
dx" 7,00 = (n—m)! pen )
Sol.
d" 2" n!
T H, (x)= H _ (x)
dx (n—m)!
After differentiation m times partially with respect to x, we have
2 )= L)
= nldx" " dx"

— (22)’” 6—22+22x
0

=(2z2) Z

n=0

)mi e

n=0

Putting m+n=s or n=s-m on right side we get

SEA H (x) = 2'"ZH ),

n=s n' d " s=m (S m)'
Comparing the powers of z" on either side, we get

1 d" wH,_, ()

———H, (x)=2

n!dx" (n m)'

m !

= T hpw=r—"

dx" " (n—m)! e

Hence Proved

15.9 Self Learning Exercise

Q.1 Write one example from quantum mechanics where Hermite polynomials

appear.
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Q. 2 Write the value of Hermite polynomial H, (x).

Q. 3 Write the value of Hermite polynomial H, (0).

Q. 4 Write the value of Hermite polynomial H, (x).

Q.5 By using Rodrigues’ formula for Hermite polynomials prove the
following Recurrence relation

H, (x) = 2H,,(x) + 2xH,, (x) = Hyppy ()

Q.6 By using Rodrigues’ formula for Hermite polynomials prove the
following Recurrence relation

(i) Hni1(x) = 2(n+ DH, (x)

() Hn42(x) = 2xHpq4(x) — 2(n + 1) H,(x)

15.10 Summary

We started this topic with the introduction of Hermite differential equation
which appears in the treatment of Harmonic oscillator in quantum mechanics. We
defined the recurrence relations for the Hermite polynomials by which we can get
the higher degree polynomial. We also defined the generating function for the
Hermite polynomial which can generate the Hermite polynomial of any degree.
We ended up with application of recurrence relation for the harmonic oscillator
energy eigenfunctions.

15.11 Glossary

Eigen : Proper; characteristic

Polynomial: An expression of more than two algebraic terms, especially
the sum of several terms that contain different powers of the same variable(s).
Recurrence: the fact of happening again

Generate: to cause something to exist

Hermite: Charles Hermite (December 24, 1822 — January 14, 1901) was

a French mathematician who  did research  onnumber theory, invariant

theory, orthogonal polynomials, elliptic functions, and algebra.Hermite
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polynomials, Hermite interpolation, Hermite normal form, Hermitian operators are

named in his honor

15.12 Answers of Self Learning Exercise

Ans. 1: In the treatment of Harmonic oscillator
Ans. 2: 4x% —2
Ans. 3: H (x)=2x
= H (0)=2.0=0
Ans. 4: H, (x) =16x" —48x> +12

15.13 Exercise

Section A-Very Short Answer Type Questions
Q.1 Write down the Rodrigues’ formula for Hermite polynomial H,, (x)
Q.2 What do you mean by the generating function of Hermite polynomials.
Section B-Short Answer type Questions
Q.3 Using the recurrence relation calculate the Hermite polynomial H, (x).

Q.4 Show that for the energy eigenfunction of harmonic oscillator

2
Ps(x) = c [axt/)4(x) - \/§1P3(x)]

Q.5 Using the recurrence relation calculate H3 (x).
Q.6 By using Rodrigues’ formula for Hermite polynomials prove the

following Recurrence relations

Hn(x) = 2xHp(x) — Hpy1 ()
Section C-Long Answer type Questions

Q.7 Show that the uncertainty relation

Ax.Ap =(n+ %)h

holds for the harmonic oscillator energy eigenstates.
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15.14 Answers to Exercise

> d” _p
Ans.1: H (x)=(-1)"¢" —e
" dx
Ans. 2: The generating function for the Hermite polynomial is given by
2 2 2 == th (X)
x,t — ert—t — e{x —(t=x)"} — ~ e\ )
g(x1) 2
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16.0 Objectives

The objective of this unit is to introduce the concept of Fourier series and
their applications in various problems of Physics. As Fourier series is a powerful
tool for analysis of periodic functions, the unit aims at describing the methods for
expressing piecewise continuous periodic functions through Fourier series

expansion.

16.1 Introduction

In practice we encounter many signals which are periodic in nature. For

example

-During communications and transmitting signals, periodic signals are used in

modulator.

-Problems involving vibrations or oscillations- water waves, electromagnetic

waves and fields, sound waves, alternating electrical current, voltage etc.
-Periodic signals are used in power supplies.
-Periodicity in crystal structure and x-ray crystallography.

The simple periodic signal with definite frequency is expressed
mathematically by the sine or cosine function. This definite (single) frequency is
known as fundamental frequency. But many times the signal is not pure i.e. it
contains a number of frequencies (harmonics) which are integer time the
fundamental frequency along with the fundamental frequency. Such a signal is

complicated periodic function.

This complicated function may be mathematically expressed as an infinite
series of terms including fundamental frequency and harmonics and the series is

known as Fourier series.

16.2 Definition of Fourier Series

A Fourier series may be defined as an expansion of any complex periodic function

f(x) in a series of series or cosines such as

f(x)=a,+ ’fan cosnx + ’fbn sin nx
n=l1 n=1 (1)
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The above equation is valid if the function f(x) satisfies the following two
conditions known as Dirichlet conditions :

(1) The function has only a finite number of extreme values i.e. maxima and
minima.
(1)  The function has finite discontinuities in finite number in one oscillation.

These conditions are sufficient but not necessary because some functions

which do not satisfy these conditions may be expressed by Fourier series.
The function f (x) is defined in interval (—1t, ) and has period 27T as sin x and
cos x have period of 21 and also sin n x and cosn x
wsinn (x + 2m) =sinnx

cosn (x+ 2m) =cosnx

16.3 Evaluation of Coefficients of Fourier Series

In equation (1) ag, a,, and b,, are called the coefficients of the Fourier series.

> Value of coefficient a,:

Let us integrate equation (1) on both the sides between the limits — 1 and .

ffnf(x)dx = a ffn dx +
™ Si1ancosnx + [ by sinn o

It reduces to

T

T
fx)dx= ay | dx+ 0+0

-1t -1t

{As all other integrales vanish}
Or ffnf(x)dx = qq2m

)

» Value of coefficient a,:

Multiply equation (i) by cos m x on both the sides and integrating between the

limits — T and Tt.
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s s

f(x)cosmx dx = aoj cosmx dx
- -7

+ Y iay ffﬂ cosmxcosnx dx + Yo, by, ffﬂ cosm x sinn x dx
(4)

By orthogonal property of sine and cosine function we have

T

j sin mx cos nxdx =0

-

)

form,n #0 j sin mx sin nxdx = j cOS mx cos nxdx = o ©)
6 =0 for m#n
o =1 form=n
Using (5) and (6) in (4) we have
A
f(x)cosmxdx =0+ a, w6y, + 0
-1t
ffﬂf(x)cosmxdx=amn [for m =n]
1
Ay = ;f_ﬂf(x) cosm x dx

Replacing m by n, we have

1 T
a =;__[[f(x)cosnxdx e

» Value of coefficient b,,:

Multiply (1) on both the sides by sin m x and integrate between the limits

-1 and Tt.

s s

f(x)sinmxdx = aoj sinm x dx
-7

-1t
(0.0) (0.0)
A A
+Zanj sinmxcosnxdx+2bnj sinm x sinn x dx
n=1 - n=1 -

=0+0+ b, mwonn [Using 5 and 6]
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= b, T

1 s
o by = —j f(x)sinm x dx
T J_ g

Replacing m by n
1 7% .
b = ;__[zf(x)sm nxdx ®)
Thus the values of the coefficients are given by eq (3), (7) and (8).
16.4 Even and Odd Functions
We can write any function f (x) as
fx) = f(x)+2f(—x) 4 f(x)—zf(—x) 1)
or fO) = fo(0+ folx) (2)
where f,(x) = w 3)
and fo(x) = TS @
From (3) we can see that
f(=x)+ f(x)
fe(_x) = 5 = fe (x)
or fe(_x) = fe(x) (5)

Thus the functions which satisfy equation (5) are known as even function for
which the functions remain same on replacing x by - x.
For example cos (—x) = cos x

Thus COS X is an even function

From (4) we can see that

foy = [EDH 1@ _ {f(x) —zf(—x)}
or fo(=0) = = fol®) ©

Thus the functions which satisfy equation (6) are known as odd functions.

For example sin (—x) = —sinx
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Thus sin x is an odd function.
From (2) we can see that we can always split each function into some of even and

odd functions but if f(x) is a periodic function, then f, (x) and fy(x) should also

be periodic functions.

If functions f (x) is an even function then f(—x) = f(x)

“ o) = LB = g (7)

Therefore f(x) = f,(x) (8)
Thus even functions when represented by Fourier series will not contain odd

Sfunction terms i.e. sinnx series.

The Fourier series for an even function is
fx) = folx) = ap + Zancosnx (9)
n=1

Similarly if f () is an odd function then f(—x) = —f(x)
Therefore f,(x) = 0 (10)
Thus Fourier series for an odd function will contain series of sinnx.

The Fourier series for an odd function is

f@) = fy@) = ) bysinnx (11)
n=2
The graph of an even function is symmetrical about x = 0.

The area of the curve of even function form —7T to 7 is twice the area under

the curve from 0 to 7T i.e.

VA VA
flx)dx =2 j fx)dx
-1 0
Therefore for even function

1 +1T 1 T
aozgf_n f(x)dxz;fof(x)dx

1 +1 2 T
tn = — f(x)cosnx dx=;j f(x) cosn xdx
0

-1t

and b, =0
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The graph of an odd function is asymmetrical with respect to x = 0. The area

under the curve from —7 to 7T for an odd function is zero.
+7
“ T f)dx =0
-1

~ap=0 a,=0

2 T
and bn=; j f(x)sinn x dx
0

Thus Fourier series of a periodic function may be written as

(o]
f(x)=ay + Z(an cosn x + b, sinn x)
n=1
Periodic function = constant + even periodic function f, + odd periodic

function f.

This function is periodic in phase angle X as.

f(x+2m) = ay+ Z{an cosn(x + 2m) + b, sinn(x + 2m)}

n=1

(o]
=aqy + Z{ancosnx+ b, sinn x }
n=1

If x = t and T is time period then Fourier series is written as

= 2T 2T
f@)=ay,+ Z{ancosn Tt+ b, sinn Tt}

n=1

(o]
= ay + Z{ancosnwt+ b, sinn w t}

n=1

16.5 Dirichlet’s Conditions

The Dirichlet’s Theorem states that if a function f (x) is well defined and bounded

in the interval — T < x < 7 and has only a finite number of maxima and minima,
has finite number of points of discontinuities and satisfies periodicity condition

fix+2m) = f(x)

then the function may be expanded in Fourier series.
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Thus Fourier series expansion is valid for following conditions.

(1) Function should be well defined, single valued in interval (—1t, 77)

(1)  Function should be continuous or may have only finite number of points of
infinite discontinuities and only a finite number of maxima and minima.

(i)  The function is integrable in the interval (—7, T) and series is integrable

term by term and series is uniformly convergent in the interval.

16.6 Self-Learning Exercise 1

Very Short Answer Type Questions
Q.1 What are the conditions imposed on function for expansion by Fourier series
known as?
Q.2 If Fourier series of a function contain only sine terms then what is the function
known as?

Short Answer Type Questions

Q.3 What is an even function?

Q.4 Function f(x) = x sin X is even or odd in range (—71', 71') ?

16.7 Applications of Fourier Series

Fourier series decomposes any periodic function or signal into the sum of
sine and cosine functions (or complex exponentials). Fourier series was originally
developed to solve the heat equation but it has been applied to a wide variety of
mathematical and physical problems. Fourier series has its applications in heat
transfer, electrical engineering, vibration analysis, acoustics, optics, signal
processing, image processing, mechanical engineering, quantum mechanics etc.
Since Fourier series is a sum of multiple sines and cosines it is easily differentiated
and integrated which often simplifies the analysis of functions. In particular the
fields of electronics, quantum mechanics and electrodynamics all make use of
Fourier series. Other very useful methods for fields of Digital Signal processing
and spectral Analysis are fast Fourier transform and discrete Fourier transform
which are based on Fourier series. Thus Fourier series finds applications in
Harmonic analysis, spectrum analyzer, Lock-in-amplifier, in solutions of partial

differential equations, radio and communication etc.
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16.8 Illustrative Examples

Example 1  Express output voltage in a Half wave Rectifier by Fourier series.
Sol.  The output signal of a half-wave rectifier with real value is known.
Mathematically it is expressed as

V=0 . —nm <ot <0

v=V,sinwt 0wt <1
Taking f(x) = v and x = ot

f(x)=0 —t<x <0

f(x) =V,sinx 0<x <m

This function cannot be expressed as even or odd therefore Fourier series for this
function is

f(x) = ap+ Z(ancosnx+ b, sinn x)
n=1

1 T
Qo =5~ j_nf(x)dx

1 [ ~0 T
- d d
|| reoax+ [ reo x]
1 [ ~0 T
=— j de+jVosinx dx]
2m (J_, 0
1 T
= [0+ Vy (-cosx)F]
. — VO
. ao— ;
1 T
an = — f (x)cosnx dx

-1t

1[0 " '
=;[ f(x)cosnxdx+j0f(x)cosnxdx_

-1t

1] (° " '
= —U O.cosnxdx+j Vo sinx cosn x dx
T - 0 i
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= Yo F]ﬂ{sin(l + n)x + sin(1 — n)x} dx]
T (2],

Vo [Fcos(1+n)x |xr —cos(1 —n)x r]
T o (1+n) 0" 1—n |0_

Vo [1—cos(1+n)r 1-—cos(1—n)m]
T o a+n d-n

The second term on R.H.S. is indeterminate at n=1, 3, 5 and on evaluation it comes
out to be zero.

a, =0 n=135.....

2V,
" n(1-n?)

1 T
bn=—j f(x)sinn x dx
T -7

n

1 (° _ " :
=— {j_ﬂf(x)smnxdx+ jo f(x) sinn x dx}

%
= ﬁ {cos(n — 1)x — cos(n + 1)x} dx

Solving we have
) Vo Vo
=— X T=—=
Y 2n 2

b, = 0 for other values

Thus Fourier series is

) =20y 5: Vo + bysi

f(x = 7T(l_nz)cosnx 1 Sinx
n=even

()_V0+V0 - 2V, {COSZa)t+cos4a)t+ }

f(x =_t5sino - 3 1c

Example 2 Express saw tooth wave by Fourier series. The function for saw

tooth wave is f (x) = X ininterval-m < x < .

Sol. The function for saw tooth wave is represented as
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f(x) =x -T<x <T

It can be seen that function is a odd function as

f=x) = —x = ~f(®)

Therefore Fourier series for this function will consist of only sine terms.

flx) = ansinnx

Where
1 Vs
b,=— | f(x)sinnxdx
T J_g
1 VA
~ by =—j xsinnx dx
T J_g
2 T
=—j xsinn x dx
T Jy
_E [—xcosnx+ sinnx]ﬂ
" n n? 1y
2 —-mcosnm
IRt
T
2 —
— ( ) ascosnm = (—1)"
B
2
. bn — E (_1)n+1

and f(x) = Z% (—D)™lsinnx

n=1
) ) sinx sin2x N sin 3x ]
or f(x) = 1 > 3

Example 3  Express the following function by Fourier series in interval (—7, ).
f(x)= Owhen—-mt<x<0

X
= Twhen0<x <7

2
and hence prove ? =1 + + ~+ -
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Sol. Let

flx) = a0+Zancosnx+ ansinnx (D
n=1 n=1
1 (7 1 0 1 ("
a0=§j_ﬂf(x)dx=EUﬂ f(x)dx+ﬁj0f(x)dx ]
1 0+jﬂﬂxd 1 nxzﬂ_nz ,
" on o & T2m e (2], " 16 @)
1 +1
an=—j f(x)cosn x dx
T J_ g

-jo f(x)cosnxdx + jﬂf(x)cosnxdx]
| —n 0

[ T x 1 (™
O+j —cosn x dx =—j xcosnxdx
i o 4 4 )y

1
™
1
™
1

4

[xsinnx cosnx]” 1 [cosnn 1
4 0 n? n?

+
n n?

1 (- -1
=?[cosnn—1]= Y (3)
" cosnm = (-1)"
1 +1
b, = — j f(x)sinn x dx
T J g
1[(° ™
=— U f(x)sinx dx + j f(x)sinnxdx]
A 0
1 X .
== [O + J, Tsmnxdx]
Integrating
(-1)"m
b, = — 4
" 4n (4)
Using (2), (3) and (4) in (1)
2 _q\n_ _1\n
f(x) = %+Z;‘f’:1[( 212 Lcosnx — %sinnx] (5)
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2 1 T . T . 1 T
= —+(——cosx+—smx)——sm2x——c053x+—sm3x (6)
16 2 4 4.2 2.32 4.3

Putting x = m in (6)

f(x)——2+; (1+l+%+ -

TI.'X T
Butf(n)— [f (= +0) + f(r—0)] = [o+ )m]=_

8
ol nz 1 1 1
=16tz (rgrg o)
m? 1 1
i 1+¥+¥+--- hence proved

16.9 Complex form of Fourier Series

Fourier series can be expressed in complex form by using

1, . D
cosnx = E(e”” +e ””‘)

and

sin nx = E(ei"x —e™ )

In

f(x) —a0+Zancosnx+ Z b, sinn x

[0}

lnx +e—lnx ln
(x)—a0+Zan )+Zb
n=

1

f(x) = a + Z [—an _2 b gine y Lan * thn) e-inx] (1)

X __ inx)

2

As we know
1 T
== j f(x)cosnxdx and b,
-7

= % ffn g(x) sinnx dx 2
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1 T
“a, * ib, = p- j f(x) (cosnx + isinnx)dx 3)
-7

Keeping — 1 instead of
1 T
a_, + ib —,= — j f(x) (cosnx —isinnx)dx
T —TT

~a_p,+ib_,=a,—ib, ... 4)

Keeping in last term of RHS of (1) — M instead of N

fx) = ao + Z (an lbn) Z (a‘n+ D) inx

n=-1
Using (4)
N lbn) N (an_ibn) i
f(x) — aO Z Lnx+ Zl 2 elnx
Let
a, —ib
Cn = - = Co = ap
f(x)= Cy+ ZC elnx 4 Z C, e
n=-1
Z Cn einx + Z Cn einx
n=0 n=-1
= ZCnei"" ...(5)
Here
C_an—ibn_lj”() o p
n = > = _ﬂf x)(cosnx — i sinnx)dx
C =Ljf(x)e_i"xdx ...... (6)
" 2w Y

Equation (5) is required complex form of Fourier series.
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16.10 Fourier Series in interval (0, T)

The Fourier series of a periodic piecewise continuous wave function f(t) with

time period T is given by

f(t)=a,+ ian cosnot + ibn sin not M

n=1 n=l1

Constant A : To evaluate constant d we integrate (1) with respect to T between
the limits O to T and obtain

a, =?jf(t)dt @

Constant 4, : To evaluate a, multiply (1) by cos n ot and integrate between
limits 0 to T

T T
f f(t) cosn ot dt = anf cos’n otdt+0
0 0

Solving

2T
a =?jf(t)cosna)tdt

n
0

)

bn: To evaluate b,, multiply (1) by Sin n @t and integrate between the
limits 0 to T.

T T
f f(t)sinn ot dt = bnf sinnotdt+0
0 0

b
o
2

2T
b =?jf(t)smna)tdt

n
0

(4)

The complex form of Fourier series can also be written for function f(t) in
interval (0, T)
As
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)

(6)

to (-1. D

16.11Internal Change for Fourier expansion from (— T, TT)

Let the periodic function has period 2/. Let us consider.

Then Fourier series is written as

lz

or X = —
T

n=1

f(x)= f(lij =a,+ ian cosnz + ibn sin nz
n

n=l1

f(x)=a,+ ian cosmlr—x+ ibn sinmlr—x
n=1 n=1

This is the Fourier series and the coefficients are given by

dz = % f_if(x)d (”l—x)

1" (lZ)
Y=o _ﬂf T
1 l
a, =5:[f(x

)dx

nwx
cos——dx

360

(1)




16.12 Fourier Half Range Series

Interval (0, T)

Within the range (0, 1) or (0, l) both series and cosines form mathematically

complete sets. This means we can expand any function within this range in terms

of either sines or cosines depending on nature of f ().

Fourier Cosine Series :

The cosine representation of a function f (x) is

f(x)=a,+ ian cosnx

n=1

Where

and|a =Ejf(x)cosnxdx

n
7[0

Fourier Sine Series :

It is given by

f(x)= ibn sin nx

T

2
Where |b == £ (x)sinnxd
ere . jf(x)smnx x

n
0

Interval (0, /)

Fourier cosine series in interval (0, /) is written as

nmnx

(o]
f(x) = ay,+ Z (p COS——
n=1
where

ap, = % fol f(x)dx
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and

2 (! nmx
an=7f f(x) cosde
0

Fourier sine series is written as

. nmx
flx) = Z b,, sinT
n=1

where

2 ! . nmx
bn=7f f(x)smT dx
0

16.13 Some Important Points

1. Every periodic function may be decomposed into a sum of one or more cosine
and or sine terms of selected frequency dependent on the original function.

2. If f(x) is piecewise continuous the definite integrals exist and fourier

coefficient can be evaluated but if f(x) is not piecewise continuous then we
cannot find Fourier coefficient with surity as some of the integrals may be

improper which are divergent.
3. The function f(x) and its Fourier series are only equal to each other if and
whenever f (x) is continuous.

4. The constant term (a,) in a Fourier series represents the average value of the

function f (x) over its entire domain.

16.14Illustrative Examples

Example 4 Find a Fourier series for f(x) = x ,—2<x <2
fx+4) = f(x)

Sol. Here T=2/=4hence/=2

As the function f(x) is an odd function it would contain sine terms.

. 1 fz nnxd
= - X sin X
o2 2
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1 [—Zx nmx1? 2 (2 nnxd
=215 05 T _zcos 5 dx

—4

= —cosnm
nm

-4 4
Ifn=even b, = E,ifnisoddbn = —

(_1)n+14
&by, = —
Thus
b (D™ nmx
fx)= ;; " sin >

Example S  Write the Fourier series for a square wave.

defined by f(£) = V, ; 0<t<z

T
Sol. The Fourier series is given by
f(t) =ay+ XYy-q1a,cos nwt + Y- b, sinnwt (1)

The function is an odd function hence contain sine terms only in Fourier

expansion.

2 (T
b == jo £(0) sin(ot)dt

2 [ (T/2 T
=— U Vy sinnwt dt + (=V,) sinnwt dt]
T 0 T/2
2V, {— cos na)t}T/2 N {cos nwt}T
B T nw 0 nw T/2
2V, { 2nt}T/2 N { Znt}T
= neT [T 0 oSt T/2
2Vy
= ——|[—cosnm + 1 + cos 2nw — cos nr}
nwT
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2V,

= 2—2 mm =1
an[ cos nm] [+ cos onm ]
Mo X2 ] el =2

=7 cosnm| [vwT =2m]
2V,

=—2 (1 — cosnm)
nm

When n is even, cosnm = +1 therefore b, = 0
4V,

When n is odd, cos nt = —/ therefore b,, = —

Therefore the Fourier series for square wave is.

f(t) = Z b, sinnwt whenn = 1,3,5 ....
n

4V, 1 1
= — |sinWt + -sin3 Wt + —sinSwt + --- ... ]
s 3 5

16.15Self-Learning Exercise 11

Very Short Answer Type Questions
Q.1 If function is odd the Fourier half range series will consist of which terms?
Q.2 If function is even which Fourier coefficient is zero?
Short Answer Type Questions
Q.3 What is a periodic function?
Q.4 The formulae for evaluating a , a, and b, are known as?

Q.5 What is the significance of coefficient a,?

Q.6 When is the function and its Fourier series representation equal to each other?

16.16 Summary

This unit presents the introduction to Fourier series and its applications.
Fourier series is a powerful fool for representing any periodic functions as a sum of
sines and cosines. The full range Fourier series has been defined and evaluation of
Fourier coefficients has been specified. Even and odd functions are defined and
Fourier series for them has been described. Half range Fourier series, Change of

interval and complex form of Fourier series has been explained. Fourier series
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finds its applications in solution of differential equations, signal analysis, data

analysis, communications etc.

16.17 Glossary

Periodic: occurring at intervals

Digital : (of signals or data) expressed as series of the digits 0 and 1,

16.18 Answers to Self Learning Exercises

Answers to Self Learning Exercise-I
Ans.1: Dirichlet’s conditions
Ans.2: Odd Function
Ans.3: f(—x) = f(x) foran even function
Ans.4: even function
Answers to Self Learning Exercise-II
Ans.1: sine terms
Ans.2: b,
Ans.3: A function is periodic with period T > o if for all x, f(x + T) = f(x)

and T is the least of such values.

Ans.4: Euler-Fourier Formulae
Ans.5: It represents average value of function over entire domain.

Ans.6: Whenever function is continuous.

16.19 Exercise

Section A: Very Short Answer Type Questions
Q.1 Function x? when expanded by Fourier series will contain which terms in
interval (—1, )
Q.2 Function x3 sin x is even or odd in interval (—1, m)?
Q.3 Fourier series is used to represent which kind of functions?

Section B: Short Answer Type Questions
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Q.4 Define Fourier series and Fourier coefficient for interval (—1t, T).
Q.5 State the Dirichlets conditions for Fourier series expansion.
Q.6 Define even and odd functions.
Q.7 What do you understand by Fourier Half Range series?
Q.8 Write the complex form of Fourier series.
Section C: Long Answer Type Questions
Q.9 A function g(x) is defined by

X

Zifon<L/2
g(x)= x
1—ZifL/2SX<L

By expanding g (x) as a fourier sine series show that
n-1

4(-1) 2 nnx
glx) = n;d —a SN
Q.10 A function f(x) is defined by
1 0<x<L/2
f(x)z{ 0 L/2Sx</L
Expand f(x) as a fourier cosine series and show that a, = 0 if n is even
and if n 1s odd
2 (n-1)
an = i (-1 =2
Write the cosine seriesin 0 < x < L and deduce
T 1 1 1
1717353

Q.11 Find Fourier series expansion of f (x) = e* in the interval (—1, 7).

Q.12 Represent function f(x) = x?2 in the interval (0, 277)by Fourier series and
show that

. An? O (4 A
xXc=— (—cosnx——smnx)
3 Z n? n

n=1
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Q.13 Expand the function f(x) = x? as Fourier series in (—m, ) and hence
1,1 1 1

deduce that —S+—S+=S+—5+- ... = —
12 2 32 4

Q.14 Express function f(x) = |x| in interval (-L, L) by Fourier series expansion

and show

X 3mx
L 4L|cos +cos—L

fO=3"%7 "=

6.20 Answers to Exercise

Ans.1 : Cosine
Ans.2 : Even

Ans.3 : Piecewise continuous periodic

2sinhm [1 1 1 1 ]
Ans.7: e* = [—— (—cosx —=CcoS2x + - ) + —(smx —
T |2 2 5 2

ésin 2X + - )]
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UNIT- 17

Integral Transforms
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Some properties of Laplace transform

Self Learning exercise-I

Fourier transform

Fourier sine transform

Fourier cosine transform

Complex Fourier transform
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[lustrative examples

Hankel transform

Some points related to Hankel transform

Some relations for Bessel functions of first kind
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Summary
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17.23 Exercise
17.24 Answers to Exercise

References and Suggested Readings

17.0 Objectives

The aim of the chapter is to introduce the readers to the concept and
importance of integral transforms. Various transform such as Laplace, Fourier and
Hankel transforms have been discussed. These transforms have wide applicability
in Physics and other areas of science. In the chapter Laplace, Fourier and Hankel
transforms are defined and their properties are presented. Methods for finding
these transforms have been shown through examples to familiarize readers with
fundamental concepts.

