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1.0 Objectives 
In this unit ,we shall describe the certain basic properties of nucleus such as size, 
mass, angular momentum, magnetic moment ,electric quadrupole moment etc. and 
try to understand them by means of elementary theories.   
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1.1 Introduction 
Main properties of atoms, molecules, solids and liquids can be explained on the 
basis of behavior of the electrons, nevertheless, role of the nucleus is important in 
nature. Applications of nuclear physics have had enormous effects on mankind. 
The most spectacular application of nuclear physics is nuclear energy .The energy 
characteristic of atoms is of the order of eV whereas of nucleus is of the order of 
MeV . In this unit we introduce some of its most basic properties. In the last we 
shall describe the semiempirical mass formula by employing  liquid drop model.  

1.2 Nuclear Radius and Nuclear Density 
The size of nucleus was first investigated in the   particle scattering experiments 
of Rutherford. In this experiment, the distance of closest approach provides the 
information about the nuclear radius of the order  of 10–14m. 
The most accurate results involve scattering of high energy relativistic electrons (of 
about 200 MeV kinetic energy) from thin target of the material under study. The 
electrons having such high energies have wavelengths comparable with the radius 
of nucleus. As nuclear forces do not act on an electron, so we have advantage with 
electrons that their electromagnetic interaction with the nucleus (nuclear charge) is 
well known. Thus electron scattering tells us the distribution of charge. If highly 
energetic neutrons are used as the scattering particles, then neutron scattering tells 
us the distribution of  nuclear mass because neutron interacts only through the 
nuclear forces. If we assume a nucleus is an approximately spherically symmetric, 
we may express its size in terms of its radius R. Nuclear radius is measured in 
femtometer. 
  1 femtometer= 1 Fermi = 1 fm= 10–15m 
The experimental results indicate that the radius R varies approximately as the 
cube root of the mass number and this relationship is usually expressed as  

   /R R A 1 3
0  

        (1) 

where A is the mass number and R0 is an empirical coefficient and its approximate 
value is  

  R0 ≈ 1.2 × 10 –15m 
Actual value of R0 depends on the technique that used for determination of nuclear 
radius. 

1.1 Introduction 

1.2 Nuclear Radius and Nuclear Density 
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Nuclear Volume 3R
3
4V 

 
.From eq.(1) we have 

  AR
3
4V 3

0         (2)

 i.e. volume of a nucleus is proportional to the number of nucleons. 

As the masses of a proton and a neutron are approximately equal, say mp , then 
mass of nucleus m may be written as  
  m=mpA         (3) 

Nuclear mass density 
m

m
V

 
3
0

4
3

pm

R



 

which is independent of mass number A i.e. the mass density is approximately  
same for all nuclei. 

We have mp=1.67 × 10−27kg and m10x2.1R 15
0

  

Therefore 
 
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17

3315
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m






   

  
 

i.e. nuclear mass density is of the order of 3
17

m
kg10 . Thus we find that density of a 

nucleus has the extremely high value, neutron stars have densities of this 
magnitude. 

Number of nucleons per unit volume = Mass Density
Mass of a nucleus

 

  
.
. 




17

27

2 3 10
1 6 10

  1044 nucleons/m3 

Experimental observations for all nuclei are reasonably well approximated by 
following nuclear charge distribution (nuclear charge density): 

  ( )
( )exp

r
r R

t


 

    

0

1
      (4) 

Above empirical equation represents Fermi two parameter model, where 0  is the 
nucleon charge density near the centre of the nucleus and r is radial distance. 

At distance r=R, from eq.(4) we have 

   ( )r  
  


0 0

1 1 2
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i.e. R is the radius at which the density has fallen to half its central value. Term t is 
nuclear surface thickness parameter. The distance over which nuclear charge 
density (r)  falls from   0.9 0  to  0.1 0  is 4.4 t. 

We can prove this by using eq.(4) 

  0

1r1 exp

r R. ln
R t

t


   

    

1
00 9 9

      (5) 

and  0

2r1 exp

r R. n
R t

t


  

    

2
001 9

      (6) 

From eq.(5) & (6) 

 r2 – r1=(2 ln9)t≈4.4t 

A plot of eq.(4) is shown below 

 

 

 

 

 

 

 

Figure 1.1 
The charge densities of nucleons in 27Co and 83Bi nuclei versus radial distance from 
centre is plotted in figure (1.2). 

 

 

 

 

 

 

Figure 1.2 
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From the figure (1.2), it is evident that  0  (interior value of nuclear charge 
density) decreases slowly with increasing A (mass number). 

The charge density )r( corresponds the density of the protons in the nucleus and 
 m
r  represents the density of all nucleons (matter) in the nucleus. Experimental 

results indicate that  

     m

Zr r
A

    

Experimental observations show that  0m  (interior value of nuclear mass 
density) is approximately the same for all nuclei. 

1.3 Nuclear Spin (Total Angular Momentum)  
Angular momentum of a nucleon can be described as: 

(i) Spin Angular Momentum 

Each nucleon (proton or neutron) has spin angular momentum  

       
 


  1 1 3s s(s 1) 1

2 2 2
 

where  s = 1/2 spin angular momentum quantum number. 

Proton and neutron are  fermions each with spin quantum number s =1/2 . 

(ii) Orbital Angular Momentum 

The magnitude of orbital angular momentum can be expressed as 

  

   ( 1)  

 where l= orbital quantum number. 

(iii) Total Angular Momentum 

The magnitude of the total angular momentum of the nucleon is  

  


J j( j 1)    

The net angular momentum of the nucleus is the resultant of all the spin 
angular momenta and orbital angular momenta of the  its constituent nucleons. 

The magnitude of the nuclear angular momentum due to all nucleons is 

1.3 Nuclear Spin (Total Angular Momentum)  
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 ( 1)    


  

where I is called total angular momentum quantum number or nuclear spin 
which may be an integer or a half integer. 

Greatest possible component of the total angular momentum along any direction is  

  Z II m   

 mI= – I, – I +1, ........, I –1, I 

where mI = magnetic total angular momentum quantum number.  

The word spin usually refers to the resultant angular momentum of a nucleus in 
nuclear physics, whereas, in atomic physics the word spin refers to the intrinsic 
spin angular momentum. 

It is found that nuclei with even Z and even N have the total angular momentum  
zero, because pairs of protons are formed in such a way that their angular momenta 
cancel and similarly pairs of neutrons are formed in such a way that their angular 
momenta cancel. 

The total angular momentum quantum number  I is integral for nuclei with even 
mass number A and half integral for nuclei with odd mass number A. 

Following conclusion about total angular momentum of a nucleus can be made 

 

 

 

 

 

 

 

 

Shell model has been developed to  find the angular momentum of a nucleus. Shell 
model energy diagram is given as:  
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Figure 1.3 

Proton and neutron states are filled separately. The filled shells have a total 
angular momentum I equal to zero. Angular momentum of nucleus is determined 
by the quantum state of single unpaired proton or neutron in the Shell theory. For 
example, we consider a 17

8O  nucleus which has 8 protons and 9 neutrons.  

Quantum state (see figure 1.4 ) of the last single unpaired neutron is 1d5/2 . Hence 
angular momentum of the nucleus is I=5/2. 

 

 

2  

4  

2  

6

2  

4  

1/21s  

3/21d  

1/22s  

5/21d  

1/21p  

3/21p

Proton States  
Numberof
 protonsor
 neutrons

 Neutron States

7/21 f  

3/22p  

9/21g
 

1/22p  

5/21f  

8
 

10  

2  

6

4  



8 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 : Quantum states of 17
8O  nucleus in shell model 

1.4 Parity 
The parity of a wavefunction   is related to the symmetry properties of the 
wavefunction  . 

  If 22 )r()r(


  

  )r()r(


  

If the spatial part of the wavefunction of a nucleus is unchanged when the space 
co-ordinates (x,y,z) are substituted by (–x, –y, –z) 

 i.e.     (–x, –y, –z) = +  (x,y,z)     (7) 

i.e. wavefunction is invariant under reflection (function is symmetric as regards 
spatial inversion) ,then system is said to have even parity. 

If the spatial part of the wavefunction of a nucleus changes sign when the space co-
ordinates (x,y,z) are substituted by (–x, –y, –z) i.e. 

    (–x, –y, –z) = –  (x,y,z)      (8) 

,then system is said to have odd parity i.e. function is antisymmetric as regards 
spatial inversion. 

The equations (7) & (8) may be combined in the form  

    (–x, –y, –z) = P (x,y,z) 

 

Proton States  Neutron States  

1/21s  

5/21d  

1/21p  

3/21p  

1.4 Parity 
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   ( r ) P ( r )    where 1P   

 P= +1 corresponds to even parity (positive parity) 

 P= –1 corresponds to odd parity (negative parity)  

For Parity operator P̂  

 
P̂ (r,t)   


P ( r,t)  with eigenvalue P = ± 1  

Parity is associated with quantum number ±1 and it is also denoted by symbol π.  

In spherical polar coordinates (r,,,) a reflection about the origin is equivalent to 
the following transformation  

 
r r
 
 

  
  

  

To a reasonably well approximation wavefunction   of a nucleus is the product of 
a function depending on space coordinates and a function depending on the spin 
orientation. It has been found that intrinsic parity of proton as well as of neutron 

is even i.e.  Intrinsic
Nucleon

P  1  

It is found that parity of a nucleus in a given state is related to orbital quantum 
number l in the following manner 

  ( )lP  1  

 The orbitals s,p,d,f,... correspond to l= 0,1,2,3,… respectively.  

 Parity is even for even l and parity is  odd for odd l. 

If A21 r,......r,r
 are coordinates of nucleons in the nucleus and )r,......r,r( A21N


 represents 

the nuclear wavefunction in a state of definite parity, then 

  ( , ,......... ) ( , ,........ )N A N Ar r r r r r          
1 2 1 2  

To a good approximation, the wavefunction  of the nucleus is the product of the 
wavefunctions of its constituents particles. If the nuclear particles have angular 
momentum quantum numbers l1 , l2 , ......respectively, then parity of the nucleus is 
the product over all nucleons is given by  

  P=P1 P2 P3....... = ( ) ( )i in lP i P i  
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  = intrinsic
nucleon

( ) { }i lP i P for nucleon  1  

  =     1 2 1 2 ....( 1) ( 1) .......... ( 1)     

       ( ) iP  1    

 If il  even then P=+1 and if il  odd then P= –1 

The total angular momentum is generally called the nuclear spin and it is 
represented by I, but it is different from the spin angular momentum. 

The parity of a nucleus is usually represented by a superscript + or – on the total 
angular momentum (spin) of the nucleus. 

   P parity(spin)  

Spin-parity state of a nucleus is completely determined by a single  unpaired 
proton or neutron. 

For even Z - even N  nuclei : 

  IP = 0+   (ground state) 

Inner shells are completely filled. Protons and neutrons in an even N-even Z 
nucleus tend to pair off separately. 

For even Z-odd N nuclei or even N-odd Z nuclei:  

Total angular momentum and parity are determined by the unpaired nucleon . 

  I   1
2

,  P=(–1)l  (ground state) 

where l represents the orbital angular momentum quantum number of the unpaired 
nucleon. 

For odd Z-odd N nuclei : 

  Parity n pP ( 1)      

Parity is important quantity in physics. Parity is conserved in strong and 
electromagnetic interactions but parity is not conserved in weak interactions. 

1.5 Illustrative Examples 

Example 1 What is the parity of the following quantum state    

  sin
r

a iB r e e


 0    

1.5 Illustrative Examples 
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Sol. (( ) sin )
r

a ir Bre e


      0      

  sin
r

a i iB r e e e


  0    

  sin ( )
r
a iB r e e


 0 1  

  )r()1(


  

 Hence parity P= −1 

Example 2 Find the angular momentum and parity of the nucleus 41Ca . 

Sol. Quantum states of  Ca41
20   nucleus in shell theory are shown in figure given 

below 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 

  Nucleus Ca41
20  has 20 protons  and 21 neutrons. 20 protons and 20 neutrons form 

closed shells whereas 21st neutron goes to quantum state 1f7/2 . The spin parity of 
Ca41

20  is determined by the unpaired neutron in the state 1f7/2 . For this state 

 I =7/2 and l=3, Thus parity P= (–1)3= –1 and IP= 7
2


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1.6 Self Learning Exercise-I 

Q.1  What is the nature (shape) of the graph of 
0

Rln
R

 
 
 

 versus ln A?  

Q.2  What are the eigen values of parity operator ? 

Q.3  Find the electric potential energy due to electric repulsion between two 
 nuclei of  Al27

13  when they touch each other at the surface. (Assume that 
 R0=1.1×10−15m) 

Q.4  Find the parity of F18
9  nucleus. 

1.7 Magnetic Moment  
The spacing in hyperfine structure indicates that the magnitude of nuclear moments 

are of the order of 
pm2

e  where mp is the mass of the proton. The magnetic moment 

of a nucleus is expressed in terms of the nuclear magneton µN 

 . .N
p

e J eV
m T T

      
 27 85 05 10 3 15 10

2  

We know that Bohr Magneton B
e

e
m

 


2
 

 Thus  = 1836
N

B 

  

Spin Magnetic Moment: 

A free proton has spin magnetic moment component in any direction (say z 
direction) is given by 

   .  sp Nz
µ µ 2 793   

The spin magnetic moment of the proton is parallel to its spin angular 
momentum.  

The spin magnetic moment component of a neutron in any direction (say z 
direction) is given by 

    – .  sn Nz
µ µ 1 913   

It means that spin magnetic moment of the neutron is opposite to its spin angular 
momentum. 

1.6 Self Learning Exercise-I 

1.7 Magnetic Moment  
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In order to understand the magnetic moments of a proton and a neutron (neutral 

particle), internal structures of them are considered. 

We can express the spin magnetic moment for proton and neutron as 

 s s
p

eg s
m

 
   

 

 
2

  

and s z s N sg m   

where magnetic spin quantum number ms= ±1/2 

 gs = nuclear g factor 

 For proton gsp=+5.5855 sp z N( ) 2.793     

 For neutron gsn=−3.826 sn z N( ) 1.913     

Orbital Magnetic Moment: 

There may be orbital angular momentum due to motion of the nucleons within the 
nucleus. The component of the orbital magnetic moment of a proton along the z 
axis (arbitrary direction) is  

    Lz z N
p p

e eM L m m
2m 2m  

  

 ml = magnetic orbital quantum number 

Neutron does not have the orbital magnetic moment because it has no charge. 

 For proton  glp =1 

 For Neutron gln=0 

Resultant Magnetic Moment: 

To a good approximation, resultant magnetic moment of a nucleus is directly 
proportional to the nucleus spin I and we can write  

 µnucleus=µNg I 

Here g is the characteristic of each nucleus. 

Nucleus with zero nuclear spin (total angular momentum) has no magnetic 
moment. Thus even N - even Z nuclei have no magnetic moment. Paired 
nucleons do not contribute to the magnetic moment. 
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Magnetic moments of electrons and nucleus interact and this interaction splits the 

atomic levels which gives rise to the hyperfine structure of the lines of the atomic 
spectra. 

 It is found that many nuclei are in the shape of an ellipsoid instead of sphere. 
Deviation of charge distribution of nucleus from a spherical shape is a measure 
of nuclear electric quadrupole moment. 

Quadrupole moment Q is defined as  

 
    2 2Q 3z r dV  

where is   the nuclear charge density, dV = volume element 

S.I. unit of Q is C-m2 

Sometimes Q is also defined as  

 
( )Q z r dV

e
  2 21 3   

where e=1.6x10-19 C and then unit of Q will be barn where  Barn m 28 21 10  

If the nucleus has spherically symmetric charge distribution, then it has no 
electric quadrupole moment or higher electric moments. 

The charge distribution will be stretched in the z direction (prolate shape) if 
quadrupole moment is positive. If quadrupole moment is negative, then charge 
distribution will be in oblate shape. 

 

 

 

 

 

 

 

Figure1.6 

It is observed that nuclei of both magic N and Z have zero quadrupole moments 
and hence are spherical. 
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1.8 Binding Energy 

Nucleus is assumed to be composed of neutrons and protons. When neutrons and 
protons combine to form a nucleus, there is a loss in mass. So binding energy of 
the nucleus is the energy equivalent of the missing mass of the nucleus. If m  be 
the missing mass of the nucleus, then binding energy Eb may be expressed as  

 bE m c  2
  where /c m s  83 10

 
When the nucleons which are initially far away from each other are brought closer 
to form the nucleus , the amount of energy released is called the binding energy of 
the nucleus. 

Alternatively ,we can say that the amount of energy required to separate the 
constituent nucleons to large distances is called the binding energy of the nucleus. 
The term missing mass m

 
 is known as mass defect. The greater value of the 

binding energy of nucleus means that the more energy is needed to break the 
nucleus into its constituent particles. Thus binding energy is related to stability of 
the nucleus. Stable nuclei have positive value of the binding energy. Nuclear mass 
is found to be always less than the sum of the masses of constituent nucleons. The 
principle of equivalence of  mass and energy confirms the idea of mass defect.

  
The binding energy of a nucleus of rest mass A

Z m  composed of nucleons of rest 
masses mi  is written as  

 
A

b i Z
i

E m m c
 

   
 
 2   

If mass number of nucleus is A and there are Z protons and (A−Z) neutrons , then 
binding energy is stated as  

  ( ) ( )A
b p n ZE Zm A Z m m c in Joule     

2

 
Here pm  and nm are the rest masses of the proton and neutron respectively. In above 
expression masses are taken in kg. 

 ( ) .A
b p n ZE Zm A Z m m MeV     931 49           (9) 

Here all masses are taken in unified atomic mass unit u. 

 
. MeVu

c
 21 931 49

 

1.8 Binding Energy 
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12
6rest massof one neutral Catom . Kgu


 

261 99265 101
12 12  

 .u Kg  271 1 66054 10  
Atomic mass unit (symbol : a.m.u.) was based on oxygen and it was replaced by 
unified atomic mass unit (symbol: u) in 1961 to take standard same form in physics 

and chemistry. Note that 1 a.m.u. can also be taken as . MeVamu
c

 21 931 49   
 

Nuclear binding energy is of the order of MeV whereas binding energy of 
electrons in atom is of the order of eV.  Hence binding energy of electrons in atom 
is negligible in comparison with nuclear binding energy. So without appreciable 
error , binding energy of the nucleus may be approximated as  

   ( ) A
b H n Z atomE ZM A Z m M c     

2                   (10) 

where HM  is the rest mass of the hydrogen atom. 

In addition to masses of protons , the term  HZM  includes the masses of Z 
electrons. Similarly the term A

Z atomM  also contains the contribution of masses of Z 
electrons. Hence ,in the above expression of the binding energy Eb contributions of 
masses of electrons cancel out.  

Packing Fraction: 

It is defined as  

Packing Fraction M Af
A


    ,where M is the atomic mass of the neutral atom. 

Above expression may be written as  ( )M A f 1  

Packing fraction  f  is a function of mass number A . 

Unified Atomic Mass Unit is defined for carbon as    .M C u12
6 12 0000000  

Hence by definition, packing fraction is zero for C12
6 .  

Variation of Binding Energy per Nucleon with Mass Number: 

Average binding energy per nucleon is more useful parameter for measurement of 
stability of a nucleus. It is defined as 

Average binding energy per nucleon b
b

ETotalbinding energyof thenucleusE = =
Totalnumber of nucleonsin thenucleus A  
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For example, let’s consider nucleus He4
2  which has binding energy . MeV28 3 ,then 

 . .b
b

E MeVE
A Nucleon

  
28 3 7 07

4
 

The binding energy per nucleon as a function of mass number A is plotted in 
figure(1.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 

The binding energy per nucleon versus mass number characteristic curve has 
following main features: 

(i)  Binding energy per nucleon is lower for both light nuclei (A≲30)  and heavy 

nuclei (A≳170). On the average, nuclei of intermediate masses (A≃50-80) 
are the most stable. 

(ii)  The binding energy per nucleon is fairly constant for the nuclei of middle mass 
numbers (about 30 < A < 170). In this region bE  has value about MeV8 . 

       With further increase in the mass number A , the binding energy per nucleon 

decreases slowly to about  . MeV7 6 for A≃240. This happens due to long range 
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 repulsive Coulombic force between the protons in the nucleus. 

(iii) The peak at A=4 for  nucleus He4
2 indicates the unusual high stability of the  

nucleus (alpha particle) He4
2  which is made of two protons and two neutrons. 

Similarly there is a also rapid rise in the value of bE  for light nuclei with 
maxima for the even Z-even N nuclei such as  C12

6  , O16
8  .At these nuclei bE  is 

remarkably greater than those of their adjacent neighbours. 

(iv) The curve has its maximum of . MeV8 8 when the mass number is 56 that is an 
iron isotope Fe56

26  which is the most stable nucleus. 

(v)  If a heavy nucleus of very high mass number is split into two medium mass 
fragments, this process is known as fission. In the fission process, energy is 
liberated because medium mass product nuclei have higher binding energy per 
nucleon compared to original heavy nucleus. 

 For example U238
92  (for which bE  is about . MeV

Nucleon
7 6 ) splits into two fragments 

of equal masses say mass number of 119. Approximate value of bE  is 

. MeV
Nucleon

8 5
 
for nuclei having A=119. So gain in binding energy per nucleon is 

. . . MeV
Nucleon

 8 5 7 6 0 9 .Hence energy released in the process is about

. MeV 238 0 9 210  
(vi) In nuclear fusion , two or more nuclei of very small mass number A combine 

to form a medium nucleus of higher mass number A and energy is released in 
this process because product nucleus has higher average binding energy per 
nucleon.   

1.9 Semi Empirical Mass Formula 
Scientists developed nuclear liquid drop model to give physical insight into nuclear 
properties .In this model nucleus is assumed  like a liquid drop in which nucleons 
are closely packed. For expressing the atomic mass ,in 1935 ,Van- Weizsacker 
developed a formula which is known as semi empirical mass formula in which 
certain properties of classical liquid drop is used. 

From eq.(10) binding energy of the nucleus is given by 

 ( ) A
b H n Z atomE ZM A Z m M c     

2

 

1.9 Semi Empirical Mass Formula 
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( )A b

Z atom H n
E

M ZM A Z m
c

      2                 (11) 

 where A
Z atomM  is the mass of the neutral atom .  

Now we discuss the various terms that contribute in the binding energy 

(a) Volume Energy EV 

This term is based on saturation property of nuclear forces. Nuclear forces among 
nucleons are very strong and have very short range about 3fm. We can visualize 
each nucleon as a sphere and these are assumed to be closely packed in which each 
nucleon touches the 12 neighbouring nucleons. It can be assumed that interaction 
between any two nearest neighbouring nucleons ,results in certain interaction 
energy. Total interaction energy of such type depends on number of adjacent pairs 
of nucleons, i.e. depends on the mass number (total number of nucleons in the 
nucleus). Since volume of the  nucleus is directly proportional to A ,so this type of 
interaction energy is related to volume of the nucleus. Attractive nuclear forces 
results in negative interaction energy but binding energy is taken as positive. 
Hence binding energy corresponding to this interaction can be approximated as  

  Volume Binding Energy v vE a A  
 where av is positive constant. 

(b) Surface  Energy ES 

Nucleons on the surface have fewer neighbours and they are not completely 
surrounded .The nucleon on the surface feels attractive forces only from one side 
whereas the nucleon in the interior feels attractive forces from all sides. In the 
volume energy term ,it was assumed that each nucleon interacts with other 
nucleons equally from all sides, so a term that is proportional to the surface area of 
nucleus must be subtracted to reduce the binding energy. This negative correction  
constitutes the surface energy term ES which represents the loss of binding energy. 

      SE R  2

 
 

/ /
S SE a A R R A   2 3 1 3

0  
Since lighter nuclei have greater fraction ( ratio of number of nucleons on the 
surface to those in the interior volume), so surface energy term is the most 
significant for lighter nuclei.  
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(c) Coulomb Energy  

 Coulombic repulsion force between protons is long range force. The Coulomb 
potential energy (of Z protons packed together in spherical symmetric manner) is  

proportional to number  of proton pairs   Z Z 1
2  

and  is inversely  proportional to  

nuclear radius. 

The contribution to the binding energy is expressed as  

 
 

C
Z Z

E
R



1

 

 
 

/c c
Z Z

E a
A


   1 3

1
 

The Coulombic repulsive energy term lowers the binding energy and increases the 
mass , hence it opposes nuclear stability .For heavier nuclei Z 1 ,hence  CE can 
be approximated as   

 
/C C

ZE a
A

 
2

1 3    
(d) Asymmetry Energy 

The asymmetry energy Ea arises due to  unequal number of neutrons  and 
protons  in the nucleus. To get the best agreement with predicted binding energy 
,it can be written as 

 

   Here neutron excessa a

N Z
E a N Z

A


   
2

 

 

 
a a

A Z
E a N A Z

A


    
22

 
The contribution of the asymmetry energy to the binding energy is negative 
because it decreases the binding energy of the nucleus .This correction term cannot 
be understood with simple liquid drop model ,it is a purely quantum mechanical 
effect which is related with nuclear energy levels. To be in the stable state ,nucleus 
should occupy the lowest energy state. The asymmetry energy Ea is zero for Z=N 
that results in greater stability of the nucleus.  

(e) Pairing Energy 

The  nuclei  having  even  numbers  of  both  protons  and  neutrons  are  strongly 

favoured  and  most  stable  in nature whereas nuclei having odd numbers of both 
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protons and neutrons are the least stable. Hence this pairing effect (spin 
consideration) is taken in the pairing energy which can be expressed empirically as  

 
  /, p

p

a
E

A
  3 40

 
The pairing energy is positive for even- even nuclei and zero for odd-even nuclei 
or even-odd nuclei and negative for odd-odd nuclei i.e. 

  
/ for even Z and even Np

p

a
E

A
 3 4

 

 

for even Z and odd N

or odd Z and even N
pE  0

 

 / for odd Z and odd Np
p

a
E

A
  3 4

 
Here ap  is assumed an approximately constant coefficient. 

The total binding energy of a nucleus of atomic number Z and mass number A is 
written as  

 b v s c a pE E E E E E    
 

Semiempirical Binding Energy Formula 

 
     /

/ /, p
b v s c a

aZ Z A Z
E a A a A a a

AA A
 

    
2

2 3
1 3 3 4

1 2
0                        (12)

 

From eq.(11) Atomic mass ( )A b
Z atom H n

EM ZM A Z m
c

      2  

Semiempirical mass formula 

     /
/ /( ) , pA

Z atom H n v s c a
aZ Z A Z

M ZM A Z m a A a A a a
Ac A A

                 

2
2 3

2 1 3 3 4

1 21 0

    (13) 

A set of constants , , , andv s c a pa a a a a have been determined as  

 .va MeV14 1
 

 .sa MeV13 0
 

 .ca MeV 0 595
 

 .aa MeV19 0
 

 .pa MeV 33 5
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Other sets of constants have also been developed by empirically fitting the 
observed mass. 

Eq.(13) is known as the semiempirical mass formula because the constants 
, , , andv s c a pa a a a a

 
are determined empirically by fitting observed atomic masses. 

The semiempirical mass formula predicts the binding energies which are 
remarkably close to the observed values except those of very small A. The 
discrepancies between predicted mass values and observed mass values are the 
least.   

1.10 Illustrative Examples 
Example 3 Calculate the atomic mass of Be9

4 .The binding energy of the nuclide 
Be9

4 is . MeV58 11628  

Given that atomic mass   .M H u1
1 1 00782 ,  

Mass of neutron .nm u1 00866  and . MeVu
c

 21 931 5
 

Sol.     b nE M H m M Be c     
1 9 2
1 44 5  

  
     b

n
E

M Be M H m
c

      
9 1
4 1 24 5  

       
  .. . MeVu u

c
       2

58 116284 1 00782 5 1 00866  

       
  .. .

.
uu u       

58 116284 1 00782 5 1 00866
931 5  

        . . .u u u    4 03128 5 04330 0 06239  

        .M Be u9
4 9 01219  

Example 4 Calculate the binding energy of the last neutron in the nucleus O17
8 . 

Given that atomic masses 

  .M O u17
8 16 99913 ,   .M O u16

8 15 99492 ,   .M H u1
1 1 00782  

Mass of neutron .nm u1 00866  and . MeVu
c

 21 931 49  

Sol. The binding energy of a nucleon is the energy required to remove that nucleon 
from the nucleus. 

Binding energy of the last neutron 

1.10 Illustrative Examples 
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     bn nE M O m M O c     
16 17 2
8 8  

       
     .

n
MeVM O m M O c

c
     

16 17 2
8 8 2

931 49
 

        . . . . MeV    15 99492 1 00866 16 99913 931 49  

        . . . MeV 17 00358 16 99913 931 49  
        . . MeV 0 00445 931 49  

            .bnE MeV 4 15  
1.11 Self Learning Exercise-II 
Q.1  What is the value of  nuclear magneton ? 

Q.2  Binding energy per nucleon is maximum for iron isotope Fe56
26 . Is this 

statement true? 

Q.3 Calculate the binding energy of nucleus U238
92 .Also find the binding energy 

per nucleon of the nucleus. Given that atomic masses 

   .M U u238
92 238 05076 ,   .M H u1

1 1 00782  

 Mass of neutron .nm u1 00866  and . MeVu
c

 21 931 49  

Q.4  Explain the pairing energy term in semiempirical mass formula. 

1.12 Summary  

 Nuclear radius  /R R A 1 3
0  

  

 Nuclear mass density is of the order of 3
17

m
kg10 . 

 Greatest possible component of total angular momentum of a nucleus along any 
direction is   Z II m   

  mI= – I, – I +1, ........, I –1, I 

 where mI = magnetic total angular momentum quantum number.  

 For Parity operator P̂  we have 
P̂ (r,t) ≡ 

 P ( r,t)  with eigen value P = ± 1  

It is found that parity of nucleus in a given state is related to orbital quantum 

number l in the following manner ( )lP  1  

 Quadrupole moment Q is defined as  

1.11 Self Learning Exercise-II 

1.12 Summary  
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     2 2Q 3z r dV  

 where is  the nuclear charge density, dV = volume element, S.I. unit of Q is    
C-m2 

 Sometimes Q is also defined as ( )Q z r dV
e

  2 21 3  

 If the nucleus has spherically symmetric charge distribution, then it has no 
electric quadrupole moment or higher electric moments. 

 Binding energy of the nucleus ( ) .A
b p n ZE Zm A Z m m MeV     931 49  

 Here all masses are taken in u where . MeVu
c

 21 931 49  

  ( ) A
b H n Z atomE ZM A Z m M c     

2

 
 The curve plotted binding energy per nucleon versus mass number has its 

maximum of . MeV8 8 when the mass number is 56 that is an iron isotope Fe56
26  

which is the most stable nucleus. 

 Semiempirical binding energy formula
     /

/ /, p
b v s c a

aZ Z A Z
E a A a A a a

AA A
 

    
2

2 3
1 3 3 4

1 2
0   

1.13 Glossary 
Nucleon : protons and neutrons 

Even -even nuclei:  nuclei having even Z and even N 

Parity: The parity of a wave function   is related to the symmetry properties of 

the wavefunction  . Parity operator P̂ we have 
P̂ (r,t) ≡ 

 P ( r,t)  with eigen 
value P = ± 1  

1.14 Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I 

Ans.1:  Straight line Rln ln A
R

 
 

 0

1
3  

with slope
3
1 .  

Ans.2: 1 
Ans.3: Nuclear radius R= R0A

1/3=1.1× 10−15 (27)1/3 

1.13 Glossary 

1.14 Answers to Self Learning Exercises 



25 
 

                 = 3.3 × 10–15m 

 Mutual electric potential energy 
R
qq

4
1U 21


  

 15

19199

10x3.3
)10x6.1x13)(10x6.1x13(10x9U





  

     =73.75 ×106×1.6×10–19 Joule 

     =73.75 MeV 

Ans.4: According to shell model 9th  proton and 9th neutron are unpaired and each 
 lies in the respective states 1d5/2 

 Hence ln=2 and lp=2 

    n pl lP ( 1) 1
 

Answers to Self Learning Exercise-II 

Ans.1:
 

. .N
p

e J eV
m T T

      
 27 85 05 10 3 15 10

2
 

Ans.2: True 

Ans.3: Binding energy 

 ( ) A
b H n Z atomE ZM A Z m M c     

2

 

     b nE M H m M U c     
1 238 2
1 9292 146

 

       . . .u u u c      
292 1 00782 146 1 00866 238 05076

 
       . uc 21 93304

 
       . . MeV 1 93304 931 49

 
      . MeV1800 61

 
Binding energy per nucleon . .bE MeV MeV

A Nucleon Nucleon
 

1800 61 7 57
238

 

1.15 Exercise 

Q.1  What is the value of the  electric quadrupole moment of nucleus which has 
spherically symmetric charge distribution ? 

Q.2  What is the order of nuclear mass density ? 

Q.3  Magnetic moments of electrons  and  nucleus  interact  and  this  interaction 

1.15 Exercise 
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 splits the atomic levels which gives rise to the…………….(fine/hyperfine) 

 structure of the lines of the atomic spectra. 

Q.4  What is the value of 1 Barn ? 

Q.5 Define mass defect and packing  fraction. 

Q.6  Explain the asymmetry energy term in semiempirical mass formula. 

Q.7  Compare the nuclear density of 1
1H  with its atomic density (Assume the 

atomic radius is equal to the first Bohr orbit).  

Q.8  Write the main features of curve of binding energy per nucleon versus mass 
number. 

Q.9  Find the spin-parity of the following nuclei  

 (i)  39
19K   (ii)  17

8O  (iii) 15
7N  

Q.10  Describe the semiempirical mass formula for the nucleus.  

1.16 Answers to Exercise 

Ans.1: Zero. 

Ans.2: Nuclear mass density is of the order of 3
17

m
kg10 . 

Ans.3: hyperfine structure 

Ans.4:  Barn m 28 21 10  
Ans.7: Over 1014 times 

Ans.9: (i)  

 1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1d3/2 

Protons 2 4 2 6 2 3=2+1 

Neutrons 2 4 2 6 2 4 

           Quantum state 1d3/2  i.e. 3/2+ 

 (ii)     Quantum state 1d5/2  i.e. 5/2+ 

 (iii)    Quantum State 1p1/2  i.e. 1/2− 

 

1.16 Answers to Exercise 
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UNIT-1 
Two Nucleon System and Forces 

 

Structure of the Unit 

2.0  Objectives 

2.1  Introduction 

2.2 General nature of the force between nucleons 

2.3  Self learning exercise-I 

2.4  General form of two nucleon interaction 

2.5  Properties of nuclear force 

2.6  Self learning exercise-II 

2.7  Summary 

2.8  Glossary 

2.9  Answers to self learning exercises 

2.10  Exercise 

 References and Suggested Readings 

2.0 Objectives 
After interacting with the material presented here students will be able to 
understand  

 general nature of nuclear force 

 properties of nuclear force and 

 the general form of nuclear potential. 

2.1 Introduction 

At the beginning of the twentieth century, the science of physics knew about three 
basic forces: gravitational, electric, and magnetic. All forces, whether they were 
"action at a distance" or field forces, could be always interpreted as one these three 

UNIT-2 
Two Nucleon System and Forces 

2.0 Objectives 

2.1 Introduction 
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forces and it was believed that all other forces like elastic forces, collision forces, 
etc could be understood in terms of these three forces.  

By the end of first quarter of the twentieth century a fourth force was found. With 
electrostatic, magnetic, and gravitational forces, measurement could be made in the 
laboratory or on a macroscopic scale and the laws governing these forces were 
established. But entirely new methods were required to study the nuclear binding 
forces; by the 1960's the form of the laws governing these forces had not been 
established on a firm basis. 

2.2 General Nature of the Force between Nucleons 

We can enumerate the following properties of nuclear force on the basis of various 
observations and empirical facts: 

1. Nuclear force is always attractive between two neutrons, or two protons or 
neutron and proton. Existence of neutrons and protons in a bound state is itself an 
evidence of this. 

2. Nuclear force is short ranged. If it were not so, all the nucleons in different 
nuclei will coalesce into one big nucleus and everything will probably turn into a 
huge nucleus like a super-neutron star, and there will be no more a variety of 
elements in nature. 

3. Nuclear force is very strong. This is evident from the large binding energy of 
nuclei (about 8 MeV per nucleon). The average binding energy of electrons in 
atoms is in the range of eV to keV only. 

4. Nuclear force saturates. This is actually an outcome of the short range nature 
of the nuclear force. Each nucleon in a nucleus interacts with its neighbors only. 
As a result the binding energy per nucleon rises rapidly for light mass nuclei and 
quickly saturates 

Figure shows the measurements of the energy needed to strip out a nucleon from a 
nucleus as a function of the number of nucleons in the nucleus, i.e. the binding 
energy per nucleon, rises rapidly up to A~10-20 and then levels off at 
approximately 7.5 MeV/nucleon.  

If we assume that a nucleon interacts with all the other nucleons in the nucleus then 
there should be A(A-1)/2 pairs of nuclei. Since the binding energy increases with 

2.2 General Nature of the Force between Nucleons 
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the number of interactions BE ~ A(A-1)/2. Then BE/A would be linear, which it is 
but only roughly up to around A~10. 

 

The binding energy curve suggests that nucleons only interact with their nearest 
neighbours. The range of the force must be less than the size of a mass-10 nucleus, 
which is around 1.2x101/3= 2.6 fm. This property is described as saturation of the 
nuclear force. 

5. Nuclear force is charge symmetric. It is same for a p-p and an n-n pair 
(ignoring the Coulomb repulsion between p-p). As an example consider the 
following evidence for charge symmetry. 
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3H 3He 

Z=1, N=2 Z=2, N=1 

2 p-n pairs and 1 n-n pair 2 p-n pair and 1 p-p pair 

BE=8.48MeV BE=7.71MeV 

The difference in the BE between the two is 0.77 MeV. 3
2 1He assuming to be a 

uniformly charged sphere of radius 2.24 Fermi, the difference is almost entirely 
accounted for by Coulomb energy implying that p-p and n-n interaction is same. 

6. Nuclear force is charge independent. The force is same for n-p as it is for n-n 
and p-p pairs provided the n-p pair is in the same isospin state (T=1). A p-p and an 
n-n pair can occupy isospin T=1 state only. If the n-p pair also occupies T=1 state 
then the force is the same. 

One cannot say from mirror nuclei anything about n-n and p-p forces compared to 
n-p forces. But if we gradually change the individual nucleon types, one by one, 
into the other we generate a series of nuclei with the same mass, but a range 
different numbers of protons and neutrons. To make a fair comparison for the 
strong interactions, we can again correct for the Coulomb effects and the difference 
in the proton and neutron masses. 

For example, the 0+ ground states of 30Si  and 30S , and an excited 0  state in 30P 

are at a very similar mass-energy. The 2 states of 30Si  and 30S  also have an 
isobaric analogue in 30P, as do other levels. Transition probabilities and reaction 
rates based on strong interactions involving these states also show similarities. 

Consider the changes in going from 30Si and 30P . A neutron turns into a proton. 
We already know that the n-n and p-p forces are similar. So the experimental 
similarity of the 30Si level scheme with a subset of states in the 30P level scheme 
must imply that the n-p force must also be of similar strength. Nuclear forces 
display charge independence. 
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7. Nuclear force is spin dependent. As an example, deuteron in its ground state 
(and the only bound state) exists only in spin triplet state. The spin singlet state is 
unbound. This property will be further  discussed in chapter 3.  

8. Nuclear force has a tensor nature. The arrangement of nucleon spins in a 
nucleus – whether two nucleons are placed side by side or, one on top of the other 
although total spin is 1 in both the cases - makes a difference in their binding 
howsoever small. 

The tensor dependence is generally expressed by the term, 

2
12 1 2 1 22

1 [3( . )( . ) ( . ) ]S r r r
r

    
     

 

If 1 and 2 are parallel to r and if the two are perpendicular to r, the value of 

(1. 2) is different in the two cases even for the same value of the total spin 

i.e. . The magnetic moment of deuteron cannot be explained without the tensor 
nature of nuclear force. 

9. Nuclear force also has velocity dependence or, a dependence on the spin-orbit 
term. It is given be a term like 

12 1 2
1 ( ) ( )
2 LSV L V r  
  

 

It is attractive when L and S (=1/2(1+2)) are parallel and repulsive when they 
are anti-parallel. 

10. Nuclear force has an exchange character. This is a purely quantum feature 
and may be understood by knowing the way nuclear force is mediated. Two 
nucleons, when interacting with each other, can exchange their spin, isospin, or a 
combination of both. These are represented by Bartlett (B), Heisenberg (H), and 
Majorana (M) terms which contribute to the force according to the signs given 
below: 

 Even l, +ve parity Odd l, -ve parity 

 s=1 s=0 s=1 s=0 

W +1 +1 +1 +1 
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B +1 -1 +1 -1 

M +1 +1 -1 -1 

H +1 -1 -1 +1 

The sign depends on the nature of state (the l-value, s-value and the parity). W 
represents the Wigner term which is no exchange at all. Bartlett force leads to spin 
exchange, Majorana force to isospin exchange and Heisenberg force to a 
combination of spin and isospin. 

2.3 Self Learning Exercise-I 

Q.1  Explain the evidence for attractive nature of nuclear forces.  

Q.2  Draw binding energy per nucleon graph. 

Q.3  Write down the term which represent the tensor dependence of nuclear 
force. 

Q.4 Define the exchange character of nuclear force. 

Q.5  Write down the properties of nuclear forces. 

2.4 General Form of Two Nucleon Interaction 

The interaction of two nucleons at low energy can be described by a potential of 
the form  

2
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Where  

r denotes the relative distance of the nucleons with spins s1 and s2, 

p is the relative momentum and  

L is the total orbital angular momentum.  

The potential neglects the inner structure of the nucleons and is therefore valid 
only for bound states and for low-energy NN scattering, from which its form can 

be derived. Interpretation of the different terms:  

2.3 Self Learning Exercise-I 

2.4 General Form of Two Nucleon Interaction 
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1.  Central potential.  

2.  Central spin-spin interaction.  

3. Tensor (non-central) potential. It has the same spin dependence as the 
magnetic interaction of two magnetic moments. This term is the only one 
which may lead to a mixing of different orbital angular momentum in the 
physical state.  

4.  LS coupling, similar to atomic physics, but caused by the strong force.  

5. and 6 terms respect basic symmetries but may often be neglected due their 
quadratic dependence on p.  

To describe nuclei, additional many-body forces have to be taken into account, 
leading to a still higher level of sophistication. 

2.5 Properties of Nuclear Force 

In this section we summarize the main features of the inter nucleon force. 

Interaction between nucleons consists to lowest order of an attractive central 
potential 

In most of nuclear calculation we use a square-well form of potential, which 
simplifies the calculations and reproduces the observed data fairly well. Other 
more realistic forms could just as well have been chosen but the essential 
conclusions would not change (in fact, the effective rang approximation is virtually 
independent of the shape assumed for the potential). The common characteristic of 
these potentials is that they depend only on the inter nucleon distance r. We 
therefore represent this central term as Vc(r). The experimental program to study 
VC(r) would be to measure the energy dependence of nucleon-nucleon parameters 
such as scattering phase shifts, and then to try to choose the form for VC(r) that best 
reproduces those parameters. 

The Nucleon - Nucleon interaction is strongly spin dependent 

This observation follows from the failure to observe a singlet bound state of the 
deuteron .and also from the measured differences between the singlet and triplet 
cross sections (discussed in Chapter 3). What is the form of an additional term that 
must be added to the potential to account for this effect? Obviously the term must 
depend on the spins of the two nucleons, s1 and s2 but not all possible combinations 

2.5 Properties of Nuclear Force 
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of s1 and s2 are permitted. The nuclear force must satisfy certain symmetries, which 
restrict the possible forms that the potential could have. Examples of these 
symmetries are parity (r ~ -r) and time reversal (t ~ - t). Experiments indicate that, 
to a high degree of precision (one part in 107 for parity and one part in 103 for time 
reversal), the inter nucleon potential is invariant with respect to these operations. 
Under the parity operator, which involves spatial reflection, angular momentum 
vectors are unchanged. This statement may seem somewhat surprising, because 
upon inverting a coordinate system we would naturally expect all vectors defined 
in that coordinate system to invert. However, angular momentum is not a true or 
polar vector; it is a pseudo or axial vector that does not invert when r ~ - r. This 
follows directly from the definition r X p or can be inferred from a diagram of a 
spinning object. Under the time-reversal operation, all motions (including linear 
and angular momentum) are reversed. Thus terms such as s1 or s2 or a linear 
combination As1 + Bs2 in the potential would violate time-reversal invariance and 
cannot be part of the nuclear potential; terms such as s1

2 , s2
2 or s1.s2 are invariant 

with respect to time reversal and are therefore allowed. (All of these terms are also 
invariant with respect to parity.) The simplest term involving both nucleon spins is 
s1.s2. Let's consider the value of s1.s2 for singlet and triplet states. To do this we 
evaluate the total spin S = s1 + s2 

2
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To evaluate this expression, we must remember that in quantum mechanics all 
squared angular momenta evaluate as 

2 2= ( 1)s s s   
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With nucleon spins s1 and s2 of 1/2, the value of s1.s2 is, for triplet (S = 1) states: 
2
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and for singlet (S = 0) states: 
2

2
1 2

1 1 1 1 1 3. [0(0 1) ( 1) ( 1)]
2 2 2 2 2 4

s s        
  

Thus a spin-dependent expression of the form s1.s2Vs(r) can be included in the 
potential and will have the effect of giving different calculated cross sections for 
singlet and triplet states. The magnitude of Vs can be adjusted to give the correct 
differences between the singlet and triplet cross sections and the radial dependence 
can be adjusted to give the proper dependence on energy.  

We could also write the potential including Vc and Vs as 

1 2 1 2
1 32 2
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where V1(r) and V3(r) are potentials that separately give the proper singlet and 
triplet behaviors. 

The inter Nucleon potential includes a noncentral term, known as a tensor 
potential 

Evidence for the tensor force comes primarily from the observed quadrupole 
moment of the ground state of the deuteron (Chapter 3). An s-state (l = 0) wave 
function is spherically symmetric; the electric quadrupole moment vanishes. Wave 
functions with mixed l states must result from noncentral potentials. This tensor 
force must be of the form V(r), instead of V(r). For a single nucleon, the choice of 
a certain direction in space is obviously arbitrary; nucleons do not distinguish north 
from south or east from west. The only reference direction for a nucleon is its spin, 
and thus only terms of the form s • r or s X r, which relate r to the direction of s, 
can contribute. To satisfy the requirements of parity invariance, there must be an 
even number of factors of r, and so for two nucleons the potential must depend on 
terms such as (s1 • r)(s2 • r) or (s1 X r) • (s2 X r). Using vector identities we can 
show that the second form can be written in terms of the first and the additional 
term s1 • s2, which we already included in V(r). Thus without loss of generality we 
can choose the tensor contribution to the inter nucleon potential to be of the form 
VT(r)s12, where VT(r) gives the force the proper radial dependence and magnitude, 
and 

2
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which gives the force its proper tensor character and also averages to zero over all 
angles. 

The Nucleon - Nucleon force is charge symmetric 

This means that the proton-proton interaction is identical to the neutron-neutron 
interaction, after we correct for the Coulomb force in the proton-proton system. 
Here "charge" refers to the character of the nucleon (proton or neutron) and not to 
electric charge. Evidence in support of this assertion comes from the equality of 
the pp and nn scattering lengths and effective ranges. Of course, the pp parameters 
must first be corrected for the Coulomb interaction. When this is done, the 
resulting singlet pp parameters are 

a = -17.1 ± 0.2 fm 

r0 = 2.84 ± 0.03 fm 

These are in very good agreement with the measured nn parameters (a = -16.6 ± 
0.5 fm, r0 = 2.66 ± 0.15 fm), which strongly supports the notion of charge 
symmetry. 

The Nucleon - Nucleon Force Is Nearly Charge Independent 

This means that (in analogous spin states) the three nuclear forces nn, pp, and pn 
are identical, again correcting for the p'p Coulomb force. Charge independence is 
thus a stronger requirement than charge symmetry. Here the evidence is not so 
conclusive; in fact, the singlet np scattering length (- 23.7 fm) seems to differ 
substantially from the pp and nn scattering lengths (-17 fm).  
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However, we see from figure that large negative scattering lengths are 
extraordinarily sensitive to the nuclear wave function near r = R, and a very small 

change in ; can give a large change in the scattering length. Thus the large 
difference between the scattering lengths may correspond to a very small 
difference (of order 1 %) between the potentials, which is easily explained by the 
exchange force model. 

The Nucleon - Nucleon interaction becomes repulsive at short distances 

 
This conclusion follows from qualitative considerations of the nuclear density: as 
add more nucleons the nucleus grows in such a way that its central density remains 
roughly constant, and thus something is keeping the nucleons from crowding too 
closely together. More quantitatively, we can study nucleon-nucleon scattering at 
higher energies. Figure shows the deduced singlet s-wave phase shifts for nucleon-
nucleon scattering up to 500 MeV. (At these energies, phase shifts from higher 
partial waves, p and d for example, also contribute to the cross sections. The s-
wave phase shifts can be easily extracted from the differential scattering 

measurements of d/d vs ( because they do not depend on .) At about 300 
MeV, the s-wave phase shift becomes negative, corresponding to a change from an 
attractive to a repulsive force. To account for the repulsive core, we must modify 
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the potentials we use in our calculations. For example, again choosing a square-
well form to simplify the calculation, we might try 

V( r) = +    r < R core 

 = − V0 (R)        Rcore r R 

        = 0   r > R 

and we can adjust R core until we get satisfactory agreement with the observed s-

wave phase shifts. The value Rcore 0.5 fm gives agreement with the observed 
phase shifts. 

The Nucleon - Nucleon interaction may also depend on the relative velocity or 
momentum of the nucleons 

Forces depending on velocity or momentum cannot be represented by a scalar 
potential, but we can include these forces in a reasonable manner by introducing 
terms linear in p, quadratic in p, and so on, with each term including a 

characteristic V(r). Under the parity operation, p  - p, and also under time 

reversal p  - p. Thus any term simply linear in p is unacceptable because it 
violates both parity and time-reversal invariance. Terms of the form r.p or r X p 
are invariant with respect to parity, but still violate time reversal. A possible 
structure for this term that is first order in p and invariant with respect to both 
parity and time reversal is V(r)(r X p) • S, where S = s1 + s2 is the total spin of the 
two nucleons. The relative angular momentum of the nucleons is l = r X p, and 
therefore this term, known as the spin-orbit term in analogy with atomic physics, is 
written Vso(r)l.S. Although higher-order terms may be present, this is the only first-
order term in p that satisfies the symmetries of both parity and time reversal. 

The experimental evidence in support of the spin-orbit interaction comes from the 
observation that scattered nucleons can have their spins aligned, or polarized, in 
certain directions. The polarization of the nucleons in a beam (or in a target) is 
defined as  

( ) ( )
( ) ( )

N NP
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where N() and N() refer to the number of nucleons with their spins pointed up 
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and down, respectively. Values of P range from + 1, for a 100% spin-up polarized 

beam, to -1, for a 100% spin-down polarized beam. An unpolarized beam, with     
P = 0, has equal numbers of nucleons with spins pointing up and down. 

 

 
Consider the scattering experiment shown in figure, in which an unpolarized beam 
(shown as a mixture of spin-up and spin-down nucleons) is incident on a spin-up 
target nucleon. Let's suppose the nucleon-nucleon interaction causes the incident 

spin-up nucleons to be scattered to the left at angle  and the incident spin-down 

nucleons to be scattered to the right at angle -. Part b of the figure shows the 

same experiment viewed from below or else rotated 180 about the direction of the 
incident beam. We can also interpret figure b as the scattering of an unpolarized 
beam from a spin-down target nucleon, and once again the spin-up incident 
nucleons scatter to the left and the spin-down nucleons scatter to the right. The 
results would be the same, even in an unpolarized target, which would contain a 
mixture of spin-up and spin-down nucleons: when an unpolarized beam is scattered 
from an unpolarized target, the spin-up scattered nucleons appear preferentially at 

 and the spin-down scattered nucleons at - . 
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Although this situation may appear superficially to violate reflection symmetry 
(parity), you can convince yourself that this is not so by sketching the experiment 

and its mirror image. Parity is conserved if at angle  we observe a net polarization 

P, while at angle - we observe a net polarization of -P. 

Now let’s see how the spin-orbit interaction can give rise to this type of scattering 
with polarization.  

 
Figure shows two nucleons with spin up incident on a spin up target, so that S = 1. 
(Scattering that includes .only s waves must be spherically symmetric, and 
therefore there can be no polarizations. The p-wave (t= 1) scattering of identical 
nucleons has an anti symmetric spatial wave function and therefore a symmetric 
spin wave function.) Let's assume that Vso(r) is negative. For incident nucleon 1, l= 
r X p is down, and therefore l· S is negative because l and S point in opposite 
directions. The combination Vso(r)l· S is positive and so there is a repulsive force 
between the target and incident nucleon 1, which is pushed to the left. For nucleon 
2, l points up, l· S is positive, and the interaction is attractive; incident nucleon 2 is 
pulled toward the target and also appears on the left side. Spin-up incident 
nucleons are therefore preferentially scattered to the left and (by a similar 
argument) spin-down nucleons to the right. Thus the spin-orbit force can produce 
polarized scattered beams when unpolarized particles are incident on a target. 

At low energy, where s-wave scattering dominates, we expect no polarization. As 
the incident energy increases, the contribution of p-wave scattering increases and 
there should be a corresponding increase in the polarization. The general topic of 
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polarization in nuclear reactions is far more complicated than we have indicated in 
this brief discussion. 

 
Figure shows some representative nucleon-nucleon potentials.  

2.6  Self Learning Exercise-II 

Q.1  What is polarization? 

Q.2  Write down the evidence for the tensor force.  

Q.3  Explain that the Nucleon - Nucleon interaction is strongly spin dependent. 

2.6  Self Learning Exercise-II 
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Q.4  Write down and explain the general form of two nucleon interaction 

2.7  Summary 
In this chapter we have discussed general nature of nuclear force. We have also 
discussed various properties of nuclear forces with their evidences. This chapter 
also gave a brief idea of the general form of two nucleon interaction which 
includes central, noncentral and velocity dependent potentials terms. 

2.8  Glossary 

Spin: Spin is a characteristic property of elementary particles 
Isospin: Particles appear to arrange themselves in sets of particles of different 
electric charge, but nearly the same mass. They are individually labeled with a 
quantum number of -1, 0, 1, or other multiples of these. Hadrons have Isospin. 
Leptons have a similar arrangement and are labeled with “weak isospin” according 
to their roles in the Standard Model. This is not the same as generic “isospin.” 

Nuclear force: The force that holds the nucleus together. Originally thought to be 
the exchange of pions, as suggested by Yukawa. Pions are now known to not be 
elementary themselves, but quarks which are held together by gluons. 

Nucleon: The generic name for neutrons and protons, reflecting the fact that their 
Strong Interactions are identical. 

Quantum Number: Quantum mechanics is full of integers which describe certain 
quantum states. In atoms, these quantum numbers come from the solutions to the 
Schroedinger equation, in which the principle quantum number, n, is identical to 
the original idea of Bohr’s that electron orbits are fixed in radius and energy. There 
are quantum numbers for angular momentum, spin, and other characteristics. 
Transitions among states follow “selection rules” that relate the before and after 
values of the quantum numbers of the atomic states. In elementary particle physics 
Quantum Numbers appear to be inherent to particular particles and are “additive” 
meaning that in many cases they are conserved…that the sum before an interaction 
or decay must equal the same ones after the interaction or decay. This is especially 
true in the Strong Interactions, but also in the Weak Interactions. Examples of 
inherent quantum numbers are: Baryon Number, Lepton Number, Electric Charge, 
Isospin, and Strangeness. 

2.7  Summary 

2.8  Glossary 
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Polarization: The polarization of a wave is the direction in which it is oscillating. 
The simplest type of polarization is linear, transverse polarization. Linear means 
that the wave oscillation is confined along a single axis, and transverse means that 
the wave is oscillating in a direction perpendicular to its direction of travel. Laser 
light is most commonly a wave with linear, transverse polarization. If the laser 
beam travels along the x-axis, its electric field will oscillate either in the y-
direction or in the z-direction. Gravitational waves also have transverse 
polarization, but have a more complicated oscillation pattern than laser light. 

2.9 Answers to Self Learning Exercise 

Answers to Self Learning Exercise-I 

Ans.1:  Existence of neutrons and protons in a bound state is the evidence for 
attractive nature of nuclear forces. 

Ans.2:  See Section 2.2 

Ans.3:  2
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Ans.4:  See Section 2.2 

Ans.5:  See Section 2.2 

Answers to Self Learning Exercise-II 
Ans.1:   See Glossary 

Ans.2:  The evidence for the tensor force comes primarily from the observed 
quadrupole moment of the ground state of the deuteron  

Ans.3:   Section 2.5 

Ans.4:   Section 2.4 

2.10 Exercise 

Q.1  Justify the existence of tensor forces in the nucleus. 

Q.2  What are the properties of nuclear forces? 

Q.3  Write a short note on  

 a.  Spin dependence of nuclear force 

2.9 Answers to Self Learning Exercise 

2.10 Exercise 
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 b.  Charge symmetry of nuclear force 

 c.  Charge independence of nuclear force 

 d.  Saturation property of nuclear force 
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UNIT-3 

The Deuteron 
 

Structure of the Unit 

3.0  Objectives 

3.1  Introduction 

3.2  Analysis of the ground state (3S1) of deuteron using a square well potential 

3.3  Self learning exercise-I 

3.4  Excited states of deuteron 

3.5  Deuteron structure 

3.6  Magnetic moment 

3.7  Quadrupole moment 

3.8  Self learning exercise-II 

3.9  Answers to self learning exercises 

3.10  Exercise 

3.11  Summary 

3.12  Glossary 

 References and Suggested Readings 

3.0 Objectives 
The main aim of this chapter is to study the Basic properties of deuteron viz, its 
binding energy, its size, spin, magnetic and quadrupole moments etc. After going 
through this chapter you should be able to: 

 Understand the various properties of deuteron. 

 Analyze the existence of ground and excited states of deuteron. 

3.1 Introduction 
In the previous chapter we have discussed various properties of nuclear force and 

UNIT-3 
The Deuteron 

3.0 Objectives 

3.1 Introduction 
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potential. The actual properties of the nuclear potential are quite complicated. We 
can find out about the potential in two main ways. One is scattering of nucleons of 
each other or from nuclei. The other is to study any stable states that might result 
from this interaction. There are of course 3 possibilities: pn, pp, nn. It turns out that 
only one of these forms a stable nucleus. We will discuss why, and what this 
means. In this instance we will study the nucleus 2H, the deuteron, which is the 
nucleus formed when a proton and neutron combine. It is the simplest nucleus and 
in a sense is the nuclear equivalent of the H atom in atomic studies. Unfortunately, 
unlike the H atom, it does not have any excited states, so there is no information 
available from its spectroscopy. None the less the fact that it is bound at all reveals 
a lot about the nuclear force. (of course if it were not bound, we wouldn’t be here 
to study nuclear physics, since this nucleus is the basis for fusion to all the heavier 
nuclei in the universe) 

Some Facts about the deuteron 

1. A deuteron (2H nucleus) consists of a neutron and a proton. 
2. It is the simplest bound state of nucleons and therefore gives us an ideal 

system for studying the nucleon-nucleon interaction. 
3. An interesting feature of the deuteron is that it does not have excited states 

because it is a weakly bound system 
4. In analogy with the ground state of the hydrogen atom, it is reasonable to 

assume that the ground state of the deuteron also has zero orbital angular 
momentum L = 0 

5. However the total angular momentum is measured to be J = 1 (one unit of 

h/2π) thus it follows that the proton and neutron spins are parallel 

  sn+sp = 1/2 + 1/2 = 1 

6. The implication is that two nucleons are not bound together if their spins are 
anti-parallel, and this explains why there are no proton-proton or neutron-
neutron bound states. 

7. The parallel spin state is forbidden by the Pauli exclusion principle in the case 
of identical particles 

8. The nuclear force is thus seen to be spin dependent. 
 



48 
 

3.2  Analysis of the Ground State (3S1) of Deuteron using a 
 Square Well Potential  
The deuteron is the simplest system of bound nucleons. Its ground state is the only 
known bound state of two nucleons: 

 — There are no bound states between two protons, respectively, two neutrons.  

       — Excited states of the deuteron are unbound. 

Hence, the single bound state of nucleons offer us only very restricted possibilities 
to study NN interactions. Nonetheless, the ground state properties of the deuteron 
already tell us some important features of the binding force. 

Properties of the deuteron:  

 Mass: 1.876 139 MeV, determined by mass spectroscopy using penning trap 
techniques  

 Binding energy: 2.225 MeV (i.e. ∼ 1.1 MeV per nucleon), determined from 

measurement of the gamma energy in radiative capture, n (p, ) d. Compared to 

typical binding energies per nucleon of heavier nuclei (∼ 8 MeV), the deuteron is 
a weakly bound nuclear system. The binding is so weak that there are no excited 
bound states.  

 Spin: J = 1, deduced from observed number of hyperfine components.  

 Magnetic moment: µd = 0.857 393 µN, measured via nuclear magnetic resonance. 
The value is close to the sum of the magnetic moments of the free proton and the 
free neutron,  

 µp + µn = 2.792 µN − 1.913 µN = 0.879 µN 

This implies that the deuteron is essentially a state, where the two spins 1/2 of the 
nucleons are parallel and add to J = 1 (remember the opposite signs of the proton 
and neutron magnetic moments). This corresponds to an S state (no orbital angular 
momentum).  

 Electric quadrupole moment: Qd = 2.86 × 10−27 cm2, deduced from the magnetic 
field dependence of hyperfine lines of deuterium. The reason for the deuteron 
being not spherically symmetric is a non-central part in the NN force, the so-called 
tensor force. It admixes a state with orbital angular momentum to the ground state, 

3.2  Analysis of the Ground State (3S1) of Deuteron using a 
Square Well Potential  
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meaning that the deuteron is not a pure S state. Since the strong force conserves 
parity (remember that the orbital angular momentum of a state influences its parity 
by a factor (−1)l), the admixture must be a state with l = 2 (i.e. a D state), in order 
to have the same quantum numbers JP .  

— The sizes of both the magnetic moment and the quadrupole moment can be 
derived from a wavefunction 

 |d >= 0.98 |3S1> + 0.20 |3D1> 

where the deuteron is found with 4 % probability in the state 3D1. 

To simplify the analysis of the deuteron, we assume that the nucleon-nucleon 
potential is a three-dimensional square well, as shown in the figure: 

 
Figure1 

 

0 for r < R( )
( ) 0 for r > R

V r V
V r

 
  

In figure 2 ,here r represents the separation between the proton and the neutron, so 
R is in effect a measure of the diameter of the deuteron.  

The dynamical behavior of a nucleon must be described by the Schrödinger’s 
equation 

2
2 ( ) ( ) ( ) ( )

2
r V r r E r

m
      
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where m is the nucleon mass. 

 
Figure 2 

If the potential is not orientationally dependent, a central potential, then the wave 
function solution can be separated into radial and angular parts: 

 ( ) ( ) ( , )l mr R r Y     

Substitute R(r) = u(r)/r in to the Schrödinger’s equation the function u(r) satisfies 
the following equation; 

 

2 2 2
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The solution u(r) is labeled by two quantum numbers n and l so that: 

 ( ) ( )nlu r u r  

The full solution (r) then can be written as  
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Where 

n:  the principal quantum number which determines  

     the energy of an eigenstate. 

l:   the orbital angular momentum quantum number. 

m:  the magnetic quantum number, –l ≦ m ≦ l. 

The angular part of the solution Ylm(θ,) is called the “spherical harmonic” of 
order l, m and satisfies the following equations: 

 
2 2ˆ ( , ) ( 1) ( , )lm lmL Y l l Y       
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For the case of a three dimensional square well potential with zero angular 
momentum (l = 0), which we use as the model potential for studying the ground 
state of the deuteron, the Schrödinger’s equation can be simplified into: 
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( ) ( ) for r<R
2

( ) for r>R
2

d u V u r Eu r
m dr

d u Eu r
m dr

  

 




 

I. When r < R  

The Schrödinger’s equation is  

 

2 2

02 ( ) ( )
2

d u V u r Eu r
m dr

  
  

This equation can be rearranged into: 

 

2
2

12 ( ) 0d u k u r
dr

   

With  0
1 2

2 ( )m E Vk 



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and the solution is  

 1 1( ) sin cosu r A k r B k r   

To keep the wave function finite for r → 0 

 0 0

( )lim ( ) lim 0
r r

u rr
r


 

   

The coefficient B must be set to zero. Therefore the acceptable solution of physical 
meaning is 

 1( ) sinu r A k r  

II. When r > R  

The Schrödinger’s equation is  

 

2 2

2 ( )
2

d u Eu r
m dr

 
  

the solution is  

 
2 2( ) k r k ru r Ce De    

with  2 2
2mEk 




 

To keep the wave function finite for r →  

 
lim ( ) 0
r

u r


  

The coefficient D must be set to zero. Therefore the acceptable solution of physical 
meaning is 

 
2( ) k ru r Ce  

Applying the continuity conditions on u(r) and du/dr at r = R, we obtain 

 1 1 2cotk k R k   

This transcendental equation gives a relationship between V0 and R.  

From electron scattering experiments, the rms charge radius of the deuteron is 
known to be about 2.0 fm. Taking R = 2.0 fm we may solve from above equation 
the value of the potential depth V0. The result is V0 = 36 MeV. From the observed 

binding energy, the size of the deuteron can be defined by 
2

1 4.3 fm
k

 , which is 
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about twice that of the range of the potential. This explains the fact that the 
deuteron is a loosely bound state. (Its binding energy is 1.113 MeV per nucleon 
compared with the average value of over 8 MeV per nucleon in nuclei.) 

Since 0V E  

 1 2 1 0cot / /k R k k E V     

Hence   1cot 0k R   

 
1

3, ,...
2 2

k R  
  

or 
2 2 2 2

2
0

9, ,...
4 4

V R
M M
 


   

u(r) cannot have a node inside the well, for this would indicate that u(r) and hence 
wave function, is not the lowest (ground) energy level (Contradiction of our 
hypothesis) 

Hence only the first term retained, and  

 

2 2
2

0 4
V R

M



  

This relationship is known as Range depth relationship. The ground state wave 
function together with the range and depth of the potential and the ground state 
binding energy of the deuteron are shown in figure. 

 
Figure 3 
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3.3 Self Learning Exercise-I 

Q.1  State clearly the definition of nuclear quadrupole moment. 

Q.2  Draw three-dimensional square well nucleon-nucleon potential. 

Q.3  Write down the basic properties of deuteron. 

Q.4  Derive the range depth relationship of the Deuteron. 

3.4 Excited States of Deuteron 
Extending the calculations of the bound state to cases where the orbital angular 
quantum number l is greater than zero leads to a result that deuteron cannot exist in 
these states. For the extreme case, binding energy EB~0, k1R is still only slightly 

greater than /2, since the binding energy EB of the ground state has already been 
found negligible compared to the potential well depth V0. For the first excited state 

k1R would have to be greater than 3/2, since the wave function u(r) would have to 
have a radial node inside the well. But from equation: k1R must certainly be less 

than  for all positive values of binding energy. 

We shell here prove that for (l0) no bound state exists. It shall be assumed that 
the potential is central and of square well type.  The differential equation to be 

used in this case (l0), is which through the substitution ( ) ( )u r r r takes the 
form  

 
.0)()1()()(

2

2

22

2








 
 ru

Mr
hllrVE

h
M

dr
rud

  
With r > R  

 
Figure 4 

3.3 Self Learning Exercise-I 

3.4 Excited States of Deuteron 
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On comparing these equations, we find that it is equivalent to an S-wave radial 
equation with potential  

 2

2)1()()(
Mr

hllrVrV ffe



 

The second term on R.H.S. is called the centrifugal potential as its space derivative 
gives the classical centrifugal force. This potential is repulsive, there forces ‘l’ 
increases, the binding energy of the lowest bound state decreases. 

Returning back to equation and setting l=1, the next acceptable value of l after 0, 
we then get, 

 
.0)(2)(

2

2

22

2









 ru

Mr
h

h
M

dr
rud

 
Now E = -EB’ the binding energy of deuteron in the p state (l=1) and using a 
square well potential V = V0’ for r < R, for the p- state, equation may be written as  

for r < R    
2 2

'
02 2 2

( ) 2' ( ) 0B
d u r M hV E u r

dr h Mr
 

    
 

 

and for r > R       
2 2

2 2 2
( ) 2 ( ) 0B

d u r M hE u r
dr h Mr

 
   

 
 

Now letting  

 
 1 02' '_ 'B

Mk V E
h
    

 

and  2 2
'' .BMEk

h
   
 

 

The above equation may be written as 

 

2
2

12 3
( ) 2' ( ) 0d u r k u r

dr r
     

 

For r < R 

and 
2

2
22 3

( ) 2' ( ) 0d u r k u r
dr r

     
     

for  r > R 
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The least well depth, just repaired to produce this bound state, is the one for which 
the binding energy EB’ is just equal to zero, i.e., when 2 ' 0k   and 

  2
1 0 0' '/k MV h k   (say). 

If we put k0R= x, the wave equation reduces to 

 
0)(2)()(

22

2


x

ruru
dx

rud
 

for  0x k R  

and  
0)(2)(

22

2


x

ru
dx

rud
 

for 0x k R  

The solution of equation with the correct boundary condition becomes  

for 0 ,x k R   
1

2)(  xAru  

To solve equation, we make the substitution v = xu(r), so that 

 

( )dv du rx u
dx dx

   

and 
2 2

2 2
( ) ( )2d v d u r du rx

dx dx dx
   

and it can then be re-written as follows 

for 0 .x k R   
2

3
2 0d v dv v

dx x dx
    

Differentiating this equation with respect to x, we get 

for  0x k R   
3 2

3 2 2
2 2 0d v d v dv dv

dx x dx x dx dx
     

Dividing this equation by x throughout , we get   

for  0x k R     
3 2

3 2 2 3
1 2 2 1 0d v d v dv dv
x dx x dx x dx x dx

     

Now since 

 

2 3 2

2 3 2 2 3
1 1 2 2

'
d dv d v d v dv
dx x dx x dx x dx x dx

     
 
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then the equation may be re-written as  

for 0x k R     
2

2
1 1 0d dv dv

dx x dx x dx
    
 

 

Now since u(r)=vx-1, must vanish for x = 0, the solution of above equation is found 
to be  

for x < k0R.   1
1 sindv A x
x dx

  

Integrating it, we get 

for x < k0R,   1( ) (sin cos )v xu r A x x x    

To satisfy continuity condition at the boundary (r=R or x=k0R), these solutions 
yields, 

at x = k0R      (sin cos ) 0d x x x
dx

   

or                                x sin x = 0 at  x = R 

or  k0R  sin k0R = 0 at x = k0R 

The smallest positive root of this equation is k0R = . Hence a bound state of the 

deuteron for l  0 can exist only if k0R <  and this contradicts the previous 

statement that k0R ≃ . Therefore we conclude that no bound states exist for 
deuteron when l  0, i.e., deuteron does not possess any excited state. 

3.5 Deuteron Structure 
The deuteron is the only bound state of 2 nucleons, with isospin T = 0, spin-parity 
= 1+, and binding energy EB=2.225 MeV. For two spin half nucleons, only total 
spins S = 0, 1 are allowed. Then the orbital angular momentum is restricted to J − 1 
< l < J + 1, i.e., l π= 0, 1 or 2. Since the parity is  = (−) l = +, only l = 0 and l = 2 
are allowed; this also implies that we have S = 1. 

If the hamiltonian is 

 

2 2 2 2

122 2
1 ( ) ( )C T

d LH V r V r S
M r dr M r

    
   

using the following relation, 

3.5 Deuteron Structure 
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we find the radial equations 

 

2 2

2 8c s T D
d E V u V u

M dr
 

   
 


 

 

2 2
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6 2 8T c D T s

d E V V u V u
M dr r

  
      

  

  

These equations can be solved numerically. 

Other important information on the structure of the deuteron comes from the 
values of the magnetic moment µ and quadrupole moment Q: 

 µ = 0.8574 µN 

 Q = 0.2857 e−fm2 

Since Q0, the deuteron cannot be pure l = 0. But generally l = 0 is energetically 
favored for a central potential. Therefore, we write the deuteron wave function as a 
linear combination of S and D- waves 

 

1 13 3

0 011 2 211 00[ ]
S D

T

a b

aR Y bR Y

  



 

 
 

where a and b are constants with a2+b2=1. R0 and R2 are the radial wave 
functions, the isospin wave function is written as 

 
00

1 [ (1) (2) (1) (2)]
2

T
p n n p       

3.6 Magnetic Moment 

We first consider the implications of the magnetic moment. The magnetic moment 
operator is  

 
( )N s zi l zi

i

g s g l  
 

where gs = 4.7i + 0.88, where the first term is isovector, and the second term is 

3.6 Magnetic Moment 
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isoscalar. gl = (i + 1)/2. Since the deuteron is an iso-scalar particle, let us consider 
only the iso-scalar magnetic moment. Then, the above equation becomes,  

 
(0.88 0.5 )N zi zi

i

s l    

Note that since T = 0 only the isoscalar magnetic moment operator contributes to 
µ:  
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1 1
1

(0.88 0.5 )
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 
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



 


 








 

where we have used the fact that the sum of the two orbital angular momenta can 
be decomposed into the sum of the center-of-mass angular momentum and relative 
angular momentum. The center-of-mass angular momentum gives no contribution. 

Let us now calculate the matrix element of Sz  

 

011 011

211 011

2
211 211

` ` 1
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1` ` | 2(1 )1 |11 |
2

s

z

z

z s s
M

Y S Y

Y S Y

Y S Y M M





   

 

Thus, for pure l = 0 or l = 2 states we would have the values µ = 0.88µN, 0.31µN. 
More generally we obtain the relation  

 
2 2 2[ (0.88) (0.31)] (0.88 0.57 )N Na b b       

Therefore, the experimental value µD = 0.857µN implies that b2 = 0.04. However, in 
more sophisticated treatments one finds that it is quantitatively important to 
explicitly include the effects of meson exchanges on the magnetic moment. 

3.7 Quadrupole Moment 

Now we consider the quadrupole moment of the deuteron. Using the definition of  
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3.7 Quadrupole Moment 



60 
 

Here we have used the fact that for each nucleon the distance from the center of 
mass is only half the distance between them, ri= r/2. Now using the expressions for 
the wave function introduced above  

2 2
2 2 2 * * 2

0 00 20 00 0 2
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00 20 2

2
2 2 2 *
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| | 2Re( )
4 4
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      +|b | 1(1 )2 11
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 
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After evaluating the angular integrals and putting in the CG coefficients, one finds  

 

2
4 4 2
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16 2 | |Re(ab*)

5 10 20
bQ e r R R dr r R dr  

        
 

   

To proceed further we need to evaluate the radial integrals, so we would need to 
solve the radial Schrodinger equation and obtain the radial wave functions. Clearly, 
for a given potential model this is (in principle) possible. For our purposes, we will 

use our knowledge that b = 0.2 ≪ 1 from the magnetic moment analysis and keep 
only the first term. This will give us an approximate expression that we can set 
equal to the experimental value Qexp = 0.286 e fm2 to obtain the result  

 
4 2

0 2
0.2 2 0.286

10
Q e r R R dr efm   

Solving for the unknown radial integral yields 

 
4 2

0 2 10.1r R R dr fm  

for the radial integral. This value seems quite reasonable given that the mean 
squared charge radius of the deuteron is 4.0 fm2.  

 
To elucidate the effect of the tensor (non central) force on the structure of the 
deuteron let’s consider the quadrupole moment, for which we need to use the M = 
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1 state. The dominant S-D interference term in the quadrupole moment has MS = 1. 
So the spins of both the two nucleons are predominantly aligned parallel to z. Let’s 

simply take σ1 = σ2 = +z, and then σ1·σ2 = +1. Then we need to consider the 
relative orientation of r, and we will focus (see Fig. on two extreme cases: (a) r||z 

and (b) r ⊥ z).  

In case  

(a) σ1·r = σ2·r = 1, so we have S12 = +2 for this geometrical arrangement. This is 
a prolate configuration so we expect Q > 0 for case (a).  

(b) In case (b) we have σ1 · r =σ2 · r = 0 so S12 = −1 and the oblate shape relative 
to the z axis would imply Q < 0. 

Since experimentally Q > 0, case (a) must be energetically favored which 
corresponds to VT(r)<0. This then gives an attractive force when the configuration 
is such that S12 > 0 (case (a)) and a repulsive force when S12 < 0 (case (b)). 

Given VC(r) and VT(r), this is an eigenvalue problem for k2 with a free parameter to 
be determined: the ratio b/a. It was shown by Rarita and Schwinger that large class 
of potentials can solve these equations with the constraints EB = 2.225 MeV and  

Q = 0.286e-fm2. 

3.8 Self Learning Exercise-II 
Q.1  Define magnetic moment. 

Q.2  Explain that “no bound states exist for deuteron”. 

Q.3  Calculate the magnetic and Quadrupole moment of Deuteron. 

3.9 Answer to Self Learning Exercise 

Answer to Self Learning Exercise-I 
Ans.1: See Glossary 

Answer to Self Learning Exercise-II 
Ans.2: See Glossary 

3.10 Exercise 

Q.1  Solve the Schrodinger equation for the deuteron in a S-state under the 

3.8 Self Learning Exercise-II 

3.9 Answer to Self Learning Exercise 

3.10 Exercise 
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 assumption of square well potential. 

Q.2  Show that deuteron has the D-state admixture 

3.11 Summary 
After going through this chapter, you would be able to achieve the aforesaid 
objectives. Now we recall what we have discussed so far. 

 We have learnt the basic properties of deutron, its charge (+e), mass (~2.014 
amu), its radius (2.1 fermi), its binding energy (=2.225 .003 Mev), Spin and 
statistics (Bose-Einstein) and the electric quadrupole moment Qd =0.00282 
barn. 

 The study of deuteron problem, although hopelessly limited in as much as 
deutron possesses only the ground state and no-excited states exist for the 
bound neutron-proton system, gives invaluable clues about the nature of the 
nuclear force.  

 We learnt that neutron and proton can form stable combination (deuteron) only 
in the triplet state means when the n & p spins are parallel. The singlet state, 
i.e. a state of antiparallel n-p spins being unbound. 

 The existence of non-zero magnetic moment and electric quadrupole moment 
for deutron suggests that at least a part of the neutron proton force acting in 
deutron is non-central. 

3.12 Glossary 

Barn: A unit of cross-section, a barn is equal to 10-28 m2. 

Cross-section: a measure of the likelihood of a given process occurring at an 
accelerator. The idea is that two objects with a larger cross-sectional area are more 
likely to hit one another. So, larger cross-sections mean that a process is more 
likely to occur. Cross-sections are measured in barns, 10-28 m2. A barn is an 
extremely large cross-section in particle physics. Many interesting cross-sections 
are measured in pb (picobarns), which are equal to 10-12 barns. 

The magnetic moment: (or magnetic dipole moment) of an object is a measure of 
the object's tendency to align with a magnetic field. It is a vector quantity, with the 

3.11 Summary 

3.12 Glossary 
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positive direction defined by the way the object responds to a magnetic field: The 
object will tend to align itself so that its magnetic moment vector is parallel to the 
magnetic field lines. There are two sources for a magnetic moment: the motion of 
electric charge and spin angular momentum. For example, a loop of wire with a 
current running through it will have a magnetic moment proportional to the current 
and area of the loop, pointing in the direction of your right thumb if your fingers 
are curling in the direction of the current. Alternatively, an electron, which is a 
spin-1/2 fermion, has an intrinsic magnetic moment proportional to its spin. 

Quadrupole Moment: the quantity that characterizes the deviation from spherical 
symmetry of the electrical charge distribution in an atomic nucleus. It has the 
dimension of area and is usually expressed in sq cm. For spherical symmetry the 
nuclear quadrupole moment Q = 0. If a nucleus is extended along the axis of 
symmetry, then Q is a positive quantity, but if the nucleus is flattened along the 
axis, it is negative. The value of the nuclear quadrupole moment varies over a wide 
range. 
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UNIT-4 
Nucleon-Nucleon Scattering  

and Potentials: Part-I 
Structure of the Unit 

4.0  Objectives 

4.1  Introduction 

4.2  Neutron-proton scattering at low energy assuming central potential with 
square well shape 

4.3  Results of low energy n- p scattering  

4.4  Self learning exercise-I 

4.5  Spin dependence and scattering length 

4.6  Coherent scattering of neutrons by protons in ortho and Para hydrogen 
molecules  

4.7  Conclusions of these analysis regarding scattering lengths  

4.8  Self learning exercise II 

4.9  Summary 

4.10  Glossary 

4.11  Answers to self learning exercises 

4.12  Exercise 

 References and Suggested  Readings 

4.0 Objectives 
After interacting with the material presented here students will be able to 

 Learn n-p scattering at low energies with specific square well potential. 

 Comparatively study the results of low energy n-p scattering. 

 Know the spin dependence and scattering length. 

UNIT-4 
Nucleon-Nucleon Scattering  

and Potentials: Part-I 

4.0 Objectives 
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4.1 Introduction 

Having ascertained that nuclei are quantum mechanical systems composed of 
nucleons, it is quite plausible to study the nuclear forces under the simplest 
possible conditions. The simplest case in which the nuclear force is effective is 
when: 

1.  When the two nucleons are bound together.The three possible bound states of 
a two nucleon system, di-neutron (nn), di-proton (pp) and deuteron (np), 
nature has provided us with only the deuteron and the other two are unstable. 

2.  When the two nucleons are in free state and one is made to impinge on the 
other, i.e. The scattering processes. 

  In practice, it is not possible to make a neutron target and therefore scattering 
experiments are limited only to neutron proton (np) scattering and proton-
proton (pp) scattering. 

The first case we discussed in previous chapter and second case we will discuss in 
our upcoming two chapters. In this chapter we will focus only on np scattering. 

The first question arises in our mind is that, What is Scattering? The answer is, 
when an intense and collimated beam of nucleons is born barded on target nuclei 
the interactions between incident nucleus and target nuclei takes place. As a result 
we may observe the following two possibilities: 

1. The interaction does not change the incident particles, i.e., incoming and 
outgoing particles are the same. The change is in the path of incoming 
nucleons, i.e., they are deviated from their original path. This process is known 
as scattering, In scattering processes the outgoing particles may have same 
energy as that of incident particles or may have the changed energy value. The 
former is known as elastic scattering and latter is known as inelastic scattering. 

2. The second possibility is that the outgoing particles are different from the 
incident particles. Then the interaction process is known as nuclear reaction. In 
nuclear reaction we have two alternatives: 

       It should be remembered that any of the above alternative may occur, either 
alone or with other competing processes.  

Among the nucleon-nucleon scattering, neutron proton (n-p) scattering is the 

4.1 Introduction 
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simplest one, because here the complications due to coulomb forces are not 
present. The neutron neutron (n-n) scattering is not practically possible because of 
the non availability of neutron target (because neutron decays into proton in a few 
minutes). However, their are evidences to support if n-n forces are similar to p-p 
forces, a bound state for two neutrons cannot exist. 

