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Preface

The present book entitled “Formal Language and Automata” has been designed so as to cover the
unit-wise syllabus of MCA-302 course for MCA 3™ Year students of Vardhman Mahaveer Open
University, Kota.

The book is begin with some mathematical preliminaries and fundamentals necessary to
understand the Formal Language and Automata, end with complexity theory and application
areas.

Each unit begins with objectives, introduction and principles together with illustrative and other
descriptive material .The illustrative examples serve to illustrate and amplify the theory of
computation. The units have been written by various experts in the field. We believe that this
book is well suited to self-learning. The text is written in a logical sequence and is beneficial for
students. The concise and sequential nature of the book makes it easier to learn. Although we
have made all efforts to make the text error free, yet errors may remain in the text. We shall be
thankful to the students and teachers alike if they point these out to us. Any further comments and

suggestions for future improvement are welcome and will be most gratefully acknowledged.



UNIT-1

Mathematical Preliminaries

Structure of the Unit

1.0 Objective

1.1 Introduction

1.2 Sets

1.3  Method of Describing sets
1.4  Operations on Sets

1.5  Some results on number of elements of a set
1.6  Self Learning Exercise
1.7  Relation

1.8 Type of Relation

1.9  Function

1.10  Graphs

1.11  Sub-graphs and Complements
.12 Trees

1.13  Summary

1.14  Glossary

1.15 Exercise

1.0 Objective

Objective of this unit are

® To aware learner about concept of set used in computer.
# To aware leaner about utility of relations and function in languages.
® To aware learner basic concept of graph theory.



1.1 Introduction

Set 1s very useful tool of mathematics it is used in almost all branches of
mathematics and computer relation and functions play important role m
mathematics and computer science.

Graph theory begins with very simple geometric ideas and has powerful

application in computer science.

1.2 Sets

A collection of well defined objects is called set, by well defined collection we
means that there exists a rule with the help of it, is possible to determine whether a
given object 1s a member of the given collection or not. We denote sets by using
capital letters A, B. C.........etc.

1.3 Method of Describing sets

There have two methods to specify a given set.

(a)  Roster Method: A set may be described by listing all its elements. For
example, the set of vowels in the English alphabet is
A={ae,i,0u}.

Here the elements are separated by commas and are enclosed in a pair of
middle bracket {};. This method of describing a set is called the roster
method or the tabular form of the set.

Example T=1 ...... -3,-2,-1,0,1,2,3, ... 1.

(b)  Set Builder Form: The roster method of specitying a set is not always
convenient and sometimes it 1s not possible to use this method to describe a
set. A set can also be defined by some property which characterizes all the
elements of the set. For example,

A = {x | x is a vowel in the English alphabet}
which reads "A is the set of x such that x is a vowel in the English alphabet.

This method of describing a set is called set builders form.
2



IMustrations:

1 O = {x [x is an odd integer}
2. E = {x: X is an even integer}
Equality of Sets

Two sets A and B are said to be equal if they contain the same elements. This
statement 1s also known as the axiom of extension. We write A = B if the sets A
and B are equal and A * B if the sets A and Bare not equal. For example,

i f{a,b,c} = {bac}

2. $2.3. 5%« §2,.38,.73
Remark: IT A = {a,a, b,c} and B = {a, b, ¢} then it is clear that A = B.
Thus {a, a, b, ¢} is a redundant representation of the set {a,b,c},. For this reason,
some authors defined a set to be a well-defined collection of distinct objects.
Subsets
Let A and B be two sets. If every elements of A are also an element of B then A is
called a subset of B. We also say that A 1s contained in B or that B contains A. In
symbols we write
'AcBor'Bo A
We say A is not a subset of B if at least one elements of A does not belong to B
and we write 1s AcC B. It is clear that two sets A and B are equal if any only if
AcBand Bo A.
Illustration:
Consider the set A={1,3,4, 5}, B={1,2, 3,5} and C={2, 3} then cc B birC > A.
Proper subset of a set
From the definition of a subset it 18 clear that every set 1s subset of itself. A set B 1s
called proper subset of A if B is a subset of A and B is not equal to A. Briefly. B is
a proper subsetof A if Bc A and B# A and write B A
Empty set
The set which contains no element is called the empty set (or null set or the void
set) and is denoted by {}. The Empty set is also denoted by the symbol ¢. Since ¢

has no element, therefore, empty set is subset of every set. A set which is not

empty is called non-empty set.



Disjoint sets

Two sets A and B are said to be disjoint if they have no elements in common. For
example the sets A = {1, 2, 3, 4} and B = {0, 5, 6} are disjoint while the set A =
{1, 2,3,4} and C {1, 2, 6} are no disjoint.

Singleton Set

A set which contains exactly one element is called a singleton set. For example,
{2} is a singleton.

Universal Set

In any mathematical discussion, we usually consider all the sets to be sub- sets of a
fixed set called the universal set. Universal set is sometimes referred to as the
universe or the universe of discourse.

For example, in studying human population the universal set consists of all human
in the world and while discussing plane geometry we may consider the universal
set to be the set consisting of all the points in the plane.

Power Set ~

If X 1s any set then the set of all subsets of X is called the power set of X, denoted
by P(X). Thus P(X)={4:Ac X}

IT X contains n elements then P(X) contains 2” elements.

Example. Let X = {1, 2, 3} then

PX)={ ¢. {1}, {2}, 3}, {L.2}, {13}, {2,3}, {1.2, 3}}.

Since X has three elements, P(X) has 2° = 8 elements.

Finite and Infinite Set

A set 18 said to be finite if it contains e finite number of distinct elements. A set is
said to be infinite if it is not finite.

Example: Let A = {l, 3, 5. 7, 9}. Then A 1s finite because it contains 5 distinct

elements.

Example: Let B = {1, 2, 3.4, .... }. Then B is an infinite set.



1.4 Operations on Sets

We introduce and study some basic operations in the scction. Using thesc
operalions, we can construcl new sels by the clements ol given sets.

Union of Sets

Let A and B be two scts. The union ol A and B is the sct ol all clements which arc
in the sct A or in the st B. The union of two scis A and B is denoted by the
symbol AUB which is rcad as "A union B'. Symholically,

AUB={x x€ Aorx € B}

Fig.: A B is shaded
In the adjoming Venn-diagram, the union ol A and B 18 shown by the shaded arca.
Intersection of Sets
Let A and B be two scts. The intersection ol A and B 15 the sct ol all clements
which arc both in A and B. W¢ denote the miersection ol Aand Bbhy A N B,

which 15 rcad as "A inlersection B'. Symbolically,

AMB={x x €eAand x € B}

Fig A ™ B is shaded




In the adjoiming venn diagram the intersection of two sets A and B 1s shown by the
shaded region.

Complement of a set.

Let A be a subset of a universal set U. The set of all those elements of U which are
not in A 1s called the complement of A and is denoted by U - . A or simply A'.
Symbaolically,

A=U-A={X:X eUandx € A}

Difference of Sets

The difference A-B of two sets A and B 1s the set of elements which belong to A
but which do not belong to B. Thus,

A-B={x|x eAandx ¢ B}

1l

Fig. 3 A-B is shaded
The shaded region represents A-B 1n the adjoiming diagram.
Illustration:
Lek 1= fa,b, ¢, d, e,f}
A= {abcd} and B= {b,d.f}.
Then A-B= {ac}

B-A= {f}

AUB= fa, b, c,d,!'}
AN B={bd} and
U-A= {ef}



1.5 Some results on number of elements of a set

If A, B and C be any sets then
(1) n(AUB)=n(A)+n(B)—n(4B)
(i) n(ANB)=n(A)+n(B)—n(AUB)
(i1) if Aand B aredisjont then
AN B=@= n(ANB)=0then
n(AUB)=n(A)+n(B)
((V)m(A—-B)=n(A)—n(4ANB)
(W) (B—D=n(B)—n(AB)
(vi)n(AAB)=n(A—B)+n(B—A)
=n(AD—n(ANB)+n(B)—n(B-4)
=n(A)+n(B)—2n(A B)
(vil)n(AUBY=n(ANB)'
=n(l))—n(ANB)
=n(l)—n(Ad)—n(B)+n(AUB)
(viid) (AN BY=n(AU B)'
=n)—n(4UB)
=n())—n(A)—n(B)+n(4NB)
(ix) a(AUJBUC)Y=n(D+a(B)+n(C)—n(ANB)
- ANC)—(BNCY+n(ANBNC)
Example 1.1 In a group of 900 people 550 speak Hindi and 450 can speak English.

How many can speak both Hindi and English,

Solution : Let H denote the set of people speaking Hindi and E denote the set of

people speaking English then we have

#(H =550 and m( E)=450

Now we have to find number of people who can speak both Hindi and English 1.e.
n(H (N£)=100 and

(HUE)=n(H)+nE)-n(HNE)

=550+ 450 - 900



n(H NE)=100
So 100 persons can speak Hindi and English.

Example 1.2 A survey shows that 63% of Indians like cheese where 76% like

apples. If X% of Indian like both cheese and apples find the value of x.
Solution : Let the population of India is 1000 and A denotes the set of Indians who
like cheese and B denote the set of Indian who like apples then
(A)=63,1n(B)=76
So (AU B)=n(A)+N(B)—m(ANB)
n(A)=063,n(5)=76
= n(ANB)+n(ANB)=63+76=139
= mANB)+139—-n(AUB) ... O
But n(A(B)<100S0
-n(AUB)=100

=139-n(4AUB)=39
=mANB)==39 (Using (1) ....... (2)
Now since and ANBc A and ANBcB
= m(ANB) <n(Ayand n(ANBY< n(B)
= n(A B) <63and n(A(1B)<76
= n(A(B) <63
So by (1)and (2)
39<n(A1B)<63
=39<x<63

So by (1)and (2)

39<n(ANB)<63

=39<x<63

Example 1.3 In a village of 1000 families it was found the 40% families have
agriculture profession. 20% families have milk product profession and 10%
families have other profession. If 5% families have both agriculture and mil

product profession 3% have milk product and other profession and 4% have



agriculture and other profession and 2% families have all these profession find the
number of family which have

(1) Only agriculture profession

(1)  Only milk product profession

(iii)  No profession
Solution : Let A 1s the set of families having Agriculture profession B 1s the set of
families having milk product profession and C is the set of families having other

profession.
Then n(A)=40% of 1000 =400
A(B)=20%0f1000= 200
A(C)=10%0f1000=100
(AN B)=5%0of1000=50
n(ANC)=3%o0f 1000=30
n(CNA)=4%0f 1000=40
mANBNC)Y=2%o0f 1000=20
1. Agriculture profession only

Le. n(ANBNCH =n(ANBNC"))
n(A)—n)—n{(ANB)ANC)}
a(A)—n(ANB)—n(ANC)+ (AN B)N(ANC)
a(A)—n(ANB)Y—n(ANCY+n(ANBNC)
=400-50-40+20=330

(i1)Required number #(A4MN(BMNC")and proceed as above
W ATBTIC") =140

(ii1)Required number

n(A)—n(AUBUC") = (AUBUC")

= n(U)— (A +n(B)+n(C)—n(ANB)-n(BNC)
=n(CNA)+nANBNC)

1000- {400+200+100-50-30-40+20}

=40



Example 1.4 (De-Morgen’s Low) : If A and B be any two set then

(@(AUBY=ANB (b)) (ANBy=AUB
Proof': (a) Let xe(AUBY
=xg AUB

= xgAdandxe B
=>x¢A'andx ¢ B
—xeA'andxe B
=xe AN
So(AUB)'=ANB'
Again let

xeANB'
—xeA'andxe B
= xe€Adandxe B
s xeAlL)RB

= xe(AUB)

= ANB'c (4N B)
So by (1) and (2)
ANBy=A4UpB

(b) Let xe(4NB)
= xe(ANB)
>xgdorxeB

= xeAd'orxehB'

= xed'UB

= (ANB)c AUB
Againlet xe 4'B'
=xedorxeh
=xed'orxeh
=xeAUB
=(4AUB") c(4UB)'
So by (1) and (2)

10



(4UB")=A4'UB'

Example 1.5 : Distributive Law : If A, B and C are any sets then
(@AUBNO)=(4UB)NAUC)
&) AUBUC)=(ANB)UUIUNC)
Proof : Let xe AUBUC)
oxedor xe(BNO)
oxedor(xeB&xel)
(xedorxeB)andxe dorxeC)
xe(AUB)and xe (AJO)
Sxe(AUBNUUO)
So AUBNC=4AUBNHAUC)
(b) ANBUC=(ANBUMUANC)
Let xe ANBUC)
o>xedand xe (BUO)
oxeAdor(xeB&xe()
S(xeAd&xeB)or(xeA&xe()
=xe(ANB)or(xe ANC)
Sxe(ANBHUMAUC)
So ANBUC)=(4NB)UMANC)
Some Important results :
(1) A-B=ANA
(i) U-B)NB=4¢
() A-BUAa=4
(lv) (A-BYUB=AUB
(v) If A and B are disjoint A-B = A and B-A =B

1.6 Self Learning Exercise

1. For any two sets A and B prove the following

11



(@) ANAUB)=ANB

B)AN(AUB)=¢

(c)A-(A-B)=ANB

(d)AAANB)=A-B

Prove that

(@A4-ByuAd=4

(b)(A-B)NA=A4ANB'=A-B

©)(A-B)uB=AUB

(dY(A-B)NB=¢

A and B be two sets containing 2 and 4 element respectively, what can be

minimum number of elements in (4UB)? Also find the maximum

numbers of elements in (AU B).

It A, B and C are three sets and {J is their universal set such that »(U)
=800, n(A)=250, n(B)=300, n(A4~B)=150 find n(A'~B").

In a Class of 50 students 20 have taken mathematics, 15 have taken

mathematics but not chemistry. Find the number of students who have

taken both mathematics and chemistry and number of students who have

taken chemistry but both mathematics. If it is given that each student has

taken either mathematics or chemistry or both.

Members of three athletic team in a certain college 21 are in basketball

team 26 in hockey team and 29 in the football them, 14 football and

basketball and 8 play hockey and football, 12 play football and basketball

and 8 play all the three games. How many members are there in all?

Answers

Maximum Number of elements = 6
Maximum Number of elements =4

400

12



S. 5 students take both mathematics and chemistry 30 students take chemistry
not mathematics

6. 63

1.7 Relation

If A and B be any two sets then a relation R from A to B in a subset of 4x 5. So
we can define R as a subset of AxB i.e. RcAxB.

If R is a Relation from A to B and if (X, y) €R, and then we write it as x R y and
read ‘x is related to y be relation R, and if (x, y) € R then we read it as x is not
related o y and write X R y.

Example 1.6 : if A= {1, 2,3,4} and B= {a, b, ¢, d}

() R, ={(la)(2b)(3.0)}

(i) R,={(La). (1b), (4.). (3.0)}

(1) R, ={(l.a),(al),(a,2)(c,3)}

(iv)  R,= {(5.),(2.b), (3.0);

Then which of the above is a relation from Ax B

Solution :

(1) Since R, ¢ Ax B so R, 1s relation

(ii)  Since R, c AxBsoR,1s a relation

(ili)  Since K, @ AxB 50 R, is not relation

(iv)  Since R, c AxBsoR,is a relation

Number of Relations : If R 4xB is any relation and A have m elements and B
has n elements the number of relations from A to B 182™ and number of non void
relation is 2™ —1

Domain of Range of Relation if R is a relation defined from A to B then domain

or R is the set {a | a € 4} i.e. set of all first components of order pair belonging

13




to R. and Range of R is the set{b|b e 4} Le. set of all second component or order
pair belong to R.
Example 1.7 : If A= {1,2,3,4,5,6,7,8and B={3,4,5,6,7,8,9, 10, 11, 12}
and R 1s defined as R = {(1,3 ), (2, 5),(3,7),(4,9), (5, 11 ), } then find domain
and Solution :

DomainorR ={a|ae 4,(a,b)e R}

=11, 2.3 4.3}

Range of R ={b|be 4,(a.b)e R}

=43,5,7,9,11}
Example 1.8: if A = {1,2, 3,4, 5} and B ={1, 3, 5} and a Relation R from A to B
is defined as (a.b) € R < a < bthen find the domain and Range of R.
Solution. : Clearly R= {(1, 1), (1, 3), (1, 3); (2, 3),:(2, 5); (3, 3), (3, 5), (4; 5); (5,
5)}
So Domain of R = {1, 2, 3, 4, 5}
And Range of R= {1, 3, 5}
Relation on a set : if A is any non-void set and a relation R defined from A to A
then R is called relation on set A.
Inverse Relation : If R is a relation from set A to a set B then inverse relation of R
is denoted by R™' from set B to A and defined as
R" = {(b, a)(a, b) R }
Thus domain or R = Range of R
And Range of R' = domain of R.
Example 1.9: If R is defined from set A to set Bas R = {(2. 4) (4.8), (6.12)} then
R'={(4,2) (8,4), (12, 6)}
domain orR”" = Range of R=§4, 8, 12}
Range of R = domain of R ={2, 4, 6}

14



1.8 Type of Relation

1)

2

Reflexive Relation: If in a Relation R defined on set A, if every element of
A is related to itself then it is called Reflexive Relation i.e. [f in a relation

R defined on set A (x,x)e RVx c Athen R 1s called Reflexive Relation.
Example 1.10: If A = {1, 2, 3, 4} and Identity Relation defined on it as R

= {(1, 1),(2, 2), (3,3), (4, 4)} then it is a Reflexive Relation. Since
Vxe A(x,x)e R
So R is Reflexive Relation.

Note:- Every Identity Relation is a Reflexive Relation but converse not true
for example if R is Relation defined on Aby R={( 1, 1), (1, 2), (2, 2), (3,
3), (3, 4),(4,4)} then R is Reflexive but R is not a Identity Relation.
Example 1.11:In the plane Relation R between two lines 7, &7, defined by
LRI, < [Ul, (/,is paralleltol,) then R 1s Reflexive since each line 1s
parallel to itself.

Examplel. 12: Relation R defined on set of Natural numbers as

(a,b)e R<> a>b 1s not Reflexive since it 1s not possible that a > a but if we
defined R by (a,b)e R<>a= bthen R is Reflexive since

azavaelN .

Symmetric Relation: A Relation R defined on a set A 1s called symmetric
Relation if (a,bye R<>(b,a)e R

Example 1.13: If A = {1, 2, 3} and R 1s defined on A as R -= {(1, 1), (1, 2),
(2, 1), (2.3), (3, 2)} then R is symmetric since V(a,b)e R<>(b,a)eR.
Example 1.14: In the plane Relation R between two lines 7 &/,

defined by 1, R1, <> I, LI, (I, is Perpencicular tol,) then R is symmetric

since if 7, 1.7, theni, 1 1.

15




(3)

(4)

Example 1.15: Relation R defined on set of Natural numbers as

(a,b)e R < a < bthen R is not symmetric since a <bthen , i5 not less than

or equal to a-
Transitive - A Relation R defined on a set A 1s called Transitive if for

every pair (a,b)eR and(b,c)eR =(a,c)eR.

Example 1.16: If A= {1.2,3} and R is definedon Aas R= {(1, 1), (1. 2),
(1,3),(2,2),(2,3),(3,1),(3,2), (3, 3)} then R is Transitive since for every
pair

(aab)eRand(b,c)e R =(a,c)eR

Example 1.17: In plane Relation R between two triangles A &A, defined
as ARA, < A is similar to A then R is Transitive since for

ARA, & A RA,i.e. of Triangle A, similar to A, and Triangle A, similar
to A; then A, alsosimilar to A,,

Example 1.18: Relation R defined on set of lines in a space as

/R, = { 11 then R is not Transitive since if /, L/, and /, LI, than it is not

necessary that / L/ (see figure 1and 2)

—1 /o

IE
fiz.1 fig.J

- Infigure (1) (24, L1, and I, L L, but first figure shows that line is not
perpendicular to /,and second shows that /, 1 Z it is not necessary that in
every case /, L/, R is not Transitive.
Anti-Symmetric Relation : A Relation R defined on set A is anti
symmetric if (a,b)eR &(b,a)eR —a=b
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Example 1.19: Relation R is defined on set of Rational numbers as
(x,y)eR < x divides y then R is anti symmetric since (x,y)eR < x
divides y and(y, x) € R < ydividesx ifand only ifx =y.
Example 1.20: Relation R is defined on N as (x. y)eR < x>y thenR is
anti symmetric since x>y&y=>x ifandonly if x =y.
Example 21: The Identity Relation on a set A 1s anti Symmetric Relation.
(5) Equivalence Relation : A Relation R defined on set A in equivalence
Relation if
(1) R is Reflexive
(11) R is Symmetric
(i) R is Transitive
Example 1.22: In the plane, Relation R is defined as [ 1, <1 1717, 18
equivalence Relation. Since it is symmetric, Reflexive and Transitive.
Example 1.23: In the set of Triangles R is defined as A RA, <> A, similar
to A, then it is equivalence Relation since it is Reflexive, symmetric and
Transitive.
Example 1.24: The Relation R is defined on set of Natural number as
(a,b)eR <a=>b 1snot equivalence Relation since it is Reflexive and
Transitive but not symmetric.
(6) Partial Order Relation:- A Relation R defined on the set A is call partial
order Relation if
(1) R 1s Reflexive
(11) R is Anti Symmetric
(111) R is Transitive
Example 1.25: The Relation R defined on any non-void set A as
(a,b)eR <a>b is partial order Relation since it is Reflexive, Anti

symmetric and Transitive.
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Example 1.26: The relation R defined on set of Natural numbers as
(a,b)eR < % is a positive integer then it is a partial order Relation since

it 1s reflexive. Transitive and Anti symmeitric.
Example 1.28: The Relation R defined on set of Integers as
(x,y)eR <:>|J41 >y then R is partial order relation since R is reflexive anti
symmetric and transitive.
Example 1.29: Let a Relation R, on the set R of all real numbers be defined as
(a.b) e R, & 1+ ab > 0Va,be R show that R, is Reflexive and symmetric.
(1) Sincel+a.a=1+a’=20—=(a,a)e RVaec R So R, is reflexive.

@ (a.h)eR = 1+ab20
' =>1+ba20= (ba)eR
So R, is Symmetric.
Example 30: Show that if R is an equivalence Relation then R also equivalence
Relation.
Solution : Let R be a relation on A
S0, ReAXA=>R ' c AxA
So R is also a relation on A
Now R is equivalence if it is
Reflexive : since R is reflexive so (a,a) € RVae 4
= (a,a)e R Vaec A
= R'is reflexive.
(il) Symmetric: Let (a,6)e R
—(b,a)eR
= (a.b) e R(Since R is Symmetric)
= (b,a)e R

e i
R is symmetric
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(iii) Transitive: Let and (a.h)e R and (b.c)e R™
= (h,a)e R&(c,b)e R

= (e,h)e R&(h,a) e R

= (c,a)e R

= (a,c)e R

So(a.h)e R (b,e)e R

= (a.c¢) e R so R Transitive

Example 1.31: If R is Relation on N x N defined

(a,D)R(c,d)=> ab = bc¥(a,b)R(c,d) € N x N then prove that R is equivalence
relation.
Solution: (1) Reflexive: Let (a, b) e R then
(a, B)R(a, b) = ab = ba Which is true
So R is reflexive.
(1) Symmetric: Let (a.h)R(c.d)e Nx N and (a, b)R(c, d)
& ad=be
o be=ad
o ced=da
< (¢, d)R(a,b)
So Ris symmetric
(iii)Transitive: Let (a,b)(c.d),(e.f)e NxN
(a,B)R(c,d) <= ad =bc
and (c,d)R(e, f)= cf =de
Multiplying (1) and (2)
(ad)(ef) = (bc)(de)
= af =bd
= (@.0)Re, [)
= RisTransitive
So Ris aequivalence relation.

Example 1.32: If R and S are any two relation on set A then prove that

(1) If R and S are symmetric then R[S is also symmefric.
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(ii) R is any relation and S is Reflexive then RIS is also Reflexive
Solution : Since R and S are relation on set A so
RcAxA&S cAxA
=RUScAxA
So RS is also a relation on A.
(i) Let (a,b)e(RUS)
= (a,b)eRor (a,h)e S
= (b,a) e R or (b,a) € S(Since Ramd S are Symmetric)
= (h,a)e (RUS)
= RUS is Symmetric
(i1)  Since S is Reflexive
So (a,a)eSVae AandR isany Relation so ScRUS
(a,a)e RUSYae A
= RJS is Reflexive

1.9 Function

Let A and B be two non-empty sets then a function f from set A to B is a relation
which relates elements of A to B as
(1) All element of set A are related to elements of B.
(i1)  Anelement of set A us related to a unique element of set B.
Wewriteitas f:4— B
Example 1.33: if A = {1, 2,3} B {a, b, ¢} then
@) f1=1(1,2),(2,5)(3,0)}
(1) 1,={(,a),(2,a),(3,0)}
(#i1) f3={(1.).(1,6).(2,6).(3.0)}
) fi={(, a).(2.0)}
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Clearly f, & £, are function but f; & f, are not function since f; relates 1 c A to a and
beB so condition (ii) doesn’t follow while f, doesn’t related 3 € A to any elements
of B. so condition (i) doesn’t follow.

Domain Co-domain and Range of a function: If a function f defined from A to B
i.e. /:B—> B then set A is called domain of {f, set B is called co-domain of f and

f-image set of elements of A is called range of f.

Example 1.34: If A= {-1,0,1} and B= {0, 1, 2, 3} and a function f defined from
AoBasf(x)= X" then domain of f is A= {-1,0,1}, Co-domain is B and range of £
is 40, 1}

Kinds of Function
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(1) One-one function (injection): A function f:4— Bis said to be one-one
function if different elements of A has different images in B. if f is not one-

one then it is called many one. Thus f:4— B is one one
=azb= f(a)# f(h)Va,be A
of fla)=f(b)= a=bVa,be A
Example 1.35: If A = {1, 2, 3, 4}, B =(a, b, ¢, d} then he function defined as f =

{(1, a), (2, ¢), (b, b), (4, d)} i1s one-one function since each element of A 1s related

9 /-*\\
/T Nt
\‘\ / \

:“\4>‘/£ —?h

R K“—"‘ ¢
$ / . /:

Sl LA
(i)  On-to function (surjection) : A function f: 4> B is said to be on fo if

to a unique element of B.

~— —

“---....i -

every element of B has a pre f image in A 1.e. if range of fis Bie. {A)=B
(111)  Im-to Function : A function which 1s not on-to 1s called in-to function
Example : If N = {1,2,3...} and E = {2,4,6....} and 7:N — £ defined as
f{x)=2x then f(x) is onto function since each element of E has a pre f —
1mage in N.
(iv)  One-one onto function (Bijection) : A function which is one-one as well
as onto 1s called one-one onto function i.e. A function is one — one onto
(1) If different elements of A has different image in B
(i)  Each element of B has a pre f — image in A
Example 1.36:

The identity function on set A= {1,2,2,4,5} is one — one onto since
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(3) IfN={1,23....} and E= {24,6....} then fF:N — E defined as f(x) = 2x is
one-one onto function
One-one: Let f(x) = f{y)
=25 =2%
=X=Yy
Onto — since for each x € E there have on y €N such that y = 2x.

So T is onto function.

1.10 Graphs

A graph G is a pair (V, E), where V = {v,, v,, ... } is a non- empty set whose
elements are called vertices (or nodes) and E = (¢, ¢,, .. } 1s a set such that each
element ¢, of E is identified with an unordered pair (v, v)) of vertices. The elements
of E are called edges of G. The vertices v, and v, associated with edge e, are called
the end vertices of e, and the edge e, is then denoted as ¢, = (v, v,)

Graphs are usually represented by diagrams in which a vertex is represented by a
dot or a small circle and an edge is represented by a line segment joining its end
vertices.

Examplel.37: ¥V ={v v, v, v,}and E={e.e, e, e,,e} be such that

g =V.v,).8 =, v,).e=(v, )., =(v, v,)ande; =(v,,v, ) then G = (V, E) is

a graph.
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fig: 1.1
Parallel edges in a graph
We observe from the definition of a graph G = (V, E) that while the elements of E
are distinct, more than one edge in E may have the same pair of end vertices. All
edges having the same pair of end vertices are called parallel edges.
Simple graph
A graph that has neither self-loops nor parallel edges is called a simple graph.
Incidence and Degree
Let e, be an edge joining two vertices v; and v; of a graph G: Then the edge e, is
said to be incident on each of its end vertices v, and v; .Two vertices in a graph are
said to be adjacent if there exists an edge joining the vertices. Two non-parallel
edges are said to be adjacent if they are incident on a common vertex. The degree
of a vertex v in a graph G, written as d(v),is equal to the number of edges which
are incident on v with self-loop counted twice,
Finite and Infinite Graphs
A graph G =(V, E) 1s said to be finite if both sets V and E are finite; otherwise it is
called infinite graph. The graphs in Figs. 1.1 and 1.2 are finite. Isolated Vertex,
Isolated Vertex, Pendant Vertex and Null Graphs

A vertex v is said to be isolated vertex if degree d(v) of v is zero in other words, A
vertex having no edge incident on it is called an isolated. For example, the vertex
v. in the graph of Fig. 1.3 is isolated vertex. A vertex is said to be pendant vertex if

its degree is one. Vertex v, in the graph of Fig. 1.3 is a pendant vertex.
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Fig: 1.3
A graph G — (V, L) is said to be null graph if the set of vertices ¥V is non-cmpty but
the set of edges L is empty. A null graph is thus a graph in which cvery vertex is an
isolated vertex. A null graph of five vertices is shown in Fig 1.4, A null graph

having onc vertex only 1s called trivial graph.

.VZ 'v

Fig: 1.4 Null graph of five vertices

1.11 Sub-graphs and Complements

Let G—(V, L) be a graph, A graph H— (V', L") 1s said to be a sub graph of G if 7 15
a subsct of L and V'is a subsct of V such that an cdge (v, v)) 1s in I only if v, and
v;are in v. lfor example, the graph in Fig. 1.5(b) 1s a sub-graph of the graph in lig.

1.5(a).
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Graph (b)

Graph (a}

Fig: 1.5 Graph (a) and one of its sub-graph (b)

Spanning Sub-graph

A sub-graph H of a graph G is said to be spanning sub-graph if all the vertices of G
are present in the sub graph H.

It is easy to observe that every graph is its own sub-graph. Also, if H is a sub-graph
of a graph G and K is a sub-graph of H then K is a sub- graph of G.

Edge-disjoint Sub-graphs

Two sub-graphs I, and I, of a graph G are said to be edge-disjoint if H, and H, do
not have any edge in common. It may be noted that although edge-disjoint graphs
do not have any edge in common, they may have vertices in common.
Vertex-disjoint Sub-graphs

Two sub graphs H, and H, of a graph G are said to be vertex-disjoint if H, and H,
do not have any vertices in common. Obviously, every vertex-disjoint sub-graphs
are edge-disjoint.

Complement of a Sub-graph

Let H= (V", E') be a sub-graph ofa graph G = (V, E). The complement of sub-graph
H with respect to the graph G is the sub-graph H(G)= (V, E-E').

Thus, the complement of a sub graph H with respect to graph G is obtained from G

by removing the edges of H.
Complement of a Simple Graph
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Let G = (V, E) be a simple graph. The complement of Gis the graph G = (V, E ")
such that on edge e is in E I if and only if it is not in E. In other words, two vertices
v;and V,are adjacent in G if and only if they are not adjacent in G.

A simple graph which 1s isomorphic to its complement is called self
complementary graph. For example, the graph given in fig. 1.6 below is self-

complementary.

Fig. 1.6

We conclude this section with a puzzle which is also known as Instant Insanity.
Example 1.38: What is the maximum number of vertices in a graph with 35 edges
and all vertices are of degree at least 3.

Solution: Let n be the number of vertices. Since the graph has 35 edges and each
edge contributes 2 to the sum of degrees of all vertices, therefore sum of degrees of
all vertices 1s 2 x 35 = 70. Also, each veriex is of degree at least 3, therefore

70 = 3n

The largest integer n satisfying this inequality is 23. Hence maximum number of
vertices in a graph with 35 edges such that each vertex is of degree at least 3 is 23.

Example 1.39: Prove that if G is self complementary then G has 4k or 4k+ 1

vertices, where k 1s an integer.

Solution: Let the number of vertices in a self-complementary graph G be n. We

: ; . , : . —]
know that maximum number of edges in a simple graph With vertices is n(nz ) s

Since G is self -complementary an isomorphic graphs have equal number of edges,
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: #
therefore, G and its complement each must have edges. Hence n or n-1

must be a multiple of 4. Thus

n =4k or n-1 =4k, where k is an integer.

= n =4k or 4k+ I, where k is an integer.
Example 1.40: Is it possible to have a group of nine people such that each person
is acquainted with exactly five of the other people?
Solution: No such group of nine people can exist. For, if we try to draw a graph
with a vertex for each person and an edge between each pair of people who know
each other, then we would have a graph with nine vertices all of degree 5. But then
sum of degrees of all vertices in this graph would be 45 which is not possible

because sum of degrees of all vertices in any graph is always even.

1.12 Trees

A Connected graph without any circuits is called a free.

Example 1.41: The graph G shown in Fig. 1.6 (b) is a tree while the graph shown,

in Fig. 1.6 (a) is not a tree.

Graph (b}

Graph (a)

Fig. 1.6
Theorem: A graph G is a free iff there is one and only one path between any two

vertices of G.

Proof: First suppose that the graph G is a tree. Then by definition of a tree, G is a

connected graph. Therefore, there must exist at least one path between any two
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vertices in G. Now suppose that there are two distinct paths between vertices ‘a’
and ‘b’ of G. Then the union of these two paths will contain a circuit and G cannot
be a tree. Thus there is one and only one path between any two vertices of G.
Conversely, suppose that there is one and only one path between any two vertices
of G. We shall show G 1s a tree. Since there exist a path between any two vertices
of G, therefore G is connected. A circuit in a graph with two or more vertices
implies that there exists a pair of vertices a, b such that there are two distinct paths
between ‘a’ and ‘b’. Since G has one and only one path between any two vertices,
G can have no circuit. Thus G is a tree. .

Theorem : A tree with n vertices has n-1. edges.

Proof: We shall prove the theorem by induction on the number of vertices.

Clearly, the theorem is true for trees with one or two vertices assume that the
theorem is true for all trees with fewer than n vertices.

Let us consider a tree G with n vertices. Let e, be any edge in G with end vertices
V; and v;. According to Theorem 1 above, the edge ¢, is the only path between V;
and v; Hence, deletion of ¢, from G will disconnect the graph. Thus G-e | is not
connected. Further, G-e, will contain exactly two components, for otherwise the
graph G will not be connected. Let these two components of G - ¢, be G, and G,
Each of these components is a tree because there were no circuits in G. Let n; and
n, be the number of vertices in G, and G, respectively. Since n, < n and n, < n, we
have by the induction hypothesis

number of edges n G | =n-1

i
and

number of edges in G, = n,-1
Thus, number of edges in G - ¢, 1s equal to (n;-1) + (n,-1) =
(n, +n,)-2 = n-2. Hence G has exactly n-1 edges.

Theorem: Every connected graph with n vertices and n-1 edges is a
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tree.