17.1 Introduction

Integral transforms constitute a very powerful tool for the solution of
various problems in science and especially physics. Laplace transforms provide a
very convenient method of solution of Linear constant-coefficient differential
equations. Likewise Fourier transforms are widely applied to areas such as optics,
astronomy, quantum mechanics, crystallography, electrical, electronics and
biomedical engineering etc. Laplace, Fourier and Hankel transforms have
applications in various boundary value problems. Hankel transform may be
considered as the Fourier transform of a Bessel function expansion.

17.2 Integral Transforms

A general linear integral transformation of a function is expressed by

following equation:

(o) =T () = [ f(Ok(s, )t (1)

The function g(s) is called the integral transform of f(t) though kernel
k(s,t). The kernel k(s,?)is a prescribed function of parameter s and variable t.
There are different integral transforms depending on the type of kernel k(s,#)used

and the range of integration. For example
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g(s)= I f(He ™dt (Fourier Transform)

g(s) = T f(e'dt (Laplace Transform)
g(s)= T f(@®)J (st)dt (Hankel Transform)
g(s) = ]O f(Ot " dt (Mellin Transform)

All integral transforms have the following linearity properties.
I(f+g)=1(f)+1(g)
I(cf) = cI(f) forconstantc.

17.3 The Laplace Transform

The Laplace transform of a function f(t) is given by:

F(s)= L{f (O} = [ f(t)e™"dt

where the symbol L indicates the Laplace transform of the function. The Laplace

transform is said to exist when and only when the integral I f(t)e™*dt converges
0

for some value of s. Here s is a parameter which may be real or complex.

17.4 Illustrative Examples

Example 1 Find the Laplace transform of following

i fO=1 (i) f(t) =t
Sol. () f(H=1

F(S) =L{1} :Te—stdt :|:e—srj| :l

)

Litj=-

(i)  f()=t
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Example 2  Find the Laplace transform of

(i) c (constant) (i) £, n=0 (i) vt  (iv) kt
Sol. (i) f(¢)=c(constant)

© » ~ e *© _E
F(s)—L{c}—_([e cdt—c{ } =

Licf="

(i) f@=r

F(s)=L{t"} = Te‘”z”dz

)

—st *© ©
= {e t" } + ﬁje‘” A" dt (Integration by parts)

2
S| —S A

—st *® _ 1 ©
= O + £|:e_.t”—lj| + I’l(l’l ) J.e—st.tn—Z dt
0 0
(again Integrating by parts)

The first two term vanish and repeating integration by parts

_H0D0= D gy
0

Like this repeating integration by parts
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_ (=D =2)..c.c. 3.2.1Te_st O dr
Sn 0 .
ﬁ l_ n!
Sn 'S Sn+l

Sn+l Sn+l Sn
Lfr =2
(iif) ()=~ =1

[ dea) e
F(s) = [t "dr = [¢? et
0 0

3
2

F

o _Vm
s2 2s?

(iv) f@O)=hkt

F(s) = [e"ktdt =k e "rdt = Siz
0 0

Example 3 Find the transform of
(i) " (i) e (iii) sin kt
(iv) coskt  (v) sinhkt  (vi) coshkt
Sol. (i) € = f(t)=¢"

o0 o0

F(s) = L{ekt} = J.ekte_”dt = J-e(k_“')tdt

:Te-<s_k>t P IR
0 —(s—k)|, s—k

(=1
(=1




) 1
L{ek}:s—k

i) e = f@)=e"

F(S) — L{e—kt} _ ]:e—kte—stdt :Ie—(ﬁk)tdt _ m
k 1
L{e k } B s+k

(iii) sinkt = f(¢t)=sinkt

© © ikt —ikt
F(s) = L{sinkt} = ! e sin ktdt = ! e_‘”(e ;ie Jdt
|

|:e—(s—ik)t _ e—(sﬂ‘k)t]dt

_i{ 1 B 1 }_ k
20| s—ik s+ik st +k?
k
s+ k2

L{sinkt} =

(iv) coskt

o0 0 ikt —ikt
F(s)=L kt) = [ e coshktdt =[ e | 8 Jdr
(s) = L{coskt} !e cos !e ( 5
T

=— |:e—(s—ik)t+e—(s+ik)ti|dt
2+

1{ 1 1 } s
= . + . = P
20| s—ik s+ik s*+k
s
s+ k2

L{coskt} =

(v)  sinhkt

F(s)=L {sinh kt} = J.e_‘” sinh ktdt =
0
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0 kt - 0
:J.e_St e e dtzl.[(e_(s_k)t—8_(S+k)t)dt
0 2 2
_1{ 11 }_ k
20s—k s+k| s*—k
(vi)  coshkr
2 kt —kt
I _g(e te Jdt
0 2

1 T 5=k}t p=(sh)t
=— t
L i

Sl )
s+k s*—k°

Example 4 Find Laplace transform of

F(s)=L{coshkt}

(i) sin’¢ (ii) €"sin ot

Sol. (i) sin’¢

F(s)=L{sin*t} = LB(l—cos 2t)}

s st+4

1 1M1 s

=—|L(1)—L(cos2t)|=—| ——
O R

(i) €"sinwr

F(s) = L{e"sinot) = [ sinor edt = [ - | gy
(s)=L| }le . j( .

1 % s L
=— |:e (s—k 1zo)te (s k+lw)t]dt
2y

_L{ 1 }_ ®
2i|s—k—io s—k+io| (s—k)+o°

17.5 Sufficient Conductions for Existence of Laplace

Transforms

374



(1) The function f{(t) should be piecewise or sectionally continuous in every

finite interval.
(i1) The function should be of exponential order.

A function f{t) is said to be the function of exponential order m as ¢ — oo ,if for a

given positive integer m there exists real constant M > 0 such that

‘e_"”f(t)‘ <M or ‘f(t)‘ < Me™ for every t >0

17.6 Some Properties of Laplace Transform

(1)  Linearity — For every pair of constants &, and k, the Laplace transform of

the linear combination of any number of function satisfies.
Lik O+ kf,0)} =kL{ (O} + KL £,0)]

The proof is simple and left as an exercise for readers.

(2)  Change of scale — If F(s) is the Laplace transform of f(t), the Laplace

transform of f(kt) is l F (E)
k k

Proof. Lf(kt)= Te_”f(kt)dt

Putting kt=u

17 s 1 s
=%£e /f(u)duzzF(z)

L{f(kt)} = %F(%)

A3) Shifting or translation properties —
(i) First translation or shifting property — If F(s) is Laplace transform of f{(t)
then Laplace transform of " f(¢) will be F(s—k).

Proof. L{f(t)} =F(s)= ]ge_”f(t)dt

o0 o0

L{e"f ()} = j e'e" f(t)dt = j e O £ ()dt

0 0

375




=F(s—k)

Similarly it can be shown that |F(s+k) =L {e_kt f (t)}

(ii) Second translation or shifting property (Heaviside shifting theorem) -
If a function is defined by

(- [0 0tk
SV re—k) ift>k

then the Laplace transform of g(t) is e ™ F(s) , where F(s) is Laplace transform

of f(2).

Proof. L{g(n}= T e g(t)dt = J.e_‘”g(t)dt + Te‘” g(t)dt

=Ie_” f(t—k)dt (using Property of given function)
k

—sk

=e " [e™" f(u)du (Putting t - k=)
0

=e " F(s)

4) Derivative of Laplace transform -

F
If F(s) is Laplace transform of f(t) then |F'(s) = 62— =L {—tf (t)} and in general
s

F”(s) = (-D"L{r"f()

Proof. F(s)= Te_”f(t)dt

differentiating both the sides with respect to s

Fi(s) = 2—’: = j (—t)e™ f()dt = j e —tf (£))dt

0

o0

carrying out the process of differentiation n times we obtain.

P = = Ly fo) = L ro)

5) Laplace transform of derivatives -
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Let f(t) be a continuous differentiable function with a sectionally continuous
derivative f'(t). If f(t) and @ are Laplace transformable, then the Laplace
t

dar (@)
dt

transform of derivative

is given by

L {%} = SL{f (D)}~ £(0) = sF(s)— £ (0)

Where f(0) is the value of f(t) at t = 0 and
F(s)=L{f(0)}

Proof. L {m} = Te_” {m}dt
dt dt

0

By integration by Parts

L e sfe s

=—f(0)+sL{f(¢)} = sF(s)— £(0)
{df (”} SF(s) - £(0)

This theorem is useful in solving differential equations with constant coefficients

and it is applicable for n” derivatives.

General formula for the Laplace transform of the n” derivative f”(¢) is

L{f"(t)} =s" F(s)— S"_lf(O) —s"? A (V) - sf"2(0)—f"(0)
(6) Laplace transform of Integral -

F(s) = L{f(t)} then L{J‘f(t)dt} F(s)

Proof. Let g(¢) = jf(t)dt

then /(1) = [ £(0)dt = £

By Laplace transform of derivative we have
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L{g'(t)} = sL{g(t)} —g(0) .
—sL{g()} -0

:%1: (o) = L {g()

Hence

L{j f(t)dt} )
0 S
* (i) If F(s) = L{f(0)} then L{t"f(t)}= (—1)"%17@)

(ii) If F(s) = L{f(2)} then L{@} - TF(s)ds

provided the integral exists

(7 Laplace transform of periodic functions -

If f(t) is a periodic function with the period T i.e. f(¢+7)= f(¢)
T
[e foydr

Then L{f()} =~

—sT

0

Proof. L{f(t)} = j e f(¢)dt

=Te‘” f(t)dt + zfe‘” f@dt+........ (nT)Te“’ f(t)dt.....
w (n+DT
= Z j e £(t)dt

Puttingt=u+nT 1ie. dt=du

Lif(t)} = i [e ™ 1 (u+nT)du

n=0 (

o0
n=0

e e f(u+nT)du

O ey N

378



o T
Z e T I e f(u)du
n=0 0

= (1 +e T 4T 4 ....)_Te_suf(u) du
0

_ ﬁ [e f(wydu

1 T
=1 o7 Ie_”f ()dt [replacing u by t]
—e T

Example S Find Laplace transform of sinh mt sin mt¢

mt —mt imt —imt

—e e —e
2 2

Sol.  f(t) =sinhmtsin mt = ¢

%[emt(lﬂ') 4 oM _ (1) _ e—mt(l—i)]
1

Putting m(14+7)=r and m(l—i)=q

L{sinhmt sinmt} =L {i (e” te " —e ! —e” )}

M afefotlen)-el}tfe]
As L{eﬂ}zs_r and L{ _”}:s+r

= + — —
4i| s—r s+r s—gq s+q}

<2 2 2 2
4i| s —r° s —q

1[ 2s 2s } ~ is(r’~q°)
Putting r = Zl'mz,q2 = —2im2,—i(7’2 - qz) = dm’
(s°—1°)(s*—q) =s*+4m"
4m’s _ 2m’S
2(s*+4m*) s +4m’

Example 6 Find Laplace transform of a square wave

L(sinhmt sinmt) =
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f@)=V for 0<t<§

:Of0r§<t<T

and f(t+7)=f(t)

1 T
Sol.  For periodic functions Lf () = —— je_‘" f(t)dt
—e T
[
=——| [ e Vdt+0
l-e 0
14 B e—st % V (1 - e_S% )
_l_e—ST i -5 j|0 - S(l_e—ST)

Example 7  Find Laplace transform of f(¢) = 6sin 2t —2e > cos4t
Sol.  F(s)=L{f(r)}=L{6sin2t}—2L{e*cos4t}

Using linearity property
2

2

Li{sin2t! =
{ } s*+4

s—2
(s—2)* +16
2 s—2
244 T (s=2)2+16
12 25 —4
T s2+4 (s—-2)+16

L{e ™ cos4t} =

F(s)=6

Example 8 Find Laplace transform of re”

n

Sol. We know L{t"f(t)} =(-1)" d

ds"F(S)
e e d (1) 2
HLareTy = dsz(s+2j (s +2)°
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17.7 Self Learning Exercise-I

Q.1  What is Laplace transform of sin3¢ ?

Q.2 Find the Laplace transform of re”.
: sint
Q.3 Find Laplace transform of T .

Q.4 What is Laplace transform of 7¢?

Q.5 What is Laplace transform of e cost?

17.8 Fourier Transform

A general Fourier Transform is defined by
F(s)= j F(t)e ™ dt

which is based on kernel ¢ and its real and imaginary parts. Fourier Integral
transform can be defined from Fourier integral.

f(t)= i T e”‘”dcoT f(x)e " dx

This is Fourier integral

It can be rewritten as

() :ﬁ j ei‘“’dw{ﬁ j f(x)e"""xdx}

“F(o)dw

__ ]o .
N2r s,
Here F(w)= ﬁi f(x)e ™ dx

Or F(s) = F{f(t)} = ﬁ [ f@)ear

is the Fourier integral transform.

The inverse Fourier transform is expressed as
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FHUF(s)} = f(t) = ﬁ I e F(s)ds

If we define

1 7 .
F(s)=——| f(H)e™dt
V27 joo (D)

then| £ (t) = ﬁ T F(s)e"'ds ..(2)

Eq.(1)&(2)constitute Fourier Integral Theorem.

Here F(s) is known as the Fourier transform of the f(t) i.e. F(s)=F{f(t)}

Here f(t) is known as the inverse Fourier transform of the F(s) 1.e.

[y =F"{F(s)}

Alternative

There is no way why the factorse™ or e can not be interchanged i.e. we could

1 % ~
have defined F(s) = —— | f(¢)e"'dt
V27 L .3

|
f(t)=——= | e " F(s)ds ..(4)
then \/E :[0

However, we will follow the eq.(1) &(2) in this chapter

Alternative

If we define F'(s) = I f(e™dt
o0 then

()= ii e F(s)ds

17.9 Fourier Sine Transforms

The Fourier transform can be written as

F(s)= ﬁ T f(t){cos(st)—1 sin(st)}dt
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If f(t) is an odd function of t i.e.

fE)==f©
F(s)=—1F (s) = —i\/go_f f(t)sinst dt
T —0

F (s) = \/%T f(¢)sin st dt

or |F ()= \/z T f(t)sin otdt
4 0

Here F,(w) is infinite Fourier sine transform of odd function f(t).

The inverse Fourier sine transform

1 =\/ETF;(a))sin otdw
4 0

If the function f{(t) is non-vanishing only in the interval 0<?¢< 7.

In interval (0, 1) finite Fourier sine transform is

F (n) = @j f(x)sin?dx

17.10 Fourier Cosine Transform

If f(t) is an even function then the infinite Fourier cosine transform is

written as

E(s)= \/%T f(¢)cos(st)dt

f() =\/ETFC(a))cosa)tda)
4 0
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The finite Fourier cosine transform is written as

E(n)= @ _1[ f(x)cos (?j dx

By putting ¢ = % in F.(n) = \g [ F(t)cosntat
7 0

17.11 Complex Fourier Transform

For —oo < x <00 the complex Fourier transform of a function f(x) is
expressed as

F(n) = T f(x)e ™ dx

Here €™ is kernel of the transform

The inverse is | f(x) = 1 _[ F(n)e™dx
2 *,

17.12Some Theorems and Properties of Fourier Transform

(1)  Linearity - If f($)=a,f,t)+a,f,{@)+......
then Fourier transform of f(t) is
F(s) =a,f(s)+a,F,(s)+.....
Where F[(s), F,(s), ....... are Fourier transforms of f,(¢), f,(?), ........

2) Change of scale or similarity theorem :

|
If F(s) is Fourier transform of f(t) then Fourier transform of f(at)is —F (ij
a \a

A3) Shifting — If F(s) is Fourier transform of f(t) then the Fourier transform of

f(tta)is ™ F(s)

(4)  Conjugate Theorem — If F(s) is Fourier transform of f(t) then the Fourier
transform of complex conjugate of f(t) is F*(—s).

(5) Modulation Theorem — Fourier transform of f{t)cos at is

384



(6)

(M

@®)

€)

1
E[F(s —a)+F(s+ a)] Where F(s) in Fourier transform of f{t).
Convolution Theorem or Faltung Theorem

If f(x) and g(x) are two functions for —oo < x < cothen convolution f *g is
defined as

frg= [ fngx—n)dn

and the Fourier transform of the convolution is the product of their Fourier

transforms.

Parseval’s Theorem — If F(s) is Fourier transform of f(t) then

T £ dt =T [F(s)[ ds

N
Fourier transform of the square modulus of a function is N times the
T

self convolution of its Fourier transform.

If g(t)= F(O) f* () =|f ()
Then F{g(t)} :% T F(s"F*(s'-s)ds'
T —o0

Where F(s) is Fourier transform of f(t)

Derivative of Fourier transform

d j SS) = (—i)" F{t"f(t)}
S
an(S) B (_l)n o " —ist
mwnwﬂymeﬁ (1)

is the n” derivative of Fourier transform of f(t).

The inverse Fourier transform of (1) is

r{ffﬁ%=emvv> @)

ds”
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(10) Fourier transform of derivative
E,(s)=(is)" F(s)

Here F(s) is Fourier transform of f(t) and F (s)is Fourier transform of n”

derivative of function f(t).

(11) Fourier sine and cosine transforms of derivatives

The Fourier sine and cosine transforms of a function f(t) are

F (o) =\/%]gf(t)sina)tdt (1)

F (o) = \/% T f(t)coswtdt ()

Here function f{(t) is well behaved such that it and its derivatives approach zero as

I —>0

Fourier sine transform of first derivative 7 i
t

E (o) = \/zjisina)tdt
‘ my dt

= \/Z[f(t) sin a)t]: —\/z.a)Tf(t) cos wtdt
n Ty

The first term is zero as f(¢) =0 for t > .
= F (w)=-0F.(v) 3)

The Fourier cosine transform of first derivative of f(t) is

E.(w)= ,/%I%cosa)tdt
/2 - 2 7 :

= —[f(t)cosa)t]o - —.a)_[f(t)sma)tdt
n Ty

:—\/zf(0)+a)Fs(a)):a)FS(a))—\/zf(O) 4)
T T

Now Fourier transform of second derivative of f(t) is
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2 o 0
J 1 wtdt:,/z{ﬂsina)t} —‘/zwj.ﬂcosa)tdt
| dt o Vm v dt

The first term becomes zero as  —> o0,

- B (0) = ~oF (o) = \/zwf (0)-’F, (o) )
T

Like this the Fourier cosine transform of second derivative of f{(t) is

) = 2{ oswtdt =, /z{ﬂcosa)tr +, /za):‘fﬂsina)tdt
0 T dt 0 T 0 dt

2 2 ' 2

=—\|= /() +0F (@) ==|=f'(0) - 0"F, (w)

T T

(12) Fourier transforms of two and three variable functions

If f(x, y) is a function of two variables then Fourier transform of f(x, y is

F(u,v) = i I _[ f(x,y)e” ™ dxdy (1)

—00 —00

Fourier inverse transform in

f(x,y)= i T T F(u,v)e'“"™ dudy (2)

—00 —00

If f(x, y, z) is a function of three variables then Fourier transform of

f(x,y,2)is
F(u,v,w) = / j j j £, y,2)e” Y dvdydz (3)
(2 2 —00 —00 —00
Fourier inverse transform is
f(X,y,2) = I J I F(u,v,w)e' ™™™ dudvdw 4)
( A —00 —00 —00

17.13 Illustrative Examples

—2an\t\

Example 9 Find the Fourier transform of e

1 ¢ —27ra‘t —ist
Sol. F(s e st
(9= = j

—00
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|:I eZﬂate—ist + I e—Zﬁate—istdt:|

t(me—[s) 0 . e—t(27roz+is) @
2ra —is) | (2ra +is) |,

1
N
1
N
R S L]
N | 2ra—is) (Q2ra+is)
1
27
1

[ 27a +is + 2mor —is
| Ara’+s

Example 10 Find the Fourier transform of the Gaussian distribution function

f(x)= Ne ™ where and N are constants
Sol. F(w)= 1 T f(x)e "™ dx
NS
1

—00

o0

I Ne—ax —thdx — e—(ax2+iwx)dx
—00

ol
NEZR

e ]dx

©
j e
—0

< 2 . i
= e ‘o | e™ dm (Putting x+—=m)
2 2a

= e_‘%‘ i T e dm = \/E
27 a o

—0

=——¢
20

Example 11 Find the Fourier sine transformation of €™
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Sol. F (w)= Ie‘x sin wxdx
0

o0
—X

F (o) = ¢ ~(—sinox-wcoswx) | = @ >
‘ l+o , lto
Example 12 Find Fourier complex transform of
) 1-x7, x| <1
X)=
0, x| <1
1 .
Sol. f(w)= _[ (1 -x° )e_"‘”‘dx
-1
—iox 2 1 )
- {(1 —x)¢ — _[ xe_"‘”‘dx}
—iw -’
2 —iox 1 2 1
=0+— {xe. } — 2_[e_"“”‘a’x
—iw| —io | (—ia)) e

. 1
2 . . 2 e—lw.x
= 2|:€lw+€lwi|+—2 -
— w -1

2 : . 2 . .
— - |:eza>+e zw]+ — [ezw_e za)]
— 110

. 4 :
=——5C0S®+—Sinw = —— (wcos ® —sin @)
) 1)

w

17.14 Hankel Transform

If J (px) be the Bessel function of the first kind of order n, then the Hankel

transform of a function f(x) is the interval 0 < X < oo is expressed as

F(p)=[ f(x)x],(px)dx

Here xJ (px) is the kernel of the transform.

17.15Some Points Related to Hankel Transform

(i) Inversion formula
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(i)

(iii)

(iv)

If F(p) be the Hankel transform of the function f(x) for —0 <X <0i.e.

H{f(x)} = f(p) = | /(x).xJ,(px)dx

then
f(x)= I f().pJ, (px)dp is the inversion relation.
0
Parseval Theorem
If F(p) and G(p) are Hankel transforms of f(x) and g(x) respectively then

[ (0g(x)dx = [ pF(p)G(p)dp

0

Linearity Theorem
H{le(X) + ng(X)} =q H{f(X)} +C, H{g(x)}
Hankel transform of the derivatives of function

The first derivative of Hankel transform of order n of the function f(x) is

given by
n+ 1
F(p)__p|: n— l(p)_ n+1(p)i|
2n
Similarly the second derivative is
n+1 -3 n-1
F,(p)="- - E,(p)+——F,,(p)
-1 -1 n+1

Here F_,(p).E ., (p),F, ,(p),F,(p) and F, ,(p) are Hankel transforms of
function f(x) of order n-1, n+1, n-2 and n+2, respectively.

)

Finite Hankel Transforms

If f(r)is a function which satisfies Dirichlet’s conditions in the interval (0, a) then

its finite Hankel transform is expressed as

F(p) = [/ ()], (p,r)dr

where P, is a positive root of the transcendental equationJ (p,.a)=0.
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17.16 Some Relations for Bessel functions of First kind

While finding Hankel transform the following relations for Bessel’s function are
frequently used.

Recurrence relation

XJ;l:an_xJn-f—l:x‘]n_]_an (1)
2‘];1 = Jn—l - Jn+1 (2)
2Mn = x(Jnfl + Jn+l) 3)
i()C_an) = —x_an+1 (4)
dx

i(x"Jn) =x"J , (5)
dx

_[xn o (X)dx = [X"Jn (X)]Z =u"J (u),n>0 (6)
0

T a

IrJO(pr)dr =—J (ap) 7)
0 p

a 2 2 4a 24°

[r(@> =) Jo(prydr == J,(pa) == J (pa) )
0 p p

Ie_“"JO(px)dx = [az + p2] )
0

Te_‘“J (px)dx=l—; (10)
0 1 P pya'+p’

_[xe_“xJO (px)dx = a(a® + pz)_% (1)
0

Ixe_“le(px)dx = p(a*+ p*) (12)
0

T dx (@*+p*)" -a
Jes (& = rP)
0 X

(13)
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2 4
X X

Je—X X
U T+l [12%(n+1) 22243 (n+1D)(n+2)

} (14)

17.17 Mlustrative Examples

—ax

Example 13 Find Hankel transform of € with kernel xJ,(px)
X

e—ax

Sol. Were f(x)= hence

—ax

e

xJ ,(px)dx
X

H{fo)} - |

= Ie_”xJ o (px)dx
0

Using (9) of previous section

H{(x)} = (a%+p) 2
Example 14 Find Hankel transform of following function

LLo<x<a,n=0

f(x):{

0O,x>a,n=0

Taking xJ,(px) as the kernel

Sol. H{f(x)}= Tf(x).xJO (px)dx
= jil xJ,(px)dx + TO.XJO (px)dx

= IXJ o (px)dx
0
Using relation (7) of previous section
a
H{f(x)} = F(p)= ;Jl-(ap)

Example 15 Find H '[p~e ] forn= 1.

Sol. Using inversion formula
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H'[p?e]=[p?e”.pJ,(px)dp
0

= [e .00 L
0 p

Using (13) of previous section

(@ +x)"-a

H'[p~e™]=

X

—ax

d
Example 16 Find Hankel transform of dl when f(x)= °  forn=1.
X

Sol. {Zf; } lleupx)dx ——pF(p)

Using (iv) of previous section
= —p [ (W (px)dx ==p[ e, (px) dx
0 0

Using (9) of previous section
{df } -p
dr) @

17.18 Inversion Theorem

The inversion theorem states that if F(s) is Laplace transform of f(t) where f{(t) is of

exponential order and has a continuous derivative than

y+ioo

1 st
f0)=—— jwe F(s)ds,t >0

Proof. Let y(¢) be a function of t with I v (t)dt being absolutely convergent, then

—00

the Fourier’s integral is written as

w(t) = lT dx T v (u)cosx(t—u)du (D
Ty %
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The equation (1) can also be expressed in parts in terms of cosx(t—u) and

sinx(t— u) as cosine is an even function and sine is an odd function of x. Therefore

w(t) = 1 j dx j w (1) cosx(t— u)du )
2 ¢ Y
1 5 % .
and 0 =— I dx_[ v (u)sinx(t—u)du 3)
27[ —00 —00
Expanding
Ozi:[odxil//(u)[cosxtcosxu — sin xt sin xu | du 4)
and 0 = L I dx_[ w (u)[sin xt cos xu — cos xt sin xu | du (5)
2 ¢

Multiply (5) by i and add to (4) we obtain

<
~
N
Il
S|
é"—z8
é"—z8
=
<
(@)
@]
w2
=
-~
(@)
@]
w
=
<
+
=.
=
g
=.
=
=
+
=.
=
g
(@)
@]
w
g
|
(@]
o
w2
=
~
=.
=
w
S
S

dx I w (w)[ (cos xz +isin xt)(cosxu—i sin xu | du

dx I w(we™ e ™ du

1 .
=5 je‘”dx jd}(u)elxudu

Let w(t)=e " f(t)fort>0and y (¢) = 0 for t <0 then for t > 0.
e—}’tf(t) — L I eixtdxj‘ e—yu f(U) e—ixu du,}/ >t
2r J

—00

1% o F oo
=— | e™dx | e """ f(u)du
2l j (u)
Thus e f(t)= L I e™ dxF (y +1x) (6)
2 2

[Here F'(y +ix)is Fourier transform]
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Using y +ix =s and ds =idx in (6) we have

y +ico —yt y+io©

1 e
e f)=— | e“7"F(s)ds = e F(s)ds
1) 2my_jm (s) 2my_jm (s)

y +ioo

1
Therefore  f(f)=— j e F(s)ds
2mi %,

Hence proved

17.19 Self Learning Exercise -11

Section A (Very Short Answer type Questions)
Q.1 What is the kernel of Fourier transform?
Q.2 What is the kernel of Hankel transform?
Q.3 For which functions Fourier cosine transform is used?
Section B (Short answer type Questions)
Q.4 State Convolution Theorem.
Q.5 State Parseval’s theorem for Fourier transform.