4.2  Neutron-Proton Scattering at Low Energy assuming 
 Central Potential with Square Well Shape 

In np scattering neutron proton system is analyzed in the state of positive energy, 
i.e., in a situation when they are free. In the experiment, a beam of neutrons from 
an accelerator is allowed to impinge on a target containing many essentially free 
protons. The simplest substance is hydrogen gas but in some cases other substances 
like thin nylon sheet and paraffin are used. Hence, it is natural to think that in 
target protons are not free but are bound in molecules. The molecular binding 
energy is so small about 1eV, therefore, for the impinging neutrons of energy 
greater than 1eV, protons are treated as free. The presence of electrons also do not 
affect the process because they are too light to cause any appreciable trouble to 
incoming neutrons. When neutrons impinge on protons, some of them are captured 

to form deuteron and balance of energy is radiated in the form of  rays; but the 
great majority of neutrons undergo elastic scattering. In the process, the interaction 
between two nucleons is of such an order that the neutrons changed their velocities 
in magnitude as well as in direction.  

Neutron – Proton Scattering at Low Energies  

 In the low energy range most of the measurements of scattering cross 
section are due to Melkonian and Rainwater et.al. A beryllium target bombarded at 
by deuterons accelerated in a cyclotron, provided the neutron beam which was shot 
at a target containing free protons. 

Results from figure 1  show that the scattering cross section depends very much on 
the energy of the incident neutrons. At low energies below 10 Mev, the scattering 
is essentially due to neutrons having zero angular momentum (l=0) and hence in 
the centre of mass system, the angular distribution of scattered neutrons is 
isotropic.  In order to avoid complications due to Coulomb forces we shall consider  

4.2  Neutron-Proton Scattering at Low Energy assuming 
 Central Potential with Square Well Shape 
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the scattering of neutrons by free protons viz. those not bound to molecules. 
However in practice the  protons are of course  bound  to  molecules  but  the  

molecular binding energy is only about 0.1 ev. Therefore if the incident neutrons 

have an energy greater than about 1ev. The protons can be regarded as free. 

 
Figure 1: np scattering cross section 

In describing elastic scattering events like the scattering of neutrons by free 
protons it is more convenient to use the center of mass system. The quantum 
mechanical problem describing the interaction between two particles, in the center 
of mass system, is equivalent to the problem of interaction between a reduced mass 
such as the system. Although while wording out the following theory we shall 
think in terms of a neutron being scattered by a proton but it applies equally well to 
spin less, reduced mass particle which is being scattered by a fixed force center.  

Let us suppose that the neutron and the proton interact via a spherically symmetric 
force field whose potential function is V (r), where r is the distance between the 
particles. 

The Schrodinger equation for a central potential V (r) in the center of mass system, 
for the n-p system is  

 
  0)(2

2 



  rVE

h
M

 
Where M is the reduce mass of the n-p system. 

To analyze the scattering event, we have to solve this equation under proper 
boundary conditions. In the immediate vicinity of the scattering center, the action 
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will be violent and its description is difficult. At a considerable distance from the 
scattering center where the experimentalist lies in wait for the scattered particles, 
things will however be simpler. For scattering the boundary condition is that at 
large distances from the scattering center the wave should be made up of two parts:  

1. an incident plane wave that describes the unscattered particles and super-
imposed upon it,  

2. an outgoing scattered spherical wave which emanates from the scattering 
center. To solve in asymptotic form, 

 scinc    
The wave function that describes an incident plane wave (a beam of particles) 
moving in the positive z-direction is  

 ,cos ikzikz
inc ee   

Where 2
MEk
h

   
 

  

which is a solution of the wave equation with V(r) set equation zero,  
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Setting V(r) equal to zero in this manner actually amounts to switching off the 
scattering potential and there by eliminate scattering so that the total wave function 
becomes identical with the incident wave function. The wave function represents 
one particle per unit volume since the square of the wave function is equal to unity. 
Having known the form of the incident wave function, the next problem is to 
devise a suitable form for the scattered wave function. This obviously is 

 
  ,

r
ef

ikr

sc  
 

For large r f( ) in this expression indicate amplitude of the scattered wave  in the 

direction . This wave function is a necessary consequence of the assumption that 
the scatterer simply scatters the particles and does not absorb them at all. 

The probability density and hence the number of scattered particles per unit 

volume shall be proportional to 2
sc . If scattering is considered to be isotropic, 

the density (number per unit volume) of scattered particles through a large 
spherical shell of radius r is inversely proportional to r2 since the volume of the 
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spherical shell, being given by 
24 r dr, is proportional to r2 and density therefore is 

proportional to 1/r2 which is also proportional to
2

sc .  Hence 1/r2 dependence of 

sc . 

Therefore the wave function, in a form we are actually interested viz. asymptotic, 

may be written as.   .
ikr

ikz
inc sc

ee f
r

        

Now, in Fourier analysis we often expand as arbitrary function into a sense of 
harmonic functions of various frequencies. So we expand the incident plane wave 

function eikz in terms of Legendre Polynomials Pl (cos) and write. 

 
 

0
( ) cosikrcos

inc l l
l

e B r P 




   

where l is an integer representing the various partial waves. This particular way of 
writing the wave function is termed as the partial wave expansion. 

The radial functions B1(r) in this equation are given by  

 ),()12()( krjlirB l
l

l   
Where Jl(kr) is the Spherical Bassel function  which is related to the ordinary 
Bessel function  through the formula  
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and can be represented as  
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Whence asymptotically  
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Asymptotically, Bl(r) from is given by  
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The Spherical Bessel function Jl(kr) for various values of l are given below 
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These functions are plotted in the Fig. 

 

Similarly f() may also be expanded in terms of the Legendre Polynomials as 
follows  
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Substituting from equation in equation we obtain  
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Since each term in the equation with a specific value of the orbital angular 
momentum quantum number l, represents a solution of the wave equation in 
spherical polar co-ordinates for constant potential energy. Therefore the expansion 
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classifies the particles in the beam according to their angular momenta which is of 
great practical importance since at lower energies below 10 Mev, most of the 
scattering is due to l=0 particles, i.e. the number of partial waves is severely 
limited in this case and it suffices to study the scattering only for l=0, i.e. S-wave.  

For l=0 

 
  .......

6
1)sin()(

2

0 
kr

kr
krrB

 
and for l=1 
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We have found out the ratio of the square, since the probability density is 
determined by Bl

2(r). To have an idea of the magnitude of this ratio, let us consider 
a neutron of energy 1 Mev in the L-system, it will be 0.5 Mev in the C-M system. 
Neutron momentum then is  
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If we assume the nuclear forces to have a range r = 2 Fermi, then  
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      = 0.0961, 

i.e. at an energy of 1 Mev only about 9% of the scattering is due to neutrons with 
l=1. Similar calculation for a neutron of energy 10 Mev raises this percentage to 
about 49%. Therefore in the energy range below 10 Mev. S-wave scattering (l=0) 
is predominant. 
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4.3 Results of Low Energy n-p Scattering  

The theory for the scattering cross-section developed in the previous section is in 
fact a theory for the phase shift  which in turn depends up on the assumptions 
regarding the nature of the scattering potential V(r). We now proceed to carry out 
the calculations for the same rectangular potential well as was assumed in sections 
for the deuteron ground state. 

The radial Schrodinger equation for l=0, viz. equation inside and outside the 
nuclear square potential well may be written as  

          for r < r0, 

         for r > r0, 

Since in the present case of n-p scattering, the negative binding energy is replaced 
by a small positive energy E which is much smaller than the well-depth V0. These 
equation may be written as  
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2
20

02 0d u k u
dr

     for r > r0, 

Where ui is the wave function inside the well and u0 that outside  the well and  

  

Equation has the solution   

And equation has the solution   

Which may be written as  

In order to understand the significance of the phase shift ,  the Schrodinger 
equation would be equation V(r) set equal to zero, the solution of which would 
have to be of the form  

  

Since it must vanish at r= o. The solution which holds good only outside the well. 

Thus  is the phase shift at large distances  introduced by switching  on  the 
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scattering potential. 

We now require that the solution and join smoothly at r = r0 i.e. the logarithmic 
derivative must be continuous at r=r0 viz, 

  

This condition, with the aid of equation gives 

  

This result may be compared with the continuity condition equation for the ground 
state of the deuteron viz. 

  

where 2
BME 


 

To simplify the matching condition in case of n-p scattering, we assume that inside 
the well, the scattering wave function is not much different from the deuteron wave 
function. This appears quite reasonable since the two situations differ only in that 
the total energy E in this case although small, is positive whereas the deuteron 
binding energy EB is small, but negative. We therefore assume that the logarithmic 
derivative KcotKr0 of the inside wave function for scattering could be 
approximated by the value of the logarithmic derivative of the ground state wave 
function of deuteron viz.  . Hence from  

  0 0cotk kr      

At this point we introduce another approximation that r0 is very small (possibly 
zero) compared to  so that kr0 may be neglected in the above 
equation and then 

 0cotk     or 0cot / k    

Now the total scattering cross-section for l=0 from equation is given by  
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where we have substituted the values of k2 and 2 from equations and respectively.  

4.4 Self Learning Exercise-I 
Q.1  What is Scattering? 

Q.2  Draw a neutron proton scattering cross section graph. 

Q.3  Write down the Schrodinger equation, for the n-p system, for a central 
potential V (r) in the center of mass system. 

Q.4  Discuss in detail the results of low energy np scattering. 

4.5 Spin Dependence and Scattering Length 
Spin dependence:  

E. P. Wigner suggested that the inter-nucleon forces are spin-dependent. Since 

neutron and proton are 
2
1 spin particles, therefore in n-p scattering the neutron and 

proton spins may either be parallel or anti parallel. In deuteron the bound state of 
the n-p system, whose binding energy EB, the neutron and proton spins are parallel 
and therefore this equation possibly holds good for parallel spin case. 

The state of parallel spins, is a triple state and has a statistical weight 3 
corresponding to the three allowed orientations of the angular momentum vector 
under an external magnetic field. The state of anti parallel spins is a singlet state on 
account of the non orientability of a vector of zero length and has a statistical 
weight. 

In a scattering experiment in general neutron and proton spins are randomly 
oriented and so are the spins of neutrons in the incident beam and therefore singlet 
and triplet state of the n-p system will occur in proportion to the statistical weight 

factors for these states which are 
2
1 and 

4
3  respectively. The total scattering cross-

section therefore shall be made up of two parts, ,0t - the cross-section for 
scattering in the triplet state and 0,s  the scattering cross-section in the singlet 
state, as follows 
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0,0,0 4

1
4
3

st    

We therefore take t= 4.6 b and using the measured value of  = 20.4 b for the 
low-energy cross section, we deduce 

 s = 67.8 b 
This calculation indicates that there is an enormous difference between the cross 
sections in the singlet and triplet states that is, the nuclear force must be spin 
dependent. 

From a naïve point of view, in a random distribution of spins as in n-p scattering, 
the two spins are as often parallel as antiparallel giving equal statistical weights to 
the two states. However quantum mechanically, the spin direction cannot be 
defined as uniquely as a vector in space and hence the statement ‘spin pointing up’ 
simply tells that the spin vector points somewhere along a cone around the vertical 
direction. The following figure depicts schematically the four equally likely 
situations for the relative spins of the two particles. 

               
 

 

                                             

                                               

(4) 

(1) 

(2) 

(3) 
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Figures (1) and (4) correspond to a total spin unity corresponding to the magnetic 
quantum number values +1 and -1 respectively. In cases (2) and (3) the z-
components add up to zero but since the spins are not aligned along the z-direction, 
they may add up to zero as in case (2) resulting in a singlet state or may add up to a 
total spin perpendicular to the z-axis as in case (3) giving rise to a triplet state. 

Scattering Length:  

Fermi and Marshall introduced a very useful concept the ‘scattering length a’ for 
the discussion of nuclear scattering at very low incident neutron energy. 

     and hence    

which is defined as follows: 
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With this definition, equation giving the total scattering cross section form S-wave 
(l=0) may be written for very low incident neutron energy as  
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Equation then indicates that ‘a’ has the geometrical significance of being the radius 
of a hard sphere surrounding the scattering center from which neutrons are 
scattered and so has the dimensions of length, hence the name scattering length.  

Now it is to be noted from equation that as 0k  (i.e.,) as the energy E of the 
incident neutron approaches 0,   must approach either 0 or   otherwise the cross-
section at zero neutron energy would become infinite which is physically absurd. 
Therefore at very low incident neutron energies ( 0E ), equation reduces to  

 k
a 0  

Then at very low incident neutron energies, the wave function outside the range of 
nuclear force as expressed by equation may be written as  
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The equation then gives a simple graphical interpretation of the scattering length. 
This equation represents a straight line for U(r) and the scattering length ‘a’ is the 
intercept on the r-axis. This is indicated in Figure. 

Having defined the scattering length by means of equations an inquisitive reader 
may ask quite naturally what is the significance of positive or negative scattering 
length ? or  what is the significance of attaching a positive or a negative sign with 
at the scattering length? It tells us whether the system has a bound or an unbound 
state.     

 
From figure it is clear that positive scattering length indicates a bound state and 
negative scattering length indicates a virtual or unbound state. Since the deuteron 
wave unction, i.e., the wave function for the bound state of n-p system, must curve 
towards the r-axis in order to match the exponentially decaying solution (c.f. 
equation i.e. r >r0 will give rise to a positive intercept on the r-axis indicating 
thereby a positive scattering length. For unbound state the wave function has to 
match with an increasing solution outside the range r0 and then extrapolation of 
U(r) shall produce a negative intercept on the r-axis implying thereby a negative 
scattering length. 

4.6  Coherent Scattering of Neutrons by Protons in Ortho 
 and  Para Hydrogen Molecules  
We can verify our conclusions about the singlet and triplet cross sections in a 
variety of ways. One method is to scatter very low energy neutrons from hydrogen 

4.6  Coherent Scattering of Neutrons by Protons in Ortho 
and Para Hydrogen Molecules  
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molecules. Molecular hydrogen has two forms, known as orthohydrogen and 
parahydrogen. In orthohydrogen the two proton spins are parallel, while in 
parahydrogen they are antiparallel. The difference between the neutron scattering 
cross sections of ortho- and parahydrogen is evidence of the spin-dependent part of 
the nucleon-nucleon force. Our discussion of the cross section for neutron-proton 
scattenng is inadequate for analysis of scattering of neutrons from H2 molecules. 
Very low energy neutrons (E < 0.01 eV) have a de Broglie wavelength larger than 
0.05 nm, thus greater than the separation of the two protons in H2. The uncertainty 
principle requires that the size of the wave packet that describes a particle be no 
smaller than its de Broglie wavelength. Thus the wave packet of the incident 
neutron overlaps simultaneously with both protons in H2, even though the range of 
the nuclear force of the individual neutron-proton interactions remains of the order 

of 1 fm. The scattered neutron waves 1 and 2 from the two protons will 
therefore combine coherently; that is, they will interfere, and the cross section 

depends on |1 + 2|2, not |1|2 + |2|2. We cannot therefore simply add the 
cross sections from the two individual scatterings. (At higher energy, where the de 
Broglie wavelength would be small compared with the separation of the protons, 
the scattered waves would not interfere and we could indeed add the cross sections 
directly. The reason for choosing to work at very low energy is partly to observe 
the interference effect and partly to prevent the neutron from transferring enough 
energy to the H2 molecule to start it rotating, which would complicate the analysis. 
The minimum rotational energy is about 0.015 eV, and so neutrons with energies 
in the range of 0.01 eV do not excite rotational states of the molecule.)  

4.7 Conclusions of these Analysis regarding Scattering 
 Lengths  
To analyze the interference effect in problems of this sort, we introduce the 

scattering length a, defined such that the low-energy cross section is equal to 4a2 
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The choice of sign is arbitrary, but it is conventional to choose the minus sign. 

4.7 Conclusions of these Analysis regarding Scattering 
 Lengths  
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Even though the scattering length has the dimension of length, It is a parameter 
that represents the strength of the scattering, not its range. To see this, we note 

from above equation that 0 must approach 0 at low energy in order that a remain 

finite. The scattered wave function can be written for small 0 as 

 
0

scattered

ikr ikre eA Aa
k r r


     

Thus a gives in effect the amplitude of the scattered wave. 

 
The sign of the scattering length also carries physical information. Figure shows 
representations of the triplet and singlet scattered wave functions u(r). The triplet 
wave function for r < R looks just like the bound state wave function for the 
deuteron: u(r) "turns over" for r < R to form the bound state. The value of at is 
therefore positive. Because there is no singlet bound state, u(r) does not turn over 
for r < R, so It reaches the boundary at r = R with positive slope When we make 
the smooth connection at r = R to the wave function beyond the potential and 
extrapolate to u(r) = 0, we find that as, the singlet scattering length, is negative. 

Our estimate t = 4.6 b from the properties of the deuteron leads to at = + 6.1m, 

and the estimate of s = 67.8b needed to reproduce the observed total cross section 
gives as = -23.2 fm. 

The theory of neutron scattering from ortho and parahydrogen gives 

  para =5.7(3at + as )
2 

 ortho =  para + 12.9(at - as )
2 

where the numerical coefficients depend on the speed of the incident neutron. 
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The measured cross sections corrected for absorption, for neutrons of this speed are 

para = 3.2 ± 0.2 b and ortho = 108 ±1 b. If the nuclear force were independent of 

spin, we would have t = s and thus at = as; thus para and ortho would be the 

same. The great difference between the measured values shows that at  as, and it 
also suggests that at and as must have different signs, so that - 3at = as in order to 

make para small. Solving equations for as and at gives 

 as = -23.55 ± 0.12 fm 

 at = +5.35 ± 0.06 fm 

consistent with the values deduced previously from t and s. There are several 
other experiments that are sensitive to the singlet and triplet scattering lengths; 
these include neutron diffraction by crystals that contain hydrogen (such as 
hydrides) as well as the total reflection of neutron beams at small angles from 
hydrogen-rich materials (such as hydrocarbons). These techniques give results in 
good agreement with the above values for as and at".  

The theory we have outlined is valid only for l = 0 scattering of low-energy 
incident particles. The l = 0 restriction required particles of incident energies below 
20 MeV, while our other low energy approximations required eV or keV energies. 

As we increase the energy of the incident particle, we will violate  long before 
we reach energies of 20 MeV. We therefore still have l= 0 scattering, but at these 

energies (of order 1 MeV) equations 0
scattered

ikr ikre eA Aa
k r r


     are not valid. 

This case is generally treated in the effective range approximation, in which we 
take 

 k cot 0 = 1/a + 1/2 r0k
2 + ... 

and where terms in higher powers of k are neglected. The quantity a is the zero-
energy scattering length we already defined (and, in fact, this reduces to 

0
0

sinlimka
k


   in the k ~ 0 limit), and the quantity r0 is a new parameter, the 

effective range. One of the advantages of this representation is that a and r0 

characterize the nuclear potential independent of its shape; that is; we could repeat 
all of the calculations done in this section with a potential other than the square 
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well, and we would deduce identical values of a and r0 from analyzing the 
experimental cross sections. Of course there is an accompanying disadvantage in 
that we can learn little about the shape of the nuclear potential from an analysis in 
which calculations with different potentials give identical results! 

Like the scattering lengths, the effective range is different for singlet and triplet 
states. From a variety of scattering experiments we can deduce the best set of l= 0 
parameters for the neutron-proton interaction: 

 as = -23.715 ± 0.015 fm 

 r0s = 2.73 ± 0.03 fm 

 at = 5.423 ± 0.005 fm 

 r0t = 1.748 ± 0.006 fm 

As a final comment regarding the singlet and triplet neutron-proton interactions, 
we can try to estimate the energy of the singlet n-p state relative to the bound 
triplet state at - 2.22 MeV. Using Equations we would deduce that the energy of the 
singlet state is about + 77 keV. Thus the singlet state is only slightly unbound. 

4.8 Self Learning Exercise II 

Q.1  Which state is known as triplet state. 

Q.2 Define scattering length and its physical significance. 

Q.3 Explain that the nuclear force must be spin dependent. 

Q.4  Discuss Coherent scattering of neutrons by protons in ortho and Para 
hydrogen molecules. 

4.9 Summary 
In this chapter we have discussed n-p scattering at low energies with square well 
potential. We also discussed that the nuclear forces are spin dependent i.e., nuclear 
forces not only depend upon the separation distance but also upon the spin 
orientations of two nucleons. They are independent of the shape of nuclear 
potential. 

4.10 Glossary 
Angular Momentum : A measure of the momentum  of  a  body  in rotational 

4.8 Self Learning Exercise II 

4.9 Summary 

4.10 Glossary 
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motion about its centre of mass. Technically, the angular momentum of a body is 
equal to the mass of the body multiplied by the cross product of the position vector 
of the particle with its velocity vector. The angular momentum of a system is the 
sum of the angular momenta of its constituent particles, and this total is conserved 
unless acted on by an outside force.  

Neutron : One of the two main building blocks (along with the proton) of the 
nucleus at the centre of an atom. Neutrons have essentially the same mass as a 
proton (very slightly larger) but no electric charge, and are made up of one “up” 
quark and two “down”quarks. The number of neutrons in an atom determines 
theisotope of an element. Outside of a nucleus, they are unstable and disintegrate 
within about ten minutes.  

Nucleus: The tight cluster of nucleons (positively-charged protons and zero-
charged neutrons, or just a singleproton in the case of hydrogen) at the centre of an 
atom, containing more than 99.9% of the atom’smass. The nucleus of a typical 
atom is about 100,000 smaller than the total size of the atom(depending on the 
individual atom).  

Proton : One of the two main building blocks (along with the neutron) of the 
nucleus at the centre of an atom. Protons carry a positive electrical charge, equal 
and opposite to that of electrons, and are made up of two “up” quarks and one 
“down” quark. The number of protons in an atom’s nucleus determines its atomic 
number and thus which chemical element it represents.  

Spin: Spin is a characteristic property of elementary particles 

4.11 Answers to Self Learning Exercise 

Answers to Self Learning Exercise-I 
Ans.1: When an intense and collimated beam of nucleons is born barded on target 

nuclei the interactions between incident nucleus and target nuclei takes 
place. The interaction does not change the incident particles, i.e., incoming 
and outgoing particles are the same. The change is in the path of incoming 
nucleons, i.e., they are deviated from their original path. This process is 
known as scattering 

Ans.2: section 4.2 

4.11 Answers to Self Learning Exercise 
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Ans.3:  2
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Answers to Self Learning Exercise-II 

Ans.1: The state of parallel spins is called triplet state.  

Ans.2:  ‘a’ has the geometrical significance of being the radius of a hard sphere 
surrounding the scattering center from which neutrons are scattered and so 
has the dimensions of length, hence the name scattering length.  
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Ans.3:   0,0,0 4
1

4
3

st    

 where t= 4.6 b and  = 20.4 b (for the low-energy cross section), we 

deduce   s = 67.8 b 

 This calculation indicates that there is an enormous difference between the 
cross sections in the singlet and triplet states that is, the nuclear force must 
be spin dependent. 

4.12 Exercise 
Q.1  Write short note on scattering length. 

Q.2  Discuss Neutron-proton scattering at low energy. 

References and Suggested Readings 
1.  Elementary Nuclear Theory by Bethe and Morrison. 

2.  The Atomic Nucleus by R D. Evans. 

3.  Atomic and Nuclear Physics by Brijlal and Subhraininyan. 

4.  Nuclear Physics by D. C Tayal. 

5.  Nuclear Physics by Irving Kaplan. 

6.  Introductory Nuclear Physics by Kenneth S. Krane 

  

4.12 Exercise 
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UNIT-5 
Nucleon-Nucleon Scattering  

and Potentials: Part-II 
 

Structure of the Unit 

5.0  Objectives 

5.1  Introduction 

5.2  Boson Exchange Potentials 

5.3  Basic Potentials 

5.4  Hamada-Johnston Potential  

5.5  Yale-Group Potential 

5.6  Reid68 and Reid-Day Potentials 

5.7  Self learning exercise I 

5.8  One Boson Exchange Potential 

5.9  Self learning exercise II 

5.10  Summary 

5.11  Glossary 

5.12  Answers to self learning exercises 

5.13  Exercise 

 References and Suggested Readings 

5.0 Objectives 
After interacting with the material presented here students will be able to 
understand 

 Hamada- Johnston hard core potential 

 Reid hard core and soft core potentials and 

 One boson Exchange Potentials 

UNIT-5 
Nucleon-Nucleon Scattering  

and Potentials : Part-II 

5.0 Objectives 
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5.1 Introduction 

The interaction between two nucleons is basic for all of Nuclear Physics. The 
traditional goal of Nuclear Physics is to understand properties of atomic nuclei in 
terms of the "bare" interaction between pairs of nucleons. With starting of 
Quantum Chromo Dynamics (QCD), it became clear that the NN interaction is not 
fundamental. Nevertheless, even today, in any approach towards a nuclear 
structure problem, one assumes the nucleons to be elementary particles. The failure 
or success of this approach may then teach us something about the relevance of sub 
nuclear degrees of freedom. A large number of physicists, all over the world, have 
investigated the NN interaction for the past 70 years. This interaction is the 
empirically best known piece of strong interactions; in fact, for no other sample of 
strong force a comparable amount of experimental data has been accumulated. The 
oldest attempt to explain the nature of the nuclear force is due to Yukawa. 
According to this theory massive bosons (mesons), mediate the interaction between 
two nucleons. Although, in the light of QCD, meson theory is not perceived as 
fundamental anymore, the meson exchange concept continues to represent the best 
working model for a quantitative Nucleon-Nucleon potential. Most basic questions 
were settled in the 1960's and 70's such that in recent years we could concentrate 
on the subtleties of this peculiar force. 

5.2 Boson Exchange Potentials 
The potential acting between a pair of particles due to the exchange of a meson has 
a range of the order of the meson Compton wavelength that is inversely 

proportional to the meson mass. Since the π meson is the lightest boson that can 
be exchanged between a pair of nucleons, the OPEP determines the long-range part 
(beyond the pion Compton wavelength) of the two-nucleon potential. If one wants 
information on the two-nucleon potential at intermediate- and short-ranges, one is 
then faced with the computation of the potential arising from the exchange of the 
heavier bosons and two, three,… pions. Since this computation is comparatively 
more difficult, thus at the potentials constructed based on symmetries (e.g., Breit 
and coworkers potential), it is determined phenomenologically; while at the meson 
theory of the two-nucleon potential, these exchanges are considered explicitly. It is 
understood that multi-meson systems most often have strongly correlated 

5.1 Introduction 

5.2 Boson Exchange Potentials 
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resonance states behaving as a single boson. It is therefore speculated that some of 
these multi-meson resonances, when exchanged between two nucleons may 
dominate the intermediate- and short-range behavior of the two-nucleon potential. 
The potential computed in this way is called the one-boson-exchange potential 

(OBEP). Besides the exchange of one π meson, also other exchanges have been 
explicitly considered in the OBEP. A main difference amongst workers on the 
meson theoretic two-nucleon potential lies in their manner of treatment of the two-
pion system. An approach in which the effect of the two-pion system is 
parameterized through one or two isoscalar (T=0), scalar (J=0) mesons is one such 
treatment. In another development of the theory, the effect of the S-state of the 
two-pion system is parameterized through the scattering length and effective range. 
In yet another attempt the effect of two-pion continuum is considered in more 
detail and the resultant potential taken into account explicitly. Various authors also 
differ in the details of their method of computing the potential. Broadly speaking, 
conventional field-theoretical techniques and the dispersion theoretic method are 
the two principal methods of solving the problem that we do not express these 
methods in details here. Therefore, in other words, the boson exchange potentials 
are based on effective field theory and are expanded to nucleon-nucleon, pion-
nucleon, and pion-pion interactions. These models do not any reference to QCD, 
but the baryon and meson fields have been considered as the asymptotic states that 
absorb all effects from quark-gluon dynamics. The discovery of the spin-one or 

vector mesons ρ and ω with the masses around 770-780 MeV was provided a 
progress and led to the expansion of the OBE potentials. In these models, the 

unrelated single exchange contributions of the pseudoscalar mesons π (138) ,  

(549) and the vector mesons  (769), (783) as well as the scalar meson  (983) 
have been considered and iterated into the scattering equation. In addition, the two-
pion exchange associated with the fictional scalar sigma meson with the masses 
around 400-800 MeV was demonstrated. The core region was finally 
parameterized by the phenomenological form factors related to the meson-nucleon 
vertices. Finally, those form factors formed the substructure of QCD. Such OBE 
potentials provided the first quantitative approximation of data. Many models of 
these potentials exist that each have owns definite and separable features. It is now 
known that these are the standard NN potentials, of course. A few examples are 
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Nijmegen, Paris, and Bonn potentials. Broadly speaking, in this quark-antiquark 
pair (=meson) exchange model, we have the following features:  

a. It is similar to quark exchange (just reverse direction of one quark).  
b. It gives a very good description of many aspects of NN potential.  
c. It is preferred because meson states are color-neutral and have relatively low 

mass (larger range).  
d. It studies OPEP and generalizes to other mesons- so far only model that gives 

perfect agreement with data, especially for long-range part. 

5.3 Basic Potentials 
The range of the nucleon-nucleon interaction is divided to the three parts: the 

short-range (r  1 fm), the intermediate-range (1 fm r  2 fm), and the long 

range (r  2 fm). For the long-range part, one-pion exchange (OPE) has usually 
been considered. The short-range part has often been discussed 
phenomenologically; in some models, form factors are introduced to regularize the 
potential at the origin whereas in other models a hard core is used. The first logical 
approach to describe the intermediate-range region was to include the two-pion 
exchange (TPE) contributions. However, these TPE models, did not give a 
satisfactory description of the NN scattering data, mainly due to a lack of a 
sufficient spin-orbit force. Gammel, Christian, and Thaler  hinted the necessity of a 
spin-orbit force, when they tried to fit all of the data available at that time with a 
phenomenological velocity dependent (local) potential as:  

 V =VC(r) +VT(r) S12 

for each of four spin and isospin combinations and they failed. In 1975, the 
simultaneous construction of the purely phenomenological potentials by Gammel-
Thaler and the semi-phenomenological Singell-Marshak potential, where both 
models introduced phenomenological spin-orbit potentials, began. The Gammel-
Thaler model gave a good fit to scattering data up to 310 MeV. The Singell-
Marshak model, consisting of the TPE Gartenhaus potential together with a 
phenomenological spin-orbit force, was successful up to 150 MeV. Okubo-
Marshak showed that the most general two nucleon potential, considering 
symmetry conditions, is as follows: 

5.3 Basic Potentials 
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where L, S, and Q12 are spin-orbit and quadratic spin-orbit- operators, respectively.  

 
12 1 2 2 1

1{( . )( . ) ( . )( . )}
2

Q l l l l      

Twelve terms are given by twelve radial functions V0(r) , ... . We can obtain the 
V(r)'s from our knowledge from the basic nature of the nuclear force such as the 
meson exchange and or from the semi-empirical procedure by fitting some 
assumed forms of the radial dependence to experimental data. When our 
understanding of QCD is fully developed in the future, it will be possible to 
determine these functions from first principles. The first four terms are the central 
force terms and in this case, L and S are the good quantum numbers. In the 
presence of the other terms, two-nucleon system is invariant only in the combined 
space of L and S labeled by J; 

 1 2( ) ( ) . ( . )( . )ls LS LSV r V r L S V L S     

The reason for these two terms comes from the possibility that the radial 
dependence of the isospin-dependent and of the isospin-independent parts may be 
different from each other, for example as the result of different mesons being 
exchanged. The six and the seven terms are the tensor force. The ninth and the 
tenth quadratic spin-orbit terms enter only when there is momentum dependence in 
the potential. The last two terms are often dropped since for elastic scattering, they 
can be expressed as a linear combination of other terms. Their contributions 
therefore cannot be determined using elastic scattering, for which most of our 
information on NN interaction is derived. Then, soon after, better potential forms 
were constructed. Some examples are Hamada-Johnston, Yale, and the various 
hard- and soft-core models constructed by Reid. Before going into the treatment of 
other potentials, it is useful to mention that most of the experimental elastic phase 
shifts are extracted from the pp and np differential cross sections. In these models, 
the data are fitted up to the energy range 0-350 MeV, because, as already 
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mentioned, in higher energies (with the threshold 270 MeV) the pion production 
and other relativistic effects become important and the Schrödinger two-nucleon 
equation is therefore no longer sufficient.  

Hamada-Johnston and Yale group potentials reproduce all the two-body scattering 
data (including the polarization parameters) as a function of energy over the energy 
range of several hundred MeV. The Yale potential was especially designed to 
reproduce the phase shifts in various two-nucleon states as smooth functions of 
energy. As a first step, the phase parameters (phase shifts, and the mixing 
parameter in the case of coupled states) were determined as a function of energy by 
direct fit to all the scattering and polarization data. The setting up of the potential 
with its parameters adjusted to reproduce the phase parameters may be regarded as 
the second step in this type of work. The first step, namely the determination of the 
phase parameters as a function of energy has been practiced very efficiently by 
several groups of workers including the Yale, Livermore, and other- teams. The 
actual procedure, now almost standardized, entails expressing the scattering 
amplitude as the sum over partial waves up to a certain maximum orbital angular 
momentum lmax (the usual value chosen for lmax is more or less 5). The contribution 
of all higher partial waves is then taken to be represented by the one-pion exchange 
contribution (OPEC) to the scattering amplitude. The Yale group took the OPEP as 
a given component of the potential and then determined the rest of the potential by 
fitting the energy-dependence phase parameters up to lmax. 

5.4 Hamada-Johnston Potential 
The Hamada-Johnston (HJ) potential is a leading phenomenological NN (pp+np 
here) energy-independent potential. It described well the scattering data below 350 
MeV and deuteron properties as well as the effective-range parameters. The 
general form of HJ potential reads 

 12 12( ) ( ) ( ) . ,c t ls llV V r V r S V r L S V L     
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and 

5.4 Hamada-Johnston Potential 
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in which mpi, x and M are the pion mass (139.4 MeV), the inter nucleon distance 
measured in the units of the pion Compton’s wavelength (r0 = 1.415 fm), and the 
nucleon mass (taken to be 6.73µ), respectively. Note that 

 x = µr, µ = mpic/h = r −1
0 
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We should note that the quadratic spin-orbit potential was mainly introduced to 
describe np data satisfactorily.  

For the r large enough, Vc(r) and Vt(r) reduce to the well-known OPEP with the 
pseudo vector coupling constant of 0.08.  

The coefficients ac, bc, at and bt represent the potential diversion from OPEP at 
small r’s.  

 Gls is the strength of the short ranged spin orbit potential Vls(r) and is depended 
on the parity of state. 

 Gll, as the strength of Vll(r), originated from special evaluations, is determined 
phenomenologically. 

All the coefficients are determined from the detailed fit to scattering data. 

The hard cores are considered for all states with their radius at xc = 0.343. The HJ 
potential, as originally proposed, included a strong long-range quadratic spin-orbit 
potential in triplet even states, and also a strong short-range spin-orbit potential in 
triplet (l = j)-odd states, where it is known that the latter does not exist. So, the 
potential for triplet-odd states was modified as follows: It was defined to be - 

0.26744 mpi around xc < x  0.487 and by above standard relations for x > 0.487. 
The values of the binding energy, electric quadratic moment, effective-range, D-
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state probability and the asymptotic D-wave to S-wave ratio of deuteron were 
determined by the potential to be 2.226 MeV, 0.285 fm2, 1.77 fm, 6.97 % and 
AD/AS = 0.02656, respectively. 

An improvement of HJ potential was made in (we call it Massachusetts-group 

potential) to replace mainly the HJ hard cores (for x  xc) by finite square-well 
cores. Outside the square-well radius (for x > xc), the potential is the same as HJ 
except for a few changes in parameters such as considering the pion mass 
differences, and that the ac values of the singlet even and triplet-odd states as well 
as the triplet-odd bc are changed slightly. The pion mass splitting leads to charge-
independent breaking (CIB) while CS is still preserved. Now, mpi is replaced by 
the effective pion mass and xc = 0.4852, which in turn implies the larger coreradius 
of 0.7 fm. Describing NN scattering data and deuteron properties with the potential 
were good. Indeed, the main aim to form the latter potential was to show that the 
hard cores were not necessary since all data could be described by the finite soft-
core potentials. 

5.5 Yale-Group Potential 
The Yale-group potential is a pp+np phenomenological potential similar to HJ 
potential that is fitted to its time phase parameters as well. There, an one pion 
exchange potential (OPEP) is included directly and the quadratic spin-orbit 
potential is considered in a somewhat different form than that of HJ. The whole 
NN potential reads 
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This OPEP is used for the distances larger than nearly 3fm, with the same 
parameter definitions as in HJ potential. For the coupling constant, g2

pi/14 = 0.94 is 
used in singlet-even states and 1 elsewhere. For singlet-even and triplet-odd states, 

the neutral-pion mass (mpi = m0 ) is used while for singlet-odd and triplet-even 

5.5 Yale-Group Potential 
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states, a mean of the charged- and neutral-pion masses [mpi = (m0 + 2m±) /3] is 
used. The hard-core radius is considered at xc = 0.35, and except in the OPEP part, 
all the radial functions Vc, Vt, Vls and Vql are taken as  
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The potential’s parameters are determined by fitting to data for various states and 
involved potentials. It is also notable that HJ and Yale potentials are OPEP for L > 
5, and that the Yale potential sets Vls = 0 for J> 2. 

5.6  Reid68 and Reid-Day Potentials 
Reid68 Potential 

Among the failures of HJ and Yale hard-core potentials were that they could not 
reproduce reasonable results when applying to many-body calculations. It appeared 
that the Reid soft-core potentials were better.  

The Reid potentials are static and local phenomenological potentials similar to 
those of HJ and Yale. Reid determined the potential for each two-nucleon state 
independent of the other states. So, one may suppose that this approach is 
problematic in that, with many two-nucleon states each with its own potential, 
fitting the experimental data could be probably meaningless. But, because the 
highest energy in the analyses was about 350 MeV, just the two-nucleon states 

with J  2, which are more important in nuclear calculations, were considered in 
practice.  

Reid used only a central potential in the singlet and uncoupled triplet-states while, 
for the coupled triplet-states, he used 

 12( ) ( ) ( ) .c t lsV V r V r S V r L S    

which has the central, tensor and usual spin-orbit components. For the LR part, he 
used the OPEP of as a tail attached to the potential, with g2

pi = 14, mpi = 138.13 
MeV, M = 938.903 MeV and µ = 0.7fm−1. On the other hand, to remove the x−2 and 
x-3 behaviors at small distances, an short range [SR] potential was subtracted from 
the tensor part of the potential. For the medium range [MR’s], the potentials were 
expressed as the sums of the Yukawa’s functions of e−nx/x, where n was an integer. 
The SR repulsions were also some combinations of the severe hard-core and the 

5.6  Reid68 and Reid-Day Potentials 
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Yukawa soft-core potentials–It is mentionable that the criterion for a potential to 
be soft-core is that the wave functions do not vanish in nonzero radiuses. For the 

hard-core radius, when needed, the radiuses of xc  0.1 could be used there. One 
should, of course, note that because of fitting the potentials to the energies often 
below 350 MeV, finding a unique formalism for the SR part was almost difficult. 
Finally, it is notable that the Reid potentials did not describe well some of the 
scattering data and deuteron properties at that time. It was also hinted the need for 
velocity-dependence and non locality in NN potentials, imposed by experimental 
data.  

Reid-Day Potential 

The Reid68 soft-core potentials up to the higher partial waves to solve three-body 
equation in nuclear matter calculations. In fact, he used three two-nucleon 
potentials in calculations. The first one (called V2) was just the central part of the 
Reid68 potential in 3S1 − 3D1 channel for all states. The second one (called 
V6(Reid)) had four forms for the four (S,T) states. Indeed, in the latter case, for all 
S = 0 states, just two central Vc(r) potentials (Reid68 1S0 and 1P1 for T = 1 and T = 
0 respectively) were used; meanwhile for all S = 1 states, just two central Vc(r) and 
two tensor Vt(r) potentials (Reid68 3P2 − 3F2 and 3S1 − 3D1 for T = 1 and T = 0 
respectively) were used. The third one (called Full-Reid potential that we call 

Reid-Day potential) used the original Reid68 potentials for all J  2 states; 

meanwhile for the states with J  3, he set up the potentials based on the Reid68 
ones almost roughly. Clearly, for the states up to J = 5, the potential structures 
were similar to the original Reid68 ones. For example, in the coupled sate of 3D3 − 
3G3, he used 
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where x = 0.7r, and r is the inter nucleon distance measured in fm as usual. For all 
other not clearly mentioned states, he used the V6(Reid) potentials. Therefore, that 
new expansion was not based on any fundamental underlying argument on NN 
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interaction, and was just to sake of applying the wanted potentials in some nuclear 
calculations.  

5.7 Self Learning Exercise -I 
Q.1  What is the extra term which included in Yale potential over HJ potential 

Q.2  What is the physical significance of Compton wavelength? 

Q.3  Write down the different range of nucleon-nucleon interaction. 

Q.4  Write down the expression for HJ potential. 

Q.5  What is the failure of HJ and Yale potential. 

5.8 One Boson Exchange Potential 
The nucleon-nucleon (NN) interaction has a complex structure as schematically 
depicted in figure. 

 
The central part of the nucleon-nucleon potential consists of a short range repulsive 
part, an intermediate range attractive and a long range part. In modern relativistic 
potentials based on field theory this interaction is described by the exchange of 
various mesons which act as exchange bosons. The most important are the non-

strange mesons , ,  and . The total NN-interaction is given by the 
superposition of the contributions from the various mesons. These contributions 
are characterized by the coupling strength gi, the meson mass mi and the character 
of the meson which determines the Lorentz structure of the meson nucleon vertex 

i (scalar, vector, . . . ).  

5.7 Self Learning Exercise -I 

5.8 One Boson Exchange Potential 
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Coupling strength: gi with sign  attractive +  

     repulsive –  

Meson mass: mi determines the range  

Meson-nucleon vertex: i determines the Lorentz structure 

First of all we give a short overview of the different mesons and the corresponding 
coupling properties:  

 -meson: m = 138 MeV, spin S=0, isospin I=1 

 pseudoscalar coupling where the tensor force is the most important part, long 
range interaction 

 
5( ) ( ) ( )NN

fL x i x u x
m



  


 

 -meson: m≈ 550MeV , S=0, I=0 

 scalar coupling, attractive, intermediate range interaction 

 ( ) ( )NNL g x x    

 -meson: m = 783 MeV, S=1, I=0 

 vector coupling, repulsive, short range interaction 

 ( ) ( )NNL g x x
       

 -meson: m = 770 MeV, S=1, I=1 

 vector and tensor coupling, short range interaction 

 
( ) ( ) ( ) ( ) ( ) ( )

2

T

NN

g
L g x x x x x x

M
  

             
 

 

Mesons with isospin I = 1 are isovector particles and couple to the isospin of the 
nucleon, i.e. they distinguish between protons and neutrons, mesons I = 0 are 

isoscalar and do not distinguish. The -meson has a vector coupling and a tensor 
coupling. The pion nucleon coupling strength f is determined by some fundamental 
QCD relations (Effective chiral QCD Lagrangian). For all other mesons the 
coupling strengths gi are fixed from empirical nucleon-nucleon scattering data. 

Modern Boson-Exchange potentials describe  NN-scattering  data  with  high 
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precision. Such potentials were developed in the mid eighties. Typical examples 
are the so-called Bonn and Nijmegen potentials developed by the Bonn-Julich and 
the Nijmegen (Netherlands) research groups. In addition to the mesons discussed 
above such potentials contain in addition an isoscalar pseudoscalar meson, the so-

called  -meson, and an isovector scalar meson, the so-called -meson. Thus they 
are based on a complete set of non-strange mesons (mesons which have no strange 
quark content) with masses below 1 GeV. The model parameters, i.e. the meson-
nucleon coupling strengths (and additional parameters for form factors) are fitted 
to NN-scattering data (about 3000 data points for proton-proton and proton-
neutron scattering). 

 
Figure 2: Schematic representation of the one-boson exchange diagram. 

Spin-structure of one-boson-exchange potentials 

An expansion in 1/M to leading order yields the non-relativistic form of the scalar 
and vector potentials. 

1. Scalar potential, generated by the -meson 
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 where S = 1/2 (1 + 2) is the total spin and L the total angular momentum of 
the two-nucleon system. 

2. Vector potential, represented by - and -mesons 
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Momentum space representation of the OBE potentials 

We want now first to evaluate the Feynman-diagram which corresponds to a one-
meson exchange. For the moment we disregard the isospin. In the two-nucleon 
center-of-mass system the incoming nucleons have momenta ±q, the outgoing 

nucleons have momenta ±q ′. The nucleons are on-shell and therefore we have 

 

2 2

2 2' '

E M q

E M q

 

 
 

Since we consider only elastic scattering, energy-momentum conservation implies 

 

| ' | | |
'

q q
E E




 

Applying the Feynman rules for evaluating the meson exchange potential V(q,q′) 
where the index  stands for the various types of possible mesons exchanged  

 = , , , · · · , one finds 

 1 1 1 1 2 2 2 2( ') ( ) ( ') ( ') ( )V g u q u q D q q g u q u q      

D represents the meson propagator. The meson propagator is different for 
(pseudo)-scalar and vector particles and reads 

 
2 2( ')

PD
q q m







 

 

where P depends on the type of interchanged meson: 

 

1 (pseudo) scalar meson: ,
vector meson: ,vP

g 

 
 


 

 

The 1,2 matrices are the so-called vertex-functions or meson-nucleon couplings 
which are given by 

Particle : − meson   Pion    − meson 

     :       1   5     . 

We now give a basic example to illustrate our findings. Consider the case that a 

scalar meson () is exchanged. This is the simplest example, but the other 
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amplitudes can be evaluated in an analogous way. We discuss elastic, i.e. on-shell 
scattering with  

 E = E′. 
In this case V becomes 

 

2 1 1 2 2
2 2

( ') ( ) ( ') ( )( )
( ' )

u q u q u q u qV q g
q q m 



 
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  
 

To compute V, we use 
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 

    
  

 

and we insert following relation 

 ( .a)( ·b) = a ·b + i  · (a ×b) . 

Now we introduce the momentum transfer 

 k ≡ q ′− q 

and the center-of-mass momentum 

 P =1/2(q + q ′) 
The vector product reads in terms of c.m. momentum and momentum transfer 

 n = q × q′ ≡ P ×k . 

Furthermore, in the nonrelativistic limit with E  M, one obtains 

 

2
2 2

2(1 ...)
2

qE M q M
M

      

The total matrix element for the scalar  exchange contains two vertices of type 

ūu and the meson propagator. The latter is taken in its static form (−1)/(k2 + m2). 
Altogether, this yields in the non-relativistic limit, the scalar potential of form 
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We recognize an attractive Yukawa potential and the spin-orbit potential which is 
the second term in brackets. It corresponds to O4 of the complete operator 
expansion given below. 

The complete OBE potentials as e.g. the Bonn potentials can be reduced to a 
nonrelativistic representation by expanding the full field-theoretical OBE Feynman 
amplitudes into a set of spin and isospin operators 

 
1 2[ ' . ]i i i

i
V V V O    

The operators Oi obtained in this low energy expansion, assuming identical particle 
scattering and charge independence, are defined as  
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Where 

 k =q −q,  

 n = q × q ≡ P × k 

and P = 1/ 2 (q + q ) is the average momentum.  

The potential forms Vi are then functions of k, P, n and the energy. In order to 
perform a non-relativistic reduction, usually the energy E is expanded in k2 and P2  

 E(q) =(k2/4 + P2 + M2 )1/2 ≃ M + k2 /8M + P2/2M 

and terms to leading order in k2 /M2 and P2 /M2 are taken into account. The meson 

propagators D(k2 ) are approximated by their static form (−1)/(k2+m2 ).  
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These operators are the well known central, spin-spin, tensor, spin-orbit and 
quadratic spin-orbit operators, respectively. The total angular momentum is 

denoted by L = r × P and the total spin S = 1/ 2 (1 +2). 

5.9 Self Learning Exercise-II 

Q.1  Draw the schematic diagram of nucleon-nucleon (NN) interaction. 

Q.2  Give a short overview of different mesons and corresponding coupling 
properties. 

Q.3  Explain the momentum space representation of the OBE potential. 

5.10 Summary 
In this chapter we discussed various types of nuclear potentials. This chapter 
started with the introduction of nuclear potentials and followed by HJ, Reid and 
OBEP.  

5.11 Glossary 

Nuclear force: The force that holds the nucleus together. Originally thought to be 
the exchange of pions, as suggested by Yukawa. Pions are now known to not be 
elementary themselves, but quarks which are held together by gluons. 

Boson: A particle having spin that is an integer multiple of  . 

Meson: A particle (such as the pion) made of quark-antiquark pairs. 

Interaction :Influence of a physical body on another body or the coupling between 
a field and its source. Interactions can be of the most diverse types, e.g. 
gravitational interaction, electromagnetic interaction, weak interaction, strong 
interaction. 

 

5.9 Self Learning Exercise-II 

5.10 Summary 

5.11 Glossary 
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5.12 Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I 
Ans.1: OPEP 

Ans.2: Compton wavelength is kind of the quantum mechanical cutoff - the length 
scale below which quantum mechanics can not be simply ignored in favor of 
classical approximations. 

Ans.3: Range of the nucleon-nucleon interaction is divided to the three parts: the 

short-range (r 1fm), the intermediate-range (1fm r  2fm), and the long 

range (r  2fm). 

Ans.4: Section 5.4 

Ans.5: Failure of HJ and Yale hard-core potentials were that they could not 
reproduce reasonable results when applying to many-body calculations. 

Answers to Self Learning Exercise-II 

Ans.1,2,3: See Section 5.7  

5.13 Exercise 

Q.1  Write down the expression for OPEP. 

Q.2  Write a short note on 

 OBEP 

 Hamada-Johnston Potential 

 Reid potential 

References and Suggested Readings 
1. Advances in Nuclear Physics By Michel Baranger, Erich Vogt, 2012 
2. Concepts of Nuclear Physics By Bernard Leonard Cohen, 1971. 
3. The Nucleon-nucleon Interaction and the Nuclear Many-body Problem by 

Gerald E. Brown and T.T.S. Kuo 2010 
 

5.12 Answers to Self Learning Exercises 

5.13 Exercise 
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UNIT-6 
Interaction of Radiation and 

Charged Particle with Matter 

 

Structure of the Unit 

6.0  Objectives 

6.1  Introduction 

6.2  Law of absorption and attenuation coefficient  

6.3  Interaction processes 

6.4  Target and projectile dependence of all three processes 

6.5  Self learning exercise- I 

6.6  Interactions of charged particles with matter 

6.7  Energy loss of charged particles due to ionization 

6.8  Bremstrahlung  

6.9  Self learning exercise II 

6.10  Summary 

6.11  Glossary 

6.12  Answers to self learning exercises 

6.13  Exercise 

References and Suggested Readings 

6.0 Objectives 
From this chapter student should develop their understanding of the various ways  
photons, charged particles and neutrons can interact with matter and the concepts, 
such as mass attenuation coefficient, stopping power and range, that have been 
invented in order to aid that understanding. These ideas are the basis for the later 
study of the effects of x rays, gamma radiation and other ionizing radiations on 
living things. 

UNIT-6 
Interaction of Radiation and  

Charged Particle with Matter 

6.0 Objectives 
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6.1 Introduction 
Gamma-rays, x-rays, neutrons, and neutrinos all have no net charge - they are 
electro-statically neutral. In order to detect them they must interact with matter and 
produce an energetic charged particle. In the case of gamma and x-rays, a photo-
electron is produced. In the case of neutrons, a proton is given kinetic energy in a 
billiard ball like collision.  

Knowledge of gamma-ray interactions is important to the Non Destructive 
Assayist(NDA) in order to understand gamma-ray detection and attenuation. A 
gamma ray must interact with a detector in order to be “seen.” Although the major 
isotopes of uranium and plutonium emit gamma rays at fixed energies and rates, 
the gamma-ray intensity measured outside a sample is always attenuated because 
of gamma-ray interactions with the sample. This attenuation must be carefully 
considered when using gamma-ray NDA instruments. This chapter discusses the 
exponential attenuation of gamma rays in bulk materials and describes the major 
gamma-ray interactions, gamma-ray shielding, filtering, and collimation. The 
treatment given here is necessarily brief.  

6.2 Law of Absorption and Attenuation Coefficient  
Gamma rays were first identified in 1900 by Becquerel and Villard as a component 
of the radiation from uranium and radium that had much higher penetrability than 
alpha and beta particles. In 1909, Soddy and Russell found that gamma-ray 
attenuation followed an exponential law and that the ratio of the attenuation 
coefficient to the density of the attenuating material was nearly constant for all 
materials 
Law of Gamma-Ray Attenuation 

 
Figure1 

6.1 Introduction 

6.2 Law of Absorption and Attenuation Coefficient  
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Figure1 illustrates a simple attenuation experiment. When gamma radiation of 
intensity I0 is incident on an absorber of thickness L, the emerging intensity (I) 
transmitted by the absorber is given by the exponential expression 

0
l LI I e   

where l is the attenuation coefficient (expressed in cm–1). The ratio I/I0 is called 
the gamma-ray transmission.  

 
Figure 2 

Figure illustrates exponential attenuation for three different gamma-ray energies 
and shows that the transmission increases with increasing gamma-ray energy and 
decreases with increasing absorber thickness. Measurements with different sources 

and absorbers show that the attenuation coefficient l depends on the gamma-ray 

energy and the atomic number (Z) and density () of the absorber. The reciprocal 

of the attenuation coefficient 1/l has units of length and is often called the mean 
free path. The mean free path is the average distance a gamma ray travels in the 
absorber before interacting; it is also the absorber thickness that produces a 
transmission of l/e, or 0.37. 



105 
 

Mass Attenuation Coefficient 

The linear attenuation coefficient is the simplest absorption coefficient to measure 
experimentally, but it is not usually tabulated because of its dependence on the 
density of the absorbing material. For example, at a given energy, the linear 
attenuation coefficients of water, ice, and steam are all different, even though the 
same material is involved. 

Gamma rays interact primarily with atomic electrons; therefore, the attenuation 
coefficient must be proportional to the electron density P, which is proportional to 
the bulk density of the absorbing material. However, for a given material the ratio 
of the electron density to the bulk density is a constant, Z/A, independent of bulk 
density. The ratio Z/A is nearly constant for all except the heaviest elements and 
hydrogen. 

P= Z  / A  

where  

P = electron density 

Z = atomic number 

 = mass density 

A = atomic mass. 

The ratio of the linear attenuation coefficient to the density (l/) is called the 

mass attenuation coefficient  and has the dimensions of area per unit mass 
(cm2/gm). The units of this coefficient hint that one may think of it as the effective 
cross-sectional area of electrons per unit mass of absorber. The mass attenuation 

coefficient can be written in terms of a reaction cross section, (cm2): 

0N
A


   

where N0 is Avagadro’s number (6.02 x 1023) and A is the atomic weight of the 
absorber. The cross section is the probability of a gamma ray interacting with a 
single atom. The mass attenuation coefficient, can be rewritten as 

0 0
L xI I e I e

x L

 



  
  
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where
2cmx massthickness

gm
 

  
 

 

6.3 Interaction Processes 
The gamma rays interact with detectors and absorbers by three major processes: 
photoelectric absorption, Compton scattering, and pair production and fall in the 
range 10 to 2000 keV and. In the photoelectric absorption process, the gamma ray 
loses all of its energy in one interaction. The probability for this process depends 

very strongly on gamma-ray energy E and atomic number Z. In Compton 
scattering, the gamma ray loses only part of its energy in one interaction. The 
probability for this process is weakly dependent on E and Z. The gamma ray can 
lose all of its energy in one pair-production interaction. However, this process is 
relatively unimportant for fissile material assay since it has a threshold above 1 
MeV. 

Photoelectric Absorption 

A gamma ray may interact with a bound atomic, electron in such a way that it loses 
all of its energy and ceases to exist as a gamma ray (Figure3).  

 
Figure 3 

Some of the gamma-ray energy is used to overcome the electron binding energy, 
and most of the remainder is transferred to the free electron as kinetic energy. A 
very small amount of recoil energy remains with the atom to conserve momentum. 
This is called photoelectric absorption because it is the gamma-ray analog of the 
process discovered by Hertz in 1887 whereby photons of visible light liberate 
electrons from a metal surface. Photoelectric absorption is important for gamma-

6.3 Interaction Processes 
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ray detection because the gamma ray gives up all its energy, and the resulting pulse 
falls in the full-energy peak.  

The probability of photoelectric absorption depends on the gamma-ray energy, the 
electron binding energy, and the atomic number of the atom. The probability is 
greater the more tightly bound the electron; therefore, K electrons are most 
affected (over 

80% of the interactions involve K electrons), provided the gamma-ray energy 
exceeds the K-electron binding energy. The probability is given approximately by 
Equation, 

4 3/Z E   
which shows that the interaction is more important for heavy atoms like lead and 
uranium and low-energy gamma rays: 

where  = photoelectric, mass attenuation coefficient. 

This proportionality is only approximate because the exponent of Z varies in the 
range 4.0 to 4.8. As the gamma-ray energy decreases, the probability of 
photoelectric absorption increases rapidly. Photoelectric absorption is the 
predominant interaction for low-energy gamma rays, x rays, and bremsstrahlung. 

The energy of the photoelectron Ee released by the interaction is the difference 

between the gamma-ray energy E and the electron binding energy Eb: 

e bE E E   

In most detectors, the photoelectron is stopped quickly in the active volume of the 
detector, which emits a small output pulse whose amplitude is proportional to the 
energy deposited by the photoelectron. The electron binding energy is not lost but 
appears as characteristic x rays emitted in coincidence with the photoelectron. In 
most cases, these x rays are absorbed in the detector in coincidence with the 
photoelectron and the resulting output pulse is proportional to the total energy of 
the incident gamma ray. For low-energy gamma rays in very small detectors, a 
sufficient number of K x rays can escape from the detector to cause escape peaks 
in the observed spectrum; the peaks appear below the full-energy peak by an 
amount equal to the energy of the x ray. 
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Figure 4 

Figure shows the photoelectric mass attenuation coefficient of lead. The interaction 
probability increases rapidly as energy decreases, but then becomes much smaller 
at a gamma ray energy just below the binding energy of the K electron. This 
discontinuity is called the K edge below this energy the gamma ray does not have 
sufficient energy to dislodge a K electron. Below the K edge the interaction 
probability increases again until the energy drops below the binding energies of the 
L electron; these discontinuities are called the LI, LII, and LIII edges. The presence 
of these absorption edges is important for densitometry and x-ray fluorescence 
measurements. 

Compton Scattering 

Compton scattering is the process whereby a gamma ray interacts with a free or 

weakly bound electron (E >> Eb) and transfers part of its energy to the electron 
(Figure5). 
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Figure 5 

Conservation of energy and momentum allows only a partial energy transfer when 
the electron is not bound tightly enough for the atom to absorb recoil energy. This 
interaction involves the outer, least tightly bound electrons in the scattering atom. 
The electron becomes a free electron with kinetic energy equal to the difference of 
the energy lost by the gamma ray and the electron binding energy. Because the 
electron binding energy is very small compared to the gamma-ray energy, the 
kinetic energy of the electron is very nearly equal to the energy lost by the gamma 
ray: 

Ee= E– E’ 

where Ee = energy of scattered electron 

E = energy of incident gamma ray 

E’ = energy of scattered gamma ray. 

Two particles leave the interaction site: the free electron and the scattered gamma 
ray. The directions of the electron and the scattered gamma ray depend on the 
amount of energy transferred to the electron during the interaction.  

2 2
0 0' / (1 cos / )E m c m c E    

Equation gives the energy of the scattered gamma ray. 

Where m0c
2 = rest energy of electron = 511 keV 

 = angle between incident and scattered gamma rays. 

This energy is minimum for a head-on collision where the gamma ray is scattered 
180°and the electron moves forward in the direction of the incident gamma ray. 
For this case the energy of the scattered gamma ray is given by 
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and the energy of the scattered electron is given by 
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For very small angle scatterings (  0), the energy of the, scattered gamma ray is 
only slightly less than the energy of the incident gamma ray and the scattered 
electron takes very little energy away from the interaction. The energy given to the 
scattered electron ranges from near zero to the maximum given by above equation. 

Pair Production 

A gamma ray with an energy of at least 1.022 MeV can create an electron-positron 
pair when it is under the influence of the strong electromagnetic field in the 
vicinity of a nucleus (Figure). 

 
Figure 6 

In this interaction the nucleus receives a very small amount of recoil energy to 
conserve momentum, but the nucleus is otherwise unchanged and the gamma ray 
disappears. This interaction has a threshold of 1.022 MeV because that is the 
minimum energy required to create the electron and positron. If the gamma ray 
energy exceeds 1.022 MeV, the excess energy is shared between the electron and 
positron as kinetic energy. This interaction process is relatively unimportant for  

nuclear material assay because most important gamma-ray signatures are below 

1.022 MeV. 

The electron and positron from pair production are rapidly slowed down in the 
absorber. After losing its kinetic energy, the positron combines with an electron in 
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an annihilation process; which releases two gamma rays with energies of 0.511 
MeV. These lower energy gamma rays may interact further with the absorbing 
material or may escape. In a gamma-ray detector, this interaction often gives three 
peaks for a high-energy gamma ray. The kinetic energy of the electron and 
positron is absorbed in the detector. One or both of the annihilation gamma rays 
may escape from the detector or they may both be absorbed. If both annihilation 
gamma rays are absorbed in the detector, the interaction contributes to the full-
energy peak in the measured spectrum; if one of the annihilation gamma rays 
escapes from the detector, the interaction contributes to the single-escape peak 
located 0.511 MeV below the full-energy peak; if both gamma rays escape, the 
interaction contributes to the double-escape peak located 1.022 MeV below the 
full-energy peak. The relative heights of the three peaks, depend on the energy of 
the incident gamma ray and the size of the detector. ‘These escape peaks may arise 
when samples of irradiated fuel, thorium, and 232Uare measured because these 
materials have important gamma rays above the pair-production threshold.  

6.4 Target and Projectile Dependence of all three Processes  
The relative importance of the three main interaction mechanisms depends on the 
energy of the incident photon and the nature of the absorbing material. In general 
terms the photoelectric effect is most important at low energies. At higher energies 
Compton scattering becomes the main energy loss mechanism. At still higher 
photon energies Compton scattering is less effective. Above 1.1 MeV pair 
production becomes possible and is the dominant effect for energies greater than a 
few MeV. We can specify the energies at which relative importance of the effects 
changes by defining the energy at which they have the same value of the mass 
attenuation coefficient, µm. 

Let E(pe,C) be the energy at which an incident photon loses energy at the same 
rate by both the photoelectric (pe) and Compton (C) effects. Its value is given by 
the point at which the photoelectric and Compton curves cross on the graph of 
attenuation coefficient and energy (Figure7). 

Similarly E(C,pp) is the energy at which an incident photon loses energy at the 
same rate by both Compton scattering and by pair production (pp). The values of 
these changeover energies depend on the nature of the material; both E(pe,C) and 

6.4 Target and Projectile Dependence of all three Processes 
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E(C,pp) vary with the atomic number, Z, of the absorbing material, as shown in 
figure.8 

 
Figure:7 

 
Figure:8 

The total mass attenuation coefficient is just the sum of all the contributions from 
the different processes 

              µm[tot] = µm[pe] + µm[C] + µm[pp] 

This total mass attenuation coefficient describes the decrease of the original 
incident radiation. The total linear attenuation coefficient is given by  
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 µl [tot] = µm[tot] . 

Compton scattering produces a photon of reduced energy which nevertheless may 
interact again. Similarly the electrons and positrons produced in pair production 
may have large energies which they carry with them deeper into the material. 
Hence the exponential decrease law using the mass attenuation coefficient 
underestimates the total amount of radiation energy penetrating materials.  

6.5 Self Learning Exercise-I 
Q.1  Which process of attenuation is dominant for 10 MeV photons? 

Q.2  Write down the law of absorption. 

Q.3  The mass attenuation coefficients for photons in lead are shown in the 
accompanying diagram. Label the curves according to the process they 
represent. 

 
Figure:9 

Q.4  Pair production by photons has two restrictions. The first is that the energy 
of the photons must be greater than 1.02 MeV and the second is that pair 
production can occur only near a heavy charged particle. Explain the 
reasons behind these restrictions. 

6.6 Interactions of Charged Particles with Matter 
Charged particles, such as electrons, protons and alpha particles, interact with 
matter electromagnetically or through one of the two kinds of nuclear interactions, 

6.5 Self Learning Exercise-I 

6.6 Interactions of Charged Particles with Matter 
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the weak interaction or the strong interaction. The electromagnetic interaction 
involving collisions with electrons in the absorbing material is by far the most 
common. Neutral particles such as the neutron can interact only through the 
nuclear interactions. Thus charged particles can be detected directly by their 
electromagnetic interactions whereas neutral particles have to suffer nuclear 
interactions which produce charged particles before their presence can be detected. 

Electromagnetic interactions: 

The electromagnetic interaction consists mainly of two mechanisms: (a) excitation 
and ionization of atoms, and (b) bremsstrahlung, the emission of electromagnetic 
radiation (photons) when a charged particle is severely accelerated, usually by 
interaction with a nucleus. A third kind of interaction, producing Cherenkov 
radiation, while playing an important role in the detection of very high energy 
charged particles, absorbs only a small amount of energy. The contribution of each 
mechanism depends on the charge, mass and speed of the incident particle as well 
as the atomic numbers of the elements which make up the absorbing material. 

Individual interactions – scattering: 

Unlike photons, each charged particle suffers many interactions along its path 
before it finally comes to rest, but only a small fraction of its energy is lost at each 
interaction. For example, a typical alpha particle might make fifty thousand 
collisions before it stops. Hence the energy loss can usually be considered as a 
continuous process. Charged particles are deflected or scattered at each interaction. 
Although the amount of scattering at each collision may be small, the cumulative 
effect may be quite a large change in the direction of travel. Occasionally an 
incident particle will pass very near a nucleus and then there will be a single large 
deflection. This nuclear scattering effect is most pronounced for light incident 
particles interacting with heavy target nuclei. 

Stopping power: 

There are several ways of describing the net effects of charged-particle 
interactions, the rate of energy loss along the particle's path, -dE/dx , being most 
important. Here E is the particle's energy and x is the distance travelled. This rate 
of energy loss with distance travelled depends on the material and is called the 
linear stopping power, Sl, of the material: 
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l
dES
dx

   

A common unit for linear stopping power is MeV.m-1. In general the stopping 
power will vary as the particle loses energy so it depends on the charged particle's 
energy. The linear stopping power of a material also depends on the density of 
electrons within the material (and hence on the atomic numbers of the atoms) as 
well as the energy of the particle. So a more fundamental way of describing the 
rate of energy loss is to specify the rate in terms of the density thickness, rather 
than the geometrical length of the path. So energy loss rates are often given as the 
quantity called the mass stopping power: 

1
( )l
dE dES

d x dx 
     

where  is the density of the material and x is the density-thickness. 

6.7 Energy Loss of Charged Particles due to Ionization 
The dominant mechanism of energy loss at lower (non-relativistic) energies is the 
electromagnetic interaction between the moving charged particle and atoms within 
the absorbing material. Since the electromagnetic interaction extends over some 
distance, it is not necessary for the charged particle to make a direct collision with 
an atom; it can transfer energy simply by passing close by. However, since the 
internal energy of an atom is quantized, only certain restricted values of energy can 
be transferred. The incident particle can transfer energy to the atom, raising it to a 
higher energy level (excitation) or it may transfer enough energy to remove an 
electron from the atom altogether (ionisation). Although this fundamental 
mechanism operates for all kinds of charged particles, there are considerable 
differences in the overall patterns of energy loss and scattering between the 
passage of light particles (electrons and positrons), heavy particles (muons, 
protons, alpha particles and light nuclei), and heavy ions (partially or fully ionised 
atoms of high Z elements). Most of these differences arise from the dynamics of 
the collision process. In general, when a massive particle collides with a much 
lighter particle, the laws of energy and momentum conservation predict that only a 
small fraction of the massive particle's energy can be transferred to the less 
massive particle. The actual amount of energy transferred will depend on how 

6.7 Energy Loss of Charged Particles due to Ionization 
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closely the particles approach and restrictions imposed by quantization of energy 
levels. The largest energy transfers occur in head-on collisions. 

In non-relativistic newtonian dynamics, when an object A (mass M) hits a 
stationary object B (mass m) head-on the laws of dynamics predict that the energy 
lost by the incident particle is  

 B A 2  4 mMK K
M m




 

where KA is the kinetic energy of the incident particle. For the case M >> m this 
becomes 

B A  4 mK K
M

  

The energy transferred is a very small fraction of the incident particle's energy. 
However when M = m then all the kinetic energy is transferred to the target (KB = 
KA) and the projectile stops. This result is strictly true only for particles travelling 
with speeds much less than that of light (non-relativistic speeds) but similar results 
are obtained also for relativistic particle speeds. When the collision is not head-on 
the energy transfer to the target is less and of course the energy loss of the incident 
particle is correspondingly less as well.  

Energy loss by heavy particles: 

When a massive particle collides with an electron the energy lost at each collision 
is relatively small. For example, a slow alpha particle hitting an electron transfers a 
maximum of only 0.05% of its energy to the electron. Since head-on collisions are 
rare, usually the energy loss is much lower. Many collisions are needed to 
significantly reduce the incident particle's energy. Therefore we can consider the 
energy loss as a continuous process. Although the energy given to an electron may 
be a small fraction of the incident energy, it may be sufficient to ionize the atom 
and for the ejected electron to travel some distance away from the interaction 
point, leaving a trail of excited and ionized atoms of its own. These 'knock-on' 
electrons can leave tracks called delta rays. Mostly, however, the knock-on 
electrons will lose their energy within a very short distance of the interaction point. 

The energy dependence of the rate of energy loss (stopping power) by excitation 
and ionization of heavy particles for some typical materials is shown in figure. 
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This graph is a plot of the energy-loss rate as a function of the kinetic energy of the 
incident particle. 

 
Figure:10 

Note that the stopping power is expressed using density-thickness units. To obtain 
the energy loss per path length you would need to multiply the energy loss per 
density-thickness (shown on the graph) by the density of the material. As for 
photon 

interaction, it is found that when expressed as loss rate per density-thickness, the 
graph is nearly the same for most materials. There is, however, a small systematic 
variation; the energy loss is slightly lower in materials with larger atomic numbers. 
The diagram shows the rate of energy loss for the extreme cases of carbon (Z = 6) 
and lead (Z = 82). At high incident energies there is also some variation with 
density of the same material because a higher density of atomic electrons protects 
the more distant electrons from interactions with the incident particle. This results 
in lower energy loss rates for higher densities. 

For low energies the stopping power varies approximately as the reciprocal of the 
particle's kinetic energy. The rate of energy loss reaches a minimum, the minimum 
ionization point, and then starts to increase slowly with further increases in kinetic 
energy. Minimum ionization occurs when the particle's kinetic energy is about 2.5 
times its rest energy, and its speed is about 96% of the speed of light in vacuum. 
Although the energy loss rate depends only on the charge and speed of the incident 
particle but not on its mass it is convenient to use kinetic energy and mass rather 
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than the speed. At minimum ionization the energy loss is about 0.2 MeV.(kg.m−2)−1 
(= 3 × 10−12 J.m2.kg−1 in SI units), decreasing slightly with increasing atomic 
number of the absorbing material. The distance that a particle penetrates a material 
before it loses all its kinetic energy is called the range of that particle. Energy loss 
along the path is shown in figure11. 

 
Figure:11 

The rise near the end of the path is due to the increased energy loss rate at low 
incident energies. At very low speeds the incident particle picks up charge from the 
material, becomes neutral and is absorbed by the material.  

For a given material the range will be the nearly the same for all particles of the 
same kind with the same initial energy. The number of particles as a function of 
distance along the path is shown in figure12. 

 
Figure 33: Range and straggling 

A small variation in the range, called straggling, is due to the statistical nature of 
the energy loss process which consists of a large number of individual collisions. 
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The actual number of collisions is always subject to some fluctuation. In spite of 
that, the average range can be used to determine the average energy of the incident 
particles. 

Energy loss by electrons and positrons: 

Electrons and positrons also lose energy by ionization but there are several 
differences. There is a slight difference between the interactions of positrons and 
electrons, resulting in a slightly higher energy loss for the positrons. Both, 
however, have lower loss rates at high energies than heavier particles travelling at 
the same speed. Because of its light mass an electron is easily scattered in 
collisions with other electrons. The resulting erratic path will be longer than the 
linear penetration (range) into the material and there will be greater straggling. 

6.8 Bremsstrahlung 
The name bremsstrahlung comes from the German; the literal translation is 
'braking radiation'. It occurs when a charged particle is accelerated - that is 
whenever its speed or direction of motion changes. The effect is most noticeable 
when the incident particle is accelerated strongly by the electric field of a nucleus 
in the absorbing material. An accelerated charged particle radiates electromagnetic 
energy (photons). Since the effect is much stronger for lighter particles, it is much 
more important for beta particles (electrons and positrons) than for protons, alpha 
particles, and heavier nuclei. At particle energies below about 1 MeV the energy 
loss due to radiation is very small and can be neglected. Radiation loss starts to 
become important only at particle energies well above the minimum ionization 
energy. At relativistic energies the ratio of loss rate by radiation to loss rate by 
ionization is approximately proportional to the product of the particle's kinetic 
energy and the atomic number of the absorber. So the ratio of stopping powers is 

[ ] 1
[ ] '

l

m

S rad ZE
S coll E

  

where E is the particle's kinetic energy, Z is the mean atomic number of the 

absorber and E' is a proportionality constant; E' ≈ 800 MeV. 

The kinetic energy at which energy loss by radiation equals the energy loss by 
collisions is called the critical energy, Ec. Approximately 

6.8 Bremsstrahlung 
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Another quantity of interest is the radiation length, defined as the distance over 
which the incident particle's energy is reduced by a factor e-1(0.37) due to radiation 
losses alone. Some typical values are given in table. 

Material Critical energy 

Ec / MeV 

 

Radiation 
length 

L / m 

Density× 
radiation length 

 L / kg.m-2 

Air 102 200 362 

Water 92 0.36 361 

Aluminium 51 0.089 240 

Iron 27 0.018 140 

Lead 9.5 0.0056 64 

Bremsstrahlung by a high energy electron results in a high energy photon as well 
as a high energy electron. Pair production by high energy photons results in a high 
energy electron and a high energy positron. In both cases two high energy particles 
are produced from a single incident particle. Furthermore the products of one of 
these processes can be the incident particles for the other. The result can be a 
cascade of particles which increases in number, while decreasing in energy per 
particle, until the average kinetic energy of the electrons falls below the critical 
energy. The cascade is then absorbed by ionization losses. Such cascades, or 
showers, can penetrate large depths of material. 

6.9 Self Learning Exercise II 
Q.1  Define linear stopping power. 

Q.2  Draw a ‘Range and straggling curve’. 

Q.3  Explain the phenomena behind the energy loss of charged particles due to 
ionization.  

Q.4  Explain why "bremsstrahlung" is a more important energy loss mechanism 
for electrons than for protons travelling through matter. 

 

6.9 Self Learning Exercise-II 
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6.10 Summary 
In this chapter we discussed various interaction phenomena of radiation and 
charged particle with matter. This chapter started with the introduction of law of 
absorption and attenuation coefficient followed by photon interaction with matter 
via Photoelectric effect, Compton scattering and pair production. After that we also 
discussed the interaction of charged particles with matter. At last we also discussed 
the Bremstrahlung energy which is nothing but the 'braking radiation'. 

6.11 Glossary 
Electromagnetic radiation: Radiation consisting of electric and magnetic waves 
that travel at the speed of light. Examples: light, radio waves, gamma rays, x-rays. 

Gamma ray : A highly penetrating type of nuclear radiation, similar to x-
radiation, except that it comes from within the nucleus of an atom, and, in general, 
has a shorter wavelength. 

Ionizing radiation:Radiation that is capable of producing ions either directly or 
indirectly. 

Scattering:A process that changes a particle's trajectory. Scattering is caused by 
particle collisions with atoms, nuclei and other particles or by interactions with 
electric or magnetic fields. If there is no change in the total kinetic energy of the 
system, the process is called elastic scattering. If the total kinetic energy changes 
due to a change in internal energy, the process is called inelastic scattering. 

6.12 Answers to Self Learning Exercises 

Answers to Self Learning Exercise- I 
Ans.1:  Pair production 

Ans.2:   See Section 6.2 

Ans.3,4:See Section 6.3 

Answers to Self Learning Exercise- II 
Ans.1:  The rate of energy loss with distance travelled depends on the material and 

is called the linear stopping power, Sl, of the material 

l
dES
dx

 
 

6.10 Summary 

6.11 Glossary 

6.12 Answers to Self Learning Exercises 
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A common unit for linear stopping power is MeV.m-1. 

Ans.2,3: See Section 6.7 

Ans.4: See Section 6.8 

6.13 Exercise 
Q.1  Define straggling. 

Q.2  Explain why energy loss rate by "Bremsstrahlung" is greater for electrons 
travelling through lead than for electrons travelling through water. 

Q.3  Write a short note on 

1. Photoelectric effect 

2. Pair production 

3. Compton effect 
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7.4  Proportional Counters  
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7.0 Objectives 
After going through this lesson, you would be able to understand 

1. some of the most useful procedures for the detection and measurement of 
radiations like Alpha & Beta particles. 

2. the way in which the measurements of radiations are carried out. 

7.1 Introduction 
Experiments in Nuclear and Particle Physics depend upon the detection of primary 
radiation/particle and that of the product particles if any. The detection is made 

UNIT-7 
Detectors-I 

7.0  Objectives 

7.1  Introduction 
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possible by the interaction of nuclear radiation with atomic electrons directly or 
indirectly.  
The same detector may be used to study different types of radiation according to 
different phenomena. Thus, G.M. counters register all sorts of charged particles 
through ionization effects. Scintillation counters detect gamma rays by 
photoelectric effect, Compton scattering or pair production depending on gamma 
ray energy.  

The detection efficiency of an instrument is of great consideration in an 
investigation. The detection efficiency which is the probability of detection when 
the particle crosses it, varies widely. In most of the direct ionizing radiation, it is 
nearly 1. After an event is detected, most of the instruments lose their sensitivity 
for certain time called “Dead time”. In order that the counter efficiency be high, it 
is important that the dead time be smaller than the mean time interval between 
successive events. If r is the counting rate and td is the dead time then for high 
efficiency, the condition rtd<<1, must be satisfied.  

A perfect detector might have the following characteristics  

i.  100 percent detection efficiency 

ii.  high-speed counting and timing ability 

iii.  good energy resolution 

iv.  linearity of response 

v.  application to virtually to all types of particles and radiations 

vi.  large dynamic range 

vii.  virtually no limit to the highest energy detectable 

viii. reasonably large solid angles of acceptance 

ix.  discrimination between types of particles 

x.  directional information 

xi.  low background, and 

xii.  picturization of the event. 

7.2 Ionization Methods for Measurement of Radiation  

Different types of detectors can be characterized by the nature of the interaction of 

7.2 Ionization Methods for Measurement of Radiation  
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radiation with matter. Gas filled detectors operate by utilizing the ionization 
produced by radiation as it passes through a gas. Such a counter consists of two 
electrodes to which a certain electrical potential is applied. The space between the 
electrodes is filled with a gas. Ionizing radiation, passing through the space 
between the electrodes dissipates part or all of its energy by generating electron-
ion pairs. They are charge carriers that move under the influence of the electric 
field. This induces a current on the electrodes, which may be measured or through 
appropriate electronics, the charge produced by the radiation may be transformed 
into a pulse, in which case particles are counted individually. A nucleonic pulse 
originates as transient voltage change across the output end of a radiation detector, 
as a result of charge deposited in the detector by the passage of ionizing radiation. 

Radiation detector generating a charge pulse can be represented by a circuit 
diagram shown in the Fig.  

 
Figure 4: The electronic circuit of ionization chamber 

Relationship between High Voltage and charge collected: 

A radioactive source of constant intensity is placed at a fixed distance from a gas 
counter. The high voltage (HV) applied to the counter may be varied with the help 
of a potentiometer. An appropriate meter measures the charge collected per unit 
time. If the HV applied to the counter is steadily increased, the charge collected per 
unit time changes as shown in Fig. 



126 
 

 
Figure 2: Characteristics of a gas filled detector 

 Region I : When the voltage is very low, the electric field in the counter is not 
strong, electrons and ions move with relatively slow speeds, and their 
recombination rate is considerable. As V increases, the field becomes stronger, the 
carriers move faster, and their recombination rate decreases up to the point where it 
becomes zero. Then the entire charge created by the ionizing radiation is being 
collected. That gives the saturation current known as Ionization region current. 

Region II : The recombination rate is zero and no new charge is produced. This is 
indicated as Ion saturation in Fig2. 

Region III : The electric field is so strong, in a certain fraction of the counter 
volume, that the electrons from the primary ionization acquire enough energy 
between collisions to produce additional ionizations. The gas multiplication factor: 
Ks i.e., the ratio of the total ionization produced divided by the primary ionization 
is, for a given voltage, is independent of the primary ionization. The output of the 
counter is proportional to the primary ionization. The pulse height of the output is 
proportional to the energy dissipated inside the counter. Therefore, particle 
identification and energy measurement are possible.  

Region IV : Beyond the proportional region, the electric field inside the counter is 
so strong that a single electron-ion pair generated in the chamber is enough to 
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initiate an avalanche of electron-ion pairs. This avalanche will produce a strong 
signal with shape and height independent of the primary ionization and the type of 
particle, a signal that depends only on the electronics of the counter. This region is 
called the Geiger-Muller region.  

Different types of gas filled counters take their name from the voltage region in 
which they operate- 

Region Name of the counter 

I Ionization chamber 

III Proportional counter 

IV GM counter 

 

7.3 Ionization Chamber 
Operate in the ionization region. No charge multiplication takes place. Output 
signal is proportional to the particle energy dissipated in the detector. Since the 
signal is not large, only strongly ionizing particles such as alpha, protons, fission 
fragments and other heavy ions are detected. 

7.4 Proportional Counters  
Operate in region III. Charge multiplication takes place. Output signal is still 
proportional to the energy deposited in the counters. Measurement of particle 
energy is possible. Identification of the type of particle is possible. 

7.5 Geiger-Muller Counter (GM Counter)  
Operate in region IV. It can be used for any kind of radiation. The signal is 
independent of the particle energy and its type. It provide information only about 

the number of particles. It has relatively long dead time (200 to 300 μs).  

General Principles: A widely used radiation detector is a Geiger Muller detector 
tube. Cross sectional view of a typical GM tube is shown in Fig.3. A GM tube 
consists of a very fine central anode and a shell, which serves as the cathode. The 
region surrounding the anode is filled with a gas, usually argon or neon, specially 
selected for the ease with which it can be ionized. A high electrical field is 
maintained between the electrodes. 

7.3 Ionization Chamber 

7.4 Proportional Counters  

7.5 Geiger-Muller Counter (GM Counter)  
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Figure:3 

The sensitive volume is the portion surrounding the anode responding to the 
specific radiation. An energetic charged particle traversing through the sensitive 
volume will have high probability of producing one or more ion pairs (electron and 
positive ion). The electron is accelerated towards the anode and in a short distance, 
gains sufficient kinetic energy to produce a second ion pair in a chance encounter 
with a gas atom. These two electrons will now produce additional ion pairs and 
thus an avalanche is developed in which an enormous number of electrons of the 
order of 1010 are eventually collected by the anode. This charge which will be 

collected in about 0.25s, appears across the capacitance of the tube plus the 
associated circuitry to produce a voltage pulse of amplitude ranging from 0.25 to 

10 volts with a duration of about 100s. These values depend upon the design of 
the tube, its operating voltage and the characteristics of the external circuit. When 
the voltage across the tube is such that it is operating in the GM region, all pulses 
are of equal size irrespective of the number of ion pairs formed in the initial 
ionizing event.  