Proof: Let G be a connected graph with n vertices and n - 1 edges. The

theorem will be proved if we show that G has no circuit. Suppose that G contains
at least one circuit. Since removing an edge from a circuit does not disconnect a
graph, we may remove edges, but no vertices from circuits in G until the resulting
graph G* is circuit-free. Now G* is a connected graph with n vertices and contains
no circuit. Thus G* is a tree with n vertices. Hence G* has n-l edges (by Theorem
2). But now the graph G has more than n-1 edges, a contradiction. Hence G has no

circuit. This completes the proof.

Theorem: A graph G with n vertices, n-1 edges and no circuits is tree.

Proof: Let G be a graph with n vertices, n-1 edges and has no circuit. It will be a
tree if we show that it is connected. If possible, suppose that G is disconnected.
Then G will consist of two or more circuit less components. Without loss of
generality let G consist of two components G, and G,. We add an edge e between a
vertex VI in G1 and v2 in G2. Since V ;and v, are in different components of G,
there is no path between v, and v, in G. Thus addition of edge e will not create a
circuit. Thus G U e is a circuit less, connected graph (and therefore a tree) of n
vertices and n edges, which is not possible because of Theorem 2. This completes
the proof.

Minimally Connected Graph

A connected graph G is said to be minimally connected if removal of any edge

from G disconnects the graph G. We now have the following theorem:

Theorem: A graph G is a tree iff it is minimally connected.

Proof: Suppose that G is a tree. We show G 1s minimally connected.

Since G 1is tree, it is connected. If G is not minimally connected then there must
exist an edge e in G such that G-e is connected. Therefore, e is in some circuit,

which implies that G is not a tree, a contradiction.
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Thus G is minimally connected.

Conversely, suppose that G is a minimally connected graph. Then G is connected
and cannot have a circuit; otherwise, we could remove one of the edges in the
circuit and still leave the graph connected. Thus a minimally connected graph 1s a
tree.

Minimum Number of Pendant Vertices in a Tree

Recall that a pendant vertex in a graph is that vertex whose degree is one. In
general, trees have several pendant vertices. The minimum number of pendant
vertices in a tree is given by the following theorem:

Theorem: In any tree (with two or more vertices), there are at least two pendant
vertices.

Proof: Let G be any tree having n vertices. Then G has n-1 edges. Since each edge
contributes two degrees, the sum of the degrees of all vertices in G is 2(n-1). Now
2(n-1) degrees are to be divided among n vertices in G. Let the number of vertices

of'degree one in G be x. Since no vertex in a tree can be of zero degree, we have

2(?’3—1)—3:>2
f1—X B
=>xz2

Thus, we must have at least two vertices of degree one in a tree.

Spanning Trees

In this section, we shall study the tree as a sub-graph of a connected graph.

A sub-graph T of a connected graph G is said to be a spanning tree of G if the sub-

graph T is a tree and contains all the vertices of G.

Equivalently, a tree T 1s said to be a spanning tree of a connected graph G if T is a

sub-graph of G and contains all vertices of G. A spanning tree 1s also called a

skeleton or maximal tree sub-graph.

Since a tree is a connected graph, a spanning tree is defined only for a connected

graph. If G is an arbitrary graph with k components then each of the k components
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does have a spanning tree. Thus a disconnected graph with k components has a
spanning forest consisting of k spanning trees (A collection of trees is called a
forest).

Theorem : Every connected graph has at least one spanning tree.

The graph obtained by removing an edge from a circuit mn G will remain
connected. If there are more circuits, repeat the process until we get a connected,
circuit-free graph that contains all the vertices of G. This graph will then be a

spanning tree of G.

1.13 Summary

Sets: Set is defines as well define collection of objects. Basic operations on sets are
AUB={x|xe€ Aorx € B}

A B=ix|x €A and x € B}

A=U-A={X:X €eUandx € A}

A-B={x|x e Aand x ¢ B}

Relation: If A and B be any two sets then a relation R from A to B in a subset of
AxB.So we can define R as a subset of AxB i.e. RcAxB.

Types of Relation :

(a)  Reflexive: If in a relation R defined on set A (x,x)c RVxe Athen R is

called Reflexive Relation.
(b) Symmetric: A Relation R defined on a set A is called symmetric Relation

if (a,b)e Re>(b,a)e R
{¢)  Transitive: A Relation R defined on a set A is called Transitive if for every

pair (a,b)eR and (b,c)eR —>(a,c)eR.
(d) Anti-Symmetric Relation : A Relation R defined on set A is anti

symmetric if (a,b)eR & (b,a)eR =a=b
{e)  Equivalence Relation : A Relation R defined on set A in equivalence

Relation if
(1) R is Reflexive
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(i) R is Symmetric

(ii1) R is Transitive
Function: Let A and B be two non-empty sets then a function f from set A to B 1s
a relation which relates elements of A to B as

(1) All element of set A are related to elements of B.

(ii)  Anelement of set A us related to a unique element of set B.

Types of Function:

(a)  One-one function (injection): A function f:4—» Bis said to be one-one
function if different elements of A has different images in B. if f is not one-
one then it is called many one.

(b)  On-to function (surjection) : A function f:4 > B is said to be on to if
every element of B has a pre f image in A 1.e. if range of fis Bie. f{A)=B

{(¢) Imn-to Function : A function which is not on-to is called in-to function.

(d)  One-one onto function (Bijection): A function which is one-one as well as
onto is called one-one onto function.

Graph: A graph G is a pair (V, E), where V = {v,, v,, ... } 1S a non- empty set

whose elements are called vertices (or nodes) and E = (e, e,, .. } is a set such that

each element e, of E is identified with an unordered pair (v; v,) of vertices.

Sub-graph: Let G= (V, E) be a graph, A graph H= (V', E) is said to be a sub

graph of G if E” is a subset of E and V' is a subset of V such that an edge (v, , v)) is

in E' only if v; and v;are in v;.

Tree: A Connected graph without any circuits is called a tree.

1.14 Glossary

® Injection Mapping: One-one function.
o Surjection Mapping: On-to function.
° Bijection Mapping: One-one and on-to function.
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° Circuit: A closed path.

® Trees A Connected graph without any circuits.
* Singleton Set: A set which contains exactly one element.
Null Set: A set which contains no element.

1.15 Exercise

1. IfSet A = {1, 2, 3} and Relation defined on A as
() Ry = {1, 1)(2,2)3,3),(1,2) (1. 3) (2, 3)}
(i) R, ={(1,1)(2,2) 3, 3);
(i) Bs=41;1)12,3)(3; 1), (3 2)(1.3}(3:3)}
Check whether the following Relation are (a) Reflexive (b) symmetric (c)
transitive

2, If a relation R defined on set of rectangles as two rectangles are related if
they have same area’ then shows that R is a equivalence relation.

3, If a relation R defined on Zx 7 as (a,b),(c,d)eZ xZ
(a.bYec.d)ya+d=b+c
then show that R is an equivalence Relation.

4. [f a relation R defined on Z; x 7, define by (a,b) R (¢, d)
< ad(b+c)=bc(a+d)

Show that R is an equivalence Relation.

X Prove that the relation R on any Set A is symmetric if and only if R = R
Answer
1. (1) Reflexive but not Symmetric and Transitive

(i1)  Reflexive Anti Symmetric and Transitive

(iv)  Transitive but not Reflexive and Symmetric
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UNIT-2
Mathematical Logical

Structure of the Unit

2.0  Objective

2.1 Introduction

2.2 Propositions

2.3 Compound Propositions
2.4 Truth Table

2.5  Tautology and fallacy
2.6  Self Learning Exercise
2.7  Predicate

2.8  Principle of Induction
2.9  Principle of complete induction
2.10  Summary

2.11 Glossary

2.12 Exercise

2.0 Objective

After gone through this unit learner will aware of various methods of solving
logical problem using mathematical logic. He will be able to use mathematical

induction to prove any result for positive integers.

2.1 Introduction

All mathematical proofs are based on logic. In present logic is very important due
it's practical applications in developing commutating machines, artificial

intelligence etc.
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2.2 Propositions

Declarative sentences that are either true or false but not both are called
propositions. If a proposition is true then it has truth value “True” and if it is false

then truth values is False True value is represent as T or 1 and False as F or 0.

Examples 2.1 : Following statements are propositions

(a)  Jaipur is Capital of Rajasthan

(b) 3 is integer

(c) 1+2=4

(d) Sun rises from west.
Propositions (a) and (b) are true but

Propositions (c¢) and (d) are False

Examples 2.2 : Following sentences are not Propositions

a) X+2=1

b) X>1

c) What is your name?

d) Don’t try to make it easy.

Here sentences (a) and (b) are not propositions unless specific vaues given to x we
can’t say whether they are true or false and (c) and (d) are not declarative
sentences.

logic declarative sentences are denoted in symbolic from by English alphabets as p,

s I SR these are known as propositional variables.

2.3 Compound Propositions

Simple propositions are combined by logical connectives to give compound
propositions. If a compound proposition is formed, by combining two propositions
then it has 2” truth values in all alternative cases. A compound proposition made up

of propositions will have 2° alternative cases of its truth values.
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The various logical connectives also called logical operators, used to combine

propositions are the following:

S.No. Name of Denoting  Meaning in short
Connective symbol
1 Negative of p ~p(notp)  If(notp) pis true ~ p is false and
vice-versa.

2 Conjunction of p pAaq(pand  Ifpistrue and q also is true then (p
and q q) and q) only p Aq is true.

3 Disjunctionofp  pvqgi(porq) Ifpistrueorqis true i.e., if either
and q both or atleast one of them is true then

pV q is true (p true or q true)

4 Conditional p p <q It is always true except in one case
mmplies q when p 1s true but q 1s false (it is
called implication implies or
conditional)
5 Biconditional p <> p €<q It is true when either p and q are both
q true or when they are both false.

(bothp — q
pisimpliesqand andq — p
also g implies p

2.4 Truth Table

If a compound proposition is formed using the above connective on some atomic
propositions p, q etc., then the table giving the truth values of the compound

proposition in all possible alternative cases is called its truth table.

(a) True table of Negation (~p)

p ~p =) =f
i F iL
F T F
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(b)

(c)

(d)

(e)

Truth table of conjunction (p A q)

ol Bl B Wl Lo

= =

Truth Table of disjunction p v q

T

ki

| = e

Truth table of implication (p < q)

Bi-conditional

p

SR AR R

|| e

SRESHE AR

= = e

pP—q

== ==

(p A Q)

| = | =

M oa 3= <

(p <q

=TI

q—p

=S

peq=(p—>
Q) A(q—>p)
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2.5 Tautology and fallacy

If truth values of a compound proposition involving two or more propositions be
true in all cases then it is called Tautology and is denoted by T is it is false in all

cases then it 1s called fallacy and is denoted by F.

A compound proposition which is neither a Tautology nor a fallacy is called a

contingency.

Examples 2.3 : Show that

1. p Vv~ pisa Tautology
1. pA~pis a fallacy
p ~p pVv-~p PA~D
T F T F
F i T F

From truth table all values of pA~p are truth so pA~p i1s a Tautology and all
values of p A~p are false so p A~p is a fallacy.

Equivalences:
Compound propositions which have the same truth values in all possible cases are
said to be logically equivalent.

Example 2.4: Prove that p—q and ~ q—~p are equivalent

p q P —q ~p ~q ~q —>~p
T T T F F T
T F F F T F
E T T i F T
F F T T T T



From the table third and sixth column are same so

p—=>q =~q—>~p
Example 2.5: Verify the distributive laws:

i. pA(gvr) =(pAq) vipvr)
ii. pvignr)=(pvgn(pvr)

P 9 | (qv pA(gvr)  (pAq) v(pVr)

r)
T T s T TvT | T As the column (i)
T [ 1 @ | TVF T | i |2nd @@
_ i representing
T F T T T FvT T
L.H.S. and R.H.S.
F T T T F FvF F of pA(QVT) =(p A
T F F F F FvF F q) v(pvr) So
F T |F T F FvF F these are identical,
¥ - B = & — so the equivalence
Ve (i) holds true.
F F F F F FvF F
(i1)
p q r pv(gnar) (pva) A (pv
r)
T G B e =t TvT T As the column (i) and (ii)
T T|F|T |F=T || TvT |T representing L.H.S. and
T |F|T|T|F=T T | T |y | ot
= % i
pv@rn=(pvon(pvr)
F IO L [ E=E TvT | T are identically same, so the
T E|FI|IT | T=F TvT | T equivalence (ii) holds.
F T|F|F |T=F TvF |F
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E (Bl N [ 2 e =2 EvE | B
F B[ FIE |[B=FE EvE |F

Example 2.6 : Prove that p—>q=~qV p, using truth table.

p q P—>q ~qvp

T dK d & FvT=T

T F F (i) FvF=F (i)
F i T T I=r

F K T T—=>F=F

As (1) and (11) column are identical hence the equivalence holds true.
Ifinp—q.

p be the conjunction of n propositionsH,, H,, H_ then the implication p—q reads.

It is then called an argument form, where H, AH,..........AH_ are called its

hypothesis or premises and q the conclusion.

Example 2.7: Prove that following propositions are tautology:

1. (pAr q —(pva)
1. ~p—>q) —~q
Sol. (i)
P q pAq  pvqg (PArq —((PV9
T T T i T
T F F T T
F T F It il
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F

il

F

~p—q) ~q ~(p— q9—>~q
F F T
ik i T
F F T
F T T

Example 2.8: Prove that following propositions are fallacies

(pA @ A~(pVQ)
(pvq) Al(~pA ~q)

(1)

(i1)

i.

il.

pAq

F

pvq

T

~pva (pv q@ A~(pVva)
F F
r F
F F
T F

pAq | ~pv~q (pv @) A (~pv~q)



2.6 Self Learning Exercise

L. Check following statement for propositions
L. Vardhman Mahaveer Open University is located at Kota.
i1 2017 18 a leap year.
111. x+2=>5
iv. x 22 x+1>5
V. A vyear has at least 52 Sunday.
vi. When will you complete your assigned work?
vil.  Hurry up!
viii.  Vardhman Mahaveer Open University take admissions twice in a
year.
(Ans: 1,11,iv,v viil are propositions.)
2. Prove the following using truth table
H  ~ve=pr~q (De-Morgan’s Law)
(i) ~(pAg)= pr~gq (De-Morgan’s Law)
() pAlgvr==(PADVPAT)  (Distributive Law)
iv)  pvigrn=(pvenrlpvr) (Distributive Law)
v) pv(gvr)=(pvg)vr (Associative Law)

(vi) ~(pv(~-prq)=-pr~q

(vil) (por)vip—>9)=p—>(qvr)

(vil) (p=>Pr(p—>r)=p—(gAar)

(ix) p—>g=-pvyq

x)  @opa@—>n=@Eve—r

3. Prove that following compound propositions are tautologies.

(1) ~p—=>(p—>q)



i) (pro->@—>q9

i) (p->g9—>(pnrg)

(vi)  (prg)vr)—=>(pvr)A(qvr))

4. Prove that following compound propositions are fallacies
O  Cpronpng

i) ~@APA~(pr~q)

2.7 Predicate

The predicate is the part of sentence which tell us what the subject does or is, i.e.
predicate is everything which is not the subject for example in the sentence he is
doing well. He is the subject and rest is predicate. Mathematically it is denoted by
p(x) over x.

Universe of discourse:

If P(x) be a predicate statement over x then set of values which X may assume 1is
called universe of discourse.

Universal Quantifiers:

If P(X) be true in its domain then it is expressed as VxP(x) and called universal
quantifiers.

Existential Quantifiers :

If P(x) be true for at least one value of x in its domain then it is expressed as 3

x P(x)and called existential quantifier.

2.8 Principle of Induction

Induction is a very strong technique to prove any result for integer. There we will

study principle of mathematical induction and principle of complete induction.

Principle of mathematics induction is used to prove statement P(x) for positive

integers. This method has following steps.

1. Basic step : First it 1s verified whether given statement P(n) it true forn =1
if p(n) 1s not true for n = 1 then least vale of n = hQ (say) should be found
for which it 1s true.
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2. Hypothesis step : In this step after verifying first step forn =1 orn =h0) it
18 assumed that p(n) is true for positive integer n = k.

3 Inductive step : After hypothesis step for n = k we prove result for n = k+1
in this step.

Since result is true for n = k+1 so it is also true for n = k+1+1 and in similar way

result is true for all positive integers.
Example 2.9 : Prove by the principle of mathematical induction that for all

positive integers n =1

_ n(n+1)

p(m)=14+2+43+.......n holds true.

Proof : Step 1 : To check if p(1) 1s true.
10+1)
"

-

Forn=1, L.HS.P(1)=and R.H.S. P(1) =

As. LLH.S.=R.H.S. forn=1.
Step II : Inductive step
Hypothesis : Let p (n) be true forn=k

SO we assume

| = " +tk= e+ D)

, to be true.

Step I11: Then we have to prove p(k+1) to be true
(k+D)(k+1+1)

Or {1+2+........+k}+(k+])= :

On using (2), L.H.S. of (3).
k(k;—l) o)

L.H.5.

(k+1)[—§-+1}

(kD (kD)
2
Thus the inductive step ‘p(k+1) is true if p(k) is true, is proved to be true.

~R.H.S. of 3)

Giving to k, values 1,2,3.......
Example 2.10 : Prove that P(n) = (11)™+(12)

2nt2

is divisible by 133 forn e N.
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Sol. (i) P(1) = 11+12°, (11+12) (11> =11x12+122)=133x 23 s0 P(1) is true.
(11) Let for n =k, P(k) be true so
117212*" =133m, say where m is an integer be true

1% =133m 12", using (11*"*=11011**"Yand (1)

NO‘V ] ].k+?> +1 22(_k+l)+1 % 1 I(k-l-? )+ 122']6+3

=11(133-12%+1) 4123
=133 x11+12%"(-11+12%)
=133(11+127)

Which 1s a multiple of 133, so P(k+t1) 1s true
Thus 1f P(k) 1s true P(k+1) 1s also true and P(1) is true. So P(2) 1s true and
So P(n) 1s true for all n eN.
Example 2.11: Use mathematical induction to show that sum of n terms of a G.P.
with common ratio 2, is (2"-1). i.e.
P(n) = 1+2+2°+.2"1 = (2" 1),
For all positive integral values of n.
Sol. : Step : To check whether p(n) is true forn =1,

L.H.S. p(1)=sum of 1 them =1,

R.H.S. p(1)=2'-1 =1
We see that P(1) is true
Assumption let p(n) be true for a positive integer k. -—-(1)
Solet plk)=1+2+............. + 2221 be true for n=1
So p(k) 1s true
To show that p(k+1) is true or 1+2+.....2" + 2%=2""11
L.H.S. of p(k+1) = sum (k+1) terms

= sum of k terms + (k+1)th therm

= (142+....... 2*)+2"
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=22"-1=2"-1=RH S.
Hence p(k+1) is true if p(k) is true. Proceeding in this way. P(n) is true for all

positive integral values of n.

1
Example 2.12: if A be a 2x 2 matrix of the form A4 = 0?
Show by mathematical induction that
()= A" 1 na
n=A* =
* 01
For a positive integer n.
Sol. (1) To check whether p(1) 1s true.
(i1) Let p(k) be true for an integer k.
. U ke
So p()=4" = be true
01
_ ) g 1 (k+Da
Then so show that p(k+1) is true of 4™ == 0 1
Now L.H.S. of (4) using (3) = AX A
_|Lka|l a kil
=lo11lo 1 Multiplying
1+0 ka -
= R.H.S of (1)
0+0 1

Hence p(k+1) is true is if p(k) is true. In this way P(n) is true forall ne V.
Example 2.13: Prove that for integers, 3" >n’

Solution: Let p(r):3" >#’>4

Basic step: P(4)istrue sin ce

3*=81>4"=64

Inductive hypothesis: Let p(k) be true i.e.

>, k24

Inductive Step: We shall prove that P(k+1) is true whenever P(k) is true.

48



To prove 3> (k+1)°

Now (£+1) =& +3k% +3k* +3k +1

3.3 3
<1+ + =+ k)ist
[ P fc][p()”me]
P(k+1) will be true, if we show that

1+i+iz+ij<3, k>4

3 3 3
Let =14 —4—t——
TR gt
3 3 3 125
Nl+—+—+—=—=x3 k24
S 4 4 4 64
and f(k+D=1+ AP W ST 3+i+ 7=/ (k)

k+1 (E+1)*  (k+1)° ki
= f(k) is decreasing function of k with supremum 7(4)<3.

= (k+1)° <37.3" +1 is true.

Hence, by the principle of mathematical induction,

3'>n’nx4

Example 2.14: Show that 2" <! for n=4

Solution : Let P(n):2" <n!

Basic step: P(4) is true since

2'=16 < 4=24

Inductive hypothesis: let P(k) be true £ >4

ie.2" <k

Inductive Step: We shall prove that P(k+1) : 2°" <(k+1)! is true whenever P(k)

is true whenever P(k) is true.
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Now 2" <2(k+1)!

2 < 2(E+1)!

P(k+1) 1s true.

Hence, by the principle of mathematical induction, 2" <#! for n=4

Example 2.15: Show that for any positive integer n = 2

1 1
N — L i TV >\/_
Ji 42 Jn
: ; 1 1
Solution : Let P(n): —+—+ ........ PRERECW, =
SR Y A
Basis step : P(2) is true since
=l+— >~f—
EE
Inductive hypothesis: Let P(k) be true for £ >
—+—+........+—->‘J/:
i 2 JE
Inductive Step: We shall prove that P(k) —P(k+1)
1
Where P(k+1 =lo..—=>k+1
S e
1 1
Now= —=+—==1.......-
142 Vi +1
i+L=1 L-I- : k+1 (k)istrue]

A /3 ,_k 1 ,— [-8
‘/m{ﬁxfﬂﬂ}wﬁ[@kﬁH}h [\F\/E+1+l} o

7_’_‘[ '+]
s plk +)istrue

Hence by the principle of mathematics induction
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2.9 Principle of complete induction

In principle of complete induction (also known as principle of strong induction)
following steps are followed:

Basic step: First it is verified whether statement P(n) is true for n =1 if P(n) is not
true for n = 1 then least values of n = no (say) should be found for which it is true.
Hypothesis step: It this step it 18 assumed that P(n) is true for all integers which are
> no and K.

Inductive step: In this step we prove result for n = K+1

Example 2.16: Show that if n is an integer greater thenl; then n can be written as
product of primes.

Sol. Let p{n) : The proposition that n can be written as the product of primes.

Basic step:

2 is the first prime it 1s the product of only one prime2,

So p(2) is true. .....(1)

Inductive step: Assume that p(n) is true not only for n =k but also fo all positive

integers

Rk, e (2)

Now 1is to be shown that with assumption (2) to be true,
P(k+1)is true sl D)

Now they may be two cases for n =k+1.
Case (1) k+1 is a prime.
In this case it is a product of only one prime, which 1s (k+1) itself. So p(k+1) is
frue.
Then it is composite. Let  k+1 =ab
Where a and b are members such that
2<a<k+l1
Andlet a<b<k+1
As by the assumption that all numbers less than or equal to k are expressible as
product of primes, we have
A = a product of primes, as a <k
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and b= aproductof primes as b <k

Hence k+1 = ab=a product of primes.

Thus p(k+1) us true if p(j) is true for all j lying between 2 and k. so the proposition
18 true by the principle of complete induction.

Example 2.17: Prove that every amount of postage of 12 cents or more can be
formed using only two types of stamps: (1) 4-cent stamps (11) 5-cent stamp.

Proof: p(n) = postage of 12 cents or more is to be formed; for » <12v and the
minimum 12 cents postage can be formed by taking 3 stamps of 4-cents each.
Basic step: so the properly p(n) is true for n=12

1" we prove it by the principle of mathematical induction.

Assume p(k) to be true

then k=4n+ 5m.(1)
the (k+1)=4n + 5m+(5-4)
=5(m+1)+4n-1) ......... (2)

So (k + 1) is expressible in terms of stamps of 4 cent and 5 cent

So p(k) is true by principle of mathematical induction.

Next we use the method of complete induction to show that if 12, 13, 14, 15
.......... k are expressible in terms of stemps of 4 and 5 cents than (k+1) 1s also
expressible like this.

Basis step.

12=4x3
13=4%x2+5+1
14=4x1+5x2
15=35x3

Let postage of k cents and j cents Where 12 < j <k be Expressible in terms of 4
and 5 cents so Let k = 4m+35n be frue

To prove k + 1 is also expressible as in (1)

Now k+1 =4+(k-3)

As k — 3 1s expressible in 4 + 5 cents is

= 4+4m, +n,
Hence p(k+ 1) is true
If P(n) is true for k and less then k.
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So as P(12) is true P(13) is also true

When P(13) 1s true P(14) is true
So P(n) is true for all » £12.
Example 2.18: Consider the Fibonacci sequence £, f,. f5......... where

fohh=land f,=f, +f, ,,n23

Theh =7+, =1+1=2
Lh=L+=142=3

Show by the strong principle of induction that

n-2
f, Z[H_‘BJ n=23

2

Solution: Let P(n): f, 2{ =

]+«/§]”

We prove that P_ is true for all nx3

Basis step : Forn=3

£ >(1+\/§]H

2

Hence P(3) is true.
Inductive hypothesis: Assume that P(3), P(4),.....P(k) are true for
Inductive step: We shall show that P(k+1) is true

Jen =L+ fes
| (1+J§T+lz[l+ﬁ]g (1+J§]k3
Now >

2 2

1445 ) {1+J§]H
5 +1

2

=t

k-2 k-3

14+/5 1++/5 ‘

3 +1 +{ 7 ] ka"'fk—lzﬁm
i

[by the inductive hypothesis]
= P(k+1)1s true.

Hence, by the strong principle of mathematical induction, 1f follows that
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n-2
£, 2(12‘6] Yn>3.

Example 2.19: Prove that any postage charges of n cents can be made by using 3
and 5 cent stamps for n =8 (or n >7).

Solution: Any postage charges of n cents can be made by using 3 and 5 cent
stamps.

Basis step : for n =&, P(8) is true since

8 =3+5=1.3+1.5 (one 3 and 5 cent stamps)

For n =9 P(9) is true since

9=3+3+3=3.3 (Three 3 cent stamps)

For n = 10 P(10) is true since

10=5+5 =2.5 (Two 5 cent stamps)

Forn =11 P(11) is true since

11 =3 +3+5=23.1.5 (Two 3 cent and one cent stamps)

For n =12 P(12) is true since

12 =3 + 3 + 3+3 = 4.3 (Four 3 cent stamps)

Inductive hypothesis : Let P(i) be true for 12 <<i

ie.=3p+ 5qforsomep,qe NU {0}

Inductive step : We shall show that P( k + 1) 1s true since if [ <Kk, it can be
expressed as 3p + 5q. So postage of [ = (k — 3) cents are expressible as
i=k-3 = 36 +5q

=k=3p+5q+3=3(p+1)+5q

"~k is also expressible in terms 3 and 5 cents.

Thus, by the strong principle of mathematical induction, if follows that P(n) is true
for all n > 8.

2.10 Summary
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The various logical connectives also called logical operators, used to combine

propositions are the following:

S.No. Name of Connective
1 Negative of p
2 Conjunction of p and g
3 Disjunction of p and q

4 Conditional p implies g

S Bi-conditional p <> q
p is implies q and also g

implies p

Denoting symbol
~p (not p)

pAg(p and q)

pvq(porq)

p <q

p <q
(both p = gand

q—>p

Meaning in short

If (not p) p is true ~ p is
false and vice-versa.

I p 18 true and q also is
true then (p and q) only p
AQ 1S true.

If p is true or q 1s true i.e.,
if either both or atleast one
of them is true then pv q
is true (p true or q true)

It is always true except in
one case when p 1s true but
q 1s false (it is called
implication implies or
conditional)

It is true when either p and
q are both true or when
they are both false.

Principle of mathematics induction is used to prove statement P(n) for positive

integers. This method has following steps.

I Basic step: First it is verified whether given statement P(n) it true forn=1

if p(n) 1s not true for n = 1 then least vale of n = h, (say) should be found

for which it is true.

2. Hypothesis step: In this step after verifying first step forn=1orn=h,) it is

assumed that p(n) is true for positive integer n =K.

Inductive step: Afier hypothesis step for n = k we prove result for n =k+1 in this

step.
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211 Glossary

Propositions: Declarative sentences that are either true or false but not both.
Predicate: Part of sentence which tell us what the subject does or is.
Induction: Deduce a result from previous one.

Hypothesis: Default Assumption.

2.12 Self-Learning Exercise

Prove by mathematical induction
5 3
1. Show?+ ? + %is a natural number forall ne N

2_ n(n+1)(2n+1)
6

9. P42 % Fovanndb B

3 L+L+ ..... : 4

12712 T unsD nil
4. Show thatn (2n + 1) (n + 1)is divisible by 6, for m a positive integer.

5.Show that x™ - y* is divisible by (x+y) when n is natural number n.

6.1.23 42.34........4n(n + 1) (n +2) ="(“+1(“:2)("+3)
2 n-1 =1,
7. at+ar+ar + ........... ar"" =a 3 ifr#l,
r—

8. Prove that

NETR U B
(a) 4 9 i i

. 1 1
[Hint: =l d—— 2l ]

(k+1) k n

(b) 72!= 27 for all integers n >4
[Hint: (k+1D!=(e+Dkt=k+1)2% >22%F =2 £>4]
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UNIT-3

Introduction to Theory of Automata

Structure of the Unit

3.0
3.1

5.2
23
3.4
3.5

36
3.7
3.8
3.9
3.10
311

Objective

Introduction to Automata

Deterministic Finite Automata

Acceptability of string by Finite Automata
DFA Minimization using Equivalence Theorem
Non-deterministic Finite Automaton

DFA v/s NDFA

Self Learning Exercise

Summary

Glossary

Answers to Self-Learning Exercise

Exercise

3.0 Objective

The most important objective of automata conception 1s to advance methods by
which scientists can describe and analyze the dynamic conduct of discrete systems,
where alerts are sampled periodically. The habits of these discrete programs are set

incidentally that the procedure is constructed from storage and combinational

factors. Characteristics of such machines incorporate:

Inputs: assumed to be sequences of symbols selected from a finite set T of enter
indicators. Specifically, set I is the set x1, x,2, x3... Xk where ok is the quantity of

inputs.
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Outputs: sequences of symbols selected from a finite set Z. Particularly, set Z is

the sety1, y2, y3 ... Ym where m is the quantity of outputs.

States: finite set Q, whose definition is dependent upon the form of automaton.

3.1 Introduction to Automata

The expression "Automata" is gotten from the Greek word "aUTO Ll(X'EOl" which
signifies "self-acting". A machine (Automata in plural) 1s a dynamic self-impelled
figuring gadget which takes after a foreordained arrangement of operations
consequently.

An example: Controlling a toll gate earlier than we provide a formal definition of a
finite automaton, we don't forget an illustration where such an automaton indicates
up in a common means. We recollect the difficulty of designing a “pc” that
controls a toll gate. When an automobile arrives at the toll gate, the gate is closed.
The gate opens as quickly as the driver has payed 25 cents. We expect that we now
have handiest three coin denominations: 5, 10, and 25 cents. We also anticipate

that no excess exchange is returned.

After having arrived on the toll gate, the driving force inserts a chain of coins into
the computer. At any moment, the laptop has to make a decision whether or no
longer to open the gate, 1.¢., whether or now not the driving force has paid 25 cents
(or more). With the intention to come to a decision this, the computer is in one of

the most following six states, at any second for the period of the process:

® The tabletop is in state g0, if it has no longer amassed any cash yet.
° The computing device is in state gl, if it has accumulated exactly 5 cents.
® The computer is 1n state g2, if it has gathered exactly 10 cents

® The tabletop 1s 1n state g3, 1f it has gathered exactly 15 cents.

® The machine is in state this autumn, if it has collected exactly 20 cents.
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® The computer is in state g5, if it has amassed 25 cents or extra.

Initially (when a car arrives on the toll gate), the computer is in state qO.

Anticipate, for illustration, that the driver grants the sequence (10, 5, 5, 10) of cash.

® After receiving the primary 10 cents coin, the laptop switches from state q0
to state g2.

® After receiving the first 5 cents coin, the laptop switches from state g2 to
state q3.

® After receiving the 2nd 5 cents coin, the tabletop switches from state g3 to
state q4.

® After receiving the 2d 10 cents coin, the computing device switches from

state g4 to state g5. At this second, the gate opens. (bear in mind that no
alternate is given.)
Figure 3.1: determines under represents the conduct of the computing device for
all possible sequences of coins. State g5 is represented by using two circles,

considering that it's a particular state: As soon as the laptop reaches this state, the

gate opens.

Figure 3.1: Coin Vending machine
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Detect that the machine {or pc) most effective has to recall which state it's in at any
given time. As a consequence, it desires most effective an exiraordinarily small
quantity of reminiscence: It must be in a position to differentiate between any one
of six possible instances and, therefore, it most effective needs a memory of

[log 6]= 2 bits.

A robot with a limited number of states is known as a Finite Automaton (FA) or

Finite State Machine {(FSM).
Description of Automaton: An automaton can be defined in an abstract way by the

following figure.
Il " .
;.| Automaton =
12 i i 02
" ql.q2,..........qn .
Ip = Oq

Figure 32: Model of a discrete automation

Input: - At each of the discrete instants of time t1,t2,.....input values I1,12.........

each of which can take a finite number of fixed values from the input alphabet z,
are applied to the input side of the model.

Output:- O1, O2....are the outputs of the model, each of which can take finite
numbers of fixed values from an output O.

States :- At any instant of time the automaton can be in one of the states gl,
g2.....qn

State relation :- The next state of an automaton at any instant of time is

determined by the present state and the present input. i.e., by the transition

function.
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Output relation :- Output is related to either state only or both the input and the
state. It should be noted that at any instant of time the automaton is in some state.

On 'reading’ an input symbol, the automaton moves to a next state which is given

by the state relation.
Definition of a finite automaton: Basic model of finite automata consists of:

® An input tape divided into cells, each cell can hold a symbol

& A read head which can read one symbol at a time from a finite alphabet

o A finite control which works within a finite set of states. At each step, it
changes its state depending on the current state and input read. Ifs change of
state is specified by a transition function. It accepts the input if it 1s in a set
of accepting states.

l l String being processed
Input
¢ $ i
Q —— Reading head
Finite
control

Figure 3.3: Basic Model of finite automata

Formal meaning of a Finite Automaton

A machine can be spoken to by a 5-tuple (Q, Z, 0, g0, F), where —

(Q is a limited arrangement of states.

Z is a limited arrangement of images, called the letters in order of the robot.
0 is the move capacity.

q0 is the underlying state from where any info is handled (q0 €Q).

F is an arrangement of definite state/conditions of Q (F & Q).
Related Terminologies

(1) Letter set— A letter set is any limited arrangement of images.
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Case — Z = {a, b, ¢, d} is a letter set where 'a’, '', 'c', and "d" are
letter sets.

(11)  String — A string 1s a limited grouping of images taken from Z
Case — "cabcad" is a legitimate string on the letter set Z = {a, b,
c,d}

(i11)  Length of'a String — It is the quantity of images present in a string.
(Indicated by |S|).
Cases — In the event that S='cabcad', [S|=6

In the event that |S|= 0, it is called an unfilled string (Denoted by Aor €)
Kleene Star

Definition — The set Z* 18 the boundless arrangement of every single conceivable

string of every conceivable length over Z including A. Representation — z* = ZO
U 1U>2U....