Q.6 State Parseval theorem for Hankel transform.

17.20 Summary

The unit described the three types of integral transforms i.e. Laplace
transform, Fourier transform and Hankel Transform. Some important properties
and theorems related to these transforms have been outlined. Methods of

estimation of these transforms have been shown through examples.

17.21 Glossary

Periodic: occurring at intervals

Convergent:(Of a series) approaching a definite limit as more of its terms
are added.

17.22 Answer to Self Learning Exercises

Answer to Self Learning Exercise-1

3!
Ans.2 :
s2+9 ns (s—2)%

Ans.1:
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1 42
Ans.3: cot's Ansd: —

Ans.5: ———
0 s—2)2+1

Answer to Self Learning Exercise-11
Ans.1: ¢™ Ans.2 ;. xJ (px)

Ans.3: Even

17.23 Exercise

Section A (Very Short Answer type Questions)
Q.1 Find Laplace transform of ™.
Q.2 What is the Fourier transform of complex conjugate of f(t)?
Q.3 What is the kind of function if Fourier transform of a real function is real?
Q.4 If F(s) is the Laplace transform of f(t), what is the Laplace transform of f(kt)?
Q.5 If F(s) is the Laplace transform of f(t) then what is the Laplace transform of
™ f(t)?
Section B (Short answer type Questions)
Q.6 Define integral transform.
Q.7 State and prove linearity property of Laplace transform.
Q.8 State Inversion theorem.
Q.9 Write the expression for finite Hankel transform.
Section C (Long answer type Questions)

Q.10 Find complex Fourier transform of F (x) = e —alx|

where a > 0 and x
lies in the range (-00, 00)

Q.11 Describe Fourier sine and cosine transforms.

Q.12 Explain Laplace transform of derivatives.

Q.13 Find finite Fourier cosine transform of the function

F(x) =x’, x lies in range (0,4).
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17.24 Answers to Exercise

1
Ans.l: — Ans.2 : F*(-s)
s+a
1 S

Ans3: Even Ansd: F (E)

2 a 8
Ans.10: V= Ans.13 : coSnT

T a2+w? n2m?
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UNIT - 18
Non-homogeneous Equation, Green’s

Function, The Gamma Function

Structure of the Unit

18.0  Objectives
18.1 Introduction

18.2 Non-homogeneous equation

18.3  Definition-Green’s function

18.4  Construction of Green’s function
18.5 Illustrative Examples

18.6  Self Learning Exercise-I

18.7 Dirac-delta function

18.8  Solution by Poisson’s Equation by Green’s function method
18.9 Symmetry of Green’s Function
18.10 The Gamma Function

18.11 Illustrative Examples

18.12 Self Learning Exercise-II

18.13 Summary

18.14 Glossary

18.15 Answers to Self Learning Exercises
18.16 Exercise

18.17 Answers to Exercise

References and Suggested Readings

18.0 Objectives

A mathematician George Green (1793-1841) was from England, has given
contributions significantly to electricity and magnetism, fluid mechanics and
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partial differential equations. The importance of potential functions was recognized
first by Green, that was published in 1828 as an essay on electricity and
magnetism. In this paper, the functions, called Green’s functions as a means of
solving boundary value problem and the integral transformation theorems of which

Green’s theorem in the plane is a particular case, was introduced.

The famous mathematician L. Euler (1729) introduced gamma function as a
natural extension of the factorial operation n! from positive integers n to real and
even complex values of the argument. The gamma functions are useful in
mathematics, the exact sciences and engineering. The incomplete gamma function
(special case of gamma function) is used in solid state physics and statistics.

18.1 Introduction

Many physical problems involve second order differential equations. Some
of these applications contain homogeneous equation but the more general case is

the non-homogeneous equation. Laplace’s equation V’¢=0 is an example of

homogeneous equation and Poisson’s equation V'¢=p is an example of non-

homogeneous equation. The general solution for non-homogeneous equation

contain a solution y, of its homogeneous equation.

Consider the differential equation of non-homogeneous equation

2
3t p(x) 2 g (x) () =r(x)
Its general solution y(x)=y,(x)+y, (x)
The Green’s function method is a powerful method for solving non-

homogeneous differential equations.

18.2 Non-homogenous Equation

Consider the second order linear differential equation of the form:

P22 +0() L4 r(x) ()= 6() 1)

where P, Q, R and G are continuous functions. This equation is called
non-homogeneous equation, if G(x)=0. Equation (1) is said to be

homogeneous if G(x)=0.

399



Again, consider the non-homogeneous Boundary Value Problem (BVP)

%JFQ()C)%JrR(x)y(x):G(x) a<x<b @)

with boundary conditions

P(x)

aly(a)+azy'(a)=c1
bly(b)+b2y’(b)=c2 3)
where P, Q, R and G are continuous functions and a,,b,c, ,1=1,2 are

real constants. Also a, and a, are not both zero simultaneously. Similarly 5, and

b, are not both zero simultaneously.

The BVP is said to be homogeneous if G=0 and ¢,=c, =0.

18.3 Definition: Green’s function

Our goal of this chapter is to construct Green’s function and using this, we
solve a non-homogeneous BVP.

Consider the non-homogeneous BVP

L{y]+f(x)=0, asx<b . (1)

where L is differential operator defined as L[y]=(py') +qy, where
p(#0),p" and q are real valued continuous functions on [a,b] . The problem has

following boundary conditions:
ay(a)+a,y'(a)=0 (2)
by (b)+b,y'(p)=0 A3)

where a,,a,,b,b, are constants. Also, at least one of g,,a, and atleast one

of b,,b, are non-zero.

Definition:- A function G(x,s) defined on [a,b]x[a,b] is said to be Green’s
function for L[y]=0, if for a given s,

G(x,s)z{

where G, and G, be such that

Gl(x,s) , If x<s
Gz(x,s) , Iif x>s

(1) G, satisfies the boundary condition (2) at x=a and L[G,]=0 for x<s.
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(2) G, satisfies the boundary condition (3) at x=b and L[G,]=0 for x>s.

(3) The function G(x,s)is continuous at x=s.

4) The function %; has a jump discontinuity at x=s, and

[6G2_ﬁ} _ 1
ox  Ox |_, p(s)

18.4 Construction of Green’s Function

Let y,(x) and y,(x) are linearly independent solutions of L[y]=0 on
(a,b).

Let G, =¢,y(x) and G, =c,y,(x), where ¢, and ¢, are constants.

f x<
Again, let, G(x,s):{clyl(x) ’ lf =0 4)
en(3)  iff x>
We choose ¢, and ¢, such that
), (S)_clyl(s) =0 (4a)
1
, (8)=cy (s)=~— 4b
Czyz (S) Clyl (S) p(S) ( )

In starting, we have assumed that y, and y, are linearly independent
solutions of L[y]=0. Therefore,

L{»]=0 and  L[y,]=0
= () +ay =0 (5)
and (py} ) +qv, =0 (6)

Multiplying (5) by y, and multiplying (6) by y,, we have

y2(py1' ) +qyy, =0 ... (7) and yl(py£ ) +qy,y, =0 (8)
Using (7) and (8), we get

»(pv ) -, (v ) =0

= %[p(ylyé ¥y, ]=0
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= p(x)[yl(x)y; (x)= (x)yz(x)}=c, Vxe[a,b] 9)

where ¢ is non-zero constant due to the Wronskian term

w(x)=[ 31 (%) (¥) =2 (x)3:(x)]

», are linearly independent solutions of L[y]=0.

which must be non-zero as y, and

-

Putting x =s in equation (9), we get

yl(s)y; (s)—yl' (S)yz(S)= ¢ c#0 (10)

p(s)

Using equation (4b) and (10), we get

2 1~

C C

Using these values of ¢, and ¢, in equation (4), we get,

_yl(x)y2(s) , lf x<s

G(x,S)= yl(s)cyz(x) e
n(x)y,(s)
— ,if x<s
| p(x)w(x)
R IO TR "
p(x)w(x) ~

which is Green’s function.

Theorem 1:- Consider the non-homogeneous BVP:

L{y]+ f(x)=0, a<x<b

with  a,y(a)+a,y'(a)=0
by(b)+b,y'(b)=0 (12)
where a,,a,,b, and b, fulfill the conditions defined above in equation (1), (2) and

3).
Then, y(x) is a solution of equation (12) if and only if

y(x) = .[:G(x,s)f(s)ds

where G(x,s) is a Green’s function defined in equation (11).
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18.5 Illustrative Examples

2
Example-1: Solve 4y _ f(x), 0<x<1 with Boundary conditions,

dx’
»(0)=»(1)=0.

Sol. Compare this with L[y] + f(x)=0

= (p) +q(»)+f(x)=0
= py"+py +qy+ f(x)=0
We get, p(x)zl, q(x)zO, a=0,b=1.

2

Let y,(x) be a function which satisfy Z Y 0 with »(0)=0. Then

2
d’y
dx21 =0 = y(x)=cx+q
Using y(0)=0, we get ¢, =0. Then,
yi(x)=cx
. . .. d’y .
Let y,(x) be a function which satisfy —-=0 with y(1)=0. Then,
x
d’y
dx22 =0 = y,(x)=cx+c,

Using »(1)=0, ¢, =-c,. Then,

¥, (x)=¢;(x-1)

Now, the Wronskian ~ w(x) =y, (x)y; (x)=» (x)»,(x)

z(clx)(cg)—clc3 (x - 1)

The Green’s function is defined by
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_aXxe (S —1)

, if x<s
B I ¢c
csc(x—1
_L) , if x=s
I ¢c

_ x(l—s) , if x<s
s(l—x) , If x=s

Hence, the solution of given problem is given by
1
y(x)zJ.OG(x,S) [—f(x)]ds
= y(x)==[,G(x.5)f(s)ds

2

Example-2 Solve %Jrkzy:f(x) , 0<x<L with y(0)=0 , y(L)=0.
x

2

Sol. Let y, (x) be a function which satisfy Z—);Jr k?y=0 with y(0)=0. Then,
x

d2

%Jrkzyl(x):O , 1(0)=0

= y,(x)=c¢ coskx+c, sin kx
using y,(0)=0, we get ¢, =0, so

¥ (x)=c,sinkx
d’y
Let y,(x) be the solution of FJrkzy =0 with y(L)=0. Then,
x

d’ .
K)?Jrkzyz:O with y,(L)=0
= y,(x)=c;coskx+c,sinkx

sin kL
* coskL

Using y,(L)=0 weget c¢,=—c

sinkL
So, x)=—c,———coskx+c, sinkx
yz( ) * coskL !

=G [—cos kxsin kL +sin kx cos kL |
coskL

_¢,sink(x—1L)

B cos kL

= »(x)
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Now, the Wronskian, w(x)=y,(x)y; (x)-» (x)y,(x)

k -L)k ink(x—L
=c, sinkx cikoos(x—L) —c,k cos kx. csink(x-1L)
cos kL coskL

_ oGk

okl [Sink(x—x+L)]

So, the Green’s function G(x,s)=

¢, sin(kx) ¢, sink(s—L)
- sin kL
coskL

, If x<s
oskL

l.c,ck

¢, sinks ¢,sink(x—L)
sin kL
cos kL

sinkxsin(S—L)k
© ksinkL

sinkssin(x—L)k
~ ksinkL

, Iif x2=s

l.c,c,k coskL

, if x<s

, If x2s

The solution of the given problem is

y(x)z—.[OLG(x,S)f(s)ds

18.6 Self Learning Exercise - I

Very Short Answer Type Questions:
Q.1 Identify the BVP y"+y=0 with »(0)=y(1)=1 whether it is homogeneous
or non-homogenous.

Q.2 For what value of ¢, the BVP y"+)'+y=0 with y(0)=y(2)=c, is
homogeneous.

Q.3 Define Green’s function.
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Short Answer Type Questions:

dzy

3 =

Q.4 Solve f(x) with »(0)=0,y(L)=0 using Green’s function method.

2

Q.5 Find the Green’s function for BVP Zg/:f(x), 0<x<l with y(0)=«,
x
y'(l)zﬂ.
Q.6 Find the Green’s function for BVP —)" = f(x) with y(0)=0, »(1)+)'(1)=0

18.7 Dirac-delta Function

The one-dimensional Dirac-delta function is defined by the following
property as

5(x)=0 atx#0

7(0)=[" 1(x)8 (x)dx (1)

where f(x) is any well behaved function and the integration includes the

origin.

If f(x)=1, then

£(0)=["1.5(x)dx=1

= f & (x)dx =1| [Special case of equation(1)]

The value &(x) at x=0 is so large that its integral is equal to unity.

The function & (x)is not analytic but it can be obtained as a limiting case of

either analytic continuous or piesewise continuous functions. Some of the possible
representations are given by

5(x) = lim—
e Nma

2/a

e*X

1 a
1) = lim —.
(x) = lim na+x

. _sinax . 1 pa .
and §(x) = lim :hmz— e dt
a—»0 7Z'x a—»0 7z' —da

And graphical representations f(x) versus x are given by
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v

[a—
A\ 4

f=—

2 2
Ta +x

<\ NN
7N NN

f)= sin ax

X

Also, §(x) is symmetric about x =0 as the idea can be taken from these graphs.

If we shift the singularity at x = x', then the Dirac-delta function may be written as
§(x—x') and

I:f(x)5(x—x')dx:f(x')

and 5(x—x')=5(x'—x)

(Symmetry)

18.8 Solution of Poisson Equation by Green’s function
method

The electrostatic potential ¢ satisfies Poisson’s non-homogeneous equation
in the presence of charges p and is given by
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Vg = _P (SI system) (1)
and Laplace’s homogeneous equation
Vig=0 2
where there is no electric charge (i.e. p=0 ).

If the charges are point charges ¢, , then
Z 4q; (3)

Using Coulomb’s law for the force between two point charges ¢, and g¢,, a

4ﬂ€

superposition of single point charge solution is given by

F= Lz’"z (4)
dr e, r
By replacement of the discrete point charges with a smeared-out distributed
charge, charge density p, equation (3) gives.

o(r=0)= 2

)

For the potential at » = r, away from the origin and the charge at r =r,, we have,

1 p(n)

4r €, |r1 —r2|

(1)(1‘1): dr, (6)

Now, we need a Green’s function G to satisfy Poisson’s equation with a
point source at the point r,, is given by

V:G==5(r-n) (7

Clearly, G is the potential at r, corresponding to a unit source (g,) at r,.

Therefore, using Green’s theorem

[(#v°G-GV?¢)dz, =[ (W G-GV¢).do (8)
Taking the volume so large that the surface integral vanishes,

leaving
j $V>Gdr, = j GV3¢dr, )

or by substituting in equation (1) and (7), we get
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~[4(r,)8(r,—1,) dr, :—jwmz (10)

S

Using the Dirac-delta function property, we get

1
¢(r1):€_jG(r1,r2)p(rz)drz (11)
0
By Gauss’s law, we know that
J-Vz l Jr = 0 , ?‘volume 'doesn 'tinclud‘et'he origin (12)
r —4r , if volumeincludes the origin

Also, we know that

vz(Lj?a(r) ,vz( 1 j=—5(r1—r2) (13)

drr 4rr,

where |1, =|r, -1,

corresponding to a shift of the electrostatic charge from the origin to position r=r,

Also, 5(r,-r,)=0 if n=n

Using equation (7) and (13), we have

1

G(rl,rz):m

Therefore, the solution of the Poisson’s equation, is given by

()= [ 2L 4o

1) 2
dr €, |r1 —r2|

18.9 Symmetry of Green’s Function

A three-dimensional version of the self-adjoint eigenvalue equation, is
given by

V.[p(r)VG(r,rl)]+ﬂ.q(r)G(r,rl)=—5(r—r1) (1)

Corresponding to a mathematical point source of r =r, here the function p(r) and

q(r) are well behaved but otherwise arbitrary functions of r .

If the source point is r,, then Green’s function satisfies the equation.
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V[p(r)VG(r,rz)]+ﬂ.q(r)G(r,r2)=—5(r—r2) ()
Multiplying equation (2) by G(r, r,) and (1) by G(r, r,) and then subtracting, we
get,

G(r,rz)V.[p(r)VG(r,rl)]—G(r,rl)V.[p(r)VG(r,rz)]
=—G(r,r,)6(r-n)+G(r,r,)é(r-n,)

Integrating over whole volume, we get

I[G(r,rz)V.{p(r)VG(r,rl)}—G(r,rl)V.{p(r)VG(r,rz)}]dr

Vv

=+.V[[G(r,r1)5(r—rz)—G(r,rz)S(r—rl)]dT

where dr is the small element of the volume. Using property of Dirac-delta
function on RHS and Green’s theorem to change volume integral into surface
integral on LHS, we get.

I[G(r,rz)p(r)VG(r,rl)—G(r,rl)p(r)VG(r,rz)].ds

S
=G(r,n)-G(r.r,)
Under the requirement that Green’s functionG(r,r,)and G(r,r,)have the same
values over the surface S and their normal derivatives have the same values over
the surface S or that the Green’s functions vanish over the surface S the surface
integral vanishes and G(r,.r,)=G(r,,r;) showing the symmetry of Green’s

function.

18.10 The Gamma Function

The Gamma function is useful in some physical problems such as the
normalization of Coulomb wave functions and the computation of probabilities in
statistical mechanics. It is also useful in developing other functions that have direct
physical applications.

There are the following types of definitions of the Gamma function:

1) In form of Infinite Limit (Euler):

The first definition, named after Euler, is

Dot 1.23......... n z 0.—-1.-2.-3.....
2= e z(z+1)(242) e (z+n)n ETRTTE




where z may be real or complex.

Replacing z with z+1, we get

1.2.3......... n
1:1 oo z+1
2 1= lim (z+1)(z+2)(z+3) (2 ity
N Z+1=lim nz 1.2.3....... n °
onz+n+l z(z41)(242) e, (z+n)

= z+1=z|;

which is the basic functional relation for the gamma function and also a

difference equation. The Gamma function is one of a general class of functions that
do not satisfy any differential equation with rational coefficients as well as the
gamma function doesn’t satisfy either the hypergeometric differential equation or
the confluent hypergeometric equation.

In particular,

1.2.3.....n

1 =lim n=1
n>o] 2.3 ... n.(n+1)
=1
R=l+1=1l1=1

[3=l2+1=202=21=2
[4=[3+1=33=32.1=6
[n=(n-1)......3.2.1=(n-1)!

2) In form of Definite Integral (Euler):

The following definite integral represents the gamma function, also called
the Euler integral, is given by

[z=["e"rdt|,  Re(z)>0 (1)

This form is found in some physical problems and some other forms which
found in physical problems, are

[z = 2.[: et Re(z)>0 (2)
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=] {m Gﬂl dt, Re(z)>0 3)

Put z= 1 in equation (1), the integral is called Gauss Error Integral and we have

()=

Equivalence of these two definitions:

For showing this, consider the function of two variables

F(z,n)zjo"(l—%jn t*'dt, Re(z)>0 4)
where n being a positive integer as £1_)ng1o (1 - %jn =e (5)
Taking n — o in equation (4), we get
},i_IEF(Z’n) =F(z,00) = J‘Owefttzfldt =z (6)
Again, put u :i in equation (4), we get
F(z,n)znz.[ol(l—u)n u'du (7)

Integrating by part , we get

M:(]—u)" (g} +§ Iol(l—u)"fluzdu (8)

Repeating this with the integrated part vanishing at both end points each

n

time, we get

n(n—l) ....... L
F =n’ e
(z.n)=n ETEE | I (z+n+1) '[Ou '
i 123.n . ©)

z(z+1)(z+2)...(z+n)

Which is the form of infinite limit (Euler) for the gamma function.
Therefore,
limF(z,n) =F(z,oo) =[z

n—»0
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A3) In form of Infinite Product (Weierstrass):
The another definition of the gamma function, which is called a Weierstrass
form, is given by

%zzeﬂ - (1+ije% (10)

n

where ¥ is the usual Euler-Mascheroni constant and y =0.577216

This infinite product can be used to develop the reflection identity. This can
be found by

, 123 R G
[z=lim n zhmH l+—| n (11)
m=1 m

"—>°°Z(Z+l) ........ (Z+n) n—e

z

Inverting equation (11) and using n~ = o)

We get

%: z lime(I"")ZH(l+iJ (12)
z

n—0 =1 m

Multiplying and dividing by

exp{(l+%+%+...+ljz}=ﬁe%i (13)

n m=1
We obtain
1 ) 1 1 1 . L z)\ o
—==z<{limexp|| l+—+—+...4+4——Inn |z |} x| lim 1+— |e /™
E {n—wa p|:( 2 3 n J :|} |:n—>oo H( WZJ :|

(14)
The infinite series in the exponent converges and defines y, the Euler-
Mascheroni constant. Hence, equation (10) follows.

In probability theory, the gamma distribution is given by

L o %
f(x)= IB“GX e , x>0 15)
0 ,x<0

-1

The constant [ B IE] is choosen so that the total probability will be unity.

Factorial Notation :
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According to Jeffreys and others, the -1 of z-1 exponent in our second

definition is a continual nuisance. The equation (4) can be re-written as
[etra=z, Re(z)>1 (16)

for factorial notation z!. We may still encounter Gauss’s notation [](z)

for the factorial function

H(z)zz! (17)

The I' notation is due to Legendre. The factorial function of Equation (16),

is related to the gamma function

(z):(z—l)! = (z+1)=z! (18)

If z =n, a positive integer, we have seen that z!=n!=1.2.3..n

It should be noted that the factorial function defined by equation (16) and
(18) are no longer limited to positive integral values of the argument. The
difference equation, then becomes,

(z—l)!=z?!

This shows that and n!=*w for n, a negative integer.

Some Important results of Gamma functions:

[n

(1) J.wx”’l e “dx=

m+1|n+1
(2) J'ﬂ/zsin’"ecos”é’dé?: 2 |2
0 ) m+n+2

2

(3)  Legendre’s Duplication formula:

r]mfgzﬁlz—m, mez

22m—1

m
4) m—n=—""|=rcosecnn

sin nw
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18.11 Illustrative Examples

Example 3: Evaluate
. ® 5y 3 *® 6 —=2x
(i) jo e dx (ii) jo X dx
(iii) j:\/? e dx
: *® 5—x _[® _6-1=x Ts_ e
Sol. (1) .[0 X e dx-jo et de=6=51=120

(i)  Put 2x =y, then

of 1Y d
I x'e* dx = I (ZJ e’ (—yJ
0\ 2 2
1 6! 45

J‘ y71—ydy_ ﬁ )

128 128 128 8

(iii) Put, x’ =y then

0 _3 _ 0 y _ dy
J.O\/;e dx_.[o \}(y3 ey3y2/3

_1 S
e

(«f
3\/_

Sol. Put x’ =tan0 = x = tan% 0 , then LHS becomes

Example 4 Prove that J.

. b2
—I P a0 ltan AQsec 0dO (say)
1+tan’6 3

=1j”/2tan%0d0
3 0

= 1 J‘ﬂ/zsinf% 0 cos% 0do
3 0
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1
3 6

1323 _1 =
o

. T
Sin —

_127r T

RN

Example 5 Prove that j: cos(x2 ) dx

Sol. Put x> =y =x =y% , then

(= | A N
I—IO cosy.ay dy—EJ.Oy cos ydy

b (L)Ll LfE

2(1)" 2V R T2\

18.12 Self Learning Exercise — 11

(Very Short Answer Type Questions):-
Q.1 Define the Gamma function in terms of the definite integral form.
Q.2 Define the Gamma function in terms of the infinite limit form.
Q.3 What is relation between factorial and the Gamma function.

(Short Answer Type Questions)

{%}2_5.2%

Q.4 Prove that =
ARG
6
Q.5 Evaluate .[01 V1-x* dx
Q.6 Prove that .[ ™ tan” x dx = (Ej sec (@J
0 2 2

18.13 Summary

The unit starts with construction of the Green’s function and then using it in
solving non-homogeneous boundary value problem. The example of non-
homogeneous BVP can be Poisson’s Equation with boundary condition which we
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solved by Green’s function technique. Many practical problems involves non-
homogeneous BVP, which can be solved by Green’s function technique.

Further, we define the gamma function in various forms, and then some
results based on it. Many physical problems involve the gamma function form that
can be solved

18.14 Glossary

Homogeneous — all of the same or similar kind or nature

Differential — the result of mathematical differentiation

Equivalence — a state of being essentially equal or equivalent.

Symmetry — an attribute of a shape or balance among the parts of something.

Gamma — the 3" letter of the Greek alphabet

18.15 Answers to Self Learning Exercises

Answers to Self Learning Exercise — I

Ans.1 : Non-homogeneous

Ans.2: c=0
L—
i x( S) , Iifx<s
Ans4 : y(x)z—.[o f(s)G(x,s)ds, where G(x,s): LL
S( L_x) , Ifx>s
x , 0<x<s
Ans.5 : G(x,s)={
s , 8§<x<
1
—s(x—2) , 0<x<s
Ans.6: G(x,s5)= 2
5x(s—2) , s<x<1
Answers to Self Learning Exercise — 11
Ans.1: Ez.[:é’ rdt, Re(z)>0
Ans.2 : [z =lim 1.2.3...n n°, z#0,-1,-2,-3....

e z(z41)(242).(z+0)



Ans3:lz=(z-1)!, z#0,-1,-2,-3, ...

Ans.S: \/;—’%
%

18.16 Exercise

Section — A (Very Short Answer Type Questions)
Q.1 Define the Green’s function.

Q.2 Write the solution of the non-homogeneous BVP in terms of the Green’s
function.

Q.3 Define the non-homogeneous equation (differential equation).

Q.4 What is the relation between Beta and the Gamma function.

Q.5 Evaluate %

Section — B (Short Answer Type Questions)

Q.6 Evaluate (i) | (1-x)dx (i) | 1 /I_—X dx
0 0 X

Q.7 Evaluate '[02 x* (4 -x° )% dx

2
1
P A
* Jacos' 0+bsin* 0 4(ab)%‘x/;

Q.9 Prove the symmetry property of the Green’s function.

Q.8 Prove

Q.10 Prove the theorem-1.

Section — C (Long Answer Type Questions)
Q.11 Construct the Green’s function for the non-homogeneous BVP.
Q.12 Find the solution of the Poisson’s equation using Green’s function.

Q.13 Define the various definitions of the Gamma function and prove the
equivalency of the definite integral form and infinite limit form.