Operating Characteristic of a GM Tube : 

When the tube is exposed to a constant radiation intensity and the voltage applied 
on the tube is slowly increased, a voltage will be reached at which GM tube begins 
to produce pulses as indicated by the recorder. This is the starting potential. As the 
voltage is increased, very rapid increase in counting rate is observed. This voltage 
is known as the threshold. Beyond the threshold further increase in the voltage 
over certain range will produce little effect on the counting rate. This region is 
known as the plateau. It should have a slope of less than 10% per 100 volts for 
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good tubes. Within the plateau region, the proper operating voltage is selected. The 
operating voltage should be selected relatively close to the threshold voltage 
(within the lower 25% of the plateau) to preserve the life of the tube. Also the 
operating voltage should be selected at a point where the plateau shows minimum 
slope. If the voltage is increased beyond the plateau region, the counting rate 
begins to increase rapidly and the region of continuous discharge is reached. The 
shape of the high voltage (HV) plateau is as shown in the Fig. and explained as 
follows.  

 
Figure 4  

For very low voltage (V < Vs ) the counting rate is zero. The scaler does not 
receive any signal because all the pulses are below the discriminator level. The 
counting rate keeps increasing with high voltage (HV), since more and more pulses 
are produced with a height above the discriminator level. This continues up to the 
point when V = V1. For V > V1, all the pulses are now above the discriminator 
level. Since all the pulses are counted, each pulse being recorded as one regardless 
of its height, the counting rate does not change. This continues up to V = V2. 
Beyond that point, the counting rate will start increasing again because the HV is 
so high that spurious & double pulses may be generated. Counter should not be 
operated beyond V = V2 

Quenching of the discharge: 

When the electrons are accelerated in the strong field surrounding the wire they 
produce, in addition to a new avalanche of electrons, considerable excitation of the 
atoms and molecules of the gas. These excited atoms and molecules produce 
photons when they de-excite. The photons in turns, produce photoelectrons in other 
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parts of the counter. Thus the avalanche, which was originally located close to the 
wire, spreads quickly in most of the counter volume. During all this time, the 
electrons are continuously collected by the anode wire, while the much slower 
moving positive ions are still in the counter and form a positive sheath around the 
anode. When the electrons have been collected, this positive sheath, acting as an 
electrostatic screen, reduces the field to such an extent that the discharge should 
stop. However, this is not the case because the positive ions eject electrons when 
they finally strike the cathode, and since by that time the field has been restored to 
its original value, a new avalanche starts and the process just described is repeated. 
Clearly some means are needed by which the discharges is permanently stopped or 
quenched. Without quenching, a GM tube would undergo repetitive discharging. 
There are two general methods of quenching the discharge. 

External Quenching : In external quenching, the operating voltage of the counter 
is decreased, after the start of the discharge until the ions reach the cathode, to a 
value for which the gas multiplication factor is negligible. The decrease is achieved 
by a properly chosen RC circuit. The resistance R (10 ohms or more) is so high 
that the voltage drop across it due to the current generated by the discharge (id) 
reduces the voltage of the counter below the threshold needed for the discharge to 
start (Vo - id R). The time constant RC is much longer than the time needed for the 
collection of the ions. As a result the counter is inoperative for an unacceptably 
long period of time. In other words, its dead time is too long. 

Internal quenching : The internal quenching method is accompanied by adding to 
the main gas of the counter a small amount of a polyatomic organic gas or a 
halogen gas. These have relatively large molecules, which tend to absorb the 
fluorescent emissions of the noble-gas atoms. They also have smaller excitation 
potentials than the latter, so their de- excitation photons have insufficient energy to 
ionize the gas and propagate the discharge further. For satisfactory photon 
quenching, the absorption spectrum of the quenching agent should match the 
emission spectrum of the noble gas. Methane and ethanol both satisfy these 
requirements.  

GM counters using an organic gas as quenching agent have a finite lifetime 
because of the dissociation of the organic molecules. Usually the GM counters last 
for 108 to 109 counts. The lifetime of a GM detector increases considerably if a 
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halogen gas is used as the quenching agent. The halogen molecules also dissociate 
during the quenching process but there is a certain degree of degeneration of the 
molecules which greatly extends the useful lifetime of the counter.  
Sensitivity of a GM tube : 

GM tubes are not equally sensitive to ,  and  radiations. Once the radiation 
reaches the sensitive volume of the counter, the efficiency of detection is 100% for 

, nearly 100% for  and only 1 or 2% for  radiation.  

Dead Time and Recovery Time of GM Tubes : 

It is found on close observation of oscilloscope that a small vertical pulse can 
sometimes be seen closely following one of the normal height for a particular 
applied voltage. These pulses occur when one ionizing event follows another at an 
interval too short for the counter to have completely recovered, a situation due to 
the fact that the positive ion sheath has not reached the cathode when the second 
ionizing event occurs. The longer the interval between the ionizing events the 
larger the second pulse will be, until it reaches its maximum. The time interval 
between the first full pulse and the detectability of another full pulse depends on 
the characteristics of the counter tube and is known as resolving time. This time 
interval is made up of two parts. The first part is the dead time and is the time after 
a count during which no pulse can be registered at all, even if an ionizing event 
occurs, because the electric field has collapsed and has not yet been re-established. 
The second part is the recovery time, a time of increasing sensitivity, during which 
an ionizing event will give a pulse of amplitude less than that which is 
characteristic of the particular tube at the applied voltage. During this time the 
electric field is growing to its maximum value. At the end of the recovery time a 
full pulse is recorded. This is illustrated in given Fig5 below.  

 
Figure 5 
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Consider two radioactive sources of strength S1 and S2. Let n1, n2 be the respective 
count rates recorded and n12 be the count rate recorded when sources are taken 

together. Let  be the resolving time. Let N1, N2 and N12 be the corrected count 
rates respectively. Then we have 

1 2 12
1 2 12

1 2 12

; ;
1 1 1

n n nN N N
n n n  

  
  

 

we have 

N1 + N2 = N12 

substituting value of N1, N2 and N12 in above equation. 

1 2 12

1 2 121 1 1
n n n
n n n  

 
  

 

solving the above equation and neglecting the higher powers of  we get 

1 2 12

1 22
n n n

n n


 
  

7.6 Self Learning Exercise-I 

Q.1  Which type of particles towards GM counter is most sensitive? 

Q.2  What is Giger region . 

Q.3  What is dead time? 

Q.4  Write down the principle of GM counter. 

7.7 Scintillation Counter 

Construction: Scintillation counter consists of a photomultiplier tube to which is 
fixed a scintillator. A high voltage (~kV) is applied between the photo-cathode and 
the anode. The dynodes incorporated in the tube produce electron multiplication 
and by the use of a voltage divider provide progressively larger voltage between 
cathode and anode. Scintillators exist in several forms, crystals (organic or 
inorganic), liquids, plastic solids and gases. The scintillation phenomenon depends 
on the fact that suitable “flours” give off pulses of light when traversed by a 
charged particle. 

7.6 Self Learning Exercise-I 

7.7 Scintillation Counter 
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Figure 6: Block diagram of a scintillation counter. 

This light is directed on to a photomultiplier cathode where it ejects electrons by 
photo-electric effect. These electrons are multiplied in the dynode structure of the 
tube. In each stage the number of secondary electrons is multiplied which are 
finally collected at the anode and recorded as a pulse by suitable circuits. The 
phosphor is in optical contact with the tube and is protected from external light. A 
reflector surrounding the phosphor enhances light falling on the photo-cathode for 
higher efficiency. 

Mechanism: A charged particle passing through the phosphor loses energy by 
ionization, excitation and dissociation of molecules close to its path, ultimately 
light is emitted. The solid phosphor scan be basically divided into  

i. organic 

ii. inorganic crystals. 

There are several important differences between the characteristics of organic and 
inorganic scintillators, in regard to lifetimes, linearity of energy response, 
temperature effects, fluorescence and conversion efficiency and vmax at which 
maximum number of photons are emitted. The basic difference in the mechanism 
for the light production is that light emitted by an inorganic crystal is primarily due 
to the crystal structure, where as organic substances exhibit luminescence by virtue 
of molecular properties. 
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Desirable Characteristics of Luminescent Materials: 

i.  The phosphor must have high efficiency for conversion of incident energy of 
radiation or particles into that of the emitted luminescence. In the case of 
inorganic phosphor material a small percentage impurity is essential while for 
organic phosphors, material must be pure. 

ii.  The spectrum of the emitted light must closely match the spectral response of 
the cathode of the photomultiplier used. 

iii.  The luminescent material must be transparent to their own luminescence 
radiation. 

iv.  The material used must be a large optically homogeneous mass, either as a 
single crystal without defects or in solution, solid or liquid, moulded or 
machined to any convenient shape. 

v.  The phosphor must have a high stopping power for the radiation to be 
detected. 

vi.  The rise and decay of luminescence during and after excitation should occur in 
a short time. 

vii.  The phosphor must be stable against vacuum conditions and under prolonged 
irradiation. 

viii. The refractive index  of the crystal should not be too high, otherwise light 
will not be able to come out easily due to internal reflections. 

Organic Scintillators: 

 Main mechanism is believed to be that of collisions which are responsible for 
the energy transfer from the molecules, either by excitation transfer or by a 
dipole resonance interaction.  

 The energy response, is not quite linear.  

 Light output is very much dependent upon the nature of the particle. 

 Lifetime is of the order of 10−9 to 10−8 sec. 

 The phenomenon of phosphorescence is absent. 

 The fluorescent conversion efficiency is generally smaller than the inorganic 
phosphors, conversion efficiency. 
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Examples: anthracene, (max = 4400 A), diphenylacetyline, terphenyl naphthalene 
and stilbene.  

Organic phosphors are extensively used for fast neutron detection. The interactions 
of fast neutrons with hydrogen produce fast recoil protons which can be detected 
with high efficiency in large crystals. 

Inorganic Scintillators: 

 In inorganic crystals, for example alkali halides notably NaI with thallium 
impurity, charged particles may raise electrons into the conduction bands or into 
excitation levels. The electron and the hole left move rapidly throughout the 
crystal as an exciton until captured by the imperfection, giving up the energy in 
the form of vibrational transfer or until captured by an impurity. The impurity 
gets excited and acts as a scintillator. In the case of halides, thallium is added as 
an impurity to the extent of 0.1 to 0.2 percent. These crystals are highly 
transparent to their own radiation. 

 The light output from inorganic crystals like NaI is very nearly proportional to 

energy loss down to about 1 MeV for protons and about 15 MeV for ’s.  

 The life time is of the order of 10−6 sec. 

 The phenomenon of phosphorescence which is delayed emission of photons can 
in certain cases cause generation of secondary pulses which are indistinguishable 
from the primary pulses. As sodium iodide is deliquescent, it must be protected 
from moisture; nevertheless it is the most widely used inorganic phosphor. Large 
size crystals up to several inches in diameter and length are available. It has a 
high density and contains high Z atoms of Iodine and is an efficient detector for 
gamma rays as the absorption cross section for the three important processes, 
photoelectric, Compton and pair-production vary as Z4.5, Z and Z2 respectively. 
Of the other inorganic phosphors, zinc sulphide is useful for alpha-particle 
detection and lithium iodide for neutron detection, the relevant nuclear reaction 
being 

6Li+ n→3H +4He+4.8 MeV 

 Examples: NaI (thallium activated, max 4100 A), cesium iodide (cooled to      
77 K), zinc sulphide (copper activated) and lithium iodide (europium activated). 
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 Some of the inorganic phosphors have a high value of the refractive index (∼2). 
Difficulty is experienced in getting light out of them. 

Photo-Multiplier (PM) Characteristics: 

The desired characteristics of Photo-multiplier (PM) are: 

1. PM must have a photo cathode of large cathode area with an end-window. 
2. PM must be of a high efficiency for converting photons into photo-electrons.  
3. PM must provide a high gain. 
4. It must provide a good signal-to-noise ratio. In the absence of light the output 

from a photomultiplier consists of numerous pulses (noise) of various sizes, 
principally due to thermal emission of electrons from the photo-cathode. This 
constitutes the so-called dark current which depends on the photo-cathode 
material. It can be reduced by cooling the cathode.  

5. Examples: 56 AVP (Philips), 6810 A, 7264 (RCA), 6292 Du Mont. The 
number of dyonodes varies from 10 to 15. 

Light Collection: 

A crystal scintillation counter is normally placed in a metal container. When 
hygroscopic alkali halides are used, they are protected against moisture by sealing 
the container. Good optical contact is made between the surface of phosphor and 
the end face of PM with a layer of clear vacuum grease and by placing a good 
reflector in optical contact with other crystal surfaces so that light which would 
otherwise escape will be returned to the photomultiplier with improved efficiency. 
A highly polished foil or a diffuse reflector such as magnesium oxide is used as a 
specular reflector. When the arrangement is such that the PM can not be in direct 
contact with the scintillator, lucite pipes can be used. 

Electronic Equipment: 

 
Figure:7 
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Figure7 is a block diagram of the electronic equipment attached to the PM. Pulses 
from the anode of the PM which are small are passed through a pre-amplifier and 
then to a linear amplifier and through a “window” of the differential analyzer, and 
finally counted by the scalar. The high voltage can be varied to suite the given PM. 
The gain of linear amplifier can be varied so that the input fed to the differential 
analyzer is within the range of operation. The differential analyzer accepts pulses 

of height between V and V+V , where  V is the width of the window. The 

pulse height is proportional to E. 

Gamma Ray Spectroscopy with NaI (TL) Scintillator: 

At low  ray energy (< 100 keV) photoelectric absorption is the dominating 

process. As ph ∝ Z4.5, most of the absorptions occur in Iodine, with the K-shell 
electron (ionization energy Ek = 29 keV). The vacancy caused by the ejection of 
electron is filled in by radiative transitions (mainly X-rays) from electrons 

belonging to upper levels. If the resulting X-rays get absorbed then full energy (E) 
is available and this corresponds to photo peak in the pulse height distribution. 

However, in few events the X-rays escape. Hence energy equal to (E −Ek ) is 
available. This results in the “Iodine escape peak”. The ratio of photons under 

escape peak to those under photo-peak depends on E crystal size and experimental 
geometry. 

 
Figure:8 
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For E > 100 keV, Compton scattering also becomes significant. The “escape 

peak” is not significant when the mean absorption length of the incident  –rays 
becomes greater than that of iodine X-rays. In the case of single Compton 

scattering, the energy of escape radiation extends from E` to E, where                 

E` = E /(1 + 2) with  = E/mc2 corresponds to the energy of the scattered 

photon at 180◦ (back scattering). The corresponding energy deposited ranges from 

(E –E`) to 0. There will be a broad Compton distribution with the Compton edge 

occurring at energy (E – E`). There can also be external Compton scattering from 
material outside such as the PM shielding. This gives rise to the “back scattering 
peak”. 

In the case of multiple Compton scattering the energy of escaping radiation 

extends from 0 to E and the corresponding energy deposited is E to 0. For E > 
2mc2 (threshold for pair production) two other peaks are observed, a single escape 

peak at (E −mc2) and a double escape peak at (E −2mc2).  

Below figures (9,10) show typical spectra obtained from  rays incident on NaI 
crystal from Cs-137 (661 keV) and Co-60 (1.17 MeV and 1.33 MeV), respectively. 
The 661 keV photo peak, Compton shoulder, back scattering from material of the 
phosphor and noise are indicated. The decay scheme is also shown. 

 

Figure 9: (a) Pulse height spectrum of γ -rays from Cs-137 of energy 661 keV. (b) 
Decay scheme for Cs137 
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Figure 10: (a) Pulse height spectrum of γ -rays of energy 1.17 MeV and 1.33 MeV. 

The origin of γ -rays is shown in the decay scheme. (b) Decay scheme for 60Co 

Energy Resolution: 

The photo peaks shown in above Figs, are not sharp. It is important that the spread 

in photo peaks be as small as possible, otherwise -rays of neighboring energies 
cannot be resolved. Many factors contribute to the energy resolution of a 
scintillation counter. These factors are: 

i.  Fluorescent radiation conversion efficiency (f ) 

ii.  Efficiency for the collection of light by the cathode (b) 

iii.  Efficiency for the conversion of photo-electrons (c) 

iv.  Efficiency for collection of electrons which are accelerated to the first   
dynode (p) 

v.  Total multiplication from all the dynodes (M) 

If E is the particle energy and  the average energy of the photons generated in the 

crystal, then the number of photons emitted is Ef/. It follows that the number of 

electrons finally collected at the output of the PM tube is equal to (Ef/)bcpM. For 
various reasons there will be variation in the factors f, b, c,p andM. Of various 
factors, however, the variation in c which arises due to the statistical fluctuations in 
the number of photo-electrons released from the photo cathode is decisive for the 
pulse height and is therefore the ultimate factor which limits the resolution. The 

best resolution that is achieved is 6 % for 661 keV -rays from Cs-137 using NaI 
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phosphor and a 6292 Du Mont P.M. Note that E ∝Eߛ, so that the energy 

resolution, E/E ∝ 1/Eߛ . 

Applications and Advantages 

1 Fast Timing- 

For investigations which involve fast timing, the scintillation counters have a 
decisive advantage over visual detectors. This aspect has been exploited in the 

lifetime measurements of +, K+, capture times of − and in the discovery of p− 
by time of flight method. In conjunction with Cerenkov counter or other 
scintillation counters, it can be used as a “telescope” in coincidence or anti-
coincidence to avoid unwanted particles or events. 

2 Scintillation Spectroscopy 

Spectrometry of heavy charged particles by scintillation technique is usually done 
with the use of inorganic crystals. However, a number of organic compounds are 
also found useful. Organic scintillators like anthracene have a linear response for 
electrons, but for heavier particles the pulse-height energy relationship exhibit 
nonlinearity. For this reason, organic scintillators are preferred to inorganic 
crystals for electron spectroscopy as their effective low atomic number causes 
substantial improvement for backscattering compared with inorganic crystals, 
except for very low energy electrons. 

3 Gas Scintillation Counters 

Gas scintillation counters have the merit of short decay times (∼10−9 s), large light 
output per MeV independent of ionization density, and their availability in a wide 
range of Z and density. Fission fragments in the presence of heavy background of 

’s can be discriminated. Also, because of low stopping power and small pulse 

height for -rays of nuclear origin, relativistic charged particles can be separated 

from an intense  radiation background 

7.8 Self Learning Exercise-II  
Q.1  Differentiate between the characteristics of organic and inorganic 

scintillators. 

Q.2  What are the desirable Characteristics of Luminescent Materials. 

7.8 Self Learning Exercise-II  
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Q.3  Write down the characteristics of Photo-Multiplier (PM). 

7.9 Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I 

Ans.1: Charge particles 

Ans.2:  Beyond the proportional region, the electric field inside the counter is so 
strong that a single electron-ion pair generated in the chamber is enough to 
initiate an avalanche of electron-ion pairs. 

Ans.3: After an event is detected, most of the instruments lose their sensitivity for 
certain time called “Dead time”. 

Ans.4: See Section 7.5 

Answers to Self Learning Exercise-II 

Ans.1:  organic and inorganic scintillators are different not only in regard to 
lifetimes, linearity of energy response, temperature effects, fluorescence and 
conversion efficiency and vmax at which maximum number of photons are 
emitted but also in the mechanism for the light production. light emitted by 
an inorganic crystal is primarily due to the crystal structure, where as 
organic substances exhibit luminescence by virtue of molecular properties. 

Ans.2: See Section 7.7 

Ans.3: See Section 7.7 

7.10 Exercise 
Q.1  Compare and contrast ionization chambers, proportional counters, and 

Geiger-Muller tubes. 

Q.2  Describe the construction and explain the operation of a photomultiplier 
tube. 

7.11 Summary 
In this chapter we discuss various types of detectors. Firstly we introduce 
Ionization chamber followed by Proportional counter, Geiger-Muller counter and 
Scintillation counter. 

7.9 Answers to Self Learning Exercises 

7.10 Exercise 

7.11 Summary 
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7.12 Glossary 

Background radiation :The radiation of man's natural environment originating 
primarily from the naturally radioactive elements of the earth and from the cosmic 
rays. The term may also mean radiation extraneous to an experiment. 

Geiger counter : A Geiger-Müller detector and measuring instrument. It contains 
a gas-filled tube which discharges electrically when ionizing radiation passes 
through it and a device that records the events. 

Ionizing radiation : Radiation that is capable of producing ions either directly or 
indirectly. 

Scaler : An electronic instrument for counting radiation induced pulses from 
radiation detectors such as a Geiger-Muller tube. 

Scintillation counter : An instrument that detects and measures gamma radiation 
by counting the light flashes (scintillations) induced by the radiation. 

References and Suggested Readings 
1.  Particle Physics by A. Kamal 2014. 

2.  Engineering Physics, by Raghuvanshi, G. S. Raghuvanshi. 

3.  Nuclear and particle physics by B. R. Martin 2006. 

4.  Nuclear Energy by Raymond L. Murray, 2000. 

5.  R.R. Roy and B.P. Nigam: Nuclear Physics (Willey -Easter, 1979). 

  

7.12 Glossary 

References and Suggested Readings 



143 
 

UNIT-8 

Detectors-II 
Structure of the Unit 

8.0  Objectives 

8.1  Solid state detectors (Diffused junction detector, Surface barrier detectors) 

8.2 Nuclear Track Detectors 

8.3  Nuclear Electronics and Data Collection 

8.4  Nuclear Statistics 

8.5  Self learning exercise I 

8.6  Multi-Wire Proportional and Drift Chambers 

8.7  Nuclear emulsions 

8.8  Self learning exercise II 

8.9  Summary 

8.10  Glossary 

8.11  Answers to self learning exercises 

8.12  Exercise 

References and Suggested readings 

8.0 Objectives 
After interacting with the material presented here students will be able to 
understand the working of  

 Diffused junction detector 

 Surface barrier detectors and 

 Nuclear detectors 

 Multiwire proportion chambers 

In this chapter we will also discuss nuclear emulsion and the techniques and 
analysis of tracks. 

UNIT-8 
Detectors-II 

8.0 Objectives 
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8.1 Solid State Detectors (Diffused Junction Detector, Surface 
Barrier Detectors) 
The several types of semiconductor detectors that exist today differ from one 
another because of the material used for their construction or the method by which 
that material is treated. The rest of this section describes briefly the method of 
construction and the characteristics of the most successful detectors -made of 
silicon or germanium-and two promising ones made of CdTe and HgI2.  

1. Surface Barrier Detectors: 

 Silicon of high purity, usually n-type, is cut, ground, polished, and etched until a 
thin wafer with a high-grade surface is obtained. The silicon is then left exposed to 
air or to another oxidizing agent for several days. As a result of surface 
oxidization, surface energy states are produced that induces a high density of holes 
and form, essentially, a p-type layer on the surface (Figure). A very thin layer of 
gold evaporated on the surface serves as the electrical contact that will lead the 
signal to the preamplifier. In Fig., X,, is the depth of the sensitive region, t is the 
total silicon thickness, and D is the diameter of the detector. The size of the 
detector is the length (or depth) Xo. 

 
2. Diffused-Junction Detectors: 

 Silicon of high purity, normally p-type, is the basic material for this detector type. 
As with surface-barrier detectors, the silicon piece has the shape of a thin wafer. A 
thin layer of n-type silicon is formed on the front face of the wafer by applying a 
phosphorus compound to the surface and then heating the assembly to 

8.1 Solid State Detectors (Diffused Junction Detector, 
Surface Barrier Detectors) 
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temperatures as high as 800-1000" C for less than an hour. The phosphorus 
diffuses into the silicon and "dopes" it with donors (Figure). The n-type silicon in 
front and the p-type behind it form the p-n junction.  

 

Both surface-barrier and diffused-junction detectors are used for the detection of 
charged particles. To be able to measure the energy of the incident radiation, the 
size Xo of the detector should be at least equal to the range of the incident particle 
in silicon. The value of X0, depends on the resistivity of the material (which in turn, 
depends on impurity concentration) and on the applied voltage.  

8.2 Nuclear Track Detectors 
The passage of highly ionizing radiation through an insulating solid leaves a wake 
of destruction in the material. In covalently bonded materials, the chemical 
structure of the material along the track can be significantly and permanently 
changed by the passage of a single energetic ion. Certain polymeric (plastic) 
materials and the mineral mica (a form of silicon dioxide) are particularly sensitive 
to such radiation damage. The original radiation damage remains localized on the 
molecular scale but is not visible without enhancement. However, the track can be 
expanded by chemical etching from the molecular scale (nanometers) up to the 

microscopic scale (μm). 

8.2 Nuclear Track Detectors 
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Advantages: Nuclear track detectors are very simple and very efficient detectors 
of rare events that produce highly ionizing radiation. Carefully prepared and 
scanned track detectors have been used to identify individual rare decays. The 
detectors are integrating in that the damage caused by a track is not spontaneously 
repaired. 

Drawback: The drawback to track detectors is that the tracks are small and can 
only be observed with a microscope. In the past, scanning by eye was extremely 

labor intensive and prone to error. Modern computer--‐controlled scanning has 
improved the speed and reliability of the analysis.  

Plastic track detectors that are sensitive to alpha particles are used extensively in 
commercial radon detectors. Chemical etching of the material takes place on all 
surfaces that are exposed to the etching solution. The exposed surfaces of the 
material are eroded along with the material along the track. Therefore, the rate of 
etching has to be carefully controlled to get the maximum amount of information 
from the track.  

Notice that etching of a uniform track will generally form a circular cone because 
the material will be more easily removed from the surface than from deep along 
the track. Mica tracks are diamond-shaped due to the lattice structure as opposed to 
being circular. 

Nuclear emulsions are closely related "track detectors" that trace their origins to 
the original discovery of radiation by Becquerel. Nuclear emulsions are very fine-
grained photographic film. The film is "exposed" by the passage of radiation 
through it and the grains of AgC1 are activated by the ionization. The film is 
developed and with careful handling and microscopic observation, the track or path 
of individual particles can be traced. Occasionally, a particle interacts with a 
nucleus in the emulsion, creating many fragments or particles, and the tracks of the 
reaction products can be traced. The emulsion is also sensitive to the rate of 
ionization and the nature of the particle in each track can often be determined. On 
the other hand, most people are familiar with the shadow images of skeletal 
features taken with x-rays. The x-rays are absorbed and scattered more efficiently 
by the heavy elements in bones (essentially calcium) than by the light elements in 
soft tissue (carbon, oxygen, hydrogen) and create a shadow. The grains in the 
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emulsion are then exposed by the transmitted x‐rays and are developed to form  the 
negative image. 

8.3 Nuclear Electronics and Data Collection 
All of the nuclear radiation detectors produce electronic pulses in response to the 
interaction of some ionizing radiation. These signals are processed by standardized 
nuclear instrumentation modules (NIM) electronics to count the number of pulses 
or to more fully analyze the size or even the shape of the signal. In addition, 

computer‐based electronics in the CAMAC (Computer Automated Measurement 
and Control) system are used to measure the time relationships of pulses, the pulse 
heights, and the signal shapes. The signals are recorded and stored by computers 
for later analysis. An important feature of scientific studies with radio activities 
and with nuclear beams is that the data must be collected as rapidly as possible 
usually during a very limited time. A radioactive source will decay away after 
being produced and cannot be "stopped" because the scientist is not ready to use it. 
Similarly, the nuclear reactions induced by particle beams take place in a very 
short time and must be recorded when they occur. Then after a set of events has 

been collected “on-line,” the data are analyzed “off‐line.”  

We will give a very brief overview of the kinds of modules used. CAMAC and 
NIM electronics fall into three broad categories, 

 linear electronics that maintain a linear relationship to the size of the initial 
signal, 

 logic circuits that provide only a standard (or single sized) pulse indicating 
that a given logical condition was met, and 

 data-acquisition modules to measure the signals and record the data.  

One should realize that with modern high density electronics the functions that we 
will describe can correspond to a single electronic module or may be condensed 
into a single integrated circuit. Therefore, we will only describe the functions 
performed by the electronic modules and not specific equipment. The output of 
most detectors is an electrical pulse that carries information about the energy 
deposited in the detector, the time of the interaction, etc. Linear electronics are  

described  as  modules  that  preserve  and  extract  information about the energy 

8.3 Nuclear Electronics and Data Collection 
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deposit in the detector from the detector signal. 

 

A typical pulse‐height analysis system is shown in figure. The signal from the 
detector is given a preliminary amplification and shaping by a preamp before being 
sent through a coaxial cable to a linear amplifier. This is done to prevent noise in 
the cable from destroying the tiny detector signal. In the amplifier the signal is 
further amplified and shaped before analysis. The height of the pulse is related to 
the energy deposited in the detector. The analog-to-digital converter (ADC) 
converts the signal from the amplifier into digital data (a number of standard 
pulses) thus measuring its size. The ADC could be contained on a plug-in card in a 
personal computer (used to measure the distribution of pulses from a single 
detector monitoring a radioactive source) or it might be one of many identical 
ADC units in a CAMAC module (used to record the signals from many detectors 
monitoring nuclear collisions simultaneously) .Logic modules are used to monitor 
the counting rate of single detectors and the relative times at which radiation is 
detected. A fast signal derived from the detector itself, the preamplifier, or from a 
timing-filter amplifier is sent to a discriminator. The discriminator produces an 
output pulse with a fixed shape (generally square) and size when the input signal 
crosses a reference. Discriminators usually have multiple identical output signals. 
The logic pulses can be sent to a scalar that simply counts the number of pulses, to 
a count rate meter to monitor radiation rates or doses, and to a time-to- amplitude 
converter (TAC) to measure the relative times of arrival of two or more logic 
signals.  



149 
 

8.4 Nuclear Statistics 
Radioactive decay is a random process. The number of nuclei in a sample of 
radioactive material that decay in any time period is not a fixed number but will 
differ, usually, for various time periods. This point can be readily shown by 
making repeated measurements of the activity of a long-lived radionuclide, each 
for the same time duration. The results of such an experiment might be shown in as 
a distribution function, by “binning” the data (Figure: Typical Sequence of Counts 
of a long-Lived Sample (170Tm)*). 

 
We can now ask ourselves if we can understand this distribution function. 
Statisticians have given us mathematical models that describe these and other 
similar distribution functions. As a background for our discussion of how to extract 
the maximum amount of information from these data, let us consider some of these 
models. The most general model to describe radioactive decay is the binomial 
distribution. For a process that has two outcomes (success or failure, decay or no 
decay), we can write for the distribution function P(x) 

!( ) (1 )
( )! !

x n xnP x p p
n x x

 
  

where n is the number of trials where each trial has a probability of success p and 

8.4 Nuclear Statistics 
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P(x) is the predicted probability of getting x successes. Applying this distribution 
to radioactivity, P(x) might be taken as the probability of getting x counts in a 

given time interval and p=λ∆t where ∆t is a time short compared with the 
measurement time and the half-life. Note that x and n are both integers. Typical 
binomial distribution functions are shown in Figure. 

 
The binomial distribution function is cumbersome and a simplification can be 
made. If the probability of success p is small (p<<1) (the measurement time is very 
short compared with the half-life), we can approximate the binomial distribution 
by the Poisson distribution. The Poisson distribution is written as 

( ) exp( )
!

x
m

m
xP x x
x

   

where xm= pn 

Thus we have a simplified distribution characterized by one parameter, xm 
compared to two parameters in the binomial distribution. The Poisson distribution 
is an asymmetric distribution as shown in Figure. 

Besides being a more tractable function to use, the Poisson distribution has certain 
important properties that we will use in analyzing radioactivity data. 
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Let us consider a parameter, the variance, σ2, which expresses something about 
the width of the distribution of values about the mean, xm.  

For a set of N measurements, we can calculate 

2

2 1
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i m
i

x x

N
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For a binomial distribution 
2 (1 )np p    

Which is cumbersome to use but, for a Poisson distribution, we can show that 
2

mx   
1/2( )mx  

This illustrates the important point that these distribution functions are models, not 
physical laws, and when they are applied to finite data sets, their predictions may 
deviate from observation. The Poisson distribution can be applied also to describe 

the action of detectors. For example, suppose the interaction of a γ-ray photon 
with an inefficient scintillator produced, on average, 3.3 photoelectrons from the 
photocathode. The probability of producing no photoelectrons (not seeing the 
event) is given by the Poisson distribution as 

P(0)= exp(-3.3) = 3.7% 

Thus 3.7% of the events will be missed due to “statistical fluctuations”. A further 
simplification of the parent binomial distribution occurs when the number of 
successes is relatively large, i.e., we get more than about 30 counts in a 
measurement. Then the binomial distribution can be represented as a normal or 
Gaussian distribution. Here we write  
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
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This analytical approximation is symmetric. As shown in Figure, 68.3% of the 

measured values lie within ±1σ of the mean, xm.  

 

Furthermore 95.5% of all measurements lie within ±2σ of the mean and 99.7% lie 

within ±3σ  of the mean. The full width at half maximum (FWHM) is 2.35σ . 

Thus for a single measurement of a count rate of 100, we would estimate that σ = 
10. We could say, with a 68.3% chance of being correct that the true rate was 
between 100-10=90 and 100+10=110. With 95.5% certainty, we  could say the true 
rate lies between 80 and 120. Generalizing, we can quote the results of a 

measurement as x'+ nσ where n is related to the probability that an infinite number 
of measurements would give a value within the quoted range. For n = 
0.6745,1,1.6449,1.96,2,2.5758,3, the “confidence limits” are 50%, 68.3%, 
90%,95%,95.5%, 99%, and 99.7%, respectively. Commonly people will quote the 

results of a measurement as x ± σ. One should remember that doing so means one 

will be wrong 31.7% of the time, i.e., the mean count rate will be outside x ± σ. If 

this risk is not acceptable, one should pick a greater confidence level, i.e., 2 σ, 3 
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σ, etc. Another distribution function of interest relates to the distribution of time 
intervals between successive counts. We know the average time between counts is 
(1/count rate). The distribution of time intervals is given by the interval 
distribution. This distribution (applicable to all random events) states that for a 
process with an average time between events tm, the probability of getting a time t 
between successive events is  

1( ) exp( / )m
m

I t t t dt
t

   

For radioactive decay         tm= 1/ λ 

This distribution function is shown in Figure. 

 
Note the most probable time between events is zero. Random events (counts, 
natural disasters, etc.) occur in “bunches.” Let us summarize how we describe the 
statistical uncertainty in measurements of radioactivity. If we measure the activity 
of a sample (+background) as 64 counts in 1 minute, then we estimate 

(S+B)=64cpm 

with an uncertainty σ S+B 

σ S+B= 8 cpm 

What if a second measurement with no sample showed a background of 10 counts 
in 1 minute? We would then estimate 
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B = 10 cpm 

σ B= (10)1/2= 3.2 cpm 

If we consider two independently determined numbers and their uncertainties 

(standard deviations), A±σa  , B±σb, we can write down, some rules for the 
uncertainty in the result of some common mathematical operations. We would 
calculate that for our sample and background counting case,  

Net rate = (sample + background) ‐ (background) 

=64 -10= 54cpm 

Uncertainty in net rate = (82 + 3.22)1/2 = 8.6 cpm 

Up to now we have carefully restricted our discussion of nuclear statistics to cases 
where l-min counts were taken. If the number of counts recorded in 1 min was x, 
then the counting rate has been quoted as x ± (x)1/2 cpm. Suppose, however, that 
we recorded 160 counts in 5 min. What would be the standard deviation of the 
average counting rate (in cpm)? The best estimate of the mean number of counts in 
the 5-min period would by 160 ± (160)1/2 that is, 160 ± 13 counts. The average rate 
would be 160/5 ± 13/5 = 32 ± 3 cpm.  In general, therefore, the rate R is given as 

R=(number of counts recorded)/(measurement time)=x/t 

The standard deviation of the rate, σ R, is  

σ R = (x)1/2/t=(R*t)1/2/t = (R/t)1/2 

Thus for the preceding example we could have calculated directly that  

σ R = (R/t)1/2=(32/5)1/2=3 

Often we wish to compute the average of two numbers, x1, and x2, both of which 

have an uncertainty denoted by their standard deviations σ 1 and σ 2, respectively. 
The best average of these two numbers is not the simple average but weighted 
average xm, given by  

1 2
2 2 2 2
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1 1/m
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where  
2

1
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 
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 

 

In short, each number is weighted by the inverse of its standard deviation squared. 

For the weighted average of N values, xi, with standard deviation, σ i, we have 
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The uncertainty or standard deviation of x is given by 
1/2
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For example, suppose that we make two independent measurements of an activity, 
obtaining results of 35 ± 10cpm and 46 ± 2cpm. The weighted average of the two 
measurements is  

w= (10/2)2=25 

xm = (35+25.46)(1+25)≅ 46 cpm 

The standard deviation of the weighted average is 

σ x= ((100+(25)2(4))/(262))1/2 

1/2
1 2

1 1
100 4

x 
   

  

Thus we would say that the average rate was 46 ± 2 cpm. 

Rejection of Abnormal Data  

In our discussions so far, we have only considered the uncertainty in the 
experimental data due to the randomness of radioactive decay. But there may also 
be systematic error that contributes to the overall uncertainty in the data. As a 
result, when we make repeated measurements of a sample activity under seemingly 
identical situations, we will find occasionally one measurement that differs from 
the others by a large amount. If included in the average, this abnormal observation 
may cause significant error. When are we justified in rejecting such data? One 
criterion for rejecting such data is to reject suspected values that deviate from the 
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mean by more than 2σ or 3σ. The probabilities of ccurrence of such deviations are 
4.5 and 0.27%, respectively. What about the question of whether a detector or 
counting system is working properly? For example, the data in do not exactly 
match a Poisson or normal distribution. Was the counting system malfunctioning? 

One parameter that we can calculate that will help us answer such questions is 2 

(chi‐squared). Formally 

2

2 1
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i m
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Setting Upper Limits When No Counts Are Observed  

Suppose our experiment failed to detect a type of decay we were seeking: What 
can we say about its occurrence? The simplest answer is what is termed the “one-
event upper limit”. We assume that you had detected one event, and calculate the 
resulting decay rate, cross section, etc., taking into account detection efficiencies, 
solid angles, etc. A more sophisticated answer can be obtained by using the 
properties of a Poisson distribution. The probability of observing n events if the 

mean value is μ is given as 

( / )
!

n

n e
n

     

The probability of observing 0 events in a time period T for a process with mean 

rate λ is  
(0 / ) tt e     

It can be shown that the upper limit on the rate (when zero counts are observed),    

λ 0 , is given by 

0
1 ln(1 )CL
T

     

Where CL is the confidence limit you wish to attach to your upper limit. (If you 
want to quote an upper limit with 95% confidence, then CL = 0.95.) 

8.5 Self Learning Exercise-I 
Q.1  Write down the formula for binomial distribution. 

Q.2  Write down the drawback of Nuclear Track Detectors. 

8.5 Self Learning Exercise-I 
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Q.3  Sketch figure of Diffused junction detector.  

Q.4  Explain the nuclear detector electronics.  

8.6 Multi-Wire Proportional and Drift Chambers 
The proportional chamber advances by virtue of the fact the voltage pulse it 
measures is able to provide information on the particle’s energy as well.  

The multi-wire proportional chamber or MWPC advances this further - instead of 
having one anode wire surrounded by a cathode wall or plate, multiple ‘sense 

wires’ are equidistantly spaced symmetrically between two parallel plates. Wire 
spacings are typically a few millimetres. A nearly uniform electric-field develops 

between the cathode plates, distorted only near the sense wires. Each wire acts as a 
separate counter - when a charged particle passes through the chamber leaving a 

trail of electron-ion pairs, the electrons drift to the nearest wire and cause a voltage 
pulse. By placing another such configuration at 900 to the first, thus forming a grid, 
and marking off the wires that produce a pulse, the path of the charged particle is 

revealed. 

 
Applying a magnetic field perpendicular to the direction the particle is travelling 
in, will cause it to spiral due to the Lorentz force. This will reveal how the particle 

8.6 Multi-Wire Proportional and Drift Chambers 



158 
 

is charged and what its momentum is.  

A typical gas composition for multi-wire proportional chambers is the ‘magic gas’ 
mixture comprising 75% argon + 24.5% isobutane + 0.5% freon.  

Drift chambers: 

The resolution of multi-wire proportional chambers can be dramatically enhanced 
by taking into consideration the time the electrons take to drift from the point 
where they were liberated to the sense wire, where they are detected. Thus one can 
infer the distance at which the charged particle passed the wire. This improves the 
spatial resolution and allows for wider wire spacing on the order of centimeters. 
Wider wire spacing distort the uniform field less, but increase the drift time, hence 
these ‘drift chambers’ are not ideal for use in colliders with high collision rates, or 
in triggers. In order to calculate the distance an electron has travelled it is 
necessary to understand its velocity in the electric-field. The uniformity of the field 
must be more carefully controlled than it is in a multiwire proportional chamber: to 
this end, the anode sense wires are alternated with cathode field wires that ‘correct’ 
the field distortion caused by the sense wires, restoring uniformity throughout the 
chamber. Drift velocities under electric-fields  
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8.7 Nuclear Emulsions 
Composition: 

Photographic Emulsions or Nuclear Emulsions differ from ordinary optical 
emulsions by a higher silver-bromide content, smaller average crystal diameter and 
much greater thickness. The silver-halide (mainly silver bromide with 5 % silver-
iodide) crystals are embedded in gelatin (HCNO). The gelatin is usually made from 
clippings of calf hide, ear and cheek or from pig skin and bone. The main function 
of gelatin is to keep the silver halide crystals well dispersed in the medium and to 
prevent clamping of the crystals. Atomwise, the AgBr group and HCNO groups 
compromise 25%and 75 % respectively. But the interactions with medium and 
high energy particles take place with a frequency of 70 % in AgBr, 20 % in CNO 

and 5 % in H. The emulsion sheets called pellicles of standard size 400μm or 

600μm are stacked with one on the top of the other before the exposure in order to 
increase the volume. A variety of emulsions of different crystal sizes have been 
manufactured which differ in sensitivity. The type G5, L5 (Ilford), NTB (Kodak), 

ET-7A (Fuji) and Nikfi-R with crystal size in the range 0.2μm–0.28μm are highly 

sensitised and are capable of recording relativistic particles (β∼1). K2 and L2 are 

less sensitised and record protons up to β=0.4.  K1 is less sensitised and record less 

protons up to β=0.12.  K0 is least sensitised and is used mainly for fission studies. 

Latent Image: 

When a charged particle moves through emulsion energy is absorbed by the silver 
halide crystal, and under the action of reducing agent is converted into metallic 
silver. The physical condition which renders the crystal developable is called 
“latent image”. The latent image will fade if too much time elapses between 
irradiation and development, similar to ordinary photography.  

Processing: 

Stripped emulsions are first mounted on glass before processing. For uniform 
development, it is essential that the developer, for example amidol, permeates the 
thickness of emulsion. For this reason, the plates are bathed in the developer at low 
temperature (0–5°C) so that the developer is permitted to penetrate but the 
development will not ensue. Now, if the temperature is raised to say 23°C, the 

8.7 Nuclear Emulsions 
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development ensues. This is called high temperature development. After the 
development stage, the plates are “fixed”, washed and dried in alcohol. 

 

Techniques: 

Events are analyzed with the aid of special type of microscopes with smooth 
movable stages and high power oil objectives and eyepieces with graticules 
capable of giving magnifications as high as 2700. After processing, normal 
emulsion shrinks by a factor of 2–2.5. The shrinkage factor is taken into account in 
the dip measurements of angles. For particles, which stop within the emulsion 
stack, Range-Energy Relation of the type (1-101) is used. 

Ionization measurements are made either by counting grains or blobs for 
relativistic particles or by counting blobs and gaps of length > l, for non-relativistic 
particles, and determining the exponent g from the relation 

H = Be−gl 

where H and B are gap and blob density, respectively. Blobs are unresolved grains 
and gap is the space separating two successive grains or blobs, as shown in Fig. 

For energetic particles, the parameter pߚ (momentum times velocity) can be found 
out from multiple scattering measurements by essentially measuring the y-
coordinates of the track along the axis, at constant intervals called “cell’s”. The 
arithmetic average of second differences is given by, 

2 1 1 2| | | 2 |i iD y y y     

and pߚ is given by the relation 
3
2

2

18.1Ktp
D

 


 

where K = 28 is the scattering constant, for β >1, D2 is in μm, t = cell length in 
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mm and p in GeV/c. The quantity t 3/2 arises due to the fact that the scattering angle 

θ = D/t . The factor 18.1 arises due to conversion of degrees into radians. The 
choice of cell-length is such that the signal-to-noise ratio is greater than 2–3. 
Multiple scattering technique with constant cell method works provided the energy 
loss over the tracks is not significant. In order that the method be useful, it is 
important that the spurious scattering and distortion resulting from the processing 
of  mulsions be small and that the stage noise, which arises due to the non-linear 
motion of the stage be negligible. 

Charge of the particle can be determined from δ-ray counting (AAK, 1, 1) or from 
photometric measurements; for example, the fluxes of heavy primaries of Cosmic 
rays have been determined from emulsion exposures in balloons or rockets 
following this procedure. 

 
Particles are identified from their mass determinations. In this context we recall 
from (AAK, 1, 1), 

i.  Range measurement gives energy of the particle 

ii.  Ionization measurement gives the velocity 

iii.  Multiple Scattering measurements give pߚ. 

iv.  δ-ray density measurement gives z of the particle. 
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For singly charged particles, combination of any two parameters arising in (i), (ii) 
and (iii) uniquely fixes the mass of the particle since velocity must be eliminated. 
Thus, the plot of ionization (I ) versus residual range (R) gives a family of curves 
for particles of different mass, Fig. Notice that for the given I, the ranges are in the 
ratio of the masses. The method is very extensively used for particles which are 
brought to rest. Masses can be estimated with an accuracy of about 10% from a 
single measurement. 

The method can be extended for identifying particles which are not arrested in the 
emulsion stack, if an appreciable change in ionization over a known distance is 
determined. 

 
At higher energies, combination of (ii) and (iii) in favorable cases permits the 
identification of particles. (Fig)  At still higher energies, the curves cross each 
other and the identification becomes difficult or even impossible. On the other 
hand, energy measurements can seldom be made from multiple scattering method 
with an accuracy better than 10–15 % due to the presence of spurious scattering. At 
energies greater than few GeV, the measurements are rendered meaningless if the 
noise due to spurious scattering competes with the Coulomb’s signal. Sometimes 
in favorable cases it has been possible to extend the energy measurements up to 
15–20 GeV in cosmic ray jets by making relative scattering measurements—a 
method in which multiple scattering measurements  are  made with  reference to a  

neighboring track due to an ultra relativistic particle so that spurious scattering and 
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stage noise which affect both the tracks similarly are eliminated.  

Advantages: 

1. High Stopping Power and High Spatial Resolution  

2. High Angular Resolution The angular resolution is unsurpassed. This aspect 

has been exploited in the determination of the magnetic moment of Λ0. 

3. Compactness In situations where compactness of equipment is essential, 
emulsions can be conveniently used. For example, they can be sent in balloons or 
rockets to high altitudes and recovered conveniently after the required exposure. 
Further, they are economical.  

4. Radiation Length Because of high stopping power and short radiation length 
huge electromagnetic cascades can be contained in a large stack and the complete 
development and final degradation can be studied in detail. 

5. Loading It is possible to load emulsions with H2O, D2O, Li2SO4, Th(NO3)4, UO2 
etc. to study reactions with elements which are not contained in normal emulsions. 

Limitations: 

1. Composition Invariability 

The composition of nuclear emulsions can not be changed arbitrarily so that 
interaction studies are limited only to those nuclei which are present in normal 
emulsions, although loaded emulsions in limited concentration have been used 
with some difficulty.  

2. Minuteness of Volume Because of minuteness of volume of emulsion under 
study in the microscope it is exceedingly difficult to find correlated events even 1 
cm or so apart. 

3. Continuous Sensitivity Because of continuous sensitivity the background tracks 
are a source of nuisance. The best available emulsions from the stand point of 
sensitivity lack discrimination and all highly ionizing particle tracks are saturated. 

4. Distortion and Spurious Scattering 

Emulsion which has a gelatin base is subject to distortion in the processing regime. 
This can seriously affect the range and angle measurements. Spurious scattering 
can interfere with Coulomb’s signal in multiple scattering measurements. 
5. Scanning It usually takes several months involving a large group of Physicists 
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and scanners to scan and analyze events of statistical significance. 

6. The Study of Elementary Interactions 

Since only 5 % of the interactions take place with hydrogen and 95 % in complex 
nuclei of emulsion, the interactions in the latter are obscured by secondary effects. 
Although hydrogen density in emulsions is comparable with that in hydrogen 
bubble chamber, the latter is by far better suited in so far as the elementary 
interaction studies are concerned. 

Discoveries Made with Photographic Emulsions 

Major discoveries of fundamental importance included the particles π+, π−, π0, K+,  
K − mesons, several decay modes of K+ mesons (two-body and three-body decay 
modes), the hyperons, hyper fragment, double-hyper fragment, the composition of 
primary cosmic rays etc. Reliable mass measurements of various types of mesons 
and the ∑ +and Λ0 hyperons, and their mean life times were first carried out in 
emulsions. 

8.8  Self Learning Exercise- II 
Q.1  Define latent image? 

Q.2  What is the gas composition used in multi-wire proportional chambers?  

Q.3  Write down the advantage and limitation of nuclear emulsion.  

Q.4  Discuss workings of Multi-Wire Proportional and Drift Chambers. 

8.9 Summary 
In this chapter we discussed various types of detector and nuclear detector 
techniques.  

8.10 Glossary 
Background radiation: The radiation of man's natural environment originating 
primarily from the naturally radioactive elements of the earth and from the cosmic 
rays. The term may also mean radiation extraneous to an experiment. 

Ionizing Radiation : Radiation capable of producing ions or charged particles. 
Ionizing radiation includes alpha, beta, gamma, and X-rays. 

Multiwire Proportional Counter : Particle detector using changes in the current 

8.8  Self Learning Exercise- II 

8.9 Summary 

8.10 Glossary 
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in wires due to the passage of ionizing particles nearby. 

8.11 Answer to Self Learning Exercises 
Answers to Self Learning Exercise-I 

Ans.1: 
!( ) (1 )

( )! !
x n xnP x p p

n x x
 


 

Ans.2:  See section 8.2 

Ans.3:  See section 8.1 

Ans.4:   See section 8.3 

Answers to Self Learning Exercise-II 
Ans.1:  The physical condition which renders the crystal developable is called 

“latent image”. 

Ans.2:  Mixture comprising 75% argon + 24.5% isobutane + 0.5% freon.  

Ans.3:  Section 8.7 

Ans.4:   Section 8.6 

8.12 Exercise 
Q.1  Write a short note on 

(i) Diffused junction detector,  (ii)Surface barrier detectors 

(iii) Multiwire proportional chamber (iv)Nuclear emulsions 

Q.2  Explain Different type of distribution function use to analyze nuclear data. 
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UNIT-9 
Complex Nuclei : Shell Theory 

 

Structure of the Unit 

9.0  Objectives 

9.1  Introduction 

9.2  Magic number 

9.3  The Shell theory potential  

9.4  Allowed orbits in the Shell theory Potential 

9.5  Self learning exercise I 

9.6  Filling of the orbits in the Shell theory Potential 

9.7  Magnetic Dipole Moments 

9.8  Shell model failures 

9.9  Self learning exercise II 

9.10  Summary 

9.11  Glossary 

9.12  Answers to self learning exercises 

9.13  Exercise 

References and Suggested Readings 

9.0 Objectives 
After interacting with the material presented here students will be able to 
understand the nuclear shell structure. They can also be able to calculate parity, 
spin and magnetic moment of a given nucleus.  

9.1 Introduction 
There are two basic types of simple nuclear model- 

1. Collective body with no individual particle states. An example is the Liquid 
Drop Model which is the basis of the semi-empirical mass formula. 

UNIT-9 
Complex Nuclei : Shell Theory 

9.0  Objectives 

9.1  Introduction 
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2. Individual particle model with nucleons in discrete energy states for example 
the Fermi Gas Model or the Shell Model. 

In this chapter we will discuss details of nuclear shell model. 

9.2 Magic Numbers 
The binding energies predicted by the Liquid Drop Model underestimate the actual 
binding energies of “magic nuclei” for which either the number of neutrons           
N = (A − Z) or the number of protons, Z is equal to one of the following “magic 
numbers” 2, 8, 20, 28, 50, 82, 126. This is particularly the case for “doubly magic” 
nuclei in which both the number of neutrons and the number of protons are equal 
to magic numbers.  

For example for 56Ni28 (nickel) the Liquid Drop Model predicts a binding energy of 
477.7MeV, whereas the measured value is 484.0 MeV. Likewise for 132Sn50 (tin) 
the Liquid Drop model predicts a binding energy of 1084 MeV, whereas the 
measured value is 1110 MeV. There are other special features of magic nuclei:  

 The neutron (proton) separation energies (the energy required to remove the 
last neutron (proton)) peaks if N (Z) is equal to a magic number. 

 There are more stable isotopes if Z is a magic number, and more stable 
isotones if N is a magic number. 

 If N is magic number then the cross-section for neutron absorption is much 
lower than for other nuclides. 

 The energies of the excited states are much higher than the ground state if 
either N or Z or both are magic numbers. 

 Elements with Z equal to a magic number have a larger natural abundance 
than those of nearby elements. 

9.3 The Shell Theory Potential  
The first step will be to identify a suitable average potential for the nucleons. One 
obvious difference distinguishing nuclei from atoms is that the Coulomb potential 
is not going to hack it. In the electron structure of an atom the electrons repel each 
other, and the only reason the atom stays together is that there is a nucleus to 
attract the electrons. But inside a nucleus, the nucleons all attract each other and 

9.2  Magic Numbers 

9.3  The Shell Theory Potential  
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there is no additional attractive core. Indeed, a Coulomb potential like the one used 
for the electrons in atoms would get only the first magic number, 2, right, 
predicting 10, instead of 8, total particles for a filled second energy level. 

A better potential is needed. Now in the center of a nucleus, the attractive forces 
come from all directions and the net force will be zero by symmetry. Away from 
the center, the net force will be directed inwards towards the center to keep the 
nucleons together inside the nucleus. The simplest potential that describes this is 
the harmonic oscillator one. For that potential, the inward force is simply 
proportional to the distance from the center. That makes the potential energy 
 proportional to the square distance from the center, as sketched in figure (a). 

 
Figure 5 (a) harmonic oscillator, (b) impenetrable surface, (c) Woods-Saxon, 
(d) Woods-Saxon for protons. 

The energy eigenvalues of the harmonic oscillator are  

( 1 / 2) ,      n=1,2,3...nE n     

Also, in spherical coordinates the energy eigenfunctions of the harmonic oscillator 
can be taken to be of the form,  

( ) ( , )nlm nl lmR r Y    

Here l is the azimuthal quantum number that gives the square orbital angular 

momentum of the state as 2( 1)l l   ; m is the magnetic quantum number that gives 
the orbital angular momentum in the direction of the arbitrarily chosen z-axis 
as mh, and ms is the spin quantum number that gives the spin angular momentum 
of the nucleon in the z-direction as msh. The spin up state with ms=1/2 is 

commonly indicated by a postfix , and similarly the spin-down one ms=1/2 by . 

Compared to the Coulomb potential of the hydrogen electron, the major difference 
is in the number of energy states at a given energy level n. While for the Coulomb 
potential the azimuthal quantum number l can have any value from 0 to n-1, for the 
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harmonic oscillator l must be odd or even depending on whether n-1 is odd or 
even. 

It does not make a difference for the lowest energy level n=1; in that case only l= 0 
is allowed for either potential. And since the number of values of the magnetic 
quantum number m at a given value of l is 2l+1, there is only one possible value 
for m. That means that there are only two different energy states at the lowest 
energy level, corresponding to ms=1/2 respectively -1/2. Those two states explain 
the first magic number, 2. Two nucleons of a given type can occupy the lowest 
energy level; any further ones of that type must go into a higher level. 

In particular, helium-4 has the lowest energy level for protons completely filled 
with its two protons, and the lowest level for neutrons completely filled with its 
two neutrons. That makes helium-4 the first doubly-magic nucleus. It is just like 
the two electrons in the helium atom completely fill the lowest energy level for 
electrons, making helium the first noble gas. 

At the second energy level n=2, where the Coulomb potential allows both l= 0 
and l= 1, only l= 1 is allowed for the harmonic oscillator. So the number of states 
available at energy level n- 2 is less than that of the Coulomb potential. In 
particular, the azimuthal quantum number l= 1 allows 2l+1= 3 values of the 
magnetic quantum number m, times 2 values for the spin quantum number ms. 
Therefore, l= 1 at n= 2 corresponds to 3 times 2, or 6 energy states. Combined with 
the two l= 0 states at energy level n=1, that gives a total of 8. The second magic 
number 8 has been explained! It requires 8 nucleons of a given type to fill the 
lowest two energy levels. 

It makes oxygen-16 with 8 protons and 8 neutrons the second doubly-magic 
nucleus. Note that for the electrons in atoms, the second energy level would also 
include two l= 0 states. That is why the second noble gas is neon with 10 electrons, 
and not oxygen with 8. 

Before checking the other magic numbers, first a problem with the above 
procedure of counting states must be addressed. It is too easy. Everybody can 
evaluate 2l+1 and multiply by 2 for the spin states! To make it more challenging, 
physicists adopt the so-called spectroscopic notation in which they do not tell you 
the value of l. Instead, they tell you a letter like maybe p, and you are then 
supposed to figure out yourself that l= 1. The scheme is:  
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The latter part is mostly alphabetic, but by convention j is not included. Using 
spectroscopic notations, the second energy level states are denotated as  

      
where the 2 indicates the value of n giving the energy level. The additional 
dependence on the magnetic quantum numbers m and ms is kept hidden from the 
uninitiated.  

In these terms, the energy levels and numbers of states for the harmonic oscillator 
potential are as shown in figure. The third energy level has 2 3s states and 10 3d 
states. Added to the 8 from the first two energy levels, that brings the total count to 
20, the third magic number. 

 

Unfortunately, this is where it stops. The fourth energy level should have only 8 
states to reach the next magic number 28, but in reality the fourth harmonic 



171 
 

oscillator level has 6 4p states and 14 4f ones. Still, getting 3 magic numbers right 
seems like a good start. 

The logical next step is to try to improve upon the harmonic oscillator potential. In 

an average nucleus, it can be expected that the net force on a nucleon pretty much 
averages out to zero everywhere except in a very thin layer at the outer surface. 
The reason is that the nuclear forces are very short range; therefore the forces seem 
to come equally from all directions unless the nucleon is very close to the surface. 
Only right at the surface do the particles experience a net inward attraction because 
of the deficit of particles beyond the surface to provide the full compensating 
outward force. This suggests a picture in which the nucleons do not experience a 
net force within the confines of the nucleus. However, at the surface, the potential 
ramps up very steeply. As an idealization the potential beyond the surface can be 
taken infinite. 

That reasoning results in the impenetrable-shell. It too is analytically solvable, The 
energy levels are shown in figure. Unfortunately, it does not help any explaining 
the fourth magic number 28. 

It turns out that once again the Saxon-Woods model is a reasonable guess, i.e. 

0( )
1 exp(( ) / )

VV r
r R 

 
 

 

Unfortunately, the fourth magic number remains unexplained. In fact, any 
reasonable spherically symmetric spatial potential will not get the fourth magic 
number right.  

9.4 Allowed Orbits in the Shell Theory Potential  
Eventually, Mayer in the U.S., and independently Jensen and his co-workers in 
Germany, concluded that spin had to be involved in explaining the magic numbers 
above 20. To understand why, consider the six 4p and fourteen 4f energy states at 
the fourth energy level of the harmonic oscillator model. Clearly, the six 4p states 
cannot produce the eight states of the energy shell needed to explain the next 
magic number 28. And neither can the fourteen 4f states, unless for some reason 
they split into two different groups whose energy is no longer equal. 

9.4  Allowed Orbits in the Shell Theory Potential  



172 
 

Why would they split? In nonquantum terms, all fourteen states have orbital and 
spin angular momentum vectors of exactly the same lengths. What is different 
between states is only the direction of these vectors. And the absolute directions 
cannot be relevant since the physics cannot depend on the orientation of the axis 
system in which it is viewed. What it can depend on is the relative alignment 
between the orbital and spin angular momentum vectors. This relative alignment is 
characterized by the dot product between the two vectors. 

Therefore, the logical way to get an energy splitting between states with differently 
aligned orbital and spin angular momentum is to postulate an additional 
contribution to the Hamiltonian of the form  

.H L S   
Here L is the orbital angular momentum vector and S the spin one. A contribution 
to the Hamiltonian of this type is called an spin-orbit interaction, because it 
couples spin with orbital angular momentum. Spin-orbit interaction was already 
known from improved descriptions of the energy levels of the hydrogen atom. 
However, that electromagnetic effect is far too small to explain the observed spin-
orbit interaction in nuclei. Also, it would get the sign of the correction wrong for 
neutrons. 

While nuclear forces remain incompletely understood, there is no doubt that it is 
these much stronger forces, and not electromagnetic ones, that provide the 
mechanism. Still, in analogy to the electronic case, the constant of proportionality 
is usually taken to include the net force on the nucleon and an additional factor 
1/r to turn orbital momentum into velocity. None of that makes a difference for the 
harmonic oscillator potential, for which the net effect is still just a constant. Either 
way, next the strength of the resulting interaction is adjusted to match the 
experimental energy levels. 

However, consider the net angular momentum operator  

J=L+S 

If you expand its square magnitude   
2 2 2( ).( ) 2 .J L S L S L L S S       

you see that the spin-orbit term can be written in terms of the square magnitudes of 
orbital, spin, and net angular momentum operators:  
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2 2 21. [ ]
2

L S J L S    
 

Therefore combination states that have definite square net angular 
momentum J2 remain good energy eigenfunctions even in the presence of spin- 

orbit interaction. 

Now a quick review is needed of the weird way in which angular momenta 
combine into net angular momentum in quantum mechanics. In quantum 

mechanics, the length of the final vector must be quantized as ( 1)j j    where 
the quantum number j must satisfy | | | |l s j l s    and must change in integer 
amounts. In particular, since the spin is given as s=1/2, the net angular momentum 
quantum number j can either be l-1/2 or l+1/2. (If l is zero, the first possibility is 
also ruled out, since square angular momentum cannot be negative.) 

For the 4f energy level l= 3, so the square net angular momentum quantum 
number j can only be 5/2 or 7/2. And for a given value of j, there are 2j+1, values 
for the quantum number mj giving the net angular momentum in the chosen z-
direction. That means that there are six states with j=5/2 and eight states 
with j=7/2. The total is fourteen, still the same number of independent states at the 
4f level. In fact, the fourteen states of definite net angular momentum j can be 
written as linear combinations of the fourteen states. Pictorially,  

 
where the spectroscopic convention is to show the net angular momentum j as a 
subscript for states in which its value is unambiguous. The spin-orbit interaction 
raises the energy of the six 4f5/2 states, but lowers it for the eight 4f7/2 states. In 
fact, from above, for any state of definite square orbital and square net angular 
momentum,  
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The eight 4f7/2 states of lowered energy form the shell that is filled at the fourth 
magic number 28. 

 
 

Figure 6 Schematic effect of spin-orbit interaction on the energy levels. The 
ordering within bands is realistic for neutrons. The designation behind the 
equals sign is the official one. 

Figure shows how the spin-orbit splitting of the energy levels gives rise to the 
remaining magic numbers. In the figure, the coefficient of the spin orbit term was 
simply taken to vary linearly with the energy level n. The details depend on 
whether it is neutrons or protons, and may vary from nucleus to nucleus. Especially 
for the higher energy bands the Coulomb repulsion has an increasingly large effect 
on the energies of protons. 

The major shells, terminated by magic numbers, are shown as grey bands. In the 
numbering system followed here, a subshell with a different number as the others 
in the same major shell comes from a different harmonic oscillator energy level.  
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9.5 Self Learning Exercise-I 

Q.1  Write down top five magic numbers 

Q.2  Draw Woods Saxon potential for protons. 

Q.3  What is spin orbit coupling? 

Q.4  Write down draw backs of Liquid drop model. 

9.6 Filling of the Orbits in the Shell theory Potential  
Nuclear states have an intrinsic spin and a well defined parity, p=±1, defined by 
the behaviour of the wavefunction for all the nucleons under reversal of their 
coordinates with the centre of the nucleus at the origin. 

1 2 1 2( , ,... ) ( , ,... )A Ar r r p r r r      

The spin and parity of nuclear ground states can usually be determined from the 
shell model. Protons and neutrons tend to pair up so that the spin of each pair is 
zero and each pair has even parity (p = 1). Thus we have  

• Even-even nuclides (both Z and A even) have zero intrinsic spin and even 
parity. 

• Odd A nuclei have one unpaired nucleon. The spin of the nucleus is equal to 
the j value of that unpaired nucleon and the parity is (−1)l, where l is the 
orbital angular momentum of the unpaired nucleon. 

 
Example 47Ti22 (titanium) has an even number of protons and 25 neutrons. 20 of the 
neutrons fill the shells up to magic number 20 and there are 5 in the 1f7/2 state (l = 
3, j = 7/2 ) Four of these form pairs and the remaining one leads to a nuclear spin 
of 7/2 and parity (−1)3 = −1. 
• Odd-odd nuclei. In this case there is an unpaired proton whose total angular 

momentum is j1 and an unpaired neutron whose total angular momentum is j2. 
The total spin of the nucleus is the (vector) sum of these angular momenta and 
can take values between |j1 − j2| and |j1 + j2| (in unit steps). The parity is given 
by (−1)(l1+l2), where l1 and l2 are the orbital angular momenta of the unpaired 
proton and neutron respectively. 

Example 6Li3 (lithium) has 3 neutrons and 3 protons. The first two of each fill the 
1s level and the third is in the 1p3/2 level. The orbital angular momentum of each 

9.5  Self Learning Exercise-I 

9.6  Filling of the Orbits in the Shell theory Potential  
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is l = 1 so the parity is (−1)×(−1) = +1 (even), but the spin can be anywhere  
between 0 and 3. 

9.7 Magnetic Dipole Moments 

Since nuclei with an odd number of protons and/or neutrons have intrinsic spin 
they also in general possess a magnetic dipole moment. 

The unit of magnetic dipole moment for a nucleus is the “nuclear magneton” 
defined as 

2N
P

e
m

    

which is analogous to the Bohr magneton but with the electron mass replaced by 
the proton mass. It is defined such that the magnetic moment due to a proton with 

orbital angular momentum l is μ l. 

Experimentally it is found that the magnetic moment of the proton (due to its spin) 
is 

μp = 2.79μN = 5.58μNs,    (s =1/2) 

and that of the neutron is 

μn = −1.91μN = −3.82μNs,   (s =1/2) 

If we apply a magnetic field in the z-direction to a nucleus then the unpaired proton 
with orbital angular momentum l, spin s and total angular momentum j will give a 
contribution to the z− component of the magnetic moment 

μz = (5.58sz + lz) μN. 

As in the case of the Zeeman effect, the vector model may be used to express this 
as 

2

(5.58 . . )z z
N

s j l j
j

j
 


  

Using  2 2( 1)j j j    

2 2 21. ( )
2

         

s j j s l    

9.7  Magnetic Dipole Moments 
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We end up with expression for the contribution to the magnetic moment 

(5.58[ ( 1) ( 1) ( 1)] [ ( 1) ( 1) ( 1)])
2 ( 1)

z
N

j j s s l l j j l l s s j
j j

           



 

and for a neutron with orbital angular momentum l′ and total angular momentum j′ 
we get (not contribution from the orbital angular momentum because the neutron is 
uncharged) 

(5.58[ `( ` 1) `( ` 1) `( ` 1)] `
2 `( ` 1)

z
N

j j s s l l j
j j

     



 

Thus, for example if we consider the nuclide 7Li3 for which there is an unpaired 
proton in the 2p3/2 state (l = 1, j = 3/2 then the estimate of the magnetic moment is 

μ =3.79μN 

The measured value is 3.26μN so the estimate is not too good. For heavier nuclei 
the estimate from the shell model gets much worse. 

The precise origin of the magnetic dipole moment is not understood, but in general 
they cannot be predicted from the shell model. For example for the nuclide 17 F9 

(fluorine), the measured value of the magnetic moment is 4.72μN whereas the 

value predicted form the above model is −0.26μN. There are contributions to the 
magnetic moments from the nuclear potential that is not well-understood. 

9.8 Shell Model Failures 

1. Excited States: 

As in the case of Atomic Physics, nuclei can be in excited states, which decay via 
the emission of a photon ( gamma ray) back to their ground state (either directly or 
indirectly). Some of these excited states are states in which one of the neutrons or 
protons in the outer shell is promoted to a higher energy level. 

9.8  Shell Model Failures 
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However, unlike Atomic Physics, it is also possible that sometimes it is 
energetically cheaper to promote a nucleon from an inner closed shell, rather than a 
nucleon form an outer shell into a high energy state. Moreover, excited states in 
which more than one nucleon is promoted above its ground state is much more 
common in Nuclear Physics than in Atomic Physics. 

Thus the nuclear spectrum of states is very rich indeed, but very complicated and 
cannot be easily understood in terms of the shell model. Most of the excited states 
decay so rapidly that their lifetimes cannot be measured. There are some excited 
states, however, which are metastable because they cannot decay without violating 
the selection rules. These excited states are known as “isomers”, and their lifetimes 
can be measured. 

2. Imperfect Pairing: 

In case of titanium-47, the shell model predicts that there will be five neutrons in 
an unfilled 4f7/2 subshell. It is believed that this is indeed correct. The unperturbed 
shell model makes no predictions about the nuclear spin. However, the odd-particle 
shell model says that in the ground state the nuclear spin should be that of the odd 
neutron, 7/2. But it is not, the spin is 5/2. The pairing of the even number of 
neutrons in the 4f7/2 shell is not complete. While unfortunate, this is really not that 
surprising. The perturbation Hamiltonian used to derive the prediction of nucleon 
pairing is a very crude one. It is quite common to see subshells with at least three 
particles and three holes (three places for additional particles) end up with a unit 
less spin than the odd-particle model predicts. It almost happened for oxygen-19. 

3. Wrong Shell: 

Fluorine-19 shows a more fundamental failure of the shell model. The shell model 
would predict that the odd proton is in the 3d5/2 state, giving the nucleus 
spin 5/2 and even parity. In fact, it should be just like fluorine-17. For the 
unperturbed shell model, the additional two neutrons should not make a significant 
difference. But the nuclear spin is1/2, and that means that the odd proton must be 
in the 3s1/2 state. Which show that the unperturbed shell model cannot 
qualitatively explain this swapping of the two states. 

It is the theoretician’s loss, but the experimentalist’s gain. The fact that fluorine has 
spin one-half makes it a popular target for nuclear magnetic resonance studies. 
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Spin one-half nuclei are easy to analyze and they do not have nontrivial electric 
fields that mess up the nice sharp signals in nuclei with larger spin. 

And maybe the theoretician can take some comfort in the fact that this complete 
failure is rare among the light nuclei. In fact, the main other example is fluorine-
19’s mirror twin neon-19. Also, there is an excited state with the correct spin and 
parity just above the ground state. But no funny business here; if you are going to 
call fluorine-19 almost right, you have to call fluorine-17 almost wrong. 

Note also how low the ½- excited state has become. Maybe this can be somewhat 
understood from the fact that the kicked-up 2p1/2 proton is now in a similar spatial 
orbit with three other nucleons, rather than just one like in the case of fluorine-17. 
In any case, it would surely require a rather sophisticated perturbed shell model to 
describe it, one that includes nucleons of both type in the perturbation. 

And note that formulating a perturbed shell model from physical principles is not 
easy anyway, because the basic shell model already includes the interactions 
between nucleons in an average sense. The perturbations must not just identify the 
interactions, but more importantly, what part of these interactions is still missing 
from the unperturbed shell model. 

4. Promotion: 

Selenium-77 illustrates a more fundamental reason why the odd particle may end 
up in the wrong state. The final odd neutron would normally be the third one in the 
5g9/2 state. That would give the nucleus a net spin of 9/2 and positive parity. There 
is indeed a low-lying excited state like that. (It is just above a 7/2 one that might be 
an effect of incomplete pairing.) However, the nucleus finds that if it promotes a 
neutron from the 4p1/2 shell to the 5g9/2 one just above, that neutron can pair up at 
higher angular momentum, lowering the overall nuclear energy. That leaves the 
odd neutron in the 4p1/2 state, giving the nucleus a net spin of 1/2 and negative 
parity. Promotion happens quite often if there are more than 32 nucleons of a given 
type and there is a state of lower spin immediately below the one being filled. 

5. Non spherical nucleus: 

Tantalum-181 is an example nucleus that is not spherical. For it, the shell model 
simply does not apply as derived here. So there is no need to worry about it. Which 
is a good thing, because it does not seem easy to justify a 7/2+ ground state based 
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on the shell model. Nonspherical nuclei appear near the stable line for mass 
numbers of about 150 to 190 and above 220. There are also a few with mass 
numbers between 20 and 30. 

Preston & Bhaduri  give an extensive table of nucleons with odd mass number, 
listing shell occupation numbers and spin. Notable is iron-57, believed to have 
three neutrons in the 4p3/2 shell as the shell model says, but with a net nuclear spin 
of ½-. Since the three neutrons cannot produce that spin, in a shell model 
explanation the 6 protons in the 4f7/2 shell will need to contribute. In general the 
table shows that the ground state spin values of spherical nuclei with odd mass 
numbers are almost all correctly predicted if you know the correct occupation 
numbers of the shells. However, predicting those numbers for heavy nuclei is often 
nontrivial. 

9.9 Self Learning Exercise-II 
Q.1  Calculate magnetic moment of 7Li3 

Q.2  What is a “halo nucleus,” 

Q.3  Give the spin and parity, as expected from the shell model, of the ground 
states of 173Yb. 

Q.4  Write a short note on “Failures of nuclear shell model” 

9.10 Summary 
The unit starts with the introduction of Nuclear models followed by a detailed 
discussion of nuclear shell model.  

9.11 Glossary 
Angular Momentum : A measure of the momentum of a body in rotational 
motion about its centre of mass. Technically, the angular momentum of a body is 
equal to the mass of the body multiplied by the cross product of the position vector 
of the particle with its velocity vector. The angular momentum of a system is the 
sum of the angular momenta of its constituent particles, and this total is conserved 
unless acted on by an outside force. 

Neutron : One of the two main building blocks (along with the proton) of the 
nucleus at the centre of an atom. Neutrons have essentially the same mass as a 
proton (very slightly larger) but no electric charge, and are made up of one “up” 

9.9  Self Learning Exercise-II 

9.10  Summary 

9.11 Glossary 
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quark and two “down” quarks. The number of neutrons in an atom determines the 
isotope of an element. Outside of a nucleus, they are unstable and disintegrate 
within about ten minutes. 

Nucleus : The tight cluster of nucleons (positively-charged protons and zero-
charged neutrons, or just a single proton in the case of hydrogen) at the centre of an 
atom, containing more than 99.9% of the atom’s mass. The nucleus of a typical 
atom is about 100,000 smaller than the total size of the atom(depending on the 
individual atom). 

Proton : One of the two main building blocks (along with the neutron) of the 
nucleus at the centre of an atom. Protons carry a positive electrical charge, equal 
and opposite to that of electrons, and are made up of two “up” quarks and one 
“down” quark. The number of protons in an atom’s nucleus determines its atomic 
number and thus which chemical element it represents. 

Spin : Spin is a characteristic property of elementary particles 

9.12 Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I  

Ans.1: 2, 8, 20, 28, 50 

Ans.3:  .H L S   

Here L is the orbital angular momentum vector and S the spin one. A 
contribution to the Hamiltonian of this type is called an spin-
orbit interaction, because it couples spin with orbital angular momentum. 

Ans.4: See Section 9.2 

Answers to Self Learning Exercise-II  

Ans.1: μ =3.79μN 

Ans.2:  A nucleus whose radius is noticeably larger than that predicted by the 
liquid drop formula. 

Ans.3:  5/2- 

9.13 Exercise 
Q.1  Give the spin and parity, as expected from the shell model, of the ground 

9.12  Answers to Self Learning Exercises 

9.13 Exercise 
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states of  

7Li, 5N, 29Si, 43Ca, 87Ru, 133Cs. 

Q.2  Write down a short note on nuclear shell model. 

References and Suggested Readings 
1. Concepts of Nuclear Physics by Bernard L. Cohen, 1971 
2. Introductory Nuclear Physics, by K.S. Krane, 1988.  
3. Structure of the Nucleus by M.A. Preston and R.K. Bhaduri,1975. 
4. Theory of Nucleus. By A. Sitenko and V. Tartakovskii,1997.  
5. The shell model Nobel Lecture by Maria Goeppert Mayer,1963. 
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UNIT-10 
Beta Decay 

 
Structure of the unit  
10.0  Objectives 

10.1  Introduction 

10.2  General characteristics of weak interaction. 

10.3  Nuclear Beta decay and lepton capture  

10.4  Energy Consideration in ,    and EC reactions. 

10.5  Fermi theory of beta decay 

10.6  Electron energy spectrum and Fermi Kurie plot 

10.7  Parity conserved selection rules for Fermi and Gamow Teller Transitions  

10.8   f t values and forbidden Beta transitions 

10.9  Experimental verification of parity violation 

10.10  V−A Theory of Fermi beta decay with parity conserving and 
nonconserving terms. 

10.11 Summary 

10.12  Glossary 

10.13  Exercise 

10.14  Answers to Exercise  

References and Suggested Readings 

10.0 Objectives 

The nucleus decays through various forms of  decay : ,   and electron capture. 
The reader learn about allowed and forbidden beta transitions and  f t –values. 
Fermi and Gamow Teller transitions are explained so that the student can 
differentiate between two types of transitions .V−A theory of beta decay is 
introduced so that the reader learns the concept of parity violation in the context of 
beta decay process. 

UNIT-10 
Beta Decay 

10.0 Objectives 
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10.1 Introduction 
The decay processes falling under beta decay category are described with proper 
theoretical models using concepts and tools of quantum mechanics and quantum 
field theory. The Fermi Kurie plot and parity non conservation are deduced from 
the theoretical (phenomenological ) models. The concept of f t values and Fermi 
and Gamow –Teller transitions are introduced to understand the experimental 
observations .The better comprehension of beta decay processes comes from 
recognition of the role of weak interaction in the phenomena.  

10.2 General Characteristics of Weak Interaction  
Nuclear beta decay is only one class of phenomena out of many other classes of 
phenomena occurring due to weak interaction .The weak interaction not only 
produces transitions between nuclear states but a wide categories of phenomena 
involving leptons, mesons, hadrons etc. The weak processes cannot be observed 
because these are slower by several orders of magnitude compared with competing 
electromagnetic and strong processes. The studies of weak processes can be made 
in the areas where faster electromagnetic and strong processes are forbidden and 
suppressed by selection rules. 

Let us consider the basic weak reactions in nuclei which produce nuclear 
transitions . 

The decay of a free neutron and a bound proton are  

 en p e                  (10.1) 

and  bound ep n e                 (10.2) 

The decay of hadrons ,for example  

 ee

 




   

 
                               (10.3) 

 ee

 




   

 
                                (10.4) 

 n                                   (10.5) 

10.2 General Characteristics of Weak Interaction  

10.1 Introduction 
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o 

  

    

     
                                (10.6) 

The decay of nucleons [given by eq.(10.1) and (10.2)] and decay of hadrons [given 
by eq.(10.3) and (10.4)] are called semi- leptonic processes as these processes 
involve leptons also.  

The decay of hadrons without any lepton are called non leptonic processes [given 
by eq.(10.5) and (10.6)]. 

The decay of leptons are ,for example ,    

 ee 
                 (10.7) 

This is pure leptonic process. 

Now it is clear that weak processes are of three types: pure leptonic ,semi leptonic 
and non leptonic and non leptonic .Beta decay is basically semi leptonic nucleon 
decays causing nuclear transitions and an integral part of weak processes. 

We will now consider the general characteristics of weak interaction processes. 

(i) Universal Strength:  

The weak interaction exhibits the same interaction strength  in all types of the 
processes like pure leptonic , semi leptonic and non leptonic processes. This 
universal weak coupling constant , designated by Fermi coupling constants, has the 
same value. 

 62 31 43584 0 00003 10FG . . J m
     

                3 2111 166637 0 00002 10. . c MeV               (10.8) 

whether it is measured through super allowed  -decay in nuclei or from 

muon decay or from other weak processes. 

(ii) and oW ,W Z  Vector Bosons are Weak Interaction Carriers: 

 The vector Bosons carry the weak interaction as photons carry electromagnetic 
interaction. The masses of the vector bosons are  

 

2

2

80 9 1 4

91 9 1 8o

W

Z

M c . . GeV

M c . . GeV


  


  
               (10.9) 
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(iii) Range of weak interaction is very short ( 310 fm ):
 

The characteristic range of the weak interaction can be calculated using 
Heisenberg’s uncertainty relation 

 
 

2
cr pc  
               (10.10) 

and taking 2 100Mc GeV as typical mass of weak vector boson ,we get 

 
3

2
200 10
2 1002

c MeV fmr fm
GeVMc

 


 
         

(10.11) 

We see that range of the weak interaction is approximately three orders of 

magnitude smaller than long range of the nuclear force ( 310 times smaller). 

(iv) SU3 Flavour Symmetry Mixing: 

Fundamentally , beta decay may be viewed as one type of quark transformed into 
another through exchange of charged vector boson. In general one type of particle 

(quark or lepton) changes into another particle through exchange of oW and Z  in 
the weak interaction processes .When a quark decays into another quark, it does 
not necessarily have a definite flavour i.e. it may result in Flavour Mixing. 

The customary Transformation for weak decay among four quarks u,d,c and s can 
be expressed in terms of the Cabbibo angle , c  

 
  c c

weak
c c

cos sin d
j u c

sin cos s


    
          

            (10.12) 

The more general case of the transformation for weak decay among all six quarks  

u,d,c,s,t and b can be expressed using the 3×3 Kobayashi –Maskawa matrix:  

 

 
11 12 13

21 22 23

31 32 33

weak

M M M d
j u c t M M M s

bM M M



          
   

             

(10.13) 

The nine matrix elements are functions of three mixing angles and a phase factor. 
In the nuclear beta decay ,we are concerned with transformation between u and d 
quarks. Let us view (10.1) and (10.2) decays in terms of quark weak 
transformations: 
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 en p e    

 

   
e

u d d uu d W

e





  

 
       

 e

d u W
e




  

 
                  (10.14) 

 ep n e    

 

   
e

u u d u d d W

e





  


              

 e

u d W
e




  


               (10.15) 

The Feynman diagrams for  and   decays are shown in figure (10.1) and figure 
(10.2). 