[llustration — [fz = {a, b}, Z*Z {)\ , 4, b, aa, stomach muscle, ba, bb,... ... ..}

Kleene Closure/Plus

Definition — The set Z+ 1s the mterminable arrangement of every single
conceivable string of every single conceivable length over Z barring A.
Representation — Z+ = ZO U ZI U 22 Y — Z+ = Z* —{A}

Mustration — If Z = {a, b}, Z+ ={ a, b, aa, abdominal muscle, ba, bb,.........}
Dialect

Definition — A dialect 1s a subset of Z* for some letters m order Z It can be
limited or vast.
Illustration — If the dialect takes every single conceivable string of length 2 over

Z = {a, b}, then L = {stomach muscle, bb, ba, bb}

Let us look at another example. Consider the following state diagram:
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Figure 3.4

We are saying that gl 1s the state and g2 15 a receive state. Recollect the enter
sting 1101. This string 15 processed 1n the followmg manner:

® firstly, the laptop 1s wnthin the start state gl.

b After having leam the pnmary 1, the computmg desice swatches from state
gl to state g2.

® After having read the 2nd 1, the laptop swatches from state g2 to state g2.
{Sc wnthout a doubt, 1t does not swap.)

® After having leam the first zero, the laptop swatches from state g2 to state
q3.
® After having read the 173 1, the computing device switches from state g3 to

state g2.
After the complete stting 1101 has been processed, the computing device 1s 1o state

g2, which 1= a gmiven state. We say that the stnng 1101 1s anthonzed wna the
tabletop.

Comnsider now the enter sting 0101010, After having leam this stnog from left to
comect (starting within the start state gl), the laptop 13 1o state g3.

Considerng the fact that g3 will not be a given state, we are saymg that the
machme rejects the stong 0101010,

We hope yvou're m a position to peer that this laptop accepts every binary stting that
ends with a 1. Actually, the laptop accepts more stnings:

L Each binary sttmg having the property that there are an even number of Os
tollownng the nghtmost 1, 1s anthonized through ths tabletop.
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® Each different binary string is rejected by way of the computer. Detect that
each such string is both empty, includes Os only, or has an extraordinary
number of Os following the rightmost 1. We now come to the formal

definition of a finite automaton:

3.2 Deterministic Finite Automata

Definition: A finite automaton is a 5-tuple M =(Q, 2, O, q, F), the place

1. Q 1s a finite set, whose factors are known as states,

2. 2 is a finite set, known as the alphabet; the factors of 2 are called symbols,
3. O :Q x Z — Qs a perform, known as the transition operate,

4. Q 1s an aspect of QQ; it's known as the start state,

A F is a subset of Q; the factors of F are referred to as receive states. That you

can think of the transition function O as being the “software” of the finite
automaton M = (Q), Z, 6, q. F). This operate tells us what M can do in “one
step”:

L Let r be a state of Q and let ‘a’ be a symbol of the alphabet 2. If the finite

automaton M is in state ‘v’ and reads the symbol ‘a’, then it switches

fromstate ‘r’ to state O (r, a). (actually, 5(r‘ a) 1s also equal to r.)

The “laptop” that we designed in the toll gate illustration in part is a finite
automaton. For this illustration, we have now Q = ¢0, ql, g2, g3, this fall, g5, 2 =

5, 10, 25, the state 18 q0, F = g5, and Ois given by way of the following table:
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5 1) 25
o |91 Gz f5
1 |4z dz g5
2193 da1 5
I3 |91 95 s
fa |95 5 g5
5 |95 I s

The illustration given within the establishing of this section can also be a finite
autornaton. For this illustration, we've got Q = gl, g2, g3, 2 = zero, 1, the begin

state is ql, F = q2, and O is given with the aid of the next table:

o 1

i\ T G2
g2 | 43 q2
ga | g2 g2

Let us denote this finite autornaton by M. The language of M, denoted by Li{M), is
the set of all binary strings that are accepted by M. As we have seen before, we

have L{M) = {w : w contains at least one 1 and ends with an even number of 0s}.
In DFA, for each input symbol, one can determine the state to which the machine

will move. Hence, it is called Deterministic Automaton. As it has a finite
number of states, the machine is called Deterministic Finite DMachine

or Deterministiec Finite Automaton.

Formal Definition of a DFA

A DFA can be represented by a5-tuple (Q, >, D, q0, F) where—
® () is a finite set of states,

L > is a finite set of symbols called the alphabet.

e O is the transition function where O: Q= Z — ()
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qO is the initial state from where any input is processed (q0 & Q).
F is a set of final state/states of Q (F & Q).
Graphical Representation of a DFA

® A DFA is represented by digraphs called state diagram.

® The vertices represent the states.

® The arcs labeled with an input alphabet show the transitions.
® The initial state is denoted by an empty single incoming arc.
® The tinal state is indicated by double circles.

Example 3.1

Let a deterministic finite automaton be —

Q={a, b, cj,

2 =10, 1.

q0—{a}.

F={c}, and

Transition function O as shown by the following table —

Present State | Next State for Input 0 | Next State for Input 1

A a b
B i a
& b C

Its graphical representation would be as follows:
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Figure3.5

Example 3.2: Q=4{0,1, 2 }, 2= {a, b}, A= {1}, the initial state is 0 and £ is as

shown in the following table.

State (q) | Input (a) Next State(8(q,a))
0 a 1
0 b 2
1 a -
1 b 2
2 a #
2 b 2

Note that for each state there are two rows in the table for £ corresponding to the
symbols a and b, while in the Example 3.1 there 1s only one row for each state. A

state transition diagram for this DFA 1s given below.

Figure 3.6: State Diagram

3.3 Acceptability of string by Finite Automata

Diagrams (when available) make it very easy to compute O(q,w) - just trace the
path labeled w starting at q.
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* E.g. trace 101 on the diagram below starting at

Figure 3.7: State Diagram

Implementation and precise arguments need the formal definition.
6(q0,0101) = 6( 6(q0,0),101)

=6(ql ,101)

=0( 8(q1,1) ,01)

=6(ql,01)

=08(8(q1,0),1)

= 06(q2,1)

= 8(8(q2,1) ,€)

= 6(q2,€)

= q2
3.4 DFA Minimization using Equivalence Theorem

Minimization of a DFA refers to detecting those states whose presence or absence
does not affect the language acceptability of FA.
A reduced automata consumes lesser memory, complexity of implementation is

reduced, results to faster execution time, easier to analysis.
Unreachable states: if & * (q0, w) = q' is not true for any w, then q' is
unreachable/unaccessible state.

Dead state: Va, a € X, q is dead state if O (q, a) = qand q € Q —F.
Reachability: FA M is accessible if dw, w € 2%, and (q0, w) k= * (q, €) for all q

€ Q. I * is called reachability relation. Indistinguishable states: Two states are

indistinguishable if their behaviours are indistinguishable with respect to each
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other. For example, p. q are indistinguishable if & * (p, w)=0 * (. w)=1r € Q
forall w € 2 *,

Algorithm

If X and Y are two states in a DFA, we can combine these two states into {X, Y} if

they are not distinguishable. Two states are distinguishable, if there is at least one

string S, such that one of & (X, S) and & (Y, S) is accepting and another is not

accepting. Hence, a DFA is minimal if and only if all the states are distinguishable.
Step 1: All the states Q are divided in two partitions — final states and non-final

states and are denoted by PO. All the states in a partition are Othequivalent. Take a

counter k and initialize it with O.
Step 2: Increment k by 1. For each partition in Pk, divide the states in Pk into two

partitions if they are k-distinguishable. Two states within this partition X and Y are
k-distinguishable if there is an input S such that 8(X, S)and 8(Y. S)are (k-1)-
distinguishable.

Step 3: If Pk # Pk-1, repeat Step 2, otherwise go to Step 4.

Step 4: Combine kth equivalent sets and make them the new states of the reduced
DFA.
Example 3.3:

q 8(q,0) S(q,1)
a b c
b a d
¢ ¢ f
d e f
e e f
i t f

Let us consider the following DFA —
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Figure 3.8: State Diagram

Let us apply above algorithm to the above DFA —
& PO = {(C,d,e), (_aab!f)}
e Pl = {(c,d,e), (asb)s(f)}

* P2 = {(c.d.e), (a,b).(F)}
Hence, P1 = P2.
There are three states i the reduced DFA. The reduced DFA is as follows —

The State table of DFA is as follows —

Q 8(q,0) 6(q,1)

(a,b) (a,b) (c.d.e)
(c,d,e) (c,d,e) ()
() (D (H

Its graphical representation would be as follows —

0,1

Figure 3.9: State Diagram
Example 3.4

Let us try to minimize the number of states of the followi ng DFA.
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Sb Q ; ;

3 5

Figure 3.10
Initially = {{3}.§{1,2,4,5,6}}.
By applying new partitiontothis , new={{3},{1,4,5},{2,61} }is
obtained.
Applying new- partitiontothis, new=4{{3},4{1,4}.{5}.32}.{6} }1s
obtained.
Applying new -partition again, new=4{ {1} ,{2},4{3},4{4}.4{5}.46}}
is obtained.

Thus the number of states of the given DFA is already minimum and it can not be
reduced any further.

3.5 Non-deterministic Finite Automaton

In NDFA, for a particular input symbol, the machine can move to any combination
of the states in the machine. In other words, the exact state to which the machine
moves cannot be determuned. Hence, it 1s called Non-deterministic Automaton. As
it has finite number of states, the machine i1s called Non-deterministic Finite

Machine or Non-deterministic Finite Automaton.

Formal Definition of an NDFA

An NDFA can be represented by a 5-tuple (Q, Z, 3, q0, F) where—
. Q) is a finite set of states.

. z is a finite set of symbols called the alphabets.
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® O is the transition function where O: Q x {Z U £} — 2Q (Here the power
set of Q (2Q) has been taken because in case of NDFA, from a state,
transition can occur to any combination of Q states)

® q0 is the initial state from where any input is processed (q0 € Q).

® F is a set of final state/states of Q (F € Q).

® Graphical Representation of an NDFA — (same as DFA)

® An NDFA 1s represented by digraphs called state diagram.

® The vertices represent the states.

® The arcs labeled with an input alphabet show the transitions.

° The 1nitial state 1s denoted by an empty single incoming arc.

® The final state is indicated by double circles.

Example 3.5:

Let a non-deterministic finite automaton be —

Q={a,b,c}
2 =1{0,1}
q0 = {a}
F={c}
The transition function O as shown below —
Present State | Next State for Input 0 | Next State for Input 1
a a,b b
b c : B
¢ b, ¢ C

Its graphical representation would be as follows —
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Figure 3.11

3.6 DFA vs. NDFA

The following table lists the differences between DFA and NDFA.

DFA

The transition from a state is to a single
particular next state for each input
symbol. Hence it is

called deterministic.

Empty string transitions are not seen in
DFA.

Backtracking is allowed in DFA

Requires more space.

A string is accepted by a DFA, if it

transits to a final state.

74

NDFA

The transition from a state can be to
multiple next states for each input
symbol. Hence it is called non-

deterministic.

NDFA permits empty string

transitions.

In NDFA, backtracking is not always

poszible.

Requires less space.

A string 15 accepted by a NDFA, if at
least one of all possible transitions ends

in a final state.



3.7 Self Learning Questions

Q.1  Which of the following statements is correct?
a) A={Ifanbn |n=0,1, 2,3 ..} is regular language
b) Set B of all strings of equal number of a's and b's denies a regular

language

c) L (A* B*)n B gives the set A
d) None of these

Q.2  Pumping lemma is generally used for proving that
a) given grammar is regular
b) given grammar is not regular
c) whether two given regular expressions are equivalent or not
d) None of these

Q.3  Let L be a language recognizable by a finite automaton. The language
REVERSE (L) = {w such that w is the reverse of v where vE L } is a
a) regular language
b) context-free language
c) context-sensitive language
d) recursively enumerable language

Q.4  The logic of pumping lemma is a good example of
a) pigeon-hole principle
b) divide-and-conquer technique
c) recursion
d) iteration

3.8 Summary
L. A robot with a limited number of states is known as a Finite Automaton

(FA) or Finite State Machine (FSM).
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States: - At any instant of time the automaton can be in one of the states ql,

g2.....qn. The next state of an automaton at any instant of time 18

determined by the present state and the present input.

Definition of a finite automaton Basic model of finite automata consists of:

(1) An input tape divided into cells, each cell can hold a symbol

(ii) A read head which can read one symbol at a time from a finite
alphabet

(iii) A finite control which works within a finite sct of states.

If the finite automaton M is in state r and reads the symbol a, then it

switches from state r to state O(r, a).

Non-deterministic Finite Automaton in NDFA, for a particular input
symbol, the machine can move to any combination of the states in the
machine.

The transition from a state can be to multiple next states for each input

symbol.

O is the transition function where O: Q x {2 U € } —2Q (Here the power
set of Q (2Q) has been taken because in case of NDFA, from a state,
transition can occur to any combination of QQ states) g0 is the initial state
from where any input is processed (q0 € Q).

3.9 Glossary

Automata: - An automaton (Automata in plural) is an abstract self-propelled

computing device which follows a predetermined sequence of operations

automatically.

A model of a computational system, consisting of a set of states, a set of possible i

nputs, and a rule to map eachstate to another state, or to itself, for any of the possib

le mputs. The computational core of a Turing machine is afinite state machine. Als

o called finite state automaton.

Kleene Star
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» Cefimtion — The Klespe star, Z* 15 8 unary operator ot a set of syrobolsor
smuogs, Z,that gives the 1o fimte sst ofall posable smogs ofall posable
lengths over ¥ including A

Determipistic finite state machioe

b This kind allows ooly ope possible transition for any allowed 1oput. Thisis
hke the " staterventin that 1 x = true then doThi s elsedoThat 15 oot
possible. The computer mug perform oree of the twoophoas.

Noo-deterministic finite state machioe

» Jiven sore gate, an 1oput can lead 1o more thas one di fiérent state.

3.10 Answers to Sell-Learning Exercise

Q.1 (g
Qz (@
Q3 (g
Q4 (g

3.11 Exercdse

3.1 Let M be the following DF A.

i == —_— =
..__a-'- -'lll : |_\_\__3|-\- . '_-.:;_ e — .';::'--I. !
i * & -Li.' 3 1 ls l"""'-".-:'.'::'l
AR S
bt —— ] s B e P
i Y
i -
R""'-. -
- -
- b -

i) Wite down four strings accepted by M and the sequence of Coofi guranons
that shows this

1)  ‘Wrte down four strnio gs not accepted by M

2.2 Consructa DF A which accepts the following language:



L= {wlw & 2 * /\ w contains the substring 0101} That is,w =x 0101 y
for two arbitrary strings x and y
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UNIT 4

Properties of Finite Automata

Structure of the Unit

4.0  Objective

4.1  Introduction

4.2  Non Determinism

4.3 Formal Definition of Non Determinism Finite Automata

4.4  Equivalence of NFAS and DFAS

4.5  Melay and Moore Machine

4.6  Summary

4.7  Glossary

4.8  Exercise

4.0 Objective

® Determine the detailed action of given automata on given inputs (e.g.,
determine whether a given DFA accepts a given string).

® Devise simple automata to satisfy given properties (¢.g., devise a pushdown
automaton to recognize a given language).

L Perform tasks analogous to the above for grammars and other linguistic
formalisms (e.g., devising a formal grammar for a language described in
English).

® Use standard algorithms to transform automata and languages in various
ways (e.g., mapping).

® Demonstrate understanding of the above by drawing suitable diagram.
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4.1 Introduction

Finite automata are good models for computers with an extremely limited amount
of memory. What can a computer do with such a small memory? Many useful
things! In fact, we interact with such computers all the time, as they lie at the heart

of various electromechanical devices.

The controller for an automatic door 1s one example of such a device. Often found
at supermarket entrances and exits, automatic doors swing open when sensing that
a person is approaching. An automatic door has a pad in front to detect the
presence of a person about to walk through the doorway. Another pad is located to
the rear of the doorway so that the controller can hold the door open long enough
for the person to pass all the way through and also so that the door does not strike
someone standing behind it as it opens. This configuration is shown in the

following figure.

Rear

Front pad pad

door
Figure 4.1

Top view o
f an automatic door

The controller is m either of two states: "OPEN" or "CLOSED," representing the
corresponding condition of the door. As shown in the following figures, there are
four possible input conditions: "FRONT" (meaning that a person is standing on the
pad in front of the doorway), "REAR" (meaning that a person is standing on the
pad to the rear of the door way), "BOTH" (meaning that people are standing on
both pads), and "NEITHER" (meaning that no one is standing on either pad).
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REAR FRONT

BOTI REAR
/ “\\ BOTH

NEITHER
OPEN

FRONT

CLOSED

—

NEITHER

Figure 4.2
State diagram for automatic door controller
Input Signal
State Neither Front Rear Both
Closed Closed Open Closed Closed
Open Closed Open Open Open

The controller moves from state to state, depending on the input it receives. When
in the CLOSED state and receiving input NEITHER or REAR, it remains in the
CLOSED state. In addition, if the nput BOTH is received, it stays CLOSED
because opening the door risks knocking someone over on the rear pad. But if the
input FRONT arrives, it moves to the OPEN state. In the OPEN state, if input
FRONT, REAR, or BOTH is received, it remains in OPEN. If input NEITHER
arrives, it returns to CLOSED. For example, a controller might start in state
CLOSED and receive the series of input signals FRONT, REAR, NEITHER,
FRONT, BOTH, NEITHER, REAR, and NEITHER. It then would go through the
series of states CLOSED (starting), OPEN, OPEN, CLOSED, OPEN, OPEN,
CLOSED, CLOSED, and CLOSED. Thinking of an automatic door controller as a
finite automaton iz useful because that suggests standard ways of representation as
in Figures 1.2 and 1.3. This controller iz a computer that has just a single bit of
memory, capable of recording which of the two states the controller is in. Other
common devices have controllers with somewhat larger memories. In an elevator
controller a state may reprezent the floor the elevator iz on and the inputs might be
the signals received from the buttons. This computer might need several bits to
keep track of this information. Controllers for various household appliances such
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as dishwashers and electronic thermostats, as well as parts of digital watches and
calculators are additional examples of computers with limited memories. The
design of such devices requires keeping the methodology and terminology of finite
automata in mind. Finite automata and their probabilistic counterpart Markov
chains are useful tools when we are attempting to recognize patterns in data. These
devices are used in speech processing and in optical character recognition. Markov
chains have even been used to model and predict price changes in financial
markets. We will now take a closer look at finite automata from a mathematical
perspective. We will develop a precise defimition of a finife automaton,
terminology for describing and manipulating finite automata, and theoretical
results that describe their power and limitations. Besides giving vou a clearer
understanding of what finite automata are and what they can and cannot do, this
theoretical development will allow you to practice and become more comfortable

with mathematical definitions, theorems, and proofs in a relatively simple setting.

4.2 Non Determinism

Non-determinism 1s a useful concept that has had great impact on the theory of
computation. So far in our discussion, every step of a computation follows in a
unique way from the preceding step. When the machine i1s in a given state and
reads the next input symbol, we know what the next state will be-it is determined.
We call this deterministic computation. In a nondeterministic machine, several
choices may exist for the next state at any point. Nondeterminism is a
generalization of deferminism, so every deterministic finite automaton is
automatically a nondeterminmistic fimte automaton. As Figure 3 shows,
nondeterministic finite automata may have additional features.

ds

Y
l_i

Figure 4.3
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA, and a
nondeterministic finite automaton, abbreviated NFA, is immediately apparent.
First, every state of a DFA always has exactly one exiting transition arrow for each
symbol in the alphabet. The nondeterministic automaton shown in Figure violates
that rule. State qi has one exiting arrow for 0, but it has two for 1; g2 has on¢ arrow
for 0, but 1t has none for 1. In an NFA a state may have zero, one, or many exiting
arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alphabet.
This NFA has an arrow with the label e. In general, an NFA may have arrows
labeled with members of the alphabet or E. Zero, one, or many arrows may exit
from each state with the label E.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that we
are in state qi in NFA N1 and that the next input symbol is a 1. After reading that
symbol, the machine splits info multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways to
proceed and continues as before. If there are subsequent choices, the machine splits
again. If the next input symbol doesn't appear on any of the arrows exiting the state
occupied by a copy of the machine, that copy of the machine dies, along with the
branch of the computation associated with it. Finally, if any one of these copies of
the machine is in an accept state at the end of the input, the NFA accepts the input
string.

If a state with an E symbol on an exiting arrow is encountered, something similar
happens. Without reading any input, the machine splits into multiple copies, one
following each of the exiting E-labeled arrows and one staying at the current state.
Then the machine proceeds non-deterministically as before.

Non determinism may be viewed as a kind of parallel computation wherein
multiple independent "processes” or "threads" can be running concurrently. When

the NFA splits to follow several choices, that corresponds to a process "forking"
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into several children, each proceeding separately. 1 at least one of these processes
accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possibilities.
The root of the tree corresponds to the start of the computation. Every branching
point in the tree corresponds to a point in the computation at which the machine
has multiple choices. The machine accepts if at least one of the computation

branches ends in an accept state, as shown in Figure

Deterministic Nondeterministc
computation computation

- “3
RN

: .
: e
£: reject ( }'

= accepr or reject * accept

Figure 4.4
Deterministic and nondeterministic computations with an accepting branch
Let's consider some sample runs of the NFA NI shown in Figure 1.27. The
computation of N1 on input 010110 1is depicted in the following figure.
Symbol read




The computation of N1 on input 010110

On input 010110 start in the start state qi and read the first symbol 0. From qi there
is only one place to go on a 0-namely, back to i, so remain there. Next read the
second symbol 1. In g, on a 1 there are two choices: either stay in g, or move to g2.
Non-deterministically, the machine splits in two to follow each choice. Keep track
of the possibilities by placing a finger on ¢ach state where a machine could be. So
you now have fingers on states qi and g2. An C arrow exits state q2 so the machine
splits again; keep one finger on g2, and move the other to gq3. You now have
fingers on qi, g2, and g3.

When the third symbol 0 is read, take each finger in turn. Keep the finger on qi in
place, move the finger on g2 to q3, and remove the finger that has been on g3. That
last finger had no O arrow to follow and corresponds to a process that simply

"dies." At this point you have fingers on states gi and g3.

When the fourth symbol 1 is read, split the finger on qi into fingers on states qi and
q2, then further split the finger on g2 to follow the E arrow to g3, and move the

finger that was on g3 to @ You now have a finger on each of the four states.

When the fifth symbol 1 is read, the fingers on qi and g3 result in fingers on states
ql, g2, g3, and g4, as you saw with the fourth symbol. The finger on state g2 is
removed. The finger that was on g4 stays on ¢ Now you have two fingers on g4,
so remove one, because you only need to remember that g4 1s a possible state at

this point, not that it is possible for multiple reasons.

When the sixth and final symbol O is read, keep the finger on gi in place, move the
one on q2 to g3, remove the one that was on g3, and leave the one on g4 in place.
You are now at the end of the string, and you accept if some finger is on an accept
state. You have fingers on states qi, g3, and g4, and as g4 is an accept state, N1
accepts this string.

What does N1 do on input 01 o? Start with a finger on gl. After reading the 0 you
still have a finger only on ql, but after the 1 there are fingers on ql, q2, and 3
(don't forget the E arrow). After the third symbol 0, remove the finger on g3, move

85



the finger on g2 to q3, and leave the finger on qi where it is. At this point you are
at the end of the input, and as no finger 1S on an accept state, N, rejects this input.

By continning to experiment in this way, you will see that N1 accepts all strings

that contain either 101 or 11 as a substring.

Nondeterministic finite automata are nseful in several respects. As we will show,
every NFA can be converted into an equivalent DFA, and constructing NFAs is
sometimes easier than directly constructing DFAs. An NFA may be much smaller
than its deterministic counterpart, or its functioning may be easier to nnderstand.
Nondeterminism in finite antomata is also a good introduction to nondeterminism
in more powerful computational models because finite antomata are especially

easy to understand. Now we turn to several examples of NFAs.
Example
Let A be the language consisting of all strings over {0, 1} containing a 1 in the

third position from the end (e.g., 000100 is in A but 0011 is not). The following
Tour-state NFA N2 recognizes A.

o,1

Figure 4.6
The NFA N2 recognizing A
One good way to view the computation of this NFA is to say that it stays in the
start state ¢, until it "guesses” that it is three places from the end. At that point, if
the input symbol is a 1, it branches to state 2 and nses g3 and g4 to "check” on
whether its guess was correct.
As mentioned, every NFA can be converted into an equivalent DFA, bul
sometimes that DFA may have many more states. The smallest DFA for A
contains eight states. Further more, understanding the functioning of the NFA is

much easier, as you may see by examining the following figure for the DFA.
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Figure 4.7
Example
Consider the following NFA N3 that has an input alphabet {0} consisting of a
single symbol. An alphabet containing only one symbol is called a unary alphabet.

Figure 4.8

4.3 Formal Definition of Non-Deterministic Finite Automata

The formal definition of a nondeterministic finite automaton is similar to that of a
deterministic finite automaton. Both have states, an input alphabet, a transition
function, a start state, and a collection of accept states. However, they differ in one
essential way: in the type of transition function. In a DFA the transition function
takes a state and an input symbol and produces the next state. In an NFA the
transition function takes a state and an input symbol or the empty string and
produces the set of possible next states. In order to write the formal definition, we
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need to set up some additional notation. For any set Q we write P (QQ) to be the
collection of all subsets of Q. Here P (QQ) is called the power set of Q.

For any alphabet E we wnte SE to be E U {e}. Now we can write the formal
description of the type of the transition function in an NFA as O: Q x 2>, P(Q).

A nondeterministic finite automaton is a 5-tuple (Q, Z, 6, Qo> F),

Where
1. Q is a finite set of states,

2. 2_is a finite alphabet,

B 0:Qx2 > POQ)

4. q, € Q is the start state, and

5 F € Q is the set of accept states.

Example

Recall the NFA N1:
The formal description of N1 18 (Q, A, 6, qj, F), where

0,1
i

1 0,e
42

Figure 4.9

The formal description of N1 is (Q, A, 2, qj, F), where
L Q={ql, 92 g3, q4j,

% e= 1Y,
3. O is given as
0 1 £
ql {q1} {ql, 92} <
q2 {q3} o iq33
q3 o {94} 0
q4 {q4; {94 1%
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q, 1s the start state, and
4. F= {q4}.
The formal definition of computation for an NFA 1s similar to that for a DFA.Let
N=(Q, Z, 0, q0, F) be an NFA and w a string over the alphabet E. Then we say
that N accepts w if we can write w as w =YY, Y, where each y. is a member of

E, and a sequence of states r, r,, .r . , 1, exists in Q with three conditions:

i r =q0,
2. ., €0, v.,), fori=o0, ...... m-1 and
A . EP

Condition 1 says that the machine starts out in the start state. Condition 2 says that

state r+it is one of the allowable next states when N is in state 11 and reading Yi+t.

Observe that 6(ri, yit ) is the set of allowable next states and so we say that j ] is
a member of that set. Finally, condition 3 says that the machine accepts its input if

the last state is an accept state.

4.4 Equivalence of NFAS and DFAS

Deterministic and nondeterministic finite automata recognize the same class of
languages. Such equivalence is both surprising and useful. It is surprising because
NFAs appear to have more power than DFAs, so we might expect that NFAs
recognize more languages. It is useful because describing an NFA for a given
language sometimes is much easier than describing a DFA for that language. Say

that two machines are equivalent if they recognize the same language.

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite
automaton.

Proof Idea

[f a language is recognized by an NFA, then we must show the existence of a DFA

that also recognizes it. The idea is to convert the NFA into an equivalent DFA that
simulates the NFA.
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Recall the "reader as automaton™ strategy for designing fimite automata. How
would you simulate the NFA if you were pretending to be a DFA? What do you
need to keep track of as the input string is processed? In the examples of NFAs you
kept track of the various branches of the computation by placing a finger on each
state that could be active at given pomts in the mput. You updated the simulation
by moving, adding, and removing fingers according to the way the NFA operates.
All you needed to keep track of was the set of states having fingers on them.

If k 15 the number of states of the NFA, it has 2k subsets of states. Each subset
corresponds to one of the possibilities that the DFA must remember, so the DFA
simulating the NFA will have 2k states. Now we need to figure out which will be
the start state and accept states of the DFA, and what will be its transition function.

We can discuss this more easily after setting up some formal notation.

Proof: Let N = (Q, Z, O, qo, F) be the NFA recosnizing some language A. We
construct a DFA M = (Q', Z, Y', qo’, F') recognizing A. Before doing the full
construction, let's first consider the easier case wheremn N has no E arrows. Later

we take the E arrows mto account.

. Q=P(Q)
Every state of A/ 1s a set of states of N. Recall that P (Q) 1s the set of
subsets of Q.

2. ForR e Q' and aE E let O'(R, a) {q G QI q E d(r, a) for some r G R}. IfR is
a state of M, it 1s also a set of states of N. When M reads a symbol a in state
R, it shows where a takes each state in R. Because each state may gotoa
set of states, we take the union of all these sets. Another way to write this

expression is

V' (R,a) = U S(roa). t
refi
3. qo’ {qo}.
M starts in the state corresponding to the collection containing just the
start state of N.
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F'={R € Q'IR contains an accept state of N }.

The machine M accepts if one of the possible states that N could be in at

this point is an accept state.

Now we need to consider the E arrows. To do so we set up an extra bit of notation.
For any state R of M we define E(R) to be the collection of states that can be
reached from R by going only along E arrows, including the members of R

themselves. Formally,
forR & Q let.
E(R) = {qj q can be reached from R by traveling along 0 or more E arrows}.
Then we modify the transition function of M to place additional fingers on all
states that can be reached by going along E arrows after every step. Replacing 6(r,
a)by E (6(1’, a)) achieves this effect. Thus

d'(R,a) = {g€ Q|qg e E(6(r,a)) for some r € R}
Additionally we need to modify the start state of M to move the fingers initially to
all possible states that can be reached from the start state of N along the E arrows.
Changing q0' to be E ({qo}) achieves this effect. We have now completed the
construction of the DFA M that simulates the NFA N. The construction of M
obviously works correctly. At every step in the computation of M on an input, it

clearly enters a state that corresponds to the subset of states that N could be in at

that point. Thus our proof is complete.

If the construction used in the preceding proof were more complex we would need
to prove that it works as claimed. Usually such proofs proceed by induction on the
number of steps of the computation. Most of the constructions that we use in this
book are straightforward and so do not require such a correctness proof. An
example of a more complex construction that we do prove correct appears in the

proot of Theorem

Theorem states that every NFA can be converted into an equivalent DFA. Thus
nondeterministic finite automata give an alternative way of characterizing the
regular languages. We state this fact as a corollary of Theorem.
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Corollary: A language is regular if and only if some nondeterministic finite
automaton recognizes it. One direction of the "if and only if” condition states that a
language i1s regular if some NFA recognizes it. Theorem shows that any NFA can
be converted into an equivalent DFA. Consequently, if an NFA recognizes some
language, so does some DFA, and hence the language is regular. The other
direction of the "if and only if’* condition states that a language is regular only if
some NFA recognizes it. That is, if a language is regular, some NFA must be
recognizing it. Obviously, this condition is true because a regular language has a

DFA recognizing it and any DFA 15 also an NFA.

Example: Lef's illustrate the procedure we gave in the proof of Theorem for
converting an NFA to a DFA by using the machine N4 that appears in Figure 4. 10.
For clarity, we have relabeled the states of N4 to be {1, 2, 3}. Thus in the formal
description of N4 = (Q, {a, b}, 6, 1, {1}), the set of states Q is {1, 2, 3} as shown
in the following figure.

To construct a DFA D that is equivalent to N4, we first determine D's states. N4
has three states, {1, 2, 3}, so we construct D with eight states, one for each subset
of N4's states. We label each of D’s states with the corresponding subset.

Thus D's state set is

{0, {17, 42}, (35, {12}, {13}, {2,3}, {1,2,3}}.

Figure 4.10
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The NFA N4

Next, we determine the start and accept states of D. The start state 1s E ({1}), the
set of states that are reachable from | by traveling along E arrows, plus | 1itself. An
E arrow goes from 1 to 3, so E ({1}) = {1, 3}. The new accept states are those
containing N4's accept state; thus {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.

Finally, we determine D's transition function. Each of D's states goes to one place
on mput a and one place on input b. We illustrate the process of determining the
placement of D's transition arrows with a few examples.

In D, state {2} goes to {2, 3} on input a, because in N4, state 2 goes to both 2 and
3 on mnput a and we can't go farther from 2 or 3 along E arrows. State {2} goes to
state {3} on mput b, because in N4, state 2 goes only to state 3 on mput b and we

can't go farther from 3 along r arrows.

State {1} goes to 0 on a, because no arrows exit it. It goes to {2} on b. Note that
the procedure in Theorem specifies that we follow the e arrows after each mnput
symbol 1s read. An alternative procedure based on following the E arrows before
reading each mput symbol works equally well, but that method 1s not illustrated n

this example.

State {3} goesto {1,3} on a, because in N4, state 3 goes State {1,2} on a goes to
12,3} because | points at no states with a arrows and 2 points at both 2 and 3 with
a arrows and neither points anywhere with E arrows. State {1, 2} on b goes to
$2,3}. Continuing m this way we obtain the following diagram for D.

Figure 4.11
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A DFA D that is equivalent to the NFA N4

We may simplify this machine by observing that no arrows point at states {1} and
11, 21, so they may be removed without affecting the performance of the machine.
Doing so vields the following fisure.

Figure 4.12

DFA D after removing unnecessary states

4.5 Melay and Moore Machine

Finite automata may have outputs corresponding to each transition. There are two
types of finite state machines that generate output —

1 Mealy Machine
o Moore Machine
1. Mealy Machine

A Mealy Machine is an FSM whose output depends on the present state as
well as the present mput.

It can be described by a o) tuple (Q, Z, 0,0, X, q0) where —

8 Q) 1s a finite set of states.

® Z is a finite set of symbols called the mput alphabet.

® 1s a finite set of symbols called the output alphabet.

® O is the mput transition fimction where D Q x Z —{]
® X 1s the output transition function where X: Q — O

® q0 1s the mitial state from where any mput is processed (q0 € Q).
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The state diagram of a Mealy Machine is shown below —

[\

0/x3, 1

Figure 4.13

Moore Machine

Moore machine is an FSM whose outputs depend on only the present state.

A Moore machine can be described by a 6 tuple {(Q, Z, 0, 0, X, q0) where
Q 15 a finite set of states.

Z 15 a finite set of symbols called the input alphabet.

is a finite set of symbols called the output alphabet.

O is the input transition function where O: 9 x 2 — Q

X is the output transition function where X: Q x 2 — O

q0 15 the initial state from where any input is processed (q0 € Q).