Q.14 Prove that
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18.17 Answers to Exercise

Ans.1 : See Section 18.3
Ans.2 : See the theorem-1

Ans.3 : See section 18.2

l_l_

Ans.4 : B(m,n)=

Ans.5 : F F !‘ r F: r é i 1 P: sV
2 202 212 212 3272 4
Ans.6 : (i) % (ii) %

Ans.7 : 2r
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Introduction to Computers

Structure of the Unit
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19.2 Development of Computers
19.3  Classification of Computers
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19.6  Operating System

19.7 Disk Operating System

19.8  Windows
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19.17 Exercise

19.18 Answers to Exercise

References and Suggested Readings
19.0 Objectives

The aim of the Unit is to introduce the readers to the fundamentals of
computer system, operating systems such as DOS and windows and familiarize
them to the word processing, graphics, spreadsheet and database packages. The

420



present era is of information technology where computers are being used in every
sphere, therefore basic understanding of computer has become a necessity for
everyone. This unit intends to provide a fundamental knowledge of computers to
the readers.

19.1 Introduction

Computers were originally developed for performing faster calculations and
therefore the name ‘computer’ was given, which implies a machine that computes
or calculates. But today the computers have evolved and are now widely used for
various purposes apart from calculating. Today a computer is mainly a data
processor which operates on data and is used to store, process and retrieve data for
wide variety of applications. Computers have become fundamental in exchange of
information and therefore they have penetrated everywhere i.e. banks, railways,
recruitments, public sector organizations, scientific institutes, educational institutes
homes etc. The popularity of computers can be attributed to the fact that they have
evolved as a highly powerful and useful tool with high degree of accuracy, speed
and versatility.

19.2 Development of Computers

The development of computers has been divided into five generations.
Charles Babbage is considered to be the father of computer and Dr. J.V. Neumann
influenced the development of modern computer by introducing stored programs in

computers.

i) First Generation (1942-1955)- These were made of vacuum tubes, used
electromagnetic relay memory and punched cards secondary storage. The
instructions were in machine and assembly languages. These were bulky, costly
and required constant maintenance. Examples — ENIAC, EDVAC, EDSAC,
UNIVACI, IBM 701

ii) Second Generation (955-1964)- These consisted of transistors, magnetic

core memory, magnetic tapes and disks secondary storage. Batch operating system
and high level programming languages were used with these. Use of transistors
made these computers more reliable, smaller and less expensive, but still the

commercial production was difficult.
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Examples- Honey well 400, IBM 7030, CDC 1604, UNIVAC LARC

iii) Third Generation (1964-1975)- These computers used Integrated circuits
(ICs) with SSI and MSI technology. Larger magnetic core memory and larger
capacity magnetic disks and tapes were used with these. During this period high
level programming languages were standardized and time sharing operating system
were used. Use of ICs made these computers faster, smaller, cheaper and easier to

produce commercially.
Examples- IBM 360/370, PDP-8, PDP-11, CDC -6600
iv) Fourth Generation (1975-1989)- This period experienced development of

microprocessors with ICs involving Very Large Scale Integration (VLSI)
technology. Microprocessor contains all circuits for arithmetic, logical and control
functions on a single chip, this lead to development of personal computers. Further
developments took place in high-speed computer networks (LAN, WAN),
operating systems such as MS-DOS, MS-Windows, Tropical User Interface,
Programming languages, PC-based applications and network based applications.

Semiconductor memories took place of magnetic core memories.
Examples- IBM PC, Apple II, TRS-80, VAX9000, CRAY etc.
v) Fifth Generation (1989-Present)- Ultra Large Scale Integration (ULSI)

technology in fifth generation computer led to the increase in speed and reduction
in size of microprocessors. Thus very powerful and compact computers were

produced commercially at reduced costs. Optical disks became popular, there has
been revolution in information through Word Wide Web (WWW).Various

application areas as virtual library, electronic commerce, distance learning,

vertical classrooms, multimedia etc. evolved.

Example- IBM notebook, Pentium PCs, PARAM 10000, Sun, workstations etc.

19.3 Classification of Computers

Computers are classified on the basis of
(1) Purpose  (2) Technology used (3) Size and storage capacity
(1).Purpose-

(1) General purpose computers- computers which are used commonly
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in offices, institutes etc for commercial, educational, general application are
known as general purpose computers.

(i1) Special purpose computer- These are the computer which are designed
to perform some specific function such as scientific, weather forecasting,
space applications, medical use, research application etc.

(2) Technology

(i) Analog Computer- These computers are designed for measuring physical

quantities like temperature, pressure, current, voltage etc. These store data
of physical quantities and perform computations on these. These computers
are mainly used for scientific and engineering applications.

(i) Digital Computers- These represent and store data in discrete quantities or

numbers. These are binary digits (0 and 1) for data processing. Almost all

computers used presently are digital computers for general purpose.
(iii) Hybrid Computers- These employ the technology of both analog and

digital computers. These have analog to digital converters and digital to
analog convertors. These are mainly used in robotics and computer aided

manufacturing.

(3) Size and Storage Capacity-
(i) Micro Computers- These are the smallest computers designed for one
person use. These have microprocessor, storage and input-output elements.

(ii) Mini computers- These are designed to handle multiple users
simultaneously. They provide more storage capacity and communication
link between users.

(iii) Mainframe computers- These are large computers with many
powerful peripheral devices.

(iv) Super Computers- These have very high speed and are very large.

These are mainly used for high end scientific applications.

19.4 Computer Structure

The internal architecture of computers is usually different for different
models but the basic organization is same for all computers. The basic hardware

components of a computer system are
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(1) Central Processing Unit (CPU)
(2) Memory
(3) Input/Output devices

(1) Central Processing Unit-

It is the brain of the computer. All the major calculations, computations,

execution of instructions are being carried out in central processing unit. The
central processing unit consists of control unit and Arithmetic-Logic Unit (ALU).

It performs mainly three functions
- Interfacing with main memory through bus
- Controlling each operation through control unit
- Performing arithmetic and logical operations through ALU

The processor cosmists of several special purpose registers. These
registers are high speed memory units which are used to hold information
temporarily during transfer of information between various parts of the computer.
A register which can store 8-bits is referred to as an 8-bit register, which is the
length of the register. Presently most of the CPU today usually have 32 bit or 64-
bit registers. The larger the word size (i.e. number of bits) the speed of the
computer increases proportionally.

The commonly used registers with processor of computers are-

(i) Memory Address Register- It holds the address of the active memory location.

(ii) Memory Buffer Register- It is used to hold information while it is transferred to
and from memory.

(iii) Accumulator Register- It holds the data to be operated in ALU, intermediate
results of processing and the results from ALU before transfer to main memory
through memory buffer register. Thus it accumulates data and results.

(iv) Program control Register- It holds the address of the instruction which is to be
executed next in the sequence.

(v) Instruction Register- The instruction which is to be executed currently is stored

in it. When instruction gets stored its address part and operation part are separated
and sent to memory address register and control unit respectively.
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(vi) Input/Output Register- The transfer of data and information from input devices

and to output devices in done through this registers.

Along with registers a control unit has decoder which decoder thee instructions and
interprets. Thus the control of the execution of an instruction is done by control
unit with help of registers and decoder. It does not perform any actual processing
of data but controls and coordinates the various components of a computer system.
It takes instructions from a program in main memory, interprets them, sends
signals to the appropriate unit for execution of the task and communicates with
input/output devices.

The Arithmetic and Logic Unit (ALU) of the processor is responsible for the actual
execution of the set of instructions during data processing. Arithmetic operations
such as addition, subtraction, multiplication, division etc or logical operations such
as lesser than, greater than, equal to etc. are performed in ALU. Thus whenever
control unit comes across an instruction related to arithmetic or logical operation it
sends the instructions to ALU. The ALU consists of many registers and circuits
which help it perform the required operation and processing of data.

The speed of the execution of an instruction is linked directly to the built-in clock
of the computer. This clock speed is expressed in MHz or GHz (Megahertz or
Gigahertz). The higher the clock frequency, the faster is the processor.

The Processors are mainly classified as-

1. CISC Processors- Processors with large instruction set with variable length
instruction are known as complex Instruction set computer processor.

2. RISC Processor- To develop less complex and less expensive computers, the
instructions were reduced and therefore reduced instruction set computer
architecture was developed.

3. EPIC Processor- It breaks the sequential nature of processing for operation to
be performed in parallel. For this computer extracts information in parallel and
describes it to processor, thus uses Explicitly Parallel Instruction Computing.

4. Multicore processors- These processors have multiple core instead of a single

core. Such processors can handle more work in parallel and are more energy-

efficient but requires multi threaded soft ware.

(2) Memory-
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The memory unit of a computer stores the data, information and instruction
before and after processing. The memory unit of a computer consists of three parts.

(1) Main memory or primary or internal memory

(i1) Secondary memory (secondary storage device)

(ii1) Cache memory.
(i) Main memory- It is internal or built in memory of the computer. It stores
instruction and data temporarily for execution. It consists of collection of
integrated circuits for storage of data and information for CPU so that the

processing speed is increased as it fetches and retrieves data very quickly as
compared to secondary storage devices.

The memory capacity of a computer system is usually referred to in
kilobytes (KB) where I KB = 1024 bytes, megabytes (MB) which is 1, 048,567
bytes (~10°) or gigabytes (GB) which is 1,073,741,824 bytes (~10”).

The main memory is of following types:
a) Read only Memory (ROM)- 1t is a non-volatile memory chip in which data is
stored permanently and can only be read. The instructions are not lost or erased

when computer is switched off. Computer manufacturers store important micro

programs in ROM which cannot be modified by users.

Manufacturer —Programmed ROM- It is a chip in which data is burnt by the
manufacturer of an electronic equipment and is supplied by manufacturers. For
example printer manufacturer may store printer without software in ROM chip of
each printer.

User-Programmed ROM- It is commonly known as Programmable Read-Only
memory (PROM) as users can record the program or information in it. But once
the information is recorded it cannot be changed.

Erasable Programmable Read Only Memory- Here it is possible to erase the
information stored in it and it can be reprogrammed for storage of new
information. The information on EPROM may be erased through use of ultra violet
light or by using high voltage electric pulses, and therefore these are known as
ultraviolet EPROM (UVEPROM) or Electrically EPROM (EEPROM),
respectively. EEPROM are also known as flash memory.
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b) Random Access Memory (RAM)- it is the component of memory which is
temporary in nature and is erased when the computer is switched off. It is a
read/write type of memory and can be read and written by the user. It is of two
types static RAM and Dynamic RAM. Static RAM stores data as long as power is
supplied to the chip whereas Dynamic RAM retains data only for a limited time
(almost 10ns) after which data is lost.

¢) Complementary metal oxide semiconductor memory- It is used to store the
system configuration data, time and some other important data. During booting
when computer is switched on the Basic Input Output System (BIOS) matches and
checks the information on CMOS memory with peripheral devices.

2) Secondary Memory- The primary memory is important for maintaining the
speed of processing data but it is volatile in nature and has limited capacity. The
cost is also higher as compared to secondary storage elements. Thus when more
data is to be stored, secondary or auxiliary memory is used. Secondary storage has
low operating speeds and lower cost. These are used for storage of large amount of
data permanently and can be transferred to primary storage for processing

requirements. The secondary storage devices are classified as

a) Sequential Access Device and (b) Direct Access Devices

a) Sequential Access Devices — These devices employ the accessing of information
in sequential or serial manner i.e. the information is retrieved in the same sequence
in which it is stored. Example- magnetic tape.

b) Direct Access Devices- Through these the information can be accessed directly
or randomly. Example- Magnetic disks, Optical disks and memory storage devices.
Magnetic disks are floppy disks and hard disks (zip disk, Disk pack and
Winchester Disk) Optical Disks are available as CD-ROM, WORM (CD-R), CD-
RW and DVD. Memory Storage devices are available as Flash drives (Pen drives)
and memory cards.

3) Cache Memory- Though primary memory helps in reducing the memory-
processor speed mismatch but still the CPU is almost 10 times faster than the main
memory. Thus to improve the overall performance of the processor it becomes
essential to minimize the memory-processor speed mismatch. For this a small

memory which is extremely fast is placed between the CPU and primary memory.
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This high speed memory is known as cache memory and is used to store data
temporarily during processing. This aids in improving the processing speed.

(3) Input/Output devices-

These are the devices with which computer communicates with the users.
These are also known as peripheral devices.

An input device accepts data from the outside environment and transfers it to
computer’s primary storage in a form understandable by computer.

An output device accepts data from the computer converts it to a form
understandable by users and supplies it to users.

The main types of input devices are

1) Keyboard devices- These use set of keys mounted on a keyboard connected to a
computer system for transfer of data.

2) Paint and Draw devices- These are mainly used to create graphic elements such
as lines, curves, shapes etc. on computer screen. These allow freehand movement
and faster response. Example- mouse, trackball, joystick, electronic pen, touch
screen etc.

3) Data Scanning devices- These allow direct entry of data from source document
to computer system. Example- Image scanner, Optical character recognition,
optical mark reader, Bar code reader, magnetic ink character recognition etc.

4) Digitizer — These are used to digitize pictures, drawings etc for storage in
computers. These are used in computer Aided Design (CAD) and Geographical
Information System (GIS).

5) Electronic Card Reader- It is used to read the data encoded with the help of
computer and transfers data to computer for processing Example- ATM Card

6) Speech Recognition devices- Through these data is transferred to the computer
through speaking.

7)Vision-input system- A computer with vision input device consists of a digital

camera which transfers data in form of image to computer in digital form.

The main types of output devices are-
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1) Monitors- Monitors are just like TV screens and display the output of the
computer. Monitors are mainly two types CRT (Cathode Ray Tube) monitor and
LCD (Liquid Crystal Display) monitors.

2) Printers- Through printers the output can be obtained on paper in form of hard
copy. There are varieties of printers such as dot-matrix, inkjet, laser etc.

3) Plotters — For high precision graphic output in hard copy, plotters are used by
architects, engineers etc.

4) Screen image projector - The output from computer can be projected on a large
screen through the help of projector , such system is used during presentation
lectures etc. so that a large number of people can view the information
simultaneously.

5) Voice response system — These system enable the computer to communicate

with the users through audio output.

19.5 Self Learning Exercise -1

Very Short Answer Type Questions

Q.1 What is called as brain of computer?

Q.2 What is gigabyte?

Q.3 What is the memory between CPU and primary memory knows as?
Short Answer Type Questions

Q.4 Define Ram.

Q.5 What is function of control unit?

Q.6 What does EPROM means?

19.6 Operating System

It is a set of programs or system software which manages the resources of
computer, facilitates its operation and provides an interface to the users to operate
the computer system.

The major functions of an operating system is to manage processes, file,
memory, input/output devices, secondary storage, provides security of data,

allocates data and resources, facilitates communication and detects errors or faults

429



Some popular operating systems are MS- DOS, WINDOWS, UNIX, LINUX etc.
19.7 Disk Operating System (DOS)

Microsoft disk operating system (MS—DOS) is a single user operating system;
it is a 16 bit operating system. It does not support multiuser or multitasking. It was
most popular operating system for personal computers in 1980’s. It provides way
to store information, process data and coordinate computer components. It instructs
computer to read data stored on disk. DOS translates the command issued by the
user in the format that is understandable by the computer and instructs the
computer to function accordingly. It translates the result and converts the error
message in the format for the user to understand. DOS can be loaded into the PC
from hard disk; loading DOS is known as booting up the pc.

When the computer is switched on, the program in read only memory (ROM)
known as basic input output system (BIOS) reads programs and data i.e. operating
system and loads it into memory (RAM) This process is known as bootstrapping
the operating system. Once loaded takes charge of the computer, handles user
interaction and executes application programs. DOS booting involves reading
following files namely 10.SYS. MSDOS.SYS and COMMAND.com

The main functions of DOS are to manage disk files and allocate system
resources according to the requirement. It provides vital features to control
hardware device such as keyboard, screen, disk devices, printers, modems and

programs.

Information or data is stored on a disk in form of a file. When storing a file,
a unique name is given to the file. Different files are identified by their extensions
such as EXE, COM, BAT are executable files, extensions TXT, DOC, BAK, BAS
represent text file. A directory is a named section of the storage of the disk which
is used for storing files. The directory serves the purpose of sharing the files in an

organized manner.

Any instruction given to the computer to perform a specific task is called a
command. DOS has several commands which are mainly classified as two types 1)
internal 2) External.

Internal commands are built-in commands stored in command interpreter
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file example DATE, TIME, DIR, CLS etc.

External commands are separate files that are kept in disk until required.
For example FORMAT, CHKDSK, MOVE, PRINT etc.

19.8 Windows

Microsoft windows operating system was developed by Microsoft to
overcome the drawbacks of the MS DOS. The main features of Microsoft
Windows are

- It is a graphical user interface and therefore it is easy to use and learn for
beginners

- It is a single user multitasking operating system. More than one program
can be run at a time different program can be viewed on different windows
of the monitor screen.

- All the program of Microsoft windows follow a standard way of working
hence it is easier to use different programs of MS Windows.

- It is faster, reliable and more compatible than DOS.

- With Windows the user need not learn or type any command. He can click
on with the help of mouse and perform operations.

Microsoft Windows successfully addressed the limitation of MS DOS and
presented user friendly interface. Windows are rightly named as it allows user to
work on several windows simultaneously Microsoft released the first version of
Windows in 1985. Windows 3.0 was released by Microsoft in 1990. It was a 32 bit
operating system with advanced graphics. It included program manager, file
manager and print manager, further developments in windows led to better feature
for performance, power, reliability, security, enhanced multimedia capabilities,
easy installation etc. Various versions have been released- Window 95, Windows
98, Windows 2000, Windows XP , Windows Professional and Windows Vista.

Microsoft Windows NT is a multi user timesharing operating system. It can be
used for powerful workstation networks and database servers. It included support
for multiprocessor architecture. It was developed for users and had a rich
application programming interface which made it easy to run high end engineering
and scientific applications.
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19.9 Word Processing Package

A word processing package enables to create, edit, view, format, store and
print documents through a computer system. The package makes use of hardware
and software for creating a document. The package allows entering text, editing
text, formatting text, inserting mathematical symbols and equations, inserting
picture and graphics, changing page setup, saving, retrieving, deleting document,

checking spelling and grammar.

The word processing software is one of the most significant application
package of Windows. Drafts, letters, reports, write ups articles etc. can be created
with the help of work processing software. Earlier Word Star was popularly used
but presently the most commonly used work processing package is Microsoft
Word. It is a component of Microsoft office system. The main features of MS
Word are

- It is easy to learn and use for general users.

- It’s feature such as page setup, symbols, font, spell check, table,
bullets etc. allow users to create document with accuracy.

- The text file generated by MS Word is. Doc or .docx.

- This file can be used with other applications and such files can be

easily attached with emails for transfer of information.

19.10 Graphics Package

A graphics package allows a user to create edit, format view, store, retrieve
and print graphs drawings pictures etc. Some commonly supported features in
modern graphic packages are drawing designs, printing drawing and pictures,
creating graphics and chats, importing and exporting images and graphics objects
etc. Examples of these packages are Coral Draw, Auto CAD etc.

The feature of drawing design enable users to draw objects of various
shapes such as lines, circles ellipses, rectangular, arcs etc. Various features are
provided for moving, selecting, rotating, cropping, resizing etc. Options are
provided for filling the objects with colours and also to insert textures and effects

in the objects as per requirements.
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In vector graphics a design is composed of pattern of lines, point circle or
other geometric shapes with x, y coordinates. In raster graphics an image consists
of pattern of dots called pixels. This image is mapped of screen based on binary
bits so it is called bit mapped image. The resolution of image or picture improves
with more numbers of pixels. Vector graphics usually occupy less space than raster
graphics, but raster graphics provide more flexibility and creativity to the images

and drawings.

Usually print software comes with a clip art library of stored images which
can be used to drag and drop objects in creating pictures or images. The graphics
software also provides an option for importing pictures and editing them as per
requirement. The feature of screen capture allows users to take a snapshot of
screen and convert it into image. The screen is captured as a bitmapped image and

stored in computer it can be inserted into any document when required.

19.11 Spread Sheet Package

Spread Sheet is a computer application that allows creation of computerized
ledger. Just like a paper worksheet or manual ledger, spreadsheet consists of
multiple cells forming grid having rows and columns each forming grid having

rows and columns. Each spreadsheet cell may contain text, number or formula.

VisiCalc is considered as the original electronic spreadsheet. Lotus 1-2-3
was the most popular spreadsheet in use when DOS was used as operating system
commonly. Presently Excel is the most popular choice. Microsoft Excel dominates
the commercial spreadsheet market.

Spread sheet package has made the preparation of worksheets for financial
purpose, research purpose, keeping stocks, tracking records and analysis etc. a lot
easier as compared to manual efforts. Further the speeds and accuracy also increase
with computerized worksheets. Today spreadsheet package is commonly used in
business accountancy, investments, personal records, institutional records,

educational organizations etc.

A spread sheet consists of rows and columns. Rows are designated by
numbers and columns are identified by alphabets. The intersection of a row and

column is known as cell. Data in form of number, letter or formula is stored in cell.
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Cell 1s identified by its address for example D 6, which shows that column is D and

row is 6.

Spreadsheet package provides a set of commands such as move, delete,
format, save, copy, insert etc. Charts can be created in the spread sheet through the
use of the numerical data stored in the spreadsheet. Different types of charts such
as line bar, pie, venn diagram, hologram etc can be created and edited. Formulae
can also be inserted in the spreadsheet and calculations can be performed in the

worksheet in a much easier way and less time consuming manner.

There are various database functions available in spreadsheet Microsoft
Excel. These assist in extracting information from database. The database
functions are DAVERAGE, DCOUNT, DGET, DMIN, DPRODUCT, DSTDEV,
DSUM, DVAR etc.

19.12 Database Management System (DBMS)

Database is a software program which enables the users to organize a large
volume of data. It is used to store, delete, update and retrieve data. Some of the
database management systems available in the market are Sybase, Microsoft SQL
server, Oracle RDBMS, MySQL etc.

The database management system offer advantage of storage of large volume of
data in a systematic manner. The unique data field is assigned a primary key which
helps in identification of data and reduces data redundancy. There systems are not
language dependent and the tables can be edited conveniently. The database can be
used by number of users simultaneously. The database management system also
offers data security, data consistency and ease of retrieval.

The common examples of commercial application of database management
system are inventory, personnel record, grading, banks etc.

Users interact with database systems through query languages. The query
languages perform two main tasks — one is defining of the data structure and other

is data manipulation in a speedily manner.
The main components of a DBMS are

- the memory manager

- the query processor
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- the transaction manager.

The query processor converts a user query into instructions a DBMS can process.
The memory manager obtains data from the database that satisfies the queries
compiled by the query processor. Finally the transaction manager ensures that the
execution of transaction satisfies the ACID (atomicity, consistency, isolation and
durability) properties.

19.13 Self Learning Exercise-II

Very Short Answer Type Questions
Q.1 What is the extension of MS Word file?
Q.2 What is the intersection of a row and column in a spreadsheet known as?

Q.3 What is the pattern of dots in an image known as?

Short Answer Type Questions
Q.4 Which software is used for preparing reports and letters?
Q.5 What is GUI?
Q.6 What is DBMS?

19.14 Summary

The unit described in brief the development, classification and structure of
computers. The functions of various component like central processing unit,
memory and input-output derives has been outlined. Operating system has been
defined. MS-DOS and MS-Windows features have been described. Various
software packages such as word processing, graphics, spreadsheet and database

management system has been introduced.

19.15 Glossary

Computer — A machine that allows user to store and process information in a fast
accurate manner.
Data — Representation of information in a formalized manner suitable for

communication, interpretation and processing.
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Hardware — The physical equipment required to create, use, manipulate and store
electronic data.

Software — The set of instructions that enables operating a computer, processing of
data and carrying out specific tasks.

Peripheral Device — Any piece of equipment in a computer system which is not
actually inside the computer.

IC — Integrated circuit

Process — A systematic series of action of computer carried out to manipulate data.
Programming Language — A set of rules, vocabulary and syntax used to instruct
the computer to perform certain tasks.

Computer Program — A set of instructions that are used by a computer to carry out

a process.

System Software — It includes operating system and all the utilities that enable a
computer to function.

Application Software — Programs that users use to carry out certain tasks.

Binary number system — It uses 0 and 1 to represent values.

Bit or Binary Digit — A digit in the binary number system. It is the smallest unit of
information.

Byte — A combination of bits that represent one character. It is composed of 8 bits.
Bus — The channel that allows the different parts of computer to communicate with
each other.

Back up — To copy a computer file or collection of files to a second medium.

Virus — A program that is planted in one computer and then transferred with
intention of corrupting or wiping out information in recipient computer.

Local Area Network (LAN) — A computer network located in a small area such as

building or campus.
Wide Area Network (WAN) — A computer network that covers a large area.

Intranet — An internal computer network that belongs to an organization and is

accessible to its members only.
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Internet — A collection of computer networks that are linked together to exchange
data and information.
World Wide Web — Network system which allows users to browse through

information round the world available on computers.

19.16 Answers to Self Learning Exercises

Answers to Self Learning Exercise-I
Ans.1: CPU
Ans.2: 1,073, 741, 824 bytes
Ans.3: Cache memory
Answers to Self Learning Exercise-I1
Ans.1: doc or .docx
Ans.2: cell
Ans.3: Pixel
Ans.4: MS-Word
Ans.5: Graphical User Interface

Ans.6: DataBase Management System

19.17 Exercise

Section A:Very Short Answer Type Questions
Q.1 How many bits form a byte?
Q.2  What are computers used to measure physical quantities known as?
Q.3  The results of arithmetic and logical operation are stored in which register?
Q.4  Which output device is preferred for high precision hard copy output?
Q.5  Users interact with database system through which language?
Section B: Short answer type Questions
Q.6  What is primary memory?
Q.7 What does CISC and RISC stand for?

Q.8 What are input devices? Give examples.
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Q.9 What are the advantages of MS-Windows over MS-DOS?
Q.10 Where are spreadsheets packages commonly used?
Section C: Long Answer type Questions
Q.11 Describe the components of Central Processing Unit.
Q.12 Differentiate between primary and secondary memory of computer.

Q.13 What is an operating system and what is its function? Describe features of
MS-Windows?

Q.14 What is Graphics software and where is it used? List some features of
graphics package?

Q.15 Describe the features and uses of word-processing packages.

19.18 Answers to Exercise

Ans.1: 8

Ans.2: Analog
Ans.3: Accumulator
Ans.4: Plotter

Ans.5: Query Language
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UNIT-20

Finite difference,Least square curve fitting

Structure of the Unit
20.0 Objectives

20.1 Introduction

20.2  Finite Differences

20.3  Newton — Gregory Forward Interpolation Polynomial
20.4 Newton-Gregory backward difference interpolation formula
20.5 Stirling’s Formula

20.6  Illustrative Example’s

20.7  Self Learning Exercise-1

20.8 Principle of Least Square

20.9 Fitting a straight line

20.10 Fitting of a Parabola

20.11 Fitting of General Polynomial

20.12 TIlustrative Examples

20.13 Self Learning Exercise-II

20.14 Summary

20.15 Glossary

20.16 Answers to Self Learning Exercises

20.17 Exercise

20.18 Answers to Exercise

References and Suggested Readings

20.0 Objectives

After gone through this unit learner will aware of various numerical methods of
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interpolation. He will be able to fit a desire curve from given set of data of an

observation. He can approximate a value within an interval.

20.1 Introduction

In this unit finite differences & several interpolation formulas discussed. In
the topic curve fitting, using principle of least square fitting of various curves is
explained. Fitting of lines, parabolas & general polynomial from given data is
explained.