 

 

 

 

Figure 10.1: decay     Figure 10.2: decay  

(v) Parity Nonconservation: 

The parity transformation is the operation which inverts the spatial coordinates and 
physically described as taking mirror image of the coordinate system. The parity of 
a particle (Fermion) and its antiparticle (Fermion) are opposite to each other .The 

parity of π is taken as negative. The formal definition of parity operator P is given 
as  

      P r r r     
  

                             (10.16) 

  Here + sign corresponds to positive parity (even) while – sign refers to negative 
parity (odd) of the function  r

  .If a function does not fall into any of these two 
categories is said to have nondefinite parity .It is helpful to consider the parity of 
following type of nature of operators/functions: 

 

W   

d  

u  

e  

e  

 

W   

d  

u  

e  

e  
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S.No. Type of operator / Function Symbol Parity 

1. Usual vector/Polar vector 

(example: r , p  ) 

V Odd  

2. Axial Vector 

Example: L,S ,r p
    

A Even 

 

3. Scalar  

Example: density ,numerical constants like e,1,π; dot 
product of two axial vectors or of two polar vectors 

S Even 

 

4. Pseudo Scalar 

Examples: Scalar product of an axial and a polar 
vector 

P Odd 

 

Now let us consider the angular distribution of electrons emitted in  decay with 
given momentum p ; energy E and spin  , denoted by  W  .The expression for

 W  is given by  

 
  1 .pW a

E


  
 

  

 
  1 vW a cos

c
                   (10.17) 

where  : angle of electron emission between momentum p  and its angular 

momentum J


. 

The first term is a scalar while the second is a pseudo scalar in eq.(10.17) and if 

a≠ 0 ,then these two terms will behave differently under parity operation. It will 
lead to different angular distribution under spatial coordinate inversion and parity 

violation of  W  .The experimental measurement of  W  in the 60
27Co nucleus 

  decay experiment carried out by Wu and others confirmed this strange 

conclusion .The existence of two decay modes of K in nature (10.6) (final states 
having two and three pions) also confirmed parity nonconservation in weak 
interactions. Hence parity non conservation is a basic characteristic of weak 
processes. 
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10.3 Nuclear Beta Decay and Lepton Capture 

The nuclei ,which lie above the stability region ,emit electrons ,antineutrinos and 
daughter nuclei with same mass number A remain as residual nuclei, but atomic 

number increased by unity. In   decay ,a neutron is replaced by/transformed into 
a proton ,and parent and daughter nuclei are isobars consequently. 

The process can be expressed as : 

   1
A A
Z Z eX Y e               (10.18) 

The more precise expression can be written as  

 
1 1 0 0
0 1 1 0 en p e 

             (10.18a) 

The following observations can be expressed explicitly  

(i)  X and Y are isobars. Nucleons are conserved ;A=A. 

(ii)  Electric charge is conserved ;
 
0 1 1 0 0e e      

(iii) Intrinsic spin is conserved 

(iv) Leptons are conserved. 

For Example  

 
14 14
6 7 eC N e  

          (10.18 b) 

 
14
6C  is a   emitter. 

Similarly ,for  decay ,the process can be expressed as  

 1
A A
Z Z eX Y e                (10.19) 

The more  precise expression can be written as  

 ep n e                (10.19a) 

The following observations can be made explicitly 

(i)  X and Y are isobars.Nucleons are conserved ; A=A 

(ii)  Leptons are conserved; 0 1 1    

(iii) Electric charge is conserved; 1 1e e    

(iv) Intrinsic spin is conserved. 

10.3 Nuclear Beta Decay and Lepton Capture 



190 
 

We can take following Example 

 
11 11
6 5 eC B e               (10.19b)

 11
6C  is a  emitter. 

Similarly ,for electron capture (E C),the process can be expressed as  

 1
A A
Z Z eX e Y

                           (10.20) 

The more precise expression can be written as  

 ep e n                 (10.20a) 

Again , following observations can be made explicitly  

(i)  X and Y are isobars.Nucleons are conserved; A=A 

(ii)  Electric charge is conserved; 1 1 0 0 0e e      
(iii) Leptons are conserved. 

(iv) Intrinsic spin is conserved. 

We take another example as 

 
7 7
4 3 eBe e Li                        (10.20b) 

 1 2 53 4 0 86/T . d ,Q . MeV     

Special Note :Positron  e was theoretically predicted by Dirac (1927) and 

experimentally verified by Anderson (1932). 

10.4 Energy Consideration in ,    and Electron Capture 
Reactions 

Let us consider the relation between the atomic mass and the nuclear mass. 

     e ZM Z ,A N Z ,A Zm B                (10.21) 

      * *
e ZM Z ,A N Z ,A Zm B K P,...                        (10.21a) 

where 

 M Z,A mass of the atom  Z ,A in ground state 

em mass of the free electron 

10.4 Energy Consideration in ,    and Electron Capture 
Reactions 
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 N Z ,A  mass of the nucleus  Z ,A in ground state 

ZB : Binding energy of all orbiting electrons of atom  M Z,A  in ground state. 

 1

Z

i
i

b


  

 *M Z ,A :mass of the atom  Z ,A in excited state {hole- particle pair  h p pair } 

 *
ZB K P : Binding energy of all orbiting electrons of atom in  *M Z ,A in 

excited state  h p pair  

   
1

Z

i P K
i

b b b


    

 Z phB                  (10.22) 

 

 

 

The difference in binding energy ZB  of Z orbiting electrons of the atom  M Z,A

and the binding energy 1ZB   of 1Z   electrons of the atom  1M Z ,A  

is very small. The difference is 10 50B keV   typically. 

The masses  M Z,A ,  N Z,A and em
 are the order of MeV. The ratio B

M

  

in   

processes is of the order of 0 1. % or less. 

The Q value for   decay: 

  1
A A
Z Z eX Y e  

 

  en p e    
 
is given as  

 1Z Z eQ N N m 
               (10.23) 

If we change nuclear masses into atomic masses then  

 
    1 1 1Z Z e Z Z e eQ M B Zm M B Z m m  
           

 
   1 1Z Z Z ZQ M B M B  
                                       (10.24) 

 electron  p  

h  hole
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The Q value for   decay: 

 1
A A
Z Z eX Y e  

 

  ep n e    is given as: 

 1Z Z eQ N N m 
              (10.25) 

Changing nuclear masses into atomic masses ,we can rewrite above relation as 

 
    1 1 1Z Z e Z Z e eQ M B Zm M B Z m m  
           

 
   1 1 2Z Z Z Z eQ M B M B m  
                 (10.26) 

The Q value for EC  

 1
A A
Z Z eX e Y

  
 

  ep e n     is given as  

 
 1EC Z Z Ze

eQ N m N b K                  (10.27) 

where  e
Zb K : binding energy of K electron. Changing nuclear masses into atomic 

masses ,we can rewrite above relation 

 1
*

EC Z ZQ M M                (10.28) 

      1 1EC Z Z Z Z Z
eQ M B M B b K            

Hence we notice that EC (electron capture) decay demands that mass difference of 
parent- daughter  must be at least greater than or equal to binding energy of K or L 
or any other shell. The Q value in this case is sum of kinetic energy of daughter 
nucleus and neutrino. 

10.5 Fermi Theory of Beta Decay 
In the beta decay a nucleon changes into another type of nucleon and electron 
(positron) and antineutrino (neutrino) are created. Fermi assumed parity 
conservation but his calculations involved only scalar quantities .The results of his 
theory still stand in large measure, inspite of the fundamental changes produced by 
the parity violation. 

10.5 Fermi Theory of Beta Decay 
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The theory explained: 
(1) Form of beta spectra : Number of electrons in beta process/energy interval 

e

e

dN
dE  

versus energy of electron eE  . 

(2)  The relation between maximum energy of beta decay and mean life time. 

(3)  The classification of beta transitions and establishment of selection rules. 

The transition probability for beta transition is given by Golden Rule of time 
dependent perturbation theory: 

 
 22

if fH g E



              (10.29) 

where 

ifH Matrix element of beta interaction 

 fg E Density of final energy states of final products of beta process 

  Probability of transition  

The relation is applicable because universal Fermi coupling constant GF and  
universal vector coupling constant VG   are very small. 

Let us consider the transition 

 
1

1
A A
Z Z eX Y e    

  een p e      

Then f Y e e
      

 i X                 (10.30) 

Now Fermi assumed the form of interaction  

 V
ˆ ˆH G M               (10.31) 

where   62 31 4029 0 0022 10VG . . Jm
     

             3 2111 1396 0 0018 10. . c MeV      

            340 875 0 002 10. . MeV fm    
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We have discussed GF earlier in equation (10.2). 

The matrix element of beta process is  

  * * *
if V Y Xe e

H G M d                     (10.32) 

Taking 
e e

*
     

 
* *

if V Y Xe e
H G M d        

Let us consider parent nucleus X at rest ,then momentum conservation yields 

 
0

eR e XP P P P   
   

              (10.33) 

The energy conservation leads to  

 o R e e
E E E E                (10.34) 

Let us take the case when electron and neutrino are considered as a pair and the 
nucleus and this pair share the momentum i.e. 

  0
eR max e maxP p  

               (10.35) 

Then 
 eo Rmax e maxE E E               (10.36) 

Eq.(10.35) and eq.(10.36) imply 

 eR max e maxP p  
   

 

2

2
R max

Rmax

P
E

A.M .
   

                 

2 2 2 4

22 2
ee max emax e

e
e

p E m c
m

A.M . A.M . m c
 

   

      

 2 2 4

22
emax ee

R max
e

E m cm
E

A.M . m c


            (10.37) 

where  

 A Mass number of daughter nucleus 

 em mass of electron emitted in  decay 

 M  Mass of a nucleon 
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The ratio 
e

R max

e max

E

E 
 can be evaluated as 

 

2 2 4

22
R max e max ee

e max emax e

E E m cm
E AM E m c

         
 

Take the typical values 

 
1
2em MeV 1000,M MeV , 10A  ,then 

 
53 10

2
em

AM


, 
2 1

2em c MeV , 10emaxE MeV  

 

2 2 4

2 20e max e

emax e

E m c

E m c


  

Hence 
 

5 360 10 10R max

e max

E

E
              (10.38) 

Hence we conclude that recoil energy can be neglected. 

Now approximate energy momentum conservation relations can now be written  

 
0

eR eP p p  
    

 ee oE E E                (10.39) 

The energy in  decay process is shared by electron and neutrino effectively. 

10.6 Electron Energy Spectrum and Fermi Kurie Plot 
Wavefunctions of anti neutrino and electron: 

The neutrino interacts very weakly with nucleons and move with v c  . It is, 

therefore , reasonable to use plane wave free particle wavefunction 

 
 

1 2
1

e /
i p .r

e 



 



  
              (10.40) 

where   volume of the box enclosing the system. 

10.6 Electron Energy Spectrum and Fermi Kurie Plot 
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The electron interacts with nucleons but its velocity is very high, so we can neglect 
the electromagnetic interaction. The electron wavefunction can also be taken as 
plane wave free particle wavefunction: 

 

 
1 2
1 ei p .r

e / e
 



  
              (10.41) 

Further 

 1 ee

e

i p p .r
e e  

  


   
 

          

       2 3

2 3
1 1

2 6
e e ee ee p p .r i p p .ri p p .r

....
 

 
   

     
 
 
 

       

  
 

Taking 22 1 10
ee e ep p m c , m c MeV ,R fm     

and 
22 10 1

200 20
em c MeV fmR
c MeV fm

 
 ,we get 

 

2 31 1 1 1 11
20 2 20 6 20ee

ii ...


                    
 

     

2 1 31 1 1 11 10 10 10
8 2 48

. i . . ....             
 

 ee


 
1




              (10.42) 

We see that electron -neutrino field is weak in comparison to short range strong 
interaction among nucleons. The   decay process is analogous to emission of 
electromagnetic radiation with electron -neutrino field in place of photon .This 
makes the matrix element 

 
V *

if Y X
G

H M d   
   
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V

if
G

M


               (10.43) 

We assume that all partitions of energy 0 eeE E E  are equally probable. This 

means that the transition probability of beta decay is proportional to the volume of 
accessible phase space in that transition. 

The  number of states edN  corresponding to appearance in volume   of electron 
with momentum in ep  and e ep dp  range is : 

 

2
3

4
e e edN p dp

h


             (10.44) 

Similarly number of states 
e

dN corresponding to appearance in volume   of 

neutrino with momentum in 
e

p  and
e e

p dp   range is  

            

2
3

4
e e e

dN p dp
h  


             (10.45) 

Hence the number of states for electron -neutrino pair is given by  

 

2
2 2 2

3
4

e ee ed N p p dp dp
h  
 

  
 

           (10.46) 

For a fixed electron energy eE  , the relation   

 0 eeE E E 
      0 e

dE dE   

For neutrino 
 22

0 2
2 2
e

e

eE E E
p

c c





      

 e e
E p c   

 
e

e

dE
dp

c


                  (10.47) 

For electron  

 
2 2 2 2 4
e e eE p c m c   
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e

e
dE

dp
c

                (10.48) 

Using eq. (10.47) and (10.48), we get dN as 

 

2
2 2 2

3
4

e ee ed N p p dp dp
h  
 

  
 

 

 

22
2 2 0 0

3
4 e

e e
E E dE

d N p dp
c ch

  
   
   

          (10.49) 

The density of states  0E can be written as  

 
 

22 22
03 3

0

1 4
e e e

d N p E E dp
dE c h

   
 

 

 
   

2 22
0 03 3

1 4
e e e eE dp p E E dp

c h
 

   
 

                     (10.50) 

The probability of transition using eq.(10.29)  employing Fermi Golden rule 

 
   2

0
2

e e if ep dp H E dp
  

  
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            (10.51) 
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e e e e e e
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c
  

 
             (10.52) 

The ifM  is independent of ep  and
e

dp  for allowed transitions. This fact 

produces beta decay spectrum. 

The plot between  ep  versus eE  is shown in figure. 
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Fig10.3 : Momentum spectra for 64Cu electrons and positrons [Wu & Albert 
(1949)]   

Generally 
 
 

1 2

2

/
e

e e

p

p F Z ,E

 
 
 
 

 versus  eE  is plotted .It is straight line and called 

Fermi Kurie plot. 

 

 

 

 

 

 

 

 

Figure 10.4 : The Fermi Kurie plot of 64Cu  beta spectra .End points are 

 571keV e and  657keV e [Owen &Cook (1949)] 
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The departure from the straight line are attributed to a dependence of ifM on ep

such as occurs in forbidden transitions according to eq.(10.41) and (10.42). 

Coulomb Factor  eF Z ,E  is defined as  

 

 
 

 

2

2

0

0

e Coulomb
e

e free

F Z ,E





           (10.53) 

Coulomb factor takes care of the fact that electrons are not really free but 
interacting with nucleons (Coulomb interaction). 

The corrected expression for (10.52) is  

 
     

2
2

22
03 7 3

1
2

ifV
e e e e e e

MG
p dp F Z,E p E E dp

c
  

 
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MG
E dE F Z ,E E E p E dE

c
  

 
         (10.54) 

All momenta are expressed in terms of e ep m c   and all energies in terms of 

 2 2
0 0e e e eE m c ,E m c     

We get above equations in unitless variables. 

 
    
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2

V e
if e e
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d M F Z , d       

 
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2

V e
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G m c
d M F Z , d        

 
       (10.55) 

The decay constant   can be expressed as  

 
    

0 0

2
2 2

0
00 0

if
e e

M
d F Z , d

 

          
          (10.56) 

where 
2 5 4

3 7
0

1 1
2

V e
G m c

  
               (10.57) 

 0 Universal Time constant for beta process. 
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The estimate for 0 is  

 
3

0 4
1 9 709 10 2 7

1 03 10
s . s . hrs

.   


          (10.58) 

Taking       
0 2 2

0 0
0

e ef F Z , d


                    (10.59) 

  can be expressed as 

 
 

2

0
0

ifM
f  


             (10.60) 

Here we have defined  

  0f  Coulomb Fermi Factor 

From the decay law 

 0
t

N N e 


              (10.61) 

We get half life as  

 
 

2

0
1 2 1 2 0

2 0 693 if

/ /

Mln . f
t t    


             (10.62) 

We can write 

 

 h p pair          

 6728 1 9s . hrs  
The product of Coulomb Fermi Factor and half life of nucleus for beta decay is 
called comparative half life 1 2/f t or usually written as ft. 

10.7 Parity Conserved Selection Rules for Fermi and Gamow 
Teller Transitions  

Selection Rules 

Angular momentum conservation dictates 

  f iI I L 
  

     (Fermi Type) 

 f iI I L  
   

 ( Gamow Teller Type) 

10.7 Parity Conserved Selection Rules for Fermi and 
Gamow Teller Transitions  
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In the Fermi Type transitions emitted light particles have their spins antiparallel.  

 Singlet state   e eZ Ze S S       

But in the Gamow Teller type transitions emitted light particles have their spins 
parallel. 

 Triplet state   e eZ Ze S S       

Parity changes are determined by  

 
 1 L

f i
     

The total orbital angular momenta carried by  ee , light particles is denoted by 

L


.  

We assume that  ee , are emitted by the point nucleus.  

1
ee or

R






  hence 0k .r 
   

But if we consider 

 

1
ee or

R





 then  

   10 /e     but   1 eik .r ...... 
   

 
  10

e

* /       but 1
e

ik .r ...... 
   

The inclusion of     1k .r L 
   

2

2
2

k .r L
 

  
 

 
 

The wavefunctions should be considered in the volume   rather than at the centre. 

Relativistic consideration is required . 

These modifications produce nonlinearity in Kurie plots and higher order 
transitions occur for   0L  . 

So we classify the transitions as  

If  0L      allowed  
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1L      Forbidden Ist Order 

2L      Forbidden 2nd Order 

Transition L  I (Fermi) 
(Fermi) 

I (G.T.)  (G.T.) 

Allowed 0 0 No (0),1 No 

First Forbidden 1 (0),1 Yes 0,1,2 Yes 

Second Forbidden 2 (1),2 No 2,3 No 

Third Forbidden 3 (2),3 Yes 3,4 Yes 

Fourth Forbidden 4 (3),4 No 4,5 No 

Those not possible ,if either iI  or fI is zero, are in parenthesis. 

The Gamow Teller transitions for which 1I L    only then these transitions are 
called unique transitions or pure transitions.  

The mixing of Fermi  and Gamow Teller transitions changes the shape of Curie 
plots. 

General Selection rules 

Fermi  1I n, n          

 
 1 n

f i     

Gamow Teller  1I n, n      

   1 n
f i     

10.8  f t Values and Forbidden Beta Transitions 
The allowed or forbidden nature of transitions is often determined from the 
measurement of 1

2ft  values. 
1

2ft  value depends upon 

 Z 

 End point energy ε0 
 Half life 1 2/t  

10.8  f t Values and Forbidden Beta Transitions 
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1
2ft  has large variations so 1

210log ft is considered   

1
210log ft  value Type of transition 

2.7-3.7 Super allowed 

4-5.8 allowed 

6-10 First forbidden 

10-14 Second Forbidden 

14-17 Third Forbidden 

17-24 Fourth Forbidden 

We can take following examples: 

Fermi type: 

 

14 14
8 70

0 0

*
eL O N e

 

    

  
 

 

87 871

5 3
2 2

eL Kr Rb e     

   
 

 

111 111

1 1
2 2

eAg Cd e   

   
 

 

135 1352

7 3
2 2

eL Cs Bi e     

   
 

 

87 873

3 9
2 2

eL Rb Sr e     

   
 

 

115 1154

9 1
2 2

eL In Sn e     

   
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Gamow Teller type: 
6 6
2 30

0 1

eL He Li e

 

    

    
37 371

7 3
2 2

eL S Cl e     

   
 

85 851

9 5
2 2

eL Kr Rb e     

     

 

10 102

0 3
eL Be B e     

  

 

22 222

3 0
eL Na Ne e    

  

10.9 Experimental Verification of Parity Violation 
If the process and its parity reversed process both occur in nature with the same 
probability ,then the process is said to be parity invariant. 

 

 

 

 

 

 

 

Figure 10.5 : Wu Experiment 

The counts observed in original set up in the direction of opposite to the field are 
40% higher than that in the direction of field but this observation is not maintained 
in parity inverted set up.  

Electrons were emitted preferentially in the opposite direction of the nuclear spin. 

 

e  

e  

e  

e  

B B

Mirror  
Parity Inverted Original  

10.9 Experimental Verification of Parity Violation 
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60 60 *

eCo Ni e    

Backward emission is 40% higher .[Wu and coworkers] 

Hence in weak interaction neutrinos and electrons are left handed. Yang and Lee 
suggested that in beta decay and in general in weak processes, parity is violated so 
Lagrangian density and matrix element both must have even and odd couplings. 

Parity Violation  Puzzle : 

  20 1 1

P Mode

K        

  31 1K         
 

  30 0 1 1K         

K decay forced to argue that Parity invariance fails in weak processes [Yang 
&Lee] 

10.10 V−A Theory of Fermi Beta Decay with Parity  
Conserving and Nonconserving Terms 

Now we shall discuss the arguments to establish the V−A form of weak 
interaction. 

Let us write the most general matrix element for the beta decay of neutron. 

 en p e    

That is consistent with Lorentz invariance and Lepton –Baryon conservation. 

 
 5p j n e j j j

nucleons j e
ˆ ˆM g d O O C C 

                 

 nucleons
 it is summed over all nucleons inside the nucleus. 

j
  j  jÔ  Symbol Meaning 

 1j   1  S Scalar 

 2j     V Vector 

 3j     T Tensor 

10.10 V−A Theory of Fermi Beta Decay with Parity    
Conserving and Nonconserving Terms 
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 4j   
5

   A Axial Vector 

 5j   5  P Pseudo scalar 

j
 : It is summed over all type couplings SVTAP and each has left and right 

handed terms. 

 
     5 5

5
1 1

2 2j j j j j jC C C C C C
      

          
   

 

 
51

2
  

 
 

: Right handed term          (10.63) 

 
51

2
  

 
 

: Left handed term                                 (10.64) 

We use the definitions of  matrices 

We obtain 

    5 51 1j j
ˆ ˆO O       for 1 3 5j , ,

S T P
           (10.65) 

    5 51 1j j
ˆ ˆO O      for 2 4j ,

V A
           (10.66) 

Now we use the experimental fact that all electrons and neutrinos are left handed 

so 51
2jÔ
  

 
 

 terms will vanish. 

Hence j jC C          (Wu-Experiment) 

Now    5 51 1j j
ˆ ˆO O       for 1 3 5j , ,

S T P
    

   5 51 1j j
ˆ ˆO O       for 2 4j ,

V A
       (Wu-Experiment) 

Therefore 

     5 5 5
1 3 5 2 4

1 1j j j j j j j
j , , j ,

ˆ ˆ ˆO C C C O C O
 

            
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We now apply the result of 152Eu Goldhaber experiment which measures circular 
polarization of   photons. It results in the assignment of helicity of neutrinos. 

 
  v1e

.Ph
P c


    




                  0

e

m      (Experiment-Goldhaber) 

 
0 001 0 006S

V

C
. .

C
    

 
0 004 0 001T

A

C
. .

C
                  (10.67) 

Next we consider that neutrons in   decay are not relativistic and transfer of 
momentum of the order of 1q MeV  

This introduces 
2

6
2 10v

c
  factor in 

2M calculation. 

It shows that CP is negligible  [Exp-
2

2
v
c ]  

Hence S T PC ,C ,C  all are negligible . 

Christensen et.al. (1969) measured decay rates of 0 0  transitions in 

 
10 10C B  

 
14 14O N  

and concluded that 1VC    [Experiment –Christensen] 

Krohn et.al (1975) measured neutron’s mean life time which yielded   

 
1 258 0 015A

V

C
. .

C
        [Experiment-Krohn] 

Now
 

     5 5 51 1 1e j j e V e V
V ,A e e e

ˆC O C C 
                 

 

 
 5 51e V e

C 
              2

5 1   

 
  5 51 1e V e

C 
         

 
   5 51 1e V e

C 
        

 
   5 51 1e V e

C 
        

 
   5 51 1e V e

C 
        
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Hence we justify (V−A) law for beta decay and weak processes in general using 
the empirical fact of parity violation. 

10.11 Self Learning Exercise 
Q.1 Describe Fermi theory of   decay and derive transition probability for 

decay. 

Q.2 Describe  - puzzle and Wu experiment of parity violation in   decay          

of 60Co . 

Q.3  Discuss energetics of  decay ,  decay and EC processes. 

10.12 Summary 

   decay : 1
A A
Z Z eX Y e    ;

 
   1 1Z Z Z ZQ M B M B  
        

  
 decay : 1

A A
Z Z eX Y e    ;     1 1 2Z Z Z Z eQ M B M B m  

        

   Electron capture(EC) : 1
A A
Z Z eX e Y

   ;      1 1EC Z Z Z Z Z
eQ M B M B b K       

 general characteristics of weak interaction processes. 

(i) universal weak coupling constant 

  (ii) and oW ,W Z  Vector Bosons are Weak Interaction Carriers: 

(iii) Range of weak interaction is very short ( 310 fm ):
 

(iv) SU3 Flavour Symmetry Mixing: 

(v) Parity Nonconservation 

 The probability of transition by Fermi Golden rule 

    
2

2
2

03 7 5
1
2

ifV
e e e e e e e

MG
E dE F Z ,E E E p E dE

c
  

   
 General Selection rules for beta decay 

Fermi  1I n, n        ;  1 n
f i       

Gamow Teller  1I n, n       ;  1 n
f i       

 The allowed or forbidden nature of transitions is often determined from the 
measurement of 1

2ft  values. 

10.11 Self Learning Exercise 

10.12 Summary 
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 Yang and Lee suggested that in beta decay and in general in weak processes, 
parity is violated. 

10.13 Glossary 

 decay : ,   and electron capture 

GT Transitions : Gamow Teller Transitions  

10.14 Exercise 
Q.1  Describe Fermi theory of   decay  and obtain the expression for partial 

decay   for   for   channel. 

Q.2  Distinguish between Fermi and Gamow Teller transitions by giving one 
example for each case. 

Q.3  Give salient points of hypothesis of Fermi theory of  decay and derive 

expression for 1 2/f t value (comparative half life).  
Q.4  Derive transition probability for  decay using Fermi theory. Discuss Fermi 

Kurie plots. 

Q.5  Write short notes on  

(i) Basic characteristics of weak interaction   (ii) Cabbio angle 

(iii) Kobayashi Maskawa Matrix             (iv)Vector Bosons W ,W   and 0Z  

Q.6  Write basic steps of V A Fermi theory explaining the meaning of 
S ,V ,A,T ,P terms. 

References and Suggested Readings 
1. Nuclei and Particles by Emilio Segre  

2.  Nuclear Physics by R.R. Roy and B.P. Nigam  

3. Introductory Nuclear Physics by Samuel S.M. Wong 

4.  Elements of Nuclear Physics by W.E. Burcham 

5. Theoretical Nuclear Physics by John M. Blatt &Victor F. Weisskopf. 

6.  Nuclear Physics by S.N. Ghosal 

7.  Nuclear Models by Walter Greiner & Joachein A. Mahrun  

8. Introductory Nuclear Physics by Kenneth S. Krane 

10.13 Glossary 

10.14 Exercise 

References and Suggested Readings 
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UNIT-11 

Gamma Ray Emission 
Structure of the unit 

11.0  Objectives 

11.1  Introduction 

11.2  The Quantized Electromagnetic Field 

11.3  Weisskopf Single Particle Estimates for Transition –Probabilities 

11.4  Selection Rules and Parity 

11.5  Internal Conversion and Pair Production 

11.6  Self Learning Exercise 

11.7  Summary 

11.8  Glossary 

11.9  Exercise 

References and Suggested Readings  

11.0 Objectives 
The reader learns about electromagnetic transition probabilities and selection rules 
for multipoles. 

11.1 Introduction 
Gamma ray is an electromagnetic wave. Gamma decays have theoretical and 
practical importance in nuclear physics as gamma rays are source of information 
about nuclear energy levels. The concept of quantized electromagnetic field is 
introduced. Weisskopf single particle estimates for transition probabilities are 
discussed. In this unit we also study internal conversion and nuclear isomerism. 
We have used CGS units in this unit.     

11.2 The Quantized Electromagnetic Field 

The vector electromagnetic potential  A r ,t
  is taken as the principal dynamic field 

UNIT-11 

Gamma Ray Emission 

11.0 Objectives 

11.1 Introduction 

11.2 The Quantized Electromagnetic Field 
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which is constrained by Coulomb Gauge (Transverse Gauge). The vector field 
fulfils the gauge condition  

0.A 


                        (11.1) 

and  in the absence of charges or currents, the wave equation  
2

2
2 2

1 0A
c t

 
    


                (11.2) 

The electromagnetic fields are given in terms of  A r ,t
  by 

1 AE
c t


 



, 

H A
 

                     (11.3) 

The energy density of the field is  

E
2 21

8em E H   
  

 
              (11.4) 

With a plane waveform for vector electromagnetic potential  

   0kA r ,t A cos k .r t 
                   (11.5) 

The above equations (11.3) & (11.4) become 

 0kE kA sin k .r t  
     , 

 0kH k A sin k .r t   
                  (11.6) 

and the energy density of the field will take the form 

E
22

0
1

8em k A



                 (11.7) 

For a vector field corresponding to one photon of energy  in the system volume 
V , the amplitude of the electromagnetic vector potential becomes  

2

0 2
8 8 cA

Vk V
  

 


                     (11.8) 

Taking ck
 

,the corresponding complex expression of the dynamic vector 
potential which yields the same average energy density is  

     2

0 0
2 i k .r t i k .r t*cA r ,t a e a e

V
         

                 (11.9) 
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where 0a is a complex number with 0 1a  which determines the phase of the wave 

and   is the unit vector indicating the polarization .We know that electromagnetic 
waves are transverse in nature and there are two independent polarization 
directions 1 2l ,l ,   both fulfilling 0l .k 

  

The classical interaction Hamiltonian density is  

H 1
c

   

j    

 r .A r             (11.10) 

With 

j  r  the current density .The transition matrix element between i  and f

 
nuclear states which describes emission of a photon is  

3 1
  


fd r ,

c
ĵ     ir .A r ,no 

                     (11.11) 

and for absorption of a photon  

3 1
fd r ,no

c
  

 ĵ      
 

ir .A r ,           (11.12) 

The electromagnetic vector potential operator should thus contains two Hermitian 
conjugate parts involving creation and annihilation operators for photon. Hence 0a  

and 0
*a  amplitudes in equation (11.9)  must be replaced by †  and  , the creation 

and annihilation operators for photons. 

The matrix element for emission of a photon of energy  ,the total time 
dependent phase is  

   f i f i
i iE E t i E E t i t      
 

             (11.13) 

with   the unknown phase for creation of a photon in the radiation field .The 
conservation of energy implies f iE E    and consequently we have t . 

The annihilation operator and creation operator are associated with outgoing plane 
waves ( k


) and incoming plane waves  k


 respectively. The mode of the field is 

thus specified by wavevector k


 and polarization index  . The electromagnetic 
vector potential operator will thus be specified by indices defining mode. The 
energy  of  electromagnetic  field  is  given  correctly  by  number  of  photons if  

normalization  factor 
22 c

V




  
is  ensured . The  electromagnetic  vector potential 
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operator summed over all modes  k ,


 
is  

     2
†2 i k .r t i k .r t*

k k
cˆ ˆA r ,t e e

V
  

   


         


            (11.14) 

The choice of   
and angular momentum projection   should go with creation 

operator †
k . 

The total energy of this field integrated over the volume V is given by 

† 1
2k k k

k ,

ˆĤ  


      
 

                 (11.15) 

and the total momentum is  

    †
k k

k ,

ˆp̂ k  


  

               (11.16) 

The photon states are treated as eigen states of the momentum operator p̂ . The 
interaction with nuclei is best understood if we use angular momentum eigen 
states. 

Note on   : 

The photon of energy   has an intrinsic angular momentum of 1  with basis 
vectors   

given by spherical unit vectors 1 0 1e , , , .     

The normalized vectors are  

 1
1
2 x yˆ ˆe e ie     

0 zˆe e  

 1
1
2 x yˆ ˆe e ie                   (11.17) 

Spherical basis vectors are complex vectors and orthogonal  
*e e                      (11.18) 

The Condon-Shortley choice of phases yields the property  

 1*e e
                              (11.18a) 

The careful reader will notice that this is analogous to spherical harmonics. 
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Any vector a  can be decomposed in spherical basis in the following manner 
1

1

*a e a 


               (11.19) 

1a : describes a vector with positive angular momentum of unit 1 about z axis.  

The Hamiltonian for the charged particle is written as  
21

2
qH p A

m c
   
 

               (11.20) 

which is sum of free particle Hamiltonian 0H  and the coupling with the external 

electromagnetic field giving perturbing Hamiltonian H   

0H H H                   (11.21) 

Comparing (11.20) and (11.21) ,we get  

   
2

22 2
q qH p.A A.p A.A
mc mc

    
      

 
2

22
q qH A.p A.A

mc mc
   

                  (11.22) 

Using p i  
    and 0.A 


 

( .A


 is known as transversality condition) 

A.p p.A
    was obtained and used .The quadric term A.A

 
 involves two photons at 

same time and therefore will be ignored because our interest is in lower order 
phenomena. H may be written in terms of a current density ĵ  

ĵ q ˆqv p
m

 
                  (11.23) 

The perturbing Hamiltonian H  (neglecting quadratic term ) is 

1H A.
c

  
 

j                  (11.24) 

     

4

1

1 A
c 


   j                (11.25) 

where  A A,iV 


 and j  (

j , i c . 

In  the  region , outside  any  sources,  the  electromagnetic  vector potential is the 
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solution of the partial differential equation  

 
2

2
2 2

1 0A r ,t
c t 

 
     

               (11.26) 

The 3 vector potential  A r ,t
 

 can be expanded in terms of components 

characterized by definite wavenumber k


as 

    i t
k

k
A r ,t A r e 
                   (11.27) 

where ck . In this relation ,time dependence is separated. 

The spatial dependence of  A r ,t
 

 is given and constrained by 

   2 2 0kk A r  
               (11.28) 

The solution of this equation can be written as  

          †1 i k .r t i k .r t*
k k

k ,

ˆ ˆA r ,t e e
N

  
   



       


           (11.29) 

 i k .r t* e 


 
 and  i k .r te 


 

 can be expanded in terms of eigen functions of 

angular momentum operators, 

   
,

Â r ,t A r ,t
 


                 (11.30) 

 A r ,t

   are vector functions of spherical tensor of ranks  ,   which satisfy the 

relations  

     2 1J A r ,t A r ,t    
     , 

and     zJ A r ,t A r ,t  
               (11.31) 

 A r ,t

   can be expressed in terms of vector spherical harmonics defined by  

 
 

1
lX Y ,   

  


            (11.32) 

 A r ,t

   appearing in (11.30) and (11.31) can be expanded in terms of electric and 

magnetic 2  poles spatially. 

     E MA r C A E ,r D A M ,r 
       
               (10.33) 
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Symbols mean as  

 A E ,r
  
     Electric multipole 2  pole type vector potential  

 A M ,r
  
     Magnetic multipole 2  pole type vector potential  

 A E ,r
 
 

 
and  A M ,r

 
 

 
are solutions of Helmholtz equation 

   2 2 0k A G ,r
   
             (10.34) 

where G E,M  

The relations between fields and vector potential near the source are given by  

     1E E ,r A E ,r ikA E ,r
c t

  


     



      

     H E ,r A E ,r ikA E ,r       
      

     1E M ,r A M ,r ikA M ,r
c t

  


     



      

     H M ,r A M ,r ikA M ,r       
              (11.35) 

The magnetic 2  pole radiations obey equations  

   2 2 0k E M ,r   
  , 

  0.E M ,r  
    

   iH E ,r E M ,r
k

 


    



        

0r .E 
              (11.36) 

Similarly ,the electric 2  pole radiations obey equations 

   2 2 0k H M ,r   
   

  0.H E ,r  
    

    


   



   iE M ,r H E ,r
k       

 

and 0
r .H                (11.37) 
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In terms of spherical harmonics ,the electric and magnetic multipole radiations or 
transitions can be expressed in the following forms 

       iA E ,r r j kr Y ,
k


  

        
     

and         A M ,r r j kr Y ,
  

      
               (11.38) 

where  j kr is spherical Bessel function of order   and  Y ,    is spherical 

harmonics of ranks  ,  . 

We can now express the multipole  ,   part of the perturbing Hamiltonian H 

[refer to eq.(11.24)] in the form: 

   
 1
2 1 !!

1
iÔ E

ck
 

 
  

 
ĵ        r . r j kr Y , 

     
    

and     
 
2 1 !!1

1
Ô M

ck
 

 
  

 
ĵ        r . r j kr Y , 

    
 

           (11.39)
 

 where    2 1 !! 1 3 5 2 1          

The  Ô E    and  Ô M    are scalar operators in the nuclear and 

electromagnetic fields. So multipole part of current density ĵ  r  can make a 
nonvanishing contribution in the transition for  ,   multipole only. The 
spherical Bessel function may be expanded in power series as 

   
 

 
 

211
2 1 !! 2 2 3

kr kr
j kr ...





 
  

     
           (11.40) 

The   ray involved in nuclear transitions here energies 10E MeV   typically. The 

corresponding wavenumbers of order  

110 1
200 20

E MeVk fm or less.
c MeV . fm
   


 

The multipole operators cannot have contributions from the regions outside the 
nucleus because  they act on nuclear wavefunctions. This leads us to the          

r R (nuclear radius) ,but the highest value of  208 7R Pb fm.
 

As a result , 

11 17 1
20 3

kr fm . fm .  
 
The spherical Bessel function (refer to equation 11.40) 
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thus converges very fast and we may approximate it by just retaining the first term 
alone. This yields   

   
 2 1 !!

kr
j kr



  
   

which means     j kr kr 
  . Physically , the observation that wavelength   of 

energies 10E MeV   is 2 2 200 120
10

c MeV fm fm.
E MeV

 
 


 

 
This is very large in 

comparison to nuclear dimension /radius. This is the reason of calling it long 
wavelength limit of radiation.  

Applying the Fermi Golden Rule to calculate the transition probability for 

multipole 2  radiation from initial nuclear state i iJ M   to final nuclear state 

f fJ M .  

W    22;         
i f i f fJ J J , H J , E  

                            

 
 

 
2 1

2
8 1

;
2 1 !!

i f
k. B J J

  
    

    


                (11.41) 

where  ; i fB J J   
 
is the reduced transition probability .The reader should 

note that the reduced transition probabilities are dimensional physical quantities. 

For electric 2  pole transitions,  B E    are measured in 2 2e fm   units and for 

magnetic 2  pole transitions,  B M    are measured in  2 22
N fm   units. The 

transition probability W  is the number of decays per unit time. The expressions 
for transition probabilities are  

W    
 

   
2 1

2 1 2 2
2

8 1 1 1

2 1 !!
E c E MeV B E e fm

c
 


 


                 


 

     (11.42) 

W    
 

     
2 2 1

2 22 1 2
2

8 1 1 1
2 2 1 !!

N
p

M c E MeV B M fm
M c c

 






                       


 

               

(11.43) 
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Table 11.1 

Electromagnetic transition probabilities for the lowest four multipoles. 

W    15 31 1 59 10 1 E . E B E  

W    9 52 1 23 10 2 E . E B E  

W    2 73 5 71 10 3 E . E B E  

W    4 94 1 70 10 4
 E . E B E  

W    13 31 1 76 10 1 M . E B M  

W    7 52 1 35 10 2 M . E B M  

W    0 73 6 31 10 3 M . E B M  

W    6 94 1 88 10 4
 M . E B M  

       2 22 2 2in and in NE MeV ,B E e fm B M fm 



        

 

11.3 Weisskopf Single Particle Estimates for Transition-
Probabilities 

We can enumerate the motivation for having reasonable estimates for transition 
probabilities between initial and final nuclear states: 

1.  We can simplify the tedious and lengthy calculations by making a few 
reasonable assumptions and approximations. 

2. We can make an estimate of sizes of  B E    and  B M    that are expected 

on the average. W   E and W   M are dominated by energy dependent 

factor 2 1k   but  B E   and  B M   are intimately linked with transition 
matrix element. 

3.  These estimates provide the basis with which observed transition rates can be 
compared with theoretical estimates. 

ETransitions:  

The average of r  is  

33
3

 
    

 
r r A             (11.44) 

where 0 1 2r . fm . 

The estimate for reduced transition probabilities   B E    is taken as  

11.3 Weisskopf Single Particle Estimates for Transition-
Probabilities 
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 
221

4estB E e r
 


            (11.45) 

Using eq.(11.44) and (11.45) we obtain Weisskopf Single Particle estimate for 

electric 2  pole transition probability is expressed as   

   
2

2 2 3 2 21 3 1 2
4 3

/
WB E . A e fm

             
        (11.46) 

M Transitions:  

The average of  1r  may be taken to be  

 
1

1 1 3
0

3
3

 
    

 
r r A              (11.47) 

The factors related to gyromagnetic ratios can be reasonably averaged to  

 
22

2 1 10
1
l

s
g

g
 

      
             (11.48) 

The Weisskopf Single Particle estimate for magnetic 2  pole transition probability 
is expressed as   

        
2

2 2 2 2 3 2 2210 3 1 2
3


              

/
W NB M . A fm        (11.49) 

The results of (11.46) and (11.49) may be substituted into (11.41),(11.42),(11.43) 
to produce the Weisskopf units for transition probability  

W    
 

 
2 1 2

2 1
2

8 1 1 1 1 3
4 32 1 !!
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





                     
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 

 
      2 2 3 2 21 2 /. A e fm            (11.50) 
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 

 
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
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

                            


 

 
                  2 2 2 2 3 2 221 2 /

N. A fm      
      (11.51) 

The explicit values in terms of nucleon number /mass number A and transition 
energy  E MeV are listed in table 11.2. 
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Table11.2 

Weisskopf Single Particle Estimates for   E  and   M  transition probabilities 
and widths. 

 Multipole 

  
  

  E    M  

     1 W  1 14 2 3 31 02 10
  /s . A E  

  8 2 3 36 75 10    /MeV . A E  

W  1 13 33 15 10
 s . E  

  8 32 07 10   MeV . E  

2 W  1 7 4 3 57 28 10
  /s . A E  

  14 4 3 54 79 10    /MeV . A E  

W  1 7 2 3 52 24 10
  /s . A E  

  14 2 3 51 47 10    /MeV . A E  

3 W  1 2 73 39 10
 s . A E  

  20 2 72 23 10   MeV . A E  

W  1 4 3 71 04 10
  /s . A E  

  21 4 3 76 85 10    /MeV . A E  

   4 W  1 5 8 3 91 07 10 
  /s . A E  

  27 8 3 97 02 10    /MeV . A E  

W  1 6 2 93 27 10 
 s . A E  

  27 2 92 16 10   MeV . A E  

              
5 

W  1 12 10 3 112 40 10 
  /s . A E  

  33 10 3 111 58 10    /MeV . A E  

W  1 13 8 3 117 36 10 
  /s . A E  

  34 8 3 114 84 10    /MeV . A E  

In terms of Weisskopf units, the measured reduced rates have been observed to 
vary several orders of magnitude in different nuclei and sometimes even for the 
transitions within the same nucleus. This enhancement of a transition with respect 
to the single particle Weisskopf estimates indicates the collective motion of a 
several nucleons in a coherent manner .This will produce nuclear vibrations and 
rotations. 

11.4 Selection Rules and Parity 
If for a transition of certain multipolarity   , the transition element vanishes then 
the transition is called “forbidden”. If , on the otherhand ,for a transition of certain 

multipolarity  , the transition element does not vanish ,then the transition is called 

11.4 Selection Rules and Parity 
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 “allowed” .This criterion yields selection rules.  

Let us consider the transitions of multipolarities   and 1    of  E and M  
types .The ratios  

 R E   
 
 

1W
W

W

W

E
E




 

     

and   R M   
 
 

1W
W

W

W

M
M




 

  

can be estimated approximately using (11.50) and (11.51). The ratios
 R M ,E  

 also. 

We obtain k for 1MeV   ray  to be 11
200

fm

 
and taking  r to measure up to 1fm . 

We get     
2

2 51 3 10
200

R E kr
    

 
   

and    53 10R M 
                   (11.52)   

The factor 
2

2 PM c
 
  
 

 is approximated to be (taking 200c MeV fm   and 

2 940pM c MeV ) 

2

2 PM c
 

  
 

 2 2
2200 1 10

2 940 10
   

      
   

This leads to  

 
2

210
2 p

R M ,E
M c

 


 
  
 
 

                (11.53) 

Transition between initial  i
iJ 

 and final nuclear state  f

fJ 

 
is usually 

dominated by the lowest order process allowed by angular momentum and parity 
selection rules because of the large reduction in probability with increasing 
multipolarity order  . The angular momentum carried by   photon is   for 
transition of order.   
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The law of conservation of total angular momentum gives an additional 
vectorial relation between i fJ ,J

 
 and 


. Here 


 is the angular momentum carried 

by the 2  -pole radiation ,and a relation between their z components i fm ,m  and . 

The transition amplitude vanishes unless 

i fJ J 
 

 and i fm m                 (11.54) 

The equation further signifies  

i f i fJ J J J                    (11.55) 

If 0 0i fJ ,J   then 0 0 transition is absolutely forbidden. 

The parity of multipole radiation is specified by the parity of the magnetic field 

 H E  


 and  H M  


which are  1  and  1   . We have chosen this 

because the parity of the perturbing Hamiltonian H  (refer to eq.11.24) has the 
parity of the H


 field. The parity of current density


j   is negative and the parity of

A


 is opposite to that of H


.  

Now consider a nuclear transition from initial state i  to final state f  with i  
and f  parities. The conservation of parities demand the relation between initial 

and final states parities as following   

 1i f
       for  E    radiation  

and     11i f
       for  M    radiation               (11.56) 

11.5 Internal Conversion and Pair Production 
When an excited nucleus makes a transition from one level to another by emission 
of   photon (electromagnetic radiation) when it is isolated and deprived of all its 
atomic electrons. The presence of orbital electrons makes possible a different 
process: 

The excited nucleus loses excitation and transfers it to one of the electron of K or L 
or M shell. This process is called conversion electrons. 

The another competing process of emission of    radiation can be compared for a 
given transition from an excited state. 

11.5 Internal Conversion and Pair Production 
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The ratio of average number of conversion electrons and average number of   
photons is called conversion coefficient . 

eN
N

                   (11.57) 

The partial conversion coefficient K L, ,...  are ratios for K,L,.. electrons ejection 

respectively. 

K L M ....        

The energy of conversion of electron from K shell is given as  

 CE h
K i f ZE E E b K                 (11.58) 

The conversion electron spectrum is discrete and not continuous such as in 
decay where it is continuous and broad peaked. 

If energy of nuclear excitation is greater than 22 em c , then pair production may 

occur . 

 

 

 

 

 

 

 

Figure11.1:  Pair production in the 
presence of a heavy nucleus Ze  

Figure 11.2 : Internal conversion of 
an orbital electron due to 
electromagnetic interaction with a 
nucleus. 

Nuclear Isomerism 

Some time a nucleus releases energy decaying into lower state with a life time of 
the order of 100ms to several years. The nucleus may then   decays into a new 
nucleus . These states of longer lifetime are called isomer states. This phenomenon 
is called nuclear isomerism .The isomer levels are shown in figure 11.3. 
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Figure :11.3 

The schematic diagram explaining two types of nuclear isomers through   
decay into daughter nuclei Band Bof a parent nucleus A.  

11.6 Self Learning Exercise 
Q.1  Write multipole expansion of electromagnetic field in presence of the 

sources of radiation. 

Q.2  Write the expression for the Weisskopf single particle estimates of the 
transition probability for the multipole radiation of order  . Discuss the 
result. 

11.7 Summary 

 For a vector field corresponding to one photon of energy  in the system 
volume V ,the amplitude of the electromagnetic vector potential is 

2

0 2
8 8 cA

Vk V
  

 


          

 The total energy of this field integrated over the volume V is given by 

† 1
2k k k

k ,

ˆĤ  


      
 

    and the total momentum is †
k k

k ,

ˆp̂ k  


  

    

   A E ,r
 
 

and  A M ,r
 
 

are solutions of Helmholtz equation 

   2 2 0k A G ,r
   
    where G E,M  

 

a  

a  
b  

iA B    

B   

a  
iA  

iA B    

b  

Nucleus B  

Isomeric transition
dominant

 
Isomeric transitions
arenot dominant

 

b  

B   

Nucleus B  

Nucleus A  

11.6 Self Learning Exercise 

11.7 Summary 
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Magnetic 2  pole radiations Electric 2  pole radiations 

   2 2 0k E M ,r   
  , 

  0.E M ,r  
    

   iH E ,r E M ,r
k

 


    



     

0r .E 
  

   2 2 0k H M ,r   
   

  0.H E ,r  
    

    


   



   iE M ,r H E ,r
k

  
0

r .H  

 The expressions for transition probabilities are  
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                       


 

 

 The transition amplitude vanishes unless 

i fJ J 
 

 and i fm m                  

If 0 0i fJ ,J   then 0 0  transition is absolutely forbidden. 

The relation between initial and final states parities as following   

 1i f
       for  E    radiation and 

     11i f
       for  M    radiation          

 The excited nucleus loses excitation and transfers it to one of the electron of 
K or L or M shell. This process is called conversion electrons. 

11.8 Glossary 

Coulomb Gauge : The vector field fulfils the gauge condition 0.A 


  

 j kr :  spherical Bessel function of order    

 Y ,    : spherical harmonics of ranks  ,   

11.9 Exercise 

Q.1  Define transition probability for emission of a multipole radiation of order 

11.8 Glossary 

11.9 Exercise 
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 ,   by a nucleus .Discuss briefly spin and parity selection rules for these 
transitions .  

Q.2  For transitions between low lying states of nuclei (using long wavelength 

approximation) show that  v

pM cR c

 
  
 
 


 

Q.3 Write short note on  

(i) Internal conversion of electrons  

(ii) Parity and selection rules for emission of multipole radiations in nuclei. 

(iii) 0 0 Transitions in nuclei.   

Q.4  When the transition probability is larger than the Weisskopf estimates of the 
single particle transition probability for multipole radiation of order  ,for a 
nucleus what are the possible reasons ? 

Q.5  What are the conventional units of reduced transition probabilities

 ; i fB E J J      and  ; i fB M J J     ? Show that the difference 

of dimensions between these units by analyzing the units dimensionally .  

Q.6  Calculate ratios  

ER 
 
 

1W

W

E
E




 



W
W , MR 

 
 

1W
W

W

W

M
M




 

  
and MER

 
 

W

W

M
E










W
W

by 

making approximations .The symbols have their usual meaning. 
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UNIT-12 
Sommerfeld Theory of Hydrogen Atom 

 

Structure of the Unit 

12.0 Objectives 
12.1 Introduction 
12.2 Sommerfeld’s elliptic orbits 
12.3 Sommerfeld’s Relativistic Correction  
12.4 Shortcomings of Bohr- Sommerfeld theory 
12.5 Illustrative Examples 
12.6 Self Learning Exercise-I 
12.7 Interpretation of quantum numbers for hydrogen atom 
12.8 Electron probability density 
12.9 Orbital angular momentum  
12.10 Illustrative Examples 
12.11 Self Learning Exercise-II 
12.12 Summary 
12.13 Glossary 
12.14 Answers to Self Learning Exercises 
12.15 Exercise 
12.16 Answers to Exercise 

References and Suggested Readings 

12.0 Objectives 
Bohr was able to calculate the radii as well energies of the stationary orbit around 
the nucleus in an atom and those calculated values were found to be in a good 
agreement with the experimental values. He also gave the Hydrogen ion spectrum. 
For these reasons, his theory was widely accepted throughout the world. But a few 
years later, the use of high resolving power spectrometer revealed fine structure of 
the hydrogen spectral lines which couldn’t explained by Bohr’s model .To explain 
hydrogen fine structure ,Sommerfeld extended Bohr Theory .In this chapter we 
will study about Bohr- Sommerfeld theory. 

UNIT-12 
Sommerfeld Theory of Hydrogen Atom 

12.0 Objectives 
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12.1 Introduction 

In 1916,Sommerfeld, in an attempt to explain the fine structure of hydrogen atom, 
extended Bohr’s model by considering that the electron could revolve in elliptic 
orbits also, apart from Bohr’s circular orbits. He estimated the size and shape of 
the possible elliptic orbit and the total energy of an electron revolving in such orbit.  
According to Sommerfeld, the stationary orbits in which electrons are revolving 
around the nucleus in the atom are not circular but elliptical in shape. It is due to 
the influence of the centrally located nucleus. The electron revolves in elliptical 
path with nucleus at one of its foci. So there will be a major and a minor axis of the 
path. He said that with the broadening of the orbit, the lengths of the two axes 
approach to equal value and ultimately become equal i.e. the path become circular. 
So we can say that the circular path is just one special case elliptical path. 

12.2 Sommerfeld’s Elliptic Orbits 
Let us consider an electron mass (m), and charge (-e) is revolving around nucleus 
(charge +Ze) in an elliptic orbit(Fig.1), where ܽ and ܾ are the semi-major and 
semi-minor axes of ellipse respectively. 

 
Figure 1. An electron of mass (m), and charge (-e) is revolving around nucleus 
(charge +Ze) in an elliptic orbit. 

The r and θ are the polar coordinates of electron at instantaneous position. It 
should be periodic functions of time, must be quantized separately,where the p and 
j are the radial and angular momentum of the electron respectively. 

Then according to Wilson –Sommerfeld quantization rules, we know 

12.2 Sommerfeld’s Elliptic Orbits 

12.1 Introduction 
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∮ ݎ݀݌ = ݊௥ℎ        (1) 

and  ∫ ݆ ߠ݀ = ݈ℎଶగ
଴                          (2)  

where ݊௥ and ݈ are integers, known as radial and azimuthal quantum numbers 
respectively. 

In second integral, according to classical mechanics, the angular momentum j of 
any isolated system is constant. Thus, 

  ݆ ∫ ߠ݀ = ݈ℎଶగ
଴  

or              ݆ = ௟௛
ଶగ

                             (3) 

This condition of the orbital angular momentum is similar to Bohr model. 

To solve the first integral, 

݌             =  (4)                          ݎ̇݉

and  ݆ =  ଶθ̇,        (5)ݎ݉

where ̇ݎ and ߠ̇ݎ are the radial and the angular velocity of electron. 

The polar equation of the ellipse 

    ଵ
௥

= ଵ
௔

ଵିఌ ୡ୭ୱ ఏ
ଵିఌమ                            (6) 

where √1 − =  ଶߝ
௕
௔

 

Taking differentiation of r with respect to , we get 

− ଵ
௥మ

ௗ௥
ௗ

= ଵ
௔

ఌ ୱ୧୬ 
ଵିఌమ            (6.a) 

             −
1
ݎ

ݎ݀
݀ =

1
ܽ

ߝݎ sin 
1 − ଶߝ  

Using equation (6) 

 
ଵ
௥

ௗ௥
ௗ

= − ఌ ୱ୧୬ 
ଵିఌ ୡ୭ୱ 

 

By squaring the both sides of above equation, we get 

ቀଵ
௥

ௗ௥
ௗ

ቁ
ଶ

= ఌమୱ୧୬మ
(ଵିఌ ୡ୭ୱ )మ          (7) 

Now,     ݌ = ̇ ݎ݉ = ݉ ௗ௥
ௗ௧

= ݉ ௗ௥
ௗ

ௗ
ௗ௧

= ݉ ௗ௥
ௗ
̇ 
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Using equation (5),we have ݌ = ௝
௥మ

ௗ௥
ௗ

      (8) 

We can write    ݀ݎ = ௗ௥
ௗ

݀ 

ݎ݀݌   .:          = ݆ ቀଵ
௥

ௗ௥
ௗ

ቁ
ଶ

݀      

Using equation (7), we get 

ݎ݀݌                         = ݆
ଶsinଶ ݀ߝ

(1 − ߝ cos)ଶ 

Hence the integral in equation (1) becomes 

݆ ∫ ఌమୱ୧୬మ ௗ
(ଵିఌ ୡ୭ୱ )మ = ݊௥ℎଶగ

଴       (9) 

Solution of this integration is 

    ∫ ఌమୱ୧୬మ ௗ
(ଵିఌ ୡ୭ୱ )మ = ߨ2 ቀ ଵ

√ଵିఌమ − 1ቁଶగ
଴     (10) 

Using eq.(10) in eq.(9),we get 

݆ߨ2                     ൬
1

√1 − ଶߝ
− 1൰ = ݊௥ℎ 

From eq.(3) put value of ݆ 

                      ݈ℎ ൬
1

√1 − ଶߝ
− 1൰ = ݊௥ℎ 

or              
ଵ

√ଵିఌమ − 1 = ௛
௟
   

or             √1 − ଶߝ = ௟
௡ೝା௟

 

 But we know from property of ellipse 

               √1 − ଶߝ = ௕
௔

∴ ௕
௔

= ௟
௡ೝା௟

              (11) 

where ݊௥ and ݈ are integers, 

                   ݊௥ + ݈ = ݊, 

We can write  

√1 − ଶߝ = ௟
௡

       (11.a) 

So           
௕
௔

= ௟
௡

                 (12) 
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This is quantum condition for elliptic orbits. 

Here ݊ is principal or total quantum number. When n = l, b = a and ε = 0, the orbit 
becomes circular. l cannot be zero, since the ellipse would then degenerate into a 
straight line passing through the nucleus. Also l cannot be greater than n, since b is 
always less than a. Hence for a given value of n, quantum number l can take only n 
different values, which means that there can be only n elliptical orbits of different 
eccentricities. 

Total energy of an electron in an elliptical orbit 

Let us now calculate total energy of an electron in elliptic orbit. It will be sum of 

the kinetic energy ܭ and the potential energy ܷ. Then total energy of an electron 
will be 

ܧ = ܭ + ܷ         (13) 

The kinetic energy of an electron  ܭ = ݉ ቀݎ ଶ̇ + ଶ̇ݎ
ଶ

ቁ 

using eq.(4) and (5),we get 

ܭ      = ଵ
ଶ௠

ቀ݌ଶ + ௝మ

௥మቁ 

The potential energy of an electron  ܷ = − ଵ
ସగఌబ

௓௘మ

௥
 

Putting the values of ܭ and ܷ in equ.(13), we have 

ܧ = ଵ
ଶ௠

ቀ݌ଶ + ௝మ

௥మቁ − ଵ
ସగఌబ

௓௘మ

௥
                                                 (14) 

Using eq.(8) 

ܧ                      =
݆ଶ

ଶݎ2݉ ቈ൬
1
ݎ

ݎ݀
݀൰

ଶ

+ 1቉ −
1

଴ߝߨ4

ܼ݁ଶ

ݎ  

or   ቀଵ
௥

ௗ௥
ௗ

ቁ
ଶ

= ଶ௠ா௥మ

௝మ + ௠௓௘మ௥
ଶగఌబ௝మ − 1                                                   (15) 

From eq.(6.a) 

                 
1
ଶݎ ൬

ݎ݀
݀൰

ଶ

=
1

ܽଶ
ଶߝଶݎ sinଶ 
(1 − ଶ)ଶߝ =

ଶ (1ݎଶߝ − cosଶ)
[ܽ(1 − ଶ)]ଶߝ  

ଵ
௥మ ቀௗ௥

ௗ
ቁ

ଶ
= ௥మ ൫ఌమିఌమୡ୭ୱమ൯

[௔(ଵିఌమ)]మ                                                             (16) 
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Using eq.(6) 
       

  ௔
௥

(1 − (ଶߝ = 1 − cos  

ߝ                     cos = ቆ1 −
ܽ
ݎ

(1 −  ଶ)ቇߝ

Squaring both sides of equation, we get 

(ε cos )ଶ = ൬1 − ௔
௥

(1 − ଶ)൰ߝ
ଶ
               (17) 

Putting the value of eq.(17) in eq.(16) 

                 
1
ଶݎ ൬

ݎ݀
݀൰

ଶ

= ൤
ݎ

ܽ(1 − ଶ)ଶ൨ߝ
ଶ  

൤ߝଶ  − ቄ1 −
ܽ
ݎ

(1 − ଶ)ቅߝ
ଶ

൨ 

                =
ଶݎ

ܽଶ(1 − ଶ)ଶߝ ቈߝଶ − ቊ1 +
ܽଶ

ଶݎ (1 − ଶ)ଶߝ −
2ܽ(1 − (ଶߝ

ݎ ቋ቉ 

= ቈ
rଶεଶ

aଶ(1 − εଶ)ଶ −
rଶ

rଶ(1 − εଶ)ଶ +
2r

a(1 − εଶ) − 1቉ 

                                 =
ଶߝଶݎ − ଶݎ

ܽଶ(1 − ଶ)ଶߝ +
ݎ2

ܽ(1 − (ଶߝ − 1 

                                 = −
(1 − ଶݎ(ଶߝ

ܽଶ(1 − ଶ)ଶߝ +
ݎ2

ܽ(1 − (ଶߝ − 1 

                            = − ௥మ

௔మ(ଵିఌమ) + ଶ௥
௔(ଵିఌమ) − 1                 (18) 

Comparing the coefficient of ݎଶ and ݎ from equations (15) and (18), we get 
ଶ௠ா

௝మ = − ଵ
௔మ(ଵିఌమ)                  (19) 

and        ௠௓௘మ

ଶగఌబ௝మ = ଶ
௔(ଵିఌమ)                 (20) 

From equation (19) 

ܧ = − ௝మ

ଶ௠௔మ(ଵିఌమ)       (21) 

Putting the value of (1 −  ଶ) into equation (21) from equation (20),we getߝ

ܧ               = −
݆ଶ

2݉ܽଶ ቈ
ܼܽ݉݁ଶ

଴݆ଶߝߨ4 ቉ 

ܧ = − ௓௘మ

଼గ௔ఌబ
         (22) 

Again substituting for ܽ from equation (20),we get 
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ܧ = − ቆ
ܼ݁ଶ

଴ߝߨ8
ቇ ቆ

ܼ݉݁ଶ

଴݆ଶቇߝߨ2 ቆ
1 − ଶߝ

2 ቇ 

ܧ = − ቈ
ܼ݉ଶ݁ସ

଴ߝଶߨ32
ଶ቉

(1 − (ଶߝ
݆ଶ  

Putting the value of (1 −  ଶ) and ݆ from eq.(3) and (11.a) respectively, we getߝ

ܧ = − ቈ
ܼ݉ଶ݁ସ

଴ߝଶߨ32
ଶ቉ ቈ

݈ଶ

݊ଶ቉ ቈ
ଶߨ4

݈ଶℎଶ቉ 

ܧ = − ௠௓మ௘ర

଼ఌబ
మ௡మ௛మ                 (23) 

This equation shows the energy of an electron in elliptical orbit which is exactly 
the same as for the Bohr’s circular orbit. The energy of electron still independent 
on the azimuthal quantum number ݈. Thus the introduction of elliptical orbits gives 
no new energy levels and hence no new transition. Hence Sommerfeld’s attempt to 
explain the fine structure of spectral lines failed. 

Size and Shape of Sommerfeld’s Orbits: 

From equation (22),we have 

ܽ = −
ܼ݁ଶ

଴ߝܧߨ8
 

From equation (23) substituting the value of E, we get 

ܽ = ௡మ௛మఌబ
గ௠௓௘మ                  (24) 

  ܽ = ௡మ௥್
௓

                 (25) 

where ݎ௕ = ௛మఌబ

గ௠௘మ = 0.0529 ݊݉ (Bohr radius) 

Again using equation (12) 

ܾ =
݈ܽ
݊  

Substituting value of ܽ from equation (25), we get 

ܾ = ௡௟
௭

 ௕                 (26)ݎ
We can determine the size and shape of Sommerfeld’s elliptic orbits from equation 
(25) and (26).The length of semi-major axis is determined by the principal 
quantum number ݊, while the length of the semi-minor axis depends upon the 
azimuthal quantum number ݈ as well as on ݊ . 



236 
 

For a given value of  ݊, the possible values of ݈ are 0,1,2,3..... ݊, when we consider 
݈ = 0 ,the ellipse reduces to a straight line and the electron then passes through the 
nucleus traversing the orbit. This leads to the collapse of the atom. Therefore the 
value of  ݈ = 0 is forbidden. Thus for given value ݊, quantum number ݈ can take ݊ 
different possible values 1,2,3....... ݊. This means for a given ݊, there are ݊ orbits of 
different eccentricities which will be occupied by the electron. Let us consider 
hydrogen atom (Z=1). 

For first orbit ݊ = 1, Since ݊௥ + ݈ = 1; 

                                          ݈ ≠ 0            ݈ = 1 
Thus with ݊ = ݈ and ݊௥ = 0, a=rb and b=rb 

 

 

 

                           Figure 2 :  n=1, l=1 

This  shows circular orbit of radius ݎ௕(Fig.2) which is exactly same as the Bohr’s 
consideration. For ݊ = 2, Possible values of ݈ are 1and 2. we get 

(1) ݈ = 2,      then ܽ = ܾ   ,ܾݎ4 =  ௕ݎ4
(2) ݈ = 1,       then   ܽ = ܾ   ,௕ݎ4 =  ௕ݎ2

 

 

 

 

 

 

 

Figure 3.n=1, n=2 orbits. 

From above given combination for ݊ = 2 ,we have a Bohr’s circular orbit of radius 

 .(Fig.03)ܾݎ௕ and semi-minor axis 2ݎ௕ and an elliptic orbit with semi-major axis 4ݎ4

But all these orbits have same energy E given by equation (23). 
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For ݊ = 3,Possible values of ݈ are 1,2 and 3. we get 
(1) ݈ = 3,      then    ܽ = ܾ ,  ௕ݎ9 =  ௕ݎ9
(2) ݈ = 2,       then   ܽ = ܾ ,   ௕ݎ9 =  ௕ݎ6
(3) ݈ = 1,       then   ܽ = ܾ ,   ௕ݎ9 =  ௕ݎ3

Thus we find one Bohr’s circular orbit of radius 9ܾݎ , remaining two are elliptic 
orbits with same semi-major axis 9ݎ௕ and different semi-minor axes 6ݎ௕ and 3ݎ௕ 

which is shown in below figure(04).These all three orbits have same energy. 
 

 

 

 

 

 

 

Figure 4: for ݊ = 3, Possible values of ݈ are 1,2 and 3. 

We can see that for each value of the principal quantum number n, there will be n 
different allowed orbits. One of these will be circular, which is explained by the 
original Bohr theory. Other will be elliptic, all having the same semi-major axis, 
but different semi-minor axes. 
The electron is moving in different possible orbits for a given n, but the energy of 
electron remains same in all orbits associated to n. Thus we conclude that 
Sommerfeld’s introduction of elliptic orbits do not include new energy levels, 
hence it cannot explain the fine structure. The orbits associated to same energy 
known as degenerate. To represent the different orbits in another notation 
corresponding to azimuthal quantum number ݈ = 1,2,3,4,etc.. It is described by the 
letters s,p,d,f etc. respectively. In this notation, the orbit determined by ݊ = 3 and 
݈ = 1 is represented by 3s. Similarly 4f will represent the orbit ݊ = 4 and ݈ = 4. 

12.3 Sommerfeld’s Relativistic Correction 
An electron has the ratio ݒ/ܿ ≅ 10ିଶ or less in innermost orbit of hydrogen atom. 

Due to this, relativistic correction will arise. In  elliptic  orbit, the  velocity of an 

12.3 Sommerfeld’s Relativistic Correction 
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electron varies point to point in orbit. It is a maximum at nearest the nucleus and a 
minimum farther away from the nucleus. According to the theory of relativity, we 
know that the variation of velocity means variation of mass of the electron. 

Taking this effect into account, Sommerfeld calculated the total energy of an 
electron in an orbit which is characterized by the quantum numbers n and l as 

ܧ = −
݉଴ܼଶ݁ସ

଴ߝ 8
ଶ݊ଶℎଶ ቈ1 +

ܼଶ ∝ଶ

݊ ൬
1
݈ −

3
4݊൰቉ 

where ∝= ௘మ

଼ఌబ ௛௖
= ଵ

ଵଷ଻
 is “fine -structure constant”. It is dimensionless quantity and 

equal to the ratio of the velocity of electron in the first Bohr orbit of hydrogen to 
the velocity of light c in vacuum.  

The above expression may also be written as 

ܧ = −
ܴஶܼଶℎܿ

݊ଶ ቈ1 +
ܼଶ ∝ଶ

݊ ൬
1
݈ −

3
4݊൰቉ 

where ܴஶ = ௠బ௘ర

ఌబ
మ௛య௖

 =1.097 × 10଻݉ିଵ is Rydberg constant for an infinitely heavy 

nucleus. 

The term values of the hydrogen –like atom are  

ܶ = −
ܧ
ℎܿ =

ܴஶܼଶ

݊ଶ ቈ1 +
ܼଶ ∝ଶ

݊ ൬
1
݈ −

3
4݊൰቉ 

or           ܶ =
ܴ∞ܼ2

݊2 +
ܴ∞ܼ4∝2

݊3 ቀ1

݈
−

3

4݊
ቁ 

The first term is similar to Bohr derivation for circular orbits. The second term is 
the relativisitic correction ∆ܶ, so we can write 

∆T =
RஶZସ ∝ଶ

nଷ ൬
1
l −

3
4n൰ 

Because  ܴஶ ∝ଶ= 5.84 ܿ݉ିଵ 

So         ∆ܶ =
5.84 ܼ4

݊3 ቀ1

݈
−

3

4݊
ቁ ܿ݉−1              (27) 

Finally we can calculate the relativistic shift in the energy levels of various l values 
for each Bohr energy level n with the help of the last expression. 

12.4 Shortcomings of Bohr- Sommerfeld Theory 
There are given some shortcomings of Bohr-Sommerfeld theory as following- 

12.4 Shortcomings of Bohr- Sommerfeld Theory 
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(1) Bohr’s theory able to calculate the energies of the allowed states of an atom 
and the frequency of radiation emitted or absorbed in transitions between 
allowed states. But it is unable to calculate the rate at which such transitions 
take place and intensity of the spectral lines. 

(2) The theory fails for atoms which have more than one electron ,for example 
neutral helium atom which has only two electrons. It is applicable only to one-
electron atoms like hydrogen, hydrogen isotopes, singly-ionized helium etc. 

(3) Even it was unable to explain the fine structure of spectral lines in the simplest 
hydrogen atom. 

(4) There were not given proper reason for the introduction of quantum numbers. 
The quantum numbers were introduced by Bohr as a postulate. 

(5) Both the theories could not explain the distribution and arrangement of 
electrons in atoms. 

(6) Both the theories could not explain anomalous Zeeman effect and Stark effect. 

12.5 Illustrative Examples  
Example1: Calculate the energy shift from Bohr level of an electron in hydrogen 
atom in state of n=1 quantum number using Sommerfeld’s relativistic correction. 

Sol. Given principal quantum number n=1, and for hydrogen atom Z=1 

Azimuthal quantum number for n=1 will be l=1 

Energy shift from Bohr level 

∆T = ୖಮ୞ర∝మ

୬య ቀଵ
௟

− ଷ
ସ୬

ቁ , 

∴ ܴஶ ∝ଶ= 5.84 ܿ݉ିଵ 
Then, putting the given values, we get   

or  ∆T = ହ.଼ସ ୡ୫షభ

ଵ
ቀଵ

ଵ
− ଷ

ସ
ቁ 

or  ∆T = ହ.଼ସ ୡ୫షభ

ସ
 

Shift from Bohr level  

                ∆T = 1.46 cmିଵ 

Example 2: Calculate the ionization energy of hydrogen atom.(h=6.63 x 10-34 J.s, 

 e = 1.6 x 10-19 C, m = 9.1 x 10-31 kg , and ߝ଴ = 8.85 x 10-12 C2/N-m2 ) 

12.5 Illustrative Examples  
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Sol. In case of hydrogen atom (Z=1) ionization energy means binding energy the 
electron to the nucleus, which is equal to the energy of the lowest state 
corresponding to n=1. 

ܧ = −
ܼ݉ଶ݁ସ

଴ߝ8
ଶ݊ଶℎଶ 

Using above equation for ionization potential (n=1,Z=1) 

ܧ = −
݉݁ସ

଴ߝ8
ଶℎଶ 

= − ൫ଽ.ଵଵ ௑ ଵ଴షయభ ௞௚൯(ଵ.଺଴ ௑ ଵ଴షభవ ஼)ర

଼(଼.଼ହ ௑ ଵ଴షభమ ಴మ

ಿష೘మ)మ(଺.଺ଷ ௑ ଵ଴షయర௃ ௌ)మ
 

=−2.17 ܺ 10ିଵ଼ 13.6−=ܬ ܸ݁                           ∴ 1 ܸ݁ = 1.60 ܺ 10ିଵଽܬ 

12.6 Self Learning Exercise -I 
Q.1 What will be shape of orbit corresponding to principal quantum number n=2 ? 

Q.2  Why did Sommerfeld introduce relativistic correction? 

12.7 Interpretation of Quantum Numbers for Hydrogen Atom 
We consider a simplest bound system, one-electron atom like hydrogen atom that 
occurs in nature. It have a positively charged nucleus and negatively charged 
electron(-e), moving under their coulomb attraction and bound together by the 
attraction. The state of the electron around the nucleus in terms of its location 
relative to the nucleus and the energy associated with it is described by a set of 
quantum numbers. Each electron is characterized by four quantum numbers called 
the principal (total) quantum number, the azimuthal (orbital) quantum number, the 
magnetic orbital quantum number and the magnetic spin quantum numbers. Now 
we want to describe in term of size, shape, orientation of the orbit in space and spin 
around the nucleus. 
(1) The total and principal quantum number(n) 
This is identical with the one used in Bohr-Sommerfeld’s theory. It can take values 

1, 2, 3, 4, ..., ∞. This denotes the major axis of the ellipse with which the energy of 
the electron is associated and hence pertains to the main energy level or shell.  
These energy levels having values of n = 1, 2, 3, 4, etc. These values represented 
by symbols of shells K, L, M, N, etc. 

12.6 Self Learning Exercise -I 

12.7Interpretation of Quantum Numbers for Hydrogen Atoms 
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The energy (E) of different levels is inversely proportional to ݊ଶ. That is 

ܧ ∝
1

݊ଶ 
(2)The orbital quantum number (l) – 

This quantum number is an integer and for a given value of n, it can take any of the  
values 0, 1, 2, 3,4, ..., (n – 1). It  divides the main shell into n slightly different 
energy levels of sub shells so that the number of sub shells in main shell is 
represented by its principal quantum numbers. It means the shell with principal 
quantum number n=1 or K-shell has only one sub shell represented as s-sub shell 
(l=0). 

This quantum number is called the angular momentum quantum number,which  
represents mechanical angular momentum of the electron. The orbital angular 
momentum L is written as 

ܮ      = ݈ ௛
ଶగ

 , where l=0, 1, 2, 3.....etc. 

According to quantum mechanics, the value of orbital angular momentum L is not 

equal to ݈ ௛
ଶగ

  but given by 

ܮ = ඥ݈(݈ + 1) ൬
ℎ

 ൰ߨ2

The L-shell will have two sub-shells having values l=0 and l=1. They are 
represented as s and p sub-shells. Thus we can find different sub-shells associated 
to different shells. 

(3)Magnetic orbital quantum number (࢒࢓)- 

An electron revolves around the nucleus possesses angular momentum interacts 
with an external magnetic field B. The magnetic quantum number ݉௟ represents 
the direction of L by determining the component of L in the field direction. This is 
known as space quantization. 

௭ܮ = ݉௟
ℎ

 ߨ2

where ݉௟ = 0, ±1, ±2, … . ±݈ 

The possible values of  ݉௟  for given value of ݈ ranges from + ݈ to –  ݈. The number 

of possible orientations of the angular momentum vector L in magnetic field will 
be 2݈ + 1. 
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For  ݈ = ௭ܮ                   , 0 = 0 (only single value) 

݈ = ௭ܮ       , 1 = ௛
ଶగ

, 0, − ௛
ଶగ

 

Similarly we can find out different ܮ௭values associated to different ݈. 

 
Figure 5:-Space quantization of orbital angular momentum. 

The magnetic spin quantum number(࢙࢓):- 

In 1925 ,two Dutch graduate students, Samuel Goudsmit and George Uhlenbeck, 
proposed that every electron have an intrinsic angular momentum called spin, 
whose magnitude is half (1/2).It is same for all electrons  and associated with this 
angular momentum is magnetic moment. 

The quantum number s describes the spin angular momentum of the electron. It  
follows both Dirac’s theory and from spectral data. The angular momentum S due 
to electron spin is given in terms of the spin quantum number s by 

ܵ⃗ = ඥݏ(s + 1)
ℎ

ߨ2 =
√3
2

ℎ
 ߨ2

The space quantization of electron spin is described by the spin magnetic quantum 
number ms. The spin angular momentum vector can have the 2s+1=2 orientations 
specified by ms= +1/2 (spin up) and ms= -1/2 (spin down). 

Z-component of spin angular momentum 

ܵ௭ = ݉௦
ℎ

ߨ2 = ±
1
2 

ℎ
 ߨ2
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12.8 Electron Probability Density 
The electron in a hydrogen atom is described by the Schrödinger equation. The 
time independent Schrödinger equation in spherical polar coordinates (r,θ,Φ) can 
be solved by separation of variable in the form 

(r,,߮) = R(ݎ)() (߮)       
Quantum mechanically, we cannot consider an electron as moving around the 
nucleus in definite orbits. It is probabilistic phenomena. In three dimensions, 

probability density   ଶ(r,,߮) gives the probability per unit volume for the 

electron to be found in a small volume element at the coordinate (r,θ,Φ). 

     ଶ(r,,߮) = |ܴ|ଶ||ଶ||ଶ 
where | |ଶ=  ∗,  etc. 

The wave function (r,,߮) is symmetrical about the z-axis. So | |ଶ  depends 
only |ܴ|ଶ ܽ݊݀ ||ଶ . Firstly we will discuss the dependence of | |ଶ on |ܴ|ଶ. For 
this we define the radial probability density ܲ(ݎ), this is defined so that 
 gives the probability that regardless the direction, electron will be found to  ݎ݀(ݎ)ܲ

the lie between two spheres whose radii are ݎ and ݎ +  the volume ܸ݀ between ,ݎ݀
these spheres is 4ݎߨଶ݀ݎ. So we can write           

P(r)dr =   ଶ(ݎ)ܸ݀ =   ଶ(ݎ)ݎߨ4ଶ݀(28)             ݎ 

The graph of ܲ(ݎ) against ܾݎ/ݎ, where ݎ௕ is Bohr radius ,is given below for values 
of  ݊ and ݈ (state 1s, 2s and 3s for the hydrogen atom ( z=1 ) are shown in Fig.6. 

 
Figure: 6 Graph between P(r)and ݎ/ݎ௕ 

12.8 Electron Probability Density 
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We can see from  fig.6 the electron is most likely to be found at the locations of 
Bohr orbits. Now we will consider the dependence of | |ଶ on  ||ଶ (directional) 
which is shown Fig.7 and Fig.8. The form of  ||ଶ in terms of polar diagram in 
which  the origin is at ݎ = 0 and the z- axis is taken along the direction from which 

the angle θ is measured. 

 
Fig.7 Polar diagram for s-state l = 0, ml = 0 

 
Fig. 8.   Polar diagrams for p-state (a) ml = 0 (b) ml = ±1 (c) ml = 0 rotated around  
z–axis, (d) ml = ±1 rotated around z–axis. 
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From above figures we can say  ||ଶ is constant for an s-state (l=0) and for other 
states it  varies with θ and takes  largest value in definite direction. 

12.9 Orbital Angular Momentum 
An electron revolves around nucleus in atom which has an orbital angular 
momentum ܮሬ⃗   which have direction along the orbital axis. The angular momentum 
ሬ⃗ܮ  of a particle bound to and moving around a coordinate origin is defined by the 
equation 

ሬ⃗ܮ                    , ⃗݌xݎ⃗=

where ⃗ݎ and ⃗݌ are a position vector with respect to origin and linear momentum 
vector respectively. The rectangular components of ܮሬ⃗  are 

Using cross product, 
௫ܮ = ௭݌ݕ −  ௬݌ݖ

௬ܮ = ௫݌ݖ −  ௭݌ݔ

௭ܮ = ௬݌ݔ − ௫݌ݕ  

where x,y,z are the components of ⃗ݎ, and ݌௫  .⃗݌ ௭ are the components of݌,௬݌,

Using equivalent differential operator for momentum components 

= ௫݌ −
݅
2

ℎ
ߨ

߲
,  ݔ߲ = ௬݌ −

݅
2

ℎ
ߨ

߲
,  ݕ߲ = ௭݌ −

݅
2

ℎ
ߨ

߲
 ݖ߲

Now we get rectangular component of angular momentum in quantum mechanical 
operators, which are 

෠௫ܮ = −
݅
2

ℎ
ߨ ൬ݕ

߲
ݖ߲ − ݖ

߲
 ൰ݕ߲

෠௬ܮ = −
݅
2

ℎ
ߨ ൬ݖ

߲
ݔ߲ − ݔ

߲
 ൰ݖ߲

 and 

෠௭ܮ = −
݅
2

ℎ
ߨ ൬ݔ

߲
ݕ߲ − ݕ

߲
 ൰ݔ߲

In spherical polar coordinates these operators become 

෠௫ܮ = ௜
ଶ

௛
గ

ቀsin ߮ డ
డఏ

+ cot ߠ cos ߮ డ
డఝ

ቁ                             (29) 

෠௬ܮ = ௜
ଶ

௛
గ

ቀ− cos φ డ
డఏ

+ cot ߠ sin ߮ డ
డఝ

ቁ                (30) 

12.9 Orbital Angular Momentum 
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and        ܮ෡ ௭ = − ௜
ଶ

௛
గ

డ
డఝ

                                                            (31) 

The square of the magnitude of the angular momentum vector ܮሬሬ⃗  is  

ଶܮ = ௫ܮ
ଶ + ௬ܮ

ଶ + ௭ܮ
ଶ 

The corresponding operator is 

෠ଶܮ = ෠௫ܮ
ଶ + ෠௬ܮ

ଶ + ෠௭ܮ
ଶ 

Put the squares of ܮ෠௫  ෠௭ from equation (29),(30),(31) we getܮ, ෠௬ܮ, 

෠ଶܮ = −
ℎଶ

ଶߨ4 ቈቊsinଶ߮
߲ଶ

ଶߠ߲ + cotଶߠ cosଶ߮ 
߲ଶ

߲߮ଶ + sin ߮
߲

ߠ߲
+ cot ߠ cos ߮

߲
߲߮

൬sin ߮
߲

߲߮
൰ቋ

+ ቊcosଶ߮
߲ଶ

ଶߠ߲ + cotଶߠsinଶ߮
߲ଶ

߲߮ଶ

− cos ߮
߲

ߠ߲
൬cot ߠ sin ߮

߲
߲߮

൰ +  cot ߠ sin ߮
߲

߲߮
൬− cos ߮

߲
ߠ߲

൰ቋ + ቊ
߲ଶ

߲߮ଶቋ቉ 

By more solving, we get final solution  

− =෠ଶܮ ௛మ

ସగమ ቂ డమ

డఏమ + ଵ
ୱ୧୬మఏ

డమ

డఝమ + cot ߠ డ
డఏ

ቃ 

= −
ℎଶ

ଶߨ4 ቈ
cos θ
sin θ

߲
ߠ߲ +

߲ଶ

ଶߠ߲ +
1

sinଶߠ
߲ଶ

߲߮ଶ቉ 

or       ܮ෠ଶ = − ௛మ

ସగమ ቂ ଵ
ୱ୧୬ ఏ

డ
డఏ

ቀsin ߠ డ
డఏ

ቁ + ଵ
ୱ୧୬మఏ

డమ

డఝమቃ                                           (32) 

It is operator of the square of the angular momentum. 