The state diagram of a Moore Machine is shown below —
%
il 01
h/x]-\ 1 &\
0

—{;}; \xif/ \\gd / ua)

e Gt e
1 ‘/’;;2\\}-—//6

N /

INE

Figure 4.14
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Mealy Machine vs. Moore Machine

The following table highlights the points that differentiate a Mealy Machine from a

Moore Machine.

Mealy Machine

Output depends both upon

present state and present input.

Generally, it has fewer states

than Moore Machine.

Output changes at the clock
edges.

Mealy machines react faster to

inputs.

Moore Machine

Qutput depends only upon the present state.

Generally, it has more states than Mealy

Machine.

Input change can cause change in output change

as soon as logic is done.

In Moore machines, more logic is needed to
decode the outputs since it has more circuit

delays.

Moore Machine to Mealy Machine

Algorithm 4

Input: Moore Machine

Output: Mealy Machine

Step 1  Take a blank Mealy Machine transition table format.

Step2  Copy all the Moore Machine transition states into this table format..

Step3  Check the present states and their corresponding outputs in the Moore

Machine state table; if for a state Qi output is m, copy it into the output

columns of the Mealy Machine state table wherever Q1 appears in the

next state..

Example

Let us consider the following Moore machine —
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Present State

C

D

Next State

a0

L]

a1

Now we apply Algorithm 4 to convert it to Mealy Machine.

Step1 & 2

Present State

&

D

Step 3

Present State

Next State

a=0
State Output

d

Next State

=0
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State

Output
1
0
0
1
QOutput



State Output
=a d 1
B a 1
% c 0
D b 0

Mealy Machine to Moore Machine

Algorithm 5
Input: Mealy Machine
Output:  Moore Machine

State Output

b 0
d 1
B 0
a 1

Step 1 Calculate the number of different outputs for each state (Q1) that are

available in the state table of the Mealy machine.

Step2  If all the outputs of Qiare same, copy state Qi. If it has n distinct

outputs, break Q1 into n states as Qin where n=0, 1, 2.......

Step3  If the output of the initial state is 1, insert a new initial state at the

beginning which gives 0 output.
Example

Let us consider the following Mealy Machine —

Next State
Present State a=0

Next State Output
—a d 0
B a 1
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C C 1 c 0

D b 0 a i

Here, states ‘a’ and ‘d’ give only 1 and 0 outputs respectively, so we retain states
‘a’ and ‘d’. But states ‘b’ and ‘¢’ produce different outputs (1 and 0). So, we
divide b into b0, bl and ¢ into ¢0, cl.

Next State

Present State Output
a=0 =1

—a d bl 1

b0 a d 0

bl a d 1

c0 cl Co 0

cl cl Co 1

D b0 a 0

4.6 Summary

In an NFA the transition function takes a state and an input symbol or the empty
string and produces the set of possible next states.The nondeterministic finite
automaton N1 The difference between a deterministic finite automaton,
abbreviated DFA and a nondeterministic finite automaton, abbreviated NFA, is
immediately apparent. First, every state of a DFA always has exactly one exiting

transition arrow for each symbol in the alphabet.
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There are two types of finite state machines that generate output — « Mealy
Machine « Moore Machine Mealy Machine A Mealy Machine 1s an FSM whose
output depends on the present state as well as the present input.

Mealy Machine Moore Machine Qutput depends both upon present state and

present input
Copy all the Moore Machine transition states into this table format.

Check the present states and their corresponding outputs in the Moore Machine
state table; if for a state Q1 output i1s m, copy it into the output columns of the

Mealy Machine state table wherever Q1 appears in the next state.

4.7 Glossary

Deterministic Finite Automaton (DFA):-

In DFA, for each input symbol, one can determine the state to which the machine
will move. Hence, it 1s called Deterministic Automaton. As it has a finite number
of states, the machine is called Deterministic Finite Machine or Deterministic
Finite Automaton.

Non-Deterministic Finite Automaton (NDFA):-

An NFA, similar to a DFA, consumes a string of input symbols. For each input
symbol, it transitions to a new state until all input symbols have been consumed.
Unlike a DFA, it is non-deterministic, i.e., for some state and input symbol, the
next state may be nothing or one or two or more possible states.

Melay Machine:-

A Mealy Machine is an FSM whose output depends on the present state as well as
the present input.

Moore Machine:-

Moore machine 1s an FSM whose outputs depend on only the present state.
Regular Expression:-

A sequence of symbols and characters expressing a string or pattern to be searched

for within a longer piece of text.
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4.8

Exercise

Q.1

Q.2

Q.3

Define NFA with €-transition. Prove that if L is accepted by an NFA with
€-transition then L is also accepted by a NFA without E-transition.

Let L bea set accepted by a NFA then show that there exists aDFA
that accepts L

Consider the below sample transition table of the mealy machine. Convert it

into corresponding Moore machine.

Sample Transition table:

Next State
Present a=0 a=1
Balc State Output State Output
>q0 q3 0 ql 1
ql q0 1 q3 0
q2 q2 1 q2 0
q3 ql 0 q0 1
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UNIT-5

Formal Languages

Structure of the Unit

5.0
5.1
52
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11

Objective

Introduction

Basic Definition

Chomsky Classification of Language
Languages and Their Relations
Operations on Languages
Languages and Automata

Self Learning Exercise

Summary

Glossary

Answers to Self Learning Exercise

Exercise

5.0 Objective

After reading this chapter you will be able to understand the following:

Basic Definition of Grammar

Significance of Grammar and Languages in Theory of Computation.
Chomsky Classification of Languages.

Types of Grammar and Languages

Relation between Grammars and Languages.
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5.1 Introduction

The theory of formal language is an area with a number of application in computer
science like linguistics. The notion of the formal language comes from describing
English to the computer translation. Firstly, Noam Chomsky gave a mathematical
model of grammar in 1956. Later Backus —Naur form used to describe ALGOL
followed the definition of grammar (a context free grammar) given by chomskey.
The concept of grammar is very important to understand the theory of
computation.

5.2 Basic Definition

Definition: A grammar is characterized by four-tuples (V,, 2, P, S) where,

® V,, 1s finite non empty set of elements called variables.

® 2 is finite non empty set of elements called terminals.

o S is a element of V is a special variable called start symbol.

® P is a finite set whose elements are @ — [, where O and B are string on

V. U 2. & has at least one symbol from V. The elements of P are called

production rules.

Example 5.1: Suppose our vocabulary only contains ‘Ram’ ‘Sam’ ‘Gita’ ‘ate’

‘walked’ ‘quickly’ and slowly and our statements are of the form

<noun><verb><adverb>

<noun> <verb>

We can define the grammar by a 4 tuple (V, 2, P, S) where

Ve = {<noun >, <verb>, <adverb>}

2={‘Ram’, ‘Sam’, ‘Gita’, ‘ate’, 'ran’ ‘walked’, ‘quickly’, slowly}
S = starting symbol

P = is the collection of production rules defined as
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S — <noun > <verb> <adverb>
S — <noun> <verb>

<noun > —* Ram | Sam | Gita
<verb>— ate | ran | walked
<adverb> —> slowly | quickly

Here, each arrow (—) represents a rule meaning that the word on the right hand

side of the arrow can replace the word on the left hand side of the arrow.
Separator ( | ) 1s used for choosing either of the two or more production.

From the above grammar we can generate grammatically correct sentences like

Sam ran, Gita walked, Ram ran slowly etc.

Derivation of Grammar

The productions are used to derive one string from over V, U 2 from another

string
Suppose,
G= ({8}, {0, 1.}, {S—0S1; S—01},S)
The above grammar has production rule S—081. So in 0°S1* can be replaced by
0S1. The resulting string is 0'0S11" can be denoted as
0's1*=>0's11*
The above process is known as One-Step Derivation.

Languages generated by Grammar

Definition: The language generated by a grammar G, L (G) is defined as L (G) =

{w € 2* | § =>* w}.The elements of L (G) are called as sentences. In other word,

L. (G) 1s the set of all terminals strings derived from the start symbol S.

Example 5.2: If G= ({s}, {0, 1}, P, S), where P is S—0S1, S—0lthen find the

language corresponding to grammar,

Solution: As S—01 is a production therefore for $=>01, 01 is in L (G).Also n=1.
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Sodligl el = s FS1" == '8

Or 0"1" € L(G) for n>0

So,L (G) & {0"1" [ n>0}

Example 5.3: If G= ({S}, {a}, S—88S, S}) find language corresponding to

grammar G.

Solution: Since, the only production in G is S—SS and in that there is no terminal.
Therefore, language generated by Gis L{(G)=9

Example 5.4: I[f G is S—aS | bS | a | b then find the language 1.{G)

Solution: We observe that L (G) contains L (G) = {a,b}* but not S—A

Thus, the production rule

L(G) < {ab}*- {A} = {ab}’

5.3 Chomsky Classification of Languages

According to Chomsky (Name of Scientist) there are four types of grammar:-

(1) Type-3 Grammar or Regular Grammar
(1)  Type-2 Grammar or Context Free Grammar
(111)  Type-1 Grammar or Context Sensitive Grammar

(iv)  Type-0 Grammar or Unrestricted Grammar

(i) Type-3 Grammar or Regular Grammar

These types of grammar follows the following rule of production:-

m—>n is a production rule for regular grammar.

Where, VN = {A, B}
2= la,b.}

And A is starting non terminal (start symbol)
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Example 5.5: Which of the following are productions of regular grammar?
Given V= {A, B}

2 ={a,b}

i) C—A (v A—DbB

(i) A—a (vij B—b

(i) A—b (vii) B —aA

(iv) A -—aA (vin) B —aB

Solution: All (i) to (viii) are regular grammar.

Remark: In regular grammar left side of production will always be only one

variable (Ex-A, B) and in right side there will be single terminal (Ex-a, b) or one

non terminal (variable) followed by terminal (E-aA, aB, bA) or A only.

Example 5.6: Which of the following are production of regular grammar
Given V= {A, B, C}

Z= {0, 1,}, A is a start symbol. Production rules are following:-

i) C—A (v) AC—0

(i) A —BC (vi) A—01

(i) A —0C

(iv) AB— 0B

Solution: (1) and (ii1) are regular grammar.

(i) A —> BC are not in RG (Regular Grammar) because right side must be one

non terminal followed by terminal like (aA, aB).

(iv)  AB — 0B are not in RG because left side must only one non terminal

(variable)

(V) AC — 0 same as (1v) not in RG
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(vi)  A—01 are not in RG (same logic as (i1))
(ii) Type -2 Grammar or Context Free Grammar
These Types of grammar follows the following rule of production:

m — n is a production rule for context free grammar (CFG), where

m€E V,andn € (V U 3)*
Example 5.7: Which of the following production are under the context free

grammar (CFG) for

Vi = {S:A,B} and ) = {0,1} :-

(a) S—0.
(b)  S— 0A.
() A—A
(d) S —0SA.

(e) S — 0AB.
(f) S —B.
Solution: Here from (a) to (f) left side of production are single variable and right

side of production are any combination of terminal and variable means (V, U 2)*
or (S, A, B,0, 1)*
Remarks: In the Example 5.7

(a) S—0.
(b) S—0A
(c) A—A

are also follow the production rules for regular grammar or Type-3 grammar. So
we can say that production rules for regular grammar is subset of production rules

for context free grammar is subset of production rules for context free grammar.
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Although it is noted that any grammar that will also context free grammar but the

converse 1s not always true 1.e. some production which follow the CFG property (A
—aBB) do not follow the regular grammar property.

Example 5.8: Which of the following production are under the context free

grammar (CFG) for
Given V= {A, B, C}
And Z = {0, 1}:- A is a start symbol
(a) A—0AB
(b) A— ABO
() A— AOC
(d) A —0CB
e A—0
(f) AB— 0C
(g BC—1A

(hy Al— 1B
Solution: From (a) to (e) are production rule for context free grammar because left
hand side are only one variable and right side have element of (VU ¥)*

(), (g)), (h) are not production rule for context free grammar because left hand side

are not only one variable or non-terminal.

(ili) Type-1 Grammar or context sensitive Grammar

These types of grammar follows the following rule of production:-

Pab>Pa

Where,
L A 1s variable (non-terminal).
e a#A
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95 (left context)and Y (right context) are string of terminals and non-

terminals

Erasing A is not permitted.

Example 5.9: Show that the following production are under the context free

grammar (CFG) for Given V, = {A, B, D} and Z = {a,b,c} where, A is a start

symbol

(a) aAbcD — abcDbeD

(h)y AB— AbBc

(c) A — abA

() ABD— AaBb

(e) ab — ba

Solution:

(a) Suppose the production is in the form of ﬁALb—}EﬁO( b , where 95 i1s ab,
\p is bed and A is replaced by beD # ~. So, the above production rule 1s
under context sensitive grammar.

(b) Suppose the production is in the form of QSAL|J9§0( W , where 95 is A,
P is » and O is bBe. So, the above production rule is under context
sensitive grammar.

(¢)  Suppose the production is in the form of SGAllJ 9950( W , where 95 is 7,
) is » and O is abA. So, the above production rule is under context
sensitive grammar.

(d)  Suppose the production is in the form of SﬁAl.IJ 9950( ) , where 95, ) are
not possible. So, the above production rule is not under context sensitive
grammar.

() Since the production rules does not contain any variable, it is not under
context sensitive grammar.

(iv) Type - 0 Grammar or Unrestricted Grammar
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A type 0 grammar 1s any phrase structure grammar without any restrictions. All the
grammar we have considered are as type 0 grammar.

So, these types of grammar follows the following rule of production:-

a-> P
Where,
a € (Vn U 3)* which contain at least one variable.
Be (VNuUY)*

Example 5.10: Show that the following production are under the unrestricted

grammar (CFG) for Given V = {A, B, D} and Z = {a,b,c} where, A is a start
symbol

(a)ab — ba

Solution:

(a) This production rule are not grammar or unrestricted grammar because left

side of the production should contains at least one non-terminal.

5.4 Languages and Their Relations

So far we studied different types of grammars i.e. regular grammar, context-free
grammar, context-sensitive grammars and unrestricted grammar. The languages

generated by these grammars are shown as the following:

Grammar Formal Language

Regular Grammar or Regular Language (L,,..,)

Type-3

Context Free Grammar or Context free Language (L)
Type-2

Context-sensitive or Context Sensitive Language( Les)
Type-1

Unrestricted Grammar or Recursively Enumerable

Type-1 Language (L)
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The relation between these languages can be described by Noam Chomsky
(Founder of formal language) called Chomsky hierarchy. According to Chomsky

hierarchy

Lops ELGE Les & Ly,

This can be nested as shown in Figure 5.1.

Figure 5.1: Relation between the Formal Languages

Other language families can be fitted in the picture like deterministic context-free
language (L) and recursive languages (L,.). The relationship among language

including these languages can be structure using the fig.
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Figure 5.2: Relation among different Languages

Recursive and Recursively Enumerable Language:-

These type of languages are associated with turning machine. These can be defined
as:-

Definition of Recursively Enumerable Language:-

A language L is said to be Recursively Enumerable if there exists a Turning
machine that accept it.

The definition of Recursively Enumerable implies that there exists a Tuning

machine M such that for every w € L, q,w --|* x,q; X, with q, is final state.
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The definition says nothing about what happens for w not in L: it may be that the

machine halts in non-final state or that it never halts and goes into an infinite loop.

Definition of Recursive Language:-

A language L on Z 18 said to be recursive if there exists a Turing Machine M that

3 +
accepts L and that halts on every w in Z _

5.5 Operations on Languages

In this section we will discuss various operations that are applied on the language

and their effect when applied to these languages. Some of the common operations

are:

(1) Concatenation Operation: Let A and B be any sets of strings, The
Concatenation of A and B is defined by

AB={uv|u € A, C € B}
Here, uv is the concatenation of the string u and v.
Example 5.11: L = {a, ab} L,= {b, ba} then L,L,={ab, baa, abb, abba}
Some properties of language w.r.t concatenation operation:-
(1) sk # L,L, in general
(i) LO=0
i) L{E€}=L{€E}L
(i)  Transpose Operation: Let A and B be any sets of strings. Then the

. T.
transpose operation A is defined as

A={u" |uEA}
(iii)  Union Operation: I[f L, & L, are the two languages then the union of L, &

L, denoted by L., U L, such that any word x € L,U L,, iff xE L1 or x €
L.2.

Example 5.12: Suppose L, = {0,11,01,011} and L,= {0, 01,011} then,
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(iv)

v)

(iv)

L,U L,={0,11,01,011,111}
Intersection Operation: If [, and L, are the two languages then the
intersection of L, and L., is denoted by L, N L, such that any word x € L. N
L. % L, and nEl,
Example 5.13: Suppose L, = {0,11,01,011} and L,= {0, 01,011} then

L,NL,={01}
Complement Operation: Usually 2 * ig referred as the universe of all the
language s over the alphabets over 2. So, complement of any language 1s
taken with respect to 2 * Thus for a language L, the complement 1s denoted
by L.

L'={xE 2*andx € L.

Example 5.14: Let L' = {x/ |x| is even} then its component
L = {x||x| is odd}
Kleene’s star operation: The kleene star operation on the language L,

denoted as L* is defined as

L¥=L0UE1U 12

Or

L* = {x | X 1s concatenation of zero or more siring}

Closure Properties of Languages: Closure property is a helping technique to

know the class of the resulting language when we do an operation on two

languages of the same class. Suppose L, and , belong to CFL and if CFL 1s closed

under operation U, then ., U L, will be a CFL. But if CFL is not closed under N, that

doesn’t mean L, N L, won’t be a CFL. For a class to be closed under an operation, it

should hold true for all languages in that class. So, if a class is not closed under an

operation, we cannot say anything about the class of the resulting language of the

operation — it may or may not belong to the class of the operand languages. In

short, closure property is applicable, only when a language is closed under an

operation.
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Closure properties of different languages can be summarized:

Table 5.1
Type Union Concatenation Transpose Intersection Complement
Recursive Language YES @ YES YES YES YES
Recursively YES | YES YES YES NO
Enumerable
Language
Context Sensitive ¥ES | YES YES YES YES
Language
Context-Free YES | YES YES NO NO
Language
Deterministic NO NO NO NO YES
Context-Free
Language
Regular Language YES | YES YES ¥ES YES

5.6 Languages and Automata

Previously, we discussed about the relationship between the language and
grammar. In this section we will discuss about the relationship between language
and automata. The relationship between the same is described in the following
table:
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Table 5.2

Langunage Automata

Unrestricted or Type-0 Turning Machine
Context-sensitive Language or Type-1 Linear Bond Automata
Context-Free Language or Type-2 Push down Automata
Regular Language orType-3 Finite Automata

The above table suggest that the unrestricted language, context sensitive language,
context free language and regular languages are accepted by Turning Machine,
Linear Bound Automata, and Push down Automata and Finite Automata

respectively.

5.7 Self Learning Exercise

Q.1  Which of the following language is recognized by TM?
a) Regular Language
b) Context Free Language
c) Context-sensitive Language
d) All of the Above
Q.2  Context-Free Language is NOT closed under:

a) Union operation.
b) Concatenation operation
c) Intersection operation.

d) None of the above.
Q3 {abe¢" |nm>=1}is

a) regular.
b) context-free but not regular.
c) context-sensitive but not context-free.
d) none of these.
Q.4  Ifa grammar G has three productions S -> aSa | bSb | ¢, then
a) abcba and bacab € L(G)
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b) abcba and abcab € L(G)
¢) accca and beeeb € L(G)
d) acceb and beeca € L(G)

5.8 Summary

In this chapter you learned about various languages and its corresponding

automata. This can be summarized as:-

A grammar is characterized by four-tuples (V,, 2, P, S) where,

V,, 1s finite non empty set of elements called variables.
2 is finite non empty set of elements called terminals.
S is a element of V, is a special variable called start symbol.

P is a finite set whose elements are 00 — [3, where o and B are string on

V., U 2. a has at least one symbol from V. The elements of P are called

production rules.

According to Chomsky (Name of Scientist) there are four types of grammar:-

Type-3 Grammar or Regular Grammar
Type-2 Grammar or Context Free Grammar
Type-1 Grammar or Context Sensitive Grammar

Type-0 Grammar or Unrestricted Grammar

The languages generated by these grammars are shown as the following:

Grammar Formal Language

Regular Grammar or Regular Language (L,..)

Type-3

Context Free Grammar or Context free Language (L ;)
Type-2

Context-sensitive or Context Sensitive Language( Lcs)
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Type-1

Unrestricted Grammar or

Type-1

Recursively Enumerable

Language (Lyz)

Closure properties of different languages can be summarized:

Type

Recursive LLanguage

Recursively
Enumerable

Language

Context Sensitive

Language

Context-F'ree
Language

Deterministic
Context-Free

Language

Regular Language

The relationship between the same is described in the following table:

Language Automata

Union Concatenation Transpose Intersection

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

YES

Unrestricted or Type-0

YES

YES

YES

YES

NO

YES

Context-sensitive Language or Type-1

Context-Free Language or Type-2

118

YES

NO

NO

YES

Turning Machine

Complement

YES

NO

NO

YES

Linear Bond Automata

Push down Automata



Regular Language orType-3 Finite Automata

5.9 Answers to Self-Learning Exercise

Q.1
Q.2
Q.3

(d)

(c)
(a)

5.10 Exercise

Q.1
Q.2
Q.3
Q.4

Show that the family of context sensitive language in closed under union.
Explain the Chomsky Classification of Language in detail.

Define Grammar. Also explain types of Grammar and Languages in TOC.
Construct a context-free grammar generating

(a) L= {a"b™" | n>=1}

(b) L, = {a"b" | m>n, n>=1 }

(c)L,={a"b" | m<n, n>=1}

(d)L,. = {a™" | m, n>=0, m#n }
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UNIT 6

Finite Automata and Regular Expressions

Structure of the Unit

6.0  Objective
6.1 Introduction

6.2  Regular Expressions

6.3  Finite Automata and Regular Expressions

6.4  NDA with Null moves and Regular Expressions
6.5  Algebraic method using Arden’s Theorem

6.6  Self Learning Exercise

6.7  Summary

6.8  Answers to Self-Learning Exercise

6.9 Exercise

6.0 Objective

After reading this chapter you will be able to understand the following:

L Basic Meaning of Regular Expressions

® Significance of Finite Automata and its regular expressions.

® Non-deterministic Finite Automata and its regular expressions.
® Arden’s theorem

6.1 Introduction

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata),
finite automaton, or simply a state machine, is a mathematical model of

computation. It is an abstract machine that can be in exactly one of a finite number
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of states at any given time. The FSM can change from one state to another in
response to some external inputs; the change from one state to another is called a
transition. An FSM 1s defined by a list of its states, its initial state, and the
conditions for each transition.The concept of grammar is very important to

understand the theory of computation.

A regular expression is, in theoretical computer science and formal language
theory, a sequence of characters that define a search pattern. Usually this pattern is
then used by string searching algorithms for "find" or "find and replace” operations
on string. Regular expressions are used in search engines, search and replace
dialogs of word processors and text editors, in text processing utilities such as sed

and AWK and in lexical analysis.

6.2 Regular Expressions

The regular expressions are useful for representing certain sets of strings in an
algebraic fashion. Actually these describe the languages accepted by finite state

automata.

A formal recursive definition of regular expressions over Z as follows:

1. Any terminal symbol (i.e. an element of Z), A and © are regular
expressions.
When we view g in z as a regular expression, we denote it by a.

2. The union of two regular expressions R, and R, written as R,+R,, is also a
regular expression.
i The concatenation of two regular expressions R, and R,, written as R, R, is

also a regular expression.

4. The iteration (or closure) of a regular expression R written as R*, is also a
regular expression.

5. If R is a regular expression, then (R) 1s also a regular expression.

6. The regular expressions Z over are precisely those obtained recursively by

the application of the rules 1-5 once or several times.
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Definition 5.1 Any set represented by a regular expression is called a regular set.
If for example, a, b € L. then (1) a denotes the set {a}, (i1) a + b denotes {a, b}, (111)
ab denotes {ab}, (iv) a* denotes the set {A. 4, aa. aaa, ...} and (v) (a + b)* denotes
{a, b}*.

The set represented by R is denoted by L(R),

Now we shall explain the evaluation procedure for the three basic operations. Let
R, and R, denote any two regular expressions. Then (1) a string in L(R,+R,)is a
string from R, or a string from R, (i) a string in L(R,R)) is a string from R,
followed by a string from R, and (1i1) a string in L{R*) is a string obtained by
concatenating » elements for some #>=0.

Consequently, (i) the set represented by R,+ R, is the union of the sets represented
by R, and R, (ii) the set represented by R R, is the concatenation of the sets
represented by R, and R,,.

EXAMPLE 6.1--Describe the following sets by regular expressions: (a) {101} (b)
{abba}, (c) {01, 10}, (d) {", ab}, (e) {abb. a, b, bba}, (f) {*, 0, 00, 000....}, and (g)
{1, 11,111 ... }.

Solution

(a)  Now, {lI}, {0} are represented by 1 and 0. respectively. 101 is obtained by
concatenating 1, 0 and 1. So, {101} 1is represented by 101.

(b)  abba represents {abba.

() As {01, 10} 1s the union of {01} and {10}, we have {01,10} represented by
01 + 10.

(d) The set {*, ab} is represented by ~ + ab.

(e)  The set {abb, a, b, bba} is represented by abb + a+ b + bba.

(H As {*, 0,00, 000, ... } is simply {O}*. It is represented by 0*.

(g) Anyelementin {1, 11,111 ... } can be obtained by concatenating 1 and any
element of {1}*. Hence 1(1)* represents {1, 11, 111, ...}.
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IDENTITIES FOR REGULAR EXPRESSIONS
Two regular expressions P and Q are equivalent (we write P =Q) if P and Q
represent the same set of strings. We now give the identities for regular

expressions; these are useful for simplifying regular expressions.

I, @+R=R

I, OR=RO=0

I "R =R* =R

1, M=and @ * ="

I, R+R=R

I, R*R*=R*

1, RR*=R*R

% (R*)* =R*

1, A RR® = RF="-RAR

_—

i PQFP=PQP)*

6.3 Finite Automata and Regular Expressions

The transition systems can be generalized by permitting A-transitions or “-moves
which are associated with a null symbol *. These transitions can occur when no
input is applied. But it is possible to convert a transition system with ~-moves into
an equivalent transition system without ~-moves. We shall give a simple method of

doing it with the help of an example.

Suppose we want to replace a “-move from vertex v, to vertex v,. Then we proceed

as follows:

Step 1 Find all the edges starting from v,

Step 2 Duplicate all these edges starting from v, without changing the edge
labels.

Step 3 If v, is an initial state; make v, also as initial state.

Step 4 If v, is a final state. Make v, also as the final state.
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EXAMPLE 6.1 Consider a finite automaton, with “-moves, given in Fig. 6.1. Obtain

an equivalent automaton without *-moves.

Fig. 6.1 Finite automaton of Example 6.1

Solution

We first eliminate the “-move from ¢, ta ¢, to get Fig. 6.2(a). g, is made an initial
state. Then we eliminate the ~-move from ¢, to q, in Fig. 6.2(a) to get Fig. 6.2(b).
As ¢, is a final state, ¢, is also made a final state. Finally, the ~~-move from ¢, to g,
is eliminated in Fig. 6.2(c).

]

& . 4 .8

~_T

1
A
1

ia)

-
ot

i
a
2
(e)

Figure 6.2 Transition System for example 6.1, without * -moves

EXAMPLE 6.2

Consider a graph (i.e. transition system), containing a “-move, given in Fig. 6.3.

Obtain an equivalent graph (i.e. transition system) without ~-moves.
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e £

OO OO O

Fig. 6.3 Finite automaton of Example 6.3

Solution

There 1s a “~-move from ¢0 to ¢3. There are two edges, one from ¢3 to ¢2 with label
0 and another from ¢3 to ¢4. Duplicate these edges can from ¢0. As ¢0 is an initial
state, ¢3 1s made an 1nitial state. The resulting transition graph 1s given in Fig. 6.4.

Fig. 6.4 Transition system for Example 6.2, without *-moves.

6.4 NDA with Null moves and Regular Expressions

In this section, we prove that every regular expression is recognized by a

nondeterministic finite automaton (NDFA) with ~-moves.

Theorem (Kleene's theorem):- If R is a regular expression over Z representing

L € 2*, then there exists an NDFA M with “-moves such that L = 7T{M).

Proof The proof is by the principle of induction on the total number of characters

in R. By 'character’ we mean the elements of Z, ~, @, * and +. For example, if R
=" + 10*11%0, the characters are *, +, 1, 0, *. 1, 1, *, 0, and the number of

characters is 9.

Let L(R) denote the set represented by R.
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Basis. Let the number of characters in R be 1. Then R =*, or R = @, or R =q,

aIEZ. The transition systems given in Fig. 6.5 will recognize these regular

€Xpressions.

R=I\

Fig. 6.5 Transition systems for recognizing elementary regular sets.

Induction step: Assume that the theorem is true for regular expressions having »

characters. Let R be a regular expression having » + 1 characters. Then,
R=P+Q or R=PQ or R = p*

according as the last operator in R is +, product or closure. Also P and Q are
regular expressions having # characters or less. By induction hypothesis, L(P) and
L(Q) are recognized by M, and M,: where M, and M,: are NDFAs with *-moves,
such that L(P) = T(M, ) and L(Q) = T(M ). M,and M, are represented in Fig. 6.6.

O O
+0O O
O O

Fig. 6.6 Nondeterministic finite automata M1 and M2.

The initial state and the final states of A, and M, are represented in the usual way.

Case 1 R =P + Q. In this case we construct an NDFA M with *~-moves that accepts
L(P + Q) as follows: ¢, is the initial state of M, g, not in M, or M,, g, is the final
state of M: once again ¢, not in M, or M,. M contains all the states of M, and M,

and also their transitions. We add additional “-transitions from g, to the initial
states of M, and M, and from the final states of M, and M, to ¢, The NDFA M is as
in Fig. 6.7. It is easy to see that T(M) = T(M,) U T(M,) = L(P + Q).
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Case 2 R =PQ. In this case we introduce ¢, as the initial state of M and ¢, as the
final state of M. both g, g,not in M, or M,. New A-transitions arc added between
¢, and the initial state of A/, between final states of A, and the initial state of A7,
and between [inal states of M, and the final state ¢, of M. See Fig. 6.8.

L)

o

My

Fig. 6.7 NDFA accepting L(P + Q).

A = (O
Oan® O“’?’:O (}

M, M,

Fig. 6.8 NDFA accepting L(PQ).
Case 3 R = (P)*. In this case, ¢, ¢ and ¢, arc introduced. New “-transitions are
introduced from g, to ¢, g to g, g to the initial state of A/, and from the final states
of M, to ¢. See Fig. 6.9.

Thus 1n all the cases, there exists an NDFA M with “-moves, accepting the regular
expression R with » + 1 characters. By the principle of induction, this theorem is

true for all regular expressions.
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Fig. 6.9 NDFA accepting L(P*).
Above theorem gives a method of constructing NDFAs accepting P + Q, PQ and

P* using the NDFAs corresponding to P and Q. Thus, if a regular expression P is
given, we can construct a DFA accepting L (P).
EXAMPLE 6.3

Obtain the deterministic graph (system) equivalent to the transition system given in
Fig. 6.10

Fig. 6.10 Nondeterministic transition system of Example 6.3

Solution

We construct the transition table corresponding to the given nondeterministic
system. It is given in Table 6.1.

TABLE 6.1 Transition Table for Example 6.3

State/L a b
—'@ q:.. 9
q. @&

@ Qo G4
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We construct the successor table by starting with /g, q,]. From Table 6.1 we see
that /g, q,, ] is reachable from /g0, q,] by a b-path. There are no a-paths from
/40, q,]. Similarly, /g0, q,] is reachable from [q,, q,, ¢2] by an a-path and /40, q,,
g2] 18 reachable from itself. We proceed with the construction for all the elements
inQ’.

We terminate the construction when all the elements of Q' appear in the successor
table. Table 6.2 gives the successor table. From the successor table it is easy to

construct the deterministic transition system described by Fig. 6.11.
TABLE 6.2 Deterministic Transition Tahle for Example 6.3

Q a b
(s, G1] 9 (9. 9. @2l
{95, 6. G2 [9:. 1) (% 94 G2)
0 [ [}

as g} and g2 are the final states of the nondeterministic system /go, q,] and [q,, g,

,q2] are the final states of the deterministic system.

b

[@p. 94. 92]

Fig. 6.11 Deterministic transition system for Example 6.3

6.5 Algebraic method using Arden’s Theorem

The following method is an extension of the Arden's theorem. This is used to find

the r.e. recognized by a transition system.
The following assumptions are made regarding the transition system:

(1) The transition graph does not have *-moves.
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(i1) It has only one initial state, say v,.

(i) Its vertices are v,...... V..

(iv) 'V, the r.e. represents the set of strings accepted by the system even though
v, 1s a final state.

(v) Xjj denotes the r.e. representing the set of labels of edges from v; to v,
When there is no such edge. Xij == @. Consequently, we can get the
following set of equations in V1.....Vn.

V,=V,X11 i V,X21 = s V. Xn1 + A

V=V, X12 == V,22 g gt + v 05 + A

V.=V, 0n + V,%2n0 + .eane + Vv &y + A

By repeatedly applying substitutions and Theorem 5.1 (Arden's theorem), we can

express V, in terms of @, ’s.

For getting the set of strings recognized by the transition system, we have to take
the 'union" of all Vi’s corresponding to final states.

EXAMPLE 6.4

Consider the transition system given i Fig. 6.12. Prove that the strings recognized

are (a + a(b + aa)*b)* arb + aa)* a.

Fig. 6.12 Transition system of Example

Solution

We can directly apply the above method since the graph does not contain any -

move and there is only one initial state.
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The three equations for ¢, ¢, and ¢, can be written as
G =qatgbt” q2=qatqbtqga q,=qa
It is necessary to reduce the number of unknowns by repeated substitution. By
substituting ¢, in the g,-equation. We get by applying Arden's theorem.
q2 =q,a + ;b + g,aa
=qa+q,(b+ aa)
=qa(b + aa)*
Substituting q, in q, we get
q,=q@ + ga(b + aa)*b + *
=q;(a+a(b+aa)tb) +
Hence,
gl ="(a + a(b + aa)*b)*
g2 =(a+a(b+aa)*b)* a(b+aa)*
g3 =(a+a(b+aay*b)* a(b+ aa)*a
Since ¢, is a final state, the set of strings recognized by the graph is given by
(a+a(b+aay*b)*a(b + aa)*a
EXAMPLE 6.5
Prove that the finite automaton whose transition diagram is as shown in Fig. 6.13
accepts the set of all strings over the alphabet {a, A} with an equal number of a's
and b’s, such that each prefix has at most one more « than the b's and at most one

more A than the a’s.

Fig. 6.13 Finite automaton of Example 6.5

131



Seolution
We can apply the above method directly since the graph does not contain the A-

move and there is only one initial state. We get the following equations for q,, q,.
4y » y:

q =,b+ qat+”

4, —q,a

q, =q;b

q-patgbtgatqb

As q, s the only final state and the q,-equation involves only g, and q,. We use
only q,- and g, - equations (the q,-equation is redundant for our purposes).
Substituting for g2 and g3' we get

q, =q,ab +q,ba+*=q,(ab+ ba) +*

By applying Arden's theorem, we get

q, = "(ab + ba)* = (ab + ba)*

As q, is the only final state, the strings accepted by the given finite automaton are
the strings given by (ab + ba)*. As any such string is a string of ab’s, and ba's, we
get an equal number of a's and b's. If a prefix x of a sentence accepted by the finite
automaton has an even number of symbols, then it should have an equal number of
a's and b's since x is a substring formed by ab’s and ba's. If the prefix x has an odd
number of symbols, then we can write x as ya or yb. As y has an even number of
symbols, vy has an equal number of @'s and b's. Thus, x has one more « than b or
vice versa.