20.2 Finite Differences

Forward finite differences
First finite forward differences Af(x)is defined as
A (x) = f(x+h)-f(x)
2" finite difference Af(x) is defined as
A*f(x) =Af (x+h)-Af (x)
={f(x+2h)— f(x+h)—{fx+h—[f(x)}
=f(x+2h) = 2f (x+ h)+ f9(x)
So in general the n" finite difference A" f(x) is defined as
Af(x) = AT A F(x)) = A f(x+h) —A f(x)
Writing the finite differences in the form of a table, a model finite difference table
is as given below :

In this table the difference Ay,is written in space between y,and y, in the next

column.

The same difference table acts as the forward differenced table when
read form above to below and as the backward difference table when read

form below successively in upwards direction.
For given 5 observations (x,, %), (%, 1) weveeeenne (xs5 »4)

the5" difference A’y, will be =0
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Difference Table

x | y=r(x) Af (x) Nf(x) | AF(x) | A (x) | AF(x)

X0 Yo ~
A v =0
=Vy
2
X Vi Ay,
\\ = szl
/A NW==N Ay,

Ay,
/A/' =V =V P
Y2=y;-Y \3

X3 y; A ij3 2t i Ny,=0

’ \\ A3)’z = 3)}4 =V5y4 =0

‘:V2y4/
P G AR

x4 y4 :Vy

Reading Backward Differences from the table.

The difference f(a+ nh)— f(a+(n=1)h) =V f(a + nh) is called back

difference

So V f(a+ nh)=y, -y, for n=12,.... The back differences
arc V= Vo Vo= ViV = Vo
are denoted by Vy Vy .., Vy,

respectively, and are called first second etc. backward differences where V ,is the

backward difference operator. Similarly we can define higher order differences i.e.

vyn = yn_yn—l
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Viy, =

Viy, =

Vyn _vynfl

Vyn _vynfl

We again remind that the same table when read form above acts as a forward

difference table and when read form below it acts as back difference table.

Difference Table
x | y=r(x) (x) Af(x) A f(x) Af(x) | A (x)
X0 Yo
N
i = :v)i
N
X, » Ay, =V?y,
=V =V, 4=V
X, y2 / V2y3 e
/44}24 = A4y0 Asyo =0
/ \Y% 3y4 = V5y4
/ d /
pd .
X3 V3 Vy, Vy,
/V'y4 //
Xy Vs

As already mentioned the difference table when read form below gives the back

differences i.e.

SO

Vy,, A’y,, lie along ascending lines.

The difference table when read form top in descending direction gives the forward

difference i.e.

Vy,, A’y,, Lie along descending lines.
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20.3 Newton — Gregory Forward Interpolation Polynomial

Givenaset of (n+ 1) data
(xo, yo), (x,=x,+h, ») (x2 =X, + 2h, yz) ..... (xn =nh, yn)
Let a polynomial P, (x)= f(x),where

f(x) =a,+ a(x-x) + a (x—x)) (x—x) +cceta, (x—x)) (x=2)cccc(x—x,,)
(1)
Be fitted to these data
Putting x=x, in (1), we get
f(x)=a +0+0
Next Putting x=x, = x, + h, we get

f(x0+ h) =a, +aq, :f(x0)+a1

Af (x,
So aI:f(x():h)_f(xO): fi())
2 n
Similarly, we get a, = Lgx") _______ and a = A" (%)
2h h' n

X =Xy =h(u-1)(x,—x)=h" " f(x)
Putting these values in (1), we get
u u(u-1) u”
f(x) = f(x0)+ E A f(xo) + T A f (xo) +...+E A f(xo)
This is known as the Newton — Gregory’s forward difference interpolation

formula.

20.4 Newton-Gregory backward difference interpolation

formula

Let P, (x)=f(x,+hu)be anth degree polynomial expressed as

To be fitted to the set of (n+1) data.
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(xo,yo),(x1 +h,,)s(x, =X, + 2R, 9, )X, =X, +0h,,)
Putting x=x, in (1)

f(xn):ao
Putting x=x, , in (1)

f(xnfl) = f(xn) +a1(x0—1 _xn)

So = =
X, —X, —h
\%
_ f(x,, or — Vy,
hl hl

n

o . 1
Proceeding in their way a, = I V'y,
n

Putting x =x, +hu, we get

f(x) =f(xn+hu) :f(xn) +ﬁVf(xn) +.... 2

20.5 Stirling’s formula

In order to interpolate the value of y corresponding some x lying near the centre

of the interval (x,,x, +nh),is assumed as origin at some central value which may
n n—1 n+l1 . . . .
be x, +5h or x, +Th or x, + Th which ever is integral. Relative to this

origin denoted by 0 the values prior to it are denoted by —1,—2,-3...... and those
afteritas+1,+2...........

The difference table is then designated as follows :

X, relativeto | y Ay Ay Ay Aty A’y
original at
X, + 3h
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X |3 Vs
Ay,
X, + h v,
-2 Ay,
Ay, Ay,
x, +2h V.,
-1 Ay, Aty ,
/A3}1 ™~ e N
Xy +3h Yo o A \ / \ }53}4
~ A
. Ay, Asy, 7
~
x, +4H Ay, Ay |
x, +4h W A2y,
Ay,
x, + 6/ 1 ¥,
2 V3
3

Originisat  x,+ 3h.
Let x=x,+3h+ hu

Then the Stirling’s central difference formula which is average of Gauss’s forward
and back difference formula is given below is expressed as.

u( Ay, + Ay, J u?
=y, + —| —L—L | + — A2
yu yO I_l( 2 Iz y—l
ulu® -1 3 3 u® (u? -1
+ ( ) Ayt Ay, + ( ) Ay, +...
13 2 4

Gauss’s forward difference formula is
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(% + ) = f(O)+ﬁAf(0)+ 2 A f(-1)+ (””)g(”_l) A f(=1) o
and back difference formula is
Pl ) =f(0)+ LA p(en) + B gy el oy

1 2 3
The upper arrow in wavy form corresponds to Gauss’s back difference

formula and lower arrow in wavy form to Gauss’s forward different formula.

The arrows marked in the above table, starting from y, will help in writing the

above formula. The upward arrows diverge to A’y , and so on. The term in the

stirling’s formula with coefficient % etc. will be

u

Multiplied by their averages. So the 2™ term is T(Mj

2

At second difference. both the arrows converge to A’y so the corresponding

ermis =" (u—1) . u(u+1) Ay
2 2

2
u
= TAzyfl

And so on in this way.

20.6 Illustrative Examples

Example 1  Find the cubic polynomial which take the following values
X : 0 1 2 3
f(x) - 0 1 2 3
Hence or otherwise find f(4)

Sol . we know that
f(a+hu) = f(a)+ ‘CA f (a)+ “CzAzf(a)

Substituting a =0,h=1,and u=x

x(x - 1)

()= 1(0) + xr0) 4 D Aﬂwﬂ“*gknxyf@
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0 i
-1
1 0 2
1 6
2 1 8
9 Sy, —27=6
3 10 (»,-19)
(»,-10)
4 Va4

or f(x)= 1—x+(x2 —x) + (x3 -3x" + 2x) (putting values)
f(x) = x*=2x* + 1The polynomial is cubic, therefore y, —27=6 = y, =33

(Third difference should be constant and equal to 6)
Example2 In an examination the number of candidates who obtained marks

between certain limits were as follows :

Marks : 0-19 20-39 40-59 60-79 80-99
No of candidates 41 62 65 50 17
Sol. : from given data the cumulative frequency table is given below :
Marks :(x) 19 39 59 79 99
No of candidates 41 103 168 218 235
Difference table
x % Ay Ay Ay Aty
19 41
62
39 103 3
65 —-18
59 168 -15 0
50 —-18
79 218 -33
17
99 235
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Here we have a=19, h=20, a+uh="70
19%xux20 =70 = u=2.55

Now by Newton’s forward interpolation formula.

-1 -1)(u-2
f(a+uh) = f(a)+uAf (a) +%!)A2f(a) Rt 3)!(“ ) A (a)
2.55x1.55 <34 2.55x% 1.25 x 0.55 y (—18)

Or f(70) =41+2.55x 62 +

=41+ 158.10 +5.39 -6.52

=198 .51 = 199 (approx.)
Example3. The population of a town in the decennial census were as under.
Estimate the population for the year 1925.
years Xx: 1891 1901 1911 1921 1931
Population y: 46 66 81 93 101
(in thousands)

Sol. From the given data, the difference table is as given below :

Year Population
X y Ay Ay Ay Aty
1891 46
20
1901 66 -5
15 2
1911 81 -3 -3
12 -1
1921 93 —4
8
1931 101
Here h=10,a= 1891, a + nh = 1931, (a + nh) + uh =1925 (given) or
1931 +pu x 10=1925 u=w=_o_6

10

Now using Newton’s backward interpolation formula.
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u(u+1)

5 V? f(a+nh)+...

y(a+nh+hu) = f(a+nh)+ﬁVf(a+nh) +

¥1925 =101 +(~0.6)x 8+% x (—4) + (£00) (30!'4)(1'4) x (1)

=101 —4.8+ 0.48 + 0.056 =96 96.6352(approx.) Ans.

Example 4. Use Stirling’s formula to find y,, and y} given

Voo = 49225, V,s =48316 Vi =47236
V35 = 45926, V4 = 44306
Sol .: Difference table is
x | 230 f Af Af Nf | A
5
20 ) 49225
-909
25 | 48316 -171
—-1080 —69
30 0 47236 -230 -11
-1310 —-80
35 1 45926 -310
-1620
40 2 44306
x=30+5u

+

4(u’ 1) {Af(—l) + A f(—2)} L vl

6

28-30 _ .,

For x=28,u=

(-1310-1080)  (0.4) (-230) ~0.4(+0.16-1) (~80-5a)

28)=47236 - 0.4
/(28) 6 2

=47236+478 —18.4 -3.9 + 0.1176 =47692 Approx
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Ay, + Ay,
2

2 3 3 3.
+4—A2y—1+4 4(Ny-1+ANy-2
2 6 2

yu=u0+u(

dx  du dx x

A +A 2 _ 2., 3.,
d_y_d_y@_l{ yoz . uAQy_l+3u6 I(Ay 1-|2-Ay 2}}

—1310 —-1080

h 2

Example 5 Use Stirling’s formula to find u,, from following table.

30=x=30+54so4=0=l[ }=—239

U,, =14.035,U,, =13.674, U,, =13.257
U, =12.734, U,, =12.089, U,, =11.309

Sol : Forward difference table for the given data is.

x x=30 | f(x) Af A f A f A'f
5
20 ) 14.035
-.361
25 | 13.674 —0.056
30 0 13.257 \/;0'417\\: /_'0'050 \\:
N //70.106 N //70.034
—0.523 —0.016 —0.021
35 1 12.724 —0.122 —-0.013
—0.645 —0.013
40 2 12.089 -0.125
—-0.780
45 3 11.309
For x=32, 32 =x, +hu=30+54,s0 u=04
By stirling formula
2
7= 70 S | )
+u(u;—l) (Aﬂ’l -; A3f2J . UZ(I/zt;—l) AL
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=13.257+ 0.4 (_0'417 — 0523} 210 (—0.106)

2

+(0.4)2 (

0.16 —1) {—0.5—0.016}
6 2

=13.257 — 0.188 — 0.00848 = 44 na1
Example 6 Use Gauss forward formula to find y, ., from the following table
x 2.5 3.0 3.5 4.0 4.5 5.0
y  24.145 22.043 20.225 18.644 17.262 16.047
Sol : Taking 3.5 as origin (h=5). the value of u corresponding to 3.75 is

= 3.75-3.5 _

0.5
)
Difference Table
x w0y, Ay, Ay, Ay, Ay, Ny,
25 -2 24.145
-2.102
3.0 -1 22.043 248
—1.818 —.047
35,0 20225 i, 237 .009......
—1.581 —.038 -.003
40 1 18.644 199 .006
—1.382 -.032
45 2 17.262 167
-1.215
50 3 16.047

Gauss forward formula is : -

u(u—l) A2 (u+1)u(u—1) AS

Y=Yy T uly, + o Yot AV,
(u+l)u(u—l)(u—2) . (u+2) (u+1)(u—2) s
....... (1
+ 2 ANy, + 120 Ay, + (1)

Replacing u =.5 and desired values form the difference table in the formula (1),

we get
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Yip = 20.225 +5(-1.581) + @ (237) + (1:5) (1';))(_'5) (—.003)

(13) () (=3) (1) (o0, (23 (15)(3) (=3) (=13) g0y

24 120
=20.225 — 0.7905 — 0.029625 + 0.002375 + 0.00210938 — 0.0000352

+

or, y;;; = 19.40

Example 7.interpolate by means of Gauss’s Backward formula the population for

the year 1976, form the following table :

Year : 1931 1941 1951 1961 1971 1981
Population (in lacs) : 12 15 20 27 39 52
Sol :. According to the question 42 =10 and taking 1961as origin,
For the year 1976, u= w =1.5
Difference table
x u Y, Ay, A%y, Ay, Ay, Ay,
1931 -3 12
3
1941 -2 15 2
5 0
1951 -1 20 2 3
7 3 -10
1961 0 27 5 =7
12 -4
1971 | 39 1
13
1981 2 52

Gauss backward formulas is :

y, = yy + CAy_  +T CANy  + T CN Yy, + PC A Yy T CN Yy o,

25%x1.5 2.5%x1.5%.5
x5 + T X

N 3.5x 2.254><1.5 S (-7) + (3:5) (2-51)25)1'5) (=) (-10)

3

=S¥ =27+ 15x7+
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=27 +10.5 +9.375 + 0.9375 — 1.9140625 — 0.2734375
= 46.171875 lacs (apporx).

20.7 Self Learning Exercise

Q.1 The following table gives the sales of a firm for the last five years. Estimate
the sale for the year 1951

Years 1946 1948 1950 1952 1954
Sales (in thousands) 40 43 48 52 57
Q.2  The ordinates of the normal curve are given by the following table

X 0.0 0.2 0.4 0.6 0.8

y:  0.3989 0.3910 0.3683 0.3332 0.2897

Find : (2) y (0.25) (b) y (0.62)

Q.3  From the following tale find the number of students who obtained marks
between 40 and 45:

Marks obtained No. of students
30-40 31
40-50 42
50-60 51
60-70 35
70-80 31
Q.4  Given the following date:
x: 10° 20° 30° 40° 50° 60° 70° 80°
y: 0.9848 0.9397 0.8660 0.5660 0.6428 0.500 0342  0.1737
Evaluate (a) y(250) (b) y(320) (c) y(730)
Q.5 A second degree polynomial passes through (0.1),(1.3), (2.7) and (3.13).
find the polynomial

Q.6 Find f(1.5) from the following table:
X: 1 2 3 4 5 6 7 8
y: 1 8 27 64 125 216 343 512
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Q.7  Use Stirling’s formula to computu,,, from the following data :

X: 10 11 12 13 14
10°u, 23967 28060 31788 35209 38368
Q.8 Given:
0=0 5° 10° 15° 20° 25° 30°

tan @ = 0.0000 0.0875 0.1763  0.2679 0.3640 0.4663 0.5774
Q.9 Use Stirling formula to find y,, from the following data :
Voo =512, y,, =439, y,, =346, y,, =243.

Q.10 Interpolate by means of Gauss’s Backward formula the population for the
year 1936, from the following table :

Year 1901 1911 1921 1931 1941 1951
Population (in thousands) 12 15 20 27 39 52

20.8 Principle of Least Square

Principle of least square is the most systematic procedures to fit a unique curve
through given data. It states “Curve of best fit for a given data is that for which
sum of square of deviation is minimum”.

Suppose we have to fit the curve y = f (x) for given set of data (xl., yl.) I=1,2
.....n) At x = x, the experimental value of the ordinate is y; & the corresponding

value on fitting curve is f(x).

If e;be the error of Approximation at x = x, then we have

e, may be (—ve) or (+ve) so by giving equal weightage to each residuals consider

S=20 (v /(%))

Now according to principal of least square curve of best fit is that for which S is

minimum.

20.9 Fitting a straight line

Let {(xl., yl.)/ =12, ,m} be a set of observations. We have to fit a straight
line y=a+bx (2)
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and corresponding observed value is y,. Let e, be the error at x =x,, then
e=y-Y, 1=1,2,.......... , m

Or e, =y —(a+bx,), 1=1,2,.......... , m

The sum of squares S (say) of this error is given by

S= Z [yl (a+bx, ]2 3)

Least squares principle requires that S be minimum. Form(3), it is clear that S
depends on a and b, that is, S is a function of a and b. Thus, we have to find the
value of a and b so that S become minimum. By the theory of maxima-minima,the

necessary conditions for S to be minimum are

os _,_ o8

éa  ob’

Form (3), we have
- > " 2y —(a+bx)]=0
and - " 2x[y,—(a+bx)]=0
On simplification of these two equations, we have
> v =na+h Y x, (v X a=ma)
Or Y y=na+b Y x (4)
and > xy =ad, 5t b )

Equation (4) & (5) are said to be normal equations. We can determine values of a

& b by solving these equations.

20.10 Fitting of a Parabola

Let y = a+bx+cx” be a parabola to be fitted for the data(x,, y,)

(1=1,2,3....n) the error at x=1x, is
€=V _f(xi) =€6=) _(a+bx[ +Cxiz)

Let S = Z 271 yl.—(a+bxl.+cxl.2)

Now by principal of least square for best fit S is minimum i.e.
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B _ 0.8 a9
oa ob oc

n

0

M

l_=12(yl. a+bx +ex;”

n

M

i=1

n

)=
2(yl a+bx+cx )x 0
)5 =

M

l_=12(yl a+bx+cx X,

On solving

Sy manes T e Y
i Vi = an N TN

n _ n n 3

Zi:lxl.yl. = azi:lxl. +bZ,.:1x,

LNy =a), )by ey X
Zi:lxl.yi—a % +b Xt X,

Note : (1) For fitting parabola y = a + bx’

Normal equations are

Z; Y, =an+ bz;xlz
& D Nyi=ad } b
(2) For fitting parabola y = ax +bx’

Normal equations are

2 Nyi=ay, X +bZ,1 X,
& Zfl Zyl—aZ: X, +bz

20.11 Fitting of General Polynomial

We can fit a general polynomial of degree n by using principal of least square let

polynomial be
Y=a,+ax+ax +...+ax

Which is to be filled to given data (xi, v, ), =1,2,3,....... n then

§= Z?:l(yi _Yz)
Where ¥, =Y (x,)

_ 2
=a,+ax,+a, +...+ax
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2
_ n 2 n
so S‘Z[ [y[—(a0+a1x[+a2xl. +.ta,s; )]
For S to be minimum, we must have

B 05 g E o,
oa, oa,

That is,aa—:O: 2;—2[)4. —(ao +ax, +a, +a,x +...+a x.”)} =0,

2 2 n _
8a = Zl 1—2x[ (ao+a1xl. +a,x” +..+ax )} =0,
2

STS: ?:1—2)@." [yl. —(ao +ax, + ale? +"+anx,-")} _o,

Simplifying above (n+1) equations, we get following normal equations,
Zyi =an+ aIZx[ + aZinz +.t aan[”
inyi :aOZx[ +a12x[2 +a22x[3 + ...+aani”“,
inzyi :aoniz +a12x[3 +a22xi4 +...+ a”Zx['”z,

n _ 2 2 n+l n+2 n+2
dx'y,=a, ) x +a ) x}+a ) x"va Y x4+ +a, ) x"7,

These (n+1) equations can be solved for (n+1) unknowns a,,a,,a,.....a

20.12 Mlustrative Examples

Example 8: Using the method of least-squares find a straight line that fits the

following data:

X 71 68 73 69 67 65 66 67

y 69 72 70 70 68 67 68 64

Also find the value of y at x = 68.5.
Solution : Let the required straight line be

y=a+bx ...(1)
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The normal equations are

2y =na+by x (i)
and iny[ :az X, +bz X’ ...(111)
Now, to get the values of Z yi,in,bz Xy, andef, , we construct following
table:

I X, y, Xy, x’

1 71 69 4899 5041

2 68 72 4896 4624

3 73 70 5110 5329

4 69 70 4830 4761

5 67 68 4556 4489

6 65 67 4355 4225

7 66 68 4488 4356

8 67 64 4288 4489

Sum 546 548 37422 37314

Hence, ) x, = 546,) y, =548
D xy,=37422,> x? =37314
and total number of given data m =8,
substituting these values in (ii) and (iii), we get
548 = 8a + 546b
37422 =546a+ 37314 b
Solving these two equations for a and b, we get
a=39.545484 and b =0.424242
Thus, the required straight line is
v =39.545484 +0.424242x
Now at x = 68.5, value of y is given by

v =39.545484+0.424242 x 683.5

=68.606061
Example 9 : Fit a straight line to the given data
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x |1 4 6
y 2627 |29 |3.025 |32 |3.367
Also find value of y at x = 5.5.
Solution : Let the required straight Ine be
y=a+bx
then, the normal equation are
z y,=na+b in
and le.yi:ainwLbe[z
Now, from the given data, we have following table :
)| X; Y X Vi xi2
1 1 2.6 2.6 1
2 2 2.7 5.4 4
3 3 2.9 8.7 9
4 4 3.025 12.1 16
5 5 3.2 16 25
6 6 3.367 20.202 36
Sum 21 17.792 65.002 91

Hence, D x, =21, y,= 17.792

D Xy, =65.002, x’= 91
and m=6
then, the normal equations become
17.792 = 6a+21b

and  65.002+21a+91b
Solving these equations, we get

a=2.419333, b=0.156

Hence, required straight line is given by the equation

y=2.419333+0.156x
Now atx =35.5,, value of y is given by

y=2.419333 + 0.156 x 5.5
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=3.277333

Example 10 : Fit a curve of the form y =ax+ bx* to the given data:

X 1 1.5 2 2.5 3 3.5 4
y 1.1 1.95 3.2 5 8.1 11.9 16.4

Solution : Equation of the required curve is

y = ax +bx” which can be written as

Yo atbx .0

X
Let £ =y , then the above equation becomes

x

Y=a+ bx ...(11)
Normal equation for this curve are given by

z Y =na +bz X,
and le.Yl.:ainwLbeiz

Using given data, we construct following table:

I X y yor xY 2

X

1 1 1.1 1.1 1.1 1

2 1.5 1.95 1.3 1.95 2.25

3 2 3.2 1.6 3.2 4

4 2.5 5 2.0 5 6.25

5 3 8.1 2.7 8.12 9

6 3.5 11.9 34 11.9 12.25

7 4 16.4 4.1 16.4 16

Sum 17.5 - 16.2 47.65 50.75

From the table we have

Dx, =175 =162,

D xy, =47.65) x*=50.75

and

m="7

substituting these values in normal equations, we get
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and

Solving these equations, we get

16.2 =7a +17.5b
47.65 =1.5a +50.75b,

a=380.239827,b =1.021429

Thus, from (ii) we have,Now at Y = l we have

X

y =0.239287x + 1.021429x” which is the required equation.

Example 11 : Fit a second degree polynomial to given data:

X -4 -3 -2 -1 10 1 2 4
y -5 -1 0 1 3 4 4 2
Solution : Let the required equation of the curve be
y=a+bx=cx’
Normal equation for this curve are
Zyi =na+b in +chi2
iny[ = ain %rl)Z:x[2 + chf
inzyi = ainz +bei3 + chf
From the given data we construct following table :
1| x Vi XV x,-z xizy xi3 xi4
1 -4 -5 20 16 -80 -64 256
2 -3 -1 3 9 -9 -27 81
3 -2 0 0 4 0 -8 16
4 -1 1 -1 1 1 -1 1
5 0 3 0 0 0 0 0
6 1 4 4 1 4 1 1
7 2 4 8 4 16 8 16
8 3 3 9 9 27 27 81
9 4 2 8 16 32 64 256
Sum 0 11 51 60 -9 0 708
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Thus, D x, =0, x =11 Y xy, =51
le.z = 60, le.zy,. =-9, le.B =0,

fo =708 and n=9

Substituting above values in normal equations, we get

11=9a+ b.0 + 60c or 11=9a+ 60c
51=a.0+ .60 + c.0 or 51=600,
—9 = a.60= 0.0 +c.708 or -9 = 60a+ 708c

Solving above equations for a, b and ¢, we get
A=3.004329, b= 0.85, c=-0.267316
So, the required equation is given by
Y =3.004329 + 0.85x —0.26731x

Example 12 : Population of a city in different years are given in the following
table :

X 1970 1980 | 1990 2000 | 2010

y (in thousands) 1450 1600 1850 2150 | 2500

Fit a parabola to the given data, using least squares principle. Also estimate the
population of the city in 2005.

Solution : Since the magnitude of given data is large and values of x are given at
equal intervals, therefore we reduce it by shift of origin and scale. Let x,= 1990

be origin of x-values and y,= 1850 be origin of y-values.

x—-1990 y—1850

Then, let X = 0 and Y= 50 ...(1)
Let required curve be y = a+bx+cx’,
after change of orogin and scale, it will be

Y= a+bX+cX? .....(i)

Now, we construct following table:
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or

or
and

or

X X |y Y X | X | XY | X° X*
Y
1970 -2 [ 1450 | -8 16 |4 -32 -8 16
1980 -1 | 1600 |-5 5 1 -5 -1 1
1990 0 [1850 |0 0 0 0 0
2000 1 2150 |6 6 1 6 1 1
2010 2 12500 |13 26 |4 52 8 16
Sum 0 |- 6 53 |10 |21 0 34
Normal equations, in new variables, will be
ZK =na +b ZXi + cZ:X[2
DXY =a) X, +b) X +c) X/
DX =a) XP+bY X} +c) X/
From the table, we have
DX =0,>Y=16>XY=>53
> X, =10,> XY =21, X'=0
ZXI.4 =34 and n =75,
Substituting above values in normal equations, we have
6=5a + b.0+c.10
6=5a +10c
53=a.0 +5.10+c.0
53 =105,
21=a.10 +b.0 +c.34
21=10a +34c
Solving above equations for a, b and ¢, we get
a=-0.08714,b =5.3, c = 0.642857
Now from (ii), we have
Y =-0.08714, + 5.3x + 0.642857x° .....(iii)

From (i), we have
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2
y-1850 _ 0.085714 + 5.3 x—1990) _ 0'642857(i990j
50 10 10

On simplification, we have
Y = 1222008.286 — 1252.7854 x + 0.3214285x"

Which is the required equation of parabola. Now, in the year 2005, population of
the city will be given by

Y = 1222008.286 — 1252.78543(2005) + 0.3214285(2005)"

=2324.10456
~ 2324 thousands, approximately

20.13 Self Learning Exercise-11

Q.1 Derive normal equations for fitting parabola y = a +bx”.

Q.2 Derive normal equations for fitting parabola y = ax + bx”.

20.14 Summary

In this unit operators for interpolation with equal interval are discussed,
various methods for interpolation with equal interval viz Newton forward, Newton
Backward & Stirling central difference formulas are discussed. In other part of unit
principle of least square for fitting of curves is discussed, fitting of straight line,
parabola, fitting of polynomial are discussed.

20.15 Glossary

Interpolation :To approximate a value between given values.
Forward difference: Difference of next value & that value.
Backward difference: Difference of that value & previous value.
Curve Fitting :Fitting a curve from given set of data.

Least square :For which sum of square of values is minimum.