By applying the operator ܮ෠௭ to the one –electron atom wave function 

(r,,߮) = R(ݎ)() (߮)       

This gives    ܮ෠௭ = − ௜
ଶ

௛
గ

డ
డఝ

 

or                ܮ෠௭ = − ௜
ଶ

௛
గ

 R  డ
డఝ

                (33) 

The function (߮)   for the atom is given by 

 = A ݁௜௠೗ఝ 

By differentiating w.r.t ߮, we get 
డ
డఝ

= A ݅݉௟݁௜௠೗ఝ = ݅݉௟  

Put this value in equation v, we get 
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෠௭ܮ = −
݅
2

ℎ
ߨ ݅݉௟ R  

෠௭ܮ = ݉௟ 
ℎ

 ߨ2

Given above equation shows the wave functions  of the one-electron atom are the 
eigenfunction of ܮ෠௭  having eigenvalues given by 

௭ܮ =  ݉௟ 
௛

ଶగ
                 (34) 

where ݉௟ = 0, ±1, ±2, … . ±݈ 

12.10 Illustrative Examples  
Example 3: Calculate the two possible orientations of spin vector S with respect to 
a magnetic field. 

Sol. The magnitude of spin angular momentum S, 

ܵ⃗ = ඥݏ(s + 1) ௛
ଶగ

  ,            s=1/2  

and z-component 

     SZ=mS

௛
ଶగ

     ,          mS=±1/2 

The angle between S and the z- axis is determined by the quantum numbers mS and 
S, 

cos ߠ = ௦೥

௦
= ௠ೞ

√௦(௦ାଵ)
=

ଶ
√ଷ

݉௦ ,      (∴s=1/2) 

For mS=+1/2,we get 

cos ߠ = + ଵ
√ଷ

= 0.577       ∴ ߠ = cosିଵ(0.577) = 54. 7଴ 

For mS = - 1/2,we get 

cos ߠ = − ଵ
√ଷ

= −0.577      ∴ ߠ = cosିଵ(−0.577) = 125. 3଴ 

Example 4: Find the  possible values of the components of angular momentum 
along a specified direction for an electron orbit with quantum number l=1. 

Sol. For the given electron   l=1 (p-electron) and s = 1/2 

The two possible values of  j are 

 j=l ± s =1±1/2=3/2 and ½ 

For j=3/2, the possible values ௝݉  are  

௝݉ =
3
2  ,

1
2  , − 

3
2  , −

1
2 

12.10 Illustrative Examples  
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For j=1/2, the possible values ௝݉ are  

௝݉ =
1
2   , −

1
2 

Z – Component of total angular momentum will be 

                  ݆௭ =  ݉ ௝ 
௛

ଶగ
   , 

So the possible values for z-component of total angular momentum 

±  
3
2 ൬

ℎ
൰ߨ2 , ±

1
2 ൬

ℎ
 ൰ߨ2

Example 5: How many revolutions does an electron in  n=3 state of a hydrogen 
atom make before dropping to the n=1 state? The average life time of an excited 
state is 10-8 second. (ܴஶ =1.097 × 10଻݉ିଵ) 

Sol. For hydrogen atom Z=1 
The number of revolutions per second of the electron in the orbit is  

݂ =  ݎߨ2/ݒ
For finding the value of ݒ from Bohr postulates for condition of mechanical 
stability of electron is 

ଶݒ݉

ݎ =
1

଴ߝߨ4

݁ଶ

ݎ  

and quantum condition is  

ݎݒ݉ = ௡௛
ଶగ

            (n=1,2,3.......) 

We find from above equations 

ݒ  = ௘మ

ଶ௡௛ఌబ
  and ݎ = ௡మ௛మఌబ

గ௠௘మ  

Thus            ݂ = ௠௘ర

ସఌబమ௡య௛య = ௠௘ర

ସఌబమ௛య௖
ቀଶ௖

௡యቁ = ܴஶ ቀଶ௖
௡యቁ 

For the n = 3 state, the frequency of revolution is 

݂ = ܴஶ ൬
2ܿ
݊ଷ൰ 

݂ =
(1.097 × 10଻݉ିଵ)(3.0 × ଵିݏ݉ 10଼ 

9
= 3.66 ×  10ଵସିݏଵ 

Hence the number of revolutions of the electron in its life-time of 10ି଼ second is  

=(3.66 ×  10ଵସିݏଵ) ×10ି଼ ݏ = 3.66 ×  10଺ 
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12.11 Self Learning Exercise- II 

Q.1 What is the meaning of degeneracy of the elliptic orbits in Sommerfeld’s 
theory of elliptic orbits? 

Q.2 Calculate the possible orientations of the total orbital angular  momentum 

vector ܮሬ⃗  corresponding to ݈ = 1 with respect to a magnetic field along the       
z-axis. 

Q.3 Show that the ionization potential of Li++ is nine times the value for hydrogen 
atom. 

12.12 Summary 
The unit starts with Sommerfeld’s elliptic orbit. Find the derivation for energy, 
shape and size for different elliptical orbits. Sommerfeld’s model can’t explain fine 
structure of spectral lines. We introduce relativistic correction for single electron 
atoms. 

Further, quantum numbers and electron probability density are introduced for 
hydrogen atom .We try to draw polar diagrams for different energy states. In last, 
we defined orbital angular momentum. There involved many solved and unsolved 
problems time to time after derivation.  

12.13 Glossary 
Degenerate–Two or more quantum states that share or relate the same quantum 
numbers. 

Stationary -Remaining in the same condition or state 

12.14 Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I 
Ans.1: There will be to two possible orbits 

(i) Circular (with radius 2ݎ௕) 

(ii) Elliptical (with semi-major axis ܽ = ܾ ௕ and semi-minor axisݎ4 =  (௕ݎ2

Ans.2: To explain fine structure of hydrogen spectral lines. 

 

12.11 Self Learning Exercise- II 

12.12 Summary 

12.13 Glossary 

12.14 Answers to Self Learning Exercises 
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Answers to Self Learning Exercise-II 
Ans.1:  Orbits have common value of energy known as degenerate orbit and such 

property of orbits known as degeneracy. 

Ans.2:    cos ߠ = 0.7071, 0, −0.7071 , ߠ = 45଴, 90଴, 135଴ 

Ans.3:    Using ܧଵ = −ܴஶܼଶℎܿ 

12.16 Exercise 
Q.1  Describe Bohr’s atom model. Assuming that the nucleus is infinitely heavy 

and the electron has mass m and charge e, find out the energy of the electrons 
moving in the nth orbit. Calculate the ionization potential of hydrogen atom. 

Q.2  Calculate the time taken by the electron to traverse the first Bohr’s orbit in 
hydrogen spectrum. 

Q.3  What are the salient features of Bohr-Sommerfeld atom model ? 

Q.4  How many revolutions does an electron in the n = 2 state of a hydrogen atom 
make before dropping to the n = 1 state? (The average life time of an excited 
state is about 10–8 s). 

Q.5  Calculate the possible orientations of the total angular momentum vector ⃗ܬ 
corresponding to j=5/2 with respect to a magnetic field along the z-axis. 

12.17 Answers to Exercise 
Ans.1:  See in section 12.2 
Ans.2:  15.26 x10-5 sec. 
Ans.3:  See in section 12.3 & 12.4 
Ans.4:   8.2 x106 
Ans.5:  32.220, 59.530, 80.270, 99.720, 120.460,147.770 
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13.0 Objectives 
This chapter is focused on the development of Vector Atom model, which was 
conceptualized with two features, namely, the quantization of space (orientations 
of orbits) and electron spin. The idea of quantization of orientations was introduced 
by the concept of projection of each quantized orbit on the field direction. This laid 
down the introduction of additional quantum numbers, namely magnetic orbital      
( lm ) and spin quantum number ( Sm ). With complete nomenclature of quantum 
numbers of single electron system, say Hydrogen atom, this model neatly explains 
the periodic table as well as describe the magnetic properties of electron (atom) 
and the total angular momentum results from L-S coupling. Stern – Gerlach 
experiment provides the direct experimental evidences for the existence of spin of 
electron and discrete orientations of orbits, when an atom is placed in a strong non 
– uniform magnetic field. 

13.1 Introduction : Vector Atom Model 
The vector-atom model is an extension of Rutherford-Bohr-Sommerfeld atom 
model. Rutherford-Bohr-Sommerfeld atom model successfully explains single 
valence atom, i.e. Hydrogen atom but incapable of resolving the spectroscopic 
issues of atoms contains more valence electrons. Thus, to overcome the limitation 
of Bohr-Sommerfeld model as well as to explain new experimental phenomena, 
like anomalous Zeeman’s effect, Paschen's–Back effect, Stark effect. Further, the 
theory proposed by Bohr and Sommerfeld are two dimensional while an atom is a 
three dimensional entity. Therefore, to incorporate the three-dimensional concept 
and to explain the complexity of the spectral distributions, extension of Bohr-
Sommerfeld model was given by Uhlenbeck and Goudsmit, known as Vector-
Atom model. The vector atom model basically deals with the total angular 
momentum of an atom which is results of the combination of orbital and spin 
angular momenta. The main two features of vector atom models are, namely, 
spinning electrons and space Quantization of electron orbits. 

13.2 Spinning of Electrons 
Since the Bohr-Sommerfeld model couldn't explain completely the spectral 
behavior of Hydrogen atom and thus it became necessary to address some other 
properties of moving electron. To describe the multiple character of spectral lines, 

13.0 Objectives 

13.1 Introduction : Vector Atom Model 

13.2 Spinning of Electrons 
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i.e. multiplets (for example double of sodium, triplet of magnesium and mercury) 
and also to account the behavior of spectral lines under the effect of magnetic field, 
Uhlenbeck and Goudsmit proposed the hypothesis of spinning electrons in order to 
explain some of spectral phenomena such as Zeeman effect, fine structure etc. 
According to its, electron revolves about its own axis while revolving in its orbit 
around the nucleus. Thus moving electron has two kinds of motion, orbital motion 
and spin motion. 

 As we know that circular motion of a mechanical body leads to mechanical 
angular momentum, similarly a charge body, i.e. electron produces a circular 
current which also rotates with body. This circular current then gives rise to a 
magnetic moment. Therefore, concept of electron spin introduces two angular 
momentum and two magnetic moments: one from is due to orbital motion while 
other is due to spin motion. The total angular momentum of the electron is the sum 
of orbital and spin angular momentum. Similarly, the total magnetic moment is the 
sum of orbital and spins magnetic moment. 

The spinning motion of electron is quantized in both magnitude and direction. The 
intrinsic spin angular momentum is given by 

 sp s                                 (1) 
The intrinsic spin angular momentum is as shown in Fig. (13.1) spin angular 
momentum can take only two orientations in the presence of magnetic field. 

 
Fig.: 13.1 

The projection of sp is given by 

  
zs sp m                               (2) 
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with analogy, the orbital angular momentum vector and spin angular momentum 

vector can have two values (2s+1). For example, if 
1
2

s  ,  ms can have only two 

values, namely 
1
2

 , or 
1
2

 , i.e. spin-up (parallel) and spin-down (anti parallel) 

directions correspondingly and thus ps can take only two orientations. 
13.2.1 Intrinsic Magnetic Momentum 

Due to the spinning of electron, a circular current is produced which generates a 
magnetic field. This field is the same as the produced by a bar magnet and 
characterized by magnetic moment µs is given by 

  2 .
2s s
eµ p
m




                             (3) 

13.3 Space Quantization 
In Bohr's model, electron has only one quantum number, namely, principal 
quantum number n to describe the motion of electron motion. Thus electron has 
only one degree of freedom in Bohr's model. Later on, according to Sommerfeld, 
electron revolves in elliptical orbits which are two dimensional and hence electron 
has two degree of freedom. Therefore, two quantum numbers namely, principal 
quantum number n and the azimuthal quantum number k. But in general, an atom 
is a three-dimensional body and therefore, possesses three degree of freedom. 
Since, classically, electron orbit may orient in all possible directions in space, i.e. 
may take different orientations in the atom, as shown in Fig. (13.2).  

 
Fig.: 13.2 

Thus, third quantum number quantizes the orientation of elliptical orbit in three- 

13.3 Space Quantization 
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dimensional space does not change original Sommerfeld orbits, but according to 
rule of space quantization, out of infinite possible orientations only certain discrete 
orientations are allowed. Therefore, the orientation of an orbit is needed to fixed 
up. 
13.3.1 Orientations of the Orbit 

The preferred direction or orientation of an orbit 
can be find out with the help of orbital angular 
momentum vector lp which is directed along the 
axis of rotation of electron and perpendicular to the 
plane of orbit (Fig. 13.3). 
The rotating electron about the nucleus forms a 
current loop has magnetic moment µ IA , where 
I is the current in loop and A is the area vector. 
The energy of charged loop is given by cosµB  . 
Since an orbiting electron possesses angular 
momentum ( )lp which interacts with external magnetic field. Therefore according 
to quantum theory vector lp can have certain discrete directions relative to external 
magnetic field direction, known as space quantization. The space quantization of 
an orbit is specified by projection of its orbital angular momentum onto direction 
of external magnetic field (along     z-direction). 

The orbital angular momentum is given by 

  
2l
lhp l


 
             (4) 

According to space quantization, lp  can have only those orientation for which its 

component in the field direction B


will take integral values of  . From Fig. (13.4), 
coslp   is given by 

  cos
zl l lp p m                               (5) 

where lm  is known as orbital magnetic quantum number and   is the angle 
between lp  and field direction since lm has to be an integer and cos  cannot 
exceed unity, thus the permitted values of lm  are from l  to l , i.e. take 
following values: 

  2 2 1 0 1 2 2     l l l l l,( ),( )......, , , , ,......( ),  

Fig. :13.3 
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This implies that for each value of l, there will be 2 1l( ) values that lm can have 
and lp can have 2 1l ( )  possible directions. 

 
Fig.: 13.4: Space quantization of pl for l = 2) 

 When an atom is subjected to magnetic field, the energy of the electron in 
its orbit varies for all relative orientation of lp  with respect to field direction. 

Now the electron is visualized as three dimensional motion quantized by three 
quantum number n l, and lm . 

 As both the orbital angular momentum lp  and intrinsic spin angular 
momentum sp that determine the state by quantized vectors and added up as per 
the rules of vectors, the atom model is known as Vector Atom model. 

Thus, the introduction of quantization of space and quantization of spin of electron 
further lead to same new quantum number which we will discuss in next. 

13.4 Quantum Number's and Their Physical Interpretation 
In Bohr's Sommerfeld model, two quantum numbers, namely, principal and 
azimuthal quantum numbers are defined, which are not enough to describe the 
motion of an electron in its orbit. But in vector atom model, each component is 
assigned as quantum number whose numerical value may be thought of as the 
length of vector and therefore following quantum numbers are used to describe the 
motion of an electron completely. 

13.4 Quantum Number's and Their Physical Interpretation 
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(i) Principal Quantum Number (n):– Classically, the principal quantum number 
‘n’ represents ordinal number of particular orbit occupied by electron are defined 
as K, L, M, N orbit for n = 1, 2, 3, 4 respectively. But in quantum mechanics, no 
definiteness is allowed.  
 The quantum number ‘n’ can take on the integral values 1, 2, 3, 4 ….   

and governs the total energy 2

1  
 nE

n
 and major axis of elliptical orbit, even it 

gives the large mean distance of the electron from the nucleus. Thus, the K, L, M, 
N …. not only represents the mean distance but also a group of electrons at the 
means distance from the orbit. 
(ii) An Orbital Quantum Number (l):– The orbital quantum number l can take 
on values 0, 1, 2, 3, ……. (n – 1) for each n and governs the orbital angular 
momentum ( lp ). It is to be noted that l can have value zero but it is not allowed for 
k (azimulthal quantum number), because of the relation 1l k  . 

Angular momentum according to wave mechanics is given by  
 1lp l l  ( )                               (6) 

 Orbital have the same value of l  defines the natural series 0, 1, 2, 3, ….. are 
labeled as (s) sharp, (p) principal, (d) diffuse, (f) fundamental …… given to the 
lines in the hydrogen spectra. 

(iii) Spin Quantum Number (s):– As we have discussed that the quantization of 
spin of electron was needed to explain fine structure of spectral line spin of 
electron can take ½ only and relates to the intrinsic, property known as spin 
angular momentum as 
  1  sp s s( )             (7) 

For single electron system 0 866sp  .  

(iv) Total Angular Momentum Quantum Number (j):– It is also known as inner 
quantum number. This denotes the total angular momentum of the electron which 
arises due to orbital motion and spinning of electron. 
For a single electron system, vector l


, i.e. lp

 and s , i.e. sp
 couple vectorially in a 

weak field to given vector 

j , i.e.  

 
j l s  and the total angular momentum of the 

electron is jp  i.e. j l sp p p    . The quantized total angular momentum is given by 

 1jp j j  ( )                                         (8) 
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where j is positive and always ½ integral for a single electron. Each l  level 

degenerates into two j levels, namely 
1
2

l and 
1
2

l – . 

When an atom is subjected to a magnetic field, three more quantum numbers are 
associated with electron due to space quantization. 

 
Fig. 13.5 

(v) Magnetic Orbital Quantum Number (ml):– lm is the numerical value of the 
projection of orbital quantum no. (vector l) in the magnetic field direction, i.e. l 
precesses about the magnetic field direction and forms a cone about axis. Due to 
the rule of space quantization, projection of l must be quantized in the field 
direction then l can have orientation in certain directions and lm  may also be an 
integer, is given by 
 l lm cos        (9) 
Possible values of lm are 1 2 0  l l l lm , ( ), ( )......... ,......  1 2 1l l   ,...... ....( ).......  
i.e. 2 1l ( )  possible orientations of l . 

 
Fig. 13.6 
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 The negative values of lm  represent that component of angular momentum 
is oriented opposite to the direction of magnetic field. Fig. (13.6) shows the 
orientations of l  and possible values of lm  for 2l  . 

(vi) Magnetic Spin Quantum Number (ms):– Similar the orbital angular 
momentum, ms is the numerical value of the projection of the spin vector ‘s’ on the 
field direction and spin vectors can have only (2l +1) values from –s to +s at unit 
interval.  

(vii) Total Magnetic Quantum Number (mj):– It is the numerical value of the 
projection of total angular momentum in the field direction. Since, j can have only 
½ integral values jm also assumes half integral values. The permitted orientation of 
j  are 2 1j ( )  and hence possible values of jm  are 1j j  ,( ) …….. 1j ( ) , i.e., 
2 1j ( )  excluding zero. 

13.5 Magnetic Moment of an Electron in an Atom and 
Lande's g- Factor 
Electron magnetic moment, i.e., electron magnetic dipole moment is the magnetic 
moment of an electron produced by intrinsic properties of spin and electric charge. 

In an atom, it is known that an electron revolves around the nucleus with certain 
angular velocity   in a orbit of radius r. This revolution of electron produces the 
angular momentum about the centre of the path, is given by 

 
Fig.: 13.7 

  2
lp m r   v r( )                           (10) 

which is quantized along the perpendicular direction to the plane of orbit. 

From, classical electrodynamics, we know that when a charged body rotates, it 
produces magnetic field due to current. This creates magnetic dipoles of equal 
magnitude but opposite polarity, which gives rise to the orbital magnetic moment. 
Thus, an electron would gives rise to a current in a complete revolution of time 
period T is 

13.5 Magnetic Moment of an Electron in an Atom and 
Lande's g- Factor 
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Q e

i
T T

           (11) 

As we also know that the field due orbital circuital current does not depend upon 
the shape x and having orbital magnetic moment  

  lµ iA            (12) 

where 2A r  (Area of orbit) 

   2l

e
µ r

T
 2

2


e
r

 


     2T( / )   

    2

2


e
m r

m
 

     
2

l l

e
µ p

m
        (13) 

–ve sign indicates that eµ  and lp are oppositely oriented. The numerical value of 

the ratio of eµ and ep , i.e. 
2

 l
l

l

µ e
g

p m

| |

| |
 is known as gyromagnetic ratio. 

 
Fig. 13.8 

From the quantization of angular momentum 
 lp l( ) , the orbital magnetic 

moment 
2

 



l

le
µ

m
 Joule/Tesla                          (14) 

For the case of ground state of hydrogen atom (n =1), this orbital magnetic moment 
is called Bohr-Magneton, given by  

  
19 34

31

1 6 10 1 05 10
2 2 9 1 10

 



  
 

 


B

e
µ

m

. .

.
J/T 

   249 27 10.   J/T       (15) 
Thus, equation (14) is written more correctly as 

   


l l Bµ g µ l         (16) 
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Similarly, further, electron possesses an intrinsic spin angular momentum, hence, it 
will also have a spin magnetic moment, following the equation (16), spin magnetic 
moment can be written as 
  s s Bµ g µ s         (17) 

Since spin of electron also leads to a mechanical momentum sp( )
 , thus the ratio of 

spin magnetic moment to spin mechanical momentum is 

  s

s

µ e

p m

| |

| |





                             (18) 

Since the spin frequency is twice as large as orbital frequency, thus we may write 

  2sg   
here sg is called "spin-g factor", which gives the numerical measure of magnetic 
moment in units of Bohr magneton. 

Quantum mechanically, we have 

  
2




l l

e
µ g l

m
          (19) 

  
2s s

e
µ g s

m
                              (20) 

The total magnetic moment of the atom is the vector sum of orbital and spin 
magnetic moment 

  
2j

e
µ g j

m
 

          (21) 

This g is called Lande's g- factor. 

The potential energy of atomic magnet associated with orbital magnetic moment is 
given by 

 


m BV B.   B. cos             (22) 

where   is the angle that the angular momentum makes with the field direction, is 
given by (according to the rule of space quantization). 

   ll mcos                              (23) 

and also from equation (14) 
2

 el

m
 

then 
2




m l

e
V B m

m
                                       (24) 
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13.6 Larmor Precession (Larmor's Theorem) 
In physics, Larmor precession is the precession of the magnetic moment of any 
object with magnetic moment in an external magnetic field. The concept of 
precession is illustrated below for the earth well as for a spinning top. On both 
cases the external force is just gravity. 

 
Fig. 13.09 

 When a magnetic moment is placed in a magnetic field, it is aligned with 
the field. Classically, a magnetic moment can be realized as a current in a loop and 
the influence for being aligned by the external magnetic field can be treated as 
torque. When a magnetic moment directed at some finite angle with respect to 
magnetic field direction, the field will exert  torque µ B( )  

   on the magnetic 
moment, which causes the precession about the magnetic field. Since the magnetic 
moment is associated with angular momentum j


 precesses about an axis parallel 

to the magnetic field.  

 The phenomena of precession can be described in term of (a) angle between 
symmetry axis and angular momentum vector, denoted by  , and (b) angular 

velocity p

d

dt

  , where the angular displacement   in the time internal t  is 

t   obviously. 

From the Fig. (13.10), it can be easily written that  

  pj J tsin ( )           (25) 

For an infinitesimally small   and J , we may write 

  p

dJ
J

dt
sin          (26) 

13.6 Larmor Precession (Larmor's Theorem) 
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Fig. 13.10 

But the angular momentum cannot change if there is no torque, infact, rate of 
change of angular momentum is equal to torque, given by  

  µ B µBsin   
         (27) 

Thus, one may have 

  pµB Jsin sin          

  p

µB

J
   

where 
2

µ e
g

J m
  

   
2p

e
g B

m
         (28) 

which states that angular velocity of the precession is proportional to the 

magnitude of the external field and the proportionality constant 
2
ge

m
 
 
 

. Thus the 

frequency of the precession i.e. is given by 

  
2 4

p
p

eB
f g

m


 

                             (29) 

 Since according to the classical theory, in an atom, the electron orbit and 
spin should precess in a magnetic field which holds good in quantum mechanical 
treatment also but the meaning of precession in quantum mechanics is usually 
referred as Larmor' precession and frequencies above are often defined as Larmor'  

frequencies,  where  the  constant  
2
ge

m
 
 
 

 is  usually  written  as   ,  known as 
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gyromagnetic (magnetogyric) ratio. Thus, 

 p B            (30) 

 For a single electron system it is quite simple to understand the behavior of 
system. But it becomes more complicated when many electrons are involved, 
which further become more complicated when external magnetic field is 
introduced. To resolve the issue, Larmor has proved a theorem that basically state 
that "motion of the system is the same as it would be in the absence of the field 
except that a uniform rotation around the axis of magnetic field." 

More specifically, the added rotation will have an angular frequency in an external 
magnetic field, equal to 

  
2L

e
B

m
.         (31) 

which is the same formula, as we have observed for angular velocity of the 
precession when 1g  . 
So, when an atom is placed in an external field 


B , the electron orbit precesses 

about the field direction as axis. The electron orbital angular momentum

L  traces a 

cone around the 

B  such that the angle between 

 
L B& remains constant  

i.e.  

B B ẑ  

and  


ZL L| |cos  

But quantum mechanically, 1 


L l l| | ( )    Z lL m  

  
1

  


Z
L ml

L l l
cos

| | ( )
       (32) 

Thus, angle   can have discrete values as lm has 2 1l( ) possible orientations with 
respect to magnetic field. This is known as space quantization 

13.7 Spin-Orbit Coupling : Vector Atom Model 
The total angular momentum of an atom results from the combination of the orbital 
and spin angular momenta of its electrons. The total angular momentum of one 
electron atom is given by the vector sum of 


l and s , i.e. 

 
j = l + s . 

This leads to the vector model of atom. Since the magnitude of the angular 
momentum 


l of an atomic electron is given by 

 


|l|= l l+1( )          (33) 

13.7 Spin-Orbit Coupling : Vector Atom Model 
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and its z-component  z ll m  

Similarly the magnitude of spin angular momentum s  is given by  
  |s|= s s+( 1)                             (34) 

and its –component  z ss m  
Total angular momentum  

 
j l s . Then, the magnitude and z-component of 


j are 

given by according to usual quantization condition 

  1 


j j j| | ( )           (35) 

and    z jj m  

The possible values of jm ranges from  j  to  j in integral steps. We may write 

   z z zj l s          (36) 

and   j l sm m m                             (37) 

In case of one electron system, there are only two relative orientations possible, 
corresponding to 

 
Fig.13.11 

  j l s so that j l  

  j l s so that j l  

The angular momenta of an atomic electron interacts magnetically, thus known as 
spin-orbit interaction. The torque due to 


l  and s  exert on each other which cause 
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then to precess uniformly about their resultant

j . If no external torque acts on it, 

then total angular momentum 

j  is conserved. Thus the angle between 


l  and s  

would remain conserved. 

 
Fig. 13.12 

 2 2 2 2  
     

j l s l s l s| | | | | | | | | |cos( , )                          (38) 

   
2 2 2

2
 


    

j l s
l s

l s

| | | | | |
cos ( , )

| | | |
 

   
1 1 1

2 1 1
    


 

j j l l s s

l l s s

( ) ( ) ( )

( ) ( )
                         (39) 

From the fig. 13.12, it is noted that 

l  and s  cannot be parallel or antiparallel to 

each other. For a weak external field 

B , the vector precesses around 


B and 

spatially quantized. However, as 

B  increase, the 


l and s  are uncoupled and 

precesses independently around 

B and spatially quantized independently. 

13.8 Quantum Numbers for Multielectron Atom 
For a single electron (single valence) atom, letters are used to describe the different 
quantum numbers were all small and so was the letters s, p, d, f….. whereas, for a 
complete atom, i.e. multielectron system, capital letters are used for various 
quantum numbers. 

(i) L


:– As we have now understood that for a single valence electron system 
(Hydrogen atom and alkali metals), the total angular orbital momentum for the 
atom is the same as for a single electron. Thus, the value of L is the same as l 

13.8 Quantum Numbers for Multielectron Atom 
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value, when there is more than one electron in an atom then discrete values of l is 
assigned each electron must be added up vectorially to obtain resultant orbital 
angular momentum of the atom. 
 1 2 3    

   
i

i
L l l l l.......                                                                         (40) 

If all il s'  are in same direction, L


 becomes maximum equal to i
i

l


. The minimum 

possible value for L could be zero ,but if one of the il s' is larger than the sum of all 
others, minimum value is not zero. 

For two electron atom, value of L


 for the atom is written as 

 1 2 1 2 1 2 1 21 2L l l l l l l l l( ),( ),( ).......( )                                                 (41) 

For example, say 1 2l   & 2 1l  , than L can have only one of the value 3, 2 or 1. 
(see Fig.13.12). 

 
Fig. 13.12 

(ii) S


:– As we know already that value of spin for each and every electron is ½ 
which could be either parallel or antiparallel to the preferred direction. Unlike the 
case of L


, each electron is assigned with a discrete and definite value of spin is

 and 

all is
  combine to form a resultant S


 for the atom. For N electrons, possible values 

for S can be written as 

 
11 2 0

2 2 2 2
N N N

or, , ,.......       
   

   (42) 

The minimum possible value is either ½ if N is odd or zero if N is even. 

 
Fig. 13.13 
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Since L


 & S


are associated with their corresponding magnetic moment and thus 

interaction between L


 and S


 yields total angular momentum J


. The possible 
descrete value of J


 depends upon the possible allowed orientation of L


and S


.  

(iii)  J


:– In quantum mechanics, total angular momentum of the atom is 

essentially the function of J


and it is written as 1J J( )   and have certain 
discrete values in between  

1L S L S L S| |,| |......... | |   
    

                                                                 (43) 

The minimum and maximum values of J


are obtained by subtracting and adding 

values of L


and S


. 

If L>S, then J


can have 2 1S( )


 possible values for a given L and if  L< S than J


 
will have 2 1L( ) . 

13.9 Spectral Terms and Their Notations 
The spectral behavior of an element is characterized by the outermost electrons 
which are not interlocked in closed shells. To describe the state of electron, small 
letters (l,s,j) are used while the capital letters L, S, and J describe the state of 
complete atom as whole. 

For the case of single electrons system, the value of L, S and J are the same as that 
of l, s, and j because inner most electrons do not contribute to the total angular 
momentum. The multiplicity of a state is decided by 2 1S( ) . Thus, for single 

electron system 
1
2

   
 

S . The multiplicity of state is two ,corresponding to the 

values 
1
2

  
 

L  and 
1
2

 
 
 

L –  for J in addition to the ground state. But for 

multielectron system S can have any value not precise to 
1
2

. For example, three 

electron system 
1
2

S  or 
1
3

, thus multiplicity of the state is either double or 

quarter except the ground state. 
Therefore to describe the state of an atom, it is defined as 

  2 1S
jnL   

13.9 Spectral Terms and Their Notations 
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For example, the state having j  and 
3
2

J  then state is defined as 3
2

2P  which 

clearly illustrates that the value of L is given by the capital letter. Here the values 
of n (principal quantum number) is 2. Further, state of the system may also be 
defined as 

  
2 1S

x
Jnl L


 

Where l is the orbital quantum number  of electron, i.e., s, p, d, …….. and x is the 
number of electrons in that orbital (x is 1 or 2 for s orbital, 1 to 6 for p orbital). 
Actually xnl  is the configuration of the outermost electrons. 

13.10  Description of Ground State 

For one electron system, 
1
2

S  with respect to L. Thus, 
1
2

 J L  and 
1
2

L  i.e. 

double. But for the ground state 0L  and then 
1
2

J  or 
1
2

 . We know the 

value of J is given by L S( ) or L S( ) and must be positive, thus the possibility of 
1
2

  is not allowed. Hence, for a single electron system, ground state is always 

singlet. Whereas, for mutli-electron system, J S  as 0L   for ground state, thus 

J can have any value as S  can, i.e. 
1 30
2 2

, , ......  .If L S , multiplicity of the state is 

given by 2 1L( )  yield to the possible values of J as one (L= 0) and thus state is 
singlet. 

13.11  Stern-Gerlach Experiment and Electron Spin 
In 1922, this experiment was performed by O. Stern and Gerlach, which directly 
manifest the main features of vector atom model. This experiment demonstrates 
that an atom in a magnetic field can take only certain discrete orientations and also 
exhibits the existence of electron spin and provides experimental verification of 
vector atom model. Since, the atom is considered as a small magnet, where the 
magnetism arises due to spin (spin angular momentum) and orbital (orbital angular 
momentum) motions of the electrons. When this atomic magnet is placed in a 
homogeneous (uniform) magnetic field, i.e. having equal and opposite magnetic 
strength, it gets aligned in the direction of magnetic field and does not experience 

13.10  Description of Ground State 

13.11  Stern-Gerlach Experiment and Electron Spin 
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any translatory motion, i.e. the magnet moves in a straight path without any 
deviation. But when this atomic magnet is placed in non-uniform magnetic field 
,then the magnet not only align along the direction of magnetic field but also have 
translatory motion, i.e. the projector is a curved path due to displacement. 

 
Fig. 13.14: The Stern-Gerlach experiment. 

The plan of experimental arrangement is shown in Fig. 13.14. The substance of 
neutral silver atoms is heated up in an electrical oven. On heating, substance emits 
a beam of neutral atoms in all direction and collimated by few slits and then passes 
through a non-homogeneous magnetic field. The nonuniform magnetic field is 
produced by specially designed pole-pieces, whose cross sectional view is shown 
separately. The atomic beam is then made to strike on a photographic plate. The 
magnetic field is made more intense and more non-uniform as much as possible. 
On developing the photographic plate, none trace of direct beam is observed rather 
two traces are obtained which are symmetric with respect to the direct beam. This 
implies that the beam is splitted in two discrete directions, one is in +z direction 
and other in –z direction. The same has been observed for different atoms. 

Interpretation of results:– In the case of silver, a straight line is obtained without 
field and double trace with some irregularities is obtained in the presence of field. 
The irregularities in double trace occur due to irregularities of magnetic field near 
the knife-edge of the poles of magnets. 

Some important features of vector atom model can be explained easily. 

(a) Spin of the electron:– It was ascertained by using beam of Hydrogen 
atoms. The atom consists of single electron in ground state (s-state; l = 0). If there 
were no spin then j would also be zero j l s( )  , so that 2 1 1  jm j( )  implies 
that splitting of line will not take place and thus 0jm g  . But it has been found 
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the beam to be splitted in two symmetrically deflected components giving rise to 
two traces. This occur when the existence of electron spin is admitted and a value 
½ is assigned to spin quantum number. Thus, 1 1 1

2 2 20j l s      so that 
2 1 2j   , then naturally  will have two values +1 and –1. Hence, two traces 
obtained are in complete agreement with theory. 

(b) Quantization of Space: Classically, atomic magnets can orient-themselves 
in any direction should give diffused path instead of two distinctly visible traces. 
But due to quantization of spin, only certain discrete orientations are permissible. 
If we consider silver atom belonging to one electron in its ground state then 0l 
and j s , and the possible orientation will be 2 1 2j( )  , i.e. we must get double 
trace which shows that the atoms passing through the field become oriented in 
space in discrete directions. Therefore H, Na, K, Cu, Ag belong to one electron 
system showing the value 1

2 0s l,  , for ground state. Then 2 1 2j   , traces are 
possible. Further jm g  have +1 and –1, two discrete possible orientations. But in 
case of many electron system, number of traces depends upon the value of s . Zn, 
Cd, and Hg have 2 s -electrons in their outermost orbit and their normal state is 
defined by 1

0s  which mean 0j  . Thus 0  , which means that application of 
field brings no effect. In the case of Ni, Co, Fe the effect observed clearly due to 
large value of electron spin. 

Therefore, Stern-Gerlach experiment not only verifies the main features of vector 
atom model but also establishs the fact that diamagnetic substances do not have 
resultant magnetic moment while paramagnetic substances do have, which agree 
with experimental data. 

13.12 Illustrative Examples 
Example 13.1: An electron is in 2 p  state of Hydrogen atom. Find the magnitude 

of orbital angular momentum and z-component of 

l . 

Sol:   The orbital angular momentum is given by 

  1l l l| | ( ) 


  

and for p-state, 1l      2l| |


    

Also z-component of l  is defined as 

  z ll m   

13.12 Illustrative Examples 
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where 1 0 1lm , ,   for 1l   (p state), hence 0zl , ,    

Example 13.2 What are the possible orientation of j


 for the 3
2j   and 1

2j   
states which correspond to 1l  . 

Sol: For any value of total orbital angular momentum I, the possible orientations 
aregiven by 

  jm as j  to j . 

i.e., for 3
2j   state, 31 13

2 2 2 2jm , , ,   

and for 1
2j   state 1 1

2 2jm , . 

Example 13.3: For one electron atom, calculate l s j| |,| |,| |
  for a p-electron. 

Sol: For electron in p-state 1
21l s,  . 

Thus j  will have two values: 

(i) 31
2 21j l s    

   

(ii) 1 1
2 21j l s    

   

Therefore  1 2l l l| | ( )  


   

and   3
21s s s| | ( )      

   3 3
22

151 1
2

j j j| | ( ) ( )    


    for 3
2j  

    1 1
2 2

31
2

( )    for 1
2j   

Example 13.4: Determine the orbital state for 1
23n s,   

Sol: For 3n  the corresponding value of l are 0, 1, 2. 

(i) 10
2

l s,  ( 0l  state) 

 
1
2

j l s    then corresponding state is 1
23s  

(ii) 1
21l s,  ( 1l(  p state) 

  3 1
2 2j l s ,   then corresponding states are 3 2 1 23 3p p/ /,  

(iii) 1
22l s,  ( 2l( ; d state) 
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  5 3
2 2j l s ,    then corresponding states are 5 2 3 23 3d d/ /,  

 Orbital states are defined by 2 1s
jnl  , where 2 1s( ) is known as spin multiplicity. 

Example 13.5: What would be the total quantum number j


 for two electrons with 
same 1l  and 1

2s  . 

Sol: 1 2 1l l   for both electrons, 

then 1 2 1 2 1 21L l l l l l l| | | ( ) |,| ( ) | ........ | ( ) |     2 1 0, ,  

Similarly, 1
21 2s s  for both electrons 

   1 2 1 2 1 21     s s s s s s s| | | | | |....... | |  

Then, the allowed values for J are as follows: 

(i) 2 1L s,  ;   J L S to L S, ..... ......... 3 2 1, ,  

(ii) 2 0L S,  ; 2J   

(iii) 1 1 2 1 0L S J, , ,     

(iv) 0 1 1L S J,     

(v) 1 0 1L S J,     

(vi) 0 0 0L S J,     

Example 13.6: State 2
3 2s / is possible or not? 

Sol: For s -state 0l   as 1
2s   given 1

2j l s    there 2
3 2s / cannot exist, but 2

1 2s /  
can exist. 

Example 13.7: Calculate the possible two orientations of spin vector s  with 
respect to a magnetic field direction. 

Sol:  1s s s( )    where 1
2s   and z  component of spin angular momentum 

z ss m  , where 1
2sm  . 

Therefore  
3 1 1

z s ss m m

s s s s
cos

( ) ( )
   

 



 

for    1
2sm  , 

   01
1 13 0 577 54 55cos . '      

and   1
2 23 0 577 125 14cos . '       
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Hence, two possible orientations are 54º55' & 125º14'. 

Example 13.8 For the electron is 5 22D / state, calculate (i) possible values of jm  

and ZJ , (ii) possible orientations of J


 in vector space. 

Sol: For 5 22D /  state, 1
22l s,   and 5

2j   

(i) The possible of 5 3 3 51 1
2 2 2 2 2 2jm , , , ,       and z-component of total orbital 

angular momentum  
5 3 3 51 1
2 2 2 2 2 2z jJ m , , , , ,            

(ii) Possible orientation of j


in space are given by 

2
1 35

j jm m

j j
cos

( )
  


 

35 51 17cos . , . , .     respectively for 5 3 1
2 2 2, ,    

13.13 Self Learning Exercise 
Q.1  What is the total angular momentum of an atom? 

Q.2  What is Bohr magneton ? 

Q.3  For an electron in 3/2p  state, find the values of jm   and zj . 

Q.4  What would be the total quantum number j


for electron with 1 1l   and 

2 2l  . 

Q.5  How the different atomic energy levels in atom are designated ? 

13.14 Summary  
So far, this unit initializes with the description of Vector Atom model, where the 
atom is treated three dimensional entity rather a two dimensional system. Giving 
the understanding of the quantization of space and spin, magnetic momenta of the 
atom have been described. The behavior of atom in the presence of magnetic field 
has been understood with the concept of precession as Larmor’s precession 
(frequency). Coupling of spin and angular momentum have been understood in the 
Vector Atom model. Extending the idea of coupling for many electrons system has 
been summarized. Finally, experimental verification of features of the Vector 
Atom model has been studied by Stern – Gerlach experiment. 

13.13 Self Learning Exercise 

13.14 Summary 
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13.15 Glossary 
Quantization : It is the process of converting a continuous range of values into a 
finite range of discreet values. 

Orientation : Position or alignment relative to points of the compass or other 
specific directions 

Moment : It is a combination of a physical quantity and a distance. The moment of 
a force is a measure of its tendency to cause a body to rotate about a specific point 
or axis. 

Precession : It is a change in the orientation of the rotational axis of a rotating 
body or the slow movement of the axis of a spinning body around another axis due 
to a torque (such as gravitational influence) acting to change the direction of the 
first axis. 

13.16 Answers to Self Learning Exercise 
Ans.3:  3 3

2 2jm to   ; 3 3
2 2zj to    

Ans.4:  L = 4, 3, 2; S = 1, 0. 

13.17  Exercise 
Section A : Very Short Answer Type Questions 

Q.1  Why the concept of electron spin was introduced ? 

Q.2  Comment on angular momentum conservation. 

Q.3  What do you understand by Larmor' precession and Larmor’s frequency ? 

Q.4  What is dipole moment ? 

Section B: Short Answer Type Questions 

Q.5  For a d-electron, find the value of ,s l
  and j


 . 

Q.6  If an electron is in 4d level of hydrogen atom, calculate the magnitude and 
orbital angular momentum along with its possible z-components. 

Q.7  Obtain the orbital states (term values) for electron with 1 1l   and 2 2l  . 

Q.8  Calculate the possible orientations of the total angular momentum vector j


 
corresponding to 3 / 2j   with respect to magnetic field. 

13.15 Glossary 

13.16 Answers to Self Learning Exercise 

13.17  Exercise 
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Q.9  A beam of electrons enter a uniform magnetic field of flux density 1.2 Tesla. 
Find the energy difference between the electrons whose spin are parallel and 
antiparallel to the field. 

Q.10  What do you mean by space quantization ? Explain by drawing a suitable 
diagram. 

Q.11  Discuss the origin of vector atom model. 

Q.12  What are quantum numbers ? Explain the significance of each in the theory 
of atom. 

Section C: Long Answer Type Questions 

Q.13   Derive an expression for total magnetic moment of an atomic electron. 

Q.14  What do you mean by spinning of an electron ? How the spin electron 
coupled with orbital motion of electron ? 

Q.15  What are quantum numbers ? Explain the significance of each in the theory 
of atom. 

Q.16  Obtain an expression for Larmor frequency. Calculate it is the case of 
electron when a magnetic field of 104 Weber/m2 is applied to it. 

Q.17  Describe Stern-Gerlach experiment neatly. How it verifies the features of 
vector atom model ? 

Q.18  In Stern-Gerlach experiment, what happens if ions are used instead of 
atomic beam is non-homogenous magnetic field ? 

13.18 Answers to Exercise 

Ans.5:    For d-electron 6l   ; 3
2s    ; 35

2j     

Ans.6:   6L   ; 2zL    to 2   

Ans.8:    392 75 105 140 8, , , .       

Ans.9:    
2m

e
V B

m



  

    Energy difference 
2
2m

e
V B

m
 


  eV. 

Ans.17:  Larmor frequency 
4

e
f B

m
  

41 39 10.  



13.18 Answers to Exercise 
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 191 6 10e .   C, 319 1 10m .   kg, 410B  Weber/m2 

 141 4 110f .  per second. 

Ans.18: In Stern-Gerlach experiment, a beam of neutral atom –s is passed in a non 
homogeneous magnetic field and each atom experiences a transverse force 
depending upon the orientation of applied field. If ions were used, they 
would experience Lorentz force instead of transverse force and their 
deflection would no longer be transverse and hence no traces would be 
obtained. 
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UNIT-14 
Spin Orbit Interaction and 

Identical Particals 

Structure of the Unit 

14.0  Objectives 

14.1  Spin orbit interaction 

14.2  Quantum mechanical relativistic correction 

14.3  Hydrogen fine structure 

14.4  Lamb shift 

14.5  Illustrative Examples 

14.6  Self Learning Exercise-I 

14.7  Identical  particle exchange symmetry of wavefunctions 

14.8  Formulation of Pauli’s principle 

14.9  Atomic orbits and the Hund’s rule 

14.10  Illustrative Examples 

14.11  Self Learning Exercise-II 

14.12  Summary 

14.13  Glossary 

14.14  Answers to Self Learning Exercises 

14.15  Exercise 

14.16  Answers to Exercise 

References and Suggested Readings 

14.0 Objectives 
The fine structure observed in hydrogen spectral lines were first explained by 
Sommerfeld. He used the relativistic variation of  mass of the electron moving into 
elliptic orbits. A more perfect picture of fine structure was given by Quantum 

UNIT-14 
Spin Orbit Interaction and 

Identical Particles 

14.0 Objectives 
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mechanics using spin-orbit coupling and taking into account the relativistic 
corrections. The current unit describes in detail the spin-orbit interaction and fine 
structure of hydrogen spectral lines. The chapter also explains the structure of 
multi electron systems. 

14.1 Spin-Orbit Interaction 

The spin-orbit interaction, which is the interaction between electron’s spin angular 
momentum S and its orbital angular momentum L is responsible for the fine 
structure of the excited states of one electron systems. 

If the electron is moving in an electric filed E,  the field can be expressed in terms 
of a scalar potential V(r) as, 

ࡱ   =  (ݎ)ܸ݀ܽݎ݃

Where, r is the distance between the electron and the nucleus. 

The orbital motion of the electron with velocity v in the electric field  E produces a 
magnetic field B, which is given by, 

࡮ =
1
ܿଶ ࡱ × =    ࢜

1
ܿଶݎ

(ݎ)ܸ݀
ݎ݀

࢘) ×   (࢜

The orbital angular momentum of the electron L  is given by m ࢘ ×  so the ,࢜
above expression can be written as 

࡮ =
1

݉ܿଶݎ
(ݎ)ܸ݀

ݎ݀
 ࡸ

In terms of electron’s spin angular momentum S, the magnetic potential energy can 
be written as 

௟,௦ܧ∆ = −µ࢙.  ࡮

µ࢙ is given by, 

      µ࢙ = −݃௦( ௘
ଶ௠

 ࡿ(

where ݃௦=2. Thus the magnetic potential energy in terms of electron’s spin 
angular momentum can be written as, 

௟,௦ܧ∆ =
݁
݉

.ࡿ  ࡮

Substituting for B,  we get 

14.1 Spin-Orbit Interaction 
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௟,௦ܧ∆ =
݁

݉ଶܿଶ
1
ݎ

(ݎ)ܸ݀
ݎ݀

.ࡿ  ࡸ

This is the expression for magnetic potential energy in a frame where the electron 
is at rest. In a frame where, the nucleus is at rest, the energy get reduced by a factor 
two. The origin of this factor in the spin orbit Hamiltonian on relativistic 
transformation is known as “Thomas precession”. Including the correction factor, 
the spin-orbit interaction energy can be written as 

௟,௦ܧ∆ =
݁

2݉ଶܿଶ
1
ݎ

(ݎ)ܸ݀
ݎ݀

.ࡿ  ࡸ

The above expression can also be expressed in terms of quantum numbers l, s,and j 

ࡶ = ࡸ +  ࡿ

.ࡶ ࡶ = ࡸ) + .(ࡿ ࡸ) +  (ࡿ

.ࡶ ࡶ = .ࡸ ࡸ + .ࡿ ࡿ + .ࡿ2  ࡸ

Since         ࡿ. ࡸ = .ࡸ  ,ࡿ

.ࡿ ࡸ =
૚
૛

.ࡶ) ࡶ − .ࡸ ࡸ − .ࡿ  (ࡿ

=
૚
૛

ଶܬ) − ଶܮ − ܵଶ) 

=
૚
૛

[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)] ൬
ℎ

ߨ2
൰

ଶ

 

Substituting the expression for S.L, the expression for spin-orbit interaction energy 
can be written as 

௟,௦ܧ∆ =
݁ℎଶ

ଶܿଶ݉ߨ16 [݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)]
1
ݎ

(ݎ)ܸ݀
ݎ݀

തതതതതതതതതത
 

This is the general expression for spin-orbit interaction energy of an atom. In the 

above expression, the average value of  
ଵ
௥

ௗ௏(௥)
ௗ௥

 has been taken over the 

unperturbed motion since it is not constant during the electron motion. 

For a given atom, the average  value  of  
ଵ
௥

ௗ௏(௥)
ௗ௥

 can  be  calculated  using  the 

potential function V(r), and the radial probability density. 
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Spin-Orbit Interaction Energy for Hydrogen like Atom 

In case of hydrogen atom, the electron moves in a Coulombian field. The potential 
energy is given by,  

(ݎ)ܸ = −
1

଴ߝߨ4

ܼ݁
ݎ

 

Using this expression for potential in the expression for spin-orbit interaction 
energy can be written as 

௟,௦ܧ∆ =
ܼ݁ଶℎଶ

(ଶܿଶ݉ߨ16) ଴ߝߨ4
[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)]

1
ଷݎ

തതത
 

where the average value of ૚
 ૜࢘

 is given as, 

1
ଷݎ

തതത
=

ܼଷ

ܽ଴
ଷ݊ଷ݈ଷ ቀ݈ + 1

2ቁ (݈ + 1)
 

ܽ଴ =  ଴ߝߨ4
௛మ

ସగమ௠௘మ is the radius of the smallest Bohr orbit of the Hydrogen 

atom. Using these, the final expression for the energy reduces to 

௟,௦ܧ∆ =
ܴஶ ߙଶܼସℎܿ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)] 

where, ܴஶ = ௠௘ర

଼ఌబ
మ௛య௖

 is known as Rydberg constant, and ߙ = ௘మ

ଶఌబ௛௖
= ଵ

ଵଷ଻
 is 

known as fine structure constant and is dimensionless. 

Now, for a single electron system, ܵ = ଵ
ଶ

 

݆ = ݈ ±
1
2

 

Substituting these values of j in the expression for energy, the energy shift 

corresponding to ݆ = ݈ + ଵ
ଶ

 and ݆ = ݈ − ଵ
ଶ

 can be given as, 

ܧ∆ =
ܴஶ ߙଶܼସℎܿ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

[2݈ + 1] 
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ܧ∆ =
ܴஶ ߙଶܼସℎܿ
݊ଷ݈(݈ + 1)  

This expression shows that, 

 

 

 

14.2 Quantum Mechanical Relativistic Correction 

In order to calculate the energy shift, which is due to the relativistic effects, the 
relativistic Hamiltonian of the electron with rest mass m0 , can be written as 

ܪ = ܭ + ܸ 

where ܭ = ଶܿଶ݌) + ݉଴
ଶܿସ)

భ
మ − ݉଴ܿଶ  is the relativistic kinetic energy, and 

V is the potential energy.  

Substituting for K, in the expression for H and after simplification, the expression 
for relativistic Hamiltonian can be written as, 

ܪ = ଶܿଶ݌) + ݉଴
ଶܿସ)

ଵ
ଶ − ݉଴ܿଶ + ܸ 

=
ଶ݌

2݉଴
−

ସ݌

8݉଴
ଷܿଶ + ⋯ … … … . +ܸ 

The first term is the standard non-relativistic expression for kinetic energy. The 
second term is the lowest-order relativistic correction to this energy. There the 
correction to Hamiltonian is, 

௥௘௟ܪ∆ = −
1

8݉଴
ଷܿଶ  ସ݌

This can be considered as a perturbation term, which using equivalent differential 
operator for p, can be written as 

      = −
1

8݉଴
ଷܿଶ ൬−

݅ℎ
ߨ2

߲
ݍ߲

൰
ସ

 

      = −
1

8݉଴
ଷܿଶ

ℎସ

ସߨ16 ∇ସ 

Heavier atoms   larger spin-orbit coupling 

Larger n    smaller spin-orbit coupling 
 

14.2 Quantum Mechanical Relativistic Correction 
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If ψ0 is the unperturbed wavefunction of the hydrogen atom, the first-order energy 
shift due to the relativistic correction is given by, 

௥௘௟ܧ∆ = − න ߰଴
∗ ൮

ℎସ
ସൗߨ16

8݉଴
ଷܿଶ ൲ ∇ସ߰଴݀߬ 

Upon evaluating the integral , the correction in the energy is given as 

௥௘௟ܧ∆ = −
2ܴஶ ߙଶܼସℎܿ

݊ଷ ൬
1

2݈ + 1
−

3
8݊

൰ 

where ܴஶ is the Rydberg constant, and α is fine structure constant. 

14.3 Hydrogen Fine Structure 
The term shift due to spin-orbit interaction is given by, 

∆ ௟ܶ,௦ = −
௟,௦ܧ∆

ℎܿ
 

Thus the net term-shift due to spin-orbit interaction and relativistic effects, which 
combine in a liner manner is given by, 

ࢀ∆ = ∆ ௟ܶ,௦ + ∆ ௥ܶ௘௟ =
௟,௦ܧ∆

ℎܿ
+

௥௘௟ܧ∆

ℎܿ
 

where the expressions for ∆ܧ௟,௦ and ∆ܧ௥௘௟  has been derived in the previous 
sections. 

For a single electron system, ܵ = ଵ
ଶ

,  hence for ݆ = ݈ + ݏ = ݈ + ଵ
ଶ

 and                      

݆ = ݈ − ݏ = ݈ − ଵ
ଶ

, the net term shift is given as 

∆ܶ =
ܴஶ ߙଶܼସ

݊ଷ ൬
1

݈ + 1
−

3
4݊

൰ 

and 

∆ܶ =
ܴஶ ߙଶܼସ

݊ଷ ൬
1
݈

−
3

4݊
൰ 

In terms of  j, the two equations can be combined to a single equation: 

14.3 Hydrogen Fine Structure 
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∆ܶ =
ܴஶ ߙଶܼସ

݊ଷ ቌ
1

݆ + 1
2

−
3

4݊ቍ 

This equation was also obtained by Dirac using quantum mechanical treatment of 
hydrogen like atom and hence this equation is also known as Dirac equation. 

Sommerfeld’s formula: Sommerfeld also derived a relativistic equation for energy 
levels of hydrogen-like atoms. 

∆ܶ =
ܴஶ ߙଶܼସ

݊ଷ ൬
1
݇

−
3

4݊
൰ 

In his equation ݆ + ଵ
ଶ

 is replaced by ݇. 

Comparison of energy levels of hydrogen atom 

ܴஶ = 1.097 × 10଻݉ିଵ, ߙ =  
1

137
, ܼ =  (݊݁݃݋ݎ݀ݕℎ ݎ݋ܨ) 1

Let us consider Bohr levels corresponding to n=1, 2, 3 

Bohr level Sommerfeld levels Dirac levels 

n k ΔT (cm-1) l 
݆ = ݈ ±

1
2

 
ΔT (cm-1) 

1 1 1.46 0 1
2

 
1.46 

2 2 

 

1 

0.091 

 

0.456 

1 

 

0 

3 
2

,
1
2

 

1
2

 

0.091, 0.456 

 

0.456 

3 3 

 

2 

 

1 

0.018 

 

0.054 

 

0.162 

2 

 

1 

 

0 

5 
2

,
3
2

 

3 
2

,
1
2

 

1
2

 

0.018, 0.054 

 

0.054, 0.162 

 

0.162 
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Fig. 1(a), (b),and (c) shows the energy level for hydrogen atom as predicted by 
Sommerfeld and Dirac for levels n=1, 2, and 3. Both the predictions are similar in 
case of hydrogen atom.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 (a) Fig. 1 (b) 

Fig. 1 (c) 



286 
 

Fine Structure of Hydrogen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For n=1,  in the absence of fine structure, there are two 1S1/2 states. The fine 
structure induced energy shift is same for both the states. Hence fine structure 
doesn’t break the degeneracy of this state of hydrogen atom. 

For n= 2, there are two 2S1/2, two 2P1/2, and four 2P3/2 states. All these states are 
degenerate. Fine structure breaks the degeneracy of the states relative to 2P3/2. 

For n=3, there are two 3S1/2 , two 3P1/2 , four 3P3/2 , four 3D3/2 , and six 3D5/2. All of 
these states are degenerate.  Fine structure breaks these states into three groups: 
3S1/2 , and 3P1/2 , 

3P3/2 ,  
3D3/2 , and 3D5/2 states. 

14.4 Lamb Shift 
The Dirac theory applied to hydrogen-like atoms predicts that the energy levels of 
the hydrogen electron should depend only on the principal quantum number n. 
Hence the states with same n ,  and the same total angular momentum quantum 

 

Effect of the fine structure energy-shift on then=1,2 and 3 states of 
hydrogen atom. 

14.4 Lamb Shift 
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number j are degenerate. Thus, according to Dirac theory, the 22P1/2 and 22S1/2 states 
of hydrogen are degenerate. However it was found that 22P1/2  was lower than 2 
2S1/2. This effect was first measured by Lamb and Rutherford in 1947 in the 
experiment on the hydrogen microwave spectrum. They showed that for hydrogen-
like atoms states of particular n, having same j but different l values are not 
degenerate but separated. The shift of the 22S1/2 level above the 22P1/2 level is called 
Lamb shift. 

Measurements of Lamb shift: 

The Lamb shift is extremely small and is difficult to measure as a splitting in the 
optical or uv spectral lines. However it is possible to make use of transitions 
directly between the sublevels by going to other regions of the electromagnetic 
spectrum. Willis Lamb made his measurements of the shift in the microwave 
region. He formed a beam of hydrogen atoms in the 2s(1/2) state. These atoms could 
not directly take the transition to the 1s(1/2) state because of the selection rule which 
requires the orbital angular momentum to change by 1 unit in a transition. Putting 
the atoms in a magnetic field to split the levels by the Zeeman effect, he exposed 
the atoms to microwave radiation at 2395 MHz (not too far from the ordinary 
microwave oven frequency of 2560 MHz). 

 

 

 

 

 

 

 

 

 

 

Then he varied the magnetic field until that frequency produced transitions from 
the 2p(1/2) to 2p(3/2) levels. He could then measure the allowed transition from 
the 2p(3/2) to the 1s(1/2) state. He used the results to determine that the zero- 
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magnetic field splitting of these levels correspond to 1057 MHz. By the Planck 

relationship, this energy separation was about 4.372 ×10-6 eV. 

Significance of the Lamb Shift 

When the Lamb shift was experimentally determined, it provided a high precision 
verification of theoretical calculations made with the quantum theory of 
electrodynamics. These calculations predicted that electrons continually exchanged 
photons, this being the mechanism by which the electromagnetic force acted. The 
effect of the continuous emission and absorption of photons on the electron g-
factor could be calculated with great precision. 

The tiny Lamb shift, measured with great precision, agreed to many decimal places 
with the calculated result from quantum electrodynamics. The measured precision 
gives us the electron spin g-factor as 

g=2.002319304386 

14.5 Illustrative Examples 
Example 1: If the doublet splitting of  the first excited state 22P3/2-2

2P1/2 of  He+ is 
5.84 cm-1. Calculate the corresponding separation for H. 

Sol: The doublet splitting of a one-electron atomic state arising due to spin-orbit 
interaction is given by 

∆ܶ =
ܧ∆
ℎܿ =

ܴஶ ߙଶܼସ

݊ଷ݈(݈ + 1) 

where ܴஶ is Rydberg constant, α is fine structure constant, and Z is atomic 
number.  

For a given state (n, l constant),  ∆ܶ ∝ ܼ 

 For He+, Z=2 and for H, Z=1. Hence, 

∆ܶு௘శ

∆ ுܶ
=

(2)ସ

(1)ସ = 16 

∆ ுܶ =
1

16 ∆ܶு௘శ  

∆ ுܶ =
1

16 × 0.584 ܿ݉ିଵ 

∆ ுܶ = 0.365 ܿ݉ିଵ 

14.5 Illustrative Examples 
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14.6 Self Learning Exercise-I 
Q.1 What is the significance of quantum number J ? 
Q.2 What J is equal to ? 
Q.3 What is Rydberg constant ? 
Q.4 What is the value of fine structure constant ? 
Q.5 The doublet splitting of the first excited state 2P3/2-

 2P1/2 of H atom is       
0.365 cm-1. Calculate the corresponding separation for Li++. 

14.7Identical  Particle Exchange Symmetry of Wavefunctions 
Identical particles: A system is said to be consist of identical particles if on 
interchanging the position and co-ordinates of any two particles there is no way to 
know that a change has been made in the system. 

In classical description of system containing identical particles, a label can be 
assigned to identical particles. For e.g., in a box containing electrons, the electrons 
can be labeled as a and b. While the electrons travel in their well-defined 
trajectories, at any given instance it can be told that which electron is a and which 
electron is b. However, in a quantum mechanical description it will not be possible 
as the uncertainty principle doesn’t allow us to observe the motion of the electron 
without disturbing the system. Though it can be stated that at a given point of time 
an electron was located but not which electron it was. In other words, due to the 
overlapping of the wavefunctions of the two electrons, it is impossible to say 
which wavefunction was associated with which particle. Therefore, the 
indistinguishability of identical particles must be taken into account in the quantum 
mechanical description of identical particles. 

Consider a system of two electrons. The Hamiltonian for the system can be written 
as ܪ = ௔ܪ + ௕ܪ  where Ha , and Hb are the hamiltonians for the individual 
electrons. 

The wavefunction for the system can be written as the product of the individual 
wavefunctions. 

߰(ܽ, ܾ) = ߰(ܽ)߰(ܾ) 
If the electron a is in state 1, and electron b in state 2, then the total wavefunction 
can be written as 

߰(ܽ, ܾ) = ߰ଵ(ܽ)߰ଶ(ܾ) 

14.6 Self Learning Exercise-I 

14.7 Identical  Particle exchange Symmetry of Wavefunctions 
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߰ଵଶ = ߰ଵ(ܽ)߰ଶ(ܾ) 
The probability density function for this system will be 

߰ଵଶ
∗ ߰ଵଶ = ߰ଵ

∗(ܽ)߰ଶ
∗(ܾ)߰ଵ(ܽ)߰ଶ(ܾ) 

On interchanging the states i.e. electron a is in state 2, and electron b in state 1, the 
total wavefunction will be, 

߰ଶଵ = ߰ଶ(ܽ)߰ଵ(ܾ) 
The probability distribution function for this new arrangement would be 

߰ଶଵ
∗ ߰ଶଵ = ߰ଶ

∗(ܽ)߰ଵ
∗(ܾ)߰ଶ(ܽ)߰ଵ(ܾ) 

Since the electrons are indistinguishable, changing the labels should not change 
any of the physically measurable quantity. If we change the labels in ߰ଵଶ

∗ ߰ଵଶ, then 

߰ଵ
∗(ܽ)߰ଶ

∗(ܾ)߰ଵ(ܽ)߰ଶ(ܾ) → ߰ଵ
∗(ܾ)߰ଶ

∗(ܽ)߰ଵ(ܾ)߰ଶ(ܽ) 
This interchange leads to the distribution function ߰ଶଵ

∗ ߰ଶଵ which is different than 
߰ଵଶ

∗ ߰ଵଶ. Thus merely changing the labels of the electrons resulted into the change 
of the probability density. Hence for a two electron system, the wavefunctions 
described above doesn’t properly represent the system. 

Consider a system of N particles. Let us say that the total wavefunction of the 

system is ψ(a,b,…..N). As we know that the Hamiltonian of a system is invariant 
with respect to the position and spin of the particles, let us consider an operator Cab 

, whose action is to interchange the coordinates of any two particles. i.e. 

Cabψ(a,b,…..N)= ψ(b,a…..N) 

Cab is also linear like parity operator. 

Cab ψ=αψ 

where α is the eigenvalue. Operating once more, 

࢈ࢇ࡯
૛  ߰ =  ଶ߰ߙ

By definition, the operator after two operations brings back the system into the 
original state. Hence  

࢈ࢇ࡯
૛  ߰ = ߰ 

So that   ߙଶ = 1 

Or,  α=±1 
Thus,    Cabψ(a,b,…..N)=± ψ(a,b…..N) 

On comparison we get,  
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ψ(b,a,………..N)=± ψ(a,b,………..N) 

Thus if the two particles of the system are changed, the wavefunction either remain 
unchanged or changes its sign. Thus with respect to the exchange of the particles, 
the wavefunctions are either symmetric or antisymmetric. 

The particles, which can be described by symmetric wavefunction are known as 
bosons . Thus for a boson, 

ψ(a,b,………..N)=+ ψ(b,a,………..N) 

All particles having integer spins are bosons. 

The particles which can be described using antisymmetric wavefunction are known 
as fermions. Thus for a fermion 

ψ(a,b,………..N)=- ψ(b,a,………..N) 

Particles having half-integral spin are known as fermions. Electrons are fermions. 

14.8 Formulation of Pauli’s Principle 
Wolfgang Pauli, in 1925, gave his exclusion principle to explain the arrangement 
of electrons in an atom according to which, “no two electrons in an atom can have 
identical quantum numbers”.  This is an example of a general principle which 
applies all the particles having half-integer spin (fermions). It does not apply to 
particles of integer spin (bosons).  
Consider a system of two identical and non-interacting particles a, and b. The total 
Hamiltonian of the system can be written as, 

ࡴ = ࢇࡴ +  ࢈ࡴ
Where Ha , and Hb are Hamiltonians for separate particles. The wavefunction for 
the two electron system would be 

߰(ܽ, ܾ) = ߰(ܽ)߰(ܾ) 
If the particle a is in quantum state 1,and particle b is in quantum state 2, then the 
combined  wavefunction of the system is 

߰ଵଶ(ܽ, ܾ) = ߰ଵ(ܽ)߰ଶ(ܾ) 
If the particles exchange their respective states, the new wavefunction would be 

߰ଶଵ(ܽ, ܾ) = ߰ଶ(ܽ)߰ଵ(ܾ) 

Since  the  particles  are  identical  and indistinguishable, both ߰ଵଶ and ߰ଶଵ will  

14.8 Formulation of Pauli’s Principle 
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equally describe the system. Hence a linear combination of these two will be more 
appropriate to describe the system. Thus 

߰(ܽ, ܾ) =
1

√2
[߰ଵ(ܽ)߰ଶ(ܾ)  ± ߰ଶ(ܽ)߰ଵ(ܾ)] 

where, 
ଵ

√ଶ
 is the normalization factor. With the exchange of co-ordinates, this 

wavefunction is either symmetric (+ sign) or ant symmetric (-sign).  

Symmetric           ߰஻௢௦௢௡௦(ܽ, ܾ) = ଵ
√ଶ

[߰ଵ(ܽ)߰ଶ(ܾ) + ߰ଶ(ܽ)߰ଵ(ܾ)] 

Antisymmetric    ߰ி௘௥௠௜௢௡௦(ܽ, ܾ) = ଵ
√ଶ

[߰ଵ(ܽ)߰ଶ(ܾ) − ߰ଶ(ܽ)߰ଵ(ܾ)] 

Thus, if both the particles are in same state, 

߰஻௢௦௢௡௦(ܽ, ܾ) ≠ 0 

߰ி௘௥௠௜௢௡௦(ܽ, ܾ) = 0 
Thus, no two fermions can occupy the same quantum states.  It can be stated as, in 
a multi-electron system, it is impossible for two electrons to have the same values 
of all the quantum numbers. Another statement is that, with respect to the exchange 
of the particles,  the total wavefunction for two identical fermions is 
antisymmetric. This means that the wavefunction changes its sign if the space and 
spin co-ordinates of any two particles are interchanged. In other words, it can also 
be stated as if two particles are described by antisymmetric wavefunction, they 
cannot occupy the same quantum state. Thus a multielectron system must be 
described by an antisymmetric wavefunction. 

14.9 Atomic Orbits and the Hund’s Rule 
Filling of subshells having more than one orbital are done according to the Hund’s 
rule. In 1927 Hund formulated two empirical rules. 

Hund’s rule -I: Of the states arising from a given electron configuration, the 
lowest in energy is the one having highest multiplicity.  In other words, electron 
pairing will not take place in orbitals of same energy (same sub-shell) until each 
orbital is first singly filled with parallel spin. This is known as Hund’s rule of 
maximum multiplicity.  

Hund’s rule -II: For a given multiplicity, the lower in energy is the one with 
higher L value. 

14.9 Atomic Orbits and the Hund’s Rule 
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In the process of assigning the electrons to an orbital, the electron first fill all the 
orbitals having same energy before it pairs with another electron in a half-filled 
orbital. The atoms in their ground states tend to have as many unpaired electrons as 
possible.  

For Example : Nitrogen Atoms 

Consider the correct electron configuration of the nitrogen (Z = 7) atom: 1s2 2s2 2p3 

 

 

 

The p orbitals are half-filled; there are three p orbitals and three electrons. This is 
because the three electrons in the 2p subshell will fill all the empty orbitals first 
before pairing with electrons in them. 

Hund's Rule Explained 

According to the first rule, an electron first fills an empty orbital before it decides 
to pair up. Negatively charged electrons repel each other. Hence to minimize the 
repulsion, electrons tend to occupy their own orbitals rather than sharing an orbital 
with another electron. Furthermore, the calculations have shown that the electrons 
in singly occupied orbitals are less effectively screened or shielded from the 
nucleus.  

For the second rule, unpaired electrons in singly occupied orbitals have the same 
spins. Once the spin of the first electron in a sublevel is chosen, however, the spins 
of all of the other electrons in that sublevel depend on that first spin.  

Example: Carbon and Oxygen 

Consider the electron configuration for carbon atoms: 1s22s22p2: The two 2s 
electrons will occupy the same orbital, whereas the two 2p electrons will be in 
different orbital (and aligned the same direction) in accordance with Hund's rule. 

 

 

Consider also the electron configuration of oxygen. Oxygen has 8 electrons. The 
electron configuration can be written as 1s22s22p4. To draw the orbital diagram, 
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begin with the following observations: the first two electrons will pair up in the 1s 
orbital; the next two electrons will pair up in the 2s orbital. That leaves 4 electrons, 
which must be placed in the 2p orbitals. According to Hund’s rule, all orbitals will 
be singly occupied before any is doubly occupied. Therefore, two p orbital get one 
electron and one will have two electrons. Hund's rule also stipulates that all of the 
unpaired electrons must have the same spin. In keeping with convention, the 
unpaired electrons are drawn as "spin-up".. 

14.10 Illustrative Examples 
Example 1: Show that the total number of electrons in a shell is 2n2, where n is the 
principle quantum number of the shell. 

Sol: To define the state of an electron, we need a set of four quantum numbers: 

 n, l,ml, and ms. 

For a given n, the azimuthal quantum number l, can take values 

l=0,1,2,3……n-1 

For each l,ml can take values: 

ml= -l,…0,…..+l 

that is a total of (2l+1) values. For each of these values, the magnetic spin quantum 
number ms, can be either +1/2 or -1/2. Thus for a given l, there are 2(2l+1) sets of 
quantum numbers. Summing over all the possible values of l, for a given n, the 
number of the possible sets of quantum numbers l, mi, ms, 

෍ 2(2݈ + 1)
௡ିଵ

௟ୀ଴

 

=2[1+3+5+7+…………………………2(n-1)+1] 

=2[1+3+5+7+…………………………2n-1] 

=2 × ௡
ଶ

[1+2n-1] = 2݊ଶ 

14.11 Self Learning Exercise-II 
Q.1 Calculate the energy of transition involving n1=6 to n2=3 in a hydrogen 

atom. 
Q.2 What are the ground state configuration of 

(a) Ar            (b) K               (c) Cl 

14.10 Illustrative Examples 

14.11 Self Learning Exercise-II 
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Q.3 State Hund’s rule. 
Q.4 Calculate the wavelength of first line in Lyman series of hydrogen spectrum. 
Q.5 What  transition  in  the  hydrogen  spectrum  would  have  the  same 

wavelength as the Balmer transition  n = 4 to n= 2 of He+ spectrum ? 

14.12 Summary 
The current unit summarizes the observed fine structure in hydrogen spectral lines. 
The quantum mechanical description of spin-orbit interaction has been discussed in 
detail. The model by Sommerfeld uses classical mechanics to evaluate the energy 
shift while the theory by Dirac has used quantum mechanical description. The 
theory by Dirac predicted a double-degeneracy of most levels. The fine structure of 

Hα lines has also been discussed. A quantum mechanical description of multi- 
electron systems and Pauli’s exclusion principle has also been discussed in detail. 

14.13 Glossary 
Shell : Orbitals with same value of  the principal quantum number n comprise a 
shell.  

Energy level : In an atom a location or orbital above the ground state in which an 
electron is found when it gains a specific amount of energy. 

Energy-level diagram : A diagram showing the arrangement of an atom's energy 
levels. 

Excited state : A state of an atom ion or molecule with a higher energy than the 
ground state. 

Balmer line : An emission or absorption line in the spectrum of hydrogen caused 
by an electron transition between the second and higher energy levels. 

14.14 Answers to Self Learning Exercises 

Answers to Self Learning Exercise – I 

Ans.1:  In lighter elements, spin-orbit coupling is small, while in heavier elements 

it is large. Hence the new quantum number j becomes important. This 
quantum number gives the total angular momentum. 

Ans.2:  j=l+s 
Ans.3:  See section 14.1. 

14.12 Summary 

14.13 Glossary 

14.14 Answers to Self Learning Exercises 
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Ans.4:  Fine structure constant α=1/137 
Ans.5:  29.6  cm-1 

Answers to Self Learning Exercise – II 

Ans.1:  -1.819×10-19 J 
Ans.2:  (a)1s2 2s2 2p6 3s2 3p6 

  (b)The abbreviated electron configuration for potassium is: K [Ar] 4s1 

   (c)The configuration for chlorine is:  Cl 1s2 2s2 2p6 3s2 3p5. 

Ans.3:  See section 14.9 
Ans.4:  1215 A0. 
Ans.5:  The transition n2=2 to n1=1 (Lyman series) in hydrogen atom has the same 

wavelength as the Balmer series transition n2=4 to n1=2 of of He+ 
spectrum 

14.15 Exercise 
Q.1 Calculate the spin-orbit interaction splitting of a level corresponding to n=2 

and l=1 of hydrogen atom. 
Q.2 Show that f orbital can accommodate 14 electrons ? 
Q.3 A state is denoted as 4D5/2. What are its values of l,s,j.  
Q.4 The numerical value of the first orbit of hydrogen is ? 
Q.5 What is the value of Rydberg constant for hydrogen ? 

14.16 Answers to Exercise 
Ans.1:  0.365 cm-1 
Ans.2:  See section 14.10 Example 1. 
Ans.3:  s=3/2, l=2, j=5/2 
Ans.5:  See section 14.1. 
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UNIT-15 
LS & jj Couplings 

 

Structure of the Unit 
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15.13 Summary 

15.14 Glossary 

15.15 Exercise 

References and Suggested Readings 

15.0 Objectives 
 In the following discussion, we will study the characteristics, namely, the 
spectra of elements, that have two or more than two electrons in their valence shell, 
for which one has to follow the various coupling schemes, as these facilitate the 
understandings of possible transitions occur in between the filled/half filled shells. 
Thus, the possibilities and effects of LS- and jj- couplings will be of our main 
discussion as these have direct consequences in the atomic spectra. New Terms 
(states) arise after the various interactions, are of great importance, have been 
explained. Further, some restrictions, namely, selection rules, Hund’s rules, and 
Lande’s interval rules are important to study the exact behavior of atomic 
transitions and thus experimental spectra, thus have been paid attention.   

15.1 Introduction 
 The spectra of elements (Be, Mg, Ca, Zn, Sr, Ba, Cd and Hg ) resemble 
with the spectrum of He in same way. During the excitation of atoms, the 
excitations of either single electron or both electrons are possible resulting into the 
spectra. Due to two valence electrons, the choice for the transition increases and 
therefore, we obtain a large number of spectra lines of these alkaline-earth 
elements. The series, like principal, sharp, diffuse and fundamental are observed, 
where one corresponds to singlet and other belongs to triplet. It has been found that 
energy levels are also influenced when a single electron transition takes place 
between these, which is not the same as in the case of alkali elements. To 
understand the spectra of alkaline earths, it was proposed that, (i) all s vectors ,all l 
vectors are strongly coupled individually with little effect of s vector on l vector 
individually, and (ii) the s vector of single electron combined with l vector of same 
electron to give j with negligible influence on other electrons and thus, finally we 
get single resultant J. The wide spectrum containing number of lines is obtained 
when suitable selection principle is applied to the quantum number J. Therefore,  

15.0 Objectives 

15.1 Introduction 
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we get the resultant vectors S, L and J which are governed by the selection 
principles. 

15.2 Coupling Schemes 
The atoms may have two or more electrons with different orbital and spin 
momenta, therefore there are many ways in which the angular momenta associated 
with the orbital and spin motions in many-electron-atoms can be combined 
together and varied. The interactions that can occur are of three types. (note: A 
brief about the coupling has been discussed in the section 13.7 & 13.8)  

(a) Orbit-Orbit (l-l) coupling : 

For any electron in the atom, potential energy of repulsion is similar in magnitude 
to that due to the attraction by the nuclear charge. Under the assumption, each 
electron is described with orbital quantum number il  that can have certain discrete 
values. Resultant angular momentum of an atom, which in turn will also have 
discrete values, is obtained by vector addition of the individual il  yielding its value 
that depends on the number, the magnitude & direction of each of the electron’s 
angular momentum. 
  For two valence electrons atom, resultant angular momentum is 
given by iL l  (termed as ll- or orbit-orbit coupling) with maximum value 
when all the moments are in the same direction, i.e. 

1 2 1 2 1 2 1 2( ), ( 1), ( 2)............,L l l l l l l l l       . Further, the electrons do influence 
one another’s motion and thus this interaction has the effect that l ’s are no longer 
constant in time; rather possesses precessional motion about the resultant 
analogous to the precession of l and s about their resultant j. Stronger the 
interaction, greater will be the precessional velocity of the electrons which is 
reflected in the separations of different values of L (Terms of an atom). The Terms 
having 0,1, 2,3, 4......L  are designated as S, P D, F…. respectively. In general, the 
term values for various configurations of two electron system are given below: 

1l  2l  Electrons L Term Symbols 

0 0 s, s 0 S 

0 1 s, p 1 P 

0 2 s, d 2 D 
1 1 p, p 2, 1, 0 D, P, S 

15.2 Coupling Schemes 
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1 2 p, d 3, 2, 1 F, D, P 

2 2 d, d 4, 3, 2, 1, 0 G, F, D, P, S 

For three electrons system, vector addition of each of L (derived taking two 
electrons) is taken with l of third electron to obtain the final states/ Terms.  

(b) Spin-Spin (s-s) coupling : 
 Electrostatic forces, apart from the orbital motion, also affect the spin 
motion of electrons. As in the case of orbital angular momentum, one can obtain 
the resultant spin of the atom by taking that spins of the individual electrons in an 
atom, are either parallel or antiparallel to one another. The resultant spin motion of 
a system of several electrons is derived exactly the same way as for the orbital 
angular momentum; that is by taking vector addition of individual spin angular 
momentum, iS s (termed as ss- or spin-spin coupling). Since spin angular 
momentum of individual electron can be 1

2  , their resultant, S will also have 
only discrete values with maximum when all the spins are in the same direction 
and minimum of 0 or 1/2, respectively depending upon whether the number of 
electrons is even or odd.  
 The electron spins in helium can be either  (anti-parallel) or  (parallel) 
giving S = 0 or 1, respectively. So is the case with all two valence electrons 
systems. Obviously, there will be two different Term series, one with S = 0 and 
second having S = 1. In three electrons system, spin directions can be   or   
and  or  . As the electrons are indistinguishable, first three combinations 
yield S = 1/2 and the fourth gives S = 3/2. The magnitude of the resultant spin is 
given by 1 2 1 2 1 2 1 2( ),( 1),( 2)............,S s s s s s s s s         

(c) Spin-Orbit (s-l) coupling: This occurs between the resultant spin and orbital 
momenta of an electron which gives rise to J, the total angular momentum 
quantum number. 
Mainly, there are two principal coupling schemes used:  

(i) Russell-Saunders or LS- coupling 
(ii) jj- coupling 

15.2.1 Russell-Saunders (LS) Coupling:  

The orbital angular momenta of the electrons are coupled to give a total orbital 
angular momentum iL l  and (ii) The spins of the electrons are coupled to give 
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a total spin iS s . Strong coupling of l’s and s’s is electrostatic in nature. In 
addition to these electrostatic forces, there are magnetic forces, one due to orbital 
motion of the electrons and another caused by their spin motions. These motions 
about their respective resultants provide the magnetic moments ( L  because of 
orbital and S  due to spin motions). These two interact weakly. One may visualize 
as if a small magnet of magnetic moment S  is subjected to an internal magnetic 
field of magnetic moment L . This weak interaction will make L and S to precess 
around their resultant, J. Therefore, like that of the precession of l and s about their 
resultant j, the relative motion of L and S is governed by their resultant which 
remains not only fixed in space but also constant in time. That is, L and S perform 
precessional motion together as a rigid body about their resultant J. The 
combination of a particular S value with a particular L value comprises a 

spectroscopic term, the notation for which is 2 1s L . The quantum number 2S + 1 is 
the multiplicity of the term. The S and L vectors are coupled to obtain the total 

angular momentum, J = S + L, for a level of the term; the level is denoted as 2 1s
jL

. J will be an integer (0,1,2,3…) when S is an integer for even number of electrons 
and J will be an half integer (1/2, 3/2, 5/2, …..) when S is a half integer for odd 
number of electrons. Coupling of l ’s to L and s’s to S and finally the coupling of L 
and S to yield the resultant angular momentum J is termed as LS- coupling or 
Russell- Saunders coupling, shown below. 

 
 For example, an atom with only one electron in ground state (l = 0), L will 
have only one value 0, since the value of S is ½ and thus J = +1/2. While for an 
atom having two electrons such that one with l = 0 and other in excited state with   
l = 1, then  1 2L l l  an  1 2S s s gives: L = 1 and S  = 1 (if electron spins are 
parallel) or L = 1 and S = 0 (if electron spins are anti-parallel).Therefore, J = 0, 1, 2 

are designated by 3
0P , 3

1P , 3
2P , i.e. P state is splitting into triplet. 
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Possible number of ways in which L and S may combine give rise to the J values 
(non negative) are (2 1)S  if L>S and (2 1)L  if L<S. This type of coupling is 
commonly used in explaining the spectra of second group.  
 In this coupling scheme, it is assumed that: spin-spin coupling > orbit-orbit 
coupling > spin-orbit coupling. It is a good approximation for lighter atoms (say up 
to atomic number 30 or so); for higher atomic number spin-orbit coupling is more 
prominent leading to jj- coupling scheme 
15.2.2 jj- Coupling:  
 Consider a two valence electrons atom, one with quantum numbers 1l  and 

1s  and the second with l2  and 2s . Different types of interactions among the four 
quantum numbers are possible. First, 1l  interacts strongly with l2  yielding L and 1s  
with 2s leading to S; finally L couples weakly with S to form LS-coupling. Second 
possibility, though rare one, is 1l  may interact with spin 2s  of the other electron 
and l2 with spin 1s  of the first. Such inter electrons interactions are very weak to 
observe; therefore will not be considered. Third possibility is predominant & 
frequent in heavy atoms (large volume) where the electrons are situated at larger 
distances and the electrostatic interaction among them diminishes in comparison 
with the interaction of individual electron’s orbital motion with its own spin 
motion. Thus, 1l  interacts strongly with its own spin 1s ( j l s  ) leading to 
resultant angular momentum 1j  of one electron and l2 with its own 2s  to yield 2j  
for the second electron; finally 1j  couples weakly with 2j  to form jj-coupling. The 
total angular momentum of the atom is given by iJ j . Therefore, for two 
valence electrons atom 1 2 1 2 1 2 1 2( ),( 1), ( 2)............,J j j j j j j j j       . The 
coupling scheme is shown in the next figure , where  LS- coupling, i.e. orbital and  

spin angular moments  are  combined  horizontally,  then  vertically    jj- coupling, 
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i.e. orbital and spin angular moments are combined vertically, then horizontally.  