EXAMPLE 6.6

Describe in English the set accepted by the finite automaton whose transition

diagram is as shown in Fig. 6.14.

Fig. 6.14 Finite automaton of Example 6.6
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Solution

We can apply the above method directly as the transition diagram does not contain
more than one initial state and there are no A-moves. We get the following
equations for q,, g2, q3,

q, =q,0+"

q2 =q,1 +q,l

3=q,0+q, (0+1)

By applying Arden’s theorem to the g,-equation, we get

ql — AO* — 0*

So, q2=q,1+q,1=0*1+q,1

Theretfore,

g, = (0*1)1*

As the final states are q, and q,, we need not solve for q;:

g, F =0 I LIFy =0T =0 17} by I,

The strings represented by the transition graph are 0*1*. We can interpret the
strings in the English language in the following way: The strings accepted by the
finite automaton are precisely the strings of any number of 0's (possibly *)

followed by a string of any number of I's (possibly *).
EXAMPLE 6.7

Construct a regular expression corresponding to the state diagram described by
Fig. 6.15

Fig. 6.15 Finite automaton of Example 6.7
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Solidion
There 15 ounly one 1otial state. Al s, there are vo “-moves. The equahons are
q,=9q,0+ q;0+
q: =t | +4q; | +q;l
q; =g0
50,
Q. =q, | +q 1 + (g0 =q,l +g.(1 +01)
By appl ying Arden’s theorerm we get
q; =gyl (I +00*
A l=0,
G =9,0+ g0+ =q,0+ qL0+"
=q,0+ (g, I[1 + 01700 +4
=q 0+ I[1 +017* 00+
Ounce agaw applying Arden’s theorer, we get
gl =4{0+ I{1 +00*00*= {0+ I{| +0 N*00)*
Asqg,1stbe only final state, the regular expression comresponding to the given
diagrar is (0 + | {1 + 011 % 00)*,
EXAMFLE 68
Fiod the regular expresson comesponding to Fig. 6.2,

i

T

_H‘_
2
5
-
-
-..i'

X ":;H I”-w.._l_,..{t
!‘ e S %
H . 3
H"-a. %
. ""\-.‘\3 - 1'|
\J \"'-Hq-h‘-“ 4 1.1.
1
: e 4 !
—T, “ ok
-: L }j: ] k‘\:;‘Q}\i ._r|l
L —
“xq_‘ _‘_‘.-r’r

o
- -

Fig.6.15 Finite antomaton of Examplke 6.5
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Solution
There 1s only one initial state. and there are no A-moves. So, we form the
equations corresponding to q,, q,, ., ;-
q,=90+q06+q0+"
qQ2=ql+q,1+q,l
q; = q,0
9,91
Now
q,=q,1=(q,0)1=q,01
Thus, we are able to write g3, q4 in terms of g2. Using the g2-equation, we get
q2=q;1+q,1+q,011=q,1+q,(1+011)
By applying Arden’s Theorem, we obtain
g2=q,1 (1+011)*=q, (1(1+011)*)
From the q,-equation, we have
q,=q,0+q,00+q,010+"

=q,0+q,(00 +010) +*
=q,0+q,1(1+011)*(00+010) +"
Again, by applying Arden’s Theorem, we obtain
q =0+ 1(1 + 011)* (60 + 010))*
q=q,01 =q,1(1 + 011)* 01
= (0 + 1I{1 +011)*(00 + 010)*(1(1 + 011)* 01)

6.6 Self Learning Exercise

Q.1  Which of the following pair of regular expression are not equivalent?
a) 1(01)* and (10)*1

b) x (xx)* and (xx)*x
c) (ab)* and a*b*
d) x+ and x*x+

Q.2 A language is regular if and only if
a) accepted by DFA
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b) accepted by PDA
c) accepted by LBA
d) accepted by Turing machine
Q.3 Which of the following is true?
a) (01)*0 = 0(10)*
b) (O+1)*0(0+1)*1(0+1) = (O+1)*01(0+1)*
c) (O+1*01(0+1)*+1=0*=[0+1)*
d) All of the mentioned

6.7 Summary

A deterministic finite automaton (DFA) also known as a deterministic finite
acceptor (DFA) and a deterministic finite state machine (DFSM) is a finite-state
machine that accepts and rejects strings of symbols and only produces a unique
computation (or run) of the automaton for each input string. A DFA 1is defined as
an abstract mathematical concept, but is often implemented in hardware and
software for solving various specific problems. DFAs recognize exactly the set of
regular languages, which are, among other things, useful for doing lexical analysis

and pattern matching.

A regular expression is a sequence of characters that define a search pattern.
Usually this pattern is then used by string searching algorithms for "find" or "find

and replace" operations on strings.

6.8 Answers to Self-Learning Exercise

Ql (¢
Q2 (a)
Q3 (@

136



6.9 Exercise

Q.1

Q.2
Q.3

Q.4

Construct a finite automaton M which can recognize DFA in a given string
over the alphabet {A, B, ..., Z;}. For example, M has to recognize DFA in
the string ATXDFAMNQ.

Construct a finite automaton for the regular expression (a + b)*abb.

Find all strings of length 5 or less in the regular set represented by the
following regular expressions:

(a) (ab +a)*(aa + b)

(b) (a*b+ b*a)*a

(c) a*+Cab+a)*

Find the set of strings over L = {a, b} recognized by the transition systems

shown in Fig.(a-d).

ab a b
:
(a) (b)

(©
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UNIT-7
Regular Languages and Properties of
Regular Languages

Structure of the Unit

7.0  Objective

7.1  Introduction

7.2 Closure properties of Regular Sets

7.3  Pumping Lemma for Regular Sets

7.4  Application of Pumping Lemma

7.5  Constructions of a Regular Grammar for Given DFA
7.6  Constructions of a Transition System for a Given Regular Grammar
7.7  Self Leaming Exercise

7.8  Summary

7.9  Glossary

7.10  Answers to Self-Learning Exercise

7.11 Exercise

7.12  Answers to Exercise

7.0 Objective

In this chapter we shall focus upon the following topics

° Closure properties of Regular Sets

8 Pumping Lemma for Regular Sets

® Application of Pumping Lemma
® Constructions of a Regular Grammar for Given DFA
® Constructions of a Transition System for a Given Regular Grammar
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7.1 Introduction

A regular language (also called a rational language) is a formal language that can
be expressed using a regular expression. Alternatively, a regular language can be
defined as a language recognized by a finite automaton. The equivalence of regular
expressions and finite automata is known as Kleene's theorem. In the Chomsky
hierarchy, regular languages are defined to be the languages that are generated by

Type-3 grammars (regular grammars).

Regular languages are very useful in input parsing and programming language
design. The collection of regular languages over an alphabet 2 is defined
recursively as follows:

The empty language O, and the empty string language {€ } are regular languages.

® For each a € 2 (a belongs to 2), the singleton language {a} is a regular
language.
® If A and B are regular languages, then A U B (union), A « B

(concatenation), and A* (Kleene star) are regular languages.

® No other languages over 2 are regular.

When is a language is regular?

if we are able to construct one of the following:

DFA or NFA or €& -NFA or regular expression

When is it not?

If we can show that no FA can be built for a language

7.2 Closure properties of Regular Sets

Closure property:

If a set of regular languages are combined using an operator, then the resulting
language is also regular.Let L. and M be regular languages. Then the following

languages are all regular:
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® Union LUM

® Intersection LNM

® Complement : ﬁ

® Difference LM

° Reversal sl {WR: w € L}

® Closure nL¥

® Concatenation LM

° Homomorphism . | h{asa,...a.)= hia;)h(as)...h(a,)

h(L) ={h(w):w € L, his homomorphism}
® Inverse homomorphism:
h~'(L)= {w €Y : h(w) € L,h:¥ - A%isahomom. }
Theorem 7.1: For any regular L and M, LUM is regular.
Proof. Let L = L(E) and M = L(M). Then

L(E +F) = LUM by definition.

Theorem 7.2 : If L is a regular language over X then so is L =X "\ L.
Proof. Let L be recognized by a DFA

A=(Q,X,0,q0,F).
LetB=(Q, X, 8, go,Q\F). Now L(B) = L.
Example:
Let L be recognized by the DFA given below

1 0
‘/ B Y

Start _ \

2 o “a \\
) (i '@_’GO w)

N TS

Figure 7.1: State Diagram of DFA for L
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Then L is recognized by

i‘d f“)

Start e

Figure 7.2: State Diagram of DFA for L

Theorem 7.3. If L and M are regular, then so is LNM.

Proof 1. By DeMorgan's law LM =L U M.

We already know that regular languages are closed under complement and union.

We shall also give a nice direct proof.
Proof 2. Let L be the language of

ApL=(Q1.2,0..q5. Fr)
and M be the language of
Ay ~Qum. 2.0y, 9m. Fu)
We assume that both automata are deterministic.
We shall construct an automaton that simulates A; and Ay in parallel, and
accepts if and only if both A; and Ay accept.
If A; goes from state p to state s on reading a,and A,y goes from state q to state t

on reading a, then A .amWwill go from state (p, q) to state (s, t) on reading a.

Input «

I
e A

Start ’ __.,[ ANL);’ Lo Accept

. ¢
A 5r

Figure 7.3
142



Formally

Apam=(QLXQL X, 6ramqr, Guny, FL X Fap).
where

5LnM((p:q):a) = (5L(pJQ):5M((qu)r)
It can be shown by induction on |W| that
SmM((‘?L: Gy W) = SL((qL: w), SM (qum, W)
The claim then follows

Example : (¢) =(a) x (b)

1_

%tqrt___gi?—o_.@@‘_) el

(a)

O

Start —~ ) 1 R =T & |
e T —(GD) D

(b))

1

| LD

Star — 1 —
()=o)

] K

. A sy - 0.1
o
(€=
Figure 7.4

Theorem 7.4. If L and M are regular languages,then so in L\ M.

Proof. Observe that L \M =Ln M. We already know that regular languages are
closed under complement and intersection

Theorem 7.5. If L is a regular language, then so is L=,

Proof 1: Let L be recognized by an FA A.Turm A into an FA for LR, by

1. Reversing all arcs.

2 Make the old start state the new sole accepting state.
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3. Create a new start state Pg , with o (Po.€)=F
(the old accepting states).

Proof 2: Let L be described by a regex E. We shall construct a regex ER, such that

L(E") - (LEY".

We proceed by a structural induction on E.

Basis: If E is €,0 or athen E* =E.

Induction:

1.  E=F+G. Then EF =F" +G"

2.  E=FG.ThenE'=G.F'

3. E = F*. Then EX = (F*)*

We can show by structural induction on E

L(E") = (L(E))"

Homomorphism

A homomorphism on 2 is a function h : 2 — ©%* where 2 and © are alphabets.
Letw=aa, ....a € 2* Then h(w) = h(a )h(a,) .... h(a ) and

WLy ={h(w):w € L}

Example: Leth : {0,1}* - {CI,, b}* be defined by h(0) = ab, and h(1) = € Now

h(0011) = abab
Theorem 7.6: h(L) is regular, whenever L 1s.

e.g. h(0*1+(0+1)*0)= h(0)*h(1)+(h(0)+h(1))*h(0)

Proof:

Let L = L(E) for a regex E. We claim that L(h(E)) = h(L).

Basis: IfE is € or @ ;. Then h(E) = E, and L(h(E)) = L(E) = h(L(E)).
If E is a, then L(E) ~{a}, L(h(E)) - L(h(a)) ~{h(a)} - h(L(E)).
Induction:

Case 1: G=E + F. Now L(h(E + F)) = L(h(E)+h(F)) = L{h(E)) UL(h(F)) =
hIL(E)) U h(L(F)) = h(IL(E) U L(F)) = h(L(E +F)).

Case 2: G=E.F. Now L(h(E.F )) = L(h(E)).L(h(F))= h(L(E)).h(L(F)) =
h(L(E).L(F)) = h(L(E.F))
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Case 3: G=E* Now L{b(E*)) = L(h{E)*) =L{h(E}}* = h{L(E}}* = hiL.(E*})

Inverse Homomorphism

Leth: 2 — O be s homom. Let L. © ©° and define
L) = {w € Z% hiw) €L}

(a)

(L) fi =

[ Rk

Figure 7.5

Example: Leth: {@, b} — {0,1}" be defined by h(a)= 01, and h{b) = 10. If
L =L{{00+1)*), then h_l(L) =L{{ba)*).

Claim: h{w) € L if and only if w = (ba}"

Proof: Let w = (ba)". Then h{w)= {1001y E L.

Let h{w) € L, and suppose w & L{{ba)*). There are four cases to consider.

1 w beging with a. Then h{w) begins with 01 and & L{{00+1}).

2 w ends in b. Then h{w) ends in 10 and & L({[J[Hl}'}.

3. w=xaay. Then h(w)=2z0101vand & L{0C+1)).

4. w = xbby. Then h{w)=z1010v and & L{{00+1)*).

Theorem 7.7: Leth: 2— 6 be a homom.,and L. € ’E}*reguia:r. Thenh’ (L} 1s
regular.

Proof: Let I be the language of A= (Q, 8, &, @,,F).
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We define B=(Q, .V , ¢g.F), where

y(g,@) = & (g.h(a))
It can be shown by induction on |W| that

}7(@@? W} — g (qlh h(W}}

Input a

1

Input
Star ! fifal 10 4

Y

Acceptiteject

L _.1 -

Figure 7.6

7.3 Pumping Lemma for Regular Sets

In the previous sections, we have seen that the class of regular languages 15 closed
under various operations, and that these languages can be described by
{deterministic or nondeterministic) finite automata and regular expressions.

These properties helped in developing techniques for showing that a language 1s

regular. In this section, we will present a tool that can be used to prove that certain

languages are not regular. Observe that for a regular language,

1. the amount of memory that 15 needed to determine whether or not a given
string 15 mn the language 15 finite and independent of the length of the
string, and

2 if the language consists of an mfinite number of strings, then this language
should contain infinite subsets having a fairly repetitive structure.
Intmitively, languages that do not follow 1. or 2. should be non-regular. For

example, consider the language
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{0"1":n 2 0}.

This language should be non-regular, because it seems unlikely that a DFA can
remember how many Os it has seen when it has reached the border between the Os
and the Is. Similarly the language {0" : n is a prime number} should be non-
regular, because the prime numbers do not seem to have any repetitive structure
that can be used by a DFA. To be more rigorous about this, we will establish a
property that all regular languages must possess. This property 1s called the
pumping lemma. If a language does not have this property, then it must be non-
regular.

The pumping lemma states that any sufficiently long string in a regular language
can be pumped, i.e., there is a section in that string that can be repeated any

number of times, so that the resulting strings are all in the language.
Theorem (Pumping Lemma for Regular Languages)

Let A be a regular language. Then there exists an integer p = 1, called the pumping

length, such that the following holds: Every string s in A, with [s| 2 p, can be

written as s = Xyz, such that
1. vy¥e(e,ly21),
2. xy| <p, and

3. forall i2 0, xy'z € A

In words, the pumping lemma states that by replacing the portion y in s by zero or

more copies of it, the resulting string is still in the language A.

Proof. Let Z be the alphabet of A. Since A is a regular language, there exists a
DFA M =(Q, Z, 0, q, F), that accepts A. We define p to be the number of states in
Lets=ss,...s, be an arbitrary string in A such thatn 2 p. Definer, =q r, = 0
(. 8), 5, =0 (£, 8,), . . .., 1,+1 =8 (r,, s.). Thus, when the DFA M reads the string

s from left to right, it visits the states r,, r,, . . ., I,,,. Since s is a string in A, we

know thatr ., .belongs to F.
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Consider the first p + 1 statesr,, 1, . . in this sequence. Since the number of

s
states of M 1s equal to p, the pigeonhole pninciple implies that there must be a state
that occurs twice m this sequence. That 15, there are indices j and P such that 15 =<

£ Sp+landr=n

read x
., mad ¥
- g=r Fi=rg
-
read
Fral
v
Figure 7.7

Wedefinex=g5,...8_,,¥=5...5¢,andz=5;...5,. Smnce {Egﬂfehavey?f
£, proving the first claim in the theorem. Since P< pt1l, we have |[xy] = P,
proving the second claim in the theorem. To see that the third claim also holds,
recall that the string s = xyz 1s accepted by M.

While reading x, M moves from the start state q to state r; . While reading y, 1t
moves from state r; to state rp =1, , L.e., after having read y, M 1s again in state r; .
While reading z, M moves from state r; to the accept state r,,. Therefors, the

substring v can be repeated any number 1 £ 0 of times, and the corresponding
string xyiz will still be accepted by M. It follows that xyiz € Aforalli=0.

7.4 Application of Pumping Lemma

Pumping Lenuna 1s to be applied to show that certan languages are not regular. It
should never be used to show a language is regular.

® If L 1s regular, it satisfies Pumping [emma.

® If L does not satisfy Pumping Lemma, 1t 15 non-regular.
Method to prove that a language L is not regular

® At furst, we have to assume that L 15 regular.
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® So, the pumping lemma should hold for L.

® Use the pumping lemma to obtain a contradiction —
v Select w such that |[w| 2 ¢
v Select y such that |y| 2 1
v Select x such that |xy| < ¢
v

Assign the remaining string to z.
v Select k such that the resulting string is not in L.
Hence L is not regular.
Example 7.1:
Prove that L = {a'b' | i=> 0} is not regular.
Solution
At first, we assume that L. 18 regular and n is the number of states.
Let w =4&"h". Thus [w| = 2n > n. By pumping lemma, let w = xyz, where [xy| < n.
Letx=af,y=a"andz=ab", wherep+q+r=n,pZ 0,qF 0, r# 0. Thus |y| #
0. Letk =2. Then xy’z = a’a™a’d". Number of as = (p+ 2q+ 1) = (p+q+1)+q=n
q
Hence, xy’z =a" ' b". Since q 7 0, xy’z is not of the form a"b".
Thus, xy’z is not in L. Hence L is not regular.
Example 7.2:

Consider the language

A= {w €{0, 1}*: the number of Os in w equals the number of 1s in w}.
Solution

Again, we prove by contradiction that A is not a regular language.

Assume that A is a regular language. Let p 2 1 be the pumping length, as given by
the pumping lemma. Consider the string s =0°1°. Then s € A and |s| = 2p 2 p. By
the pumping lemma, s can be written as s = xyz, where y &, [xy| < p, and 'xy'iz &

A foralli= 0.
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Since [xy| < p. the string y contains only Os. Since y 7€ , y contains at least one 0.
Therefore, the string xy'z = xyyz contains more Os than 1s, which implies that this
string is not contained in A. But, by the pumping lemma, this string is contained in
A. This is a contradiction and, therefore, A is not a regular language.

Example 7.3:

Consider the language

A= {ww:w€E{0, 1}*}.

Solution

We prove by contradiction that A is not a regular language.

Assume that A is a regular language. Let p 21 be the pumping length, as given by
the pumping lemma. Consider the string s = 0°10°1. Thens € Aand [s| =2p +2 >
p. By the pumping lemma, s can be written as s = xyz, where y #&, |xy| < p, and
xy'z € A forall i > 0.

Since [xy| < p, the string y contains only 0s. Since y 7€ , y contains at least one 0.
Therefore, the string xy’z = Xyyz is not contained in A. But, by the pumping
lemma, this string 1s contained in A. This 1s a contradiction and, therefore, A is not
a regular language.

You should convince yourself that by choosing s = 0°p (which is a string in A
whose length is at least p), we do not obtain a contradiction. The reason is that the
string y may have an even length. Thus, 0°p is the “wrong” string for showing that
A is not regular. By choosing s = = 0°10°1, we do obtain a contradiction; thus, this

is the ““correct” string for showing that A is not regular.
Example 7.4:

Consider the language
A= {1":nis aprime number}.

Solution:
We prove by contradiction that A is not a regular language.
Assume that A is a regular language. Let p 2 1 be the pumping length, as given by

the pumping lemma. Let n 2 p be a prime number, and consider the string s = 1"
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Then s € A and |§ =n = p. By the pumping lemma, s can be written as s = xyz,
where v #&, [xy| < p. and xy'z €A foralli> 0. Let k be the integer such that y =
1%, Since v #E, we have k = 1. For each 1 = 0, n + (i — 1)k is a prime number,
because xyiz =1"¥Y*" C A Fori=n+ 1, however, we have n+ (1—1k=n+nk=
n{l + k), which is not a prime number, because n = 2 and 1 + k= 2. This 5 a
contradiction and, therefore, A 13 not a regular language

Kleene's seminal article defines regular expressions and thewr relationship to fimte
automata. Kleene proves the equvalence of fimte automata and regular
expressions. There are three methods to construct regular grammar from given
DFA

- Transitive Closure Method
= State Eemoval Method

e Brzozowski Algebraic Method
Transitive Closure Method

Suppose the given DFA M 1= to be represented as a regular expression

a1 }2of @ S g3 }2ef(aa))
Figure 7.8
Consider the automaton m Figure 7.8. The mput for edge in the automaton 15 a
regular expression. Quite simply, the regular expression for the transition from g,
to g, 1s b, the transition from g, to g, 15 ¢ and so on Furthermore, the regular

expression representing the transition from
q, to g, 15 the concatenation of the regular expressions thus forming be.

Thus, we can find the regular expression for the automaton to be bca since that
expression 18 the concatenation of all of the transitions from the starting state g, to
the final state q,.
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Mare generally, for a path from qy, to q, , the concatenation of the regular
expression for each transition in the path forms a regular expression that represents

the same string as the path from g, o g, in the automaton

Supposmg there exists only one unique path in automaton M from gy, to g;, there
exists only one regular expression R such that R represents the same sfring as the
DFA M. However, this 1s a trivial automaton, let us examine how to expand this to

d IMore gBl’lEIﬁl Case.

Figure 7.9

Now consider the DFA mn Figure 7.9. It 15 clear that multiple paths exist from g, to
q,- We cannot derive a simple regular expression to represent the DFA, however
using the other operators {union and iferation) we can build on our previous
approach to create a construction that worles for all types of DFA.
Suppose regular expression R, represents the set of all strings that transition the
automaton M from g, to g;. Furthermore, suppose inj represents the set of all
strings that transition the automaton M from g, to g; without passing through any
state higher than g,. We can construct R, by successively constructing Rlij,Rzij
......... Rmij % .RkijI 18 recursively defined as:
RY = REC(RE) Rl +RE
Assuming we have mitialized RE- to be

rifi # jandrtransitions M from g; tog;

Riﬂj =+r +A ifi = jand rtransitions M from g; to g
¢ otherwise

As we can see, this successive construction builds up regular expressions until we

have R;. We can then construct a regular expression representing M as the union of

all Ry, where gy, 1s the starting state and f & M_{the final states for M).
This techmque 15 sumnilar in nature to the all-paws shortest path problem. The only
difference being that we are taling the umon and concatenation of regular

expressions instead of summing up distances. This solution 1s of the same form as
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transitive closure and belongs to the constellation of problems associated with
closed semirings.

The chief problem of the transitive closure approach is that it creates very large
LH

ij:
length 15 due to the repeated union of concatenated terms. Even by using the

previous 1dentities, we still have long expressions.

State Removal Method

regular expressions. Examining the formula for an R, it is clear the significant

The state removal approach 1dentifies patterns within the graph and removes states,
buillding up regular expressions along each transition. The advantage of this
technique over the transitive closure method is that it 15 easier to visualize. This
technique 1= described by Du and Ko, but we examine a much simpler approach 1s
given by Linz.

Fust, any multi-edges are umfied into a single edge that contains the union of

inputs. Suppose from g, to g, there i1s an edge a and an edge b, those would be
unified mnto one edge from g, to g, that has the valuea +b.

Now, consider a subgraph of the automaton M which 1s of the form given in figure.
State g may be removed and the sutomaton may be reduced to the form n figure.
The pattern may still be applied 1f edges are missing. For an edge that 15 missing,
leave out the corresponding edge in figure.

This process repeats until the automaton 1s of the form m figure. Then by direct

calculation, the regular expression 1s:

s (P S v o v g o

Figure 7.10: Desired pattern for state removal
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il il‘f

[ | "l'j
Figure 7.11: Results after state removal

rl Ta

h F r
@ g7}
Ta
Figure 7.12: Final Form
Brzozowski Algebraic Method

Brzozowski method takes a unique approach to generating regular expressions. We

create a system of regular expressions with one regular expression unknown for
each state m M, and then we solve the system for R, where R, 1s the regular

expression assoclated with starting state gp. These equations are the characteristic
equations of M.

Constructing the characternistic equations 1s straightforward For each state g, in M,

the equation for K, i= a umon of terms. Each term can be constructed like so: for a

transition a from g, to q, , the term 15 aR, . If R, 15 a final state, A is also one of the

terms. This leads to a system of equations in the form:
Rz — ﬂ-j_R]_ + H’ERE o e
R3 — Iﬂ-lRl + ﬂ-sz e i ..;‘.

Rm = ﬂ'j_Ri + RERE -+ ""j.
where a, = (13 if there 15 no transition from K to K, .

The system can be solved via straightforward substitution, except when an
unknown appears on both the nght and left hand side of the equation. This
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situation occurs when there is a self-loop for state q,. Arden's theorem is the key to

solving these situations. The theorem 1s as follows:

Given an equation of the form X = AX + B where A A, the equation has the
solution X = A*B.

We use this equation to isolate R, on the left hand size and successively substitute

R. into the another equation. We repeat the process until we have found R with no

unknowns on the right hand side.
For example, consider again the automaton in figure. The characteristic equations
are as follows (where Ry =R )

R1 — Cf.lRl -+ asz

R,= bR, + A

We solve for R 2 using Arden's theorem and the previously mentioned identities:
R,= bR, + A

_b*A

— b

We substitute into R, and solve:
R =aR{+b(b*)
—aR{+bb*
=a* (bb¥*)
= a¥bb*
Thus, the regular expression for the automaton in Figure 1s a*bb*.

The state removal approach seems useful for determining regular expressions via
manual inspection, but 1s not as straightforward to implement as the transitive
closure approach and the algebraic approach. The transitive closure approach gives
a clear and simple implementation, but tends to create very long regular
expressions. The algebraic approach 1s elegant, leans toward a recursive approach,

and generates reasonably compact regular expressions. Brzozowski's method is
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particularly suited for recursion oriented languages, such as functional languages,

where the transitive closure approach would be cumbersome to implement.

7.6 Constructions of a Transition System for a Given
Regular Grammar

If all production of a CFG are of the form A — wB or A— w, where A and B are

variables and w some string of zero or more terminals. then we say that grammar is

right linear. If all production of a CFG are of the form A — Bw or A— w, we call

it left linear. A right or left linear grammar is called a regular grammar.

Every regular expression can be represented by a regular grammar. As there is a

finite automaton for every regular expression we can generate a finite automaton

for the regular grammar.

Given a regular grammar G, a finite automata accepting L(G) can be obtained as

follows:

1. The number of states in the automata will be equal to the number of non-
terminals plus one. Each state in automata represents each non-terminal in
the regular grammar. The additional state will be the final state of the

automata. The state corresponding to the start symbol of the grammar will
be the 1nitial state of automata. If L.(G) contains € that is start symbol is

grammar devices to €, then make start state also as final state.

7.4 The transitions for automata are obtained as follows

I For every production A — aB make O(A, a) = B that is make an are labeled

‘a’ from A to B.
2 For every production A — a make O(A, a) = final state.
3 For every production A — €, make O(A, €) = A and A will be final state

Building Transition Diagrams

e The basic cases.
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® For =, build

- OO

® For each symbol a ¢ Z, build
a
- OO

L The recursive cases.

® For the expressionr | s, build

r

f", -“-“"‘-\_
| f‘,’! -“--H_\-“‘--
ri s = .
x'““"-.x ,/f

~— e

£ \.{ :I'—"’{ ’,J £

=

® For the expression rs, build
I & S
. For the expression r*, build
&
& r &
. —o e —< )
&

Building Transition Diagrams

® Applying these rules builds an NFA representing the regular expression.
® Note that each diagram has unique start and accepting states.
® Mote also that generous use was made of s-moves.

. This facilitates joining them together without any complications.
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Example 7.5: Bullding a Transltlon Dlagram

. Build a transition diagram from the regular expression ab*{a| =).

. Applying the rules rigorously produces the following.

a

| 7.7 Self Learning Exercise

Q.1 lanpuage is regular if and only if
a) accepted by DF A
b} accepted by PDA
) accepted by LBA
d) accepted by Turing machine

Q.2 Regular grammar is

a) context free prammar

b) non context free srammar
) english grammar

d) none of the mentioned

Q.2 Context free grammar is closed under

a) Union
b) Intersection
) Both

d) None of these
Q.4 IfL1 and L2 are repular languages is/are also regular language(s).

a) L1+L2
b) L1E2
) L1

d) All of the above
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7.8 Summary

A regular language (also called a rational language) is a formal language that can

be expressed using a regular expression. If we are able to construct DFA or NFA

or € -NFA then It is a language is regular or regular expression and If we can show
that no FA can be built for a language then it is not regular. Regular languages are
closed under these operations: Union, Intersection, Difference,

Concatenation, Kleene Closure, Reversal, Homomorphism and Inverse
Homomorphism The pumping lemma and its applications are discussed.

The Purpose of the Pumping Lemma for RL is to prove that some languages
cannot be regular.

7.9 Glossary

Languages: A language is a sef of string all of which are chosen from some ) ¥,

where ) is a particular alphabet

Concatenation of Languages:

[ fL1 and L2 are two languages then their concatenation can be defined as :
L=L1.L2whereL={w: w=xywherex€L1l,y€L2}

It means that all the strings in the language L are concatenation of stings of
language L1 and L2

Kleen Closure:

If'S is a set of words then by S* we mean the set of all finite strings formed by
concatenating words from S, where any word may be used as often we like, and
where the null string is also included.

7.10 Answers to Self-Learning Exercise

Q1 (a)
Q2 (a)
Q3 (o)
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Q.4

(D

7.11 Exercise

Q.1

Q.2

Q.4

Q.5

Q.6

Which of the following is true?

(A)  (01)*0=0(10)*

(B)  (O+1)*0(0+1)*1(0+1) = (0O+1)*01(0+1)*

(C)  (O+D)*01(0+1)*+1*0* = (0+1)*

(D)  All of the mentioned

Which of the following is not a regular expression?
(A)  [(atb)*-(aatbb)]*

(B)  [(O+1)-(Obtal)*(atb)]*

(C) (01+11+10)*

(D) (AF2+0)%(1+2)*

Which of the following is true?

(A) Every subset of a regular set is regular

(B)  Every finite subset of non-regular set is regular
(C)  The union of two non regular set is not regular
(D)  Infinite union of finite set i1s regular

Regular expressions are closed under

(A) Union

(B) Intersection

(C)  Kleen star

(D)  All of the mentioned

Pumping lemma is generally used for proving that

(A) given language 1s regular

(B)  given language is not regular

(C)  whether two given regular expressions are equivalent or not
(D)  All of the mentioned

L= language of words containing even number of a’s. Regular Expression 1s
(A)  (atb)aa(a+tb)

(B) atbbaaba
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(C) (btaba)
(D) (atb)ab(a+b)
Q.7  The languages --=---=------- are the examples of non-regular languages.
(A) PALINDROME and PRIME
(B) PALINDROME and EVEN-EVEN
(C) EVEN-EVEN and PRIME
(D) FACTORIAL and SQURE
Q.8 Which of the following statement is false?
(A) If L is context free language then L* is also a context free language
(B) [f L1 and .2 are context free language then there intersection is not
a context free language
(C) IfL1 and L2 are context free language then there union is also a
context free language
(D)  None of these
Q9 (ath)*is equivalent to

(A) b¥a*
(B) (a*b*)*
(C)  a*b*

(D)  none of above
Q.10 Precedence of regular expression in decreasing order is

(A) F e
By ..*.+
<y .,+,*
(D) +,a,*

7.12 Answers of Exercise

Q1 (D)
Q2 (B)
Q3 (B)
Q4 (D)
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Q5 (B)
Q6 (C)
Q7 (A)
Q8 (D)
Q9 (B)
Q.10 (A)
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UNIT-8

Context-Free Grammars and Languages

Structure of the Unit

8.0  Objective

R.1 Introduction

8.2 Context Free Grammar

8.3 Context Free Language

8.4  Derivations

8.5  Ambiguity in Context free grammars
8.6  Simplification of CFG

8.7  Self Learning Exercise

8.8  Summary

89  Glossary

8.10 Answers to Self Learming Exercise
8.11 Exercise

.12 Answer to Exercise

8.0 Objective

In this chapter we shall focus upon the following topics:

® Context free grammar

® Context free Languages

L Derivation Trees

® Ambiguity in Context free grammars

® Simplification of Context Free Grammars
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8.1 Introduction

Grammar is nothing but a set of rules to define valid sentences in any languages.
This chapter introduces context-free grammars, which generates context-free
languages. Context-free languages have great practical significance in defining
programming languages and in simplifying the translation for programming

languages.

8.2 Context Free Grammar

A context-free grammar basically consists of a finite set of grammar rules. In order
to define grammar rules, we assume that we have two kinds of symbols: the
terminals, which are the symbols of the alphabet underlying the languages under
consideration, and the non-terminals, which behave like variables ranging over

strings of terminals. A rule is of the form 4 — O, where 4 is a single non-

terminal, and the right-hand side (' is a string of terminal and/or non-terminal

symbols.

Definition: A context-free grammar (for short, CFG) is a quadruple G =(V _,V, P,
S), Where

V, : A finite set of non-terminals, generally represented by capital letters,
52 ol I

V,: A finite set of terminals, generally represented by small letters, like, a, b ,¢ .d...
S : Starting non-terminal, called start symbol of the grammar. S belongsto V

P: Set of rules or productions in CFG.

G is context-free and all production in P has the form

a—B

Where X EV, and V. E(V.UV, )

Every regular grammar is context-free, so regular language is also a context-free

one.
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Example 8.1: G1 =({E, a, b}, {a, b}, P,E), where P is the set of rules

E —> aFb,

E——>ab

This grammar generates the language L1 = {a'b" | » 21/, which is not regular.

8.2.1 Derivations
We know define the notations to represent a derivation. First we define two

notations ==cand =" = If o — Bis production of P in CFG and a and b are string

mv,Ur ,,then
alb==>6aBb

We say that the production @ — B is applied to the string « a4 to obtain« 84 or we
say that « a 6 directly « B 6.

Now suppose @, 0, 4, O_are string in(V,U7,y,

m2land 0 =60, 0,0, A== A, A== 0,,....... a, ==cad,

Then we say thatQ =*=: O

m 3

1e. ,we sayd, drivesd in grammarG. [fo drives §
1

by exactly isteps we say U= =6 0.