20.16 Answers to Self Learning Exercises

Answers to Self Learning Exercise-II

Ans.1:  Normal equations are

464



Z?:l Yy =an +b27:1x1'2
Z?:l xizyi - az; xiz +b27:1 xi4

Ans.2:  Normal equations are
n _ n 2 n 3
Zi:l Xy, = azizlxl. +bZ:i:1 X,
n 2 _ n 3 n 4
Zi:l Xy = azi:l X, +bZ:i:1 X,

20.17 Exercise
Q.1 Fita curve of the form y = ax =bx" to the given data :
* 1 2 3 4 5 6
Y 2.6 5.4 8.7 12.1 16 20.2

Q.2 Fit a straight line to the following data :

* 1 2 3 4 5 8

Y 24 3 3.6 4 5 6

Q.3 Compute the constants o and y” such that the curve y =ay”* fits the given
data:

* 1 2 3 4 5

Y 151 100 61 50 20

Q.4 Fit a curve of the form y = ax”to the given below :

* 2 4 7 |10 |20 |40 60 80

Y 43 25 |18 |13 |8 |5 3 2

Q.5 Fitthe curve p= V" =k to the data given in the table :

P 0.5 1 1.5 2 2.5 3

\Y 1.62 1 0.75 0.62 0.52 0.46

Q.6 Fit the curve y = ae™ to the following data :

X 2 4 6 8 10
y 4.077 11.084 | 30.128 |81.897 | 222.62

Also estimate y atx=7
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Q.7 Fit a second degree polynomiasl to the following data, taking x as

independent variable:

* 1 1.5 2 2.5 3 3.5

Y 1.1 1.3 1.6 2.0 2.7 3.4 3.1

Q.8 Fit a second degree parabola to the given data:

o 1929 | 1930 | 1931 | 1932 | 1934 | 1935 | 1936 | 1937
Y 352 | 356 357 358 360 361 | 360 |359

Q.9 Obtain a least-squares quadratic approximation to the function y(x) = Jx
on [0,1] with respect to the weight functionw(x) =1
Q.10 The temperature fand length / of a heated rod are given below. Establish a

relation betweenfand / of the form / =a+ b0 using least-squares principle.

0 (°c) 20 30 40 50 60 70
[(mm) | 800.3 | 800.4 800.6 | 800.7 800.9 | 800.
10

20.18 Answers to Exercise

Ans.1: y=241973+ 0.15589x°

Ans.2: y=1.76 + 0.506x, y = 3.747 at x=3.5
Ans.3: a=309,y" =5754

Ans.4: a=4.36,b =-0.7975

Ans.5: r=1.4224,k = 0.9970

Ans.6: a= 1499, b=0.5 c=49.6401

Ans.7: y=1.0368 — 0.1932x + 0.2429x°
Ans.8: y= -1010135 + 1044.67x — 0.27x

1
Ans.9: y=— (6+48x— 20x*
y 35( ))

Ans.10: a=800,b =0.0146
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21.0 Objectives

In this chapter, we find numerical solution of non-linear equation of the
form f(x)=0. For this, we discuss two methods named Newton Raphson method
and Secant method. We also discuss the convergence of these two methods which
depends on the choosen root that how closed the root is choosen to the original
root. Instead of this, we discuss the system of linear equations of the form AX =B
and their solution. For this, we learn two methods named Gauss Elimination

method and matrix inversion method.

21.1 Introduction

The non-linear equations arise in various problems such as projectile
motion, pipeline flow, pipe-pump system and many physical problems.

Any polynomial with degree one, is called linear equation. The equation,
which is not linear, is called non-linear equation. For example, x-1 =0 is linear and

x* +x+1=0 is non-linear.

21.2 Rate of Convergence

We consider that the initial approximation to the root is sufficiently close to the
desired root, then the rate of convergence can be defined as following.

Definition: An iterative method is said to be of order p or has the rate of

convergence p, if p is the largest positive real number for which there exists a finite
constant C # 0 such that

€< Clel”
where€, = x; — £ is the error in thekth iterate.

The constant C is called the asymptotic error constant and usually depends on
derivatives of f(x) atx = ¢.

21.3 Newton Raphson Method

For roots with different multiplicity, Newton Raphson Method is given by different

formulae.

(i) For Simple roots:

For simple root, the nth iteration root of the equation f(x) = 0 is given by
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xo=x &) 00

T f(x,)

(ii) For multiple roots:

(a). When multiplicity is given:
In this method, we use the following formula
xn+l = xn -m f’(x")
S(x,)

where m is multiplicity of root.

(b). When multiplicity is not given:
Letx = a berootof f(x)= 0 of multiplicity m.So, the function f (x)can

be written as

fx)=(x—-a)™g(x)
f'e)=mlx—-a)™ g+ (x—a)™g' (%)
=(x—a)" mg() + (x —a)g' (0]
&)
)
f(x)
Let @(x) = T
NR Method is given by
D(xn)
Xne1 = Xp — @ (x,)

_ F)/f' (%)
f’(xn)f’(xn)—f(xn)f”(xn)

(' @)}

et = Xy T f(f”)f (x,) - n=0,1273,....
[f'(x)] =1 (x,)f"(x,)

(iii)  Newton Raphson Method for pth root:

= (x —a)h(x)

=xn

How to find the nth root of a real number N ? For this consider it be x. Then
x=NP
or xP =N
orx? —N=20
Let f(x) =xP—N
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Newton Raphson Method isgiven by

oSG
+1 — -
" A CY)
xP —N
0T Xnp+1 = Xn — p—1
PXn
pxh —xP + N
or Xn+1 = p—-1
pPXn

(p-1)x) +N

xf’l+1 = pxp—l
(a) For square root i.e. N = N/2: In this case p =2 and
X+ N
xn+1 =
2x,

1
(b) For cubic root i.e. N3 : Inthis case p =3 and

2x§ +N
xn+1 = 2
3x;
(c)For inverse of a number i.e% : In this case p = —1and
()
Xn+1 = _{L = X, (2 = Nxy)
/xrzl

21.4 Rate of Convergence of Newton Raphson method

The NR Method for solution of f(x) = 01is
o Sf(x)
x‘l’l+1 =X f,(xn) (1)
Let & be a simple root of given equation then f(¢) = 0 and €, = x,, — é= Error in

nth iteration.

Equation (1) becomes
_ _ JG+En)
E.J+en+1_ f +en fl(%'_'_en)
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F(E) +E, F1©) + () + -
F1(E) +En £7(8) + SEF(E) + -

or En+1=€n—

'@,

BUGH
77©, @,

We'motz 7o

reume e ST <5>+...H1+enf 9.5r@, T

Ent

=En—

2 /'(¢) /') 2 1)
L @) e fr)
B R TR
C® L,
- 2 f’(f) Ent O(En)
En+1: C EZ
where¢ = 21L& “®) and neglecting €3 and higher terms.

2 1)
Hence Newton Raphson Method has second order convergence or quadratic

convergence.

21.5 Illustrative Examples

Example 1: Solve x* — x — 10 = 0 by NewtonRaphson method.
Sol. Let f(x) =x*—x—10
fl(x)= 4x3 -1

Now f(0) =-—

f)=-

f(2)=4
Therefore, aroot of f(x) =0 liebetween 1and2 as f (1) f(2)<O0.
Let Xo = 2

fxo) =4

“ f'(x0) = 31
By Newton Raphson method

X, = xg — % = 1.87097 (forn = 1)
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R A €5V
ST ()
= 1.85578

_ fx2)
f(x2)

=1.85558

.X3:xZ

R A C5))
P f(xs)
= 1.85558

Hence a root of given equation is 1.85558 correct upto 5 decimals.

Example 2: Solve xlog,ox = 1.2 by Newton Raphson method.
Sol. Let f(x) = xlogopx —1.2=0

f'(x) =logiox + x.i. log e
= log,9x + 0.43429
f(1) =-12
£(2) = —0.59794
f(3) =0.23136

L T
n+1 n f,(xn)
_ (xplogqoxn—1.2)
logi9xn+.43429
43429 x,+1.2

logi9xn+.43429

n

Forn=1,2,3..
x; = 2.74615
x, = 2.74065
x5 = 2.74065

Example 3: Find double root of equation x*>—x? —x+1=0 by Newton-
Raphson Method. starting with0.8. (multiplicity is given as 2)
Sol. Letf(x)=x3—-x?2—x+1
fl(x)=3x2—-2x—1
Here x, = 0.8
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Newton Raphson method for a root with multiplicity 2 is
f ()
f(xn)’

2(x3 —x2 —x, +1)

Xp41 = Xp — 2 n=0,12,...

Y a—
_ Xftx,—2
C3x2—-2x,—1
Forn=10,1,2
_ B0t % =2 065
Mg -1
x, = 1.00003
.X3:1

Hence 1 is root of f(x) = 0 with multiplicity 2.
Example 4: Find the multiple root of
27x5 + 27x* +36x3+28x2+9x+1=0
by Newton Raphson method. (multiplicity is not unknown)
Sol. Let f(x)=27x%+27x*+36x3+ 28x2+9x + 1
o f'(x) = 135x* + 108x3 + 108x2 + 56x + 9
f"(x) = 540x3 + 324x% + 216x + 56
Here multiplicity of root is not given. Therefore multiple root of f(x) = 0 can be

considered as simple root of @(x) = 0, where

f(x)
D(x) =
® =760
1
@(0) = ) =0.11111
@d(—1) = —0.18182
Multiple root of f(x) = 0 lies between 0 and -1. Take x, = 0.

Newton Raphson Method for multiple root is given by

Xpp1 = Xy — fGe)f (xn)
T T G — G )
For n=0,1,2
X, = —0.36

£(x;) = —0.000578
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£/(x,) = 0.065434
f"(x;) = —4.963840
- x, = —0.333224
£(x,) = —0.333115
f'(x3) = 0.000001
£ (x,) = 0.019677
Xy = —0.333173
Example 5 Find 20'/2.

Sol. Here N=20 andV16=4, V25=5
Take x, = 4.5
Newton Raphson method for square root is
x2+ N
3x,

x2+ 20
2x,

) n=0123...

Xn+1 =

Xn+1 =

Forn=0,1,2,3
X2 +20  (45)24+20 (4.5)% +20
~ T 2x, | 245 9
= 4.47222
X2 +20  (447222)? + 20
T~ 2x, | 2(447222)

X1

= 4.472136

X

n=2

x% + 20
X3 = = 4.472136
2x,

~V20=4.472136
Example 6: Find 18/3,

Sol.

Here N =18
@3 =2 @N7VP=3
Take x, = 2.5
Newton Raphson Method for cubic root is

2x3+N

Xn+1 = 352
n
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For n=0,1,2

2Xx3+N
x, =228 = 2626667
3x;
x, = 2.620755
x5 = 2.620741

21.6 Secant Method

The Newton Raphson method requires the evaluation of derivatives of the function
and this is not always possible, particularly in the case of functions arising in
practical problems. In the secant method, the derivative at x, is approximated by
the formula

fle) = fx-q)

X — Xij—1

f '(xi) =
which can be written as

fr = fi :fi—l
Xi = Xi—1
where f; = f(x;). Hence, the NewtonRaphson formula becomes
o = e — (x; = xi-1) i _ Xi—1fi = Xifi-1
T fi—fia fi = fiea
_ X fimxf

Xist
i fl B fH
It should be noted that this formula requires two initial approximations to the root.

21.7 Rate of Convergence of Secant Method

We assume that & is a simple root of f(x) = 0.
Substitutingx;, = ¢ +€;, in (1) we obtain

€ —e (Ex—€x_Df (€ +€1)
TR f(E+€) — f(E+E,-1)

Expanding f(¢ +€,)and f(¢ +€,_,) in Taylor’s series about the point é and
noting that f(&) = 0.

(€€ [Ex /1@ +5 € £ + ..
(Ek—€k-1)f () + 5 (€€ )f" () + ..

(2)

Ex+1=C€k—
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-1

fll
f' (s‘)

€xEx_1+ O(E2€,_1+ELEZ )

H1 by (Erten S+

1
=€~ |€t3 €2

17"(%)
ST )
Ex—1=C ExEx_1 (3)

whereC = @)

2 (9
The relation of the form (3) is called the error equation. Keeping in view the

and higher powers of €, are neglected.

definition of the rate of convergence, we seek a relation of the from.
Exs1= A E} 4)
where A and p are to be determined.
From (4) we have
€x=A€El_ or €= AP /P
Substituting the values of €;,,and €,_;1in (3), we get

Equatmg the powers of €, 0n both sides, we get
p=1 +1
p
which gives p = %(1 ++/5)

Neglecting the minus sign, we find the rate of convergence for the secant method
is p=1.618.

From (5), we have A = cr/(®+1)

21.8 Illustrative Examples

Example 7: Solve the equation 4sinx + x? = 0. Find the root of equation by
Secant method.
Sol. Letf(x) =4sinx + x2 =
f(—=1) = —2.36588, f(—2) =0.362810
fEDF <0
So, a root lies between -1 & -2 and let

x0:_1 B x1:_2
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Now
_ (—1)(0.362810) — (—2)(—2.36588)

X2 0.362810 + 2.36588
—5.09457
= 27 1867039
2728690 1.86

f(x;) = —0.339926
Now x; =-2 x, = 1.867039

f(x) =0362817 ,  f(x,) = 0.334926
_A357232
3= 20702726

Fxs) = —0.01269

Now

X, = xof (x3) — x3f (x2)
* f(x3) = f(x2)
—0.633002
= 0327326 193384

£(x,) = 0.00045

Now

Yo = x3 f(x4) — x4f (x3)
ST ) — fxs)
_ —0.025452 — _193375
0.013162 '

f(xs) = —0.00002

Now

X, = Xof (x5) — x5f (x4)
¢ fxs) — f(xq)
0.001135
= 0000587 ~ 193375

Thus, the approximate value to the root is -1.93375 correct up to five decimals.

Example 8: Determine p, q and r so that the order of iteration method.
ag ra®

t 5

x =pxp+—
n+1 bXxn xrzl x3

becomes as high as possible for root of é= al/3.

Sol. Here &= a'? =>&=aq
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That is, we have found cube root of @, usinge,,= x,, — ¢

aq ra?

(§+en)? * (§+€n)®

=p( +€,) + aq (§ +€,) > +ra*(§ +€,)7°
-2 -5

=p(& +€,) + ﬂ(1 +E) +:(i;<1+i)

Wehave &€ + €,,,=p(+€,) +

§? $ $
2 3
=p(€ +€,) + g<1—2§”+3;’1 —4;” + e )
+E(l_SEn+156n2_356n3+.,.__>
¢ $ §? §3
Enr1t & =p(§ +€,) + qs‘(1—ZE”+?’E”2—4€”3 )
$ §? §3
+r€(1_5en+15en2_356n3+m“>
$ §? §3

2

€
Enri=¢[-1+p+q+r]+€, (p—2q—57)+ ?”(3q+ 157)

€n
+€—2(—4q—35r)
If we take
—-1+p+q+r=0
p—2q—5r=0
3qg+15r=0
By (1) p=+1l—-q-—r
By(2) 1-q-r—2q—5r=0

=> —3q—6r= —1 =>3q+6r=1
=>3q+6r=1
3q+15r =0
-9r=1
1
T 7Y
30 = — 2 (1
3g= —-1+r (9)
—3q = —3-2 :>q: -}—E
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o201 9-5+1 5
p=l-gty =2 P=7795 =g
Weh =g=2> r=21
chavep=g =7, 1=
Eq.(1) becomes €piq= 3_22 €t ..

€n+1: 352 6737.

=Ce€3

Hence given method has order 3.

21.9 System of Linear Equations

Consider the system of n linear equations in n unknowns :
a11x1 + a12x2 + e+ alnxn = b1

a21x1 + azzxz + e+ aann = bz

An1X1 + ApaXy + -+ App Xy = by (1

The matrix form of the system (1) is

AX =B 2)
where
A11017 e e An 1 rxl] [bl]
| A21G22 o - Azn | EA | b, |
A — T I , X = I I and B = | I
[anlan2 ...... annJ lan lan

21.10 Matrix Inversion Method

Suppose A is non-singular, that is detA # 0.Then A~ lexists. Therefore, pre-
multiplying (2) by A1, we get

A1AX = A"1B

X=A"1'B

Using this formula , all unknowns can be determined.

21.11 Hlustrative Examples

480



Example 9 Solve the system of linear equations
x+y+2z=1
x+2y+3z=1
2x+3y+z=2

Sol. We have
112
Al =11 2 3|=—4 #0
2 31
Also
1[7 -5 1
Al=—-|-5 3 1
1 1 -1
Hence

x 17 -5 11
X=M=A—13=Z -5 3 1f[1

O O

Therefore, x=1,y=0,z=0
Example 10 Solve the system of linear equations
3%, +6x, +x3=1
X1+ 2xy —x3 =2
31+ 3x,+2x3=3
Sol. The coefficient matrix is given by

3 6 1
A=[1 2 -1
3 3 2
Thus X= A"'b
X1 7 -9 —8] H
> |nl=-—=|-5 3 4]]2
%3 121 3 9 oll3
_il_ 1 _—1?;)5]
2| — ———
[ X3 12 | 15
35 13 15
1= 15 0%2 12’7712
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21.12 Gauss Elimination Method

We consider the system (3 x 3 system)
A11X1 + A12X; + Ay3x3 = by
Az1X1 + A%y + Ap3X3 = b,
A31X1 + A3zX7 + Az3X3 = b3 (1
First stage of elimination, we multiply the first row in (1) by a,;/a1and az,/aq4
respectively and subtract from the second and third rows. We get
©)

2 2
Ayy X2 + ag3)x3 = bé ) 2
2 2 2
agz)x2 + ag;x3 = bé )
where
2 az1 2 az1
agz) =0z — — Gy, ag3) = Qy3 ——Og3
11 11
) azq ) azq
A3, = a3z —— Q12 Q33 = a3z —— 0433
11 11
a a
b§2) =b; — ﬂbp b§2) = bs — i191
11 11
Second stage of elimination, we multiply the first row in (2) by agzz) /agzz) and
subtract from the second row in (2). We get
3 3
ag3)x3 = bé ) (3)
where
) )
@ _,@_%2 @ 6 _ @ _ %2,
Q33 = A3z ——yAz3» D3" =D3° ——5yh;
22 a22
We collect the first equation from each stage, i.e., from (1), (2) and (3) we get
1 1 1 1
agl)x1 + agz)x2 + a§3)x3 = bf )
2 2 2
agz)xz + a§3)x3 = bé ) 4)
3 3
ag3)x3 = bé .
where
al(]l) :aij, bl(l) :bir l,]: 1,2,3

The system (4) is an upper triangular system and solving this is called back
substitution method. Thus,
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[A]b] — = — =S [y)c] ®)

Elimination
where [4]b] is the augmented matrix. The elements aﬁ), agzz) and a§33) which have
been assumed to be non-zero are known as pivot elements. The elimination
procedure described above to determine the variables(unknowns) is called the
Gauss elimination method. We may also make the pivot as 1 before elimination, at
each step. At the end of the elimination procedure, we produce 1 at each of the

positions of the diagonal elements.

We now solve the system (1) in n unknowns by performing the Gauss elimination
on the augmented matrix [A|b].

The elimination is performed in (n — 1) steps, k = 1, 2, ... , n — 1. In the
elimination process, if any one of the pivot elements aﬁ), agzz)' ...... , a,(ﬁl)vanishes or
becomes very small compared to other elements in that column, then we attempt to
rearrange the remaining rows so as to obtain a non-vanishing pivot or to avoid the
multiplication by a large number. This strategy is called pivoting. The pivoting is

of the following two types.

Partial Pivoting

In the first stage of elimination, the first column is searched for the largest element
in magnitude and brought as the first pivot by interchanging the first equation with
the equation having the largest element in magnitude. In the second elimination
stage, the second column is searched for the largest element in magnitude among
the n-1 elements leaving the first element, and this element is brought as the
second pivot by an interchange of the second equation with the equation having the
largest element in magnitude. This procedure is continued until we arrive at the

equations (5).
Complete Pivoting

We search the matrix A for the largest element in magnitude and bring it

as the first pivot. This requires not only an interchange of equations but also an

interchange of the position of the variables.

21.13 Illustrative Examples

Example 11 Solve the system of linear equations
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x1 + 10x2 + .X3 = 12
10x1 + xZ + .X3 = 12
x1 + xZ + 10.X3 = 12

Sol. Rearranging the system of linear equations

10x1 + xZ + .X3 = 12
x1 + 10x2 + .X3 = 12
x1 + xZ + 10.X3 = 12

10 1 1|12
[A]b] = [1 10 1 12]
1 1 10l12
1 1
Ry >Ry —75Ri, Ry > Ry—7 R
10 1 11 12
_ [o 99/10 9/10 108/10]
0 9/10 99/101108/10
10
RZ —>® RZ
R
= | 11 | 11|
l 999 |108
1010 111
9
Ry = Ry — 75 Rz
10 1 1] 12
o, 1|2
= | 11 | 11|
L
0 11 11

by back substitution, we get

X3 =1,x2 = 1,X1 =1

Example 12 Solve the equations
10x1 - xZ + Z.X3 = 4
x1+10x2—x3 = 3
le + 3x2 + ZO.X3 =7

using the Gauss elimination method.
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Sol. As seen, the system doesn’t need pivoting. We get, after the first elimination
stage

10x; —x, +2x; = 4

101 12 26

10 2710 T 10
32 196 62

102 0% 10
second elimination stage
10x; —x, + 2x3 =4
101 12 26
10 2710 T 10
20180 5430

1010 ** ~ 1010
Using back substitution, we get

x3 =0.269, x, =0.289 and x; = 0.375
Example 13 Find the solution of thesystem of equations

x1 + xZ + .X3 = 6

3x1 + 3x2 + 4.X3 = 20

le + xZ + ?).X3 = 13

Sol. In the first step we eliminate X1 from the last two equations and obtain

X1 +x, +x3 =06

X3 =2

—Xx, +x3 =1
Here, the pivot in the second equation is zero and so we cannot proceed as usual.
We interchange the equations 2 and 3 before the second step. We obtain the upper
triangular system

X1 +Xx,+x3=6

—X; +x3=1

X3 =2
which has the solution

x1=3, x,=1 and x;=2
Example 14: Solve the system of linear equations

x1 +2x2 +3.X3 = 14
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le + 5x2 + 2x3 = 18
3x1 + xz + 5x3 = 20

Sol. Given system can be written as

3x1 + xz + 5x3 = 20 (1)
2x1+5x2+2x3:18 (2)
x1 + zxz + 3x3 = 14’ (3)
31 5 |20
[Alb]=]2 5 2 | 18
1 23 |14
2 1
RZ _)RZ §R1, R3 - R3 _§R1
301 5 120
BRI
3 3 3
o342
3 3 3
R R SR
3 ™ I3 1372
301 5 |20
on o
3 3 3
oo M2
3 3

By back substitution, we getx; =3, x, =2 , x; =1

21.14 Self Learning Exercise

Very Short Answer type Questions
Q.1 Define the rate of convergence for any iterative method.
Q.2 Write the order of convergence for Newton Raphson method.
Q.3 Write the order of convergence for Secant method.

Short Answer type questions

Q.4 Solve the non-linear equation x* —x—10=0 by Newton Raphson method.
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Q.5 Solve the following system of linear equation
4x,+x, +x, =4
X, +4x,—2x, =4
3x,+2x,—4x, =6
by Gauss Elimination method with partial pivoting.

Q.6 Find the positive root of the equation x> —5x+2 =0, correct to 4 decimal

places, using Newton-Raphson method with x, =0.5

21.15 Answers to Self Learning Exercise

Ans.2 : Quadratic convergence i.e. order 2
Ans.3: 1.618
Ans.4: 1.856
AnsS: x,=——, x,=

Ans.6 : 0.4384

21.16 Summary

In this chapter, we discussed about the numerical solution of non-linear
equation by Newton-Raphson method and Secant method. Then, we discussed
about the solution of the system of linear equation by Matrix Inversion method and
Gauss Elimination method.

21.17 Glossary

Elimination: The removal of a variable from an equation, typically

by substituting another which is shown by another equation to be equivalent:
Convergent: (Of a series) approaching a definite limit as more of its terms

are added.

21.18 Exercise

Very Short Answer Type Questions

Q.1 Write the formula of Newton Raphson method for determining the square root
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of 15.

Q.2 Write the Newton-Raphson formula for determining the cubic root of the

number N.
Q.3 Write the Newton Raphson formula for determining the multiple root with
multiplicity m for non-linear equation.
Short Answer Type Questions
Q.4 Find the positive root of the equation x* +x—1=0 correct to 3 decimal
places, using Newton Raphson method with x, =0.
Q.5 Find the cubic root of 15 by Newton Raphson method.

Q.6 Find the numerical solution of the system of linear equations x—y+4z=16,

3x+2y+z=18 and x+4y—2z =20 correct to 3 decimal places, using Gauss
Elimination method without partial pivoting.

Long Answer Type Questions
Q.7 Derive the rate of convergence for

(1) Newton Raphson Method (ii) Secant method
Q.8 Solve the system

2x+y+z=10

3x+2y+3z=18
x+4y+9z=16

by (i) Gauss Elimination method and (ii) Matrix inversion method
Q.9 Solve the system
2x+2y+z=12

3x+2y+2z=8
5x+10y—-8z=10

by (i) Gauss Elimination Method (ii) Matrix Inversion Method

21.19 Answers to Exercise

2 1 2 3
Ans.l: x = x”2+ > Ans.2: x, = x3” tN
x x

n n
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Ans.4: 0.618

Ans3: x,  =x, —

Ans.5: 2.4662 Ans.6: x=0.64, y=544, z=52
Ans.8: x=7, y=-9, z=5
Ans.9: x=-12.75, y=14375 z=8.75
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UNIT- 22
Numerical Differentiation

Structure of the Unit

22.0 Objectives

22.1 Introduction

22.2 Approximations of derivatives

22.2.1 First order approximation

° Forward difference approximation
° Backward difference approximation
° Central difference approximation

22.2.2 Error Analysis

22.3 TIllustrative Examples

2.4 Self Learning Exercises-I

22.5 Numerical Differentiation

22.5.1 Method based on Interpolation formula
22.6 Illustrative Examples

22.7 Method based on Operator

22.8 Self Learning Exercises-II

22.9 Summary

22.10 Glossary

22.11 Answers to Self Learning Exercise
22.12 Exercise

References and Suggested Readings

22.0 Objectives

Numerical differentiation and integration methods are frequently used in
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computational physics. In this chapter we will look at ways of derivation of
numerical differentiation formulas and their errors types. After completing this
chapter student should be able to obtain numerical approximations to the first and
second derivatives of certain functions and error analysis in context of truncation

and round-off error.

22.1 Introduction

Numerical Differentiation is the process by which we can find the approximate
value of the derivative of a function at a given value of the independent variable.
The problem of numerical differentiation is mainly solved by the method based on
interpolation formulae and other based on operator formulae. Numerical
differentiation is used when we approximate the derivative of a function at a
specific point. Approximation of derivatives is used to reduce the differential
equation to a form that can be easily solved than the original differential equation.