 

15.3 Selection Rules for Two Valence Electrons 
  If two electrons contribute in producing the spectra then only those 
transitions are allowed in which two electrons jump with the emission of radiations 
of single frequency. On the other hand if only one electron transits ,then value of l 
changes by unity and of other does not change and if both electrons transit such 
that l values change by unity and the other does not change or change by two. In 
these two types of coupling due to other terms, additional conditions are also 
required- 
(i) In L-S coupling: 0, 1L   ;   0S ;   0, 1J ( 0 0  not allowed). 
(ii) In j-j coupling:  1 0j ;  2 0j  or 1 ; and   0, 1J ( 0 0  not allowed). 
Quantum mechanically, even terms combine with odd terms and odd terms 
combine with even terms. The even terms are those for which 1 2l l = even and 
others are odd. 
 It has been observed that presence of extra electrons other than valence 
electrons, the spectra become complicated (e.g. spectra of Hg is more complicated 
than of He). As the number of more than two electrons increases, the complexity 
increases because of number of terms arises due to various combinations of spin 
and orbital vectors. In complex spectra, in addition to ordinary series of singlet, 
doublet and triplet, there exists a multiple level of series like four, five, six, seven 
or eight with equal spaced. Experimentally, it has been found that these levels are 
either all or all odd in the spectrum. 

 Following table lists resultant spin quantum number and the possible 
multiplicities for various numbers of electrons.  

15.3 Selection Rules for Two Valence Electrons 
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No. of Electrons Spin Values Possible Mulitplets (2S+1) 

1 1/2 2 (Doublet) 

2 0,1 1 (Singlets), 3 (Triplets) 

3 ½, 3/2 2(Doublets), 4 (Quartets) 

4 0,1,2 1 (Singlets), 3 (Triplets), 5 (Quintets) 

5 ½, 3.2, 5/2 2 (Doublets), 4 (Quartets), 6 (Sextets) 

 
15.4 Terms in Many Electron System 
 Due to the contribution of additional terms, the atoms have been classified 
broadly into two categories: the one, in which spin-spin correlation as deciding 
factors has LS- coupling, and the other class in which spin-orbit interaction 
predominates has j-j coupling.  
15.4.1 Terms due to LS- coupling: 
 To find out the possible terms, Branching rule is used according to which if 
the atom is ionized completely, the electrons return to it one after the another to 
form a neutral atom. Thus, the possible spin combinations can be found out. 

 
We can understand this by considering an atom having three valence electrons in 
following way: 

(i) Consider an atom having three valence electrons like 2s 3p 4d. 

(ii) To find the possible values of S, spin of two electrons are combined first and 
the third electron is allowed to combine with each of them. From the above 
branching scheme, two sets of doublet ( 1 / 2S ) states and one set of quartet   
(  3 / 2S ) are observed. 

15.4 Terms in Many Electron System 
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(iii) For the L values, first combining the orbital motions of first two electrons and 
then combined the third one with each of them. Combination of first two p 
states results (l + 1) to (l - 1) values, i.e. 2, 1, 0, known as terms S, P, D.  

(iv) Now, third d electron is added to these three terms as 

 

0 2 2

(2 1) (2 1) 3,2,1 , ,

(2 2) (2 2) 4,3,2,1,0 , , , ,

S d D

P d to F D P

D d to G F D P S

    
     
     

 

(v) Finally, introducing LS- coupling gives rise to J states, i.e. J L S  .  

 The two sets of doublet will have the following states- 

 2
3/2,5/2D  

 2 2 2
5/2,7/2 3/2,5/2 1/2,3/2, ,F D P , 

 G F D P S2 2 2 2 2
7/2,9/2 5/2,7/2 3/2,5/2 1/2,3/2 1/2, , , , , 

 i.e. total 34 terms. In quartet set, the following we have 
  4

1/2, 3/2, 5/2,7/2D , 

  4 4 4
1/2, 3/2, 5/2 1/2, 3/2, 5/2,7/2 3/2, 5/2, 7/2,9/2P D F , 

  4 4 4 4 4
3/2 1/2, 3/2, 5/2 1/2, 3/2, 5/2,7/2 3/2, 5/2, 7/2 ,9/2 5/2, 7/2, 9/2,11/2S P D F G , 

 i.e. in all 31 terms. Thus, total 65 distinct levels. 
15.4.2 Terms due to jj- coupling: 
 Here we consider only the addition of one electron to parent system, 
generated with one or more valence electrons.  Meaning of parent system is, the 
energy level of an ionized atom to which we add another electron via. jj- coupling 
to form new energy level for neutral atom. 
 Let us understand this with a simple example. Consider a parent system 
having sp configuration and we are going to add p electron to this system. Possible 
terms of parent system are as follows: 
  1 1 1 1 / 2l s j    
  2 2 2 1/ 2, 3 / 2l s j    
Thus, 1 2 1, 0, 1, 2J j j   . Now, then adding up the p electron has j values ½ or 
3/2 to these and thus the final total 18 terms will have the following J values. 
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15.5 Terms in Equivalent Electron System 

15.5.1 LS- Coupling:  
We understand this by the following cases- 
(i) Two s- electrons (Unexcited He atom): Here we have 1 0l  , 2 0l   and 

1 1/ 2s  , 2 1 / 2s  . To know the possible terms, following the same procedure as 
outlined in section 15.5.1, the spin combination results to  S = 0 and 1, for which 

there is only one possible L value, i.e. 0L  . Thus the terms are 3
1S  and 1

0S . Let as 
assume that if the electrons have principal quantum number 1n  and 2n  , i.e. 
one electron is in excited state then the lowest existing state will be 3

1S . But for the 
unexcited state, two electrons will be completely in same structure and thus 
become indistinguishable, the ground state of helium atom is 1

0S . 
(ii) Two p- electrons (Unexcited carbon atom): Very first, let us consider the 
case of two non-equivalent pp- electrons, i.e. say np  and 'np . The following 
calculation give rise to the possible terms- 
   1 21, 1 2,1,0l l L     and 1 2 1 / 2 1,0s s S     

 Therefore, the Terms are: 3 3 3, ,D P S  (triplets) and 1 1 1, ,D P S (singlets); six in 
all. J values for each of the triplet and singlet states are:  

 

15.5 Terms in Equivalent Electron System 
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  For 3 , 3,2,1D J  ; Terms are 3 3 3 3
3 2 1 3,2,1, , ( )D D D D . Each will have 

slightly different energy. For 3 , 2,1,0P J  ; Terms are 3 3 3 3
2 1 0 2,1,0, , ( )P P P P . Each 

will have slightly different energy. For 3 , 1S J  ; Term is 3
1S . It may be written as 

3S  since J is equal to S. For 1 , 2D J  , Term is 1
2D ; For 1 , 1P J   , Term is 1

1P ; For 
1 , 0S J  , Term is 1

0S . Like in triplets case, J value of the singlet S is not usually 
written. 
  Now we switch over to the case of the equivalent pp- electrons, then 
the Pauli’s principal restricts the combination which have the same set of quantum 
numbers. Whereas, for non-equivalent electrons, values of n & or l are different 
implying that Pauli’s principle is satisfied. However, when n and l are same then 

lm  and or sm must have different values to meet the requirements of Pauli’s 
Exclusion principle. By doing so, some of the states which are possible for the 
non-equivalent electrons may not exist for the equivalent electrons. Thus, in our 
case, each of the two p electrons has 1,0, 1lm   and can have sm  either +1/2 or     
-1/2. Therefore, each of the lm  values can have sm  either +1/2 or -1/2. Values are 
tabulate below labeling with a, b, c, d, e, f. 
 

lm  1 0 -1 1 0 -1 

sm  ½ ½ ½ -½ - ½ - ½ 

 a b c d e f 

 If two p equivalent electrons exist, the number of possible combinations out 
of the six different columns taking two at time is 6 6!

2 {(6 2)! 2!} 15C    , which are 

     ab, ac ,ad, ae, af; 
     bc, bd, be, bf; 
     cd, ce, cf; 
     de, df; 
     ef. 
 This means that out of 36 magnetic field levels only 15 strong field levels 
exist when the electrons are two p electrons. Further, we have to calculate the 
values of LM , SM , and JM  for which the energy levels are excluded according to 
Pauli’s principal. Thus, these possible combinations provide the following values 
of LM , SM , and JM . 
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LM  1 0 2 1 0 -1 1 0 -1 0 -1 -2 1 0 1 

SM  1 1 0 0 0 1 0 0 0 0 0 0 -1 -1 -1 

JM  2 1 2 1 0 0 1 0 -1 0 -1 -2 0 -1 -2 

Group = = | | | = = __ | = = | = = = 

  Starting with the highest value of LM  and according to quantization 
rule, it should be equal to the highest value of L. Maximum value of LM is 2 with

SM . Since LM  being space quantized value of L, value of L must therefore be 2, 

representing possibly 1
2D  term. If this is so, there must be combinations 

1,0, 1, 2LM     each having SM = 0. All these are shown in dark boxes (indicated 
by | in the last row). Then there are three groups of 1,0, 1LM   ; where the largest 

value of LM  is +1 and largest value of SM is +1 ,then they must belong to 3P  state 
and for the value of LM is 0 and -1 ,the SM  has +1, 0 and -1 which correspond to 
3P  state (indicated by = in the last row). Further, the remaining term has LM = 0 

and SM = 0 belongs to 1
0S  state (indicated by – in last row). The number of states 

is reduced to three 1
2D , 3P ,1

0S  as against the six for the two non-equivalent p 
electrons. 
  Terms of equivalent electrons can easily be calculated using Breit’s 
method as explained below: For pp electronic configuration, 1,0, 1lm   for each of 
the two electrons & sm  is either +1/2 or -1/2.  Writing 1lm  and 2lm  in a horizontal 
row and column (written in bold). Similarly, writing the values of 1sm and 2sm as 
shown in following tables. Fill the body of the tables with l Lm M   and 

s Sm M  .  
Table 1 
 

1lm  1 0 -1 

2lm  1 2 1 0 

 0 1 0 1 

 -1 0 -1 -2 

 L = 0 L = 1 L = 2 
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1sm  + ½  - ½ 

2sm  + ½ 1 0 

 - ½ 0 -1 

 S = 0 S = 1 

Table 2 

 Equivalent electrons for a given values of n and l, can have either same sm
or same values of lm . If sm  values are same then some combinations of lm will not 
be allowed and vice versa.   

 If sm  are same: LM values on the diagonal of the table 1 have same lm and 
therefore, not allowed. Likewise, LM values above the diagonal are mirror image of 
the values below the diagonal; hence forbidden. What is left are 1,0, 1LM    which 
are the magnetic quantum numbers corresponding to L = 1. The combinations of 

LM and SM  which are left and allowed by the Pauli’s exclusion principle are  

  s Sm M   = 1 or -1        (1) 

  l Lm M   = 1, 0 -1       (2) 

 Each of the LM  value combines with each of the SM value yielding 
1,0, 1LM    for each of the SM  values, that is 1 and -1 all alone has no meaning 

unless there is another combination with SM = 0 and 1,0, 1LM   . This deficiency 
may be fixed up from the following considerations when same lm  is considered.  

 If lm  values are same: Electrons can’t have same values of sm  (that is 
allowed value of SM  is 0 only) but, on the other hand, each of the electrons is free 
to have any of the value of lm . Pauli’s principle, therefore allows the following 
combinations.  

 2,1,0, 1, 2LM     with SM = 0      (3)  

 1,0, 1LM    with SM = 0       (4) 

 LM = 0 with SM = 0        (5)  

     Relations (1), (2) and (4) lead to L = 1 and S =1 giving the Term 3P ; (3) and (5) 

yield the Terms 1D  and 1S  respectively. Thus two equivalent p electrons yield 

Terms (states) 1S , 3P , and 1D .  
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 Similar mechanism can be followed for calculating the Terms (states) for 
other different number of equivalent p– electron systems.  

(iii) Three equivalent p- electrons (Unexcited Nitrogen atom): Possible 
number of combinations is 20. The values of LM and SM can be grouped as 

  
3 31 11 1 1 1
2 2 2 22 2 2 2

1, 0, 1 2, 1, 0, 1, 2 0

, , ,, ,

L

S

M

M

  
   

 

   The spectral Terms for normal nitrogen atom are 

   21
3/2, 1/221,L S P   

   21
5/2, 3/222,L S D   

   23
3/220,L S S   

   Spectral Terms for excited nitrogen atom are 

   
1

2
1 12
2 2

0, 0 1

1,

S L S L
P

L S SP

    
      

 

  
1

2 2 2
1 12
2 2

2, 0 3,2,1
, ,

1,

D L S L
F D P

L S SP

    
      

 

  
3

4 4 4 2 2 2
31 12

2 2 2

2, 1 2,1,0
, , , , ,

1, ,

P L S L
D P S D P S

L S SP

    
      

 

(iv) Four equivalent p electrons: In all possible combination is 6
4 15C  . With 

the same reasons, the final spectral Terms are 1
0S , 3

0,1,2P  and 1
2D , which is the 

same as due to two p – electrons. 

(v) Two equivalent d- electrons: The possible values of lm  and sm  for one d- 
electron are 

sm  ½ ½ ½ ½ ½ -½ -½ -½ -½ -½ 

lm  2 1 0 -1 -2 2 1 0 -1 -2 

 a b c d e f g h i j 

Totally, in all there are 10 states and the possible combinations are 10
2 45C  .  

Adding the values of lm and sm to these combinations, we get 1 3 1 3, , ,S P D F  and 1G  
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15.5.2 jj- Coupling:  

 Consider the case of three equivalent p- electrons in jj- coupling. The 
possible values of quantum number jm  are listed below: 

j 3/2 3/2 3/2 3/2 ½ -½ 

jm  3/2 ½ -½ -3/2 ½ -½ 

 a b c d e f 

 Out of these six states, we can take three at a time with no two of same 
kind. The same combinations are obtained as in the case of LS- coupling.  

 1 2 33 / 2, 3 / 2, 3 / 2 3 / 2,1 / 2, 1 / 2, 3 / 2jj j j m        

 
1 2 33 / 2, 3 / 2, 1 / 2 1 / 2, 1 / 2

5 / 2,3 / 2,1 / 2, 1 / 2, 3 / 2, 5 / 2

3 / 2,1 / 2, 1 / 2, 3 / 2

jj j j m     

  
 

 

 1 2 33 / 2, 1 / 2, 1 / 2 3 / 2,1 / 2, 1 / 2, 3 / 2jj j j m        

These 20 terms correspond to five Terms:  3/2(3 / 2,3 / 2,3 / 2) , 1/2(3 / 2,1 / 2,1 / 2) , 

5/2(3 / 2,3 / 2,1 / 2) , 3/2(3 / 2,3 / 2,1 / 2)  and 1/2(3 / 2,1 / 2,1 / 2) . 

15.6 Hund’s Rule 
 This rule is applicable only to LS coupling. In LS coupling, the effect of 
spin-spin interaction is usually larger compared to the electrostatic repulsion. It is 
found that largest S has lowest energy because the repulsion is taken inversely 
proportional to the distance between them. Further the electrostatic energy will be 
minimum, if the valence electrons are very far from each other. Therefore, the 
electrons of the lowest energy level’s will be then arranged symmetrically around 
the nucleus. This symmetric configuration rotates like a rigid body, making thereby 
individual electrons to rotate in same direction which finally makes maximum 
possible value of L. Thus, the largest L value lies in the lowest energy level. These 
results are known as Hund’s rules. 

 In multi-electron atoms, the energy states with maximum total spin are 
more bound as evident by their energy. It is because, no spatial orbital lm  of a 
given sub shell (l value) will have two electrons unless all others have one electron 
each. For example, a 4p  sub shell has occupancy of its electrons as        

15.6 Hund’s Rule 
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rather than        or       . It has been shown, that with symmetric spin 
eigen function, the electrons are far apart resulting in less screening of the nuclear 
charge by the inner electrons. This result in more binding and therefore, lowering 
of the states of large more total spin.  

Hund’s rules may be restated as follows:  

(i) For a given electron configuration, the Term with maximum multiplicity (2S+1) 
are lowest.  

(ii) Among the Terms with same multiplicity, Terms having largest orbital angular 
momentum L lie lowest on energy scale.  

 The rule holds good for the case of electron configuration involving normal 
state (example- nitrogen, carbon, scandium etc.).  

15.7 Lande’s Interval Rule 
 The rule determines the separation of fine structure line in LS- coupling. 
LS-coupling has the characteristics that the separation between the triplets and the 
singlets is large compared to the separation between the multiplet fine structure 
which, in turn, follows Lande' interval rule. These characteristics help recognize 
the coupling.  
 As, it is known that fine structure of a level for a given value of L and S is 
due to spin-orbit interaction and thus the change in the energy is calculated with 
the help of perturbation theory. The change in the energy value is given by  

   2 ( 1) ( 1) ( 1)AE J J L L S S       ,    (6) 
where A is constant. 

Thus, the energy values corresponding to the fixed L and S values are given by 

 
 

0

0 2 ( 1) ( 1) ( 1)

J

A

E E E

E J J L L S S

 

      
     (7) 

  1 2 ( 1)( 2) ( 1) ( 1)A
JE J J L L S S             (8) 

Thus, the separation between two consecutive levels of fine structure levels is 

1 ( 1) ( 1)J J J JE E E A J      , i.e. proportional to (J+1). In other words, 

separation is proportional to the larger J value. Consequently, for a triplet, one may 
writes  

( 2) ( 1) ( 2)J JE J      

15.7 Lande’s Interval Rule 
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  ( 1) ( 1)J JE J     

  ( 2) ( 1) ( 1) ( 2) ( 1)J J J JE E J J                

That is ratio of the two consecutive separations is equal to the ratio of the larger J 
values. This is known as Lande' interval rule. Therefore, for 3

0,1,2P ; 3
1,2,3D  and 

3
2,3,4F  are in the ratio of 1:2 ; 2:3 and 3:4 respectively.  

15.8 Normal and Inverted Terms 
When fine structure levels are arranged in upward direction in the increasing order 
of J value such that the level with smallest J values lie lowest, knows as normal 
Terms whereas, the inverted Terms is defined for those when the energy levels of 
fine structure are arranged in upward direction with the decreasing order of J value 
such that level with largest J value lies lowest. From experimental evidences, it has 
also been noticed that normal Terms appear when the electronic configuration of 
the concerned element has less than half filled subshell of electrons, while if the 
subshell are more than half filled, then inverted Terms appear.  

 For example, the ground 3P  term of carbon, formed from two equivalent p 

electrons, forms a normal multiplet and the ground state 3
0P . On the other hand, 

the ground 3P  term of oxygen, formed from four equivalent p electrons, forms an 

inverted multiplet and the ground state is 3
2P . For atoms having a ground 

configuration with an exactly half filled orbital, the ground term is always an S 
term, for which the only one state (ground state) arise. For example, the ground 

state of chromium is 7S  ,because the quantum numbers l = 0 and S = 3,  and J can 

take only value 3, and the ground state is 7
3S . 

 Further, the fine structure of spectrum of an element also generated due to 
the interaction, namely, spin –orbit interaction. Thus, it is possible that order of 
energy levels may also governed by spin-orbit interaction energy. Now when the 
interaction energy results negative, the Terms are inverted and for positive energy 
it turns to the normal Terms. 

15.9 Order of Fine Structure Multiplets 

15.9.1 LS Coupling: 

The effects of various terms, like interaction energy due to spin-orbit, spin-spin, 

15.8 Normal and Inverted Terms 

15.9 Order of Fine Structure Multiplets 
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 orbit –orbit as well as due to electron spin - nuclear spin and nuclear spin – orbital 
motion and also electrostatic energy of electrons in attraction and repulsion, splits 
up the unperturbed energy levels into many levels and the resultant of those, of 
course, lie in a order obeying the Pauli’s principle, Hund’s rule and Lande’s 
interval rule. 

a. In LS coupling, spin-spin correlation is most dominating factor and because 
of it unperturbed energy levels split up into a large number of well spaced levels. 
The number is equal to the possible values of S. While calculating the possible S 
values, in accordance with the Pauli’s principle, the split levels lie in an order of 
decreasing S such that the level with the largest value of S, lies lowest. 

b. The second dominating factor is electrostatic effect, which further 
influences and splits up each of the above levels. The number of levels is equal to 
the possible values of L, which can be formed from the individual angular 
momenta of a given number of valence electrons following the Pauli’s principle. 
These levels lie in order of decreasing L for a given value of S such that the level 
with largest L value lies lowest. 

c. The next effective term is spin-orbit interaction. This interaction splits the 
level into (2S+1) or (2L+1) levels, whichever is smaller. Here the level with lowest 
value of J lies lowest and others in increasing order of J value. 

15.9.2 jj- Coupling: 

a. In this coupling, spin-orbit interaction is the most dominating factor and it 
splits up the unperturbed level into a number of well separated levels. The level 
with smaller j value will lie deepest as it has lowest energy. 

b. Next effective factors are electrostatic energy and spin-spin interaction, 
which contribute in splitting up each of the above levels into a large number of 
levels characterized by different values of J. The level with lowest value of J lies 
lowest, again in accordance with the Pauli’s principle. 

15.10 Selection Rules 
 In order to have complete understanding about the exact nature of the 
transitions, it is required to know the rules, namely, Selection Rules which govern 
the allowed changes in various quantum numbers when an atom jumps from one 
state to other. The selection rules for complicated atom are almost same as for the 

15.10 Selection Rules 
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two electron system. Other selection rules can also be obtained using the symmetry 
properties of the states and of the interaction dipole. A detailed analysis leads to 
the following selection rules.  

15.10.1 Selection Rules for LS- Coupling 

 The selection rules, when LS coupling is pertinent are similar to those for 
one-electron systems. Although, the selection rules for one electron atoms are 
based on mathematics of dipole moment, the selection rules for many electrons are 
based on both mathematics and experimental proof. In LS coupling ,the main 
quantum numbers are L, S, LM  an SM . Since the spin does not exist in perturbing 
Hamiltonian so one have the selection rule 0S  . As for the case of Hydrogen 
atom, the parity must change. The parity is given by the value of l (odd or even) of 
jumping electron must change by unity, i.e. ( ) 1il    , where ( )il   is the 
change in the sum of individual angular momentum quantum numbers for the 
electrons. For total orbital angular momentum, in addition to the selection rule 

1L   . As a whole, for an atom the selection rules for other quantum numbers 
are: 0, 1L   ; 0, 1J   but transitions 0 0j    is not allowed. 0, 1jM    
but 0 0jM    is not allowed when 0J  . 

15.10.2 Selection Rules for jj- Coupling 

 The selection rules when jj- coupling pertains may be deduced from general 
angular momentum. Although L and S are no longer treated as good quantum 
number but J, jM  and individual j are good. In most common type of spectra, 

transitions between the levels take place only when one electron makes the jump at 
a time. The orbital quantum number of jumping electron must change by unity, i.e. 

1L   . Thus, the inner quantum number of jumping electron must change by 
unity or by 0, i.e. 0, 1j   , but for all other electrons must not change, i.e. 0j 
. As a whole, the other quantum numbers changes as: 0, 1J   ; 0 0j    is not 
allowed. 0, 1jM    but 0 0jM    is not allowed when 0J  . 

15.11 Illustrative Examples 
Example 1: Find the values of s, L and J for the representation of electron states: 
1

0S , 3
2P , 2

3/2D  and 5
5F . 

Sol.  (i) 1
0S :  2s+1=1 s=0;  SL=0;  J = 0. 

15.11 Illustrative Examples 
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 (ii) 3
2P :  2s+1=3 s=1;  PL=1;  J = 2 

 (iii) 2
3/2D :  2s+1=2 s=1/2;  DL=2; 3/2  J = 3/2 

 (iv) 5
5F :  2s+1=5 s=2;  FL=3; 5 J = 5 

Example 2: Find Term values (states) for the electronic configuration pd of an 
atom under LS- and jj- coupling schemes.  

Sol. Given that 1 21, 2l l   an 1 2 1/ 2s s  .  

(i) Under LS- coupling scheme 

 1 2 1 2 1 2 1 2( ),( 1), ( 2).......... 3,2,1L l l l l l l l l        , which is F, D, and P 
states. 

 1 2 1 2 1 2 1 2( ),( 1),( 2).......... 1,0S s s s s s s s s        , i.e. (2S+1) = 3, 1. 

 Thus corresponding Terms are: 3 3 3, ,F D P  (triplets) and 1 1 1, ,F D P  
(singlets). Therefore, the J values for each of the triplet and singlet states as given 
by ( ),( 1), ........J L s L S L S      

For 3F and 4,3,2J  ; Terms are 3
4,3,2F ;  

For 3D  and 3,2,1J  ; Terms are 3
3,2,1D .  

For 3P  and 2, 1, 0J  ; Terms are 3
2,1,0P ;  

For 1F  and J = 3, Term is 1
3F  ;  

For 1D  and J = 2, Term is 1
2D ; 

For 1P  and J = 1, Term is 1
1P  .  

(ii) Under jj- coupling scheme 

 1 1 1 1 1 1 1( ),( 1),.......... 3 / 2,1 / 2j l s l s l s       

 2 2 2 2 2 2 2( ),( 1),.......... 5 / 2,3 / 2j l s l s l s       

Each of 1j  value combines with each of the 2j  value give four Terms, represented 
by (3 / 2, 5 / 2), (3 / 2, 3 / 2), (1 / 2, 5 / 2) , and (1 / 2, 3 / 2) . J values for each of the 
combinations is given by 

 1 2 1 2 1 2 1 2( ),( 1), ( 2)..........J j j j j j j j j       . 
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 For (3 / 2, 5 / 2) ; J = 4, 3, 2, 1; Terms are 4,3,2,1(3 / 2, 5 / 2) .  

 For (3 / 2, 3 / 2) ; J = 3, 2, 1, 0; Terms are 3,2,1,0(3 / 2, 3 / 2) .  

 For (1 / 2, 5 / 2) ; J = 3, 2; Terms are 3,2(1 / 2, 5 / 2) .  

 For (1 / 2, 3 / 2) ; J = 2, 1; Terms are 2,1(1 / 2, 3 / 2) .  

Example 3: A two electron atom in an excited state has one electron in d- state and 
one in f- state, coupled according to LS scheme. Show that there are 20 possible 
Terms (states), which are either singlet or triplets. Write them. 

Sol. Given 1 2l  , 2 3l   and 1 2 1/ 2s s  . 

From these, we have L = 5, 4, 3, 2, 1 corresponding to H, G, F, D and P states and 
S = 1, 0. Under LS- coupling scheme, we get following J values 

L S J States 

5 1 6, 5, 4 3
6,5,4H  

4 1 5, 4, 3 3
5,4,3G  

3 1 4, 3, 2 3
4,3,2F  

2 1 3, 2, 1 3
3,2,1D  

1 1 2, 1, 0 3
2,1,0P  

 

J=L S States 

5 0 1
5H  

4 0 1
4G  

3 0 1
3F  

2 0 1
2D  

1 0 1
1P  

 

Example 4: Write the complete ground state term in LS notation, i.e. 2 1s
JL , for 

the elements in the first row of the periodic table, i.e. Li through Ne. 

Sol. 

Li:  21 2s s ; 0; 1 / 2; 1 / 2L S J     2
1/2S  

Be: 2 21 2s s ; 0; 0; 0L S J    1
0S  

B:  2 21 2 2s s p ; 1; 1 / 2; 3 / 2,1 / 2L S J     2
1/2P  

C:  2 2 21 2 2s s p ; the possible terms are P3 , D1 , S1 and by Hund's rule, the lowest-

lying must be the triplet, since the p- shell is less than half full, i.e. 3
0P . 

N:  2 2 31 2 2s s p ; the possible terms are S4 , D2 , P2 .  The quartet will lie lowest.  
Since 0L  , because l = 0 and thus there is only one value of J for this state, 

i.e. 4
3/2S . 
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O:  2 2 41 2 2s s p ; the possible terms are P3 , D1 , S1  (same as carbon), so by Hund's 
rule, Since the p-shell is more than half  full and the highest J lies lowest, i.e. 
3

2P  

F:  2 2 51 2 2s s p ;  Possible states are the same as boron, except the highest J will lie 
lowest, i.e. 2

3/ 2P  

Ne: 2 2 61 2 2s s p ;  Closed shell configuration so the ground state is the same as 

helium, 1
0S . 

Example 5: (a)Write all terms for the electron configuration 'npn p  in both the LS- 
and jj-coupling notation. 

(b) Make a diagram similar to Figure 3 for the jj-coupling states showing the 
effects of spin-orbit interaction and exchange and electrostatic repulsion.  Put all 
terms in proper order. 

Sol.(a) LS- coupling:  Given 0,1; 0,1,2S L   

 Possible states: 3 3 3 1 1 1
3,2,1 2,1,0 1 2 1 0; ; ; ; ;D P S D P S  

 jj- coupling: 1 2

3 1 3 1
, ; , ; 3,2,1,0

2 2 2 2
j j J    

Possible states:  

0 1 2 1 2 1 3 2 1 0

1 1 1 1 1 3 1 3 3 1 3 1 3 3 3 3 3 3 3 3
; ; ; ; ; ; ; ; ;

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                   
                   
                   

 

(b) 

 

15.12 Self Learning Exercise 

Q.1 What states arise from the terms (a) 3S , (b) 4 P , (c) 5 D  and (d) 2 F  ? 

15.12 Self Learning Exercise 
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Q.2 What terms arise from the excited configurations (a) 2 2 1 11 2 2 4s s p f , and (b) 
2 2 1 21 2 3 4s s d f of carbon atom? 

Q.3 Compare the terms arise from two non-equivalent p electrons with those that 
arise from two equivalent p electrons. 

15.13 Summary 
 Starting with the spectra of two valence electrons as case study and 
extended the idea for many electron systems for understanding the complicated 
(complex) spectra. Proceeding in sequence, we have  studied well the Russell- 
Saunder’s (LS) and jj- coupling and derived the spectral terms, namely, S, P, D, 
F…. for the new energy levels generated after the splitting of original levels, which 
occur after the various types of possible interactions. Effects of LS and jj- coupling 
have been studied for equivalent and non-equivalent electrons system. Further, the 
Selection rules have been followed for possible interactions and thus spectral 
terms. A brief about the rules, namely, Hund’s rule, Lande’s Interval rule have 
been outlined for complete explanation of experimental multiplets of fine structure. 
Substantive examples have also been worked out for better understanding. 

15.14 Glossary 
Multiplet: (i) A spectral line having more than one component, representing slight 
variations in the energy states characteristic of an atom. (ii) Any group of 
subatomic particles that are similar in most properties, but have different electric 
charges, such as the nucleons, which form a doublet, or the pions, which form a 
triplet. 

Spectral Term: It is an abbreviated description of the angular momentum quantum 
numbers in multi electron system. 

Fine Structure: The presence of groups of closely spaced lines in spectra 
corresponding to slightly different energy levels 

Hyperfine Structure: It is the different effects leading to small shifts and splitting 
in the energy levels of atoms, molecules and ions. 

Coupling: It is an indirect interaction between two nuclear spins which arises from 
hyperfine interactions between the nuclei and local electrons 

15.13 Summary 

15.14 Glossary 
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Precession: A change in the orientation of the rotational axis of a rotating body or 
the slow movement of the axis of a spinning body around another axis due to a 
torque acting to change the direction of the first axis. 

15.15 Exercise 
Q.1 Find the LS terms that arise from the following configurations:  

(a) nsnp       (b) npnd       (c) np ns2( )   

Q.2 Write all terms for the electron configuration 2np  in both LS- and jj-coupling 
notation.  (b) Make a diagram showing the transition from LS- to jj-coupling.  
Put all terms in proper order. 

Q.3 Deduce the spectral Terms arising from the configuration 3pnd in the case of 
jj- coupling. Which of the terms is likely to be the lowest in energy? 

Q.4 Calculate all spectral terms for three equivalent p- electrons in unexcited 
nitrogen atom. 
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UNIT-16 
Spectra of Alkali and 

 Alkaline Earth Elements 
 

Structure of the Unit 

16.0  Objectives 

16.1  The spinning electron 

16.2  Intensity ratio for doublets 

16.3  Illustrative Examples 

16.4  Self Learning Exercise-I 

16.5  Vector model for Two valence electron atom  

16.6  Interaction energy in LS and JJ coupling 

16.7  Illustrative Examples 

16.8  Self Learning Exercise-II 

16.9 Summary 

16.10 Glossary 

16.11 Answers to Self Learning Exercises 

16.12  Exercise 

16.13 Answers to Exercise 

References and Suggested Readings 

16.0  Objectives 
In this chapter, we will concentrate on the fine structure of the one electron atoms. 
The cause of this fine structure is the interaction between the orbital angular 
momentum and the spin angular momentum. The chapter will also review the 
origin for this interaction and the effect of the coupling between orbital and spin on 
the spectral lines.   

 

UNIT-16 
Spectra of Alkali and 

 Alkaline Earth Elements 

16.0  Objectives 
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16.1 The Spinning Electron 
In spectroscopy, Fine structure is the splitting of the main spectral lines of 

an atom into two or more components. Each component represents a slightly 
different wavelength. In alkali metals such as sodium and potassium, there are two 
components of fine structure, which are called doublets. For e.g. the yellow D-line 
of Sodium consists two close lines, the wavelengths of which are 5890 and       
5896 Ao. 

In the spectral lines of different series, the nature of fine structure is different. 
Experimental findings reveal that emission spectra of the alkali atoms can be 
analyzed into so called four chief series with the peculiarities as given below.  

1. All the lines of sharp series consist of doublets; separation between the doublet 
components remain constant as far as the series extends.  

2. Similarly, each line of the principal series is also a doublets, however the 
separation between the doublet components decreases rapidly as the series 
extends to higher members.  

3. Third series initially consists of triplets (three components) followed by 
apparent doublets; separation between the outer components remain constant as 
far as the series extends. Series is termed as diffuse series.  

4. Fourth series, termed as Fundamental series, lies in far infra-red region and 
consists of very close lying doublets.  

In general, for lighter atoms the fine structure splitting of spectra lines is small 
which increases with the increase in the atomic number. 

Explanation of fine structure: 

Fine structure is produced when an atom emits light in making the transition from 
one energy state to another. The split lines, which are called the fine structure of 
the main lines, arise from the interaction of the orbital motion of an electron with 
the quantum mechanical “spin” of that electron. An electron can be thought of as 
an electrically charged spinning top, and hence it behaves as a tiny bar magnet. 
The spinning electron interacts with the magnetic field produced by the electron’s 
rotation about the atomic nucleus to generate the fine structure. Due to the spin-
orbit interaction, the orbital angular momentum l is coupled to the spin angular 

16.1 The Spinning Electron 
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momentum s. The quantum number j, which is also known as ‘inner quantum 
number’ can take values between l+s to l-s. As s can take only ½ value, each 
energy level gets split into two, one corresponding to j=l+1/2 and another j=l-1/2. 
The complete notation of the levels will be as given below: 

 
Level l s Multiplicity 

(2s+1) 

j(=l±s) Full 
notation 

S 0 1/2 2 1/2 2S1/2 

P 1 1/2 2 3/2, 1/2 2P3/2, 
2P1/2 

D 2 1/2 2 5/2, 3/2 2D5/2, 
2D3/2 

F 3 1/2 2 7/2, 5/2 2F7/2, 
2F5/2 

The component corresponding to smaller j value is stable and hence lies deeper in 
the doublet. This is due to the fact that, in the stable state, the spin magnetic 
moment µs of the electron has the same direction of the magnetic field B, which is 
produced by the orbiting electrons. This is also the same direction as that of the 
orbital angular momentum l. Since µs and spin angular momentum s has opposite 
direction, l is also opposite to s. Hence in the more stable state, j takes the value l-s. 

Calculation of Level splitting due to Spin-Orbit interaction: 

The expression for spin-orbit interaction energy can be written as [Ref: Unit 14] 

௟,௦ܧ∆ = ௘௛మ

ଵ଺గమ௠మ௖మ [݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)] ଵ
௥

ௗ௏(௥)
ௗ௥

തതതതതതതത
 

                                                                                                         (1) 

For l=0, the spin-orbit interaction energy ∆ܧ௟,௦ = 0. For other values of l, ∆ܧ௟,௦ 
assumes two values: one positive and another negative. 

According to Hartree theory, in an alkali atom, the optical electron in a shell n is 
considered to be moving in a potential field 

(ݎ)ܸ = −
1

଴߳ߨ4

ܼ௡݁
ݎ

 

where ܼ௡ is a constant and equals to ܼ(ݎ).  ܼ(ݎ)is given by 
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(ݎ)ܼ → ݎ ݏܽ ܼ → 0 

(ݎ)ܼ → ݎ ݏܽ 1 → ∞ 

ܼ௡݁ is the effective nuclear charge for shell n. 

Substituting the expression for the potential in the expression of spin-orbit 
interaction energy and after solving, eq. (i) can be written as: 

௟,௦ܧ∆ =
ܼ݁ଶℎଶ

(ଶ݉ଶܿଶߨ16) ଴ߝߨ4
[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)]

1
ଷݎ

തതത
 

where the average value of  ૚
 ,૜  is given as࢘ 

1
ଷݎ

തതത
=

ܼଷ

ܽ଴
ଷ݊ଷ݈ଷ ቀ݈ + 1

2ቁ (݈ + 1)
 

ܽ଴ =  ଴ߝߨ4
௛మ

ସగమ௠௘మ  is the radius of the smallest Bohr orbit of the Hydrogen 

atom. Using these, the final expression for the energy reduces to 

௟,௦ܧ∆ =
ܴஶ ߙଶܼ௡

ସℎܿ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)] 

where, ܴஶ = ௠௘ర

଼ఌబ
మ௛య௖

 is known as Rydberg constant, and ߙ = ௘మ

ଶఌబ௛௖
= ଵ

ଵଷ଻
 is 

known as fine structure constant and is dimensionless. 

The term shift due to spin-orbit interaction is  

∆ ௟ܶ,௦ = −
௟,௦ܧ∆

ℎܿ
 

=
ܴஶ ߙଶܼ௡

ସ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)] 

Now, for a single electron system, ܵ = ଵ
ଶ

 

݆ = ݈ ±
1
2
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Substituting these values of j in the expression for energy, the term shift 

corresponding to ݆ = ݈ + ଵ
ଶ

 and ݆ = ݈ − ଵ
ଶ

 can be given as, 

∆ ௟ܶ,௦
ᇱ =

ܴஶ ߙଶܼ௡
ସ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

݈ 

∆ ௟ܶ,௦
ᇱᇱ =

ܴஶ ߙଶܼ௡
ସ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

(݈ + 1) 

Thus due to the spin-orbit interaction, each level gets split into two levels 
corresponding to two values of j. The separation between these two levels is 

∆ܶ = ∆ ௟ܶ,௦
ᇱᇱ − ∆ ௟ܶ,௦

ᇱ  

Substituting the values of ܴஶ and ߙ = ଵ
ଵଷ଻

 we get, 

∆ܶ = 5.84
(ܼ − ସ(ߪ

݊ଷ݈(݈ + 1)
 ܿ݉ିଵ 

This formula gives the doublet separation, which is remarkably good in agreement 
with experimental variation. This shows that (i) The level splitting for an alkali 
atom increases with the increase in atomic number (ii) For the same l, the level 
spitting decreases with increasing n and (iii) For the same n, it decreases with 
increasing n. 

16.2 Intensity Ratio for Doublets 
The line intensities in doublet spectra show that:  

(1) The strongest line in any doublet arises from transition in which j and l 
change in one way. 

(2) When there is more than one such line, the line involving the larger j value is 
strongest. 

For eg. in the principle series doublet shown above, the line arising from the 
transition 2P3/2-

2S1/2 is stronger than 2P1/2-
2S1/2. The reason is that in the first 

transition, j changes by 1 and l changes by -1 while in the second transition j 
changes by 0 and l changes by -1. 

 

16.2 Intensity Ratio for Doublets 
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The intensity ratio is then defined as, 

௕ܫ

௔ܫ
=

2 ቀ3
2ቁ + 1

2 ቀ1
2ቁ + 1

=
4
2

= 2 ∶ 1 

The same holds for the members of principal series. 

Let us consider another example. The diffuse series compound doublet: 

 

 

 

 

 

 

 

 

 

 

The lines a and c start from 2D3/2 while the line b starts from 2D5/2. Therefore, 

ூ್
ூೌାூ೎

=
ଶቀఱ

మቁାଵ

ଶቀయ
మቁାଵ

= ଺
ସ

= ଷ
ଶ

                                      (i) 

  D1     D2 
 

3 2S 3 2S1/2

3 2P1/2

3 2P3/2
3 2P 

ν 

 

3 2P 3 2P3/2 

3 2D3/2 

3 2D5/2 
3 2D 

ν 

a 

b 
c 

a b c 

3 2P1/2 



327 
 

Line c ends on 2P1/2 while lines a and b end on 2P3/2. Thus 

ூ೎
ூೌାூ್

=
ଶቀభ

మቁାଵ

ଶቀయ
మቁାଵ

= ଶ
ସ

= ଵ
ଶ

                                    (ii) 

Solving (i) and (ii) we get, 

ܽ ∶ ܾ ∶ ܿ =
1
9

∶ 1 ∶
5
9

 

ܽ ∶ ܾ ∶ ܿ = 1 ∶ 9 ∶ 5 
If the line a is not resolved from line b ,then we shall see two lines having intensity 
ratio 

(1 + 9) ∶ 5 = 2 ∶ 1 

16.3 Illustrative Examples 
Example 1: The first member of the principle series of sodium has a wavelength 
of 5893 A0. First excited s state of sodium lies 3.18 eV above the ground state. 

Find the length of the first member of the sharp series. Given e=1.60×10-19C, 

c=3×108 ms-1 

Sol. The first member of the principal series corresponds to the transition 3p-3s. 
The energy corresponding to this transition (wavelength =5893 A0 ) is 

E1(3p-3s)=hc/λ 
= 3.375 × 10-19J 

= 2.11 eV 

The energy corresponding to the first excited state 4s of Sodium relative to the 
ground state 3s is: 

E2(4s-3s)=3.18 eV 

The first member of sharp series corresponds to the transition from 4s-3p. The 
energy corresponding to this transition is: 

E(4s-3p)= E2(4s-3s)- E1(3p-3s) 

=3.18 eV-2.11 eV  

=1.07 eV 

16.3 Illustrative Examples 
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Corresponding wavelength is 

λ=hc/E= 11618 A0 

16.4  Self Learning Exercise-I 
Q.1  Write down the normal electronic configuration of Helium and lithium 

atoms. Determine the states to which these configurations give rise. 

Q.2  Calculate the wavelength of the line corresponding to 2p-2s transition in 
Lithium. The 2p level lies 1.85 eV higher than the 2s level. 

Q.3  Define intensity ratio of doublets. 

16.5  Vector Model for Two-Valence Electron Atom 
Alkaline Earth atoms like Beryllium, Magnesium, Zinc, Cadmium, Mercury, 
Calcium and others in group IIA and IIB of the periodic table contain two valence 
electrons and give rise to series of singlet and triplet spectral lines. The analysis of 
these spectra by Russell and Saunders in 1925 was an important development in 
the theoretical understanding of atomic spectroscopy. The current topic deals with 
the observed spectral features and finally the vector model description of the atom 
that emerged out of these studies. 

In the vector atom mode, the orbital angular momentum of each electron is 
represented by l, and the spin angular momentum by s. Under varying 
circumstances, the vector l and s, combine to form resultant vectors in terms of 
which the observed properties can be explained.  

In alkaline earth metals, the vector atom model consists of vectors l1 ,l2 ,s1 ,s2 and 
their resultant J. The formation of J can be understood in terms of L-S and j-j 
coupling.  

L-S Coupling:  

This coupling occurs in the lighter atoms. In the vector model of L-S coupling, the 
angular momentum vector of individual electrons l1 , l2 precess rapidly. The 
corresponding quantum number L can then take the values from |l1- l2| to |l1+ l2|. 
The various terms according the values of L=0,1,2… are termed as S,P,D,… 

Similarly the spin angular momentums s1 ,s2 combines to form a resultant angular 
momentum S. It can take values between |s1- s2| to |s1+s2|. Since s1 ,s2 can have 

16.4  Self Learning Exercise-I 

16.5  Vector Model for Two-Valence Electron Atom 
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values ½, S=0, 1. The multiplicity 2S+1 has values 1 and 3. Thus the two valence 
electron system leads to singlet and triplet states. 

As a result of spin-orbit interaction, L and S couples with each other to form the 
total angular momentum vector J. The value of J is given by, J=L+S. The quantum 
number J thus takes values from |L-S | to |L+S |. 

This shows that the spin orbit interaction breaks each level which is characterized 
by an L value in a number of fine structure characterized by a J-value. The 
collection of fine-structure levels is known as a ‘multiplet’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eg. Calcium atom (Ca) 

The ground state configuration of Ca is 1s2 2s2 2p6 3s2 3p6 4s2 

For the two optically active electrons we have, l1=0, l2=0 and s1=1/2, s2=1/2 

Thus, L=0 (S-term) 

S=0, 1 

J=0, 1 

The terms are 1S0 and 3S1. Since the two valence electrons in 4s2 are equivalent, the 

Fig: L-S coupling 
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term 3S1 is excluded by Pauli’s principle. Hence the normal atom gives rise to a 
singlet-S terms i.e. 1S0 only.  

j-j Coupling: 

 In light atoms, the interactions between the orbital angular momenta of individual 
electrons is stronger than the spin-orbit coupling between the spin and orbital 
angular momenta. These cases are described by "L-S coupling". However, for 
heavier elements with larger nuclear charge, the spin-orbit interactions become as 
strong as the interactions between individual spins or orbital angular momenta. In 
those cases the spin and orbital angular momenta of individual electrons tend to 
couple to form individual electron angular momenta. 

In j-j coupling, the orbital angular momentum l, and spin s, of each electron are 
first coupled to form a total angular momentum j, for that electron. These single-
electron total angular momenta are then combined into a total angular momentum 
J, for the group of electrons. This is in contrast to LS coupling, where the total 
orbital angular momentum L and total spin S, of the system are calculated first and 
then combined to the total angular momentum J, of the whole system. 

 

 

 

 

 

 

 

 

 

 

 

16.6  Interaction Energy in LS and JJ Coupling 
Due to the spin orbit interaction, the atomic term consists of different energies. 

 

Fig: j-j coupling 
 

16.6  Interaction Energy in LS and JJ Coupling 
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Each of them is slightly different and corresponds to different J values. Thus the 
multiplet splitting increases rapidly with increase in atomic number Z. 

As we already know, the interaction energy for a single electron atom is given by,  

−∆ ௟ܶ,௦ =
ܴஶ ߙଶܼସ

2݊ଷ݈ ቀ݈ + 1
2ቁ (݈ + 1)

[݆(݆ + 1) − ݈(݈ + 1) − ݏ)ݏ + 1)] 

= ܽ
݆∗ଶ − ݈∗ଶ − ଶ∗ݏ

2
 

where, ܽ = ோಮ ఈమ௓ర

ଶ௡య௟ቀ௟ାభ
మቁ(௟ାଵ)

,  ݆∗ଶ = ݆(݆ + 1),   ݈∗ଶ = ݈(݈ + 1),  

ଶ∗ݏ         = ݏ)ݏ + 1) 
In case of two optical electrons, there are four angular momentum, i.e. l1

*, l2
*, s1

*, 
s2

*. The possible interactions are,  

(1)  l1
* with l2

*   

(2)  s1
* with s2

*  

(3)  l1
* with s1

* 

(4) l2
* with s2

*  

(5)  l1
* with s2

*  

(6) l2
* with s1

* 

The interactions (1) and (2) dominate over (3) and (4). Interactions (5) and (6) are 
negligible. 

Using equation (1), the energies corresponding to interactions  (1), (2), (3), and (4) 
can be written as, 

∆ ଵܶ = ܽଵ݈ଵ
∗݈ଶ

∗cos (݈ଵ
∗, ݈ଶ

∗) 

∆ ଶܶ = ܽଶݏଵ
ଶݏ∗

∗cos (ݏଵ
∗, ଶݏ

∗) 

∆ ଷܶ = ܽଷ݈ଵ
ଵݏ∗

∗cos (݈ଵ
∗, ଵݏ

∗) 

∆ ସܶ = ܽସ݈ଶ
ଶݏ∗

∗cos (݈ଶ
∗ , ଶݏ

∗) 
In LS coupling, l1

* and l2
* precess rapidly around their resultant L*. Using Cosine 

law, we can write: 
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∗ܮ
ଶ = ݈ଵ

∗ଶ + ݈ଶ
∗ଶ + 2݈ଵ

∗݈ଶ
∗cos (݈ଵ

∗, ݈ଶ
∗) 

∆ ଵܶ =
1
2

ܽଵ(ܮ∗
ଶ − ݈ଵ

∗ଶ − ݈ଶ
∗ଶ) 

Similarly s1
*and s2

* precess rapidly around their resultant S*.  

ܵ∗
ଶ = ଵݏ

∗ଶ + ଶݏ
∗ଶ + ଵݏ2

ଶݏ∗
∗cos (ݏଵ

∗, ଶݏ
∗) 

This gives, 

∆ ଶܶ =
1
2

ܽଵ(ܵ∗
ଶ − ଵݏ

∗ଶ − ଶݏ
∗ଶ) 

To calculate the interaction energy between l1
* and s1

* and between l2
* and s2

* the 
average values of cosine must be calculated. The average values are given by, 

cos(݈ଵ
∗, ଵݏ

∗)തതതതതതതതതതതതത = cos (݈ଵ
∗, ,∗ܮ) cos(∗ܮ ܵ∗)cos (ܵ∗, ଵݏ

∗) 

cos(݈ଶ
∗ , ଶݏ

∗)തതതതതതതതതതതതത = cos (݈ଶ
∗ , ,∗ܮ) cos(∗ܮ ܵ∗)cos (ܵ∗, ଶݏ

∗) 

Substituting the average values of the cosines in equation (ii), we get 

∆ ଷܶ + ∆ ସܶ = [ܽଷ݈ଵ
ଵݏ∗

∗ cos(݈ଵ
∗, (∗ܮ cos(ܵ∗, ଵݏ

∗)
+ ܽସ݈ଶ

ଶݏ∗
∗ cos(݈ଶ

∗ , (∗ܮ cos(ܵ∗, ଶݏ
∗)] cos(ܮ∗, ܵ∗) 

Using cosine law and after simplification, we get 

= ቈܽଷ
݈ଵ

∗ଶ + ଶ∗ܮ − ݈ଶ
∗ଶ

ଶ∗ܮ2
ܵ∗ଶ + ଵݏ

∗ଶ − ଶݏ
∗ଶ

2ܵ∗ଶ

+ ܽସ
݈ଶ

∗ଶ + ଶ∗ܮ − ݈ଵ
∗ଶ

ଶ∗ܮ2
ܵ∗ଶ + ଶݏ

∗ଶ − ଵݏ
∗ଶ

2ܵ∗ଶ
൨ ଶ∗ܬ − ଶ∗ܮ − ܵ∗ଶ

2
 

This after further simplification can be written as, 

∆ ଷܶ + ∆ ସܶ =
1
2

ଶ∗ܬ)ܣ − ଶ∗ܮ − ܵ∗ଶ) 

where  ܣ = ܽଷߙଷ+ܽସߙସ 

and,  ߙଷ = ௟భ
∗మା௅∗మି௟మ

∗మ

ଶ௅∗మ
ௌ∗మା௦భ

∗మି௦మ
∗మ

ଶௌ∗మ  

ସߙ =
݈ଶ

∗ଶ + ଶ∗ܮ − ݈ଵ
∗ଶ

ଶ∗ܮ2
ܵ∗ଶ + ଶݏ

∗ଶ − ଵݏ
∗ଶ

2ܵ∗ଶ  

We can now write any fine-structure term by the formula, 
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ܶ = ଴ܶ − ∆ ଵܶ − ∆ ଶܶ − ∆ ଷܶ − ∆ ସܶ 

where, T0 is a hypothetical term which accounts for the center of gravity of entire 
electron configuration. 

16.7   Illustrative Examples 
Example 2. Consider a carbon atom whose electrons are in the configuration (1s)2 
(2s)2 2p 3p. List all expected terms on the basis of the LS (Russell-Sanders) 
coupling scheme.  

Sol. (1s)2 couples to L=0, S=0. (Pauli Exclusion Principle) 
(2s)2 couples to L=0, S=0. (Pauli Exclusion Principle) 
The 2p and 3p electrons both have l=1, s=1/2. This can lead to L=2,1,0, S=0,1. 

We therefore can form the following terms: 
1D2, 

3D123, 
1P1, 

3P012, 
1S0, 

3S1 

Example 3 Scandium has a ground state configuration 1s2 2s2 2p6 3s2 3p6 4s2 3d.  
Consider a transition from the ground state 4s2 3d to the excited state 3d 4s 4p. 

Assuming LS coupling find L, S, and J values for the terms derived from the 4s2 3d 
and 3d 4s 4p configurations.   

Write down each term in standard notation. 

Sol. LS coupling: L=2; S=1/2 

Possible terms: 2D5/2, 
2D3/2 

16.8  Self Learning Exercise-II 

Q.1  The atomic number of Carbon is 6.  

  (i) State its electronic configuration. 

  (ii) Calculate the spectroscopic terms for this configuration. 

  (iii) If one of the 2p electrons gets excited to the M-shell, what other 
spectroscopic terms will be possible? 

Q.2  Write down the electronic configuration of N+ and deduce the spectral 
terms. 

Q.3  Obtain the terms for the ground state of neutral oxygen atom. 

16.7   Illustrative Examples 

16.8  Self Learning Exercise-II 
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16.9 Summary 
The closely spaced groups of lines observed in the spectra of the lightest elements, 
notably hydrogen and helium. The components of any one such group are 
characterized by identical values of the principal quantum number n, but different 
values of the azimuthal quantum number l and the angular momentum quantum 
number j. 

In atoms having several electrons, this fine structure becomes the multiplet 
structure resulting from spin-orbit coupling. This gives splitting of the terms and 
the spectral lines that are “fine’’ for the lightest elements but that are very large, of 
the order of an electronvolt, for the heavy elements. 

Careful examination of the spectra of alkali metals show that each member of some 
of the series is closed doublets. For example, sodium yellow line, corresponding to 
3p-3s transition, is a close doublet with separation of 6A0while potassium (K) has a 
doublet separation of 34A0 and so on. Further investigations show that only the S-
terms are singlet, while all the other terms P, D, F etc. are doublets. Such doublet 
structure in energy is observed for all the atoms possessing a single valence 
electron i.e., in the outer most shell. Usually the doublet spacing is small compared 
to the term difference (for Na the main D line is centered at 5893A0; D2= 5890 A0 

and D1 = 5896A0) and hence it is called fine structure. 

16.10  Glossary 
Ground state: The state of lowest intramolecular energy. 

Line width: The width of a spectral line. 

Quantum Number : According to quantum mechanics, the distribution of 
electrons labels the state of the electron and specifies the value of a property in an 
atom. 

n- Principal Quantum Number (shell number): The average distance of the 
electron from the nucleus in a particular orbital; can have integral values of 1, 2, 3, 
and so forth.  

l- Angular Momentum Quantum Number: (subshell of one shell): Its value 
reflects the orbital shape; it correlates with n; (l=n-1); which reveals 0 for the s, 1 
for p, 2 for d, 3 for f. 

16.9 Summary 

16.10  Glossary 
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16.11  Answers to Self Learning Exercises 

Answers to Self Learning Exercise-I 
Ans.1:   2He: 1s2, 1S0 

    3Li: 1s2, 2s, 2S1/2 

Ans.2:    6719 A0 

Ans.3:   See section 16.2 

Answers to Self Learning Exercise-II 

Ans.1:   (i) 1s2 2s2 2p2 (ii) 1S, 1D, 3P      (iii) 2p 3s: 1P 3P 

    2p 3p: 1S 1P 1D; 3S 3P 3D 

    2p 3d: 1P 1D  1F; 3P 3D  3F 

Ans.2:   1s2 2s2 2p2; 1S0
1D2

3P0,1,2 

Ans.3:   1S0
1D2

3P0
3P1

3P2 

16.12 Exercise 
Q.1  What is the significance of quantum number J ? 

Q.2  What J is equal to ?  

Q.3  What are the possible values of J ? 

Q.4  Distinguish between LS (RS) and jj coupling. 

16.13  Answers to Exercise 

Ans.1:   In lighter elements spin-orbit coupling is small, while in heavier 
elements, it is  large  or  appreciable.  Hence, the new quantum number J 
becomes important. This  quantum number gives the total angular 
momentum.  

Ans.2:  j=l+s 

Ans.3:   J = L+S, L+S-1,......, L-S  

Ans.4:  Russell – Saunders is known as RS coupling.  According to this scheme, 
electronic   repulsions are stronger than spin -orbit coupling. In lighter 
elements, spin -orbit coupling  is small  and  hence  RS coupling is valid.  

16.11  Answers to Self Learning Exercises 

16.12 Exercise 

16.13  Answers to Exercise 
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Specifically, it is valid for first transition series (3d elements). But    in    the    
case    of    heavier    elements,    spin- orbit    coupling    is    more   
powerful than    electron repulsions.  Hence,  jj  coupling  is   more  
important  than  RS   coupling.   In  RS  coupling,  configuration  is  split  
into  terms  by   electron  repulsion  and  these  are  further  split  into  states   
by  spin -orbit    coupling.  But jj coupling is exactly the reverse of RS  
coupling.  Thus, in jj coupling,   configuration is split   into   levels by spin 
-orbit coupling and  not terms. These levels are split further by electron 
repulsions. 
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UNIT-17 

Structure of the Unit 

17.0  Objectives 
17.1  Introduction 
17.2  Experimental Set-up for studying Zeeman Effect 
17.3  Explanation of normal Zeeman Effect 
17.4  Zeeman Effect in Hydrogen 
17.5  Illustrative Examples 
17.6  Self-Learning Exercise-I 
17.7  Explanation of Anomalous Zeeman Effect 
17.8  Sodium Zeeman Effect 
17.9  Paschen-Back Effect 
17.10  Transition from Weak to Strong Field 
17.11  Zeeman Effect in Some Transitions (examples) 
17.12  Illustrative Examples 
17.13  Self-Learning Exercise-II 
17.14  Summary 
17.15  Glossary 
17.16  Answers to Self-Learning Exercises 
17.17  Exercise 
17.18  Answers to Exercise 

           References and Suggested Readings  

17.0 Objectives 
To describe an atom we have to give a unique set of discrete energy states. When 
that atom gets excited through heating or some other way, the atom makes 
transitions between these quantized energy states. When atom (electron) comes 
back to ground state it emits a photon (light). If we record the emitted photon on a 
screen, we get a spectrum which shows the quantized nature of energy levels. 
When we apply magnetic field to it, these energy levels  can  shift  from  original 

 Zeeman  Effect and Paschen -Back Effect 
UNIT-17 

 Zeeman  Effect and Paschen -Back Effect 

17.0 Objectives 
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state. This effect is known as Zeeman Effect. 
 Dutch physicist Pieter Zeeman studied this effect for splitting of spectral 
lines into several components in the presence of a static magnetic field. In 1896, 
Zeeman observed that when a sodium source was placed in an external magnetic 
field, the yellow D lines were split into several components. Faraday had 
performed the same experiment some thirty years earlier, but had failed to observe 
an effect because of low resolution of his spectrograph. Splitting of spectral lines 
was predicted by Faraday on the basis of classical theory by Lorentz and first 
observed by Zeeman. This effect is named after Pieter Zeeman as Zeeman Effect 
and he shared 1902 Nobel Prize in Physics with Hendrik Lorentz. 

17.1   Introduction 
 When we look at a light source with line spectrum, which is placed in an 
external magnetic field, the spectral lines emitted by the atoms of the source will 
split into a number of polarized components. If we put the magnetic field than the 
splitting will be proportional to the strength of applied magnetic field. Due to 
Zeeman Effect some degenerate energy levels will split into several non-
degenerate energy levels with different energies and due to this effect we get few 
new transitions which can be seen as new spectral lines in the atomic spectrum. 
 We look at the singlet spectral line right angles to the magnetic field 
direction than it will split into three plane-polarized components: un-shifted central 

line in which electric vector is vibrating parallel to the magnetic field (called ߨ 
component) and two other lines equally displaced on both sides with electric vector 
vibrating perpendicular to the magnetic field (called ߪ components). This effect in 
known as ‘normal’ Zeeman Effect and it is called a 'normal triplet'. 
 

 

 

 

 

 
Fig 1 Multiplet spectral lines, (i) it shows Normal triplet, (ii) D1 and D2 
component of sodium line.  
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17.1 Introduction 
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 If we measure the fine-structure components of a multiplet spectral line, we 
get complex Zeeman pattern. For example, due to Zeeman effect D1 and D2 
components of sodium yellow doublet split in four and six lines respectively. This 
effect is known as ‘anomalous’ Zeeman effect. Zeeman splitting is smaller in 
comparison to fine-structure splitting. 

17.2 Experimental Set-up for studying Zeeman Effect 
 To make experimental setup for studying Zeeman Effect, we need high 
resolving power and large light-gathering power. Schematic diagram of constant-
deviation prism spectrometer arrangement is given in figure 2.  

 

 

 

 

 

Fig 2.Schematic diagram of constant-deviation prism spectrometer 
arrangement. 

Here (in figure 2), T is a neon discharge tube (line source) placed between the 
poles of an electromagnet. (If we want to look at another spectrum like cadmium 
lamp, sodium etc., then we have to use corresponding lamp)C is positive lens 
which is also known as condenser lens. Lens should be adjusted in the position that 
the light coming from the capillary part of the tube can be focused on the slit of the 
collimator of the spectrometer. A high resolving optical device should be kept 
between the collimator and constant deviation prism. In above setup, we kept a 
Lummer-Gehreke plate (L-G plate)as a high resolving optical device. A telescope 
is fitted with a micrometer eyepiece to measure the light emerging from the prism. 
It emerges at the right angles to its initial direction. 

For the above setup, we have to follow these steps: 

(i) In first step, we keep the electromagnet off. Remove the focusing (condenser) 
lens C, L-G plate and micrometer eyepiece. In this state collimator slit will be 
fairly wide opened. In telescope, we can see images of pole-pieces and the 
neon tube. The pole-piece and the neon tube are so adjusted that the image of 

 

T 

Collimator 
Lummer-Gehrcke 

Plate 

Constant Deviation Prism 

Telescope 

Micrometer 

C 

17.2 Experimental Set-up for studying Zeeman Effect 
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the pole-piece appears central in the field of view, and the neon tube is 
symmetrical between the pole-pieces. 

(ii) Put the focusing lens C in between the electromagnet and slit of the collimator, 
such that it’s aperture is fully illuminated. The image of the aperture should 
fill the field of view. The micrometer eyepiece should be kept in position and 
focused on the crosswire. Now, on looking through it, a bright spectrum of 
neon light is seen. 

 

 

 

 

 

 

 

(iii) Mount the L-G plate on its stand which is kept in position on the spectrograph. 
Look through the eyepiece, each spectral line shows a few orders. We can 
adjust the plate in various directions using screws. To get bright and sharp 
fringe-system, we have to fairly rotate the screws. 

(iv) Recognize the singlet yellow line (λ = 5852 Å) of the spectrum and set the 
cross-wire on a few successive orders (fringes). We have to take micrometer 
reading. 

(v) Now, switch on the electromagnet and adjust the current on the scale where 
we can get the magnetic field about 4000 Gauss. Each order will split into 
three components: one, which is not displaced from the original line and other 
two will be symmetrically displaced. By putting the crosswire on each 
(displaced and not displaced line) we can take these reading through 
micrometer. 

(vi) Change the value of current to get the spectrum on another magnetic field and 

Fig 3. View at eyepiece.(i)Before switching on electromagnet.(ii) After 
switiching on electromagnet. 

 

b 

a 

b 

a 

(i) (ii) 
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repeat the process. For example magnetic field is 7000 Gauss and 10k Gauss. 

Now, we have to perform the same process for singlet red line (λ = 6266 Å) of 
the neon spectrum. 

17.3 Explanation of Normal Zeeman Effect 
 All lines due to transition between the singlet (S = 0) states of an atom or 
the normal Zeeman Effect can be explained from the classical electron theory. It 
can be also explained from the quantum theory with the ignorance of electron spin. 

 In quantum theory, an atom with electrons more than one possesses an 
orbital angular momentum ܮሬሬ⃗  with an orbital magnetic moment ߤ௅ሬሬሬሬሬ⃗ . A ratio known as 
gyromagnetic ratio (or sometimes magnetogyric ratio; ratio of magnetic moment to 
angular momentum of a particle) can be given by 

ቤ
௅ሬሬሬሬ⃗ߤ
ሬ⃗ܮ

ቤ =
݁

2݉ 

Here e is the charge of an electron (1.6 × 10ିଵଽ ܥ) and m is the mass of elctron. 
Magnetic moment and angular momentum of an electron have opposite in direction 
because the elctron is a negatively charged particle. 
 When we put an atom in an external magnetic field ܤሬሬሬ⃗  (say along Z-axis), 
then the angular momentum of vector ܮሬ⃗  will precess around the field direction with 
quantized components. These components can be given by 

௭ܮ =
ℎ

ߨ2 = ℏ 

 

 

 

 

 

 

 

Fig 4. Directions of  ߤ௅ሬሬሬሬ⃗  and  ܮሬ⃗ , when atom is kept in magnetic field ܤሬ⃗ . 

where the ML is magnetic orbital quantum number which can have values: 
 ML = L, L-1, …., -L, 

 

ሬ⃗ܮ  

ሬሬሬሬ⃗ܮߤ  

17.3 Explanation of Normal Zeeman Effect 
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So, total number of values of ML is (2L + 1). This precession is known as 'Larmor 
precession', this implies that in a magnetic field, each L-level will split in (2L + 1) 
levels and each characterized by a ML value. 
According to Larmor’s theorem, the angular velocity of precession is given by 

߱ = ቤ
௅ߤ

ሬ⃗ܮ
ሬሬሬሬ⃗

ቤ ܤ  =
݁

2݉
 .ܤ

Interaction energy of such precession can be calculated by multiplying the angular 
velocity and the projection of angular momentum ܮሬ⃗  along magnetic field. In this 
case it is z-component of ܮሬ⃗  because magnetic field is along z-axis. So, interaction 

energy is: Δܧ = ௭ܮ߱ = ௘
ଶ௠

௅ܯܤ
௛

ଶగ
 

⇒ ΔE =
eh

4πm  ௅ܯܤ 

Interaction energy as a function of wave number is 

−Δܶ =
Δܧ
ℎܿ =

ܤ݁
ܿ݉ߨ4  ௅ܯ

Since, magnetic field B is uniform or same for all levels for a given atom, so, we 
can write 

−Δܶ =
Δܧ
ℎܿ =

ܤ݁
ܿ݉ߨ4  ௅ܯ

Where L' is called ‘Lorentz unit’. So, for each level ܯ௅, change in energy from its 
original level is ΔT and it is proportional to the magnetic field B. Here L' is the 
wave-number separation between any two consecutive Zeeman levels for any 
value of L. 
  

 

 

 

 

 

 

 

 

Fig 5. Transition 1D2 – 1P1 (L = 2 to L =1 transition) 
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Now, consider transition 1D2 – 1P1.   1D2 corresponds L = 2 and S = 0, 1P1 
correspond to L = 1 and S = 0 states. So, in simple words we can say transition 
from L = 2 to L = 1 transitions. In presence of weak magnetic field  these will split 
into (2 L + 1) levels. So, respectively it will split into 5 and 3 equidistant energy 
levels. Corresponding ML values are 2, 1, 0, -1, -2; for L = 2 and 1, 0, -1 for L = 1. 

 There are only few optical transitions are possible. These transition rules 
are known as selection rules. These rules for magnetic quantum number (ML) can 
be derived by quantum mechanics. For this process selection rules are: 

Δܯ௅ =  ൜ ߪ ݎ݋݂   ,1 ± − ݐ݊݁݊݋݌݉݋ܿ
  0, ߨ ݎ݋݂ −  ݐ݊݁݊݋݌݉݋ܿ

From this rule, we get nine-transitions but Zeeman splitting is same for transitions 
corresponding to ΔML correspond in wave number. So, in this case we get only 
three component line which is a normal triplet pattern. From selection rules, we get 
one component in the position of the field line, known as π-component and two 
symmetrically displaced σ-components. Separation between consecutive Zeeman 
levels is equal to the wave-number separation between consecutive components. 
Wave-number separation is given by 

Δ߭ = ᇱܮ =  
ܤ݁

 ܿ݉ߨ4

Putting e = 1.6 × 10-19 C,  m = 9.1 × 10-31 kg and c = 3×108 m/s,  

we get Δ߭ = 46.7 B /m 

where B is in Tesla (N/A-m). 
Other than selection rules, quantum mechanics give us the information of 
polarization rules also. Transition ΔML = 0 results in spectral line polarized with 
the electric vector parallel to magnetic field (π-component). While transition    
ΔML = ± 1 gives lines polarized with electric vector perpendicular to magnetic field 
(σ-component). 

 Both σ-components together have the same intensity as the π-component 
has. This intensity ratio of the components can be derived from the correspondence 
principle. Thus, the normal Zeeman Effect is fully explained. 

17.4   Zeeman Effect in Hydrogen 

When an external magnetic field is applied, sharp spectral lines like the n=3→ 2 
transition of hydrogen split into multiple closely spaced lines. This splitting comes 

17.4   Zeeman Effect in Hydrogen 
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from the interaction between the magnetic field and orbital angular momentum 
associated with magnetic dipole moment. In absence of the magnetic field, energy 
levels in hydrogen atom  depend only upon principle quantum number n. So, 
emitted light will be with same wavelength. 

 

 

  

  

 

  

 

                                   Fig 6. Zeeman splitting in Hydrogen 
Here selection rules are same as in previous section. Allowed values of change in 

magnetic quantum numbers ΔML  are ±1 and 0. 
17.5 Illustrative Examples 

Example 1: Calculate the number of energy levels corresponding to energy level          
n = 3 or E3 = −E0/9. 

Sol. For hydrogen atom, energy eigenvelues depend only on principle quantum 
number n.  For any value of principle quantum number there are l number of 
orbital angular momentum (L = 0, 1, 2, …n – 1). For every value of L, there are   
2L + 1 different magnetic quantum states. So: 

For n = 3: There are 3 values of L = 0, 1 , 2 and there corresponding 
magnetic quantum numbers are {0},{ –1, 0, +1}, {–2, –1, 0, 1, 2}   respectively. 

So, there are 1 + 3 + 5 = 9 degenerate states. In absence of external 
magnetic field, all states are same energy but different quantum numbers. 

Example 2: Calculate the value of the Bohr magneton for energy difference 
between ml = 0 and +1 components of 2P state of atomic Hydrogen placed in 2T 
magnetic field. 

Sol.  Bohr magneton is  ߤ஻ = ௘ℏ
ଶ௠

 

ML 

1 
0 
-1 

n  =  3 

n  =  2 

 
 ML 

   2 
   1 
   0 
  –1 
  –2 

Magnetic field off 

 

 

17.5 Illustrative Examples 
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=
(1.6 × 10ିଵଽ1.05)(ܥ × 10ିଷସ ܬ − (ݏ

2(9.11 × 10ିଷଵ݃ܭ) = 9.27 × 10ିଶସܬ/ܶ 

So the splitting energy Δܧ = ௅ܯΔܤ஻ߤ  = 1.16 × 10ି଴.ସܸ݁ 

17.6 Self-Learning Exercise-I 
Q.1 Give electronic structure of neon. (Use standard notations). 
Q.2 A hydrogen atom is placed in a 2T magnetic field. Considering normal 

Zeeman Effect for splitting of n = 2 and n = 3 levels. 

(a)What is the separation in energy between adjacent ML levels for the       
same L? 

(b)How many different wavelengths will be there for 3D to 2P transitions, if 
allowed values of change in ML are only 0, ±1 ? 

Q.3 An atom emits a photon with wavelength 600 nm with transition from L = 1 
state to L = 0 state. Determine the shifts in the enrgy levels and in the 
wavelength resulting from the interaction of the magnetic field 2T and the 
atom's orbital magnetic moment. 

17.7 Explanation of Anomalous Zeeman Effect 
When we look at the spectral lines, from the transition between components of 
multiplet levels (closely spaced spectral lines), we get complex Zeeman pattern. 
The explanation of this anomalous Zeeman Effect can be done considering electron 
“spin”. 

Anomalous Zeeman Effect was discovered by Thomas Preston in Dublin in 1897. 
It can be observed in atoms with non-zero spin or atoms with odd number of 
electrons. 

It is happening because of L-S coupling which is also known as spin-orbit 
interaction. Coupling of spin and angular momentum gives us total angular 
momentum. According to vector model of atom, orbital angular momentum vector 
and spin angular momentum precesses more rapidly about total angular 
momentum ⃗ܬ. If we apply magnetic field B then ܬሬሬ⃗  precesses about magnetic field 
vector at the Larmor frequency. 

When an atom is placed in a weak magnetic field, which does not decouple ܮሬ⃗  
and ܵ⃗, along the Z-axis, the magnetic moment of the atom associated with the total 

17.6 Self-Learning Exercise-I 

17.7 Explanation of Anomalous Zeeman Effect 
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angular momentum causes the vector ⃗ܬ to precess slowly around the magnetic field. 
The motion is quantized such that the projection of ⃗ܬ along the field direction, Jz 
takes discrete values given by MJ (h/2π), where 

   MJ = J, J-1, J-2, …,–J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Anomalous Zeeman Effect: total magnetic moment ⃗ߤ=) ߤ௅ሬሬሬሬ⃗ + ௌሬሬሬሬ⃗ߤ ) is not 
exactly antiparallel to ⃗ܬ 

Total values of MJ will be 2 J + 1. Due to precession of  ⃗ܬ around ܤሬ⃗   we get a 
small change in energy of atom and its discrete orientations break each (fine-
structure) J-level into (2 J + 1) Zeeman levels. The separation between the Zeeman 
levels depends on the strength of the magnetic field and the total magnetic moment 
of the atom. 
 To calculate the separations between Zeeman levels, let us consider the 
simplest case of a single valence-electron atom. Since atom has single valence-
electron, so that valence electron is alone responsible for the angular momentum 
and the magnetic moment of the atom. Classically the gyromagnetic ratio is ௘

ଶ௠
. 

Since this is the ratio of orbital magnetic moment |ߤ௅ሬሬሬሬ⃗ | and angular momentum ܮሬሬ⃗ . 

ሬ⃗ܤ  
z 

ܵ⃗ 

Jz 
 ܬ⃗

ሬ⃗ܮ  

ሬሬሬሬ⃗ܮߤ  

µJ ⃗ߤ 

ሬሬሬሬ⃗ܵߤ  
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Similarly, for studying anomalous Zeeman effect, we require ratio of spin magnetic 
moment |ߤௌሬሬሬሬ⃗ |  and spin angular momentum หܵ⃗ห. This ratio is confirmed with 
quantum mechanics as twice of that of ܮሬ⃗ . Because of this inequality of these ratios, 
total magnetic moment ߤሬሬሬ⃗ ௅ሬሬሬሬ⃗ߤ=)  + ௌሬሬሬሬ⃗ߤ ) will not exactly antiparallel to ⃗ܬ. 

 Since total angular momentum is invariant, ܮሬሬ⃗ ௅ሬሬሬሬ⃗ߤ ,⃗ܵ , ௌሬሬሬሬ⃗ߤ ,  and ߤ ሬሬሬ⃗  precess 
around ⃗ܬ. In this precession, component of magnetic moment vector perpendicular 
total angular momentum will have continual change in direction which gives 
average to zero. Only parallel component remains a constant of magnitude μ୎. 
Magnetic moment of atom is also due to parallel component. Thus 

௃ߤ          = component of ߤ௅ሬሬሬሬ⃗  along J⃗ + component of ߤௌሬሬሬሬ⃗  along ⃗ܬ 

    = ௅ሬሬሬሬ⃗ߤ| | cos(ܮሬ⃗ , (ܬ⃗ + ௌሬሬሬሬ⃗ߤ| | cos൫ܵ⃗,  ൯ܬ⃗

     = ௘
ଶ௠

หܮሬ⃗ ห cos൫ܮሬ⃗ , ൯ܬ⃗ + ଶ௘
ଶ௠

หܵ⃗ห cos൫ܵ⃗,  ൯ܬ⃗

 But   หܮሬ⃗ ห = ඥܮ)ܮ + 1) ௛
ଶగ

 

 and   หܵ⃗ห = ඥܵ(ܵ + 1) ௛
ଶగ

 

 So,  

௃ߤ =  
݁

2݉
ቂඥܮ)ܮ + 1) cos൫ܮሬ⃗ , ሬሬ⃗ܬ  ൯ + ඥܵ(ܵ + 1) cos൫ܵ⃗, ൯ቃܬ⃗

ℎ
 ߨ2

Vectors ܮሬሬ⃗ , ܵ⃗ and ⃗ܬ make an obtuse-angled triangle, so using triangle property, we 
have by cosine law 

          cos൫ܮሬ⃗ , ൯ܬ⃗ = ௃(௃ାଵ)ା௅(௅ାଵ)ିௌ(ௌାଵ)
ଶඥ௃(௃ାଵ)ඥ௅(௅ାଵ)

 

and 

cos(ܵ⃗,   ⃗ܬ) =
ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

2ඥܬ)ܬ + 1)ඥܵ(ܵ + 1)
 

So,  

௃ߤ =
݁

2݉
ቈ
ܬ)ܬ + 1) + ܮ)ܮ + 1) − ܵ(ܵ + 1)

2ඥܬ)ܬ + 1)
+

ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

2ඥܬ)ܬ + 1)
቉ ℏ 

            =
݁

2݉
ቈ
ܬ)ܬ + 1) + ܮ)ܮ + 1) − ܵ(ܵ + 1)

ܬ)ܬ2 + 1)

+
ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

ܬ)ܬ + 1) ൨ ඥܬ)ܬ + 1)ℏ 
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=
݁

2݉
ቈ1 +

ܬ)ܬ + 1) + ܮ)ܮ + 1) − ܵ(ܵ + 1)
ܬ)ܬ2 + 1)

+
ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

ܬ)ܬ2 + 1) ൨ ඥܬ)ܬ + 1)ℏ 

The quantity inside the brackets was first described by Alfred Lande in 1921. It is 
named after him and known as ‘Lande g-factor’, that is 

݃ =
݁

2݉
ቈ1 +

ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)
ܬ)ܬ2 + 1) ቉ ඥܬ)ܬ + 1)

ℎ
 ߨ2

Relative separation of Zeeman levels for different terms can be directly explained 
with g-factor. The expression for g-factor for a multi-electron atom under L-S 
coupling is same as explained in previous sections. 

The expression for the total magnetic moment of the atom now becomes 

௃ߤ =  ݃
݁

2݉ ඥܬ)ܬ + 1)
ℎ

ߨ2 = ݃ 
݁

2݉
ห⃗ܬห. 

Let us now calculate the magnetic interaction energy. From the previous 
expression, we get 

௃ߤ

ห⃗ܬห
= ݃

݁
2݉. 

So, ratio of total magnetic moment to the total angular momentum in states can be 
determined by g ,where the angular momentum is partly orbital and partly spins. 
(for S = 0 and so J= L, g = 1; for L = 0 and so J = S, g =2). 

 From Larmor's theorem, angular velocity (or angular frequency) of 

precession of  J⃗ around the magnetic field Bሬሬ⃗  is 

߱ =
௃ߤ

ܬ⃗
ܤ = ݃

݁
2݉  .ܤ

The energy of precession is equal to product of the projection of J⃗ along Bሬሬ⃗  and the 
angular velocity. In our case magnetic field is along Z-axis, so projection of total 
angular momentum along magnetic field is the z-component of total angular 
momentum. That is : 

௭ ܬ = ௃ܯ
ℎ

 .ߨ2

Thus     Δܧ = ௓ܬ߱ = ݃ ௘
ଶ௠

௃ܯܤ
௛

ଶగ
 

            ⇒ Δܧ = ௃ܯ݃
݁ℎ

݉ߨ2  .ܤ
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Interaction energy, in terms of wave-number is 

−Δܶ =
Δܧ
ℎܿ = ௃ܯ݃

ܤ݁
 .ܿ݉ߨ4

Here  
ୣ୆

ସ஠୫ୡ
 is the Lorentz unit L'. Thus 
ܶ߂− =  .′ܮ௃ܯ݃

This is the expression the Zeeman shift of a single valance electron system. This is 
also for the weak-field magnetic interaction energy. The expression for the atoms 
having two or more valence electrons under L–S coupling is same as one-electron 
system. For one-electron system, we can see that each J-level splits into (2 J + 1) 
equal energy spaced Zeeman levels corresponding to the possible values of MJ. 
The Zeeman splitting depends on the value of g for different levels or we can say it 
is different for different J-levels. This means that the relative separations of the 
Zeeman levels of one term and those of another can be determined by the g-factor 
alone. 
 Let us consider the Zeeman splitting of sodium of the resonance lines D1 
and D2. These lines arise from the transitions 

2ܲଵ
ଶ

→  2ܵଵ
ଶ

 and  2ܲଷ
ଶ

 →  2ܵଵ
ଶ
 

We know that 

݃ = 1 +
ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

ܬ)ܬ2 + 1)  

So, the Zeeman levels, g-factors and the Zeeman shifts for the involving terms in 
these transitions are as follows: 

Terms No. of Zeeman 
levels 
(2J+1) 

g ܯ௃ 
(+J, …. J) 

Shift in  
Lorentz unit  

 ௃ܯ݃

2ܵଵ
ଶ

 

൬ܮ = 0, ܵ =
1
2, ܬ =

1
2൰ 

2 2 4
3 

±1 

2ܲଵ
ଶ

 

൬ܮ = 1, ܵ =
1
2, ܬ =

1
2൰ 

2 2
3 

4
3 ±

1
3 
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2ܲଷ
ଶ

 

൬ܮ = 1, ܵ =
1
2, ܬ =

3
2൰ 

4 4
3 ±

3
2 , ±

1
2 ±2, ±

2
3 

The splitting of these terms has been displayed in figure bellow: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.ܶ2ܲ ݉݋ݎ݂ ݏ݊݋݅ݐ݅ݏ݊ܽݎభ
మ

→  2ܵభ
మ
   ܽ݊݀  2ܲయ

మ
 →  2ܵభ

మ
. 

Applying the selection rules 
௃ܯ߂  = 0, ±1 (but ܯ௃ = 0 ↮ ௃ܯ = 0 if ܬ߂ = 0) 

We obtain that the D1 line will split in four Zeeman components and the D2 line 
splits in six components. The components corresponding to Δܯ௃ = 0 will polarize 
with electric vector perpendicular to the field (σ-components). 

 The intensities of the Zeeman components given by following rules: 

(i) The sum of all the transitions starting from any initial Zeeman level is equal to 
the sum of all transitions starting from any other level having the same 

2P3/2 

2P1/2 

D1 D2 

2S1/2 

D1 D2 

π 

 

MJ          gMJ 
 3/2           2 
1/2          2/3 
–1/2       –2/3 
–3/2         –2 

1/2          1/3 
–1/2     –1/3 

1/2          1 
–1/2     –1 
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principle quantum number n and azimuthal quantum number l values. 
(ii) The sum of all transitions arriving at any Zeeman level is equal to the sum of 

all transitions arriving at any other level having the same principle and 
azimuthal values. 