8.2.2 Sentential Forms

Derivation from the start symbol produce strings that have a special rule. We call

these “Sentential forms™. That is, if 6=¥_.v, P, §) is CFG , then any string o in

v,U v, ) such that s = *= QO is sentential form.

8.3 Context-Free Grammar Language

If G=(V,.,V, P, S) is a CFG, the language of G, denoted by L(G), is the set of

terminal strings that have derivations from the start symbol. That is
LG)={winV/S="=G w}

If a language L is language of some context-free grammar, then L is said to be

context-free language, or CFL.
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Example 8.2: Consider a grammar G=(V,_ ,V, P, §) where V, = {S}, V, = {a,b}
and set of production P is given by P = {S — 4Sb, S — ab}
Here S 1s the only non-terminal which is the starting symbol for the grammar; ‘a’
and ‘b’ are terminals. There are two production S — aSb and S — ab. Now we
will show how the string a’b’ can be derived.
S ==aSbh

== aabb

==d'l’

Here we need to apply the first production then second production. By applying
first production n-1 times, followed by an application of second production, we get

S ==aSh

== aaShb

==a" §p"
==24d'b"
Hence we say that language for the above grammar is

L(G)={d'b" /n>=1}

Example 8.3: Following is a CFG for the language

L(G) = {wew"/ w (a,b) }

Solution. Let G be CFG for language L= {wew" / w (a,b)" }
G=(V,,V. P, §)

here ¥, = {S}, V,={a, b, ¢} and P is given by

S — aSh

S — bSh

N—pe
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Let us check that abbcbba can be drived from the given CFG.

S ==aSa (usethe S — aSh)
== abSha (use the S — bSh )
== abbShba (use the S — bSh )

== abbcbba (use the S — ¢)
Example 8.4: Write a CFG for the regular expression

R=0"1(0+1)

Solution. Let us analyzes regular expression

R=0"1(0+1)

Clearly regular expression is the set of string which starts with any number of 0’s

followed by a one and end with any combination of 0’s and 1°s.
Let CFG be G=(V/,,V, P, S)
here V, = {S, A, B}

V,=1{0, 1}
and productions P are defined as

S — AIB
A—04| €

B— 0B|IB|E
Let us see the derivation of the string 00101

S ==24IB
== 04108
== 0041018

== 0010!
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So clearly G is CFG for regular expression.

Example 8.5: Write a CFG which generates strings having equal number of a's and
b's.

Solution . Let CFG be

G=(¥V, V. P35

¥, = 8%

V.= {a, b}

Where P is defined as S — aSbS | bSaS | €
W=bbabaabbaa

S == bSaS
== bbSaSaS
== bbaShSaSaS
== bbaShaSbSaSaS
== bbaShaaSbShSaSaS
== bbabaaSbSbSaSaS
== bbabaabaSbSaSaS
== bbabaabbSaSaS
== bbabaabbaSaS

== bbabaabbaaS
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== bbabaabbaa

Example 8.6: Design a CFG for the regular expression » = (@ + bf'=
Solution : Let G be CFG

G=(V, .V, P, )
v, = {8}
V,= {a, b}

P are defined as
S —aS
e
S—a
S—b
S—E
The word ab can be generated by the derivation
S ==aS

==>abS

==ab€

== ab
Or by the derivation S ==4S

==ab

Example 8.7: Design CFG for V,={a,b} that generate the set of

(a) All strings with exactly one a.
(b)  All strings with at least one a.

(c) All strings with at least 3 a’s.
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Solution . (a) Let CFG be G,
G =(V,,V, P, S)
V, =18}

¥y {a, b}

P is defined as
S — AaA
A—DbA|E
Let us derive a string bbaab
S == 4ad
==>bdad
== bbAdad
== bbAab4
== bbAabE

==>bbAab
We don’t have any choice for deriving second G so string bbaab cannot be derive

from G,
(b) Let CFG be G,

G=(V.,V, P 5
V, = {5.A}
V.= {a, b}

P 1s defined as

S — 4ad

b4 |E

A —ad
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Let us derive string baab
S == Aad

== bAaAd

== hadaA

== ha EAaA

== haaA

== haabA

== baab €

== baab
(¢) Let CFG be G;
and G,=(V,,V, P S)
¥, = {8, 4]
¥;=1abj}
P is defined as
S — AaAaAaA

A->ad|bd| E

8.4 Derivations

For any string, derivable from start symbol of the grammar, using the productions

of the grammar, there are two different derivations possible namely,
(1) Leftmost derivation
(2) Rightmost derivation

8.4.1 Leftmost Derivation

If at each step in a derivation, a production is applied to the leftmost variable (non-

terminal), then the derivation is called as leftmost derivation.
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Example 8.8: Let the grammar G be consist of
({E}. {+, % id}, P, E)

Where P is,

(1) E —E+E

(i) E—3BE*E

(i) E —id

and we want to generate the string «id +id~

Let us start with the start symbol i.e. ‘E’.
E== E + E , production (1)

== 1d + E, production (ii1) and applied to leftmost non-terminal

== 1d + 1d , production (3), applied to ‘E’ which is the only non-terminal.

8.4.2 Rightmost Derivation (or, Canonical Derivation)

If" at each step in a derivation, a production is applied to the rightmost variable

(non-terminal), then the derivation is called as rightmost derivation.

Example 8.9: Let the grammar G be consist of
(1B} §. %, id}, P, B)
Where P 1s,
(1) E—S3fH+F
i) E—3E*E
(i) E —id
and we want to generate the string “id + id *id”
L.et us start with the start symbol i.e. ‘£
E==E + E, production (1)
== E + E * E, production (ii), applied to rightmost ‘E’
== E + E * id, production (iii)
== E + 1id * 1d, production (1i1)

== id + id * id, production (iii)
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Above derivation is rightmost derivation as we are, replacing the rightmost

variable by the right-hand side of the production at every step in derivation.

8.5 Ambiguity in Context Free Grammar

The CFG for a language is said to be ambiguous if there exist at least one string
which can be generated (or, derived) in more than one way. That means, there can
be more than one rightmost derivation, more than one rightmost derivations and

also more than one derivation trees associated with such a string.

Example 8.10: Consider the following grammar,

E—E+E|E®*E|id
Let us derive the string “id + id *id”
(1) Using Leftmost Derivation:
E== E+E
== id+E
== d+E *E
== id+i1d*E
== id +id* id
OR
E== E+E
== E+E*E
== id+E*E
== id+id * E
== id+id * id
(1)  Using Rightmost Derivation:
E==E+E
==E+ E *E
==E -+ E *id
== E +id * id
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== id + id * id
OR

E==E * E

== E * id

== E+E *id

== E +id * id

== id + id * id

N

(a) First derivation tree for *“id +id * i1d”

D

(b) Second derivation tree for “id + id * id”
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Figure 8.1: Ambiguous Grammar
There can be two derivation trees as shown in figure 8.1, as there are 2 different
ways of deriving, one using start production as ‘E — £ + E’ and other using
E—3 B L2,
Thus, the grammar given is ambiguous. As there are two ways to derive, then the
question 1s, which one is the right derivation, or both are correct. The answer is,
first way to derive i.e. to start with ‘E + E’ is correct as id + id * id = id + (id * id)
because “*’ has higher priority than ‘+’. Therefore, basic operation is “+” of ‘id’
and ‘id * id’. Derivation tree 8.1 (a) is correct.

8.5.1 Removal of Ambiguity

We can remove the ambiguity to get the CFG which is equivalent to the ambiguous
grammar i.¢. generating the same set of words (same language). One technique
while removing the ambiguity from an expression grammar, one similar to what
we have seen, is postpone the higher priority operation or assign a separate non-

terminal to take care of that. This can be explained as follows.
Example 8.11: Consider the grammar,

E—>3E+E|E*E|id

Here, the problem of ambiguity is due to fact that *E’ is the only non-terminal
deriving two separate operations with different priorities. Here, **’ has higher
priority than ‘+°.

The grammar after removing the ambiguity i.e. the unambiguous grammar can be

written as follows,

E—SE+T|T
T —>T*F|F
F — id

This is obviously equivalent to the previous one. Let us derive the string “id + id *
1d”, the same string for which we had detected ambiguity in the grammar, using
this unambiguous grammar.
(i) Leftmost derivation

E==E+T
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=5 ] ]
==AF+T
== +T
=N +LEF
—=id+F*F
==id+1d*F
==»id +id * id
(ii) Rightmost derivation
E==2E+T
—=2E+T*F
-2 BT *id
=B+ F*id
-—=>E+id *id
=T+ id * id
==>F+id*id
==1d +1d *id
(iii)  Derivation tree
Now, as we can see, there 1s only one way to deriving the required string.

Therefore, there will be only one derivation tree as shown in the figure. 8.2.
O




Figure: 8.2 Unambiguous Grammar (Derivation tree for “id + id * id”)

8.6 Simplification of CFG

Following are the rules for having the given context-free grammar in the reduced

form:

(1)  Each variable and each terminal of CFG should appear in derivation of at

least one word in L(G).

(2)  There should be production of the form A — B, where ‘A’ and ‘B’ are
both non-terminals.

8.6.1 Removal of Useless Symbols

A symbol ‘X 1s useful, if there exists a derivation, sS=*=a x B=*=w, Where, ‘",

‘B are sentential forms and ‘w’ is any string in T : (w € T).

Otherwise, if no such derivation exists, then symbol *X* won’t appear in any of the

derivations that means, ‘X’ is a useless symbol.

Three aspects of useless of a non-terminal ‘X’ are as follows:

(1) Some string must be derived from ‘X’.

(i1)  “X” must appear in the derivation of at least one string derivable from ‘S’
(start symbol).

(111) It should not occur in any sentential form that contains a variable form

which no terminal string can be derived.
Example 8.12: G=(V, T, P, S) where V = {S, T, X}, T= {0,1}

8—20T | dF|X|0| 2 rule 1

T — 00 rule 2
Now, in the above CFG, the non-terminals are S, T and X. To derive some string

we have to start from start symbol S.

S
0T N —24T
00 T—00

Thus we can reach to certain string after following these rules.
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But if S — X then there is no further rule as a definition to X. That means there is

no point in the rule S — X. Hence we can declare that X is a useless symbol. And
we can remove this so after removal of this useless symbol CFG becomes
G =(V,T, P, S) where V= {5, T}, T= {0,1} and
P={S—0T|1T|0]1

T — 00}
S is start symbol.
Example 8.13: G =(V, T, P, S) where V= {S, A, B}, T= {0, 1} and
P={S—AIl11B|11A
S—B|11
A—0
B — BB} For removing useless symbols.
Solution. Now 1in the given CFG if we try to derive any string A given some
terminal symbol as O but B does not give any terminal string. By following the
rules with B we simply get sample no. of B’s and no significant string. Hence we
can declare B as useless symbol and can remove the rules associated with it. Hence
after removal of useless symbol we get,
S— Alll1l

A—0
8.6.2 Removal of Unit Production

A production of the form ‘A — B’ where, ‘A’ and ‘B’ both are non-terminals, are

called as unit productions. All other productions(including & - production) are non-
unit productions.
Elimination Rules:

For every pair of non-terminals ‘A’ and ‘B’,

1) If CFG has a unit production of the form ‘A — B’ or
1) If there 1s chain of unit productions leading from ‘A’ to ‘B’ such as,

e W
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Where, all X, s (i > 0) are non-terminals, then introduce new production(s)
according to the rule stated as follows:

If the non-unit production for ‘B’ are
B ¥ | L [ o

Where, O, O, .....are all sentential forms(not containing only one non-terminal)

Then, create the production for ‘A’ as,

A=y |0 |
Example 8.14: If the CFG is as below

s> ua.| 1B |C
A— 05|00
B=—»]|&
C—01

Then remove the unit productions.

Solution. S — C is a unit production. But while removing S — C we have to

consider what C gives. So, we can add a rule to S.

S—0A| 1B |01

Similarly B — A 1s also a unit production so we can modify it as
B—1/0S|00

Thus finally we can write CFG without unit production as
S—0A|1B |0l

A—0S|00

B—1[0S|00

C—01
Example 8.15: Optimize the CFG given below by reducing the grammar, S is start

symbol.

S— A|0C1
A — BJ01 10
C—E&|CD
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Solution : S — A — B is a unit production

C — € 1s null production

C — CD, B and D are useless symbol.

Reduction a grammar we have to avoid all the above conditions.

L&t S—A

i.e. A — B is a useless symbol because B is not defined further more.
S— 0110

ie. S—01|10]0C1

Wt C©—F£

Hence ultimately S — 01| 10

A — B but we can remove this production since B is a useless symbol.
Hence A— 01|10

But the start symbol S — 01 | 10

There is no A in the derivation of A so by considering A also as a useless symbol
we get final CFG as

S — 01|10

8.6.3 Elimination of & - production

Production of the form ‘A — & where, ‘A’ is any non-terminal is called as & -
production.

Surely, if * € 1s in L(G) for grammar ‘G’, we cannot eliminate all &€ - productions
from * G, but 1s € 1s not in L(G), then we can.

Theorem : If ‘L’ is a CFG generated by a CFG that include € - production, then
there exist another CFG without & - productions which generates either the whole
language ‘L. (if ‘L’ does not contain the word ‘ € ’) or else generates a language
containing all the word of ‘L.” butnot ‘€’ 1.e. L — { £ }.

The eliminate method is based on the concept of nullable non-terminals.
Nullable non-terminal:
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In a given CFG, if there is a non-terminal ‘N* and a production * N — &’ or, ‘N’

is deriving ¢ €’ in more than one steps ‘N =*= & ,then ‘N’ is called as nullable
non-termianl.
Example 8.16:

A~—B | &
B—a

In given grammar, ‘A’ is nullable non-terminal, but ‘B’ is not nullable.
Elimination Procedure:

The procedure to get rid of € - productions can be stated as follows:

The steps involved are

1) Delete all € - production from the grammar

i1) Identify nullable non-terminals

111) If there 1s a production of the form ‘A — Q’, where ‘A’ 1s any sentential
form containing at least one nullable non-terminal, then add new productions

having right hand Side formed by deleting all possible subsets of nullable non-

terminals from Q.

iv) If using step (iii) above, we get production of the form ‘A — & ’then, do
not add that to the final grammar.

Example 8.17: For the CFG given below remove the € - production

S — aSa

S — bSh

§— £

Solution . Now the €& - production is B — € we will delete this production. And

then add the production having B replaced by &€

A— 0B 1
If p=¢€

A—>01
Similarly A—F LB F—>§I
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A—0BI1|1BI1|01|1]
Similarly B— 08B
If B=€

B—0
Aswellas B — |
B—0B|IB|0]1I
Collectively, we can write
A—0BI1|IBI1|01|11
B—0B|IB|0]|1

8.7 Self Learning Exercise

Q.1 A context free language is called ambiguous if

a) It has two or more leftmost derivations for some terminal string W €
L (G)

b) It has two or more rightmost derivations for some terminal string W
eL(G)

c) Both (a) and (b)
d) None of these
Q.2  The context free grammar S — SS | 0S1 | 1S0 | € generates
a) Equal number of 0°s and 1°s
b) Unequal number of 0’s and 1°s

c) Any number of 0’s followed by any number of 1°s
d) None of these

Q.3 Consider the grammar G as given below S — aSa | hSh | € Which of the
following strings cannot be generated using the grammar G?
(a) aabbaabb
(b)  bbaabaab
(c) aaabbbaaa
(d)  none of these
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8.8 Summary

Context free grammar is a way of describing language by recursive rules called
productions. A CFG consists of a set of variables, a set of terminal symbols and a
start variable, as well as the productions. Each production consists of a head
variable and a body consisting of a string of zero or more variables and/or
terminals.

Beginning with the start symbol, derive strings by repeatedly replacing a variable
by the body of some production with that variable in the head.

The language of the CFG is the set of terminal strings can so derive; it is called a
context-free language.

For some CFG’s, it is possible to find a terminal string with more than one parse
tree, or equivalently, more than one rightmost derivation. Such a grammar is called

ambiguous.

8.9 Glossary

Derivation tree - graphical representation or description of how the sentence has

been derived or generated using the grammar.

8.10 Answers to Self-Learning Exercise

Q1 (o
Q2 (a)
Q.3 (d

8.11 Exercise

Q.1 FORTRANIis a
(a)  Regular language
(b) Context free grammar
(c) Context sensitive language
(d) None of these
Q.2 Which of the following does not belong to the context free grammar?

(a)  Terminal symbol
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(b)  Non-terminal symbol

(c) Start symbol

(d)  End symbol
Q.3  Show that the grammar S — a | abSb | aAb A — bS | aAAD is ambiguous.
Q.4  Design a CFG for the language L=4a" b™" | n>= 0}
Q.5 Consider a CFG S — AB | a A — b Identified and eliminate useless

symbols.

8.12 Answers of Exercise

Ql (b
Q2 (d

Q.3  Solution. Given grammar

S—a
S — abSb
S — aAb
A — bS
A — aAAb

Let us consider a string w = abab, it has two different derivations, as follows:
(i) S ==abSh == abab
(ii) S == adb == abSh == abab
Q.4 Solution : Let CFG be G for the language L
G=(,,V, 1. 9)
¥, =18}
V.~ {a, b}
and P is defined as
S— aSbb/ €
Let derive a string aaabbbbbb
S ==aShb

== aaShbbb
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== aaaShbbbbh
== gaa € bbbhbh

== gaabbbbbb
Which is required string.
Q.5 Solution. Given CFG is
S— AB|a
A—b
Here by observing the given CF(, it is clear that B is non-generating symbol.

Since A derive b, S derive a, but B is not deriving any string w.

So we can eliminate S S — AB from the context free grammar, now CFG

becomes
S—a
A—b

Here A is non-reachable symbol, since it cannot be reached by starting non-

terminal S.

S—a
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UNIT-9
Simplification of CFG

Structure of the Unit

9.0  Objective

9.1 Introduction

9.2  Chomsky Normal Form

9.3 Greibach Normal Form

9.4  Decision Algorithms for Context Free Languages
9.5  Pumping Lemma for Context free LLanguages
9.6  Self Learning Exercise

9.7  Summary

0.8  Glossary

9.9  Answers to Self Learning Exercise

9.10 Exercise

9.11 Answers to Exercise

9.0 Objective

In this chapter we shall focus upon the following topics

o Chomsky Normal Form

L Greibach Normal Form

® Decision Algorithms for Context Free Languages
® Pumping Lemma for Context free Languages

9.1 Introduction

The definition of context free grammars (CFGs) allows us to develop a wide

variety of grammars. Most of the time, some of the productions of CFGs are not
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useful and are redundant. This happens because the definition of CFGs does not

restrict us from making these redundant productions.

By simplifying CFGs we remove all these redundant productions from a grammar ,

while keeping the transformed grammar equivalent to the original grammar.
In this module two normal forms are presented for CFG:

= Chomsky Normal Form (CNF)

= Greibach Normal Form (GNF)

The pumping lemma for context-free languages describes a property that all
context-free languages are guaranteed to have. It 1s used to check given grammar is

regular or not.

9.2 Chomsky Normal Form

A grammar where every production is either of the form A = BCorA — ¢
(where A, B, C are arbitrary variables and ¢ an arbitrary symbol).

ie.

A context-free grammar G is in Chomsky normal form if every rule is of the form:
A—=>BCorA—a

Where a is a terminal, A,B and C are nonterminals, and B,C may not be the start

variable.
Example 9.1

S—AS|a
A—SA|b
(If language contains &, then we allow S = & where S is start symbol, and forbid

S on RHS.)
The conversion to Chomsky Normal Form has four main steps:

[A new start symbol S’ may be added with the production S =S , S is start
symbol of given CFG , this change guarantees that the start symbol of CNF
Grammar does not occur on the right hand side of any rule]

1 Eliminate the € productions.
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2, Remove the unit rules.

3 Replace every production that is too long by shorter productions.

4. Move all terminals to productions where RHS is one terminal.

1. Eliminate € Productions
Determine the nullable variables (those that generate £). Go through all
productions, and for each, omit every possible subset of nullable variables.
For example, if P AxB with both A and B nullable, add productions
P — xB | Ax | x. After this, delete all productions with empty RHS.

2. Eliminate Variable Unit Productions
A unit production is where RHS has only one symbol. Consider production
A — B. Then for every production B = &, add the production A — «.
Repeat until done .

3. Replace Long Productions by Shorter Ones
For example, if have production A — BCD, then replace it with A = BE
and E = CD. (In theory this infroduces many new variables but one can re-
use variables if careful.)

4. Move Terminals to Unit Productions
For every terminal on the right of a non-unit production, add a substitute
variable. For example, replace production A — bC with productions A =
BCandB—b

Example 9.2

Consider the CFG:

S — aXbX

X—aY |bY €

Y X |6

The variable X is nullable; and so therefore is Y . After elimination of € we obtain:
S — aXbX | abX |aXb | ab
X—=aY|bY|a|b
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Y—2X|¢

After elimination of the unit production Y — X, we obtain:

S — aXbX |abX |aXb|ab

X— aY |bY |a|b

Y — aY |bY |a|b|c

Now, break up the RHSs of S; and replace a by A, b by B and ¢ by C wherever not
units:

S— EF | AF | EB| AB
X—=AY |BY |a|b

Y =AY |BY|a|b|c
E— AX

F—BX

A—a

B—b

C =&
Example 9.3

Convert the following CFG into Chomsky Nomal Form:
S — AbA

A— Aal€
After the first step, one has:

S — ADbA |bA |Ab|b

A— Aala

The second step does not apply. After the third step, one has:
S— TA|bA|Ab|b

A= Aaja

T— Ab
And fially, one has:
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S— TA|BA|AB |b
A—>AC|a

T — AB

B—b

C—a
Example 9.4

Consider the grammar whose rules are:

S — ASA |aB
A-B|S
B —-bl|e

After first step of transformation we get:

50 -5

S — ASA |aB
A—-B]|S

Bobl|e

Removing B — €

Sg =35

S — ASA |aB|a

A— B|S|e

B—-b

Removing A — ¢

S5 .5

S — ASA |aB|a|SA|AS|S
A->B|S

B-b

Removing S - S

S0 = S

S — ASA |aB|a|SA|AS
A-B|S

B-b

Removing Sy — S

S, — ASA |aB|a|SA|AS
S — ASA |aB|a|SA|AS
A—-B|S

B b
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Removing A —» B

So — ASA |aB|a|SA|AS
§ — ASA |aB|a|SA|AS
A—B|S

B—-b

Removing A - S

So = ASA |aB|a|SA|AS
S = ASA |aB|a|SA|AS

A = b|ASA |aB|a|SA|AS
B-=b»b

Converting remaining rules
S, —» AA, |UB|a|SA|AS
S — AA, |UB|a|SA|AS
A — b|AA, |UB|a|SA|AS
Ay = SA

U—-b

B—b

NOTE: The conversion procedure produces several variables U; along with

several rules U; = a. Since all these represent the same rule, we may simplify the

result using a single variable U and a singlerule U — a

9.3 Greibach Normal Form

A context-free grammar is in GGreibach normal form (GNF) if the right-hand sides
of all production rules start with a terminal symbol, optionally followed by some

variables. A non-strict form allows one exception to this format restriction for

allowing the empty word (epsilon,€) to be a member of the described language.
The normal form was established by Sheila Greibach and it bears her name.

More precisely, a context-free grammar 18 in Greibach normal form, if all
production rules are of the form:
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where A is a nonterminal symbol, a is a terminal symbol, A;A; A3 -+ - A, is a

(possibly empty) sequence of nonterminal symbols not including the start symbol,

S is the start symbol, and € is the empty string.
Observe that the grammar does not have left recursions.
A CFG G=(V, T,R, S) 1s said to be in GNF 1f every production is of the form

A > aqa,where a€ T and a € F* 1., & 1s a string of zero or more variables.
Definition: A production UE R is said to be in the form left recursion, if

U:A—= A« forsome Ae V.

Left recursion in R can be eliminated by the following scheme:

A- Aaq| Aa,| Aas| -+ Aa, are all A left recursive rules and

A- By |B21B2 - Bs are all remaining A-rules then chose a new nonterminal, say
B

® Addthenew Brules B—a;|a;B 1<i<r

® Replace the A-rulesby A= ;| ;B 1 <i<s

This construction preserves the language

If¢ =(V,T,R,S) is a CFG, then we can construct another CFG G, = (V{,T,R, S)
in Greibach Normal Form (GNF) such that

L(Gy) = L(G) — {¢}
The stepwise algorithm is as follows:

1. Eliminate null productions, unit productions and useless symbols from the
grammar G and then constructa ¢’ = (V',T,R’, S) in Chomsky Normal
Form (CNF) gencrating the language L(G") = L(G) — {€}
Rename the variables like A4, --- A, starting with § = 4,

3. Modify the rules in R so that A; » A;y € R'thenj > i.
Starting with A, and proceeding to A,, this 1s done as follows:

(a)  Assume that productions have been modified so thatfor 1 < i < k,
Aj—> Ay € Rlonlyif j >

(b)  If Ay - A;y is a production with j < k , generate a new set of productions

substituting for the A j the body of each A j production.
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(c) Repeating (b) at most k — | times we obtain rules of the form Ay — A,y

p=k
(d) Replace rules A;, — A,y by removing left-recursion as stated above.
5. Modify the A4; — A;y fori=n—1,n-2,., 1 in desired form at the same time

change the B production rules.
Example 9.5: Convert the following grammar G into Greibach Normal Form

(GNF).

S — XA|BB

B —b|SB

X—b

A —Fa

To write the above grammar G into GNF, we shall follow the following steps:

L. Rewrite G in Chomsky Normal Form (CNF) :It is already in CNF.
2. Re-label the variables

S with A4
X with A,
A with A
B with Ay4

After re-labeling the grammar looks like:
Ay > AxAz|A4A,
A, — b|A,A,
A, = b
As;— a
3. Identify all productions which do not conform to any of the types listed
below:
A; = Ajx such thatj >
B; —» A;x;. such that j< n
A; - ax, suchthatx, €V andaeT
4. B eyl s identified
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To eliminate A;we will use the substitution rule A; = A;Az|A4A,.
Therefore we have Ay — ApA3A4|AsA4A4|b. The above two productions
still do not conform to any of the types in step 3.

Substituting for A, = b

Now we have to remove left recursive production Ay = A 444,
Ay = bA3A,4|b|DA3ALZ|DZ
Z > AgAg|AsAsZ
At this stage our grammar now looks like
Aq = AxA3|A4A,
Ay = bA3A.|b|bA3ALZ|DZ
Z = ByAg|AihaZ
A, = b
Ay —a
All rules now conform to one of the types in step 3. But the grammar is still
not in Greibach Normal Form!

All productions for A, A3 and A4 are in GNF For Ay = ArA3|ALA,

Substitute for Apand A4 to convert it to GNF
Ay = bAs|bAsAuA.|bAy|bAsAZ AL b7 A,
For Z = AyA,|A,ALZ

Substitute for A4 to convert it to GNF
Z = bAsA Ay | DAL DA AL ZAL DZAL DA ALALZIDALZ|DASALZALZ|DZALT
Finally the grammar in GNF is
Ay = bAs|bA3AsA|bAy|bAsAZAL|BZA,
Ay = bA3A4|b|bA3ALZ|BZ
Z = bA3AgAg|bAL|bA3ALZ AL DZ AL DAsALALZIDALZ|DAsALZALZ|DZALZ
A, = b
Az —a

9.4 Decision Algorithms for Context Free Languages

As usual, when we talk about “a CFL” we really mean “a representation for

the CFL, e.g., a CFG or a PDA accepting by final state or empty stack.

There are algorithms to decide if:

String w is in CFL L.
CFL L is empty.
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&5 CFL L is infinite.
Non-Decision Properties

Many questions that can be decided for regular sets cannot be decided for CFL’s.

° Example: Are two CFL’s the same?
® Example: Are two CFL’s disjoint?
How would you do that for regular languages? Need more theory (Turing
machines, decidability) to prove no algorithm exists.
Testing Emptiness
Theorem. 9.1 : Given CFG G, there is an algorithm for deciding if L(G) = @
Proof:
L. Use the algorithm for eliminating useless variables.
2. If the start variable is useless, return true (L(G) = @) else return false.
Testing infiniteness
Theorem. 9.2 : Given CFG G, |L(G)| < oo is decidable.
Proof:
L. Let G=(V, T, S, P).
Assume G has no A-productions, no unit productions, and no useless

variables or symbols.

2. Suppose there is an A € V such that A = *xAy.
3 x and y cannot both be empty, since G has no unit productions.
4. Since G has no useless variables = * uAv= * uzy, where u, v,and z € T*
3 Since A is repeating, S = *uAy = *ux"Ay" = ux"zy™v for
n=0.1,...
6. Thus, under the assumption that there is a repeating variable, L(QG) is
mfinite.
If there is no repeating symbol, then |L(G)| < o
8. The question thus reduces to whether there 1s a repeating variable.

There 1s an algorithm to decide if G has a repeating variable:
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fa) Construct a directed graph where there 15 a node for each variable, and an
directed edge from node A to node B if there 15 a production of the form A
— xBy.

(b}  Ifthe graph has a cycle, there 15 a repeating variable.

{c) There 15 an algorithm for detecting whether or not a digraph has a cycle
fe.g., depth first search).

Decision algorithm for testing finiteness of a CFL :

1. Test all mput strings beginning with those of length n {in nondecreasing
order of length} for membership. (we will discuss it later)

® If there is a string x with length n < |x| < 2n such that x € £, then L 18
infinite otherwise L 1s finite.

Proof : If |[x| Znandx € L., then x can be pumped according to the pumping

lemma and the language 15 infimte. We need to test strings of length less than 2n

only . Because if there were a string z = uvwxy of length 2n or longer, we can

always find a shorter string uwy € L,, , (by pumping lemma), but it 1s atmost n

shorter. Thus 1f there are any strings of length 2n or more we can repeatedly cut out

the substrmg vx to get, evenfually, a string whose length 15 in the range n to 2n-1.

Example 9.6

Let the gramamr be:

5—AB, A—aCbla, B—bB|bb C—cBS5

_ ———, -

L e, g ol
Cj“‘_{”’ S LD
% ) 4
e
B
Since there is a loop 1n the dependency graph, the language is infinite. The
derivation is § =% (G,Ebf))ig(fl'bf})i

Testing Membership
(riven a CFL L and a stnng x, the membership, problem 15 to determine whether

X E L?
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Given a PDA P for L, simulating the PDA on input string x does not quite work,

because the PDA can grow its stack indefinitely on € input, and the process may
never terminate, even if the PDA 1s deterministic.

So, we assume that a CFG G = (N, X, P, S)is given such that L = L(G).

Let us first present a simple but in-efficient algorithm.

Convert G to in G' = (N’,Z/, P/, S") CNF generating L(G) — {e}. If the input string

X = g, then we need to determine whether S ? € and it can easily be done using

the technique given in the context of elimination of € -production. If , X # €then
x € L(G")iff x € L(G). Consider a derivation under a grammar in CNF. At every
step, a production in CNF in used, and hence it adds exactly one terminal symbol
to the sentential form. Hence, if the length of the input string x is n, then it takes
exactly n steps to derive x ( provided x is in L(G”)).

Let the maximum number of productions for any nonterminal in G” is K. So at
every step in derivation, there are atmost k choices. We may try out all these
choices, systematically., to derive the string x in G’. Since there are atmost K¥lj.e.
K" choices. This algorithms 1s of exponential time complexity. We now present an
efficient (polynomial time O(n")) membership algorithm.

CYK Algorithm to decide membership in CFL

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses
the dynamic programming technique-solves smaller sub-problems first and then
builds up solution by combining smaller sub-solutions. It determines for each
substring y of the given string x the set of all nonterminals that generate y. This is

done inductively on the length of y.
CYK Algorithm

L Letw=Qq4, *** Ay

® We construct an n-by-n triangular array X containing sets of variables.
® Xij= {Var.iableﬂ |A =% a; - a}-}
® Induction on j—i+1. The length of the derived string.

2 Finally, ask if S is in X4,
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Basis :X;;={A|A - q;isaproduction}
Induction

Xi; = {A | there is a production A - BC and an integer kwithi <k <
j,such that B is in X, and Cisin X4 ;}

9.5 Pumping Lemma for Context free Languages

The pumping lemma gives us a technique to show that certain languages are not

context free

= Just like we used the pumping lemma to show certain languages are not
regular

— But the pumping lemma for CFL’s is a bit more complicated than the
pumping lemma for regular languages

Informally The pumping lemma for CFL’s states that for sufficiently long

strings in a CFL, we can find two, short, nearby substrings that we can “pump” in

tandem and the resulting string must also be mn the language.

To prove the Pumping Lemma first another given lemma will be proved,

Lemma 9.1: A parse tree with yield z must have a path of length m+2 or more.

Proof : If all paths in the parse tree of a CNF grammar are of length <m+1, then

the longest vield has length 2™, as in:

/"

O

m variables -<

One terminal

Y

v .
2™ terminals
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Statement of the CFL Pomping Lemma

Let L be a CFL. Then there exists a constant p such that 1f z 15 any string in L

where |z| = p, then we can write z = uvwxy subject to the following conditions:

1. |vwx| < p. This says the middle portion 18 not larger than p.

2 vx # £ We'll pump v and x. One may be empty, but both may not be
Bllmty' - -

L¥ Foralli> 0, uv'wx'y is also in L. That is, we pump both v and x.

(71ven any context free grammar (5, we can convert it to CNF. The parse tree

creates a binary tree.

Let (¢ have m variables. Choose this as the value for the longest path in the tree.

e The constant p can then be selected where p =27,

= Suppose a string z = uwwwxy where |z = p 15 in L{G}

® We showed previously that a string in L of length m or less must have a
vield of 2m-1 or less.

* Since p=2", then 2™ is equal to p/2.

® This means that z 15 too long to be vielded from a parse tree of lengthm.
- What about a parse tree of length nr+17

® Choose longest path to be mr-1, yield must then be 2™ or less

® Given p=2" and |z| < p this works out

® Any parse tree that yields z must have a path of length at least m+1. This 15

1llustrated m the following figure
Parse Tree

® F=uvwxy where |z| = p

® Variables A A, ... A,
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® If lc=m then at least two of these vanables must be the same, since only m
unique variables.

Suppose the variables are the same at A=A, wherekm <i<)j<k

Ay
: :\ A=A although we may
el S [ollow different
P ‘.
' { £ produetion mles for cach
# -\‘.‘T A 3 %
il e .S £
i R .
i ;//’I : A
-/-'{ - £ ” -"_,. '\___' , e
BT fa ™,
u LS v Lt b
. Condition2: vx F €
® Follows smce we must use a production from A, to A, and can’t be a

termuinal or there would be no AJ..

® Therefore we must have two variables; one of these must lead to A, and the

other must lead to v or x or both.

® This means v and x cannot both be empty but one might be empty.