22.2 Approximation of Derivatives

In this section we learn how to approximate the derivative by using finite
differences. The idea is very simple: the derivative of a function f(x) is defined as

£'(x) = lim e+ —fx) (1)
h

h—0

22.2.1 First Order Approximation
(a) Forward difference approximation

The approximation can be analyzed by considering the Taylor’s series expansion
of a function f(x) is given by

2 3
"

f(x +h) = f(x) + hf'(x) +h—f”(x) + h—f x) +... Q)
2! 3!

where h is understood to be very small

Solving the equation (1) forf'(x) we have

2
!

o0 = fx+h)—f(x) h

n h m
= — ")~ —f"(x) +... 3)
21 31

If the series is truncated at the second derivative, there exists a value ¢ such that
lies in [x, x+h], so that
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fx+h)—f h ,

f'(x) = £"(c) 4)
h 2!

where the reminder term shows the approximation error for derivative

h n
E(f,h) = —;f (©) = Ofyryara () &)

is the truncation error or first order accurate. We see that this approximation is
first-order accurate because the first term is dominating in the expression O(h) for

small h. So, the forward difference approximation of the first derivative f'(x) is

f’(X) ~ w @)
h

And a true error for the forward difference formula is

£(x + h) — £(x)|

T tral(X = Xo) = f,(X) -
h ‘X=XO

cen

(b) Backward difference approximation

In similar way, one can write the Taylor series expansion of a function f(x) about x

to determine f(x—h) by replacing h by —h.

2 3
"

f(x —h) = f(x) — hf'(x) +h—f”(x) —h—f x) +... (8)
2! 3!

Solving the equation (8) forf'(x) we have

f(x) — f(x —h) +£ ’ ’

' " h 3 h 4
f'(x)= fx)—fx+—»F x)... 9)
2! 3! 4!

If the series is truncated at the second derivative, there exists a value ¢ such that

lies in [x-h, x], so that
f(x) —f(x—h h
(x) —f( ) L
2!

f'(x) = £"(c) (10)

where the reminder term shows the approximation error for derivative

h n
E(f,h) = ;f (c)= Obackward (h) 11
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is the truncation error or first order accurate. We see that this approximation is
first-order accurate because the dominate term in the truncation error is O, (h) for

small h. So, the backward difference approximation of the first derivative f'(x) is

f'(X) zm (13)

And a True error for the backward difference formula is

f(x) —f(x —h)

T tral(X = Xo) = f,(X) -
h

cen

X=X,

(c) Central difference approximation

We can derive a more accurate estimate of the derivative by using the forward and

backward Taylor series expansion about x.
3 4

f(x +h) = f(x) + hf'(x) +h—f"(x) +h—f3(x) +h—f4(x)... (14)
21 3! 41

2 3 4

f(x —h) = f(x) = hf'(x) +h—f"(x) —h—fs(x) +h—f4(x) . (15)
21 3! 41

Subtracting the eqn (15) from (14), we see that the terms involving even powers of

h cancel out, leaving terms are

f(x + h) — f(x —h) = 2| hf'(x) +h—f3(x) +h—f5(x)..
3! 51

or, solving for f'(x) we have

3 5

f(x + h) — f(x —h) = 2| hf'(x) +h—f3(x) +h—f5(x)..
3! 51

fx+m)—fx—h)
2h

f'(x) =

h’ h*
——fx)——f(x)...
3! 5!
If the series is truncated at the second derivative, there exists a value ¢ such that
lies in [x-h, x+h], so that

2

_fx+h—f(x—h h

£'(x) —f(c)
2h 3!

Where the reminder term shows the approximation error for derivative
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2

h 3 2
E(h) =~ ()= O,y (0)- - (16)

is truncation error or first order accurate. We see that the center difference

approximation is second-order accurate because the dominate term in its truncation

error is O, (h?) for small h. The center difference approximation is more accurate

center

than the forward difference due to its smaller truncation error. So, the central

difference approximation of the first derivative f'(x) is

. _fx+h)—f(x—h)

f'(x) (17)
2h
And a true error for the forward difference formula is
fx+h)—f(x—h
Tt =) =|figo - EFD =T =) (18)

2h

X=X,

Note: Error reduced if forward and backward difference approximations are

combined.

22.2.2 Error Analysis

By same proceeding we can obtain the higher order approximation of derivatives
with finite difference. Let us next discuss about the round-off error. Such errors
arise due to limitation of the finite word in computers. Suppose f(x, —h)and
f(x, +h) are approximated by the numerical values y andy, ande ande are the

associated round — off error then

x,) = 2+ Bt h)
2h

where

E(th)y=E (Eh)+E_ (fh)

e, —e, h'f’(c)
= - (18)
2h 6

Hence the total error in numerical differentiation formula is truncation

(approximation) plus round-off. If
‘eJSS,‘e_I‘Ss and

M = Max

x€Ja,b]

£00)
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2

then |E(t, | < & Mhb
2h 6

(19)

Concept of Total Error (optimal choice of h)

The optimal choice of h represents a compromise between the conflicting
requirements of minimizing the round-off error, the first term which requires a
large value of h, and minimizing the approximation error, the second term, which

requires a small value of ‘h’. To reduce the truncation error, we need to reduce h.

But as h is reduced, the round-off error grows. The value of h that minimizes the

(38 )1/3
h=| = (20)
M

Now consider an example to understand the concept of total error

error term in above eqn.

Example 1 Let f(x) = sinx
(a) Use formula (18) with step sizes h= 0.0001, 0.001, 0.01and 0.1 and calculate
approximations for f'(0.5).
(b) Calculate the optimal value of ‘h’.
Sol. (a) f'(x) = cosx then
true value of cos(0.5) = 0.8775825 (7 decimal place)
from the approximation formula (18)

£(0.5 + h) — £(0.5 — h)
2h

£'(0.5) =

Gives us different values of approximation for the different h (as shown in table)

Step Size | Approximation | Error =
£(0.5) True—Approx

0.1 0.8761205 1.4620619x10°

0.01 0.8775700 1.2561920x10

0.001 0.8775906 —8.0380800x10°°

0.0001 4.8279724 —3.9503898
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(b) We can use the bound

M=

£ (0] < |- cos(x) <1
and the values of f are given to seven decimal places, we will assume that the

round-off error is bounded by € = 0.5 x 1077(machine epsilon). The optimal value
of h can be easily calculated:

1/3 N3
3¢ 3X0.5%107
h=|—| =|— | =0.0053133
M 1

the step size 0.001is closer to the optimal value 0.0053133 and it gives the best

approximation to f'(0.5) among the four choices.

22. 3 Illustrative Examples

Example 2 Let f(x) = sinx + cosx .

Calculate approximations forf'(0) by all three difference formula with h=0.1, 0.01

and 0.001 and compute also
(a) Compute an upper bound for each approximation error.
(b) Compute the true error.
Sol. Let be givenf(x) = sinx + cosx , then
f'(x) = cosx —sinx ; f'(0)=1
forward difference approximation

e f(h) —£(0) _ sin(h) + ;os(h) —1

backward difference approximation

¢ 0= f@fCh 1= [~ sin(h) + cos(h)] 1+ sin(h) — cos(h)
backward - = - — .

central difference approximation

£(h) — f(=h) _ [sin(h) + cos(h)| — [~ sin(h) + cos(n)] _ sin(h)
2h 2h h

fc:anlml (0) =

Also,

f"(x)=-sinx—cosx
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f"(0)=-1 and
f"(x)=—cosx+sinx
() =-1

An approximation error is

forward

h
R, =—
2!

Similarly, one can obtain

h
£ < —
21

backward

h
R, =—
2!

central

3!

h
£ <—
21

h2
t"(e) < —
3

£(0)| < E\(—1)\ <h
21 2

£'(0) < E\(—1)\ <h
21 2

£"(0)] < h—z\(—1)\ < L
3! 6

!

Table for forward difference

and

Approximations True Error Approx. Error
h sinh) +costh) =1 | | sin(h) +cos(h) 1 _h
h h | T2
0.1 0.0174380 0.9825619 0.05
0.01 0.0174517 0.9825482 0.005
0.001 | 0.0174531 0.9825469 0.0005
Table for backward difference
Approximations True Error Approx. Error
h 1+ sin(h) — cos(h) | Lo sin(h) — cos(h)| h
h h | L2
0.1 0.0174685 0.9825315 0.05
0.01 0.0174548 0.9825452 0.005
0.001 | 0.0174534 0.9825465 0.0005
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Table for central difference

Approximations True Error Approx. Error
h sin(h) | Sin(h) s
h h |, 6
0.1 0.0174532 0.9825467 1.67x10°
0.01 0.0174532 0.9825467 1.67x10°
0.001 |0.0174532 0.9825467 1.67x10"

Example 3 Derive the expression for the Second-Order Approximation of first
Derivative on forward difference.

Sol. The Taylor series expansion of the function f(x) can be written as

2 3

f(x +h) = f(x) + hf'(x) + h—f”(x) + h—fS(x) +... (1)
2! 3!

solving this equation for f'(x) we have

_fx+h—fx) h h’

f'(x) —f'x) ——fx) +... )
21 3!

If we truncate the Taylor series (Eq. 1) at the third term (at the second derivative),

the result will be as follows:
Now the forward difference approximation of the second derivative is given by

£(x) = fx+h -1 3)
h

foct2h) —fx+h) ) = f(x + h) — f(x)

h h
Putting these equations in eqn.3 will give the following results

But f'(x+h)=

0 = f(x 4 2h) — 2f(x + h) + £(x)
h

2

Substituting this eqn in (2) we get

, f(x +h)—f(x) h |:f(x +2h) — 2f(x + h) + f(x):l h?
f(x)= -

——f'x)+...
h 2! h’ 31
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2

_2f(x +h) = 2f(x) —f(x + 2h) + 2f(x + h) = f(x) h

£'(x) —f'®)+...
2h 3!
Foo = f(x + 2h) +4f(x +h) =3f(x) h_fs(x) L
2h 3!
oo = f(x + 2h) + 4f(x + h) — 3f(x) CEE

2h

Where the reminder term shows the approximation error for derivative

2 3

E(f,h) = —h—fs(x) ——f'x)...
3! 4

2
"

and Oporara(h’) = by (x)
3!

is truncation error or second order accurate. Finally, one can write the second-
order approximation of first derivative f'(x) is
— f(x + 2h) + 4f(x + h) — 3f(x)

2h

f'(x) =

22.4 Self Learning Exercises-I

Very Short Answer Type Questions

Q.1 What is first order accurate in forward difference approximation?
Q.2 What is first order accurate in backward difference approximation?
Q.3 What is first order accurate in central difference approximation?
Short Answer Type Questions

Q.4 Why the center difference approximation is more accurate than the forward
difference?

Q.5 Use the backward difference formula to approximate the first derivative of the
function f(x)= sinx at X, = musing h=0.1.

Q.6 Use the backward difference formula to approximate the first derivative of the

function f(x)= cosx at X, = wusing h=0.01.
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22.5 Numerical Differentiation

In numerical differentiation It is essential required the proper selection of
interpolation formulae to solve the numerical differentiation problems.

Selection of formula

(a)If the values of the argument are equally spaced, the formula is represented by

Newton’s Gregory formula to determine the numerical differentiation as desired.

(b)If we want to find the derivative of function at a point near beginning of end of
a set of tabular value, then we use Newton’s Gregory forward (backward) formula
as desired.

(o)If the values of argument are not equally spaced, we shall use Newton’s divided
formula or Lagrange’s formula to represent the function.
22.5.1 Method based on Interpolation formula

In this method, the formula is represented by an interpolation formula and then
differentiating many times as required. For exp. let us consider Newton’s Gregory

formula,
f(u) = f(0) + u Af(0) + MAzf(O) + wA3f(0) F... (1)
21 3!
Where|y =~ )
h
df(u) _ df(u) d_u _ ldf(u) 3)
dx du dx h du
Now differentiating eqn (1) w.r.t u and applying (3), we get
f 1 df 1 2u—1 P—6u+2
dfw _ 1dfe) :—|:Af(0) +( “ )Azf(O) +%A3f(0) +} 4)
dk h du h 21 3!

Once again differentiating above eqn (1) w.r.t ‘u’, we get

d’f(u) d df(w) d (df(w) \du 1 d [ df(u) 1r .o ,
=— =— —=—— =—| ATO)+u—DATO)+...|
dx  dx dx du( dx jdx hdu( dx ) h2|: O (=DATO ] ©

Similarly, one can determine the higher order derivative as desired.

Special Case: Numerical differentiation at the particular value x = x,
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Putting x = x andu =0 in eqn (4) and (5)

(df(u)j - l{Af(O) +ARO) + —A'O) + } ©
x /., h 2! 3!
d’f 1
and ( (“)] = —[Azf(O) + A’F(0) + ] Q)
& ), W

Note: The same process can be used to other interpolation formulae such as
Lagrange’s, Sterling’s and Bessel’s etc.

22.6 Illustrative Examples

Example 4 Determine the first (dy/dx) and second derivative (d’y/dx’) of function
tabulated below at the point x=0.35.
X 0.25 0.50 0.75 1.00 1.25 1.50

f(x) —0.4219 | —0.1250 | —0.0156 | 0.0000 | 0.0156| 0.1250

Sol. By inspection of the question, the value of argument is equally spaced and
required derivative are at a point near the beginning of the table. In this case, we
shall use Newton’s Gregory forward interpolation formula.

The finite difference table is as under:

X f(x) Af(x) A*f(x) Af(x) Afx) | Nfx)
0.25 | —0.4219
0.2969
0.50 | —0.1250 —0.1875
0.1094 0.0937
0.75 | —0.0156 —0.0938 0.0001
0.0156 0.0938 —0.0001
1.00 | 0.0000 0.0000 0.0000
0.0156 0.0938
1.25 | 0.0156 0.0938
0.1094
1.50 | 0.1250

Newton’s Gregory forward interpolation formula is
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W' —

2!

(u” —3u +2u) A3f(a)
3!

f(x) = f(a +uh) = f(a) + uAf(a) + ) N’f(a)+

4 3 2 5 4 3 2
u —6u +11u —6u u —10u +35u —50u” + 256u
+ ( )A4f(a) + ( )A5

f(a)+...
41 5!

X —a
h
Differentiating with respect to x, we have

where, u =

df(x) df(x)du df(x) d [ x—a | 1df(x)
dx du dx du dx\ h h du

if(x) 1 _ i|:Af(a) Gl A*f(a)+ Gu Zu+2) Nf(a)

dx h du

(4u’ —18u” + 22u —6)
+

. (5u’ —40u’ +105u” —100u + 256)
A'f(a)+
24 120
The second derivative of f(x)

df(x) _ d (df(x)) du _1d (df(x))
dx’°  du\ dx Jdx hdul dx

Nf(a)+.. }

d’f 1 d 2u—1 3u” —6u+2
(ZX) = —2—|:Af(a) + (2u )Azf(a) + w&f(a)
dx h™ du 2
4u’ —18u’ +22u—6 5u' —40u’ +105u” —100u + 256
+(u . . )A4f(a)+(u = - = )Asf(a)+...:|
24 120
d’f 1 6u’ —18u +11
(2") - —2|:A2f(a) + (u—DAf(a) + (bu - )A4f(a)
dx h
4u’ —24u” +42u —2
+(u . 2 O)Asf(a)+..}
24
x—a 0.35—025
Here a=0.25, and h=0.25. At x=0.35, u = = =04
h 0.25

Therefore, the first derivative
1
£'(0.35) = ——[0.2969 + (=0.1)(—0.1875) + (0.0133) (0.0937) + ...
0.25

+ (0.0073) (0.0001) + (1.9197) (=0.0001) |

1
£'(0.35) = ——[0.2969 + (0.0188) + (0.0012) + (0.0000) — (0.0002) ]
0.25
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, I 0.3167
£'(0.35) = —[(0.3169) — (0.0002)] = =1.2668
0.25 0.25

In similar way, the second derivative

1
£"(0.35) = —2[(—0.1875) + (—0.6)(0.0937) + (0.3967) (0.0001) + ...
(0.25)
+(—0.2827) (=0.0001)]
0.2437
[~ 0.1875 — (0.0562) + (0.0000) + (0.0000)| = — = —3.8992
0.0625 0.0625

Example 5 Determine the first (dy/dx) and second derivative (dzy/dxz) of function

£'(0.35) =

tabulated below at the point x=1.1.
X 0.2 0.4 0.6 0.8 1.0 1.2
f(x) 0.968 |0.904 | 0.856 0.872 | 1.000 | 1.288

Sol. The value of argument is equally spaced and required derivative are at a point
near the end of the table. So we shell use of the central difference formula. In this

case, we shall use Newton’s backward formula.

The finite difference table is as under;

X f(x) Af(x) Nftx) | Af)
0.2 0.968

—0.064
0.4 0.904 0.016

—0.048 0.048
0.6 0.856 0.064

0.016 0.048
0.8 0.872 0.112

0.128 0.048
1.0 1.000 0.160

0.288
1.2 1.288
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Newton’s backward formula is

f(x) = f(x, +uh) = f(x )+ uAf(x )+ MAzf(xn) +
2!

MA3f(XH) +...

X —X
n

h

where, |[u =

Differentiating with respect to x, we have

df(x) df(x)du  df(x) d [ x—x | 1df(x)
dx du dx du dx h h du

d 1df(x) _ 1 Qu+1)

|:Af(xn) +
h

—f(x) = —

dx h du

3u’ +6u+2
Af(x )+ wAsf(xn) + }
6
The second derivative of f(x)
d’f(x) _i(df(x)jd_u_ii(df(x)j
dx’ du\ dx Jdx hdul dx

die) _ %[Azf(xn) +u+ 1)A3f(xn)]
dx h

2

X—X, 1.1—1.2 _
h 0.2

—0.5

Here x,=1.2,and h=0.2. Atx=1.1, u =
Therefore, the first derivative

£(1.1) = i[(o.zss) + (0.000)(0.160) + (—0.042) (0.048)] = 5[0.288 — 0.002] = 1.43
In similar ;Jvay, the second derivative

£'(1.1) = ﬁ[(omm + (0.5)(0.048)] = 25(0.184) = 4.6

Example 6 Determine the first (dy/dx) and second derivative (d’y/dx’) of function
tabulated below at x=2.

X 1 15 |2 25 |3 3.5
fx) |0 025 |1 225 |4 6.25

Sol. By inspection of the question the value of argument is equally spaced and

required derivative are at a point near the middle of the table. So we shell use of
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the central difference formula. In this case, we have used Gauss’s forward

interpolation formula.

Here new variant u = — _hx"‘
for x=2, u=0.
The finite difference table is as under:
u X f(x) Af(x) Af(x) A’f(x)
-2 1 0
0.25
-1 1.5 0.25 0.5
0.75 0
0 2 1 0.5
1.25 0
1 2.5 2.25 0.5
1.75 0
2 3 4 0.5
2.25
3 3.5 6.25

Gauss’s interpolation formula with new variant ‘u’ is;

f(x) = f(x_ + uh) = f(0) + u AF(0) + O Avpopy + 8T Asp—
2! 31

(u* —2u’ —u’ —2u)

41

AH(=2)+...

first derivative of

df(x) _ df(x) du _ df(o) d (x—x )_ 1dfx)
dx du dx du dx h h du
Now differentiating (1) w.r.t u and using u=0 and h=0.5, we get

(2u-1)

dftw) =1{Af(0) +TA2f(—l) +

du &

Bu’ -1) (4’ —6u° —2u—2)
6 24

Af(=1)+ A*f(-2) +}
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(df(u)j :i[1.25+ﬂ(o.5) + O} =2
du J_, 05 2
Similarly,

d’f(x) _i(df(x)jd_u _li(df(x)j
dx” du\ dx /Jdx hdu\ dx

_ %{AZf(—l) FuAf(—n 4 SR T2 A4f(—2):|
h 24
Therefore, (d f(zu)j = 12 0.5 =2
du , 05

Example 7 Determine the first (dy/dx) and second derivative (d’y/dx’) of function
tabulated below at the point x=11.

X 2 4 9 13 16 21
f(x) 13 81 811 2367 | 4353 | 9703

Sol. The value of argument is unequally spaced. In this case, we shall use

Newton’s divided difference formula.

The divided difference table is as under:

X f(x) Af(x) A*f(x) Nf(x)
2 13

34
4 81 16

146 1
9 811 27

389 1
13 2367 39

662 1
16 4353 51

1070
21 9703
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Newton’s divided difference formula is
f(x) = f(a) + (x —a) Af(a) + (x —a)(x — b)A’f(a) + (x — a)(x — b)(x —c)A’f(a) +...
f(x) = f(a) + (x —a)Af(a) + {x’ — (a + b)x + ab}A’f(a)
+{x’—(a+b+c)x’ + (ab+ac+ bc)x —abc}A’f(a) + ...
Differentiating w.r.t x
f'(x) = Af(a) + {2x — (a + b)}A’f(a) + {3x" —2(a + b+ ¢)x + (ab +ac + be)}JA'f(a) + ...
The second derivative of f(x)
£"(x) = 2A’f(a) + {6x — 2(a + b + ¢)}A’f(a) + ...
Putting x=11, a=2,b=4,c=9 and the values of differences from the table, we get
£'(11) = 34 + (16)(16) + (95)(1) = 34 + 256 + 95 = 385
and

£"(x) = 2(16) + (36)(1) = 68

22.7 Method based on Operator

Approximate expression for the central difference derivative

(a) First difference derivative

As we know that

0, =¥y ™ Youn (1)
1

and un=5wwﬂwﬁd )
Therefore, wdy, = uly,.., = v...] (3)
Now MYoe = =Y vinie T Voran] = l[y 2ty ]

= 510, . S+,
And ny,_ ., = l[y e T Y a1 = l[y +y..]

e =50, . .+,

Substituting these values in eqn. (3), we get

1 1
dy = — =—[y,+y]-=y +
u yn u[yn+1/2 yn*l/Z ] 2 |:}]n+l yn] 2 [yn yn*l]
1

=5wm—yﬂ] (4)
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1
=—[e” —e ]y, [y, =¢"y,]
2
= [sinhD Jy,
or WO= sinhD = hD + +....
3
ud~ hD (neglecting higher order terms)
1
Now, hD = E[y" =Y (approx)
d 1
or Dy, =—(,) = 7Y, —¥,] (5)
dx 2h

This is called as first derivative formula for central difference derivative.

(b) Second difference derivative

Now Szyn = 8(8}/“ ) = 6[yn+1/2 - yn—l/z]
=0y,,,, — Oy

n+1/2 n—1/2

o CAPRRES AN B (RS A
[ 850 = (oo = Yoonse) and By = (v =)
8y, = (v, =v.)=(v, = v, )=v.. +v., =2y,
=(e® +¢™ —2)y. =2(coshD — 1)y,

1
= 2{(1 AL j - 1:|yn =(h'D" +..)y,

O’y =h'D’y approx (neglecting higher order terms)

Therefore 6’y =h’D’y = (yn+1 R A 2Yn)

2

1
D'y, =—(v,)=—(v,, +v,, —2y, (6)
or dX2 hz ( +1 1 )

This is called as second derivative formula for central difference derivative.

(¢) Third difference derivative

Once again  h’D'y = hD(h’D’y_ )=hD&’y.
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= H5(yn+l Y.~ 2yn) [’-' o~ hD]

- %(ynw —y. )+ %(ynm ~y )+ b —y.)

[ udy = %(ynﬂ ~ Y. )}
_ %(y —y )+ %(y ~v2) =0 =)
_ %(ym ~2y,. 2y, —v..)

This is called as third derivative formula for central difference derivative.

Symbolic derivation of derivatives of a function
Let the function y=f(x) and x=x,+hu
where h= difference of interval

Therefore  y=f(x,+hu) =E"y, (8)
where y,=y(Xx,)

Now, differentiating (8) w.r.t x at x,

dy d ) d . du
dx /). dx . du dx |,

= ﬂ;—u(E“yo)L = i[(logE)(E“yo)]Fo

= i(logE)y0 = i[lOg(l + A)]yo

from logarithmic expansion

(ﬂ] =l|:A—A +£—A +...:|y0
dx o, h 2 3 4




similarly,

dx’ h

d 1
( y) =—2|:10g(1+A):|2 Y,
by logarithmic expansion and taking square root we get

d’ 1 11 5
y = — A2y0 — A3y0 + —A4y0 __Asyo + ..
o) 12 6

In general form

(dny)mo = fog1+A)] y,

dx" h"

Example 8 Prove that

1 1 1 1
y' =—| Ay——ANy+-ANy——A'y+..
2 3 4

h
4 1 2 3 11 4
and y =—| Ny+ANy+—Ay+ ..
h’ 12
Sol. As we know that E =¢™
1+A=¢™
1
or D =—log(1+ A)
h
1
therefore Dy = —log(1+ A)y
h
1 AN A
=—|A——+——+.|y
h 2 3 4

1 1 1 1
y' =—| Ay——ANy+-ANy——A'y+..
h 2 3 4

Similarly we know that

e =1-V

D:—L%U—V)
h
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Now

. 1 2
y =D y={—glog(1—v)} y

1 [ 11 ’
=—|A+-AN+—A+..|y
|l 2 12

- 2
1 11
=—| Ay +—-Ay+—ANy+..
nl 2 12

22.8 Self Learning Exercises-I11

Very Short Answer Type Questions

Q.1 Which formula is used to determine the numerical differentiation while the
values of the argument are equally spaced?

Q.2 Which formula is used to determine the numerical differentiation at a point
near beginning of end of a set of tabular value?

Q.3 Which formula is used to determine the numerical differentiation while the
values of the argument are not equally spaced?

Short Type Answer Type Questions

Q.4 Find the first (dy/dx) derivative of the function y = sinx tabulated below at
the point x=0.95.

X

0.7

0.8

0.9

1

1.1

y

0.644218

0.717356

0.783327

0.841471

0.891207

Q.5 Find the first (dy/dx) derivative of the function y = cosx tabulated below at

the point x=0.75.

X

0.7

0.8

0.9

1

1.1

y

0.764842

0.696707

0.621610

0.540302

0.453596

Q.6 Prove that

d

dx

1
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22.9 Summary

® Numerical Differentiation is the process by which we can find the approximate
value of the derivative of a function at a given value of the independent variable.

O First order approximation and associated truncation error
(a) Forward difference approximation

f(x 4 h) — f(x)
h

f'(x) =

h n
E(f,h) =——1"(c)
2!

(b) Backward difference approximation
, f(x) —f(x—h
£(x) (x) —1( )

h n
E(f,h) =—1f"(c)
2!

(c) Central difference approximation

f(x +h) — f(x —h)
2h

f'(x) =

2

h
E(f,h) = ——f"(c)
3!

® the total error in numerical differentiation formula is given by sum of the

truncation (approximation) and round-off error.

® [n numerical differentiation

(a) If the values of the argument are equally spaced, the formula is represented
by Newton’s Gregory formula to determine the numerical differentiation as
desired.

(b)  If we want to find the derivative of function at a point near beginning of end
of a set of tabular value, then we use Newton’s Gregory forward (backward)

formula as desired.
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(©) If the values of argument are not equally spaced, we shall use Newton’s

divided formula or Lagrange’s formula to represent the function.

22.10 Glossary

Truncate: Shorten (something) by cutting off the top or the end

Interpolate: Insert (an intermediate value or term)into a series

by estimating or calculating it from surrounding known values

22.11 Answers to Self Learning Exercises

Answers to Self Learning Exercise -1

h
Ans.1: ——f"(c)
2!

h ”n
Ans.2: —f (c)
2!

2

h
Ans.3: ——f(c)
3!

22.12 Exercises

Section-A: (Very Short Answer Type Questions)
Q.1 Define round-off error.
Q.2 Define the approximation of a function.

Q.3 What is truncation error order for the first derivative of forward difference
formula?