17.8   Zeeman Effect in Sodium 
Sodium light consists bright doublet which is responsible for the bright yellow 
light. This can be used to demonstrate several influences. From this we can study 
splitting of the emission lines of atomic spectra. We get doublet from the transition 
from 3P to 3S levels. These are same as in hydrogen atom. Since principal 
quantum number is same and only there is a change in orbital quantum number.  
3S (orbital quantum number is 0) is lower than the 3P (L = 1). So, it is also a good 
example of the dependence of atomic energy levels on angular momentum. The 3S 
electron is effectively less shielded than the 3P electron, so the 3S level is more 
tightly bound. Here doublet shows the smaller dependence of the atomic energy 
levels on the total angular momentum. Because of magnetic energy of the electron 
spin, in the presence of the internal magnetic field caused by orbital motion, the 3P 
level splits into two states with total angular momentum J = 3/2 and J = ½. This 
effect is known as spin-orbit effect. If we apply additional external magnetic field, 
these levels will split further by the magnetic interaction. It depends on the 
energies on the z-component of the total angular momentum. This splitting gives 
the Zeeman effect for sodium. 

17.9 Paschen-Back Effect 
 Paschen-Back Effect is the splitting of atomic energy levels in the presence 
of strong magnetic field. To observe this effect magnetic field should be 
sufficiently large to disrupt the coupling of orbital angular momentum and spin 
angular momentum. 

External magnetic field in the Zeeman Effect is weak in comparison to the internal 
fields due to spin angular momentum and orbital motion of valence electrons of 
atom. However the strength of external magnetic field is not sufficient to disrupt 
spin-orbit coupling. If we increase the strength of external magnetic field, 
separations between multiplet fine structure components increase. For more 
magnetic field it will increase more and up to the separation become greater than 

17.8  Zeeman Effect in Sodium 

17.9 Paschen-Back Effect 
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fine-structure components. The anomalous Zeeman pattern then changes again like 
a normal Zeeman pattern. This is the condition when spin-orbit coupling is 
disrupted by external magnetic field. This process can be explained in the 
following way:  

 

 

 

 

 

 

 

Fig 9. Cartoon diagram for showing respective direction of ܮሬ⃗  and ܵ⃗ and their 
components. 
When we apply external magnetic field stronger than the internal fields, the 
magnetic coupling between total angular momentum and external magnetic field 
exceeds the coupling of spin-orbit. The precession of  ⃗ܬ about ܤሬ⃗  become faster 
then ܮሬ⃗  and ܵ⃗ precession about  ⃗ܬ. When we apply these conditions than    ܮሬ⃗ − ܵ⃗ 
coupling will partially break down which implies that  ⃗ܬ is not fixed in magnitude 
any more. If we increase magnetic field  ܤሬ⃗  more than  ܮሬ⃗  and  ܵ⃗ start precessing 
independently about ܤሬ⃗ . In this state their quantized components along field 
direction (here we took it in Z-axis) will be  L୸ and ܵ௭. Magnitudes of these 
components will be  ܯ௅ℏ and  Mୗℏ respectively and magnetic quantum numbers  
M୐ and  Mୗ will have discrete values as follows: 

௅ܯ = ,ܮ   ܮ − 1, ܮ − 2, … . ,  ܮ−
and             ܯௌ =   ܵ, ܵ − 1, ܵ − 2, … . , −ܵ 

By Larmor's theorem, the angular velocities of any precession are given by the 

product of magnetic field and corresponding ratio of magnetic moments with the 

angular momenta. So for ܮሬ⃗  and ܵ⃗ 

߱௅ =
݁

2݉ and     ߱ௌ    ܤ = 2
݁

2݉  ܤ

ሬ⃗ܤ   

z 

Sz ܵ⃗ 

Lz ܮሬ⃗  
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Since the energy of any precession is equal to the product of the projection of the 
corresponding angular momentum vector along the magnetic field direction and 
angular velocity. That is 

ΔE୐ = ߱௅ܮ௓ =
݁

2݉ ௅ܯܤ
ℎ

 ߨ2

 and  ΔEୗ = ߱ௌܵ௓ = 2 ௘
ଶ௠

ௌܯܤ
௛

ଶగ
 

Main energy shift ΔE from unperturbed energy level is the sum of these two 
interaction energies. So, 

Δܧ = Δܧ௅ + Δܧௌ 

= ௅ܯ) + (ௌܯ2
ܤ݁

 ,ܿ݉ߨ4

Or in Lorentz unit of   ௘஻
ସ௠௖

, 
−Δܶ = ௅ܯ) +  ′ܮ(ௌܯ2

This expression is for strong magnetic field interaction energy, where we  
ignore spin-orbit interaction at all. It shows that each free level will shift into 
(2L + 1)(2S + 1) magnetic levels. Because(2L + 1) values comes from M୐ and 
(2S + 1) from Mୗ. 

As a specific example, in strong magnetic field, let us consider the transitions 
2P → 2S 

This transition is responsible for the D1 and D2 lines of sodium 2Pభ
మ

→ 2Sభ
మ
. In 

presence of strong magnetic field, these levels and magnetic shifts for multiplet 
terms are given in following table: 

Term No. of strong-field 
levels 

ܮ2) + 1)(2ܵ + 1) 

 ௌ Shift in Lorentzܯ ௅ܯ
unit (ܯ௅ +  (ௌܯ2

2Pቀܮ = 1, ܵ = ଵ
ଶ
ቁ 6 1, 

0 

-1 

½, - ½ 

½, - ½ 

½, - ½ 

2, 0 

1, ‒1 

0, ‒2 

2S ቀܮ = 0, ܵ = ଵ
ଶ
ቁ 2 0 ½, - ½ 1, ‒1 

The strong-field splitting of the terms and have been shown in figure bellow:  
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Fig 10.Strong field splitting of the terms 2P and 2S 

Selection rules in presence of a strong field for above transitions are: 

  ΔM୐ = 0 (Components polarized parallel to the field) 

  ΔM୐ = ±1 (Components polarized perpendicular to the field) 

  ΔMୗ = 0. 
When these selection rules are applied we get a pattern same as a normal Zeeman 
triplet. 

Spit-Orbit Correction: In practice, the residual spin-orbit coupling changes the 
relative energies of the components of different terms. Due to this we can add a 
small term  aM୐Mୱ in the expression for the magnetic interaction energy. Now 
interaction energy in Lorentz term will become 

−ΔT = (M୐ + 2Mୗ)L′ + aM୐Mୗ. 

This implies that each of two σ-components of normal Zeeman triplet will split in 

narrow doublet, triplet and so on. In this  2P → 2S transition, each σ-component 
will split into a doublet with a separation just two-thirds that of the field-free 
double. 

 

2P3/2 

2P1/2 

2P 

2S 

(ML + 2MS)    ML      MS 
       2                 1        ½ 
       1                  0        ½ 
       0, 0          –1,1      ½, –½ 
      –1                0       –½  
      –2               –1      –½  

 1            0         ½ 
 
–1            0      –½ 

σ σ 
π 
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Fig 11. Strong-Field Pattern with Spin-Orbit Coupling 

 Experimentally, the Paschen-Back effect has been observed for very narrow 
multiplets only. For example Li doublet having a field-free separation of 
0.34ܿ݉ିଵ.Since ordinarily available magnetic field, for example 4.3Tesla magnetic 
field can produce a magnetic splitting of about 2 ܿ݉ିଵ and Paschen-Back Effect 
occurs when the magnetic splitting exceeds the fine-structure (field-free) splitting. 
So, for Li doublet it is larger than the fine-structure splitting. Because of this 
Paschen-Back effect can easily be observed. For sodium resonance doublet 
(17ܿ݉ିଵ) fine-structure splitting is much higher. So, to observe this effect in 
sodium, we need an abnormally large field. 

 Here we have already considered the cases when the external field is either 
very weak (Zeeman effect) or very strong (Paschen-Back effect) as compared to 
the internal field in the atom. For intermediate fields (comparable with internal 
field) complicated patterns are obtained. 

17.10 Transitions from Weak to Strong Field  
 The number of magnetic levels into which a given state is split doesn’t 
depend on the magnetic field strength. This number is called the ‘quantum weight’. 

 In a weak field, a level with a given inner quantum number J will split into 
ܬ2) + 1)levels where orientations of J in external magnetic field is (2ܬ + 1). In 
case of an atom with one valance electron, J can have only two values ܮ + ଵ

ଶ
 and 

ܮ − ଵ
ଶ
, so that level will split into 

൜2 ൬ܮ +
1
2൰ + 1ൠ + ൜2 ൬ܮ −

1
2൰ + 1ൠ = ܮ4 + 2 

levels. In a strong field, L alone has (2ܮ + 1)orientations and for each of these, S 
has (2ܵ + 1), giving altogether 

ܮ2)   + 1)(2ܵ + 1) = ܮ4 + 2   [Since S = ½] 

levels, same as in a weak field. 

 

π 

σ 

17.10 Transitions from Weak to Strong Field  
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Fig12.Transition of the magnetic levels corresponding to the states 2S½,2P½ and 2P3/2. 

In a weak field, we characterize each of the magnetic levels by the quantum 
numbers J and MJ while in a strong field ML and MS are the characteristic quantum 
numbers. Now, we have to look at the levels J and MJ , which reread a particular 
level with ML and MS when the field is increased. Here, things to be noted  that the 
sum of the projections of the angular momentum vectors on magnetic field does 
not change. In presence of weak field this projection is MJ and in presence of a 
strong magnetic field it is ML+  MS. Hence the first rule of transition is 

௃ܯ = ௅ܯ +  ௌܯ

 This is insufficient to correlate all weak and strong field levels. Since there 
are cases when there are more than one level with the same value of MJ. Hence 
next restriction is that there will not be any two levels with the same MJ cross each 
other. 

17.11 Zeeman Effect in Some Transitions (examples) 

(i) 1F3 − 1D2:  It is a singlet-singlet transition. It will give a normal Zeeman 
triplet. 

 

 

2P3/2 

2P1/2 

2S1/2 

MJ 
  3/2  

 ½  
 –½  
 –3 /2 
  ½  
 –½  

 

ML        MS 
+1         +½ 
 
0           +½ 
 
–1         +½ 
+1         –½ 
 
0          –½ 
–1        –½ 

 

0          +½ 
 
 
0          –½ 

17.11 Zeeman Effect in Some Transitions (examples) 
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Fig 13.Splitting of 1F3 – 1D2, single-singlet transition. 

The terms 1F and 1D correspond to L = 3 and L = 2 respectively. In presence of a 
weak magnetic field it will break into (2L + 1) = 7 and 5 Zeeman components 
respectively. The ܯ௅ values characterizing the Zeeman levels are 3, 2, 1, 0, -1, -2,  
-3 and 2, 1, 0, -1, -2 respectively. 

Since for singlet terms (S = 0, J = L) the Lande g-factor is 1. The separation 
between consecutive Zeeman levels is the same for both terms equal to one 
Lorentz unit. The splitting of the terms is shown in figure . 

The selection rules Δܯ௅ = 0, ±1. From these rules we get 15 transitions. Since 

the Zeeman splitting is same for both terms so, all transitions corresponding to 
same 

 ML 
+3 
+2 
+1 
  0 
–1 
–2 
–3 

1F 

1D 

NO FIELD FIELD 
σ σ 

π 

+2 
+1 
  0 
–1 
–2 
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Δܯ௅ coincide in wave number. Hence we obtain only three Zeeman  component  

lines;  the π-component  corresponding to Δܯ௅ = 0  and two  π-components 

corresponding to Δܯ௅ = ±1 . This is normal Zeeman triplet. 

(ii) ૛ࡰ૜
૛

− ૛ࡼ૚
૛
: It is a doublet-doublet transition. So, the Zeeman pattern would 

be anomalous. The weak-field interaction energy of a one-electron atom is given 
by 

ܶ߂ =  ,′ܮ௃ܯ݃

where L' is the Lorentz unit. The Lande g-factor is 

݃ = 1 +
ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

ܬ)ܬ2 + 1)  

The Zeeman levels, g-factors and the Zeeman shifts for the given terms 2ܲభ
మ
  and 

యܦ2
మ
 are as follows: 

 Term No. of Zeeman 
levels 

(2J +1) 

g ܯ௃ 

(+J, …. –J) 

Shift in L' unit g 
MJ 

2ܲଵ
ଶ

 

൬ܮ = 1, ܵ =
1
2 , ܬ =

1
2൰ 

2 2
3 

1
2 , −

1
2 

1
3 , −

1
3 

ଷܦ2
ଶ

 

൬ܮ = 2, ܵ =
1
2 , ܬ =

3
2൰ 

4 4
5 

2
3 

6
5 ,

2
5 , −

2
5 , −

6
5 

 

The splitting of these terms has been displayed in figure14: 

The selection rule is ܯ߂௃ = 0, ±1. 

There are in all six allowed transitions ,hence six Zeeman components. Transitions 

corresponding to Δܯ௃ = 0 give π-components polarized parallel to the magnetic 

field and transitions corresponding to Δܯ௃ = ±1 give σ-components polarized 
perpendicular to the field as shown in the energy level diagram. 
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Fig 14. Zeeman shifts for the given terms 2ܲభ
మ
 and 2ܦయ

మ
, doublet-doublet transition 

(iii) ૛ࡰ૞
૛

− ૛ࡼ૜
૛
: It is again a doublet-doublet transition so that the Zeeman 

pattern would be anomalous. 

The Zeeman levels, g-factors and the Zeeman shift for the given terms 2ܲయ
మ
 and 

ఱܦ2
మ
 are as follows: 

Term No. of 
Zeeman 
levels 

(2J +1) 

g MJ 

(+J, …. –J) 

Shift in L' unit  

g MJ 

2ܲଷ
ଶ

 

൬ܮ = 1, ܵ =
1
2

, ܬ =
3
2

൰ 

4 4
3

 
3
2

,
1
2

, −
1
2

, −
3
2

 
6
3

,
2
3

, −
2
3

, −
6
3

 

ହܦ2
ଶ

 

൬ܮ = 2, ܵ =
1
2

, ܬ =
5
2

൰ 

6 6
5

 
5
2

,
3
2

,
1
2

, −
1
2

, −
3
2

, −
5
2

 
15
5

,
9
5

,
3
5

, −
9
5

, −
15
5

 

 MJ gMJ 
 3/2          6/5 
 ½            2/5 
 –½        –2/5 
–3/2      –6/5 

½            2/5 
–½        –2/5 
 

2D3/2 

2P1/2 

σ 

π 
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The splitting of these terms has been displayed in figure given bellow:  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 15.Double-doublet transition 2D5/2 – 2P3/2. The complete Zeeman pattern of 12 
components 

The selection rule in operation is ܯ߂௃ = 0, ±1. 

There are four allowed transitions corresponding to Δܯ௃ = 0 which give               
π-components while the all four transitions each corresponding to ܯ߂௃ = ±1 give 
σ-components. 

(iv) Principal Series Triplet 3P – 2S or ૜ࡼ૙,૚,૛ − ૜ࡿ૚: The fine-structure 
transitions are:  

3 ଴ܲ − 3 ଵܵ;  3 ଵܲ − 3 ଵܵ;  3 ଶܲ − 3 ଵܵ 

2D5/2 

2P3/2 

π 

σ 

MJ              gMJ 
 5/2         15/5 
 3/2           9/5 
  ½            3/5 
–½          –3/5 
–3/2        –9/5 
–5/2      –15/5 

3/2            6/3 
  ½            2/3 
–½          –2/3 
–3/2        –6/3 
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The g-factor and Zeeman shifts for the unperturbed levels 3 ଴ܲ, 3 ଵܲ, 3 ଶܲ and 3 ଵܵ 
are as follows: 

Unperturbed level No. of 
Zeeman 
levels 

(2J+1) 

 MJ (+J, … -J) Shift in Lorentz unit 

 ௃ܯ݃

3 ଴ܲ 

(L = 1, S = 1, J = 0) 
1 0

0
 0 0 

3 ଵܲ 

(L = 1, S = 1, J = 1) 
3 3

2
 1, 0, – 1 3

2
, 0, −

3
2

 

3 ଶܲ 

(L = 1, S = 1, J = 2) 
5 3

2
 2, 1, 0, ‒ 1, ‒ 2 6

2
,
3
2

, 0, −
3
2

, −
6
2

 

3 ଵܵ  

(L = 0, S = 1, J = 1) 
3 2 1, 0, ‒ 1 2, 0, -2 

 

The magnetic splitting of levels is shown in figure bellow: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 16. Splitting of  3P0,1,2  and  3S1  level in magnetic field. 

3S0 
(g= 2) 

3P0 

3S0 
(g= 2) 

MJ    gMJ 

0      0 

  1     2 
  0     0 
–1    –2 

   1       2 
   0       0 
  –1     –2 

MJ       gMJ 
  1       3/2 
  0       0 
 –1    –3/2 

MJ     gMJ 
 2       6/2 
 1       3/2 
 0         0 

–1    –3/2 
 –2    –6/2 

3S0 
(g= 2) 

3P1 
(g = 3

2
) 

3P2 
(g =3/2) 

  1       2 
  0       0 
–1     –2 

π π π 
σ σ σ 

(a) (b) (c) 
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From selection rules ܯ߂௃ = 0, ±1 (but  ܯ߂௃ = 0 ↮ ௃ܯ = 0 if ܬ߂ = 0) we get, three 
Zeeman components in the transition 3 ଴ܲ − 3 ଵܵ ; six in 3 ଵܲ − 3 ଵܵ and nine in      
3P2 – 3S1. The Zeeman transition ܯ௃ = 0 → ௃ܯ = 0 in 3 ଵܲ − 3 ଵܵ is forbidden. 
Since, at the same time ܬ߂ = 0. This transition is indicated by a dotted line in 
figure.) 
 Energy-level diagram for the Zeeman patterns are shown in figure. While 
the qualitative structure of each pattern depends only on two unperturbed levels for 
the values of J. The energy separations depend on g and hence on other properties 
like coupling conditions and on other quantum numbers. 

 All the three patterns in this transition are symmetrical with regard to wave 
number, intensity and polarization of the components. The π-components form a 
central group and polarized with electric vector parallel to magnetic field. The     
σ-components form two symmetrically displaced groups and the components are 
equidistant in each and electric vector perpendicular to the field. The sum of the 
intensities of the π-components are equal to that of the σ-components. 

(v) ૜ࡼ૚ − ૜ࡰ૛: It is a triplet-triplet transition. It would give an anomalous 
Zeeman pattern in a ‘weak’ external magnetic field. The Zeeman shifts of the 
various forms an unperturbed level are given by 

−Δܶ =  ,′ܮ௃ܯ݃

where L' is the Lorentz unit and g is given by 

݃ = 1 +
ܬ)ܬ + 1) + ܵ(ܵ + 1) − ܮ)ܮ + 1)

ܬ)ܬ2 + 1)  

The Zeeman levels, g-factors and the shifts from the given unperturbed levels 3ܦଶ 
and 3 ଵܲ are given in following table: 

Unperturbed level No. of Zeeman 
levels 

(2J + 1) 

G ܯ௃(+ܬ, . . . ,  Shift in Lorentz unit (ܬ−

 ௃ܯ݃

ଵܦ3
 

(L = 2, S = 1, J = 2) 

5 7
6 

2, 1, 0, -1, -2 14
6 ,

7
6 , 0, −

7
6 , −

14
6  

3 ଶܲ
 

(L = 1, S = 1, J = 1) 

3 3
2 

1, 0, -1 3
2 , 0, −

3
2 



363 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 17.Triplet-triplet transition 3P1 - 
3D2 

From selection rules ܯ߂௃ = 0, ௃ܯ ) ±1 = 0 ↮ ௃ܯ = 0 if ܬ߂ = 0) we get 9 allowed 
transitions. ܯ߂௃ = ±1 each give three ߪ components. The complete pattern with 
Zeeman splitting of the levels 3D2 and 3P1 isfigure. 

(vi) ૜ࡰ૜ − ૜ࡼ૛: This is also a triplet-triplet transition. This would give an 
anomalous Zeeman pattern in a ‘weak’ external magnetic field. 

 Zeeman levels, g factors and the shifts from the unperturbed levels 3ܦଶ and 
3 ଶܲ are given in following table: 

 

Unperturbed 
level 

No. of 
Zeeman 
levels 

(2J + 1) 

g ܯ௃ 
,ܬ+) . . . ,  (ܬ−

Zeeman Shift in Lorentz 
Unit 

 ௃ܯ݃

 ଷܦ3

൬ܮ = 2, ܵ = 1,
ܬ = 3 ൰ 

7 4
3 3, 2, 1, 0, -1, -2, -3 12

3 ,
8
3 ,

4
3 , 0, −

4
3 , −

8
3 , −

12
4  

3D2 

3P1 

MJ      gMJ 
 2      14/6 
 1      7/6 
 0       0 
–1    –7/6 
–2    –14/6 

1       3/2 
0       0 
–1    –3/2 

π 

σ 
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3 ଶܲ 

൬ܮ = 1, ܵ = 1,
ܬ = 2 ൰ 

5 3
2 2, 1, 0, -1, -2 6

2 ,
3
2 , 0, −

3
2 , −

6
2 

 The splitting of these levels are shown in figure bellow: 

From selection rules ܯ߂௃ = 0, ௃ܯ) ±1 = 0 ↮ ௃ܯ = 0 if ܬ߂ = 0) we get, 15 allowed 
transitions. From the rule Δܯ௃ = ±1 we get, five σ-components. The complete 
pattern is shown in the energy-level diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig 18.Splitting of 3D3 – 3P2 levels. 

7.12 Illustrative Examples 
Example-3: Calculate the distance between Zeeman components of a spectral line 
of wavelength 4500 Å. If a sample of a certain element is kept in a magnetic field. 
Given Flux density 0.3 Tesla, e/m = 1.76 × 1011 C/kg, c = 3 × 108 m/s.  

3D3 

3P2 

π 

σ σ 

MJ                  gMJ 
  3            12/3 
  2             8/3 
 

 1              4/3 
  0               0 
–1            –4/3 

–2             –8/3 
–3           –12/3 

  2            6/2 
  1            3/2 
  0              0 
–1            –3/2 

–2            –6/2 

7.12 Illustrative Examples 
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Sol. The wave-number separation between the components of a normal Zeeman 
triplet is given by 

ߥ߂ =
ܤ݁

ܿ݉ߨ4 = ቀ
݁
݉ቁ

ܤ
 ܿߨ4

Putting the given values, we get 

ߥ߂ =
(1.76 × 10ଵଵ ܥ ݇݃⁄ )0.3 ܰ ⁄ܣ − ݉

4 × 3.14 × (3.0 × 10଼ ݉ ⁄ݏ )  

= 14.0 ݉ିଵ 
Now,           ߣߥ = 1 

or         ߣ߂ߥ + ߥ߂ߣ = 0 

or       |ߣ߂| = ఒ௱ఔ
ఔ

=  ߥ߂ଶߣ

= (4500 × 10ିଵ଴݉)ଶ(14.0 ݉ିଵ) 

= 283.5 × 10ିଵସ݉ 

= 0.02835 Å 
Example-4: Evaluate the Lande g-factor in the 2p3s configuration for the 3P1 of 
the atom and use the result to predict the splitting of the level. Atom is in an 
external magnetic field of 0.1 Tesla. 

Sol. For the 3 ଵܲlevel, we have 

ܮ = 1, ܵ = 1, ܬ = 1, 

So      ݃ = 1 + ௃(௃ାଵ)ି௅(௅ାଵ)ାௌ(ௌାଵ)
ଶ௃(௃ାଵ)  

= 1 +
1(1 + 1) − 1(1 + 1) + 1(1 + 1)

2 × 1(1 + 1)  

= 1 +
1
2 =

3
2 

For J = 1, the possible values of MJ are 1, 0, -1 and so the level is split into three 
components. The wave-number shift of the components is given by 

ܶ߂ = ௃ܯ݃
ܤ݁

 ܿ݉ߨ4

The Zeeman level corresponding to M୎ = 0 remains unshifted while those 
corresponding to M୎ = ±1 are shifted by  

ܶ߂ = ±݃
ܤ݁

 ܿ݉ߨ4
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= ±
3
2

(1.6 × 10ିଵଽ)(0.1 ܰ ⁄ܣ − ݉)
4 × 3.14 × (9.1 × 10ିଷଵ݇݃)(3 × 10଼ ݉ ⁄ݏ ) 

= ±7.0݉ିଵ 

= ±0.07ܿ݉ିଵ 

17.13 Self-Learning Exercise-II 
Q.1 Calculate the effective magnetic field experienced by the electron in the 3P 

levels of sodium atom. 

Q.2 Suppose the sodium D1 line emitted in a magnetic field is observed to be 
split into 4-components. What is the magnetic field B ? (Given values are: 
Wavelength difference = 0.022 nm, D1 line is at 589.5 nm) 

Q.3 Calculate the number of energy levels corresponding to energy level n = 2 or 
E3 = -E0/4. 

Q.4 Calculate the number of transitions between 1D2 and 1P1 states due to 
normal Zeeman Effect. 

17.14 Summary 
American solar astronomer George Ellery Hale observed Zeeman Effect in the 
solar spectra in 1908. This sprctra indicate the existence of strong magnetic fields 
in sunspots. Such fields can be of the order of 0.1 Tesla or higher. Zeeman Effect is 
utilized in many laser cooling applications such as a magneto-optical trap and the 
Zeeman slower. Zeeman Effect is also useful to measure magnetic field strength 
and orientations in Tokamak plasma. It can also measure temperature from 
Zeeman components. 

17.15 Glossary 
Multiplet : A group of spectral lines. 

LS coupling : Coupling of angular momentum and spin angular momentum of an 
electron. 

Bohr magneton : A physical constant (it can be different for spin and angular). 

Selection rules : Constrains of the possible transitions of from one quantum state 
to another. 

Zeeman energy : Potential energy of magnetized particles in external magnetic 
field. 

17.13 Self-Learning Exercise-II 

17.14 Summary 

17.15 Glossary 
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g factor : Dimensionless quantity for magnetic moment and gyromagnetic ratio. 

17.16 Answers to Self-Learning Exercises 
Answers to Self-Learning Exercise- I 
Ans.1:  1S2 2S2 2P6 

Ans.2:  (a)  1 and 9.274× 10–24 J/T     (b)  9 

Ans.3:  Wavelength shift = 0.034 nm 

Answers to Self-Learning Exercise- II 
Ans.1:   18 T 

Ans.2:   0.51 T = 5100 Gauss 

Ans.3:   6 

Ans.4:   9 (will give only 3 spectral lines.) 

17.17 Exercise 

Q.1 Describe an experimental set-up to study Zeeman Effect. 

Q.2 What do you understand by anomalous Zeeman Effect ? Discuss the 
Zeeman pattern of the resonance (D1 , D2) lines for sodium. 

Q.3 Distinguish between normal Zeeman, anomalous Zeeman and Paschen-Back 
effects. Determine the Lande g-values for the various levels of multiplets. 

Q.4 Calculate splitting of term 4D½ in arbitrary magnetic field. 

Q.5 In one electron atom, determine Zeeman transition line for 2D3/2 – 2P3/2. 

Q.6 In one electron atom, determine Zeeman transition line in 2D5/2 – 2P3/2. 

Q.7 Calculate g-factor for 3P term. 

Q.8 Write down the number of Zeeman levels (2J + 1) for 2P3/2 term. 

Q.9 Write down the values of L, S and J for 2D5/2 term. 

Q.10 What are the possible values of MJ for 2P3/2. 

17.18 Answers to Exercise 
Ans.1:  See section 17.2. 

Ans.2:  See section 17.7 and 17.8 

17.16 Answers to Self-Learning Exercises 

17.17 Exercise 

17.18 Answers to Exercise 
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Ans.3:  See section 17.9 

Ans.4:   0 

Ans.5:   10 

Ans.6:   12 

Ans.7:   3P0,1,2 : g = 0/0. 3/2, 3/2 

Ans.8:   4 

Ans.9:   L = 2, S = ½, J = 5/2. 

Ans.10:  ±3/2, ±1/2. 
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18.0  Objectives 

In 1913, German physicist Johannes Stark  studied Hydrogen atom emission in 
electric field of a condenser. In presence of external electric field (of the order of 
105 V/cm), he observed the shifting and a splitting of the spectral lines of the 
Balmer series of hydrogen (emission spectra). Observable amount of splitting or 
shifting is known as Stark shift. It is also known as Stark splitting. In previous 
chapter, we have already studied Zeeman Effect where a spectral line split into 
several components due to external magnetic field; similarly Stark effect is electric 
analogue of Zeeman Effect. 

18.1 Introduction 

The Strak Effect is a result of interaction of external electric field with electric 
moment of the atom. Interaction energy can be defined as  ܹ = .⃗݌−  ሬ⃗ܧ  

where ݌ ሬሬሬ⃗ is the electric dipole momentof electron in atom. Electric dipole moment 
comes in picture because of charge distribution and it can be calculated with the 
charge distribution. Here we will study two aspects of the Stark Effect: the linear 
effect and the quadratic effect. Here we will see that the linear effect is due to a 
dipole moment which is induced by the external electric field. For simplicity fine 
and hyperfine structure effect will be neglected. We can explain and study the 
molecule formation from atoms, broadening of spectral lines and dielectric 
constants with the study of Stark Effect. 

18.2  Stark Effect of Hydrogen Atom 

In Stark Effect, if we take observations from different positions, then we get some 
different results. In particular and for simplicity we look at perpendicular and 
parallel to the applied electric field. When we look at perpendicular to electric field 
then we get two plane-polarized lines or components. One component is parallel to 

electric field vector, called π – component and another is perpendicular to electric 

field vector, called σ – component. If we observe parallel to electric field then we 

get only one unpolarized component, known as σ– component. Few initial 
observations of Stark Effect are as: 

18.0  Objectives 

18.1 Introduction 

18.2  Stark Effect of Hydrogen Atom 
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(i) In general, all hydrogen lines are in symmetrical patterns but the pattern 
mainly depends on the principal quantum number n. Number of Stark lines 
and width of pattern increases with n. 

(ii) Wavenumber shifts are same for all hydrogen lines. It is integral multiples 
of a unit which is proportional to the strength of the electric field. 

(iii) Polarization properties of Stark lines are same as Zeeman lines. Only, the π– 

component shows more shift than the  σ– component. 
(iv) Ordering of Stark components is in the increasing order of principal 

quantum number n as H , H , H. 
(v) For lower energy states symmetrical splitting is proportional to the field 

intensity and for higher states Stark components show unidirectional 
displacements proportional to the square of the field strength. This is called 
second-order Stark Effect. 

18.3 Weak-field Stark Effect in Hydrogen 

Since, orbital angular momentum  ⃗ܫ and spin angular momentum ⃗ݏ of the electron 
of a hydrogen atom have magnetic interaction. When we apply an external electric 

field ⃗ܨ ,then it will interact with total angular momentum ଔሬሬ⃗ . If  field interaction 
energy with electron’s total angular momentum is less than the magnetic 
interaction energy between orbital momentum and spin momentum then the Stark 
splitting will be much smaller compared with the fine-structure splitting. Such a 
field is known as weak-field.  

 

 

 

 

 

 

Fig 19.Schematic diagram of l-s coupling 

 

j 
mj 

µ 

l 

s 

18.3 Weak-field Stark Effect in Hydrogen 
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We get  ଔ⃗ by the coupling of ⃗ܫ and   ⃗ݏ. Therefore  ଔ⃗ precesses around   ⃗ܨ with 

projection  mj h/2π, 

  ௝݉ =  +݆,   ݆ − 1, ݆ − 2, … , −݆. 

So, unlike the Zeeman levels, the Stark levels +mj and –mj arise from a given 
unperturbed level which have same energy. 

Selection rules for weak-field Stark effect are the same as those for the Zeeman 
effect, that is 

      Δ ௝݉ = 0 gives π components 

    Δ ௝݉ =  ±1 gives σ components 

Following these selection rules, each of the fine-structure components I, II, III, IV, 

V in H should show a symmetrical Stark pattern. The weak-field Stark pattern has 
never been observed. 

 

 

 

 

 

 

 

 

 

 

 

Fig 20. Energy levels of H-atom for the transitions n = 3 and n = 2. 
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18.4 Strong-Field Stark Effect in Hydrogen 

When we apply an electric field ⃗ܨ on hydrogen which has the interaction energy 
with electron’s angular moment  ଔ⃗ , such that it is greater than the magnetic 

interaction energy between electron’s orbital momentum ⃗ܫ and spin momentum ⃗ݏ. 
Therefore, the Stark splitting of the energy levels due to the electric field will be 
larger than the fine-structure splitting. This is known as the ‘strong’ field for which 
first-order Stark effect in hydrogen has actually been observed. In such strong 

field, magnetic coupling between  ⃗ܫ and  ⃗ݏ is breakdown and  ⃗ܫ get quantized. It 
precesses independently around the applied electric field ⃗ܨ. The spin is however 
not acted on by ⃗ܨ. 

In 1916, German physicists Karl Schwarzchild and Russian-American physicists 
Paul Sophus Epstein independently explained the observation of first-order Stark 
Effect in hydrogen and they explained the same for ionized helium by quantizing a 
hydrogen-like atom in an electric field. At that time electron spin was not 
discovered. For this explanation, they used Bohr-Sommerfeld quantum theory, 
which is known as old quantum theory. This was taken an outstanding triumph for 
the old quantum theory because the results given by this theory were very little 
altered by quantum mechanical treatment. 

Let an electron is moving in a Kepler ellipse. If we will apply homogeneous 
electric field  ⃗ܨ along z-axis than it will behave differ than magnetic field. If we 
average the center of gravity of the electron for the Kepler motion then it will not 
coincide with the nucleus which forms an electric dipole. Electric field applies a 
torque on the orbital dipole which causes a precession of the orbital about the z-
axis. However, in presence of magnetic field the orbital angular momentum  ⃗ܫ is 
not a constant and the orbital quantum number l is no longer a “good” quantum 

number. The projection of  ⃗ܫ along electric field (z-axis) is lz , given by ml h/2π, 
where ml is the electric quantum number. lz is still a constant of motion and ml 
retains its strict meaning. Energy value in parabolic coordinates depends on field-
free energy of atom E0 , Bohr radius a0 , principle quantum number n and two new 
parabolic quantum numbers n1 and n2. These parabolic quantum numbers are 
defined as: 

18.4 Strong-Field Stark Effect in Hydrogen 
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݉௟ = ݊ − ݊ଶ − ݊ଵ − 1 

 

 

 

 

 

 

 

 

 

Fig 21.Precession of the orbital about z-axis or field axis. 

Since, allowed values are 

݊ = 1, 2, 3, … . ∞ 

݉௟ = 0, ±1, ±2, … . , ±(݊ − 1) 

݊ଵ = 0, 1, 2, 3, … . , ݊ − 1 

݊ଶ = 0, 1, 2, 3, … . , ݊ − 1 

n1 limits the electron’s motion to the region between the two paraboloids of 

revolution  and max ; while n2 limits it to the region intersected by the two pairs 
of paraboloids, the electron has three periodic motions, one around the field  ⃗ܨ 

given by ml and one each along the  and  coordinates given by n1 and n2. Since 
the last two periods are not necessarily the same, the orbit is not closed and the 
electron in time covers every point in the intersected region. 

18.5  Illustrative Examples 

Example1. Prove that the Stark-shift for the ground state (n = 1) of hydrogen is 
zero. 

Sol. Shift is given by the 

 

min n1 

max 
n2 

min 
lz 

F z 

l 

max 

18.5  Illustrative Examples 
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−Δܶ =
Δܧ
ℎܿ =

3ܽ଴݁
2ܼℎܿ ଶ݊)݊ܨ − ݊ଵ) 

Putting the values of a0 , e, h, c and Z (=1 for H-atom)we get 

−Δܶ =
3 × 0.53 × 10ିଵ଴݉ × 1.6 × 10ିଵଽ

2 × 6.63 × 10ିଷସݏ ܬ × 3 × ଵିݏ10଼݉ ଶ݊)݊ ܨ − ݊ଵ) 

= 6.4 × 10ିହ ݊ܨ(݊ଶ − ݊ଵ)ܿ݉ିଵ. 
(Here field F is expressed in Volt/cm.) 

Allowed values of n , n2 and n1 can be get from m = n – n2 – n1 – 1. Here m = 0,      
n = 1. So, n2 – n1 = 0. This implies that the Stark-shift for ground state of hydrogen 
is zero. 

Example 2. Excluding nuclear spin, write down the configuration of n = 2 in 
hydrogen atom. 

Sol. For a given j there are 2j + 1 degenerate sublevels can be written: 

2S½   |2S½, + ½ , |2S½, –½ 

2P½   |2P½, + ½ , |2P½, –½ 

2P3/2  |2P3/2, + 3/2,  |2P3/2, + 1/2, |2P3/2, –½, |2P3/2, –3/2 
When angular momentum and spin will not couple (strong field) then these 

levels will split as given bellow: 

|2S1/2, 1/2=  |2S, 0⊗| ½  

|2P1/2, 1/2 = (1/√3)|2P, 0⊗|1/2 – √(2/3) |2P, 1⊗|∓1/2〉 

|2P3/2, 1/2 = √(2/3) |2P, 0⊗|1/2〉 + (1/√3)|2P, 1⊗|∓1/2 

|2P3/2, 3/2 = |2P, 1⊗|1/2 

18.6 Hyperfine Structure of Spectral Lines 
When we increase the resolution of instruments by taking high resolution 
instruments to observe the Stark Effect, we get further splitting into more 
components. Order of this splitting is very much smaller than ordinary splitting 
multiplet. This further splitting is known as ‘hyperfine structure’ and it is caused 
by properties of the atomic nucleus. 

18.6  Hyperfine Structure of Spectral Lines 
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To study hyperfine structure experimentally, we need a light source which gives 
extremely sharp lines. In hyperfine structure, there are two types of nuclear effects. 
First is the presence of isotopic species in the given sample or study element. 
Isotope produces spectral lines at slightly different wavenumbers relative to each 
other. Second type of effect comes from charged nucleus possesses as spin angular 
momentum and the associated magnetic dipole moment. Hyperfine splitting of the 
spectral terms comes from the interaction between internal magnetic field 
(produced by orbital motion of electron) of atom and spin magnetic dipole moment 
of the nucleus. 

18.7 Isotope Effects 
Many elements have different contents of isotopic atoms. Since, different isotopes 
of an element have same number and same arrangement of extra-nuclear electrons. 
But isotopes have different masses from each other. Since Rydberg constant for an 
atom depends on the nuclear mass, through the reduced mass of the atom. Different 
isotopes have slightly different values of Rydberg constant. Correspondingly, the 
same transitions in different isotopes give rise to slightly different wavenumbers. 

In hydrogen atom variation in Rydberg constant can be observed easily. First four 

members of Balmer series, H , H , H and H (each) has a very weak companion 
on the short-wavelength side at distances of 1.79, 1.33, 1.19 and 1.12 Å 
respectively. These shifts agree with the theoretical values if the companions are 
attributed as due to presence of an isotope of mass 2 (deuterium) and it was in this 
way that the existence of heavy hydrogen was first established. 

Hydrogen isotope shift is the simplest case. Many cases of isotope-shift are not as 
simple. In many earths and heavier atoms, isotope shift comes due to their different 
radii with masses, not due to their masses only. These calculations can be 
understood purely with Columbian interaction. 

18.8 Self-Learning Exercise- I 
Q.1  Write down the degenerate states in n = 3 subspace. 

Q.2  Write down the first order stark splitting of the level n = 3 for hydrogen. 

Q.3  A particle of charge q and mass m, which is moving in a one-dimensional 

18.7 Isotope Effects 

18.8 Self-Learning Exercise- I 
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harmonic potential of frequency , is subjected to a weak electric field E in 
z-direction. 
a. Find expression for energy. 
b. Calculate the energy to first nonzero correction and compare it with 

above result. 

18.9 Illustrative Examples 

Example 1 Calculate the shift for H line (4861.33 Å).  

Sol. For this transition, we have from Balmer’s formula 

1
ுߣ

= ܴு ൬
1

2ଶ −
1

4ଶ൰ 

1
஽ߣ

= ܴ஽ ൬
1

2ଶ −
1

4ଶ൰ 

So, 
஽ߣ

ுߣ
=

ܴு

ܴ஽
 

஽ߣ − ுߣ 

ுߣ
=

ܴு − ܴ஽

ܴ஽
 

Δߣ = ஽ߣ − ுߣ = ுߣ −  ൬
ܴ஽ − ܴு

ܴ஽
൰ 

       =  −4861.33 Å ቆ
109707.4 cmିଵ − 109677.6 ܿ݉ିଵ

109707.4 ܿ݉ିଵ ቇ 

       = −1.32 Å 

Example 2: An atom with nuclear spin is I = 3, have 2 levels which are 
designations  2D3/2 and 2P1/2. Find the expected number of components in the 
hyperfine structure of the corresponding spectral line. 

Sol. For the state 2D3/2, we have 

        J = 3/2, I =3 

The allowed values of the hyperfine structure quantum number F are 

       F = J+I, J+1 – 1, …., |J – I| 

          = 9/2, 7/2, 5/2, 3/2. 

Thus, for this state there are four hyperfine structure levels. 

18.9 Illustrative Examples 
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For the state 2P1/2 , we have 

        J = ½ , I =3 

 So,  F = 7/2 , 5/2. 

This state has only 2 hyperfine structure levels. 

  E = 0 , 1. 

Hence allowed transitions from the levels of one state to those of the other are: 

9/2  7/2 , 7/27/2 , 7/25/2 , 5/27/2 , 5/25/2  and 3/25/2 

(all are from 2D3/2 2P1/2) 

So, total transitions are 6. 

18.10 Nuclear Spin and Hyperfine Splitting 
Isotope effect has its limitations. In many cases, this fails to explain the hyperfine 
structure. Hyperfine components are often greater than the number of isotopes. 
Similarly, some elements show hyperfine structure, even those are only isotope in 
that element. For example bismuth exists as a single isotope, but shows six 
hyperfine components in its line wavelength 4722 Å. Similarly, the number of 
components of different lines is frequently quite different for one and the same 
element. 

In 1924, Pauli gave an explanation about hyperfine structure. According to him 
when it assumed that the atomic nucleus possesses an intrinsic spin angular 
momentum  ⃗ܫ and which is associated a magnetic dipole moment ߤ௟ሬሬሬ⃗ . Same as in the 
case of spinning electron, the magnitude of the nuclear angular momentum is 

หܫ ሬሬ⃗ ห = ඥܫ)ܫ + 1)
ℎ

 ߨ2

Where I  is nuclear spin quantum number. It has different for different masses 
number nuclei. It is also different for different isotopes of same element. 

Since ܮሬ⃗ , ܵ⃗ and ⃗ܬ have quantized components along an axis in space. So the 
component of  ⃗ܫ along the z-axis is 

௭ܫ = ௟ܯ
ℎ

 ߨ2

where Ml = l, l – 1, l – 2, … , – l 

18.10 Nuclear Spin and Hyperfine Splitting 
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Nuclear proton produces a magnetic moment ߤ௟ሬሬሬ⃗  when it is in motion. This is 
proportional to the angular momentum and which we can be written as 

௟ሬሬሬ⃗ߤ = ݃௟ ቆ
݁

2݉௣
ቇ  ܫ⃗

Here e and mp are respectively the charge and mass of proton. The quantity gl is 
called the ‘nuclear g factor’. The magnitude of the nuclear magnetic moment is 

௟ߤ = ݃௟ ቆ
݁

2݉௣
ቇ ඥܫ)ܫ + 1)

ℎ
 ߨ2

     = ݃௟ඥܫ)ܫ + 1)
݁ℎ

௣݉ߨ4
 

Here 
௘௛

ଶగ௠೛
 forms a natural unit for the measurement of nuclear magnetic moment 

and is called the ‘nuclear magneton’µN. It is 1/1836 times the Bohr magneton 
(because mass of proton is 1836 times the mass of electron). Thus, 

௟ߤ = ݃௟ඥܫ)ܫ +  ேߤ (1
The component of µl along z-axis is 

௟௭ߤ = ݃௟ܯ௟ߤே 
where Ml = I, I – 1, I – 2, …, – I. 

Since the maximum value of MI  is I, the maximum observable component of µl is 
gl IµN , and is commonly called the ‘nuclear magnetic moment’. It is roughly 1000 
times smaller than electron magnetic moment. 

Atomic Vector Model: Let us now construct the vector model with nuclear spin 
taken into account. The total angular momentum of the whole atom is the sum of 
three angular momenta: the electron orbital angular momentum ܮሬ⃗ , the electron spin 
angular momentum ܵ⃗ and the nuclear spin angular momentum ⃗ܫ. That is, the total 
angular momentum is 

ܨ⃗ = ሬ⃗ܮ + ܵ⃗ + ܫ⃗ = ܬ⃗ +  ܫ⃗

As a result of interaction between electron orbit and spin, ܮሬ⃗  and ܵ⃗ precess rapidly 
around their resultant ⃗ܬ. Further, the interaction between the nuclear magnetic 
moment and the magnetic field produced by the orbital and spin motions of the 
atomic electrons couples ⃗ܫ with ⃗ܬ and causes these vectors to precess around their 
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resultant ⃗ܨ. This precession is however, about 1000 times slower than that of ܮሬ⃗  and 
ܵ⃗ about ⃗ܬ because nuclear magnetic moment is so much smaller than electron 
magnetic moment. Correspondingly the energy differences are very much smaller.  

The hyperfine structure quantum number F can take the values: 

F = J+I, J+I – 1, J+I– 2, … , |J – I| 

having 2J + 1 values if  I  J or 2I+1 values if I  J. This means that as a result of 

I – J interaction, each fine structure J-level splits into 2J+1 (if I  J) or 2I+1           

( if I  J) hyperfine structure levels, each characterized by an F value. 

Interaction Energy: The ⃗ܫ −  interaction energy can be shown to be given by ܬ⃗

ூܧ ,௃ᇱ =
1
2 ܨ)ܨ]′ܣ + 1) − ܫ)ܫ + 1) − ܬ)ܬ + 1)], 

where A' is a constant. The various hyperfine structure levels of a given term of a 
given atom have the same I and same J, but differ in F. Hence the separation 
between two hyperfine structure levels can be obtained by substituting first F+1, 
then F, in the above equation and taking the differences. This gives 

′ܧ߂ =
1
2 ܨ)]′ܣ + ܨ)(1 + 2) − ܨ)ܨ + 1)] 

′ܧ߂ = ܨ)′ܣ + 1) 
Thus, the energy interval between consecutive hyperfine structure levels F and 
F+1 is proportional to the larger of the F values (Lande's interval rule). The order 
of hyperfine structure levels in some of the multiplets is normal (smallest F level 
deepest) while in others it is inverted (largest level deepest). 

The selection rule for F for electric dipole transitions is similar to that for J: 

ܨ߂                          = 0, ±1 but  F = 0 ←/→ F = 0 

18.11 Intensity Ratio and Determination of Nuclear Spin 

When the hyperfine structure components are observed due to the splitting of only 
one of the terms, a measurement of the intensity ratio of the observed components 
leads to the determination of nuclear spin. This is based on the ‘sum rule’, 
according to which the sum of the intensities of the all the transitions starting from 
or ending on the same level is proportional to the statistical weight 2F+1 of that 

18.11 Intensity Ratio and Determination of Nuclear Spin 
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level. This situation arises in the hyperfine structure of the resonance lines of 
sodium. In this case the ratio of the intensities of the two observed hyperfine 
structure components is equal to the ratio of the weights (2F+1) of the hyperfine 
structure levels of the term 2S½ ,where I is unknown. The F values of the two 
hyperfine structure levels of the term 2S½ (J = ½) would be I + ½ and I – ½ . 
Hence 

Intensity ratio =  
2 ቀܫ + 1

2ቁ + 1

2 ቀܫ − 1
2ቁ + 1

=
ܫ + 1

ܫ  

Thus, if intensity ratio is known, we can calculate nuclear spin I. 

When I has been obtained, the g-factor and the magnetic moment of the nucleus 
can be solved from the magnitude of the hyperfine structure splitting by using the 
theoretical formulae. 

When the hyperfine structure components are observed due to the splitting of both 
the terms as in Bi line 4722 Å, then also an analysis of the hyperfine structure can 
also lead to the determination of nuclear spin.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 22. Hyperfine structure for Bi 
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When all the hyperfine components are fully resolved (like Bi) then constant 
wavenumber differences occur between pairs of components. 

       c – b = e – d 

and       d – b = e – c. 

These differences correspond to level differences in the lower and the upper state 
respectively, We arrange the wavenumbers of the hyperfine component in a square 
array such that along each row and along each column they increase (or decrease) 
regularly and the differences between them in two successive rows and successive 
columns is constant. Then, all the components in any row correspond to the same 
upper hyperfine structure level, while all those in any column correspond to the 
same lower hyperfine structure level. This will enable us to construct hyperfine 
structure energy for the upper and the lower states. 

18.12 Back Goudsmit Effect in Hyperfine Structure 

When we apply strong magnetic field ܤሬሬሬ⃗   so the velocity of precession of ⃗ܨ about 
the field direction becomes greater than that of ⃗ܬ and ⃗ܫ about ܨሬሬሬ⃗ , an effect like 
Pascen-Back effect will occurs in the hyperfine structure pattern. This effect is 
called ‘Back-Goudsmit effect’. Since, weak coupling of ⃗ܬ and ⃗ܫ, the Back-
Goudsmit effect occurs at fields much lower than those at which Paschen-Back 
effect sets in fine-structure. 

More precisely, magnetic field which is weak for fine structure is a strong field for 
hyperfine structure. In this type of field the coupling between ⃗ܬ and ⃗ܫ breaks down 
and each precesses independently around  ܤሬ⃗  with quantized components along the 
field direction. These components take values ⃗ܬ and ܯூ

௛
ଶగ

  respectively. 

where 

   MJ = J, J – 1, J – 2, … , – J 

and    MI = I, I–1, I–2, …, –I 

The total interaction energy of the atom consists of 

(i) the energy of interaction between  ⃗ܬ and ܤሬ⃗  

(ii) the energy of interaction between ⃗ܫ and ܤሬ⃗ . 

18.12 Back Goudsmit Effect in Hyperfine Structure 
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By Larmor's theorem, the angular velocities of precession of  ⃗ܬ and ⃗ܫ are given by 
B times the corresponding ratios between the magnetic moment and angular 
momentum. That is, 

߱௃ = ௃݃ܤ
݁

2݉ 

and 

߱௟ = ௟݃ܤ
݁

2݉௣
= ௟݃ܤ

݁
2݉

݉
݉௣

 

18.13 Self-Learning Exercise- II 
Q.1   Find the expected number of components in the hyperfine structure of the 

spectral line correspond to nuclear spin I = 3 and designations 2D3/2 and 
2P1/2. 

Q.2  What is the degeneracy of the fine-structure components of 3D3. 

18.14 Summary 
Effect of magnetic effect on atomic structure can be measured with Zeeman Effect. 
Similarly, Stark effect gives understanding of electric effect for same. It explains 
the behavior of molecules due to presence of an external electric field. It is also an 
application of quantum mechanical approaches. Even it can be observed in semi-
classical ground. Hyperfine splitting is very much useful in astrophysics, nuclear 
technology and quantum computing. 

18.15 Glossary 
Multiplet : A group of spectral lines. 

Dipole moment : Mathematical product of the separation of the ends of a dipole 
and the magnitude of the charges (in simplest case). 

Balmer series : Spectral emission lines of the hydrogen atom. 

Electric field : A vector field that associates to each point in space the Coulomb 
force. 

Nuclear magneton : Magnetic dipole moments of heavy particles such as 
nucleons and atomic nuclei. 

18.13 Self-Learning Exercise- II 

18.14 Summary 

18.15 Glossary 
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18.16 Answers to Self-Learning Exercises 

Answers to Self-Learning Exercise- I 
Ans.1: The n = 3 level consists 9 states:  

   |3, 0, 0, |3, 1, –1, |3, 1, 0,  

  |3, 1, 1, |3, 2, –2, |3, 2, –1,  

  |3, 2, 0, |3, 2, 1 and |3, 2, 2 

 Here every state represents |n, l, m, n is principle quantum number, l is 
azimuthal quantum number and m is magnetic quantum number after splitting. 

Ans.2: First order Stark Effect splits the n = 3 into 5 sublevels with different 
degeneracy: 

     Degeneracy  States 

      1   |3, 0, 2 

      2   |3, –1, 2, |3, 1, 2 

      3   |3, –2, 1, |3, 0, 2, |3, 2, 2 

      2   |3, –1, 1, |3, 1, 1 

      1   |3, 0, 1 

Ans.3: The interaction between the oscillating charge and the external electric field 
gives rise to a term HP= qEX,  

ܪ             = ଴ܪ + ௉ܪ =  − ௛
ସ௠గ

ௗమ

ௗ௑మ + ଵ
ଶ

݉߱ଶܺଶ +  ܺܧݍ

(a)  Let us take a variable change y = X + qE/m2 

ܪ                =
ℎଶ

ଶߨ8݉
݀ଶ

ଶݕ݀ +
1
2 ݉߱ଶݕଶ −

ଶܧଶݍ

2݉߱ଶ 

 This is Hamiltonian of a harmonic oscillator from which a constant, 

q2E22/2m is subtracted. So, exact energy eigenvalue is: 

௡ܧ                = ൬݊ +
1
2൰

ℎ߱
ߨ2 −

ଶܧଶݍ

2݉߱ଶ 

18.16 Answers to Self-Learning Exercises 
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(b) Since, if we apply weak electric field, we can calculate terms 
corresponding to HP as perturbation 

 First order correction is zero and second order correction is 

௡ܧ                 
(ଶ) =  −

ଶܧଶݍ

2݉߱ଶ 

 Total energy = ground state energy + perturbed energy 

௡ܧ                = ൬݊ +
1
2൰

ℎ߱
ߨ2 −

ଶܧଶݍ

2݉߱ଶ 

 This agrees with previous result. 

Answers to Self-Learning Exercise- II 
Ans.1: For the state 2D3/2 , we have 

 J = 3/2, I =3. 

Allowed hyperfine structure quantum number F are: 

F = J + I, J + I – 1, … , | J – I | 

For state 2P½ , we get 

 J = ½, I =3 

So, F = 7/2, 5/2 

Ans.2:  J = 3, I = 3/2. 

 The allowed values of hyperfine structure quantum number F are 

 F = J + I, J + I – 1, … , | J – I | 

         =
9
2 ,

7
2 ,

5
2 ,

3
2. 

Thus there are 4 hyperfine structure components whose designations which 
are 

ଷ ,ଽܦ
ଶ

ଷ ଷ ,଻ܦ 
ଶ

ଷ ଷ ,ହܦ 
ଶ

ଷ ଷଷܦ
ଶ

ଷ  

18.17 Exercise 

Q.1 What do you understand about nuclear spin and hyperfine splitting ? 
Q.2 What is Stark Effect ?  
Q.3 Discuss weak field Stark effect. 

18.17 Exercise 
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Q.4 Discuss strong field Stark Effect. 
Q.5 Explain transitions of Stark effect components in hydrogen. 
Q.6 Explain a simple way to determine nuclear spin. 
Q.7 How can we measure the isotopes in an element ? 
Q.8 What is Back Goudsmit effect ? 
Q.9 What is the difference between Goudsmit effect and Paschan back effect ? 
Q.10 Give some areas which has application for hyperfine structure. 

18.18 Answers to Exercise 
Ans.1:  See section 18.10 
Ans.2:  See section 18.1 
Ans.3:  See section 18.2 
Ans.4:  See section 18.3 
Ans.5:  See section 18.3 and 18.4 
Ans.6:  See section 18.6 
Ans.7:  See section 18.7 
Ans.8:  See section 18.12 
Ans.9:  See section 18.12 
Ans.10:  See section 18.14 
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UNIT-1 

Plasma 

 

 

Structure of the Unit 

19.0  Objectives  

19.1  Introduction 

19.2  Introduction to Molecular Spectroscopy 

19.3  Separation of Electronic and Nuclear Motion: The Born-Oppenheimer 
Approximation 

19.4  Types of Molecular Energy States and Associated Spectra 

19.5  Types of Molecular Spectra (Characteristics of band spectra) 

19.6  Regions of Molecular Spectrum 

19.7  Signal-to-Noise Ratio and Resolving Power 

19.8  Width of Spectral Line 

19.9  Intensity of Spectral Line 

9.10  Self Learning Exercise 

19.11  Summary 

19.12  Glossary 

19.13   Exercise 

 References and Suggested Readings 

19.0 Objectives  
The objective of this chapter is to make familiar the readers with the basics of 
molecular spectroscopy i.e. interaction of radiation with the molecules of matter. 
The existence of various energy levels of molecules in the solids, the separation 
between these energy levels and the regions of existence of spectra in the 
electromagnetic spectrum will be presented. The basic idea regarding the features 
of molecular spectra related to instrumentation will also be presented. 

 

UNIT-19 
Introduction to Molecular Spectra 

19.0 Objectives  
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19.1 Introduction  
 In this chapter the basic features of molecular spectroscopy and the energy 
levels of the molecules are explained. The origin of energy levels of the molecules 
in the crystals, the separation between various energy levels and the regions of the 
spectrum (Far IR, NIR and UV-Visible) accompanying the transition between 
these energy levels are discussed. Some features of molecular spectra in view of 
instrumentation like signal-to-noise ratio, width of spectral line, resolving power, 
etc. are explained. 

19.2 Introduction to Molecular Spectroscopy 

 The interaction of Electromagnetic radiations with matter is called as 
spectroscopy. The electromagnetic radiations act as a probe to obtain the 
information about the atoms and molecules which are very small enough to see. 
The interaction of radiation with matter can influence the matter or/and radiations. 
This interaction of radiation with matter provides the information about the matter 
i.e. its constituents like atoms or molecules, binding between the atoms, structure 
and shape of the molecules etc. The molecular spectra are different to as that of 
atomic spectra. The atomic spectra contain discrete spectral lines and hence called 
as line spectra. The molecular spectra are complicated as compared to atomic 
spectra. These spectra contain a number of lines separated by small spacing 
forming a band. Due to this reason the molecular spectra are called as band spectra. 
The intensity of lines varies from one edge to another edge of a band. 

       

                                                     Atomic Energy Levels 

19.1 Introduction 

19.2 Introduction to Molecular Spectroscopy 
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Diatomic Molecule 

 

   Molecular Energy Levels 
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19.3 Separation of Electronic and Nuclear Motion : The Born-
Oppenheimer Approximation 

The energy levels in molecules are different as compared to an atom. In molecules 
nuclear motion also contributes to energy levels (rotational and vibration levels). 
The allowed energy levels can be obtained by solving the Schrodinger equation as: 

  Hφ=Eφ 

In the molecules ,the nuclei and electrons are interacting. The electrons are very 
light particles as compared to nuclei. Therefore the motion of electrons and nuclei 
are considered to be separated to good approximation. This separation of electronic 
and nuclear motions is called as Born-Oppenheimer approximation. So by using 
this approximation the Schrodinger Equation can be solved in two steps: 

1. The wave equation is solved for electronic motion by considering nuclei are to 
fixed. 

2. After this the wave equation is solved for the motion of nuclei and the eigen 
values of electronic wave equation are considered to be part of potential 
energy. 

The Hamiltonian for a molecule consisting of j nuclei and i electrons is given by 

  

2 2
2 2

2 2
1 18 8

m n

j i ne ee
j ij

h hH V V
m m 

      
    

Where first term of L.H.S. is the operator for kinetic energy for nuclei, second term 
is the operator for kinetic energy operator for electrons, third term is potential 
energy function for nuclear-nuclear interactions, fourth term is the potential energy 
function for the nuclear-electron interaction and the last term is due to potential 
energy function for electron-electron interactions. 

 By considering the nuclei in a fixed position, the kinetic energy of nuclei is 
taken as zero and Vnn is treated as constant. So the Hamiltonian for the electron 
will be  

   

2
2

2
1 8

n

e i n e e e
i

hH V V
m

    
  

The Nuclear Hamiltonian is given by 

19.3 Separation of Electronic and Nuclear Motion : The 
Born-Oppenheimer Approximation 
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2

2
2

1 8

m

n j nn
j j

hH V
m

   
  

So the total Hamiltonian is given by 

 n eH H H   

Now according to Born-Oppenhiemer, the wave function of the molecule can be 
written as product of electronic and nuclear wave functions 

 Let φ is the wavefunction of the molecule and φe and φn are the 
wavefunctions of electrons and the nuclei so, 

 φ=φe φn 

Let E is the total eigen value of the total eigen function then 

 H φ=E φ 

 H (φe φn)=E( φe φn) 

   
2 2

2 2
2 2[ ] ( )

8 8j i e n nn ne ee e n e n
j ij

h h V V V E
M m

             
    
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In the above equation 
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If the eigen values of the electronic wavefunction is Ee then 

 e e eH E    

So, 
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In the above equation Ee is the eigen value of the electronic wavefunction and act 
as part of potential energy for nuclear motion. So, the effective Hamiltonian for 
molecular wavefunction is 

 
2

2
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8e e j e nn
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First the equation is solved for a given electronic state of the molecule for a range 

of values of inter-nuclear co-ordinates. It will give values of φe and Ee as a 
function of nuclear co-ordinates. After obtaining Ee, the above Schrodinger wave 

function φn and eigen value É are determined. Different sets of wavefunction φn 
and eigen value É are obtained for each electronic state of the molecule. Finally, 

the total wavefunction φ=φnφe is determined. 

19.4 Types of Molecular Energy States and Associated Spectra 
 Born-Oppenheimer approximation stated that motions of the electrons in a 
molecule can be treated separately from those of nuclei and that the electronic 
motion can be solved by assuming the nuclei to be fixed. The electronic energy Ee 
and nuclear-nuclear interaction energy then act as an effective potential for the 
motion of the nuclei. 

19.4 Types of Molecular Energy states and associated Spectra 
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 The nuclear motion in a molecule is further divided into vibration, rotation, 
and translational motions. In the approximation the electronic, vibration, rotation 
and translation motions are considered to be independent. The Hamiltonian of 
molecules is written as  

  e v r tH H H H H     

where 

  

e e e e

v v v v

r r r r

t t t t

H E
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The total wavefunction is written as  

  e v r t      

and the total energy is given by   

  e v r tE E E E E     

 For simplicity we here consider a diatomic molecule. The Schrodinger 
wave equation for nuclear motion of the diatomic molecule is as 
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 where V(r) is the effective potential energy contributed from the nucleus-
nucleus interaction and electronic energy state,  is the eigen function and E is the 
eigen value. The above equation can be transformed into polar co-ordinates. The 
radial part of this equation is given by 
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where J is the total angular momentum of the molecule and J=0, 1, 2, 3, 4...... 

Let us now consider  
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Then the above equation get converted into  
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Let   
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Here Ee is the eigen value of the electronic wavefunction, Vnn is the potential 

energy due to nucleus-nucleus interactions and the term 
2

2 2

( 1)
8

J J h
r




 is due to 

centrifugal potential energy arising due to superposition of rotational motion on the 
vibrations of particles. The variation of potential V(r) is as shown below  
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If the nuclear vibrations are small oscillations so V(r) can be expanded by Taylor’s 
series as  
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The potential energy is a parabolic function near r=re for small displacement. The 
molecule in this case can be treated as harmonic oscillation. Here r=re is the 
equilibrium inter-nuclear separation and at this the potential energy is minimum. 

If nuclear-nuclear interaction is ignored then V(r)min=Ee. When two atoms are 
brought nearer to form a stable molecule, the electronic energy decreases rapidly 
while the energy of repulsion increases. For certain inter-nuclear separation the 
total potential energy is minimum i.e. for r-re, V(r)=Min. It is called as equilibrium 
inter-nuclear position. The two nuclei vibrate about their equilibrium position 
along the inter-nuclear axis and it also rotates about the centre of mass. So, we can 
conclude now the following from the potential energy V(r): 

1. The energy at minimum of V(r) is called as electronic energy Ee if the nuclei 
are fixed. 

2. The energy of nuclear vibrations about the nuclear position re under the 
potential function V(r) is called as vibration energy Ev and is given by 
quantum number v. 

3. The energy of rotation of the molecule Er is given by quantum number J.  
 So the total energy of the molecule is given by 

  E Ee v rE E    

In terms of wavenumber 

  e v rE E EE
hc hc hc hc

    

or 

  ( ) F( ,J)ev v G v v    

where 
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  ev = Electronic term 

  ( )G v = Vibration term 

  F( ,J)v = Rotation term 

As a result a molecule has number of quantized electronic levels. The 
transition between two electronic levels results in a radiations that fall in the UV-
Visible region. Within each electronic level a number of vibration energy levels 
exist. The spacing between these levels decreases with increasing vibration 
quantum number ( )v . A transition between vibration levels results in the emission 
of radiations that fall in the near Infra-red region. Also each vibration level is 
associated with a number of rotational levels. The spacing between these levels 
increases with increase in rotational quantum number. A transition between two 
rotational levels gives rise to emission of radiations that fall in the far Infra-red 
region. 

 
   

Transitions In Molecular Energy Levels 

A spectral line in each band arises due to change in the energies Ee, Ev and Er 

  E Ev
hc
   
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  

  
 

Here   e v rv v v  . 

So now summarize the following: 

1. For a given band ev  and vv  are constant while rv changes from line to line. The 
position in the band vv =0 is called as origin of band. 

2. For a system of bands ev  is constant while vv  changes from band to band. The 
position in the system vv =0 and vv =0 is called system origin. 

3. The electronic band system lies in UV-Visible region. 
4. The vibration-rotation band arises due to transition between two vibrational 

levels of the same electronic state. The lines of the band result from the 
transition between rotational levels of one vibrational level to the rotational 
levels of other vibrational levels. Such band lies in near Infra-red region. 

5. For a given electronic and vibrational level as same, the transition between 
two rotational levels give rise to pure rotational bands. These lines fall in Far 
Infra-red region. 

19.5 Types of Molecular Spectra (Characteristics of Band 
Spectra) 

 The molecular spectra under low dispersion appear as continuous bands. 
The intensities of a band decrease from one edge to other. With an instrument 
having high resolving power band spectra are found to have internal structure as: 

 Each band is composed of large number of lines having very small 
separations. There is a strong overlapping of the lines in higher wavelength 
region i.e. near band head. 

 There exist a group of bands in a definite sequence. 

 The bands are very close to each other so forming a band system. 

19.6 Regions of Molecular Spectrum 
 The molecules have electronic, vibrational and rotational levels. All these 
levels are quantized. The transition between these energy levels due to absorption 
or emission of energy will result in number of spectral lines in the spectrum of the 

19.5 Types of Molecular Spectra (Characteristics of Band 
Spectra) 

19.6 Regions of Molecular Spectrum 
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molecule. The interactions of molecules with electromagnetic radiations mainly 
fall in following regions: 

 If the energy of the excited state is E   and the ground state is E then the 
frequency of the spectral line is as 

  E E
h


 

    Hz. 

  E Ev
hc
   cm-1 

1. UV-Visible or Electronic Spectra: The electronic transitions in a molecule 
require energy of the order of 5-10 eV. The wavenumber and wavelength 
corresponding to 5 eV is  
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 This lies in the UV or short wavelength visible region.  In each electronic state 
there are a number of possible vibrational states. Also in a vibrational state 
there is a set of rotational states. 

2. Near Infra-red Spectra or Vibrational-rotational spectra: The vibrational levels 
are separated from each other by an energy gap of order 0.1 eV. The 
wavenumber and wavelength corresponding to 0.1 eV is 
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 These transitions fall in the near Infra-red region. The vibrational transitions 
are always accompanied by change in rotational levels. So such spectra are 
called as vibrational-rotational spectra. 
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3. Far Infra-red Spectra or Pure rotational Spectra: The vibrational levels are 
separated from each other by an energy gap of order 0.005 eV. The 
wavenumber and wavelength corresponding to 0.005 eV is 
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19.7 Signal-to-Noise Ratio and Resolving Power 
1. Signal-to-Noise Ratio: In spectrometers some electronics amplification 

devices are used to magnify the signal produced by the detector, the recorded 
spectrum has a background of random fluctuations caused by spurious 
electronic signals produced by the source or detector or may be generated by 
amplifying device. These fluctuations are called as “noise”. In order that a 
spectral line should appear as such and can easily be distinguished from noise 
the intensity of spectral line should be at least three or four times that of noise 

19.7 Signal-to-Noise Ratio and Resolving Power 
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signal. By using computer averaging technique the signal-to-noise ratio can be 
improved. 

2. Resolving Power: The resolving power is related to ability of the spectrometer 
to distinguish between different spectral lines situated close to each other. By 
decreasing the slit width of the spectrometer the resolving power can be 
improved. The sensitive detector can also enhance the resolving power. 

19.8 Width of Spectral Line 
 When we record the absorption or emission spectrum then we find broader 
spectral lines instead of sharp lines.  The design of the spectrometer can 
improve the resolving power but the width of the spectral line of any atomic or 
molecular spectrum cannot be reduced below an inherent width of that line. 
This width arises due to non-sharp single energy levels of the atoms or 
molecules. There is a width of energy of the state involves in the transition. The 
following factors contribute to the width of a spectral line: 

1. Collision Broadening: In the liquid and gases phases the atoms and molecules 
are in continuous motion and they collide with each other. Due to these 
collisions a change in the electronic, vibrational and rotational levels take place 
causing the broadening of the spectral lines. In case of solids the spectra are 
sharper as compared to liquid or gases phases. 

2. Doppler Broadening: Due to motion of molecules in liquid and gases phases 
there is a Doppler shift in the spectral line. Due to this shift the lines get broader. 

 

 

19.8 Width of Spectral Line 
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3. Natural Broadening: In the atoms or molecules which are at rest the 
energy levels are not sharp as stated by Heisenberg uncertainty principle. 
According to this principle if the system exists in an energy state for a time          

Δt seconds then the energy of that state will be uncertain by an amount ΔE.  

  
34. 10

2
hE t Js   


 

Here h is the Planck’s constant. The lower energy state is sharp while upper state is 
not sharp. So the spectral line has finite width as 
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hE
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t
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19.9 Intensity of Spectral Line 
 The intensity of a spectral line depend the following factors: 

1. Transition Probability: The transition probability is related to fact that the 
transition between two states is allowed or forbidden i.e. the transition 
probability is non-zero or zero. The probability of transition is related to 
derivation of selection rules for the transition between two levels. 

2. Population of two states: The intensity of a spectral line depends upon the 
population of that state from which the transition takes place. 

 Suppose there are N molecules distributed over two states of energies as E1 and 
E2 such that E2 > E1, then from statistical mechanics 
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E
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19.9 Intensity of Spectral Line 
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3. Path Length of Sample: The sample absorbs the radiations which are incident 
on it. If the path of the sample is increased then more and more radiation will be 
absorbed. The absorbance of a sample is given by 

  
0log( )IA cl
I

   

  c = Concentration 

  ε = Molecular absorption coefficient. 

  l = Path length 

9.10 Self Learning Exercise 
Q.1 Why molecular spectra are called as band spectra. 

Q.2 Write the total wavefunction for a molecule and explain it. 

Q.3 Write the order of wavelength of each region of molecular spectra. 

Q.4 Explain Signal-to-Noise ratio. 

Q.5 Explain the intensity of a spectral line. On which factors the intensity of the 
line depends? 

19.11 Summary 
The unit has introduced the concepts of molecular energy levels. How these energy 
levels arise due to mutual interaction between the atoms of the molecule. The total 
potential energy function of the molecule is calculated and then the Schrodinger 
wave equation is solved by using Born- Oppenheimer approximation. The 
molecule has three types of energy levels i.e. electronic, vibrational and rotational 
energy levels. The transitions between these levels give rise to molecular spectra 
i.e. band spectra. In the later section of unit order of energies involving the 
transitions between these levels and the corresponding regions of their fall are 
discussed. Finally there is a discussion on the width of spectral line and their origin 
as well how the spectrometer will be able to record the spectral line precisely. 

 

9.10 Self Learning Exercise 

19.11 Summary 
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19.12 Glossary 

Band :  Group of energy levels separated by small energy gap 

Spectra : Plural of spectrum 

Spectrometer : Instrument to record the spectrum. 

Hamiltonian : Total energy operator in quantum mechanics. 

Eigen value : Value of a physical quantity in quantum mechanics 

Centrifugal : Towards the centre 

Interaction: Influencing by a force 

Width : Interval 

Noise : Unwanted signal 

Resolve : Keep separation 

Spurious: Duplicate 

19.13  Exercise 
Q.1 What is the difference between atomic and molecular spectrum. 

Q.2  What is origin of band spectra of molecules ? 

Q.3 Explain the Born-Oppenheimer approximation. 

Q.4  Write the total Hamiltonian for a Molecule. 

Q.5 Write the effective potential energy function for a molecule and explain it. 

Q.6 Write the various regions of molecular spectra. 

Q.7 What is the order of energy of quanta of various regions of molecular 
spectrum. 

Q.8  Write the order of frequencies of different region of molecular spectra. 

Q.9  Draw the energy level diagram of molecular levels. 

Q.10 Write the characteristics of molecular spectra. 

Q.11  How the Signal-to-Noise can be improved ? 

Q.12 What is the resolving power of spectrometer ? How the resolving power can 
be improved ? 

19.12 Glossary 

19.13  Exercise 
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Q.13 Explain the width of a spectral line. Explain the various factors on which the 
width of line depends upon ? 
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UNIT-20 
Microwave Spectroscopy 

 

Structure of the Unit 

20.0  Objectives 

20.1  Introduction 

20.2 Salient features of Rotational Spectra 

20.3 Molecular Requirement for Rotational Spectra 

20.4 The Molecule as Rigid Rotator: Explanation of Rotational Spectra 

20.5 The Intensities of Spectral Lines 

20.6 Diatomic Molecule as a Non-Rigid Rotator 

20.7  Isotopic Effect 

20.8  Rotational Spectra of Polyatomic Molecule 

20.9 Rotational spectra of Symmetric Top Molecules 

20.10  Illustrative Examples  

20.11  Self Learning Exercise 

20.12 Summary 

20.13 Bibliography 

20.14  Exercise 

 References and Suggested Readings 

20.0 Objectives 
 This unit is designed to let readers with the knowledge of pure rotational 
spectra of molecules. The basic features of the molecular spectra, energy of 
rotational levels of a diatomic molecule as rigid and non-rigid rotator and the 
transition between these energy states will be explained. The various types of 
polyatomic molecules and the rotational spectra of some simple polyatomic 
molecule will also be discussed. 

UNIT-20 
Microwave Spectroscopy 

20.0 Objectives 
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20.1 Introduction 
 The pure rotational spectra are shown by those molecules which have 
permanent electric dipole moment. The salient features of the pure rotational 
spectra, rotational spectra of a rigid and non-rigid diatomic molecule, intensity of 
spectral lines and selection rules for transition between rotational levels are 
discussed. The various types of polyatomic molecules and the spectra of symmetric 
top molecule are explained. 

20.2 Salient Features of Rotational Spectra 
1. The spectral lines which are observed in far Infra-red region in the wavelength 

range greater than 200µm are due to transitions between rotational energy 
levels of the molecule. 

2. The change in these transitions is of the order of  0.0005 eV. 

3. Only those molecules which have permanent electric dipole moment can give 
rise to rotational spectra. It is the basic requirement to show rotational spectra 
by the molecules. 

4. The homo-nuclear molecules like H2 , O2 , N2 , etc. do not show rotational 
spectra. 

5. Only the hetero-nuclear molecules like HF, HCl, HBr, etc. show the rotational 
spectra. 

6. The rotational spectra are observed in absorption mode. 

7. From the spectral lines of rotational spectra the moment of inertia of the 
molecule and inter-nuclear distance can be calculated. 

8. The polar molecules interact with electric field of Infra-red radiations to 
absorb energy and will show absorption spectra. 

9. The rotational spectral lines are observed at equidistance on wavenumber 
scale. 

20.3 Molecular Requirement for Rotational Spectra 
 The basic requirement for the emission or absorption of radiations by 
transitions between rotational energy states is that the molecule must have a 
permanent electric dipole moment. This can be explained on the basis of theory of 

20.1 Introduction 

20.2 Salient Features of Rotational Spectra 

20.3 Molecular Requirement for Rotational Spectra 
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classical electrodynamics. According to this theory a rotating molecule can lead to 
emission of radiations if the dipole moment of hetero-nuclear molecule changes. 
All hetero-nuclear molecules have a permanent electric dipole moment. During the 
rotation of the molecule this dipole moment changes periodically in a particular 
direction with frequency of rotation .rot of the molecule, so as per classical theory 
of electrodynamics it will emit the radiation of frequency .rot . The   homo-nuclear 
molecules have no electric dipole moment and hence there is no emission of 
radiations.  

 Similar to emission the Infra-red radiations can be absorbed by rotating 
molecules if they have permanent electric dipole moment is present. The molecules 
interact with oscillating electric field of the incident radiation to absorb rotation 
energy and produce absorption lines.  

 Suppose the electric field of the electromagnetic wave at any instant of time 
pushes the positive ions in the upward direction and negative ions in the downward 
direction. As a result the molecule will rotate faster. If frequency of radiations 
coincides with that of molecular rotation ,then in the next half cycle, the molecule 
will rotate faster as compared to previous half cycle. As a result the molecule will 
be excited to higher rotational state. So the absorption spectrum is only observed 
when the molecule has electric dipole moment. 

20.4 The Molecule as Rigid Rotator : Explanation of 
Rotational Spectra 

 Let us consider a hetero-nuclear diatomic molecule having masses of two 
atoms as m1 and m2. The bond between two atoms is rigid i.e. not flexible. Let r be 
distance between two atoms which remain constant. Let r1 and r2 be the distance 
atoms m1 and m2 from the centre of mass C of the molecule. The molecule is 
rotating about an axis passing through the centre of mass and perpendicular to 
inter-nuclear axis. From the property of centre of mass as   

     1 1 2 2m r m r  

     1 2r r r   

    1 2r r r   

  1 2 2 2( )m r r m r   

20.4 The Molecule as Rigid Rotator : Explanation of 
Rotational Spectra 
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The moment of inertia of the molecule about the axis of rotation is given by 
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  µ is called as reduced mass of the molecule. 

 
In order to find the energy of rotation of molecule we have to solve the 
Schrodinger’s wave equation as 

  
2

2
2

8 ( ) 0E V
h
       

In terms of spherical polar co-ordinates the Schrodinger wave equation is 
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Since r is fixed so the differentiation with respect to r are taken as zero 
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where 2I r ,I  is the moment of inertia of the molecule. 
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Let us now separate the variables   and  as 

 Let ( , ) ( ). ( )        

 

2 2

2 2 2

1 ( ) 1 ( ) 8( ) ( ) ( ) ( ). ( ) 0ISin E
Sin Sin h

     
    

    
 

        

Dividing by ( ). ( )    

 

2 2

2 2 2

1 ( ) 1 1 ( ) 1 8( ) 0
( ) ( )

ISin E
Sin Sin h

     


      
 

  
 

 

Multiplying the equation by Sin2θ 

 

2 2
2

2 2

( ) 1 ( ) 8( ) . 0
( ) ( )

Sin ISin E Sin
h

      
 

    
 

  
 

 

 

2 2
2

2 2

( ) 8 1 ( )( ) .
( ) ( )

Sin ISin E Sin
h

      
 

    
 

  
 

 

Let us consider  
2

2
2

1 ( )
( )

M 
 


 


 

 

2
2

2

( ) ( )M 





     

   2
2

2

( ) ( ) 0M 





  
                                      (A) 

and  

 
2

2 2
2

( ) 8( ) .
( )

Sin ISin E Sin M
h

    
 

  


 


 

On multiplying by 2

( )
Sin




  to above equation 

 
2

2
2 2

1 ( ) 8 ( )( ) . ( )ISin E M
Sin h Sin

     
   

 
    

 
2 2

2 2

1 ( ) 8( ) [ ] ( ) 0I MSin E
Sin h Sin

    
   


      (B) 

The solution of the equation (A) is  

   ( ) iM
M Ae    

where, 0, 1, 2, 3....... .M etc     
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In order to solve equation (B), we consider the following 

Let  x Cos       and        ( ) ( )P x    

Then  2 2Sin 1 x    and  ( ) P x P Sin
x x

     
   


    

Let us treat (....) (....)d dSin
d d


 

   as an operator, so the equation (B) become 

 

2 2

2 2

1 ( ) 8[ { ( )}] [ ] ( ) 0d dP x IE MSin Sin Sin P x
Sin dx dx h Sin

  
 

      

 

2 2
2

2 2

( ) 8[ (1 ) ] [ ] ( ) 0
(1 )

d dP x IE Mx P x
dx dx h x


   


 

 

2 2 2
2

2 2 2

( ) ( ) 8(1 ) 2 x [ ] ( ) 0
(1 )

d P x dP x IE Mx P x
dx dx h x


    


  (C) 

 This equation is identical to associated Legendre’s differential equation if 

we replace 
2

2

8 IE
h
  by J(J+1) or 

2

2

( 1)
8

h J JE
I


 , here J is a positive integer. So the 

solution of the above (C) equation will be  

  , ( ) .P ( ) .P (Cos )M M
I M J JN x N     

M has values as, M=J, J-1, J-2, J-3, ---------, -J+1, -J. 

So, the complete wave function is given 

  ( , ) .P (Cos ) .M iM
JN A e      

The rotational energy states are given by 

  
2

2

( 1)
8J

h J JE
I


  

where 
2

2

( 1)
4

h J J

  is the eigen value of the square of the angular momentum as 

  
2

2
2

( 1)ˆ
4

h J JL 



 , J=0, 1, 2, 3, 4, ..., etc. 

and 
2
Mh


 are the eigen values of Z-components of the angular momentum as 

  ˆ
2Z
MhL  


 , 0, 1, 2, 3,......, .M etc     

The angular frequency of rotation is given by 
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  ( 1)
2rot

L h J J
I I




    

and the frequency of rotation is given by 

  2 ( 1)
2 4rot

h J J
I


 

    

Rotational Spectrum: The energy of a rigid rotator is given by 

  
2

2

( 1)
8J

J J hE
I


 , where J=0, 1, 2, 3, 4, ...,  etc. 

Corresponding to different values of J ,there will be different energy states of 
rotations of a diatomic molecule. In term of wavenumber 

  2( ) ( 1)
8

E hF J J J
hc Ic

    

  ( ) ( 1)F J BJ J   

where 2B
8

h
Ic

 , B is called as rotational constant.  

If J=0, 1, 2, 3, 4, 5, ......., etc., then, F(J)=0, 2B, 6B, 12B, 20B, ....., etc. 

 
When the transitions take place between an upper level and lower level of 
rotational levels, then the wave number of absorbed radiation will be 
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  ( ) ( )v F J F J    

  ( 1) ( 1)v BJ J BJ J          (D) 

The selection rule for the transitions to take place is 

  J 1    
If 1J J   , then from equation (D) we have 

  ( 1)( 2) ( 1)v B J J BJ J        ,  2 ( 1)v B J    

From the above we see that the absorption spectrum of a rigid rotator contains a 
series of equidistant lines having separation 2B. 