A ]
z."‘\_
b
.- \
e 10N T
L N %
! %
I
. o
. F
Ry
s A .
# i W,
e b ]
A [ A n
i % 5
4 / 5 "
i | v X b

® Condition 1 stated that [vwx| < p
® This says the yield of the subtree rooted at A, 18 <p

® We picked the tree so the longest path was m+1, so 1t easily follows that
lvwx| < p < 2™l
(A, could be A, so vwx 1s the entire tree)
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P
[ W
= A
it ! b
& !
7 { A o
o _.-'?"-,L : i
Ed gl B .
; Ea | "
A Ay X s
P A, -,
__/ F g e ¥ -“L_ Ll
- ! gt B
I gt e x %

® Condition 3 stated that for all i 2> 0, w'wx'y isalso m L
® We can show this by noting that the symbol A=A,
® This means we can substitute different production rules for each other
® Substituting A, for A, the resulting string must be in L.
Ag
/
{
.FJ
AJ
o b e = .
//:q.."";.,-'"--l I|l." h\\ '-\_x' L -\\
® Substituting A, for A,
® Result:
uvlwxiy,

I
uv wx'y, etc

e e haak vy
P s 3




o We have now shown all conditions of the pumping lemma for context free

languages

® To show a language is not context free we

— Pick a language L to show that it is not a CFL

- Then some p must exist, indicating the maximum yield and length

= of the parse tree

- We pick the string z, and may use p as a parameter

- Break z into uvwxy subject to the pumping lemma constraints

— lvwx| < p, [vx| # €

= We win by picking i and showing that uv'wx'y is not in L, therefore L is not
context free

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let us

take an example and show how it is checked.

Example :Find out whether the language L = { x™y"2™| n > 1} is context free or

not.

Solution : Let L 1s context free. Then, L must satisfy pumping lemma.

At first, choose a number n of the pumping lemma. Then, take z as 017 2". Break
7 into uvwxy, where |[vwx| < n and vx # €. Hence vwx cannot involve both 0s
and 2s, since the last 0 and the first 2 are at least (n+1) positions apart. There are
two cases —

Case 1 — vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would have
to be in L, has n 2s, but fewer than n 0s or 1s.

Case 2 — vwx has no 0s.

Here contradiction occurs. L is not a context-free language.
Hence, L is not a context-free language.

9.6 Self Learning Exercise

L. Consider the following language L= {a'b'c'd'|n> 1}, Lis
A. CFL but not regular

B. CSL but not CFL
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C. regular
D. type 0 language but not type 1

2. While converting the context free grammar into Greibach normal form,
which of the following is not necessary
A, Elimination of null production
B. Elimination of unit production
o Converting given grammar in Chomsky normal form
D. None of these

3. Pumping lemma for context free grammar is used for
A. Proving certain languages are not context free
B. Proving language is infinite
C Both (a) and (b)
D None of these

9.7 Summary

There are special forms for CFGs such as Chomsky Normal Form, where every
production has the form A — BC or A — C. The algorithm to convert to this form

involves (1) determining all nullable variables and getting rid of all € productions,
(2) getting rid of all variable unit productions, (3) breaking up long productions,
and (4) moving terminals to unit productions. The key advantage is that in
Chomsky Normal Form, every derivation of a string of n letters has exactly 2n — 1
steps.

The pumping lemma gives us a technique to show that certain languages are not
context free. Informally The pumping lemma for CFL’s states that for sufficiently
long strings in a CFL, we can find two, short, nearby substrings that we can

“pump” in tandem and the resulting string must also be in the language.

9.8 Glossary

CNF :A context-free grammar G is said to be in Chomsky normal form if all of

its production rules are of the form:
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4= BC, or
A%a, or
S—2E

GNF : a context-free grammar is in Greibach normal form (GNF) if the right-

hand sides of all production rules start with a terminal symbol, optionally followed

by some variables.

9.9 Answers to Self-Learning Exercise

1. B
: D
3. A

9.10 Exercise

Q.1 A context free grammar G 1s in Chomsky normal form if every production
is of the form
a) A=->BCorA—> A
b) A-oBCorA—a
c) A-BCaorB-= b
d) None of these
Q.2 Which of the following statement is false?

a) The context free language can be converted into Chomsky normal
form

b) The context free language can be converted into Greibach normal
form

c) The context free language is accepted by pushdown automata

d) None of these
Q.3 A context free language is called ambiguous if

a) It has two or more lefimost derivations for some terminal string

w € L(G)
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Q.4

Q.5

Q.6

Q.7

Q.8

Q.9

b) It has two or more leftmost derivations for some terminal string
® € L(G)

c) Both (a) and (b)

d) None of these

The context free grammar S = A111|S1, A — A0 | 00 is equivalent to

a) {0"1" | n=2, m=3}

b) {0"1™ | n=1, m=5}

c) {0"1" | n should be greater than two and m should be greater than
four}

d) None of these

The context free grammar S — SS | 0S1 | 1S0 | € generates

a) Equal number of 0’s and 1°s

b) Unequal number of 0’s and 1°s

c) Any number of 0’s followed by any number of 1’3

d) None of these

CYK algorithm is named CYK because it was invented by

a) John Cocke, Tadao Kasami and Daniel H. Younger

b) Jass Carry, Tom Kosami and Daniel Richy

c) Cammy lenna, Yousaf, Kosami

d) None of these

The CYK algorithm start with

a) Chomsky normal form grammar

b) Greibach normal form grammar

c) Both (a) and (b)

d) None of these

Pumping lemma for context free language breaks the strings into

a) Two parts

b) Three parts

c) Five parts

d) Six parts

In pumping lemma for context free language
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Q.10

a) We start by assuming the given language is context free and then we
get contradict

b) We first convert the given language into regular language and then
apply steps on

c) Both (a) and (b)

d) None of these

The CYK algorithm constructs table from where we can conclude whether

wisinL

a) O(n?) time

b) O(n®) time

c) O(n) time

d) None of these

9.11 Answers of Exercise

Qla
Q.2d
3¢

Q4a
QS5a

Q6a
Q7a
Q8¢

Q9a
Q.10b
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UNIT-10

Pushdown Automata

Structure of the Unit

10.0
10.1
10.2
10.3
10.4
10.5
10.6
107
10.8
10.9

Objective

Introduction

Basic Definition of PDA
Acceptance by PDA

Pushdown Automata and CFG
Pushdown Automata & Parsing
Self Learning Exercise

Summary

Answers to Self Learning Exercise

Exercise

10.0 Objective

After reading this chapter you will be able to:

Understand Pushdown Automata

Build PDA (Pushdown Automata) using context Free Grammar

Understand the relation between CFG and PDA

Understand the Parsing mechanism using PDA

10.1 Introduction

In previous chapters, we have discussed the concept of FA and CFG with their

acceptability. As FA accept regular languages like ab*, However Finite Automata
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has some limitations that it fails to accept context free language like L={a"cb" |
n>=0}.

It 1s noted that L has some number of a’s and b’s string separated by c. Since finite
automata have strictly finite memories whereas L requires storing an unbounded
string of a’s and b’s. Since n is unbounded, the counting cannot be done with finite
memory. So due to these limitations we need machine that has ability to store and
matches a sequence of symbol in reverse order.

In this unit we discuss a machine called ‘Pushdown Automata’ where we use a
stack data structure for machining equal number of a’s and b’s without counting
them directly.

The PDA is used in theories about how computing is done by machines. It is more
powerful than a Finite State Machine but less capable then Turning machine. It can

be used in designing a parser.

10.2 Basic Definition of PDA

Input Tape

B | ettt Al ]la|b

h M o A

_}”

Start Marker Read Head, moving towards left to

right only one cell at a time

Finite Control

Top

Pushdown

Figurel0.1: Model of Pushdown Automata store/Stack
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il.

1.

Pushdown Automata (PDA) is a type of automation which is supported by stack.
Stack 1s a data structure which allows operation like push (for inserting e¢lement)
and pop (for deleting elements) in LIFO (Last in First out) manner. It also has a
pointer called ‘top’ which pointing fo the top element in the stack and inserting and
deleting is done only from top to bottom of the stack. Basically a push down

automation 1s Finite state Machine + a Stack.

There are mainly two differences between PDA and FA operation:-

® PDA uses the top of stack to decide which transition fo take.

® PDA manipulates the stack as part of performing a transition.

Before giving a formal definition of PDA, we will discuss the model of pushdown
automata (PDA) and the way of operations PDA can do. PDA has three major

compone nts:

Input tape: It is read only input tape divided into cells; each cell can hold
symbol.

Finite store control: This component decide the head movement and

pop/push operation on the basic of mput symbol and stack element. After
doing these operations move to the new clements from PDS.

A Stack with infinite size: A Stack also known as Pushdown store. It 1s

read-write pushdown store i.e. we can add or remove elements from PDA.

A pushdown automaton (PDA) is formally defined as 7-tuples:
P=(Q, 2, [,0,q0, 70, F), where

Q 1s a finite non empty set of state.

2 is the finite set of input alphabet/symbol:

[ is a finite set of stack alphabet;

O is a transition function from Q x (2 U {#}) x F to the set of finite subset Qx [ *
q0 € Q is the initial state;
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70 € [ is the initial stack symbol: and

F & Q is the set of accepting states.

For better understanding the definition, we take an example.

Example: Suppose P=(Q, 2.8 G- Zq» F) where
Q={apqiai 2=ta. b}, ['=la, 7}.F={qy

O is given by
O (4, &, Z)=1(qy, 2Z)}
| I
h 4 J’ 1‘
Present Input Symbol Top element Next
State pointed by head of Stack State

At some time PDA is in some state q,, and PDS (pushdown store) has symbol ‘a’
from [ . The PDA reads an input symbol ‘a’ and top most symbol ‘Z’ in PDS using

the above transition function O. After transition, the PDA moves to transition state

q, and insert "a’ after ‘Z’ in stack.

O (q,. b, a)={(q,. ")}

a will M top of
stack added

upon 7.

!

Some point PDA is in some state q,and PDS has symbol ‘a’ from [". The PDA
reads on input symbol ‘b’ and read top most symbol ‘a’ in PDS. Using the above

transition function, the PDA moves to transition state g, and ‘a’ is popped from

stack.
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Present Input Symbol Top element Next * means a will be
State pointed by head of Stack State pop trom the stack,

which was top

element previously.




0 (cl1@, a, Z )= {(qy, %)}

|
\ 4 4 | Y \Ir

Present Input Symbol Top element Next No change in Stack
State pointed by head of Stack State top.

The above transition function does nothing. It is just read the input from the tape

and does not make any change to the state and the symbol at the stack.
Instantaneous Description for PDA

Instantaneous description {ID) for PDA is a snapshot of Pushdown automaton in

action and can be used to describe a Pushdown automaton.

Let P =(Q, Z, I', 6, Qs Zos IF) be 2 PDA. The Instantaneous description for PDA
can be written as

(q,x, Q)
Where,

g € Q and represent the current state of PDA.
X € > and represent input string to be processed.

a € [ and represent stack symbols.
Example:
{q,abed..., ABCD....)

In the above example

® q 1s the current state of PDA.
® abed. .. is input string to be processed in the order.
o ABCD... is stack symbols, where A is at the top of stack then B and follow

in that order.

In ID representation the moves is represented by ‘|--‘as ID1 |-- ID2, means that the
PDA moves from ID1 to ID2.

“ID1 |--* TD2” means ID1 is the initial Instantaneous description and after many

moves ID2 is the final Instantaneous description of the PDA.
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10.3 Acceptance by PDA

Since PDA has an additional structure called stack/pushdown store, the PDA

accept the input string on the basics of final state and in terms of PDS.

Acceptance by Final State
LetP=(Q, 2, T, 8, q, Z, F), the language accepted by P is the set

L(P) = {w € 2 *| (90, W> Zy) |--* (qp, ~, )}

The above statement say that the language accepted by P is the set of all the string
that can put P into a final state at the end of the string. The content of stack u is
irrelevant to this definition.

Acceptance by Empty Stack
LetP=(Q, 2, [, &, q,. Z, F), the language accepted by P is the set

L(P)=1{w € Z* | (qns w, Zg) |-=* (g, ™)}
The above statement says that after many moves the final state is g.and input

symbol read is * and stack symbol is also empty i.e. *.

Example:

$ |a |& |a |bh [(H|lB]|® |2 |2]% % | ascswcecassae

Input Tape T

Finite state Control (q,)

(dg> p> Dp---)

Stack
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The above example shows the input tap filled with strings aaabbb or a’b” the initial
state 18 g, and initially Z,, 1s stored at the top of push down store.

Now we shows the following input string is acceptable by PDA or not. The basics
is first finite state control read the first symbol ‘a’ of the string aaabbb and PDA

will store ‘a” to the top of the stack. Suppose by doing this head moves to the right
cell and the next state will be q,.

The above action can be written as

& (q0:3.Zy)=(ql, aZ,)

Now again PDA reads the symbol ‘a’ pointed by head with state q, and stack top
symbol ‘a’ action may be result into next state q, and push ‘a’ into stack and head
moves toward next input symbol of the tape as:

$ a a g B |[BBE 2] ]| %% | o
N -
Input Tape

Finite state

( -~ a
Control (g,)

a

ZC-

This action can be written as

& (qu a, a)= (qn aa)
|

| : _ — !

Present Input Symbol Top element Next *a’ will be top of
State pointed by head of Stack State stack added upon
\'.a"

Similarly for every b, a will be pop from the stack by the PDA.

The action can be written as

0 (q;, b, 2)=(ay, ")

214



So the acceptability of the string can be summarize as when ‘a’ is found we will
push mto pushdown store without changing its state and when we found first ‘b’
then state will be change and pop the element of stack whenever another ‘b’ is
found then pop the top element of the stack. So if there is equal number of a” s and
b’ s then after scanning the complete string the stack is empty and then we will

change the current state to final state.

Therefore language acceptance by PDA will be determined by

® When the state 1s final state

. Stack is empty or special symbol (Z,) on to stack

® String has been scanned completely.

Example: Construct a PDA which recognized L = {wew" | wE {a, b}*}.

Solution:

Letthe P=(Q, 2, T, &, q0,20,F)

Where,

Q= {4y %> A5
F={q¢
I=(a,b,7Z,)

The transition functions can be described as
Case |: Whenw=w = €

&(qy, ¢, Zy) =( q; , Z0) accept
Case 2: If ‘a’ or ‘b’ comes with Z, on top then push ‘a’ or ‘b’ on to push down
store.

& (qps @, Z) =( qp 8Zy)

& (qo. b, Zy ) =( q, bZ,)
Case 3: When ‘¢’ is input symbol then PDA do nothing onto stack but change the
state from q, to q,
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& (qp» €, @) = qy, a)
5 (qn! C, b)=(q|, b)
Case 4: If input is ‘a’ and top of stack is ‘a’ then pop ‘a’ or if input is ‘b’ and top is
also ‘b’ then pop ‘b’.
0 (q,a,2) =(q. ")
& ((-]1~ b,b)=( q, ")

Case 5: When all input are read and stack is also empty then moves to the final

state.
6 G- Zy ) a5 Zy)
(b,*[b)
(a.a) (b, b|")

(c.ala) (a, a[")
(¢, bjb) 1)
G

N/

")

Example: Construct a PDA to tecognized L ={a"b" | n >= 0}

Solution: Let the PDA P=(Q, Z, I, 8, q0, Z0, F) where Q= {q,,. q. q;} and F={q.}
Transition function can be described as O

O (g, ~, M =(q, ,”) For empty string

Oy 2. ") ~(qy . A)

O(g, b.A)=(q, . )

O(q,,b,A)=(q, ")

O(q,. A, *)=(q, ,"); accept |--
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The moves can be described as

(qfiv aabb5 ZE}) |“ (Q{lv abbv AZl‘r) |" (qns bba AAZH) |" (qla b! Azn) |" (qf‘v Aa Zl'l)
The PDA halts and accepted.

The Transition Diagram of above example 18 shown as:

(a."|A)

\ >, A1

¢4 _ A1)

10.4 Pushdown Automata and CFG

As we see in the previous units, a context free grammar provides a simple and
mathematically precise mechanism for describing the methods by which phrases in
some natural language are built from smaller blocks capturing the block structure
of sentences 1n a natural way. This section will be focused on the conversion from
PDA to CFG and vice versa with their relationship with CFG.

Conversion from PDA to CFG and vice versa:

First we show that for every context free programmer there is a non-deterministic
PDA which accepts the language that are provided by context free grammar
Algorithm to find PDA corresponding to given CFG:

Input: A CFG G=(V,T,P,S)

Output: Equivalent PDA, P=P=((Q, 2, [, D, q0, 70, F)

Step-1: Convert the production of CFG into GNF

Step-2: The PDA will have only one state {q}[optional]

Step-3: The start symbol of CFG will be the start symbol in the PDA

Step-4: All non-terminals of the CFG will be the stack symbol of the PDA

and all the Terminals of the CFG will be the input symbol of PDA
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For each production in the form A—>aX where a is terminal and A, X

are combination of terminal or non-terminals make a transition O
(g.a, A).
Example: Construct an NPDA that accepts the language grammar by programmer

with production: S->aSbb | a
Solution: First we transform grammar in GNF (Grebian Normal Form) as

S—> aSA|a

A > bB

B->b
Corresponding PDA will have three state {q0, q and g2} will qO is starting and
final.
First we start symbol S is put on the stack by the following transition function:

0 (95 " %) > (9, 82)

(1) For production S & aSA transition function 1s o) (q;. a.8) 2 (q;.SA).
(11)  For production S = a transition function is O (q,-4a,8) 2 (q;, 7).
(i)  For production A = bB transition function is O (q,, b, A) = (q,, B).
(iv)  For production B = b transition function is O (49, b.B) =¥ (q,s%):
The appearance of the start symbol on top of the stack signals the completion of
the derivation and the PDA is put into its final state by

0 fus % B> 10"
Algorithm to find CFG corresponding to a given PDA:
Input — ACFG,G=(V,T,P,8)

Output — Equivalent PDA, P = (Q, Z, s, O, g0, I, F) such that the non-

terminals of the grammar G will be {Xwx | w.x € Q} and the start state will be
AQO,F.

Step 1 Foreveryw,x,y,z€ Q. m&€ Sanda, b € Z, if O (w, a, £) contains (v,

m) and (z, b, m) contains (x, £), add the production rule Xwx — a Xyzb in

grammar G.
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Step 2 For every w, x, v, z € Q, add the production rule Xwx — XwyXyx in

grammar G.

Step 3 For w € Q, add the production rule Xww — £ in grammar G.
10.5 Pushdown Automata & Parsing

Parsing is used to derive a string using the production rules of a grammar. It is used
to check the acceptability of a string. Compiler is used to check whether or not a

string is syntactically correct. A parser takes the inputs and builds a parse tree.

A parser can be of two types —

° Top-Down Parser — Top-down parsing starts from the top with the start-
symbol and derives a string using a parse tree.

o Bottom-Up Parser — Bottom-up parsing starts from the bottom with the
string and comes to the start symbol using a parse tree.

Design of Top-Down Parser

For top-down parsing, a PDA has the following four types of transitions:

® Pop the non-terminal on the left hand side of the production at the top of the
stack and push its right-hand side string.

® If the top symbol of the stack matches with the input symbol being read,
pop it.

® Push the start symbol ‘S’ into the stack.

® If the input string is fully read and the stack is empty, go to the final state
.

Example: Design a top-down parser for the expression "x+y*z" for the grammar G

with the following production rules —
PiS—S+X | X, X—=2X*Y|Y, Y —(5))id

Solution: If the PDA is (Q, Z S, 0, q0, I, F), then the top-down parsing is —
(x+y*z, 1) F (x +y*z, SI) b (xt+y*z, S+XI) F (xty*z, X+XI)
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Fety®e, YHX ) F it #6X0) (v, £ XD | 2. XD

F (y*z, X*¥VT) I vz, v*¥Y1) (%2, *¥1) - (z, YD) iz, 20) - (E. 1)

Design of a Bottom-Up Parser

For bottom-up parsing, a PDA has the following four types of transitions —
Push the current iput symbol into the stack.

Replace the right-hand side of a production at the top of the stack with its
left-hand side.

If the top of the stack element matches with the current input symbol, pop
it.

If the input string is fully read and only if the start symbol ‘S’ remains in
the stack, pop it and go to the final state ‘F".

Example: Design a top-down parser for the expression "x+y*z" for the grammar G

with the following production rules —

B

'S SHX | X, X > X*Y | Y, Y — (8) ] id

Solution: If the PDA 1s (Q, Z, S, 6, q0, I, F), then the bottom-up parsing 1s —

(x+ty*z, ) F (+y*z, xI) F (+y*z, YD) I (+y*z, XI) I (+y*z, SI)

F (%2, +8SI) | (%2, y18I) | (*z, Y+SI) - (*z, X+S1) |- (z, *X+S81)

(€, z*X1SI) k- (€, Y*X+SI) F (€, X+8I) F (€, SI)

10.6 Seclf Learning Exercise

Q.1  PDA is the machine format of

a) Type-0 Language
b) Type-1 Language
c) Type-2 Language
d) Type-3 Language

Q.2 Which is not true for model of PDA?

a) PDA contains a stack.
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Q3

Q4

b) The head reads as well as writes.

c) The head moves from left to right.

d) Input string 1s surrounded by infinite number of blank in both side.
The difference between finite automata and PDA is in .

a) Reading Head.

b) Input tape.

c) Finite Control.

d) Stack.

Which of the following is not true?

a) Power of deterministic automata is equivalent to power of

nondeterministic automata.

b) Power of deterministic pushdown automata 1s equivalent to power of
non-deterministic pushdown automata.

c) Power of deterministic Turing machine is equivalent to power of
non-deterministic Turing machine.

d) All the above.

10.7 Summary

This unit can be summarized as:

Pushdown automata uses stack as extra memory for keeping information of

past scanned symbols.

Accepting a string in Pushdown Automata will possible when string is

completely scanned, stack 1s empty or machine is in final state.

Designing of pushdown automata will be possible by empty store, final

state and sometimes by both.

There 1s equivalent context free grammar for push down automata and vice

versd.

When we change context free grammar to pushdown automata, the

grammar should be in GNF.

PDA can also be used in parsing a string.
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The Parser can be of two types: Top-down parser and Bottom-Up parser.

Both the parsing can be performed using PDA.

10.8 Answers to Self-Learning Exercise

Q.1
Q.2
Q.3
Q.4

(c)
(b)
(d)
(b)

10.9 Exercise

Q.1

Q.2
Q.3

Q.4

Q.5

Q.6
Q.7

Construct a PDA (Pushdown Automata) accepting by empty store each of
the languages-

(i) {&"b"| n>=1}

(i)  {a"b’"| n>=1}

(iii)  {a"b"¢" | m>n>=1 }
(iv) {a"b™|m>n>1}

Construct a PDA accepting by final state each of the language given in Q.1.

Construct a PDA accepting the set of all strings over (a,b). Consisting of

equal number of a’s and b’s.
Construct a PDA accepting by final state for the language containing even

number of a’s over Z = {a, b}. Convert it into context free framer (CFQG)

also.

Construct a PDA accepting the set of all even length palindrome over {a, b}
by empty store.

Design a PDA which converts infix to prefix
Construct the equivalent PDA for the following CFGs.
(1) S >Saa | aSa | aaS

(i) S->(5)(S)a
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(i) S >XaY|YbX
X 2YY |aY|b
Y =b | bb
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UNIT-11
Turing Machine

Structure of the Unit

11.0  Objective

11.1 Introduction

11.2  Turing Machine Model

11.3 Representation of Turing Machine
11.4 Language Acceptability of Turing Machine
11.5 Design of Turing Machine

11.6 Techniques of Turing Machine
11.7  Self Learning Exercise

11.8 Summary

11.9 Glossary

11.10 Answers to Self Learning Exercise
11.11 Exercise

11.12 Answers to Exercise

11.0 Objective

After reading this chapter you will be able to understand the most powerful

abstract computing device, the Turing machine and the following:

® Understand the standard Turing machine and its definition
e Understand the computing problem solved by Turing machine.
® Turing Thesis

11.1 Introduction

In the later chapters, we have seen several abstract models of computing devices
such as Finite Automata and Pushdown Automata, the concept of regular language
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and context-free language and their association with the Finite automata and
Pushdown automata. In the previous chapters it is noted that the pushdown
automata 1s more powerful than the Finite automata. However, none of the above
“seem to be” as powerful as the real computer. This diverts our attention to the

more powerful abstract model of computing device called Turing Machine.

Turing Machine was invented in 1936 by Alan Turing. Turing Machine is
considered to be extremely simple calculating device but very powerful device. It
is stated by Church — Turing thesis that any algorithmic procedure that can be
carried out by human/computer can be carried out by a Turing Machine. So, Turing

machine provides an ideal theoretical model of' a computer.

11.2 Turing Machine Model

.................... B|B|B |a [a, |3, 3 [ a | B |B | ..cciaien
A
Tape 1s divided into cell Read Write Head
and of infinite length

Finite Control

Figurell.1: Turing Machine Model

A Turing machine 1s a mathematical model which consists of:
Tape: It is divided into cell; each cell can hold one of a finite number of symbols.

[nitially the input (a finite-length string) is placed on the tape. All other tape cell
holds a special symbol called Blank, denoted by B.
It is noted that the Blank (B) is a tape symbol, not the input symbol.

Tape head: It is associated with the tape, can read-write and move in both left or

right on the tape.

Finite Control: A move of the TM is a function of the state of the finite control

and the tape symbol scanned. In one move the TM can:
1. Change state.
-4 Read/Write the tape symbol in the cell scanned
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3. Move the tape left or right.

Definition: A Turing Machine M is a 7 tuple:
M=(Q,?2, o, qo, B, F) where

Q 1s the set of internal states

Z 1s the 1nput alphabet/symbol

[ is a finite set of symbols called tape alphabet/symbol
O is the transition function and given by

go € Q is the initial state

Belisa special symbol, called Blank.

F is the set of final states.
The transition function O is defines as

0:Qx[ >Qx[ x{LR}

In general O is a partial function in Q x O its interpretation gives the principle by

which a Turing Machine operates. The arguments of O function are the current

input symbol and current state and the result of the O function is the next state,

new symbol on the tape and R/W head movement (L or R).

This can be better understood by an example:

Suppose the transition function is given by O (q5, b) = (q8, ¢, R). This means the

current symbol is g5 and the current symbol under R/W head is b. Now after

performing the action of the above transition function the state changes to g8, the

input symbol 1s replaced by ¢ and the R/W head is moves towards right.

.................... B a b d

B

Figurell.2: Current Status of TM.
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.................... B a C d B

!

State

g8
Figurell.3: TM status after performing the transition function.

11.3 Representation of Turing Machine

The following method 1s used to describe the Turing Machine:

1. Instantaneous Description using move relation
1l Transition Table and
1il. Transition diagram

Instantaneous Description for TM

Instantaneous description (ID) of TM 1s a snapshot of a Turing Machine m action

and can be used to describe a Turing Machine.

AnID of a Turing Machine M is a string afy where:
B is the present state of the Turing Machine M.

Y = suppose the first symbol of Y substring is ‘a’ under R/W head. And Y has all

the subsequent symbols of the input string

(X is the substring of the input string formed by all the symbols to the left of a.
Example: A snapshot of Turing machine is shown in fig 11.4. Suppose we want to

obtain Instantancous Diagram.

............ B a4 al a2 al al a2 B

N

R/W Head

State

q3
Figurell.4: An example of Turing Machine
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The above snapshot of TM shows that the current symbol under R/W head is al
and the present state of TM is q3. The non-blank substring on the left of al
(symbol under R/W head) is a4, al, a2. The non-blank sequence to the right of al
(symbol under R/W head) 1s al, a2. Thus the ID of the given example can be

represented as

ad ala2 ala2
< o LB Al * >

Left Sequence Right Sequence

Present State Symbol under
R/W head

Figurell.5: Description of 1D.

So, the 1D for the above example is adala2q3alala2.
Moves ina TM

Suppose Turing Machine M = (Q, Z, [.D0, qo, B, F)
We use the notation |-- to represent moves of a TM M from one configuration to

another. |-- is used as usual.
For example:

Ifd (gs. b) = (g, ¢, R) then a possible move might be
abbabg5baab |-- abbabcg®aab

For another transition function O (q., ¢) = (q,. a, L) the move might be

abbabe ¢, aab |-- abbab q,aaab

ID of the above transition functions can be written as

abbab g baab |-- abbabc g aab |-- abbab g aaab

Transition Table for TM

We can also define transition function in the form of table, called Transition Table.

1t 0 (q. a) = (¥, €L, [3) then in transition table GBY is in O-column and in the g-
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row. So if GBY is in the column then it means A is written in the current cell, [3

give the movement of head (L or R) and Y denote the new state into which TM

enters.
Example:

Suppose a TM has five states g, ¢, g, q, and g, where g, is the initial state and g, is
the (only) final state. The tape symbols are 0, 1, and B. The transition table

equivalent to transition function can be described as the table:

Table 11.1: Transition Table

Tape Symbol
Present B 0 1
State
—>q, 1Lq, ORq,
q, BRgq, OLgq, 1Lq,
q; BRq, BRq,
q, ORq, ORq, 1Rq,

OLqg,

The initial state in the transition table 1s marked with —> and the final state with
0.

Transition diagram for Turing Machine

Another way to represent Turing Machine is with the help of Transition Diagram.

In the Transition Diagram, the states are represented by vertices and directed edges
are used to represent transition of states. The labels are triples of the form (O, [3,
Y)whered, el and y e {L, R}.

When the directed edge from qi to qj with label ((, B, Y). it mean that

8(q,. )=(q};,B.Y)

Therefore,

= present symbol under R/W head.
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B = symbol write in the cell under R/W head.

Y = R/W head movement (either Left or Right).

The initial state in the transition diagram is marked with —> and the final state

with @ :

Example: A Turing Machine M is defined as M= ({ql, q2}, {1, B}, {1, B}, 6, ql,
B. {ql}) where the & (transition function) is define as

6 (q1, 1)=(q2.B.R)

8 (q2, H=(ql, B, R)

For the above example the transition diagram can be represented as

(1,B,R)

(I,B,R)

Figurel1.6: Turing Machine of Example .

The above Turing Machine is recognizing all the strings consisting of an even

number of 1°’s.

11.4 Language acceptability of Turing Machine

A Turing Machine can be viewed as Language accepters. A string w is written on
the tape, with blanks filling out the unused portion. The Machine is started at initial
state q0 with the read-write head positioned on the letimost symbol of w. A string
w is treated to be accepted by Turing Machine if after the sequence of moves, TM

enters the final state and halts.
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Definition:

Let Turing Machine M = (Q, Z, [, D, qo, B, F), then the language accepted by M
is
LM)={wE Z+: qOw |--* x1qx2 for some q; € F, x1,x2 € I e

As we saw earlier the tape in the Turing Machine is infinite in both directions (Left
and Right). The Blank symbol (B) written on the either side of the w assure that
the string w is restricted to well defined region on the tape. That is why Blank

Symbol (B) is excluded from the set of input alphabets ( Z). Without this
assumption machine could not limit the region in which it must look for the input
string.

The set of languages that a Turmmg Machine can accept is ofien called as
recursively enumerable language or RE language. A language is Turing-

recognizable if some Turing Machine recognizes it.
Example: Design a TM that accept L = {0"1" : n>= 1}
Solution:

We require the following moves:

(a) If the lefimost symbol in the given input string w is 0, replace it by x and
move right till we encounter a lefimost 1 in w. Change it to y and move

backwards.

(b) Repeat (a) with leftmost 0. If we move back and forth and no O or 1

remains, move to the final state.
(c) For the strings not in the form 0"1", the resulting state has to be nonfinal.
Now, we construct a TM M as follows:
M=(Q,2,[,0,q0,B, F)
Where,
Q ~ (QosY15% G- 44e)
2 = {01}
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[ =10,1xy.B}

The transition diagram of M that accept L = {0"1": n>= 1} is shown in the

figure.

Ly L) (v.y.L)

% ) 2001

(v,y,R)

\
r\ (BB.R) .
(y.y.R) CQ)

The move for input string 0011 and 010 are given as

q,001 [-- xq,011 |-- x0q,11 |- xq,0y1 |-- q,x0y1 |-- xq,0y1 |--xxq,yl |--xxyq,1 |--
XXQYY [=-XQXYY |--XXqaYY [--XXY QY [--XXyyd; [-- Xxyyq;B |- xxyyBq,B
Hence 0011 is accepted by M.

93010 |-- xq; 10 |--q,xy0 |--xqy0 |-- xyq,0

As (q;, 0) is not defined, M halts. So the input string 010 is not accepted by M.

11.5 Design of Turing Machine

There are some basic guidelines for designing a Turing Machine:

a)

The fundamental objective in scanning a symbol by R/W head is to know
what to do in the future. The machine must remember the past symbols
scanned. The Turing machine can remember this by going to the next

unique state.
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b) The number of states must be minimized. This can be achieved by changing
the state only when there is a change in the written symbol or when there is
a change in the movement of the R/W head.

The above guideline can be better understood by taking some of the examples.
Example: Design a Turing Machine over {1,B} which can compute a
concatenation function over »_ = {1}. If a pair of words {w1, w2} is the input then
the output has to be wlw2.

Solution:

Initially w1 and w2 are written on the tape separated by B. Suppose wl =1 and w2
= 1 then the tape looks like

............ B (B |B |1 B |1 |B |B |B |B |coswssenes

After processing, the output will be look like

............ B (B |B |1 I (BB |B B [B |icesssmss

We can follow the following steps to design the Turing machine:

1. Frist we find the separate symbol B and replace B by 1.
2 Find the rightmost 1 and replace 1 by B.
3. Finally, move the R/W head to the initial position.

The moves can be describe as

q,1B1 |- 1q,B1 |- 11q,! |--111g,B |--11q,B |-- 1q,1BB |--q,11BB |-- q,B11BB |--
Bq,11BB

Now we draw the generalize transition diagram of Turing Machine that accept all

types of wl and w2 defined as per given language.

233



Transition Diagram

(1,LR) (1,L.R)

Transition Table

Tape Symbol
Present B 1
State
—>q, IRq, 1Rgq,
q BLg, BLq,
q; s5 -
s BRq, 1Lq,

o =

Example: Design a TM that copies strings of 1’s

Solution:

We can follow the following steps to design the Turing Machine:
M replaces every 1 by the symbol a.
M replaces the rightmost a by 1.

Thus for the rightmost 1, M added character a and 1.

1
2
3. M goes to right end of the string and write character a and 1.
4
5 This process can be repeated.

Now, we design the TM M such that tape has ww after coping w € {1}*
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M = ({qp» G1» > G }» {1}, {1, 2, B}, O, @ B, {q,})

Transition Diagram:

(1,a,R)

(1,1,1) (B.LL)

A

Jo

(B.B.L)

Transition Table:

Present B

State

—>q, BLq,
q, BRq,
q, 1Lq,

L

(1,L,R)

(B,B.R)

Tape Symbol
1

aRq,
1Lq,
1Rq,

A sample computation is given below:

qol1 |-- ag,l |-- aaq,B |--aq,a |-- alq,B |--aq, 11 |--q,all |--1q,qq |--11g,1 |-- 111q,B
~-11g,11 |-- 1,111 |--q,1111 |--q,B1111 |--g,1111

11.6 Techniques of Turing Machine

Writing the Turing Machine for complicated languages can be a difficult and

boring. But one can use some techniques. The goal of this section is to convince
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any language that a computer program can recognize will also be recognized by a

Turing Machine.