Q.4 What is truncation error order for the first derivative of central difference
formula?

Q.5 What is truncation error order for the first derivative of backward difference
formula?

Section-B :(Short Answer Type Questions)

Q.6 Letf(x) = sinx + cosx .

Calculate approximations forf'(0) by all three difference formula with =0.1,
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0.01 and 0.001 and compute also
(a) Compute an upper bound for each approximation error.
(b) Compute the true error.

Q.7 How many terms are required in calculation of the
approximate 03 (1.648721...) correct to four decimal places after rounding?

Q.8 Let f(x) = cosx
(a) Use formula (18) with step sizes h= 0.0001, 0.001, 0.0land 0.1 and
calculate approximations for f'(0.5).
(b) Calculate the optimal value of ‘h’.

Q.9 Use the central difference formula to approximate the derivative of the
function f(x) = cosx at X, = wusing h=0.01.

Q.10 Use the Second-Order approximation of first derivative on forward
difference formula to approximate the derivative of the function f(x) = sinx at
X, = wusing h=0.1.

Section C: (Long Answer Type Questions)

Q.11 Consider f(x) =¢* and evaluate f'(1)using h=0.01 for the forward,
backward and central approximation. Which is the best approximation?

Q.12 Determine the first (dy/dx) and second derivative (d’y/dx’) of function
tabulated below at the point x=10.

X 2 4 9 13 16 21

f(x) 13 81 811 2367 | 4353 | 9703

Q.13 Find the first (dy/dx) derivative of the function y = cosx tabulated below at
the point x=0.87.

X 0.7 0.8 0.9 1 1.1
y 0.764842 | 0.696707 | 0.621610 | 0.540302 | 0.453596

Q.14 Determine the first (dy/dx) derivative of the function tabulated below at the
points x=0.1.0.6 and 1.1 by using backward difference, forward difference

and central difference approximation. Give comments.
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X 0.2 0.4 0.6 0.8 1.0 1.2
f(x) 0.968 |0.904 |0.856 0.872 | 1.000 | 1.288

Q.15 Assuming Bessel’s interpolation formula, prove that

d 1
_(yx): AYH/Z —;AsyH/Z +...

dx
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23.0 Objectives

This chapter explores study methods for approximating the integral of a

function over a given interval and for determining the error associated with the
rules. We know that every function cannot be easily solved analytically. This type
of integral can be easily solved by numerical methods.

Numerical integration has always been useful in many areas of science and
economics to evaluate distribution functions and other quantities.

23.1 Introduction

Numerical integration is the study of how the numerical value of an integral
can be found. This method in general is known as numerical quadrature, which
refers to finding a square whose area is the same as the area under a curve. It is one
of the important topics of numerical analysis. Our main interest is to find out the

process of approximating a definite integral from values of the integrand.
The basic quadrature methods can be categorized in two main classes:

1. The methods that are based on data points which are equally spaced: these are
Newton cotes formulas, the midpoint rule, the trapezoid rule and Simpson rule.

2. The methods that are based on data points which are not equally spaced: these

are Gaussian quadrature formulas.

23.1.1 Definition of numerical integration

By definition, the integral of some function f(x) between the limits a and b
may be thought of as the area A between the curve at the x-axis and is written

mathematically as (shown in Figure)
A= If(x) dx (1)

f(x)
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In general, a numerical integration is the basic idea of the approximation of a
definite integration by a “weighted” sum of function values at discrete points
within the interval limit. thus

If(x) dx = iwif(xi) +E, )

where w; is the weighted factor which depends on the schemes used in the
integration, f (x,) is the function value evaluated at the given point x; (node) and E,

is the truncation error.

23.1.2 Newton-Cotes Integration Formulas

According to this idea a complicated function or a tabulated data can be
replaced by an approximating (interpolating) function.

IZjlf(x)dx%j.Pn(x)dx 2)

where P (x) is an n" order interpolatin olynomial.
n p gp

b b
I P (x)dx zI (a0 +tax+..+ anx“)dx

b (b2 _32) (bn+1 _an+1)
I P (x)dx =a (b—a)+a ———+.+ta ———

) 2 n+1 ) )
In general, for the given nodes {X,,X,,...X,} we can use the interpolation

polynomial formula to obtain integration.

b b b
j £(x)dx = j P(x)dx + j E (x)dx 3)
a a a
The Approximat ion The Error Term
1* order Polynomial 2" order Polynomial
Actual Curve Approximate

f(x) Actual Curve f(x) /

Approximate
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This integral is can be determined numerically by dividing the domain [a; b] into n
equally spaced. Different choices for m’s lead to different formulas as follow (see
table below):

Trapezoid method (First order polynomials are used)
r £(x) dx zj (a, +a,x)dx
Simpson’s 1/3 rule (Second order polynomials are used)

.[b f(x) dx zJ‘b (ao +ax+ azxz)dx

m | Polynomial Formula Error
1 Linear Trapezoid O(h?)
2 Quadratic Simpson’s 1/3 O(h4)

3 Cubic Simpson’s 3/8 | O(h*)

23.2. The Trapezoidal Rule

(o all R R

Fig. A Sketch for calculating area under the curve f(x).

The area under the curve y = F(x) is the sum of a triangle and a rectangular. This
area A can be easily calculated as

(£(b) — f(a) ) (b —a)
2

I[=f(@)(b—a)+

(fb) — (@)
2

=h = Width X Average height (1)
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where, we have used h=b-a. For the exact result of numerical integration the f(x)
should be a linear function. This is known as Trapezoidal Rule. 1f {(x) is quadratic
or higher order curve then we should find a better way of calculating the numerical
integration. For more precession, we can divide whole area in small segments of

trapezoidal. For example, we consider an area which is divided into five trapezoids

f(x)
N

Now we find the sums of the area of these five trapezoids from a to b. therefore,

B b—a|:f(x0)+f(xl) PRCHEZICON f(x4)+f(x5)}

n 2 2 2
where, h= b=a ( n=5 for five trapezoids)
n
b—a
A== [i£Ge,) + £0x)3 + {F(x,) + £} + o+ () + £(x )]
n
Finely, we get
b—a
A= [£(x,) +26(x) + 26(x,) + 26(x,) + 20(x,) + £(x,)]
2n
In general,
A=—"1 [£(x,) +26(x,) + 26 (x,) +... +2f(x, ) +f(x,)]
2n

k=n-1

4=" f(x,)+2) f(x,)+f(x,)
2

k=1

b

=~ lim | f(x)dx
n—o0
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As the bigger n you use, the more accuracy in area will be.
Example 1 Let be f(x) = sinx. Calculate the approximate area A by using the

Trapezoidal Rule as shown in figure below.

f(x)
1 .
X
0 T T it T
4 2 4
Sol. we find the numerical integral A = .[Sin dx
0
b—a mWw—0 T .
h= = =— (since n=4)
n 4

then, using the trapezoidal rule

A=——|f0)+2f| = [+ 2f| = |+ 2f| = |+ f(m)
2(4) 4 2 4

{3
==0+2-"+2(1)+2] — |+0|~1.8%%

8 2 2
23.2.1 Derivation of the Trapezoidal Rule using Newton-Gregory
Formula

Suppose f(x) takes the values y,, y,, ¥, -..,y, for x,, X, X, ...,X,. The interval (a,b) is
divided into n equal parts of width h, so that

a =Xy, X, = X,th, X, =X, +2h, ..., x, = X, tnh=b

b xﬂ+nh n
Then I= Iydx = Iyx dx = I(yx o )hdu (1)
X —X
where u= == dx =hdu
h

By Newton-Gregory Formula of (x)
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u(u—1 u(u—1)...cu—n+1
y:y0+uAy0+%A2y0+...+ ( ) f )A"y0+Rn
! n!

u@—1)...a—n+1)
n + 1! Y

where, R_=h""

n+1 (é)

and A"y, is the n" forward difference.

Now, using Newton cotes integration formula, we get

I=I|:y0+uAy0+MA2yO+.,,+u(u_l)'“(u_n+1)A“y +Rn:|dx

21 n! ’

a

change integration limits from x to u, then

x=b u=n

dx =hdu, de—) J.hdu
x=a u=0

. -1 —1)...u—n+1
I:I|:y0+uAyo+MA2yo+...+u(u ) la7n )A“y0+Rn:|hdu

0 2! n!

¢ -1 —1D...u—n+1
I:hj y0+uAy0+u(u )Azyo+...+u(u )...(u=n )A"yo du

f 21 n!

0 —1...u—n+1
4 |:u(u )...(u—n+1) yn+1 (‘:)} du a € [a,b] )
s n+1!

Above equation is called as Newton quadrature formula, which is also known as

quadrature formula.

For n =1, we have only one interval (X, x,) such that a = x, and b = x, and then the
above integration formula gives trapezoidal rule.

Now setting n=1(Polynomial of the first degree in x or a straight line), we get

I =h“y0 +uAy, |du +h3j{$y”(§)} du

15 order Re mainder term

1 " 3 2 !
I =h|:y0 +Ay0 u_:| +h3|:y_(§)(u__u_j:|
2 |, 2 \3 2],

where Ay, =y, —y,
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x,+h X

0

\ + h3 n
= J.ydx:J.ydx:h(—yO yl) ——y"® € elx,.x,] 3)
2 12

X0 Xo

Trapezoid Rule Truncation Error (E, )

where & is somewhere between x, and x, .Trapezoidal rule is first order accurate. It
can integrate linear polynomials exactly. Similarly, for subsequent intervals,

xﬂ+2h

X, +
1= IdeZIdeZh(—yl yz\J
2

x, +h
x,+3h X,

I= J.ydx = J.ydx = h(uj
x,+2h X, 2

x, +nh X
0 n +
1= J.deZ J.deZh(—y“1 y“j
2

xn+(]’1*1)h Xy

By adding all above equations, we obtain

I:fydng[yo+2(y1+y2+...+yn_1)+yn]

0

This is known as Trapezoidal rule.

23.311lustrative Examples

Example 2 show the estimated integral (area) region and error area region

according to trapezoidal rule in given figure below.

f(x)

Sol.
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f(x)

Integral estimate

23.4. The Simpson’s1/3 Rule

More accurate estimate of an integral can be found if a high-order polynomial is
used to connect the points. In Simpson’s rule it is approximated the value of a
definite integral by using quadratic (second order) polynomials. In Simpson's
method the straight line is replaced by parabolas.

Let’s first derive a formula for the area under a parabola of equation
y = ax’ + bx + ¢ (2nd order Polynomial) passing through the three points(—h,y, ),
(0,y,)and (h,y,) . Then, the definition of integration, the value of integration can be

found the area between the limits —h to +h.

y =)

2" order Polynomial

y=f(x)=ax’+bx+c

A= I(ax2 + bx + ¢)dx

ax’  bx’
= —++ + cx
3 2

h
= —(2ah’ + 6¢)
3

h
3

2a
= + 2ch

—~h
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Since the points (—h, y,), (0, y,), (h, y,) lie on the parabola, they satisfy the
equation y = ax’+ bx + c. Therefore,

y, =ah’ —bh +c
y, =¢
y, =ah’ +bh +c
we find that
y, +4y, +y, = (ah’ = bh +c)+ 4c + (ah® + bh + c) = 2ah* + 6¢c

Therefore, the area under the parabola is

h Ax
A =g(y0 +4y +y,) =?(y0 +4y +vy,)

h
= —[rx,) +4f(x )+ £(x,)]
3

b
Now we consider the definite integral If (x) dx
We assume that f(x) is continuous on interval [a,b] and we equally divide into an
even number of subintervals.

using the n+1 points
Xx,=a, x =a+h x =a+2h ..., x =a+nh=b

We can determine the value of f(x) at these points.

y, =fx,), vy, =fx), vy, =fKx,) ...y, =fx,)

f(x)
f(x) f(x,)
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One can determine the integral by adding the areas under the parabolic arcs
through these successive points.

b
[t dx = b [{f(xo) +4f(x,) + f(x, )} + {f(xz) +4f(x,) + f(x4)} +..+ {f(xn_z) +af(x, )+ f(xn)}]
a 3

h
~— [f(xo) +Af(x,) +20(x,) +4E(x,) + 26(x,) + ... F4E(x )+ f(xn)]
3

By simplifying, we obtain

=E|:f(x0) +4 Zf(xi) +2 Zf(xj) +f(xn):|
3

Example 3 Derive the Simpson’s 1/3 Rule using Newton-Gregory Formula.

Sol. By using eqn.2 of previous section

I:hI |:y0+uAyO +—u(u_1)A2y0+...+u(u_l)"'(u_nH)A"yo}du

2! n!

h"“J‘ |:u(u—1)...(u—n+1)

Y y™ (é)} du
n :

0

For n =2, we have two subintervals [x,, x,] and [x,, X,] of equal width h such that
a= X, and b = x, and then the above integration formula becomes. Setting
n=2(Polynomial of the second degree in x or a parabola), we get

x0+2h X, 2 2
u(u-—1 u(u—1)(u—2
1= j ydx = ydx=hI{y0+uAy0+ ( )A2y0:|du+h3j.|:—( X )y"(i):| du
X, X 0 2! f 3!
2" order Remainderterm

X, <9;<x2 or E_,E[XO,XZ]

Therefore integral term,

r h u(u—1
I= Iydx =h‘|.|:y0 +uAy, +¥A2yo:|du

21
X, 2
¢ u’ I1{u u°
I=Iydx=h uy, + @, =y) | - v, =2y, Y
’ 2 2\ 3 2 .
[ Ay, =y, —y,) and A’y =(y, —2y, +y0)]

h
I=§(y0 +4y, +vy,)
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This result is a part of the Simpson’s rule. Similarly, for the next intervals,
xﬂ+4h

X4 h
1= Iydx = Iydx =—(y, t4y,+vy,)
3

xﬂ+2h X,

x0+6h Xg h
1= J ydx = Iydx =;(y4 +4y. +y,)

x”+4h Xy

xﬂ+nh

Xn h
1= I ydx = I ydx=—(yn_2+4yn_1+y“)
xﬂ+(n—2)h X0 3

By adding all above equations, we obtain

1:fydng[yo+4(y1+y3+...+yn_1)+2(y2+y4+...+yn_2)+yn]

0

This is known as Simpson’s 1/3 rule.

23.5 Self Learning Exercise-I

Very Short Answer Type Questions
Q.1 Define the Trapezoidal Rule.
Q.2 What is highest order of polynomial integrand for which Simpson’s 1/3 rule of
integration is exact.
Q.3 What is the order of error in Trapezoidal Rule.
Short Answer Type Questions
Q.4 Integrate the function f(x) = e* from a=0 to b=2 using the Trapezoidal rule.
Q.5 Integrate the function f(x) = x + x* from a=0 to b=10 using the Trapezoidal rule
in steps of h=1.

Q.6 Integrate the functionf(x) = (1 + x)* from a=1 to b=5 using the Simpson’s 1/3
rule with h=0.5.

23.6. The Simpson’s 3/8 Rule

Simpson’s 3/8 rule can be obtained by using y =f(x) =a, +ax+ax’ +ax’

fourth-order polynomials to fit four points. Integration over the four points (three
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intervals) simplifies to:

Approximate Curve

f(x) /

Actual Curve

IZ_b[f(x)dxszn(x)dx (1)

3h
1="—[f(x,)+3f(x,)+3f(x,) + f(x,)]
8

23.7. The Weddle’s Rule

Weddle’s rule can be obtained by using

y=f(x) =a, +ax+ax’+ax’ +ax’+ax’ sixth-order polynomials to fit sixth

points. Integration over the six points (five intervals) simplifies to:

b
Iz_[f(x)dx;%[fOJr5f1+f2+6f3+f4+5f5+f6]

Where n =6,

h:

b—a
6

Example 4 Compute the value of the definite integral Ix3 dx by

(a) Trapezoidal rule
(b) Simpson’s 1/3 Rule
(c) Simpson’s 3/8 Rule

with using 10 intervals, after computing the true value of the integral, compare the

errors in the all four cases.
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Sol. In this case divide the range of integration into ten equal parts by taking h=0.2

and then the values of the function are calculated for each point of sub-division

which is as under:

X y.= X
X, 0.0 0.0000
x,+h 0.2 0.0080
x,+2h 0.4 0.0640
x,+3h 0.6 0.2160
x,+4h 0.8 0.5120
x,+5h 1.0 1.0000
x,+6h 1.2 1.7280
x,+7h 1.4 2.7440
x,+8h 1.6 4.0960
x,+9h 1.8 5.8320
x,+10h 2.0 8.0000

(a) we have given
n=10, h=0.2, and yXZX3

By trapezoidal rule,

["y.ax= E|:f(x0) +23 )+ f(xn):|
: 2

0

Substituting the values of h, y,, y,,.....,y, in the above formula , we obtain

fx%ix = %[o +2(0.008 + ...+ 5.832) + 8] = 0.1[2(16.2) + 8]
= 4.040

(b) By Simpson’s 1/3 Rule

J‘x”“hyxdng{f(xoﬁ“ nZ_l:f(xi)+2 nZ-zlf(xj.)+f(X,,):|

X,
0 3 i=1,35... i=2,46...
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z 02
[ xax ===[0+4(0.008 + 02160 +1+2.744 + 5.832)
: 3

+2(0.064 +0.512 +1.728 + 4.096 ) + 8]
= 4,000
(c) By Simpson’s 3/8 Rule

J:x3dx=%[y0 +3(y1 +y, +...)+ 2(y3 +y, +...)+yn]

L 3(02)
[ xax =220+ 3(0.008 + 02160 +1+2.744 + 5.832)
: 8

+2(0.216 +1.728 +5.832) + 8]
=3971

Now the value of the integral is

2 X4 ?
Izj.xsdxz — | =4
g 4

Therefore the errors are

By Trapezoidal rule =-0.040
By Simpson’s 1/3 Rule =0.000
By Simpson’s 3/8 Rule =0.029

23.8. Runge-Kutta Methods

In numerical analysis, the Runge — Kutta methods are a series of numerical
methods for the approximation solutions of differential equations involving initial
value problems. In order to understand the fundamental concepts, let us start with
the equation

Y =Y, TOx,y,,hh (M

where @(x_,y ,h) is called an increment function which represents the slope from 1

to i+1. The increment function can be written in general form as
¢=ak +ak +...+ak 2)
k =1f(x,,y,) =Slope at the begining of the first interval

k, =f(x, +ph,y, +q, kh)
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k, =f(x, +p,h,y +q,kh+q,k h)

kn = f(Xl +plh 9 yi +qn k h+"'+qn-1,n-1k

L1

h)

n-1

Here a;, p; q; constants are chosen to match Taylor’s series expansion. By Taylor

expansion

23.8.1. Runge-Kutta 1* order Method
We can get the first order version of equation (2) by using n=1
y., =y +(@k)h
where k =f(x,y,), therefore
Yin =Y, Tafx,y)h (€)

We can use this equation only when we know the constant a,. To determine the
constant a,, we use that the first-order Taylor series for y,.,, in terms of y, and

f(x.y,).

Y =y, Hfx,y)h 4)
Now, comparing the same term in equations (3) and (4), we get

a=1

thus the equation (3) becomes

Y, =y, t(x,y)h

The result of this equation is same as that of Euler’s method.
23.8.2. Runge -Kutta 2" order Method

Similarly, we can get the second order version of equation (2) by using n=2

yi+1 = yi + (alkl + azkz)h (5)
where
k, =f(x,y,) (6)
and
k2 = f(xi + plh > Y, +q“k1h) (7
therefore
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Now, we use a Taylor series to expand eqn. (7). The Taylor series for a two —
variable function can be defined as

of of
fx+rr+s)=f(x,y)+r—+s—+...
ox oy

Using this equation to expand eqn. (7) gives
of of

k,=fx, +ph,y +q,kh=1f(x,y)+ph—+q kh—+ O(h?) ()
1) oy

Putting eqn. (6) and (8) in (5), we get

of of
Y =V, +alhf(xi,yi)+ath(xi,yi)+azplh2a—+azqnh2f(xi,yi)a—+0(h3) ©)]
X y

To determine the constant a, a,, p, and q,,, we use that the second -order Taylor

series for y,,, in terms of y, and f (x ,y.) same as above.

f'x.y)
y., =y tfx,y )h+———h"+0O(’)
2!

where f'(x ,y ) can be determined by chain-rule differentiation

! — af(X, Y) + af(X, Y) d_y

£'(x,,y,)

0x oy dx

of of , of of

= — —y - — —_

ox Oy ox Oy

Thus
of of h? ,
Yo, =y tfx ,y)h+| —+—Ff(x,y) —+0O(h’) (10)
ox 0oy 2!

Comparing eqn. (9) and (10), we obtain

a, ta, =1

a,p, = 5 » 3equtions contains 4 constants (11)
1

anll = 5
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Here, we have three simultaneous equations with four constants, therefore, we
must assume a value of one of the unknown constant to determine for the other

three.

Method.1. If we assume a,=1/2, then eqn. 11. can be solved for a,=1/2 and p,=

q,,= 1. By putting of these parameters in equation (5), second order Runga — Kutta
method becomes:

1
Yo =¥+ (k + kb (12)
where k, =f(x,.y,) (12a)
k, =f(x, +h,y +kh) (12b)

This is Heun’s method with single corrector.

Method.2. If we assume a,=1, then eqn. 11. can be solved for a=0 and p=q,=

1/2. By putting of these parameters in equation (5), second order Runga — Kutta
method becomes:

Yim =¥ Tkh (13)
where k, =f(x,.y,) (13a)
_ 1 1
K, =f|x, + b,y +kh (13b)

This is the midpoint method.

Method.3. If we chose a,=2/3, then eqn. 11. can be easily solved for a,= 1/3 and

p,= q,,= 3/4. By putting of these parameters in equation (5), second order Runga —
Kutta method becomes:

1 2
Y =Y _kl +_k2 h (14)
3 3
where K =f(x.y,) (14
B 3 3
k,=f X‘+Zh’ yi+zklh (14b)

This is Ralston’s method.
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23.8.3. Runge -Kutta 3™ order Method

For n=3, a third order derivation similar to first and second order can be obtained
with six equation and eight unknown constants, therefore

1
Yo =¥i+ Gk + 4k +I)h (15)
where

k, =f(x,,y,) (15a)
1 1

k, Zf(xi +-h,y, +k1hj (15b)
2 2
1

k, Zf(xi +-h,y, —k1h+2k2hj (15¢)
2

Example 5 Use second order Runge — Kutta method.2 (midpoint method). to solve

dy

the ordinary differential equationd_X =xty

, with initial condition y(0) = 2 in
steps of 0.1.
Sol. Here x,= 0, y,= 2, h=0.1and f(x,y)=x+y giving us

k =f(x,,y,)=0+2=2
1 1 1 1
k, = f(xo +—-h,y, +klhj I(xo +hj+(y0 +klhj
2 2 2 2
=0+0.05+2+0.1=2.15

therefore

y, =y, +k h =2+ (2.15)(0.1) = 2215

23.9. Self Learning Exercises-II

Very short Answer type Questions

Q.1 Write the Simpson’s 1/3 and 3/8 rules.

Q.2 Define the Weddle’s rule.

Q.3 What is the order of error in Weddle’s rule?
Short Answer type Questions

Q.4 Integrate the function f(x) = x* from a=0 to b=>5 using the Simpson’s 3/8 rule.
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Q.5 Integrate the function f(x) = (1 + x)* from a=0 to b=10 using the Weddle’s rule
in steps of h=1.
Q.6 Solve the following problem numerically from x = 0 to 2:
dy
dx
Use the third-order R-K method with a step size of 0.5.

=x—y y0)=2

23.10. Summary

Trapezoidal Rule: The trapezoidal rule is based on a first-order approximation
(i.e., correspond to the first order polynomial) of the area of a function between

two points:

X2 _X2

= If(x) dx = [f(x,) +£(x,)]

Simpson’s 1/3 Rule: This method is the second-order polynomial approximation
of the function. For equally spaced points, the integral of the function between

points X, and x, is

1= ff(x) dx = %[f(xo) +4f(x,) + f(x,)]

Simpson’s 3/8 Rule: This method is based on a fourth-order polynomial

approximation of the function.
3Ax
1="[rx,) +36(x,) +36(x,) + f(x,)]
8

Weddle’s Rule: This rule is the sixth-order

y=f(x) =a, +tax+ax’+ax’ +ax"’+a x’polynomial approximation of the
function.

Runge -Kutta Methods: Runge -Kutta Methods are a series of numerical methods

for the approximation solutions of differential equations involving initial value

problems.

Runge-Kutta 1" order Method (Euler’s Method): The first order method
corresponds to n=1
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Yoo =Y, T(@k)h
Runge -Kutta 2™ order Method
Similarly, we can get the second order method corresponds to n=2

yi+1 = yi + (alkl + aZkZ)h

23.11. Glossary

Trapezoid: A quadrilateral with one pair of sides parallel
Interpolate: Insert (an intermediate value or term)into a series

by estimating or calculating it from surrounding known values.

23.12. Answers to Self Learning Exercises

Answers to Self Learning Exercise -1

Ans.1: I=J2ydx=g|:y0+2(y1 ty, +-~-+Yn.1)+yn]

X0

.. . b
This is known as Trapezoidal rule. h =
n

Answers to Self Learning Exercise -11

Ans.1: By adding all above equations, we obtain

I=J.ydx=§[yo+4(y1 +y3+-~-+Yn.1)+2(yz+y4+---+Yn.2)+yn]

X0

This is known as Simpson’s 1/3 rule.

23.13. Exercise

Section-A (Very Short Answer Type Questions)
Q.1 State the composite Trapezoidal rule.
Q.2 State the composite Simpson’s 1/3 and 3/8 rules.
Q.3 What is the order of error in Simpson’s rule?
Q.4 What is the order of error in Weddle’s rule?
Q.5 State the Runge- Kutta method.
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Section-B (Short Answer Type Questions)

Q.6 Use Trapezoidal rule to evaluate _Ey dx from the values of x and y tabulated as
under:

X -2 -1.5 |-1.0 |05 |00 |05 [1.0 |15 |20

y 4 225 |1 025 |0 025 |1 225 |4

Q.7 Use Simpson’s rule to evaluate re* dx from the values of x and y tabulated as

0

under:
X 0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
e 1 1.65 [ 2.72 | 4.48 | 7.39 | 12.18]20.09 | 33.12 | 54.60

and compare with the exact value.

Q.8 Find the value of the following integral by using Weddle’s rule:

s 1
I dx
"1+ x°

Q.9 Find the value of the following integral by using Trapezoidal rule:

2
I sin dx
0

Q.10 Find the value of the following integral by using Simpson’s rule:

2
I cos dx
0

Section C (Long Answer Type Questions)

Q.11 Approximate the following integral using composite Trapezoidal rule with

the values of n=8

2]
I dx
21+x
Q.12 Approximate the following integral using composite Simpson’s rule with the

values of n=6
I xe” dx

2

Q.13 Find the value of the following integral r log x dx by

(a) Trapezoidal rule
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(b) Simpson’s 1/3 rule
(c) Simpson’s 3/8 rule
(d) Weddle’s rule

and compare errors in the four cases.

r . d :
Q.14 Use the Runge - Kutta 3 ¢ order method to solve the equation &= xy with
dx

initial condition y (0) =2 from x=0.5 to x=1, when h=0.5.
Q.15 Using the Ralston’s (Runge — Kutta 2 order) method to solve the equation

d
& = x4y, y (1) =2 at x=0.4 with h=0.2.

X
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