20.5 The Intensities of Spectral Lines 
 The spectral lines are observed in the rotational spectra of molecule for 

ΔJ=±1. The probability of these transitions is same irrespective of levels involved 
in the transitions. But the intensity of the spectral lines emerging due to transitions 
between pair levels having different values of J is not same. This is related to the 
different number of molecules in a state ,therefore the number of molecules 
undergoing transitions from different levels will be different. The intensity of 
spectral line is proportional to number of molecule in the initial state. The number 
of molecules in a state is given by 

  
( 1)

0 0

JE BhcJ J
kT kT

JN N e N e
  

   ,  

Here T is the temperature and K is the Boltzmann constant.  

 

20.5 The Intensities of Spectral Lines 
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As the value of J and B increases NJ decreases. The population of the level is 
proportional to degeneracy of a rotational level i.e. for a given value of J there will 
be (2J+1) sublevels of same energy. So the population of a level is given by  

  0 0

( 1)
(2 1) (2 1)

JE
kT

J

BhcJ J
kTN J N e J N e

  
     

20.6 Diatomic Molecule as a Non-Rigid Rotator 
 From the experimental investigation of the spectral lines of rotational 
spectra it is found that the spectral lines are equally spaced but the separation 
between lines decreases on wavenumber scale as the value of rotational quantum 
number J increases. From the calculation of rotational constant it is found that the 
bond length increases with increase in J , so the rigidity of the rotator is under 
question. We may here conclude that with increase in J value the increase in bond 
length is due to elastic nature of the bond up to some extent. The centrifugal force 
tends to increase the bond length at higher value of J. As a result of change in bond 
length due to stretching or compressing the molecule periodically, it is assumed the 
molecules may have vibrational energy. If the motion is simple harmonic the force 
constant is given by 

  2 2 24k v c    or 2
2 24
kv
c 


 

By considering the effect of non-rigidity of the bond the rotational energy levels 
are as 

  
2 4

2 2
2 4 2 2( 1) ( 1)

8 32
h hE J J J J

I I r k 
     

  2 2( ) ( 1) ( 1)EF J BJ J DJ J
hc

      

where  
2

28
hB

Ic
   and  

3

4 2 232
hD
I r kc

  and  
3

2

4BD
v

  

Here D is called as centrifugal distortion constant. So the energy of rotational 
energy level of high J values is lowered as shown above. The wavenumber of the 
transition between two levels 

 
2 2 2 2(J 1) F(J) B[(J 1)(J 2) J(J 1)] D[(J 1) (J 2) ( 1) ]v F J J              

  2(J 1) F(J) 2 B(J 1) 4 D(J 1)v F        

20.6 Diatomic Molecule as a Non-Rigid Rotator 
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The selection rule for transition is 1J   . Due to centrifugal distortions the 
spectral lines are not equally spaced particularly at higher value of J. 

20.7 Isotopic Effect 
 If any atom in the molecule is replaced by its isotope then the reduced mass 
of the molecule µ changes. Due to this change the moment of inertia changes but 
the inter-nuclear distance remains the same. 

Before the isotopic exchange in the molecule 

   1 2

1 2( )
m m

m m
 


, and 2I r  

If m1 is exchanged by its isotopic mass m  then  

  1 2

1 2( )
m m

m m



 

 
 , and 2I r   

Due to isotopic exchange the rotational energy values and the frequency separation 
of successive lines in the rotational spectrum changes. If m>m1 then  >µ and   
I >I. So rotational constant B changes as 

20.7 Isotopic Effect 
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As, 
2

28
hB

Ic
 , so  due to isotopic exchange it become 

2

28
hB

I c
 


, so B´<B, and 

( ) ( 1)F J B J J   , F´(J)<F(J). So the wave number after the isotopic exchange is 
given by  

  2 ( 1)v B J   , so v< v  

So the separation of levels for heavier isotopes will be smaller as compared to 
original mass. If 1m<m1, then v > v i.e. for lighter isotopic exchange, the 
separation between levels is higher as compared to original mass.  

So we conclude that the spectral lines will be closer on isotopic substitution if     

1m>m1 and wider if 1m<m1 as compared to m1. The isotopic effect increases with 
increase in value of J. 

20.8 Rotational Spectra of Polyatomic Molecule 
 In order to understand the spectra of polyatomic molecule ,we must be 
aware of the principal moment of inertia, angular momentum and kinetic energy of 
the polyatomic molecule. 

1. Principal Moment of Inertia : Suppose there are N atoms in a polyatomic 
molecule. Then there will be 3N degrees of freedom, out of these three belong to 
rotation of whole molecule about three mutually perpendicular axes. The moment 
of inertia of N atoms about any axis of rotation is written as 

  
2 2 2 2 2

1 1 2 2 3 3 4 4 ........ N NI m r m r m r m r m r       

Now there exists one direction of three mutually perpendicular axis for which 
corresponding moment of inertia are maximum or minimum. The axis along these 
directions pass through centre of mass. The maximum and minimum values are 
called as principal moment of inertia. They are Ia , Ib and Ic with a b cI I I  . 

2. Angular Momentum: The angular momentum is given by  

  L I
   

 In terms of inertial tensor 

  
x xx xy xz x

y yx yy yz y

z zx zy zz z

L I I I
L I I I
L I I I

    
         

        





 

 In terms of principal moment of inertia the above can be written as  

20.8 Rotational Spectra of Polyatomic Molecule 
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0 0

0 0
0 0

a a a

b b b

c c c

L I
L I
L I

    
        
    
    





 

3. Kinetic Energy in terms of Principal Moment of Inertia: The kinetic 
energy of the molecule in terms of principal moment of inertia is given by 

  
2 2 21 [ ]

2 a a b b c cK I I I      

  

2 2 2

[ ]
2 2 2

a b c

a b c

L L LK
I I I

    

4. Types of Molecules on the basis of Principal Moment of inertia: On the 
basis of principal moment of inertia of the molecule the molecules are classified as  
(a) Asymmetric Tops: Three moment of inertia are different i.e. 

   I Ia b cI   
(b) Symmetric Tops: Two moments of inertia are equal i.e.  

   I Ia b cI  , for oblate symmetric top 

   I Ia b cI  , for prolate symmetric top 
(c) Spherical Tops: Three moments of inertia are equal i.e.  

   I Ia b cI I    
(d) Linear or Diatomic Molecule: Two moment of inertia are equal and one is 

zero i.e. 

   I 0, Ia b cI   

20.9 Rotational spectra of Symmetric Top Molecules 

 In the symmetric molecule two moments of inertia are equal and one is 
different. The examples of such molecules are CH3Cl and NH3. The rotational 
energy of the molecule is given by 

  
2 2 2

2 2 2
a b c

r
a b c

L L LE
I I I

    

For a linear molecule it is assumed that the total angular momentum is quantized as 

  ( 1)
2
hL J J 


, where J = 0, 1, 2, 3, 4, ...., etc. 

The rotational energy of such molecules depend upon two quantum numbers J and 
K because J may not be directed perpendicular to top axis (Ia axis or unique 

20.9 Rotational spectra of Symmetric Top Molecules 
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principal axis). K is the component of vector J along top axis and K is also 
quantized. 

  , 0, 1, 2, 3,...., .
2a
KhL K etc    


 

  2 2 2 2
a b cL L L L    

  
2 2

2 2 2 2 2
2 2( 1)

4 4a b c
h hL L L L J J K     
 

 

So the rotational energy is given by 

For Prolate type Molecule 

  
2 2 2 2 2

2 2 2

( 1)
8 8 8r

a b b

K h J J h K hE
I I I  


   , as  Ib = Ic 

  
2 2 2

2
2 2 2

( 1) ( )
8 8 8r

b a b

J J h h hE K
I I I  


    

The term value is given by  

  2
2 2 2

( 1)( , ) ( )
8 8 8

r

b a b

E J J h h hF J K K
hc I c I c I c  


     

  2( , ) ( 1) ( )F J K BJ J A B K     

Where  2 2,
8 8b a

h hB A
I c I c 

   

The quantum numbers J and K can take the values as 

  J = 0, 1, 2, 3, 4, ......, etc. 

  K = 0, ±1, ±2, ±3, ±4, ....etc. 

So all values having K>0 are double degenerate.  

The selection rules for transitions are as 

  ΔJ = 0, ±1 and ΔK = 0 

For absorption spectrum 

  ΔJ = +1 and ΔK = 0 

For oblate type of the molecule 

  Ia = Ib < Ic, so 
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  2( , ) ( 1) (B )F J K BJ J C K     

where  28 c

hC
I c

 , and (B-C) is positive since Ib < Ic 

The wave number of the pure rotational absorption spectral transition 

  ( 1, ) ( , )v F J K F J K    

  2 2v [ ( 1)( 2) ( ) ] [ ( 1) ( ) ]B J J A B K BJ J A B K          

  v 2 ( 1)B J  cm-1
 

 

 

20.10 Illustrative Examples 

Example1. The wavenumber of first line in the rotation spectrum of CO is   
3.84235 cm-1. Calculate the rotational constant, moment of inertia and bond length 
of the molecule. (Given mass of C=19.92168×10-27 kg and mass of                                
O = 26.5636×10-27 kg) 

Sol. Given that  1
0 1 3.84235 2v cm B
    

20.10 Illustrative Examples 
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  So  B = 1.92118 cm-1 

The moment of inertia of Co molecule is  

  
34

46
2

2
2 2 8

6.626 10 1.457 10
8 8 (3.14) 3 1.92118 1010

hI kgm
Bc




   
   

 

The reduced mass of the molecule is related to bond length as 

  
27 27

27
27

19.92168 10 26.56136 10 11.38365 10
(19.92168 26.56136) 10

C O

C O

m m kg
m m


 




  
   

  
 

  As 2I r , so 
46

10
27

1.45695 10 1.131 10
11.38365 10

Ir m








   


 

Example 2 Wave number of  J =0 to 1 transition in HCl molecule found at 
20.68 cm-1. Calculate the wavelength for the transition J = 14 to J = 15. 

Sol. The wave number of the transition from J = J to J =J+1 is 

  v 2 ( 1)B J   

 For J = 0 to J = 1 

  v 2B  
 As  v  = 20.68 cm-1 

 So 2B = 20.68 cm-1 

  B = 10.34 cm-1 

 So the wavenumber for the transition J= 14 to J = 15 is 

  v 2 ( 1)B J  , here J = 14 

  1v 2 (14 1) 2 10.34 15 310.2B cm       

 So the wavelength of the transition is 

  31 1 3.2 10 32
v 310.2

cm m       

Example 3 In the rotational spectra of C12O16 the first absorption line (J = 0 to 
J = 1) is observed at 1.153×1011 cycles/s and for CnO16 it is observed at    
1.102×1011 cycles/s. Find the value of n for Carbon isotope. (Given that mass of 
C12  = 12 a.m.u. and mass of O16 = 16 a.m.u.). 

Sol.  Before isotopic exchange the rotational constant is 
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2

28
hB

Ic
 , and v 2 ( 1)B J   

After isotopic exchange the rotational constant is 

  
2

28
hB

I c
 


, and 2 ( 1)v B J    

  v (12 16) ( 16)
12 16 16

B I n
v B I n




   
    
   

 

  
11

11

28 ( 16)
(12 16) ( 16

1.153 10
1.102 10 )

n
n





 

 
 

  1.153
1.102

7
3 16

n
n

 


 

  3.459
7.714 16

n
n




 

  (7.714 3.459) 3.459 16n     

  3.459 16 55.344 13.0068
4.255 4.255

n 
    

So the isotope of Carbon is C13.  

20.11 Self Learning Exercise 
Q.1 Why rotational is not observed for homo-nuclear molecules ? 

Q.2 Give the examples of polar molecules. 

Q.3 Discuss the pure rotational spectra of a rigid rotator. Show that the spectral 
lines are equally spaced on wavenumber scale. 

Q.4 What is a symmetric molecule ? Explain oblate and prolate type of a 
symmetric molecule. 

20.12 Summary 
 The aim of this unit is to study the pure rotational spectra of the diatomic 
and symmetric top molecules. The pure rotational spectra of the molecule lie in far 
Infra-red region of electromagnetic region. The pure rotational spectra are shown 
by hetero-nuclear molecules. These molecules have permanent electric dipole 
moment. The homo-nuclear molecules do not show the pure rotational spectra 
because they do not have permanent electric dipole moment. The mechanism of 

20.11 Self Learning Exercise 

20.12 Summary 
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interaction of dipolar molecules with the electric field of electromagnetic field 
leading to change in the rotational state was discussed. The pure rotational 
spectrum of diatomic molecule have been discussed in detail. The energy levels 
and selection rules for transitions have been explained. The spectral lines are found 
to equally spaced on wave number scale. The effect of non-rigidity and isotopic 
exchange has been also discussed for a diatomic molecule. The shift in the spectral 
due to these effects has been  presented. The introduction about the rotational 
spectra of polyatomic molecules has been  also introduced and the rotational 
spectrum of symmetric top molecules has been  discussed in detail. At last some 
problems related to the content of the units have been solved. 

20.13 Glossary  
Homo-nuclear : Same type of nucleus 

Hetero-nuclear : Different type of nucleus 

Polar : Having positive and  negative charge  

Oscillating : Periodically varying 

Rigid : Hard to change 

Flexible : Easy to change 

Centrifugal : Away from centre 

Distortion : Defects 

Successive : Consecutives 

Degenerate : Same energy 

20.14  Exercise 
Q.1 What is requirement for a molecule to show rotational spectrum ? 

Q.2 How the polar molecules interact with electromagnetic radiations ? 

Q.3 Write region of pure rotational spectrum and order of quanta of energy for 
transition between two levels. 

Q.4 What is the order of wavelength of pure rotational spectra ? 

Q.5 Write the Schrodinger’s wave equation for a rigid rotator. 

Q.6 Write the formula for population of a rotational level and its degeneracy. 

20.13 Glossary  

20.14  Exercise 
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Q.7 Discuss the dependence of intensity of spectral lines on the population of a 
rotational level. 

Q.8 Write the formula for energy of rotation of a rigid rotator and the selection 
rules for transition between two levels. 

Q.9 Discuss the effect of non-rigidity on the pure rotational spectra of a diatomic 
molecule. 

Q.10 Discuss the effect of isotopic exchange on the pure rotational spectra of a 
diatomic molecule. 

Q.11 Discuss the various types of polyatomic molecules on the basis of principal 
moment of inertia. 

Q.12 Discuss the rotational spectrum of a symmetric top molecule. 
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UNIT-21 
Infrared Spectroscopy : Part  

 

Structure of the Unit 

21.0  Objectives 

21.1  Introduction 

21.2 Salient features of Vibrational-Rotational Spectra 

21.3 Vibrating Diatomic Molecule as Harmonic Oscillator 

21.4  Vibrating Molecule as Anharmonic Oscillator 

21.5 Vibrational Frequency and Force Constant for Anharmonic Oscillator 

21.6 Isotopic Effect in Vibrational Spectra 

21.7  Molecule as Vibrating Rotator 

21.8 Breakdown of Born-Oppenhemier Approximation: The Interaction of 
Rotations and Vibrations 

21.9  Illustrative Examples 

21.10   Self Learning Exercise 

21.11 Summary 

21.12  Glossary 

21.13  Exercise 

 References and Suggested Readings 

21.0 Objectives 
This chapter is aimed to provide knowledge to the readers about the population of 
vibrational energy levels of molecules. The different modes of vibrations of 
polyatomic molecules will be discussed. The instrumentation for recording the IR 
spectra of the molecules will be explained.  

21.1 Introduction 
The vibrational energy levels of the molecules are quantized. The population of 

UNIT-21 
Infrared Spectroscopy : Part-I 

21.0 Objectives 

21.1 Introduction 
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these energy levels at any temperature will be discussed. The normal coordinates 
of vibrations and various modes of vibration of polyatomic molecules are 
explained with examples. The instrumentation required to record the IR spectra of 
the molecules is discussed i.e. FTIR spectrometer. 

21.2 Salient features of Vibrational-Rotational Spectra 
The salient features of vibrational-rotational spectra are as follows: 

1. The vibrational-rotational spectra fall in the Near-Infra-Red (NIR) region of 
electromagnetic spectrum (1µm-100µm).  

2. During the vibrational transitions between vibrational levels of molecule there 
is no change in the electronic state. 

3. The vibrational transitions are always are accompanied by rotational 
transitions. 

4. The vibrational-rotational spectra observed in absorption mode. 
5. The vibrational-rotational spectra are observed for those molecules which have 

permanent electric dipole moments e.g. HCl, HBr, HI, HF, H2O etc. 
6. When the molecule vibrates, then the inter-nuclear distance changes. So, the 

dipole moment of the molecule also changes. The electric dipole moment of 
molecule oscillates and emits the radiation of frequency which lies in the 
Near-Infra-Red region. 

7. The oscillating electric dipole moment also interacts with the incident 
radiations and absorbs the radiations of frequency of Near-Infra-Red region. 

8. The vibrational-rotational spectra of diatomic molecules consist of an intense 
band called as fundamental band surrounded by weak bands called as 
overtones.  

21.3 Vibrating Diatomic Molecule as Harmonic Oscillator 
 Let us consider a diatomic molecule which is vibrating and whose 
vibrations are treated as simple harmonic. Let re be the equilibrium length of the 
bond between two atoms of the molecule. At any instant of time during the 
vibration the bond length is r. The equation of motion the atoms in the molecules 
are as 

     
2

1
1 2 ( )e

d rm k r r
dt

           (A) 

21.2 Salient features of Vibrational-Rotational Spectra 

21.3 Vibrating Diatomic Molecule as Harmonic Oscillator 
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2

2
2 2 ( )e

d rm k r r
dt

          (B) 

where m1 and m2 be masses of the two atoms, r1 and r2 be the position of two atoms 
from the centre of mass and k is the force constant.  

  
From the properties of centre of mass we have 

  1 1 2 2m r m r  

  1 2r r r   

  1 2r r r   

  1 2 2 2( )m r r m r   

  1 1 2 2( )m r m m r   

  1
2

1 2( )
m rr

m m



 

and  2
1

1 2( )
m rr

m m



 

So by substituting the values of r1 and r2 in equation (A) and (B) we get the 
equation as 

  
2

1 2
2

1 2

( ) ( )e
m m d r k r r
m m dt


  


      (C) 

Since, re is constant so we can replace r by (r - re) in equation (C)  

  
2

1 2
2

1 2

( )( ) ( )e
e

d r rm m k r r
m m dt


  


     (D) 

Let      er r x   and 1 2

1 2

m m
m m

 



, so the equation (D) now become 

  
2

2

d x kx
dt

        
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2

2 0d x k x
dt 

   

  
2

2
2 0d x x

dt
  , where 2 k


  

The frequency of vibration is given by  

  1
2

k


 
  Hz. 

In terms of wave numbers 

  11 1
2

kv cm
c  

   

 
The energy of the vibrational energy levels is quantized. The allowed energies for 
the diatomic molecule can be determined by solving the Schrodinger’s wave 

equation considering the potential to be harmonic as 2
0

1
2

V kx . The energy of 

levels of diatomic molecule is given by the following equation 

  1 1[ ] [ ]
2 2vE v h v hcv     

Here v is the vibrational quantum number which can take values as v = 0, 1, 2, 3, 
...., etc. 

In terms of term value the above equation is written as 
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  1( ) [ ]
2

G v v v  , for v =0, 1, 2, 3, 4, ...etc the values of G(v) are as 

  ( ) ,3 ,5 ,7 ,..... .
2 2 2 2
v v v vG v etc  

So we observe a series of levels which are quantized and equispaced.  

Suppose a transition takes place from higher vibrational energy state having 
quantum number v to lower vibrational state having quantum number v  ,then the 
frequency of radiation emitted given by 

  ( )v vE E Hz
h

  
  

In term of wavelength 

  1( ) ( ) G(v ) cmv vE E G v
hc

        

The selection rule for transition is Δv = ±1. 

21.4 Vibrating Molecule as Anharmonic Oscillator 
 For a diatomic molecule as purely harmonic oscillator the change in 

vibrational quantum number is Δv = ±1 ,so there is one band for each mode of 
vibration. But experimentally there is strong band with one or two overtones or 
harmonics. The harmonics correspond to the frequencies that are resulted due to 

change in vibrational quantum number Δv =  ±2, ±3,… etc. Thus the overtones 
correspond to transitions involving the change in vibrational quantum number 

Δv>1. Thus the dipole moment of the molecule is not linear with respect to inter-
nuclear distance, implying the presence of anharmonicity in the molecular 
vibrations. The overtones are not observed exactly at 2 ,3v v ,.. but at lower value 
side. It indicates that the vibrational energy levels are not equispaced but converges 
slowly as the vibrational quantum number increases. Due to presence of 
anharmonicity ,the potential energy curve is not strictly parabolic but its shape 
changes at higher values of quantum number v. The potential energy in this case is 
given by as  

   

      
2 3( ) ( ) ( )e eV r f r r g r r   

2 3
2 3

2 3

1 ( ) 1 ( )( ) ( ) ( ) ( ) ( ) ....
2 6e er r e r r e

V r V rV r r r r r
r r 

 
    

 

21.4 Vibrating Molecule as Anharmonic Oscillator 
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Where g<<f. So the real molecules do not obey Hook’s law, there is anharmonicity 

present in their vibrations. The potential energy curve for such oscillators is as 
shown as below and by considering the above potential energy the Schrodinger 
equation is solved. 

 
The allowed vibrational levels are given by following equation 

 2 31 1 1( ) ( ) ( ) ( ) ......
2 2 2

E v v h v h x v h y          

Here x and y are the anharmonicity constants. 

In terms of term values the above equation is written as  

 2 31 1 1( ) ( ) ( ) ( ) ......
2 2 2

G v v v v vx v vy        

The quantity v  is the line spacing of energy levels in terms of wavenumbers if the 
potential energy is purely parabolic, vx   is the anharmonicity constant whose value 
is much smaller than v   and is always positive. So the energy levels are not at 
equispaced as observed from above equation. As the value of vibrational quantum 
number v increases separations between levels decrease. The selection rules for 
transitions between vibrational levels after considering the anharmonicity are as  
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  Δv = ±1, ±2, ±3, .........., etc.   

These transitions are classified as fundamental band corresponding to transition     
v = 1 to v = 0 , first overtones or second harmonics for v = 2 to v = 0, and second 
overtone or third harmonics for v = 3 to v = 0, etc. 

Suppose a transition takes place from an upper vibration state v  to lower state v  
then the frequency of radiation is given by 

  ( )v v
v

E E Hz
h
 

  

In terms of wave number 

  ( ) ( ) ( )v v
v

E Ev G v G v
hc
       

  ( ) { ( 1) ( 1)}vv v v v v v v v xv            

Since vibrational quantum number is always is zero so v  = 0 and v= v , so the 
wavenumber of fundamental band overtones are 

  1 (1 2 )v x v     Fundamental band. 

  2 (1 3 )2v x v     First overtone. 

  3 (1 4 )3v x v       Second overtone. 

21.5 Vibrational Frequency and Force Constant for 
Anharmonic Oscillator 

The vibrational frequency of harmonic oscillator is given by 

  1
2

k


 
  

where k is force constant and µ is the reduced mass. The separation between the 
levels is constant and is equal to v  in terms of wavenumber. In case of anharmonic 
oscillator the above formula holds for small amplitude of vibrations. The 
vibrational frequency of anharmonic oscillator in state v is given by 

  
1 1
2 2

2
v v

v

G G
c G c

 
  

    

  1 [{ ( 1) ( )} { ( ) ( 1)]
2

c G v G v G v G v        

21.5 Vibrational Frequency and Force Constant for 
Anharmonic Oscillator 
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  1 [ ( 1) ( 1)]
2

c G v G v      

As we know that  

  21 1( ) ( ) ( )
2 2

G v v v vx v     

So,   2 21 3 3 1 1[{ ( ) ( ) } { ( ) ( ) }]
2 2 2 2 2

c v v vx v v v vx v          

  2 21 3 1 3 1[{ ( } {( ) ( ) }]
2 2 2 2 2

c v v v vx v v          

  1 [2 (4 2)]
2

c v vx v     

  [ (2 1)]c v vx v     

So as value of v increases ,the frequency of vibration decreases. From the 
vibrational frequency of small amplitude vibration ,we have 

  1
2

k cv
 

   

So the force constant is given by 

  2 2 24k c v   

21.6 Isotopic Effect in Vibrational Spectra 
 The isotopic forms of the molecule have different reduced masses ,but the 
force constant is same. From the value of force constant 2 2 24k c v  , it is 
observed that the equilibrium vibrational wavenumber will be different for 
different isotopic form. Let 1v  and 2v  are the equilibrium wavenumbers for two 
isotopic forms having reduced masses 1  and 2 . The from the force constant we 
have 

  2 1

1 2

v
v





 


, or  2 1v v      (A) 

The anharmonicity constant is proportional to equilibrium constant so 

  2 1x x         (B) 

So the wavenumber of the centre of any band involving lower vibrational level      
v = 0 is 

21.6 Isotopic Effect in Vibrational Spectra 



431 
 

  0 1[1 ( 1) ]vv v v x v           (C) 

So by using equations (A) and (B) in (C) we 

  1 0 1[1 ( 1) ]vv v v x v     

  2
2 0 1[ ( 1) ]vv v v x v      

The above equations represent the wavenumbers of the isotopic forms of same 
molecule. The wavenumber difference of the centers of the two isotopic bands 
called as isotopic shifts, iv . 

  1 1(1 ){1 ( 1)(1 ) }iv v x v        

The isotopic shift for fundamental band, first overtone and second overtone are as 

Fundamental Band v = 1 to v = 0  

  1 1(1) (1 ){1 2(1 ) }iv x v       

First Overtone  v = 2 to v = 0 

  1 1(2) (1 ){1 3(1 ) }2iv x v       

Second Overtone v = 3 to v = 0  

  1 1(3) (1 ){1 4(1 ) }3iv x v       

The isotopic shift depends upon the factor (1 ) . The shift increases with increase 

in (1 ) . If ρ>1, isotopic shift v  is towards lower wavenumber and for ρ<1 the 
shift is towards higher wavenumber side. 

21.7 Molecule as Vibrating Rotator 
 We have considered the vibrations and rotations of a diatomic molecule 
independently up to now. But a vibrating molecule is always associated with 
rotational motion so we have to consider the combined vibrational and rotational 
motion of the molecule. Let us discuss this combined motion under situations. 

I. Molecule as Rigid Rotator and Harmonic Oscillator 

The Near Infra-red spectra of the molecules consist of bands which composed of 
close lines arranged in a particular manner. This fine structure suggests that during 
the vibrational transition the rotational state of the molecule also changes. The 
molecule can be treated as vibrating rotator. Suppose the vibrations and rotations 

21.7 Molecule as Vibrating Rotator 
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of molecules take place independently i.e. there is no interaction between two 
motions. The total energy of the molecule in this case can be written as 

  vr vib rotE E E   

If the molecule is rigid rotator and harmonic oscillator ,then 

  { ( ) ( )}vrE G v F J ch   

  
2

2

1( ) ( 1)
2 8vr

hE v hcv J J
I

     

Suppose a transition takes place from vibrational level v  to v  level along with 
transition from rotational level J   to level J  .  Then the change in energy 
accompanies the transitions is 

  
2

2( ) [ ( 1) ( 1)]
8vr vr vr

hE E E v v hcv J J J J
I

               
 

 
 The wavenumber of radiation arising due to the transition is  

( ) [ ( 1) ( 1)]vr vr
vr

E Ev v v v B J J J J
hc
               ,where 2 2 28 8

h hB
Ic r c  

   
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II. Diatomic Molecule as Non-rigid and Anharmonic Oscillator 

If the diatomic molecule is not rigid rotator and there is anharmonicity is present in 
the vibrations ,then the energy of the molecule is given by 

  { ( ) ( )}vrE G v F J ch   

  2 2 21 1[( ) ( ) ... ( 1) ( 1) ...]
2 2vrE ch v v x v v BJ J DJ J          

If we neglect the small centrifugal distortions ,then we take D = 0 and others then 
the energy of the molecule in this case as  

  21 1[( ) ( ) ( 1)]
2 2vrE ch v v x v v BJ J       

The selection rules for combined vibrational and rotational transition are as 

  1, 2, .v etc     1J    
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Let us consider two vibrational state designated by v = 0 and v = 1. The rotational 
states in v = 0 are denoted by J   and in the state v = 1 are denoted by J  . For the 
transition from v = 0 to v = 1 the wave number of the radiation  

  , 0 , 1r v r v
vr

E E
v

hc
  

  

  3 9 3 1{ ( 1) } { ( 1) }
2 4 2 4vrv BJ J v xv BJ J v xv            

  0(1 2 ) ( )( 1) ( )( 1)vrv v x B J J J J v B J J J J                   

where 0v (1 2 )v x  , it is the wave number of pure vibrational transitions                
( 0J J   ). 

0v  is called as wave number of the band origin. 

Now let us consider  

    R Branch: 1, . . ( ) 1J i e J J        0( ) 2 ( 1), 0,1,2,....v R v B J J      

    P Branch 1, . . ( ) 1J i e J J        0( ) 2 , 1,2,....v P v BJ J     

   In General 0 2vrv v Bn  ,  where 1, 2, 3.... .n etc    , 0n   

So the vibrational-rotational spectra of diatomic molecule consist of numbers of 
lines at a separation of 2B cm-1 around the centre of band.  

21.8 Breakdown of Born-Oppenhemier Approximation: The 
Interaction of Rotations and Vibrations 

 If we do not consider the interaction between vibrational and rotational 
energies ,then the R and P branch lines are equidistant. But in actual practice the 
separation between the lines of one branch decreases (R branch) and of the other 
branch (P branch) increases. This is resulted due to interaction between vibrational 
and rotational motion of the molecule.  

 When a molecule vibrates ,then the bond length changes which cause the 
change in moment of inertia I and rotational constant B of the molecule. This is 
called as interaction between two motions. As the vibrational quantum number v 
increases ,the amplitude of vibrations increases ,hence the value of rotational 
constant decreases due to increase in average bond length. The dependence of 
rotational constant on vibrational quantum number can be expressed as  

21.8 Breakdown of Born-Oppenhemier Approximation: 
The Interaction of Rotations and Vibrations 
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  1( ) ......
2v eB B v       

where  28v
v

hB
I c

  and 28e
e

hB
I c

  

 Here Iv is the moment of inertia of molecule in vth vibrational state, Ie is the 

moment of inertia in equilibrium state and α is a small positive integer of the order  

of 0.02Be to 0.05Be. In the same way the non-rigidity constant of the molecule in 

the vth state is given by 

  1( ) ......
2v eD D v     

Dv is the no-rigidity constant in vth  state, De is non-rigidity constant in equilibrium 

constant and β is constant as compared to De. So the rotational energy is given by  

  2 2( 1) ( 1) ...r v vE B J J hc D J J hc      

 
       Figure : Ideal Vibrational-Rotational Spectra 

 The total energy of the molecule after considering the interaction between 
the vibrational and rotational motion is 

         2 2 21 1( ) ( ) .... ( 1) ( 1) ..
2 2vr v vE v hcv v hcxv B J J hc D J J hc           

The wavenumber of the lines of P and R branches are  

 P Branch: 2 3
0( ) ( ) ( ) 4v v v v vv P v B B J B B J D J          

 R Branch: 2 3
0( ) ( ) ( ) 4v v v v vv R v B B J B B J D J          
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Here J = 0, 1, 2, 3, .........etc. and 0v  is the wavenumber of the centre of band which 
is given as 

   0 (1 2 ) , 1 0v x v v v      

If we neglect the non-rigidity constant Dv ,then  

 P Branch: 2
0( ) ( ) ( )v v v vv P v B B m B B m        , m = -1, -2, -3, .... 

 R Branch: 2
0( ) ( ) ( )v v v vv R v B B m B B m        , m= +1, +2, +3, ..... 

  
  Figure: Real Vibrational-Rotational Spectra (Fine Structure) 

So we Conclude the following from the above theory 

1. As the vibrational energy increases ,the average inter-nuclear distance 
increases so the rotational constant Bv is smaller in the upper state than lower 

state. So v vB B  , means band head appears in R branch on high wavenumber 
side of the origin. Such a band is said to be degraded towards the red. So the 
vibrational-rotational spectra bands are degraded to red only. 

2. The wavelength separation of successive lines in the P and Q branches are as 

  ( ) 2 ( )2 ...v v vv P B B B J        

  ( ) 2 ( )2 ...v v vv R B B B J        

3. For both P and R branches v vB B  , so the separation between the lines of R 
branch decreases with increase in J values where as the separation between 
lines of P branch increases with increase in J. 
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21.9 Illustrative Examples 

Example1 The value of v  and vx  are 1580.36 cm-1 and 12.073 cm-1 respectively 
for the ground state of molecular oxygen. Calculate the zero-point energy.                    
(1eV = 8068 cm-1 ). 

Sol. The vibrational energy of the diatomic molecule is given by 

     21 1( ) ( ) ( )
2 2

G v v v vx v     

For zero point energy v = 0 so 

 1 1(0)
2 4

G v vx   ,   1 1(0) 1580.36 12.073 790.18 3.02
2 4

G        

 (0) 787.16G   cm-1, 787.16(0) 0.097
8068

G eV   

Example 2 The force constant of the bond in CO molecule is 190 N/m and its 

reduced mass is 261.15 10 kg . Calculate the frequency of vibration and spacing 
between the vibrational levels. 

Sol. The frequency of vibration of the molecule is given by  

     26

1 1 190
2 2 3.14 1.15 10

k


   
 

 

     132.0467 10    Hz 

The separation between the two energy levels 

    1v vE E E h     

    34 13
1 6.63 10 2.0467 10v vE E E 
        

    34 13 216.63 10 2.0467 10 13.5696 10E          J 

    
21

19

13.5696 10
1.6 10

E eV





 


 

    28.481 10E eV    
Example 3 HCl molecule absorbs wavelength 3.5 micrometer due to vibrational 
transitions. Find the force constant for HCl molecule. 

Sol.  The frequency of vibrations is given by 

  1
2

k


 
  

21.9 Illustrative Examples 
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  2 24k     

Here  1.0087Hm   a.m.u. and 35.453Clm   a.m.u. 

So the reduced mass of the molecule is given by 

  1.0087 35.453 0.98
( ) (1.0087 35.453)

H Cl

H Cl

m m
m m




  
 

 a.m.u. 

  270.98 1.67 10     kg. 

The frequency of vibration can also be written as  

  
8

13
6

3 10 8.571 10
3.5 10

c


 


   


 Hz. 

So the force constant is now given by  

  2 13 2 274 (3.14) (8.571 10 ) 1.63 10k       

  472.24k   N/m 

Example 4 The fundamental band of a diatomic molecule is centered around 
2145 cm-1 and first overtone at 4260 cm-1. Find v  and vx . 

Sol. The frequency of fundamental and first overtones are given by 

  1 (1 2 )v x v     Fundamental band. 

 2 (1 3 )2v x v     First overtone. 

So, 1

2

(1 2 )
(1 3 ) 2

v x
v x




 
 

 1 1 2 22 6 2v v x v v x    

 2 1 2 1(2 6 ) 2v v x v v    

 2 1

2 1

( 2 ) (4260 4290) 30
(2 6 ) (8520 12870) 4350

v vx
v v
 

  
 

 

 0.0069x   
As 1 22 2v v vx   

 1 2(2 ) 4290 4260 15
2 2

v vvx  
    cm-1 

 15 15 2174
0.0069

v
x

    cm-1 
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21.10  Self Learning Exercise 

Q.1 What is the order of energy difference between vibrational levels of a 
molecule ? 

Q.2 Discuss the anharmonicity present in molecular vibrations. 

Q.3  Discuss the effect of isotopic exchange on the vibrational spectra of a 
diatomic molecule. 

Q.4 Discuss the fine structure of the vibrational-rotational spectra. 

21.11  Summary 
 The aim of this unit is to study the vibrational-rotational spectra of the 
diatomic molecules. First of all the pure vibrational motion of the molecule is 
considered and the energies levels are determined. After this effect of 
anharmonicity present in the molecule has been  discussed. Due to anharmonic 
effect the presence of fundamental band, first overtones and second overtones were 
discussed. Effect of the isotopic exchange on the spectra has been  also discussed. 
After considering the pure vibrational motion the rotational motion of the molecule 
is also considered. The two motions first treated as non-interacting and the total 
energy of the molecule has been calculated. The combined vibrational and 
rotational motion provides the presence different branches in the molecular spectra. 
Different cases were considered regarding the rigidity and non-rigidity of the bond 
as harmonic and anharmonic effect in the vibrations. At last the fine structure of 
the vibrational-rotational spectra have been  discussed. The fine spectra are related 
to interaction of vibrational and rotational motion. The effect has been  discussed 
in terms of separation between the lines of different branches. 

21.12 Glossary 
Homo-nuclear : Same type of nucleus 

Hetero-nuclear : Different type of nucleus 

Polar : Having +ive and –ive charge  

Oscillating : Periodically varying 

Rigid : Hard to change 

Flexible : Easy to change 

21.10  Self Learning Exercise 

21.11  Summary 

21.12 Glossary 
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Distortion : Defects 

Converge : Terminating 

Degraded : Ending 

21.13 Exercise 
Q.1 Write the order of frequency and wavelength of NIR spectra. 

Q.2 How the polar molecules interact with electromagnetic radiations ? 

Q.3 Give the examples of polar molecules. 

Q.4 Write the selection rules for transitions between the vibrational levels. 

 Q.5 Are the vibrations of a diatomic molecules are pure harmonic ? 

Q.6 Discuss the effect of anharmonicity on the vibrational spectra. 

Q.7 Discuss the fundamental band and various overtones in vibrational spectra. 

Q.8 Discuss the effect of isotopic exchange on the fundamental and on the 
overtones of the vibrational spectra. 

Q.9 Write the formula for calculation of force constant of bond in a diatomic 
molecule. 

Q.10 Discuss the Vibrational-Rotational spectra of diatomic molecules. Discuss 
the various branches of the spectra. 

Q.11 Write the selection rules for transitions in vibrational-rotational spectra. 

Q.12 Discuss the effect of non-rigidity and anharmonicity on the NIR spectra. 
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22.0 Objectives 
This chapter is aimed to provide knowledge to the readers about the population of 
vibrational energy levels of molecules. The different modes of vibrations of 
polyatomic molecules will be discussed. The instrumentation for recording the IR 
spectra of the molecules will be explained.  

22.1 Introduction 
 The vibrational energy levels of the molecules are quantized. The 
population of these energy levels at any temperature will be discussed. The normal 
coordinates of vibrations and various modes of vibration of polyatomic molecules 
are explained with examples. The instrumentation required to record the IR spectra 
of the molecules is discussed i.e. FTIR spectrometer. 

22.2 Thermal Distribution of Vibrational and Rotational 
Levels 

Vibrational Levels : According to Maxwell-Boltzmann distribution law the 
number of molecules in the vth state, Nv , relative to lowest state, N0, is given by  

  
0 ( )

0

G v hc
kT

vN N e


  , k is the Boltzmann constant and T is the 
temperature. G0(v) is the energy term value of the transition from  vth  state to zero 
state. 

  0 ( ) ( ) (0)G v G v G  , 21 1( ) ( ) ( )
2 2

G v v v vx v     

At room temperature the population of higher vibrational levels is very small as 
compared to lowest level v = 0. As the temperature increases the population of 
higher vibrational levels increases as shown in the graph 22.1.  

Rotational Levels : The relative population of various rotational levels 
corresponding to a vibrational level is of different nature. A rotational state having 
rotational quantum number J is (2J+1) fold degenerate. The probability of a 
molecule to be in each degenerate state is equal. Let the molecules are in the 
lowest vibrational state v = 0, Nv=0 , be the number of molecules in this state. These 
molecules are distributed in various rotational states. The number of molecules in a 
rotational state of a given vibrational state is as 

22.0 Objectives 

22.1 Introduction 

22.2 Thermal Distribution of Vibrational and Rotational 
Levels 
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( )
0 (2 1)

F J hc
v kT

J
r

NN J e
Z


    

where Zr is the rotational partition function which is given by 

  
( )

0
(2 1)

F J hc
kT

r
J

Z J e




   

  
( 1)

0
(2 1)

BJ J hc
kT

r
J

Z J e
 



   

  
( 1)

0

(2 1)
BJ J hc

kT
r

kTZ J e dJ
hcB

  

     

  

 
Figure:22.1 Population of Rotational levels 

So
   

( 1)

0

(2 1)
BJ J hc

J kT

v

N hcB J e
N kT

 



   

We see here that as the value of J increases, the value of 
0

J

v

N
N 

 first increases and 

then decreases. The value of J for which the population is maximum is calculated 

as  
( 1)

0

( ) ( (2 1) ) 0
BJ J hc

J kT

v

Nd d hcB J e
dJ N dJ kT

 



    
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  max
1

2 2
kTJ
Bhc

   

Thus, the value of J at which the population is maximum, increases with decrease 
in B and increase in temperature. As the temperature of the molecular gas increases 
,then the following effects are observed.  

1. The extension of band takes place along both sides i.e. along P branch and 
R branch. 

2. The intensity maxima in both branches moves farther from 0v . 
3. The intensity maximum is found for higher value of J. 
4. The height of intensity maxima decreases. 
5. The inequality between the intensity of two branches becomes less marked. 

22.3 Vibrational Spectra of Polyatomic Molecules 
 A polyatomic molecule having N atoms have 3N degrees of freedom i.e. 3N 
co-ordinates are required to specify the positions of all nuclei. Out of these 3N 
degree of freedoms 3 are related to translational motion, 3(non linear molecule) or 
2(linear molecule) are related to rotational motion and remaining 3N-6(non linear 
molecule)  or 3N-5 (linear molecule) are related to vibrational motion. There will 
be 3N-6 or 3N-5 energy levels corresponding to these vibrations. So in the 
spectrum of the molecules having n atoms there will be 3N-6 (non linear molecule) 
or 3N-5(linear molecule)  absorption bands. 

Normal Co-ordinates and Normal Modes of Vibrations  

 For the analysis of spectra shown by polyatomic molecules ,the study of 
modes of vibrations is essential. Let us consider a linear diatomic molecule having 
3N-6 degree of freedoms denoted by m and generalized coordinates q1, q2, q3, ...qm, 
representing the equilibrium state of each nucleus. The potential energy of can be 
expanded by Taylor’s series in terms of these coordinates, i.e.  

  
2

,

1{ } { } ......
2eq eq i eq i j

i i ji i j

V VV V q q q
q q q
 

   
     

If the equilibrium potential energy is taken as reference and chosen to be zero then  

  
2

,

1{ }
2 eq i j

i j i j

VV q q
q q



  , because { } 0eq

i

V
q





 in equilibrium position. 

22.3 Vibrational Spectra of Polyatomic Molecules 
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Let us consider that  

  
2

,

1{ }
2ij eq

i j i j

Vb
q q



  , then ,

,

1
2 i j i j

i j
V b q q   

The kinetic energy is given by  

  
. .

,
,

1
2 i j i j

i j
K m q q  , where the coefficients are given by  

  , , , 1 2 3( )( ) ( , , ,.... )k k
i j j i k i j m

k i j

r rm m m m q q q q
q q
 

  
   

  , ,( ) ( ) ......ij
i j i j eq l

k l

m
m m q

q


  
  

If we consider only the first term of the series ,then the kinetic energy is written as  

  
. .

,
,

1
2 i j i j

i j
K a q q   , where ( )ij ij eqa m  

The Lagrangian of the system is given by  

  
. .

,

1 ( )
2 ij ij i ji j

i j
L K V a q q b q q     

The Lagrangian’s equation of motion are 

  .
1

[ ( ) ] 0
m

i i
i

d L L
dt qq

 
 


  

  
.1 1[ 0

2 2ij j ij j
j j

d a q b q
dt

    

  
..

0ij j ij j
j j

a q b q         (A) 

It represents a set of m equations (i = 1, 2, 3, ....., m). The general solution of such 
equation is as  

  ( )j jq A Sin t         (B) 

where Aj is the amplitude and ω is the angular frequency which is given by  

  2     

By substituting from (B) in equation (A) we get 
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  ( ) 0, 1,2,3...ij ij j
j

b a A i m    

which gives a set of m simultaneous linear homogeneous equations in A’s and if 
A’s are not all to be zero then  

  ( ) 0ij ij
j

b a    

or  
11 11 1

21 21 2

1 1

....

.... 0
.... ........

....

n nn

n nn

n n nn nn

b a b a
b a b a

b a b a

 
 

 

 
   
   
 
 
   

 

This equation is an equation of mth degree giving m values of λ in terms of a’s and 

b’s. These values of λ’s or ω2 are the normal frequency of vibrations of a 
polyatomic molecule. 

 We now consider the normal coordinates, such that each of them execute 
only one single frequency oscillations. Let us now transform the equations in qi’s 
to normal coordinates Qj’s  as  

  
1

i

i ij j
j

q C Q


   or  q CQ  

 where (q) and (Q) are single column matrices. In order to write the equation 
of motion in terms of normal coordinates ,we have to find first the kinetic energy 
and potential energy and the Lagrangian in terms of Q’s. The potential energy is 
given by 

,

1
2 ij i j

i j
V b q q  , which is a quadratic in q. Any quadratic expression is of the form 

can be written as  

  2 2
1 2 1 22q q q q     

which can be written as 

1
1 2

2

( , ) Tq
q q X UX

q
 
 

  
  

  
 

where  1

2

q
X

q
 

  
 
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1 2( , )T

U

X q q

 
  
 


 
   

Now we can write V as 

  1
2

TV q bq  

  

1
2
1
2
1
2

T T

T T

T

V C Q bCQ

V Q C bCQ

V Q Q







 

where  TC bC   

So the potential energy can be written as 

  2 21
2 k k

k
V Q   

  
,

1 1
2 2

T
ij i j

i j
T a q q q q       

  21 1 1
2 2 2

T T T
kT Q C CQ Q Q Q         

where  1TC C   

Therefore Lagrangian will be  

  

2 2

,

2

2 2 2

1
2
1 1
2 2
1 1 1
2 2 2

1
1 1
2 2

k k
k

T
ij i j

i j

T T T
k

k
T

k k k
k k

V Q

T a q q q q

T Q C CQ Q Q Q

C C

L T V Q Q



 

  



   







 

   

    













 

 
1

[ ( ) ( )] 0
m

k k k

d L L
dt Q Q

  
 
 
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2

1

2

[ ] 0

0
cos sin

m

k k k
k

m m m

m m m m m

Q Q

Q Q
Q A t B t



 

 

 

 






 

 

which when used with 

  
1

[ ( ) ( )] 0
m

k k k

d L L
dt Q Q

 
 

    

  2

1
[ ] 0

m

k k k
k

Q Q


    

or  2
1 1 1 0Q Q   

  2
2 2 2 0Q Q   

  2
3 3 3 0Q Q   

  .................... 

  ................... 

  2 0m m mQ Q   

Corresponding to Q1 the frequency is ω1 , for Q2 it is ω2 , and so on. The Q’s are 
called as normal coordinates. The solutions to above equations are as 

  1 1 1 1 1cos sinQ A t B t    

  2 2 2 2 2cos sinQ A t B t    

  3 3 3 3 3cos sinQ A t B t    

  ..................................... 

  ..................................... 

  cos sinm m m m mQ A t B t    

Here ω1, ω2, ω3, ......ωm are called as normal frequencies. 

22.4 Fundamental Vibrations and their Symmetry 
 Let us consider a molecule containing N atoms. The position of each atom 
can be specified by three coordinates i.e. x, y, and z coordinates. So there will be 
3N coordinates i.e. molecule has 3N degree of freedom. Now the molecule is free 
to move in three dimensional space as a whole without change of shape. The 

22.4 Fundamental Vibrations and their Symmetry 
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translational motion uses three degree of freedom leaving 3N-3 as remaining. Also 
a non-linear molecule has three degree of freedom due to rotations . So the 
molecule is left with 3N-6 degree of freedom. The only other motion allowed to 
molecule is the internal vibrations, so a non-linear molecule will have 3N-6 degree 
of freedom due to internal vibrations. If the molecule is linear, then there will be 
3N-5 degree of freedom due to internal vibrations. In both types of molecules there 
are N atoms, so there will be N-1 bonds (acyclic molecules) between the atoms. 
There will be N-1 vibrations are of bond stretching type motions and 2N-5 (non-
linear) or 2N-4 (linear) are of bending type motions. 

 In case of diatomic molecule N=2 and 3N-5=1, so there is only one 
fundamental vibration. In case of tri-atomic non-linear molecule like H2O, there are 
3N-6=3 allowed vibrational modes called as normal modes. Theses modes of 
vibrations are shown as below. 

 
  Figure 22.2 Vibrations of Water Molecule 

 
    Figure 22.3 Vibrations of Carbon Dioxide Molecule  
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Each vibrational motion is labeled as symmetric or antisymmetric. If we rotate the 
vibrating molecule by 1800 such that vibration is quite unchanged in character then 
it is called as symmetric vibrations. However if the rotation produces a vibration 
which is in antiphase with the original ,then such motion is called as antisymmetric 
stretching mode. The vibrations of water molecule and carbon dioxide molecule 
are shown in figure. 

22.5 Analysis by Infrared Techniques 

 A complex molecule has 3N-6 or 3N-5 normal modes of vibrations. Each 
normal mode involves some displacement of all or nearly all the atoms in the 
molecule, but in some of the modes ,all atoms may undergo approximately the 
same displacement and in others the displacement of a small group of atoms may 
be much more vigorous than the remainder. Thus we may divide the normal modes 
into two groups as skeletal vibrations and characteristics group vibrations. The 
skeletal vibrations involve many of the atoms to same extent and the characteristic 
vibrations involve only a small portion of the molecule while others remain 
stationary. 

22.5.1  Skeletal Vibrations 

 For organic molecules these fall in the range 1400-700 cm-1 and arise from 
linear or branched chain structure in the molecule. Thus each such group gives rise 
to several Skeletal modes of vibrations and hence several absorptions bands in the 
infra-red.  

It is not possible to assign particular bands to specific vibrational mode, but the 
observed band is highly typical of a molecular structure under examination. 
Further a change in the chain or ring in the form of substitution results in a marked 
change in the pattern of absorption band. These bands are treated as fingerprint of a 
particular molecular structure. 

   

22.5 Analysis by Infrared Techniques 
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Figure:22.4 The adsorption bands at 1605 cm-1 and 1517 cm-1 were 
characteristic of phenyl ring skeletal vibrations of lignin macromolecules. 

22.5.2 Group Frequencies 

 The group frequencies are usually independent of the structure of the 
molecule as whole and fall in the regions well above and well below that of 
skeletal modes. The group frequencies of some functional groups are given in table 
below. 
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Table:22.1 Vibrational Frequencies of Functional Groups (cm-1) 

Shift in the characteristic frequencies occurs due to two major factors. Firstly the 
shift may arise due to interactions between the different molecules. Secondly, the 
shift in the frequencies is also due physical state of molecules. The more 
condensed phase gives lower frequencies particularly in case of polar molecules. In 
non polar molecules there is no shift in symmetric vibrations but a smaller shift in 
others. 

22.6 Fourier-Transform Infrared Spectrometers 
Fourier-transform infrared (FTIR) spectroscopy is based on the idea of the 

interference of radiation between two beams to yield an interferogram. The latter is 
a signal produced as a function of the change of path length between the two 
beams. The two domains of distance and frequency are inter-convertible by the 
mathematical method of Fourier-transformation. The basic components of an FTIR 
spectrometer are shown schematically in given Figure. The radiation emerging 
from the source is passed through an interferometer to the sample before reaching a 
detector. Upon amplification of the signal, in which high-frequency contributions 
have been eliminated by a filter, the data are converted to digital form by an 
analog-to-digital converter and transferred to the computer for Fourier-
transformation. The major components of the spectrometer are discussed as 

22.6 Fourier-Transform Infrared Spectrometers 
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22.6.1  Michelson Interferometers 

The most common interferometer used in FTIR spectrometry is a 
Michelson interferometer, which consists of two perpendicularly plane mirrors, 
one of which can travel in a direction perpendicular to the plane ,a semi-reflecting 
film, the beam splitter, bisects the planes of these two mirrors. The beam splitter 
material has to be chosen according to the region to be examined. Materials such as 
germanium or iron oxide are coated onto an infrared-transparent substrate such as 
potassium bromide or caesium iodide to produce beam splitters for the mid- or 
near-infrared regions. Thin organic films, such as poly (ethylene terephthalate), are 
used in the far-infrared region. If a collimated beam of monochromatic radiation of 

wavelength λ (cm) is passed into an ideal beam splitter, 50% of the incident 
radiation will be reflected to one of the mirrors while 50% will be transmitted to 
the other mirror. The two beams are reflected from these mirrors, returning to the 
beam splitter where they recombine and interfere. The moving mirror produces an 
optical path difference between the two arms of the interferometer. For path 

differences of (n + 1/2)λ, the two beams interfere destructively in the case of the 
transmitted beam and constructively in the case of the reflected beam.  

 
Figure 22.5 FTIR spectrometer 
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22.6.2  Sources and Detectors 

FTIR spectrometers use a Globar or Nernst source for the mid-infrared 
region. If the far-infrared region is to be examined, then a high-pressure mercury 
lamp can be used. For the near-infrared, tungsten–halogen lamps are used as 
sources. There are two commonly used detectors employed for the mid-infrared 
region. The normal detector for routine use is a pyro-electric device incorporating 
deuterium tryglycine sulfate (DTGS) in a temperature-resistant alkali halide 
window. For more sensitive work, mercury cadmium telluride (MCT) can be used, 
but this has to be cooled to liquid nitrogen temperatures. In the far-infrared region, 
germanium or indium–antimony detectors are employed, operating at liquid helium 
temperatures. For the near-infrared region, the detectors used are generally lead 
sulfide photoconductors. 

22.6.3  Fourier-Transformation 

The essential equations for a Fourier-transformation relating the intensity 

falling on the detector I(δ) to the spectral power density at a particular 
wavenumber v is given by  B(v ) as 

  
0

( ) ( ) cos(2 )I B v v dv  


   

 where ( ) ( ) cos(2 )B v I v d   




    

These two equations are inter-convertible and are known as a Fourier-transform 
pair. The first shows the variation in power density as a function of the difference 
in path length, which is an interference pattern. The second shows the variation in 
intensity as a function of wavenumber. Each can be converted into the other by the 
mathematical method of Fourier-transformation. The essential experiment to obtain 
an FTIR spectrum is to produce an interferogram with and without a sample in the 
beam and transforming the interferograms into spectra of (a) the source with 
sample absorptions and (b) the source without sample absorptions. The ratio of the 
former and the latter corresponds to a double-beam dispersive spectrum. The major 
advance toward routine use in the mid-infrared region came with a new 
mathematical method devised for fast Fourier-transformation (FFT). This was 
combined with advances in computers which enabled these calculations to be 
carried out rapidly. 
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22.6.4  Moving Mirrors 

The moving mirror is a crucial component of the interferometer. It has to be 
accurately aligned and must be capable of scanning two distances so that the path 
difference corresponds to a known value. A number of factors associated with the 
moving mirror need to be considered when evaluating an infrared spectrum. The 
interferogram is an analogue signal at the detector that has to be digitized in order 
that the Fourier-transformation into a conventional spectrum can be carried out. 
There are two particular sources of error in transforming the digitized information 
on the interferogram into a spectrum. First, the transformation carried out in 
practice involves an integration stage over a finite displacement rather than over an 
infinite displacement. The mathematical process of Fourier transformation assumes 
infinite boundaries. The process of apodization is the removal of the side lobes (or 
pods) by multiplying the interferogram by a suitable function before the Fourier-
transformation is carried out. A suitable function must cause the intensity of the 
interferogram to fall smoothly to zero at its ends. Most FTIR spectrometers offer a 
choice of apodization options and a good general purpose apodization function is 
the cosine function, as follows: 

F(D) = [1 + cos (πD)]/2  

where D is the optical path difference. This cosine function provides a good 
compromise between reduction in oscillations and deterioration in spectral 
resolution. When accurate band shapes are required, more sophisticated 
mathematical functions may be needed. Another source of error arises if the 
sample intervals are not exactly the same on each side of the maxima 
corresponding to zero path differences. Phase correction is required and this 
correction procedure ensures that the sample intervals are the same on each side of 
the first interval and should correspond to a path difference of zero. The resolution 
for an FTIR instrument is limited by the maximum path difference between the two 
beams. The limiting resolution in wavenumbers (cm−1) is the reciprocal of the path 
length difference (cm). For example, a path length difference of 10 cm is required 
to achieve a limiting resolution of 0.1 cm−1. This simple calculation appears to 
show that it is easy to achieve high resolution. Unfortunately, this is not the case 
,since the precision of the optics and mirror movement mechanism become more 
difficult to achieve at longer displacements of path lengths. 
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22.6.5  Signal-Averaging 

The main advantage of rapid-scanning instruments is the ability to increase 
the signal-to-noise ratio (SNR) by signal-averaging, leading to an increase of 
signal-to-noise proportional to the square root of the time, as follows: 

SNR α n1/2  

There are diminishing returns for signal-averaging in that it takes an increasingly 
longer time to achieve greater and greater improvement. The accumulation of a 
large number of repeat scans makes greater demands on the instrument if it is to 
exactly reproduce the conditions. It is normal to incorporate a laser monochromatic 
source in the beam of the continuous source. The laser beam produces standard 
fringes which can ‘line-up’ successive scans accurately and can determine and 
control the displacement of the moving mirror at all times. 

22.6.6  Computers 

The computer forms a crucial component of modern infrared instruments 
and performs a number of functions. The computer controls the instrument, for 
example, it sets scan speeds and scanning limits, and starts and stops scanning. It 
reads spectra into the computer memory from the instrument as the spectrum is 
scanned; this means that the spectrum is digitized. Spectra may be manipulated 
using the computer, for example, by adding and subtracting spectra or expanding 
areas of the spectrum of interest. The computer is also used to scan the spectra 
continuously and average or add the result in the computer memory. Complex 
analyses may be automatically carried out by following a set of pre-programmed 
commands. The computer is also used to plot the spectra. 

22.6.7  Spectra 

Early infrared instruments recorded percentage transmittance over a linear 
wavelength range. It is now unusual to use wavelength for routine samples and the 
wavenumber scale is commonly used. The output from the instrument is referred to 
as a spectrum. Most commercial instruments present a spectrum with the 
wavenumber decreasing from left to right. The infrared spectrum can be divided 
into three main regions: the far infrared (<400 cm−1), the mid-infrared            
(4000–400 cm−1) and the near-infrared (13000–4000 cm−1). 



457 
 

 
Figure 22.6. Typical FTIR spectra of Aniline 

Many infrared applications employ the mid-infrared region, but the near- and far-
infrared regions also provide important information about certain materials. 
Generally, there are less infrared bands in the 4000–1800 cm−1 region with many 
bands between 1800 and 400 cm−1. Sometimes, the scale is changed so that the 
region between 4000 and 1800 cm−1 is contracted and the region between 1800 and 
400 cm−1 is expanded to emphasize features of interest. The ordinate scale may be 
presented in % transmittance with 100% at the top of the spectrum. It is 
commonplace to have a choice of absorbance or transmittance as a measure of 
band intensity.  

22.7 Self Learning Exercise 
Q.1 Write the formula for population of a rotational level at any temperature. 

Q.2 Write the Lagrangian of a system of a diatomic molecule. 

Q.3 Write the Frequencies of vibration of C-H in alkenes, alkynes and aromatic 
ring. 

Q.4 Write the use of moving mirror in FTIR spectrometer. 

22.7 Self Learning Exercise 
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22.8 Summary 
 This unit deals with populations of vibrational and rotational levels at any 
temperature. The degeneracy of rotational level as well maximum population for a 
particular value of rotational quantum number has been  discussed. The degree of 
freedoms of a molecules having N atoms as well vibrational degree of freedom 
have been discussed. The normal co-ordinates as well as normal mode of 
vibrations of a diatomic molecule have been explained. The skeletal vibrational 
frequency range and functional frequencies range is also discussed. Finally the 
instrumentation required to record the IR spectrum particularly FTIR has been  
discussed in detail. All the components of FTIR spectrophotometer have been 
discussed in detail. 

22.9 Glossary 
Degenerate : Number of states having same energy 

Degree of freedom : Number of independent co-ordinates required to specify the 
state 

Lagrangian :Total energy function mechanics 

Linear : Along a line 

Non-linear : Not along a line (bend) 

Transparent : Able to pass 

Splitter : Dividing into two or many 

Interferometer : Instrument to record the interference 

Interferogram : Interference pattern 

22.10 Exercise 
Q.1 Write the formula for population of a vibrational level at any temperature. 

Q.2 Discuss the thermal distribution of vibrational and rotational levels. 

Q.3 Write the various degree of freedom of a molecule having N atoms. 

Q.4 Write the number of vibrational modes of a linear and non-linear molecule 
having N atoms. 

22.8 Summary 

22.9 Glossary 

22.10 Exercise 
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Q.5 Write the Lagrangian equation of motion of a system of a diatomic 
molecule. 

Q.6 Explain the normal modes and normal co-ordinates. 

Q.7 Write the various modes of vibration of a linear and non-linear molecule 
with example. 

Q.8 Write a short note on skeletal vibration. 

Q.9 Write a short note on group frequencies. 

Q.10 Write the general regions of skeletal and group frequencies. 

Q.11  Write the Frequencies of vibration of C=C bond in alkenes, alkynes and 
aromatic ring. 

Q.12 Write the basic components of FTIR spectrometer. 

Q.13 Write the sources of IR and detectors of IR used in FTIR spectrometers. 

Q.14 Discuss the construction and working of FTIR spectrometer. 
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UNIT-23 
Raman Spectra, Franck-Condon Principle 

Structure of the Unit 

23.0  Objectives 

23.1  Introduction 

23.2 Raman Effect 

23.3 Classical Theory of Raman Effect 

23.3.1 Quantum Theory of Raman Effect 

23.3.2 Probability of Transition in Raman Effect 

23.33 Vibrational Raman Spectra 

23.3.4 Rotational Raman Spectra 

23.3.5  Vibrational-Rotational Raman Spectra 

23.4 Raman Spectrometer 

23.5  Franck Condon Principle 

23.6  Illustrative Examples 

23.7 Self Learning Exercise 

23.8 Summary 

23.9  Glossary 

23.10  Exercise 

 References and Suggested Readings 

23.0 Objectives 
 This unit is designed to provide basic knowledge about the one of most 
important phenomenon called as Raman Scattering or Raman Effect. The classical 
as well as quantum theories of Raman Effect will be discussed. It will be explained 
here that how the Raman scattering is related to vibration and rotational energy 
levels of the molecules and how it can provide the information about the molecular  

UNIT-23 
Raman Spectra, Franck-Condon Principle 

23.0 Objectives 



461 
 

structure. The required instrumentation to observe Raman Scattering will also be 
discussed. 

23.1 Introduction 
 The scattering of electromagnetic radiation from the solid and there is a 
shift in frequency of electromagnetic radiation is called as Raman Effect. The 
scattering of these radiations by the solid is related to the vibrational and rotational 
energy levels of the molecules of the solids. Here the basic theories of Raman 
effect, origin of different spectral lines and various branches of these lines are 
explained. Finally the Raman Spectrometer is discussed in detail. 

23.2 Raman Effect 
 When a monochromatic radiations or radiations of very narrow frequency 
band are scattered by a solid then the scattered radiations not only consists of 
radiations of incident frequency but also radiations of frequencies above and below 
that of incident beam frequency. This type of scattering in which the frequency of 
incident beam undergoes a definite change was observed and was studied by 
Raman in 1928 and is called as Raman Effect. If iv  is the wavenumber of incident 
wave and sv  is the wavenumber of scattered wave then the Raman shift is given by  

  ( )rmn i sv v v    
This difference is the characteristic of the material and it does not depend upon the 
wavenumber of the incident radiation. If ( )rmnv  is positive ,then Raman spectra is 
said to have Stokes lines and if ( )rmnv  is negative ,then the Raman spectra is said 
to have anti-Stokes lines.  

  
The intensity of Stokes lines is higher as compared to anti-Stokes lines. The 
Raman shift ( )rmnv  lies within the range 100-3000 cm-1, which fall in the far and 
near infra-red region of the spectrum. This shift suggests that the changes in the 

23.1 Introduction 

23.2 Raman Effect 
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energy of scattered radiations in the Raman Effect correspond to the energy 
changes accompanying rotational and vibrational transitions in the molecules of 
the materials. 

 

  

23.3 Classical Theory of Raman Effect 
 If an atom or a molecule is placed in an electric field ,then the electrons and 
the nuclei are displaced relative to each other i.e. an electric dipole moment is 
induced in the molecule due to this relative displacement of electrons and nuclei. It 
is also called as molecular polarization by the external electric field. Let E is the 
intensity of electric field and µ is the magnitude of induced dipole moment then 

  E   

where α is the polarizability of the molecule. The intensity of the electric field of 
the electromagnetic wave of frequency   can be expressed as  

  0 (2 )E E Sin t  

So the polarizability of the molecule is given by 

  0 (2 )E Sin t    

23.3 Classical Theory of Raman Effect 



463 
 

So the interaction of radiation of frequency   induces a dipole moment in the atom 
or molecule. This dipole moment oscillates with same frequency . So from the 
classical theory, this oscillating dipole will scatter or emit radiation of frequency   
i.e. frequency of incident radiations. It is called as Rayleigh scattering. 

In the above discussion no internal motion i.e. rotation and vibration of the 
molecule is considered.  Let us first consider the effect of vibrational motion of a 
diatomic molecule. When the two nuclei of the molecule vibrate along the line 
joining them then the polarizability of the molecule will change. The change in the 

polarizability α, with small displacement x from equilibrium position is given by  

  0
x
A

     

where 0  is the equilibrium polarizability   is the rate of variation of 
polarizability with displacement and A is the vibrational amplitude. If the molecule 
executes the simple harmonic motion ,then the displacement from the mean 
position is given by 

  (2 )vx ASin t  

where v  is the frequency of vibration of the molecule. So the polarizability of the 
molecule is given by 

  0 (2 )vSin t      

So the induced dipole moment is given by 

  0 0 0(2 ) (2 ) (2 )vE Sin t E Sin t Sin t        

  0 0 0
1(2 ) [ 2 ( ) 2 ( ) ]
2 v vE Sin t E Cos t Cos t               

Thus the induced dipole moment oscillates with frequencies of radiations  , v   
and v  . The first frequency is same as that of incident radiation i.e. Rayleigh 
scattering and last two frequencies are due to Raman scattering. The vibrational 
shift is equal to v . 

 Now let us consider the effect of rotation of molecule on polarizability. 
During the rotation of the molecule the orientation of the molecule with respect to 
electric field of radiation changes, therefore the molecule is not isotropic, it shows 



464 
 

different polarizability in different directions. The polarizability of the molecule 
varies with time. The variation of polarizability can be expressed as  

  0 2 (2 )rSin t       

where r is the frequency of rotation. The polarizability changes at a rate twice the 
frequency of rotation, therefore in place of r  we have written 2 r . The induced 
dipole moment is given by  

  0 0 0(2 ) (2 ) (4 )rE Sin t E Sin t Sin t        

  0 0 0
1(2 ) [ 2 ( 2 ) 2 ( 2 ) ]
2 r rE Sin t E Cos t Cos t               

The Raman lines will have frequencies , 2 r   and 2 r  . The Raman shift 
will be  2 r  i.e. equal to twice the frequency of rotation.  

So we conclude that in the scattered radiation, there will be vibrational lines at v
on either sides of Rayleigh line   and also rotational Raman lines at 2 r on either 
sides of  . It is not necessary to have a permanent electric dipole moment to show 
Raman spectra. So the homo-nuclear molecules also show Raman spectra even 
though they are IR inactive.  

23.3.1 Quantum Theory of Raman Effect 

 When electromagnetic waves are incident on the molecules of a substance 
then due to absorption of these radiations the molecules are raised to higher state. 
Now if the molecules return to their original state, then the frequency of radiation 
emitted is same as that of incident light, but if they return to a higher or lower state.  

Let us consider a molecule in its initial state having energy E  and it is exposed to 
incident radiations of wavenumber iv . Due to absorption of this radiation the 
molecule is raised to higher energy state having energy iE hcv  . Now suppose that 
the molecule returns to a level of energy level of energy E  lying above E , by 
losing energy shcv   and wavenumber of scattered radiations is sv .  

  i sE hcv hcv E     

  ( ) ( )i s rmnE E hc v v hc v E         

The Raman shift is equal to the difference in energy of two levels represented by 
E  and E . The sign of ( )rmnv  depends upon ( E E  ), if E> E  then ( )rmnv  is 
positive and hence Raman Stokes lines are produced.  If E< E  then ( )rmnv  is 
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negative and hence Raman anti-Stokes lines are produced. Classically the intensity 
of Stokes and anti-Stokes lines should be same but experimentally it is found that 
the intensity of Stokes lines is higher as compared to anti-Stokes lines.  

23.3.2 Probability of Transition in Raman Effect 

 When an atom or molecule is placed in electric field of intensity E the 
electrons and nuclei are displaced in such a manner so as to induce electric dipole 
moment µ given by 

  E   

where α is the molecular polarizability. Now if the two nuclei vibrate along the 
line joining them ,then the polarizability will vary. For small displacement the 
variation in the polarizability is expressed as  

  0
x
A

    ,  

where 0 the equilibrium polarizability is   is the rate of variation of polarizability 
with displacement and A is amplitude of vibrations. Let us consider the x 
components of polarizability and determine the transition probability as 

  ( ) ( )mn m xx x nP x E d           (A) 

where αxx is the polarizability in the x direction when the electric field Ex is acting 

in the same directions. The variation of polarizability αxx during the oscillation of 
molecule is given by  

  0
xx xx xx

x
A

           (B) 

Therefore from equation (A) and (B) we have 

  0( ) x
mn xx x m n xx m n

EP x E d d
A

               (C) 

So we conclude from equation (C) as  

1. The first term of this equation is zero except m = n. This term gives rise to a 
transition which does not involve the vibrational or rotational transitions. This 
term gives the transition probability of Rayleigh scattering. 

2. For Raman scattering m ≠ n, the first term is zero, while for non zero of 
second term xx  must change during the vibrations. 
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3. For the molecule to be Raman active it is necessary that the molecular 
polarizability must change in any direction during the rotations of the 
molecule. 

23.3.3 Vibrational Raman Spectra 

 The vibrational Raman spectrum arises due to transition of molecule from 
one vibrational level to other vibrational level of same electronic state. Quantum 
mechanically if xx is not zero, the molecule will show Raman scattering. From the 
study of matrix element ( )mnP x  of the polarizability, it is found that in case of 
harmonic oscillator the same selection rule holds for Raman scattering as in case of 
infra-red spectrum i.e. 

  1v    
The transition takes place only adjacent vibrational levels i.e. from one level to 
next upper level (Stokes lines) or to the next lower level (anti-Stokes lines). Thus 
in the Raman spectrum there will be one Stoke and one anti-Stoke line which are 
shifted by an amount vibv  to both sides of the original line. 

  ( 1) ( )vibv G v G v v      

At ordinary temperature most of the molecules are in their lowest vibrational state 
i.e. v = 0, so majority of transitions will be of the type v = 0 to v = 1. A small 
number of molecules occupy the v = 1 level which may undergo the transitions as 
v = 1 to v =2 (Stokes line) or from v = 1 to v = 0 level (anti-Stokes line). The 
intensity of these will be weak because of small number of molecules in this state. 
Thus the intensity of the Stokes-Raman lines corresponding to transition v = 0 to   
v = 1 is much greater than that of anti-Stokes Raman lines corresponding to 
transition v = 1 to v = 0. At high temperature the number of molecules in higher 
vibrational levels increases so the intensities of anti-Stokes lines increases.  

The vibrational energy of a diatomic molecule is given by  

  21 1( ) ( )
2 2vE v hcv v hcxv     

For transition v =0  to v = 1  giving very strong vibrational Raman line  

  (1 2 )E E x hcv     

The Raman shift is given by 
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  0( ) (1 2 )vibv x v v     

where 0v  is equal to the frequency of the centre of the fundamental vibrational 
band in the infra-red spectrum of the molecule. 

23.3.4 Rotational Raman Spectra 

 These spectra arise due to transition of the molecule from one rotational 
energy state to the other rotational state of the same vibrational state. These lines 
appear on both sides of Rayleigh line. The selection rule for rotational Raman 
transition is different from that of purely rotational transitions (for infra-red). For 
the Raman Effect the selection rules for transition between rotational levels are as 

  0, 2J    

The transition corresponding to 0J  represents no change in the molecular 
energy i.e. there is same frequency of scattered Raman radiation (Rayleigh 
scattering). The transition corresponding to 2J    gives Stokes lines while 

2J    gives the anti-Stokes lines. 

The rotational energy levels of a linear molecule are represented by 

  
2

2 ( 1)
8r

hE J J
I

   

For transition 2J   , the value of rotational shift of Stokes lines is given by 

  2( ) {( 2)( 3) ( 1)}
8rot

hv J J J J
cI

       

  ( ) 2 (2 3)rotv B J   , Where 28
hB

cI
  

For transition 2J   , the value of rotational shift of anti-Stokes lines is given by 

  ( ) 2 (2 3)rotv B J     

In more general for the Raman Shift due to rotational motion of the molecule is as  

  ( ) 2 (2 3)rotv B J    ,  

where J = 0, 1, 2, 3, .... etc. 

The wavenumbers of the corresponding spectral lines are given by  

  ( )exc rotv v v   , where excv  is the wavenumber of exciting 
radiations. 
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23.3.5 Vibrational-Rotational Raman Spectra 

 Theoretically it is possible for vibrational and rotational transitions to take 
place simultaneously in a Raman transition, the selection rule is as 1v    and 

0, 2J   . 

For a diatomic molecule vibrational-rotational energy levels are given by  

  21 1{ ( ) ( ) } ( 1)
2 2vrE hc v v vx v BhcJ J       

where v = 0, 1, 2, 3 ...etc. and J = 0, 1, 2, 3..... , etc. 

In terms of wavenumber  

  21 1( ) ( ) ( 1)
2 2vrv v v vx v BJ J     

 

 
  

Applying selection rules  

  0J   0( )v Q v   cm-1, For all J 

  2J    0( ) (4 6)v S v B J     cm-1, J = 0, 1, 2, 3, .... 

  2J    0( ) (4 6)v O v B J     cm-1, J = 2, 3,4, ..... 

where   0 (1 2 )v v x  , and O, Q, S refers to O branch, Q branch, R branch 
respectively. 
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The Stokes lines will occur at  

  0( ) ( )exc excv Q v v Q v v     cm-1, for all value of J 

  0( ) ( ) (4 6)exc excv O v v O v v B J       cm-1 , for J = 2,3,4, .. 

  0( ) ( ) (4 6)exc excv S v v S v v B J       cm-1, for J = 0, 1, 2, ... 

 

 
The anti-Stokes lines will occur at  

  0( ) ( )exc excv Q v v Q v v     cm-1, for all value of J 

  0( ) ( ) (4 6)exc excv O v v O v v B J       cm-1 , for J = 2,3,4, .. 

  0( ) ( ) (4 6)exc excv S v v S v v B J       cm-1, for J = 0, 1, 2, ... 

23.4 Raman Spectrometer 
  The instrument required to record the Raman scattering is called as 
Raman Spectrometer. The recording of the Raman spectrum essentially requires 
illumination of sample with monochromatic radiations and detection of scattered 
radiations at right angle to incident radiations. The basic components of the Raman 
Spectrometer are as : 

23.4 Raman Spectrometer 
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1. Exciting source: In the Raman spectrometer we need a monochromatic 
source of radiations. For this purpose one particular line of mercury arc spectrum is 
selected. The choice of the wavelength of this line depends upon the intensity of 
the line. Nowadays in Raman spectrometer a Helium-Neon laser beam is used. 

 
 
2. Sample Tube and Sample: The material of the sample tube is either glass 
or quartz. The tube is shaped along with associated reflectors in a way so as to 
direct much of the incident light into the sample. The length of the tube is           
20-30 cm and 12 cm in diameter. To avoid multiple reflections the back of the tube 
is horn-shaped and blackened. The other end of the tube is made optically flat so 
that scattered radiations do not suffer any distortion on their exit. The Raman tube 
is protected from heat generated by lamps by means of a glass jacket through 
which water circulates. The Raman spectrum can be recorded with solid, liquid and 
gas phase samples but the liquid sample is more preferred because it easy to handle 
it. The quantity of the liquid sample required is between 10-100 mL. Water is a 
good solvent because of its weak Raman spectrum. 
3. Filters: Liquid filters are placed between the source and the sample tube in 
order to remove high energy radiations that may cause photodecompositions, to 
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isolate single exciting line and to remove the continuous spectrum in the region 
occupied by the Raman line. 
4. Optical system: The optical system is designed so that the maximum 
amount of scattered Raman radiation is accepted by the spectrometer. A suitable 
spectrograph, with prism or grating having wide aperture and medium dispersion is 
preferred.  

23.5 Franck Condon Principle 
 The Franck Condon principle is related to electronic spectra of the 
molecules. The electronic spectra of the molecule arise when the electrons in the 
molecules are excited to higher energy state. The energy involved in this is large so 
the electronic spectra of the molecules fall in the visible and ultraviolet region of 
electromagnetic spectrum. The electronic spectra arise due to change in the 
arrangement of molecular electrons. A small change in electronic energy is 
accompanied by a large change in the vibrational energy of the molecule and a 
small change in vibrational energy is accompanied by a large change in rotational 
energy of the molecule. The vibrational energy changes cause the appearance of 
various bands and the rotational energy changes cause formation of various lines in 
each band.  

 

23.5 Franck Condon Principle 
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 The probability of transition between two given vibrational levels of two 
different electronic states is given by the Franck-Condon principle. According to 
this principle “The transition between two vibrational levels should start from 
extreme position of the levels and they are represented by vertical lines”.  

The rearrangement of the electrons in a molecule is 1000 times faster than the time 
period of vibrations of nuclei. During the electronic transition the inter-nuclear 
distance does not change appreciably so the transitions are represented by vertical 
lines. Further, the transitions are most probable when the nuclei in their mean 
positions. The nuclei spend maximum time in these states  because of zero kinetic 
energy in these states. The square of the vibrational eigen function is maximum at 
extreme positions implying the probability of finding the nuclei is maximum there. 
However for lowest vibrational state v = 0, quantum mechanics predicts that the 
most probable position for nuclei is the equilibrium position re. Thus the most 
probable inter-nuclear distance for the vibrational levels other than v = 0, 
corresponds to extreme positions and mid-position for v =0. So, the transitions will 
start from extreme position for levels other than v = 0 and for v = 0 the transition 
will start from mid-point.  

23.6 Illustrative Examples 
Example 1 The wavelength of the exciting line in Raman scattering is 5460 0A  

and stokes line is observed at 5520 0A . Find the wavelength of anti-Stokes line. 

Sol. The Raman shift is given by  

 ( )rmn i sv v v    

 1
8

1 18315
5460 10iv cm

 


 

 1
8

1 18116
5520 10sv cm

 


 

 1( ) 18315 18116 199rmnv cm     

 The wavenumber of the anti-Stokes line is given by 

 1( ) ( ) 18315 199 18514s anti stokes i rmnv v v cm
        

 The wavelength of anti-Stokes line is given by  

 1 5401
18514

A     

23.6 Illustrative Examples 
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Example 2 The exciting radiations has wavelength 4358 A  in Raman spectrum of 

a substance which show lines at ( )rmnv =608, 846, 995, 1599 and 3064 1cm . At 
what wavelength these lines will appear if the exciting source has wavelength   
5461 1cm  

Sol. The wavenumber of the exciting line 

 1
8

1 18312
5461 10iv cm

 


 

Since the difference remains the same ,then the wavenumber of Raman lines are as 

 ( )s i rmnv v v    

 So the wavenumbers are as 

 1
1 18312 608 17704sv cm    

 1
2 18312 846 17466sv cm    

 1
3 18312 995 17317sv cm    

 1
4 18312 1178 17134sv cm    

 1
5 18312 1599 16113sv cm    

 1
6 18312 3064 15248sv cm    

Example 3 A substance shows a Raman line at 4567 A0 when exciting line      
4358 A0 was used. Find the positions of Stokes and anti-Stokes lines for the same 
substance when exciting line 4047 A0 is used. 

Sol. The Raman shift is given by  

 ( )rmn i sv v v    

 1
8

1 22946
4358 10iv cm

 


 

 1
8

1 21896
4567 10sv cm

 


 

 1( ) 22946 21896 1050rmnv cm     

 The wavenumber of the other exciting line is  

 1
8

1 24710
4047 10iv cm


  


 

 So the wavenumber of Stokes line is as 
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 124710 1050 23660stokev cm    

 and the wavenumber of anti-Stokes line is  

 124710 1050 25760anti stokev cm
     

 The wavelengths of Stokes and anti-Stokes lines are 

 1 4226.5
23660stoke A      

 1 3882
25760anti stoke A      

Example 4 In the rotational Raman spectrum of a molecule the displacement from 
exciting line is represented by .( ) (62.4 41.6 )rotv J    cm-1 . Calculate the 
moment of inertia of the molecule.  

Sol.  The rotational Raman shift is given by  

 .( ) 2 (2 3)rotv B J    

 (62.4 41.6 ) 2 (2 3)J B J    

 3 341.6( ) 4 ( )
2 2

J B J    

 141.6 10.4
4

B cm   

The rotational constant B is related to moment of inertia I as  

 28
hB

Ic
  so 28

hI
Bc

  

 

27

2 10

40 2

6.62 10
8 (3.14) 10.4 3 10
2.7 10 .

I

gm cm








   

 

  

23.7 Self Learning Exercise 
Q.1 What is Raman Effect ? 

Q.2 Explain the origin of Stokes and anti-Stokes lines. 

Q.3 Discuss the quantum theory of Raman Effect. 

Q.4 Write the selection rules for Raman vibrational-rotational transitions. 

 

23.7 Self Learning Exercise 
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23.8 Summary 

 The aim of this unit is to study the spectroscopy technique known as Raman 
Effect. This technique can be used in place of IR spectroscopy technique but this 
technique is more versatile as compared to IR technique. The IR technique fails to 
provide information when the molecules are homo-nuclear in the materials. Since 
the principle of Raman Effect involves the polarization of molecules by the 
radiations ,so the information can also be obtained from this technique. Here first 
the definition of Raman Effect has been discussed and then its classical and 
quantum theories have been developed. The quantum theory is useful to provide 
the information about the intensity of Stokes and anti-Stokes lines. The selection 
rules for transitions among the various vibrational levels as well between rotational 
levels have been discussed. The basic components of Raman spectrometer have 
been discussed. Finally there is the discussion on the Franck-Condon principle 
which predicts the transition probability between two electronic states. 

23.9  Glossary 
Homo-nuclear : Same type of nucleus 

Hetero-nuclear: Different type of nucleus 

Polar : Having positive and negative charge  

Oscillating : Periodically varying 

Polarizability :  measurement of tendency to be polarized 

Band : Group of energy levels or spectral lines 

Shift : Kind of displacement 

Accompanying : Simultaneously 

Photodecomposition :  Dissociation by radiations 

Scattering : Absorption and re-emission of radiations 

Inter-nuclear : Between two nucleus. 

23.10 Exercise 
Q.1 What is Rayleigh line ? 

Q.2 Explain Stokes and anti-Stokes lines ? 

23.8 Summary 

23.9  Glossary 

23.10 Exercise 
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Q.3 Explain the variation of polarizability of molecule with the electric field of 
electromagnetic radiations. 

Q.4 Explain why the intensity of Stokes and anti-stokes lines is not same? 

Q.5 Write the basic components of Raman spectrometer. 

Q.6 Explain the Franck-Condon principle. 

Q.7 Discuss the classical theory of Raman Effect. 

Q.8 Explain the fine structure of Raman spectral lines. 
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