° Storing a tape symbol in the finite control

As we know states are being used for remember the symbol. We can build a T™M

whose states are pairs [q, a] where q is the state and ’a’ is a tape symbol stored in
[q, a]. So the new set of states becomes Q x [ .

This can be better understood by taking an example. Consider a TM that

recognizes the language

L. = ab* + ba*
In this example TM first remembers the first symbol and check that the same
symbol does not appear anywhere i.e. if the symbol is ‘@’ then TM stores symbol

‘a’ and check that whether ‘a’ is not repeat anywhere in the tape. The same case if

the first symbol is *b’. We can represent as:
O (g5 2)=([a, al, &, R)

O (g, ) =([q, b, b, R)

O (lq. al.b) = ([g, al. b, R)

O ([q. b]. a) = ([q, b, &, R)

O ([4.a]. B) = (q» B.R)

O ([9 bl. B) = (4, B, R)

e Multiple tracks

Earlier we saw TM with a single tape. In Multiple tracks TM the tape is assumed to
be divided into various different tracks. Now the tape alphabet is required to
consist of k-tuple of tape symbol where k is the number of track. The only
difference between the standard Turing Machine and Multiple tracks TM 1s the set

of tape symbols. In the case of the standard Turing Machine tape symbols are
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element of [ and in case of multiple tracks Turing Machine it is [, The moves are

defined in a similar way.

Example: A TM with 2-tracks is shown in figure

............ B (B [B|B|B|B|B[B[B [B|. ..
e Bl1|[t]o ]|t [t]BlBIBIB]|. ... \
Y
T Track 2
State
q Track 1

Tape position in two-track is represented by [x, y], where x is symbol in track 1

and y is in tack-2. The states, Z, F, q0, F of a two-track machine are same as for

standard machine.

A transition of a two-track machine reads and writes the entire position on all

tracks.

O is: O(qi, [x, y]) = [qj, [z, w], d], where dE {L,R}. The input for two-track is put
at track-1, and all positions on track-2 is initially blank. The acceptance in multi-
track is by final state.

L Subroutine

If we want a repetitive work in any computer language then subroutine is used. We

can implement this facility for TMs as well.

First, a TM program for the subroutine is written. This will have an initial state and
a return state. After reaching the return state, there is a temporary halt. For using a
subroutine, new state are introduced. When there is a need for calling the
subroutine, moves are effected to enter the initial state for the subroutine (when the

return state of the subroutine 1s reached) and to return to the main program of TM.

237



11.7 Self Learning Exercise

Q.1  Which of the following can be used to simulate any turing machine?
a) Finite State Automaton
b) Universal Turing Machine
c) Counter machines
d) None of the above

Q.2 Which of the following are correct statements?

a) TMs that always halt are known as Decidable problems.
b) TMs that are guaranteed to halt only on acceptance are recursive
ennumerable.
c) Both (a) and (b).
d) None of the above.
Q.3 L ={0"1":n>=1} is accepted by?
a) Finite automata.
b) Moore Machine.
c) Turing Machine.
d) None of the above.

11.8 Summary

In this chapter you learned about Turning machine and its variants. As the turning
machine is the most powerful machine in the universe. We also look the different
way to represent the TM Authentically by transition diagrams, transition table and
by ID s.

The set of language that can be accepted by the TM is called as recurring
enumerable language or RE language by accepting the language grammar; the
turning machine has a powerful enough to make the subroutine and further make
some bigger program. This makes the turning-church thesis corrects which suggest

that nothing is powerful enough in comparison to turning machine. The legacy of
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™ s

known from the fact that any algorithm is exists only when its

corresponding TM would be made.

11.9 Answers to Self-Learning Exercise
Q.1(b)
Q2 ()
Q.3 (d)
11.10Exercise
Q.1  Construct a TM with one Tape, that accept the language L=40"1" | n>=0}.
Assume that at the start of computation the tape head is on the leftmost
symbol of the input tape.
Q.2  Construct a TM that copies string of 1’s on the input tape.
Q.3  Prove that the following function are computable functions:
a) f(x) =3x
b) f(a,b)=2a+3b
c) f(a)=a mod 5
d) f(a,b) =a-bifa<b
f(a,b)=0 if a<=b
Q.4 Design a TM to recognize the following Language:-

a)  L={0"1"0"|n>=1}
b)  L={WW"|Wis in (0+1)*}

c) The set of string with an equal number of 0’s and 1°s

References and Suggested Readings

Peter Linz, An Introduction to Formal Languages and Automata, Jones and
Bartlett Publication, Third Edition.

K.L.P. Mishra, N. Chandrasekaran, Theory of Computer Science, BPB
Publication, Prentice-Hall of India, Second Edition.

239




H.E. Hopcraft and J.D. Ullamn, Introduction to Automata Theory,
[.anguages and Computation, Narosa Publications.

J.C. Martin, Introduction to Languages and the Theory of Automata, Tata
McGraw-Hill.

240



UNIT-12

Decidability and Recursively Enumerable

Structure of the Unit

12.0  Objective

12.1 Definition of an Algorithm

12.2  Decidability

12.3  Decidable Languages

12.4 Undecidable Languages

12.5 Halting Problem of Turing Machine
12.6  The Post Correspondence Problem
12.7 Summary

12.8 Glossary

12.9 Exercise

12.10 Answers to Exercise

12.0 Objective

In this chapter we shall focus upon the following topics

® Algorithm, Decidability and Recursively Enumerable Languages.

12.1 Definition of an Algorithm

An algorithm is a well-defined computational procedure that takes some value, or

set of values, as input and produces some value, or set of values, as output.

An algorithm is thus a sequence of computational steps that transtorm the mput

into the output.

A solution for a given problem may be in the form of an algorithm or a program.
An algorithm is a step by step procedure for solving the given problem. An

algorithm 1s independent of any programming language and machine. An
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alzorithr 158 so called a Prewds Code. Pseudo means false. An algonthm 15 called
a false code as 1t 15 oot tagged w0 any specific language syotax. 4 program isa
language specific irmplersentation of the algonthm & program 15 synooymous with
Code.

Properties of an Algorithm
A algorithro moust bave followisg five propernes.

. Finiteness

. Cefiniteness
. laput

. Ciutput

. E fiech veness

Wit bermrgeate g irtenaroe o

¥ oaraqe

Adon T ety sep b be carizd out st
Ak o0 b5 afa REmblgLo gs ¥ soea ed

5% Zeic o o INpULs Bal & poeRied
FRNEA p AT ey

i o O faess el b araiiss hat
102 3 pacified rzlaticr o rouks

operaticrs musta be sulizewis basic

Figore: 12.1. Properties of an Algorithm
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Steps to develop an Algorithm

iy ' I:!E'lﬁf'f m'rrd'!r aats and
Fhﬂﬁ;&mh.am’l reed M acir e

Fﬂﬁaﬂ Fequres Ligi)

- |derbiy waal heeds > be
Write Be Absanim .m'n.:{ﬂﬂl arvd e il 11 e
computed [Regelee Logn)

Figme: 122, Steps to develop an Alpprithm

12.2 Decidability

The terrn decidable consected with the decision problem, the queston of the
existence of an efficient roethod for determimuog ruerubership 1o a set of formulas,
or, ruore specificall v, an al gonthr that return & Boolean val ve enther true or fals.
Assurpe that a language be any set of anogs (or words) over a given fione set of
alpbabet. The alphabet could cosast of the symbols we pormaly us for
corrmuaicanon, such as the ASCI| characters oo a keyboard, 1scluding spaces and
punctuation roarks. 1o this way an y story can be regarded asa "word ",

A language 15 called decidable 1f there exis any rmeethod to deterrmine whether a
Ziven word belongs to that |angusge or not.

Working bypothesis |- Decidability is well defined sbove.

The above meononed bypothes s 15 cerainl v reasonable. Oo the other band, taking

1nto conaderation that the concept of definability 15 not well defined, one rmght
wonder whether the stuation for decdabihity 1s different. Church' thesis says that nt
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is, and in a very profound way. Here it 1s concluded without invoking Church’'

thesis, so we stick with the working hypothesis.

An algorithm or recipe for recognizing languages is anything that can be fed a
word over the given alphabet and that depending on its input either "accepts” the
input after some time, or "rejects"” it, or runs forever without accepting or rejecting
its input. An algorithm is halting, or guaranteed to halt, if the third possibility does
not occur, i.e. if it accepts or rejects within a finite amount of time. Any method
that qualifies for the definition of decidability above counts as a halting algorithm
for recognizing languages.

12.3 Decidable Languages

Proposition: The decidable languages are closed under union and intersection.

Proof: Let L and M be languages that are decided by algorithms A and B
respectively. In order to decide their union (or intersection) simply run A and B in
parallel on the same given input string until they either accept or reject. The input
string is accepted if and only if either one (or both, respectively) accepts it, and

rejected otherwise.

Proposition: The decidable languages are closed under complementation.

Proof: Upon halting, simply exchange the verdicts accept and reject.

A language is called semi-decidable (or recognizable) if there exists an algorithm
that accepts a given string if and only if the string belongs to that language. In case

the string does not belong to the language, the algorithm either rejects it or runs

forever.

Clearly, any decidable language 1s recognizable. We still have to see whether or
not there are recognizable languages that are not decidable, and whether or not

there are languages that are not recognizable.
Proposition: The recognizable languages are closed under union and intersection.

Proof: Let L and M be languages that are recognized by algorithms A and B

respectively. In order to decide their union (or intersection) simply run A and B in
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parallel on the same given input string. The input string is accepted when either
one (or both, respectively) accepts it.

Theorem: A language is decidable if and only if both it and its complement are
recognizable.

Proof: Surely, a decidable language is recognizable. Moreover, if a language is
decidable, then so is its complement, and hence that complement is recognizable.
Now suppose a language [. and its complement i1s recognizable. Let A be a
recognizer for L, and B for its complement. A decision method for L is obtained by
running A and B in parallel on a given input string. In case A accepts the string, it
is accepted as a member of L, and in case B accepts it, it is rejected as member of
L.. One of these outcomes will occur within a finite amount of time.

Definition: An enumerator is an algorithm that doesn't take an input, and outputs a
possibly infinite sequence of strings, allowing repetitions.

A language is called enumerable if there exists an enumerator that outputs exactly

those words that belong to that language.

Theorem: A language is recognizable if and only if it is enumerable.

Proof: Suppose a language L 1s recognizable. Let A be the algorithm that
recognizes the strings that belong to L. It 1s not hard to come up with an
enumerator that enumerates all pairs (w, n) with w a string and » a natural number.
Construct an enumerator E for L. as follows: enumerate all pairs (w, n), and for
each such pair, run algorithm A on string w for » minutes. If in that time A accept
w, output w as part of the enumeration. If it doesn't, just go on with the next pair.
As every string in L will be accepted by A in a finite amount of time, it will be
enumerated by E (infinitely often). Strings not accepted by A will never be
enumerated.

Now suppose L is enumerable. Let E be an enumerator for L. Define algorithm A
as follows: given an input string w, run E until it outputs w; when that happens

accept. In case E will never output w, the algorithm A will run forever without

accepting w. Therefore A accepts exactly those strings that are enumerated by E.
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Based on this result, the words "semi-decidable”, "recognizable” and "enumerable"

may be used interchangeably.

Working hypothesis II: An algorithm can be presented as text, i.e. as a string of

letters from the finite alphabet we use for communication.

The hypothesis above is extremely plausible, and can be taken for granted. Any

method to recognize the strings in a language can be put into words.

Now take as alphabet all symbols used for communication, and consider the
algorithms for recognizing languages over that alphabet. Such an algorithm can be
represented (or given) by a string over that very alphabet. As any string can be fed
to an algorithm, one distinguishes those algorithms (represented as strings) that

accept themselves, from those that don't.

12.4 Undecidable Languages

Theorem: There exists an unrecognizable language.

Proof: Consider the set L of algorithms (for recognizing languages) - represented
as strings - that do not accept themselves. [ claim that L. is an unrecognizable
language. For assume that there is an algorithm, represented as a word w, that
recognizes L. Suppose that w accepts itself. Then, by the definition of L, w is not in
L. But by the definition of w recognizing L, w must be in L. This 13 a contradiction.
Now suppose that w does not accept itself. Then, by the definition of L, w is in L.
But by the definition of w recognizing L, w cannot be in L. This is a contradiction
as well. As both possibilities concerning w accepting itself lead to a contradiction,
the assumption that their exists an algorithm recognizing L must be false.

Therefore L is not recognizable.
Hypothesis: For each piece of text we can decide whether it counts as an

algorithm for recognizing languages or not.

The hypothesis above is extremely plausible, for when one cannot decide from a

piece of text whether it is an algorithm or not, it appears impossible to apply that

algorithm to recognize a particular language, and hence it is no algorithm at all. On

the other hand, onc might argue that there are pieces of text for which it is a
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judgment call to decide whether they are sufficiently precise to count as an
algorithm. However, it appears that this kind of judgment calls can be resolved in
variety of ways, and that each of these ways leads to a workable version of the

hypothesis above.

Theorem: There exists a language that is recognizable but not decidable.

Proof: Consider the set M of algorithms (for recognizing languages) - represented
as strings - that do accept themselves. | claim that the language M is recognizable
but not decidable. For the first claim, construct an algorithm recognizing M as
follows: when presented with a string w, check if w 1s an algorithm for recognizing
languages or not. If not, reject. If so, run the algorithm represented by w on the

string w. Accept exactly when w accepts. This algorithm clearly recognizes M.

For the second claim, suppose that M would be decidable. Then also its
complement would be decidable, as well as the intersection of its complement with
the language of all algorithms for recognizing languages. But this intersection is
exactly L, the language shown to be unrecognizable, and thus surely undecidable,

in the previous proof. This contradiction shows that M is undecidable.

Corollary (the acceptance problem): The language AP of all strings (v, w) where v
1s an algorithm accepting the word w 1s recognizable but undecidable.

Proof: That AP is recognizable is shown in the same way as for the language M
above. Construct an algorithm recognizing AP as follows: when presented with a
string (v, w), check if v is an algorithm for recognizing languages or not. If not,
reject. If so, run the algorithm represented by v on the string w. Accept exactly

when w accepts. This algorithm clearly recognizes AP.

That AP is undecidable follows by reduction to the undecidability of the language
M above. Suppose we would have an algorithm deciding AP. Then an algorithm
for deciding whether a string w is in M would simply consist of feeding the string
(w, w) to the algorithm deciding AP. As M is undecidable, such an algorithm

cannot exists, and hence AP must be undecidable as well.

The acceptance problem as formulated above suffers from ambiguity: it may be

that a given string can be parsed in several different ways as a pair (v, w). This
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happens if there are commas in v or w. A solution to this problem is to write any

LI

comma "," appearing in v or w as "\, and any backslash "\" as "\". Under this

convention the comma separating v from w 1s uniquely recognizable as such.

We say that an algorithm halts on input w if it either accepts or rejects the word w

(in a finite amount of time). An algorithm is halting if it halts on every input.

Corollary (the halting problem): The language HP of all strings (v, w) where v is

an algorithm halting on the input w is undecidable.

Proof: by reduction to the undecidability of AP. Suppose we would have an
algorithm deciding HP. Then an algorithm deciding AP is obtained as follows.
Feed the input string to HP. If it is rejected, reject. Otherwise, the input string must
have the form (v, w) in which v is an algorithm halting on input w. So run v on w
and check whether w is accepted. One finds out about that in a finite amount of

time, because it is known already that v will halt.

12.5 Halting Problem of Turing Machine

Turing machines are capable of doing any computation that computers can do, that
is computationally they are equally powerful, and that any of their variations do
not exceed the computational power of deterministic Turing machines. It is also
conjectured that any "computation” human beings perform can be done by Turing

machines (Church's thesis).

Halting Problem

One of well-known unsolvable problems is the halting problem. It asks the
following question: Given an arbitrary Turing machine M over alphabet = {a , b},

and an arbitrary string w over, does M halt when it is given w as an input ?

[t can be shown that the halting problem is not decidable, hence unsolvable.
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12.6 The Post Correspondence Problem

The Post correspondence problem is an undecidable decision problem that was
introduced by Emil Post in 1946. Because it is simpler than the halting problem

and the Entscheidungs problem it is often used in proofs of undecidability.

The Post correspondence problem (due to Emil Post) is another undecidable
problem that turns out to be a very helpful tool for proving problems in logic or in

formal language theory to be undecidable.

12.7 Summary

Algorithms play very crucial role in performance improvement. They are not only
method but as important as hardware technology. Recursively enumerable
languages are known as type-0 languages in the Chomsky hierarchy of formal
languages. All regular, context-free, context-sensitive and recursive languages are

recursively enumerable.

12.8 Glossary

Algorithm: An algorithm is a well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as
output.

Decidability: A problem is decidable if some Turing machine decides (solves) the
problem.

Regular Language: a regular language is a formal language that can be expressed
using a regular expression, in the strict sense of the latter notion used in theoretical
computer science.

Context-free Language: a context-free language (CFL) is a language generated
by some context-free grammar (CFG).

Context-sensitive Language: a context-sensitive language is a formal language
that can be defined by a contexi-sensitive grammar (and equivalently by a

noncontracting grammar).
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Recursive language: a formal language (a set of finite sequences of symbols taken
from a fixed alphabet) 1s called recursive if it 1s a recursive subset of the set of all

possible finite sequences over the alphabet of the language.

Recursively enumerable Language: A recursively enumerable language is a
recursively enumerable subset in the set of all possible words over the alphabet of

the language.

12.9 Exercise

Q.1 Let L1 be a recursive language. Let L2 and L3 be languages that are
recursively enumerable but not recursive. Which of the following

statements is not necessarily true?
(a) L2 — L1 is recursively enumerable.

(b) L1 —L3 is recursively enumerable
(c) L2 M L1 is recursively enumerable

(d) L2 U L1 is recursively enumerable
Q.2 IfL and L' are recursively enumerable, then L is
(a) Regular
(b) context-free
(c) context-sensitive
(dy  recursive

Q.3 Let L1 be a recursive language, and let L2 be a recursively enumerable but

not a recursive language. Which one of the following is TRUE?
L1'--> Complement of L1

[.2" --> Complement of [.2

(a) [.1" is recursive and [.2" is recursively enumer-able

(b)  L1"is recursive and L2' is not recursively enumerable

(¢c) LI1'and L2' are recursively enumerable
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Q.4

Q.5

Q.6

(D

L1' is recursively enumerable and L2' is recursive

Which of the following is true?

(a)
(b)

(c)

(d)

The complement of a recursive language is recursive.

The complement of a recursively enumerable language is recursively

enumerable.

The complement of a recursive language is either recursive or

recursively enumerable.

The complement of a contexi-free language 1s context-free.

For any two languages L1 and L2 such that L1 is context free and L2 is

recursively enumerable but not recursive, which of the following is/are

necessarily true?

L.
A

(c)
(d)

L1' (complement of L1) is recursive
[.2' (complement of L.2) is recursive

L1' is context-free

L1'U L2 is recursively enumerable
1 only

3 only

3 and 4 only

1 and 4 only

Let X be a recursive language and Y be a recursively enumerable but not

recursive language. Let W and Z be two languages such that Y' reduces to

W, and Z reduces to X' (reduction means the standard many-one reduction).
Which one of the following statements is TRUE

(a)
(b)
(c)
(d)

W can be recursively enumerable and 7 is recursive.
W an be recursive and Z is recursively enumerable.

W 1s not recursively enumerable and 7 is recursive.

W is not recursively enumerable and Z is not recursive
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Q.7  Consider the following types of languages:
L1 Regular,
L2: Context-free,
L3: Recursive,
[.4: Recursively enumerable.
Which of the following is/are TRUE?
[. L3'U L4 1s recursively enumerable
II. L2 U L3 is recursive
IIL. L1* U L2 18 context-free
IV. L1 U L2'is context-free
(a) T only (b) I and III only (¢) Land IV only (d) L, II and IIT only

12.10 Answers to Exercise

Ans.1: b
Explanation:

a) Always True as {Recursively enumerable - Recursive ) is Recursively
enumerable

b) Not always true as L1 - L3 = L1 intersection { Complement L3 ). L1 is
recursive , L3 is recursively enumerable but not recursive Recursively
enumerable languages are NOT closed under complement.

c) and d) Always true Recursively enumerable languages are closed under

intersection and union.
Amns.2: d

Explanation: If L is recursively enumerable, then L' is recursively enumerable if

and only if L 1s also recursive.
Ans.3:b

Explanation: Recursively enumerable languages are known as type-0 languages in

the Chomsky hierarchy of formal languages. All regular, context-free, context-
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sensitive and recursive languages are recursively enumerable. Recursive
[.anguages are closed under complementation, but recursively enumerable are not
closed under complementation. If a languages L is recursively enumerable, then
the complement of it is recursively enumerable if and only if L is also recursive.
Since L2 is recursively enumerable, but not recursive, L2' is not recursively

enumerable.
Ans.4: a
Ans.5: d

Explanation:

1. L1' (complement of L1) is recursive is true L1 is context free. Every context
free language 1s also recursive and recursive languages are closed under

complement.

2 L.2' (complement of LL2) is recursive 1s false: Recursively enumerable

languages are not closed under set difference or complementation

3 LL1' 1s contexi-free: Context-free languages are not closed under

complement, intersection, or difference.

4. L1' U L2 is recursively enumerable is true Since L1' is recursive, it is also
recursively enumerable and recursively enumerable languages are closed
under union. Recursively enumerable languages are known as type-0
languages in the Chomsky hierarchy of formal languages. All regular,
context-free, context-sensitive and recursive languages are recursively

enumerable.
Ans.6: c
Explanation: Since X is recursive and recursive language is closed under
complement. So X’ is also recursive. Since Z = X’ is recursive. (Rule : if Z is
reducible to X’ , and X’ is recursive, then Z is recursive.) Option (B) and (D) is
eliminated. And Y is recursive enumerable but not recursive, so Y’ cannot be
recursively enumerable. Since Y’ reduces to W. And we know complement of

recursive enumerable is not recursive enumerable and therefore, W is not
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recursively enumerable. So Correct option is (C). Here Y’ is complement of Y and

X’ 18 complement of X.

Ans.7: d
Explanation:

Statement 1: As L3 is Recursive and recursive languages are closed under
complementation, 13" will also be recursive. L3’ U L4 is also recursive as
recursive languages are closed under union.

Statement 2: As L2 is Context- Free, it will be recursive as well. L2 U L3 is
recursive because as recursive languages are closed under union.

Statement 3: L1* is regular because regular languages are closed under kleene —
closure. L1* U L2 is context free as union of regular and context free is context
free.

Statement 4: L2° may or may not be context free because CFL are not closed

under complementation. So it is not true. So I, II and III are correct.
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13.0 Objective

In this chapter we shall focus upon the following topics

® Growth Rate of Functions

® The Classes P and NP

® Polynomial Time Reduction and NP completeness
L Importance of NP complete problem

% Use of NP complete

® Other NP complete Problems

13.1 Growth Rate of Functions

One of the most important problems in computer science is to get the best measure

of the growth rates of algorithms, best being those algorithms whose run times
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grow the slowest as a function of the size of their input. Efficiency can mean
survival of a company.

When we look at input sizes large enough to make only the order of growth of the
running time relevant, we are studying the asymptotic efficiency of algorithms.
That is, we are concerned with how the running time of an algorithm increases
with the size of the input in the limit, as the size of the input increases without
bound. Usually, an algorithm that is asymptotically more efficient will be the best
choice for all but very small inputs.

13.2 The Classes P and NP

The first is a class which contains all of the problems we solve using computers. If
we think about the problems we actually present to the computer we note that not
too many computations require more than O(nB) or O('n4) time. In fact, most of the
important algorithms we compute are somewhere in the O(log n) to O(n3) range.
Thus we shall state that practical computation resides within polynomial time

bounds. There is a name for this class of problems.

The class of polynomially solvable problems, P contains all sets in which
membership may be decided by an algorithm whose running time is bounded by a

polynomial.

Besides containing all of what we have decided to consider practical computational
tasks, the class P has another attractive attribute. Its use allows us to not worry
about our machine model since all reasonable models of computation {including
programs and Turing machines) have time complexities, which are polynomially
related.

That was the class of problems we actually compute. But there is another important
class. This one is the class of problems that we would love to solve but are unable

to do so exactly.

Consider another problem that of finding a minimal length tour of n cities where
we begin and end at the same place. (This is called the closed tour problem.)
Again, there are many solutions; in fact n factorial different tours are possible.
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And, once more, if we have a tour, we can easily check to see how long it 1s. Thus
if we want a tour of less than some fixed length, we can quickly check candidates

to see if they qualify.

This is interesting and provides some hope of solving problems of this kind. If we
can determine the worth of an answer, then maybe we can investigate promising

solutions and keep the best one.

Let us consider a class of problems, which all seem very complex, but have
solutions, which are easily checked. Here is a class, which contains the problems
for which solutions can be verified in polynomial time.

Definition: The class of nondeterministic polynomially acceptable problems, NP,

contains all sets in which membership can be verified in polynomial time.

This may seem to be quite a bizarre collection of problems. But think for a
moment. The examination scheduling problem does fit here. If we were to find a
solution, it could be checked out very quickly. Lots of other problems fall into this
category. Another instance is closed tours of groups of cities. Many graph
problems used in CAD algorithms for computer chip design fit in here also. That’s
the difference: A problem is in P if we can decide them in polynomial time. It is in

NP if we can decide them in polynomial time, if we are given the right certificate.

13.3 Polynomial Time Reduction and NP Completeness

In previous section we discussed P and NP classes. The general class of problems
for which some algorithm can provide a solution in polynomial time is called
"class P" or just "P". For some problems, there is no known way to find a solution
quickly, but if one is provided with information showing what the solution is, it is
possible to verify the solution swifily. The class of problems for which a solution
can be verified in polynomial time is called NP, which stands for "nondeterministic

polynomial time."

A reduction is a way of converting one problem to another problem, so that the

solution to the second problem can be used to solve the first problem.
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® Finding the area of a rectangle, reduces to measuring its width and height

® Solving a set of linear equations reduces to inverting a matrix.

Reducibility involves two problems A and B. If A reduces to B, you can use a
solution to B to solve A. When A is reducible to B, solving A cannot be “harder”

than solving B. If A 1s reducible to B and B 1s decidable, then A is also decidable.
If A 1s undecidable and reducible to B, then B 1s undecidable.

We want prove some problems are computationally difficult. As a first step, we

settle for relative judgments:
Problem X is at least as hard as problem Y
To prove such a statement, we reduce problem Y to problem X:

If you had a black box that can solve instances of problem X, can you solve any
instance of Y using polynomial number of steps, plus a polynomial number of calls
to the black box that solves X?

If problem Y can be reduced to problem X, we denote this by

¥, X
This can be interpreted as “Y 1s polynomial-time reducible to X.” It also means
that X is at least as hard as Y because if you can solve X, you can solve Y.
Suppose! <, X', and there is a polynomial time algorithm for X. Then, there is a
polynomial time algorithm for Y.
If ¥ <,X and Y cannot be solved in polynomial time, then X cannot be solved in
polynomial time. It is contradicting the assumption “if we could solve X in
polynomial time, then we'd be able to solve Y in polynomial time”. Thus if we
could find one hard problem Y, we could prove that another problem X is hard by

reducing Y to X.

Example: Reduction of Independent Set to Vertex Cover

Independent Set: Given graph G and a number k, does G contain a set of at least k

independent vertices?
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Vertex Cover: Given a graph G and a number k, does G contain a vertex cover of

size at most k.
Can we reduce independent set to vertex cover?

Theorem: If G =(V, E) is a graph, then S 1s an independent set implies that V - S is
a vertex cover.

Proof: Suppose S is an independent set, and let € = (u, v) be some edge. Only one
of u, v can be in S. Hence, at least one of u, visin V - 8. So, V - S is a vertex

COVCIL.

Suppose V - S is a vertex cover, and letz, v €.5. There can't be an edge between u
and v (otherwise, that edge wouldn't be covered in V - S). So, S is an independent
set.

In order to prove that Independent Set <, Vertex Cover, we change any instance of

Independent Set into an instance of Vertex Cover.

Proof
& Given an instance of Independent Set < G, k >, with |G| =n
@ We ask our Vertex Cover black box if there 18 a vertex cover of with n - k

vertices.

By our previous theorem, S is an independent set if and only if V - S is a vertex
cover. So, G has an independent set of size k if and only if G has a vertex cover of

size n - k.

In computational complexity theory, a decision problem is NP-complete when it is
both in NP and NP-hard. The set of NP-complete problems is often denoted by NP-
C or NPC. A problem Y 18 NP-hard if, for every problem X in NP, X <, I . A
Problem 1s in NP-complete if problem Y is in NP and is NP-hard.

We say X is NP-complete if:

o X e NP
@ forall YeNP, Y <, X .

259



If these hold, then X can be used to solve every problem in NP. Therefore, X is
definitely at least as hard as every problem in NP.

Theorem: If X is NP-complete, then X is solvable in polynomial time if and only if
P =NP.

Proof. If P = NP, then X can be solved in polytime. Suppose X is solvable in
polytime, and let Y be any problem in NP. We can solve Y in polynomial time:
reduce it to X. Therefore, every problem in NP has a polytime algorithm and P =
NP.

13.4 Importance of NP complete problem

The class of NP-complete (Non-deterministic polynomial time complete) problems
is a very important and interesting class of problems in Computer Science. The
interest surrounding this class of problems can be attributed to the following

reasons.

® No polynomial-time algorithm has yet been discovered for any NP-
complete problem; at the same time no NP-complete problem has been
shown to have a super polynomial-time (for example exponential time)

lower bound.

® If a polynomial-time algorithm is discovered for even one NP-complete
problem, then all NP-complete problems will be solvable in polynomial-
time. It is believed (but so far no proof is available) that NP-complete
problems do not have polynomial-time algorithms and therefore are
intractable. The basis for this belief 1s the second fact above, namely that 1f
any single NP-complete problem can be solved in polynomial time, then
every NP-complete problem has a polynomial-time algorithm. Given the
wide range of NP-complete problems that have been discovered to date, it

will be sensational if all of them could be solved in polynomial time.

It is important to know the rudiments of NP-completeness for anyone to design

"sound” algorithms for problems. If one can establish a problem as NP-complete,

there is strong reason to believe that it is intractable. We would then do better by
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trying to design a good approximation algorithm rather than searching endlessly
seceking an exact solution. An example of this is the TSP (Traveling Salesman
Problem), which has been shown to be intractable. A practical strategy to solve
TSP therefore would be to design a good approximation algorithm. A variation of
Kruskal's minimal spanning tree algorithm is used to approximately solve the TSP.
Another important reason to have good familiarity with NP-completeness is many
natural interesting and innocuous-looking problems that on the surface seem no

harder than sorting or searching are in fact NP-complete.

13.5 Use of NP complete

One practical use in discovering that problem is NP-complete is that it prevents us
from wasting our time and energy over finding polynomial or easy algorithms for
that problem. Also we may not need the full generality of an NP-complete
problem. Particular cases may be useful and they may admit polynomial
algorithms.

Also there may exist polynomial algorithms for getting an approximate optimal
solution to a given NP-complete problem. For example, the travelling salesman
problem satisfying the triangular inequality for distances between cities (l.e.
d, <d, +d, for all i, j, k) has approximate polynomial algorithm such that the
ratio of the error to the optimal values of total distance travelled is less than or

equal to 1/2.

13.6 Other NP complete Problems

There are hundreds of known problems in the list of NP-Complete. Here is a list of
some of the more commonly known problems that are NP-complete when
expressed as decision problems. Almost each and every area has problems of this

class. Some of them are as follow:

® Graphs and hyper graphs

Graphs occur frequently in everyday applications. Examples include

biological or social networks, which contain hundreds, thousands and even
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billions of nodes in some cases. This area includes, 1-planarity, 3-
dimensional matching, Bipartite dimension, Capacitated minimum spanning
tree, Route inspection problem, Clique problem, Complete coloring,
Domatic number, Dominating set, Hamiltonian completion, Longest path
problem, Minimum k-cut, Minimum spanning tree, or Steiner tree, for a
subset of the vertices of a graph. (The minimum spanning tree for an entire

graph is solvable in polynomial time.)

Mathematical programming

This class includes 3-partition problem, Bin packing problem, Knapsack
problem, quadratic knapsack problem, and several variants, Variations on
the Traveling salesman problem. The problem for graphs is NP-complete if
the edge lengths are assumed integers. The problem for points on the plane
18 NP-complete with the discretized Euclidean metric and rectilinear metric.
The problem is known to be NP-hard with the (non-discretized) Euclidean
metric.

Formal languages and string processing

It includes closest string, longest common subsequence problem, the
bounded variant of the Post correspondence problem, shortest common
super-sequence.

Games and puzzles

Battleship, Bulls and Cows, marketed as Master Mind, Candy Crush Saga

and Verbal arithmetic etc.

Other NP-Complete Problems

It includes Art gallery problem and its variations, Berth allocation problem,
Assembling an optimal Bit coin block, Boolean satisfiability problem
(SAT). There are many variations that are also NP-complete. An important
variant is where each clause has exactly three literals (3SAT), since it is
used 1 the prooft of many other NP-completeness results and Vehicle

routing problem.
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13.7 Summary

Complexity theory, also called complexity strategy is the use of the study of
complexity systems in the field of strategic management and organizational
studies. Complexity theory is an interdisciplinary theory that grew out of systems

theory in the 1960s. It is useful to analyze nature of problems.

13.8 Glossary

Class P: It consists of all those decision problems that can be solved on a

deterministic sequential machine in an amount of time that is polynomial in the

size of the input.

Class NP: The class NP consists of all those decision problems whose positive
solutions can be verified in polynomial time.

Polynomial-time reduction: Polynomial-time reduction is a method of solving
one problem by means of a hypothetical subroutine for solving a different problem
(that is, a reduction), that uses polynomial time excluding the time within the
subroutine.

NP completeness: A decision problem is NP-complete when it is both in NP and
NP-hard

13.9 Exercise

Q.1  Assuming P != NP, which of the following is true ?

(A) NP-complete = NP
(B) NP—CompletenP =¢
(C) NP-hard = NP
(D) P =NP-complete
Q.2 Let S be an NP-complete problem and Q and R be two other problems not

known to be in NP. Q is polynomial time reducible to S and S is
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Q3

Q4

QS5

polynomial-time reducible to R. Which one of the following statements is

true?

(A) R is NP-complete

(B) R is NP-hard

(C)  Qis NP-complete

(D)  Qis NP-hard

Let X be a problem that belongs to the class NP. Then which one of the

following is TRUE?

(A)  There is no polynomial time algorithm for X.

(B) I X can be solved deterministically in polynomial time, then P =
NP.

(C) If X is NP-hard, then it is NP-complete.

(D) X may be undecidable

Which of the following is true about NP-Complete and NP-Hard problems.

(A) If we want to prove that a problem X is NP-Hard, we take a known
NP-Hard problem Y and reduce Y to X

(B)  The first problem that was proved as NP-complete was the circuit
satisfiability problem.

(C)  NP-complete 1s a subset of NP Hard

(D)  All of the above

(E)  None of the above

A problem in NP is NP-complete if

(A) It can be reduced to the 3-SAT problem in polynomial time

(B)  The 3-SAT problem can be reduced to it in polynomial time

(C) It can be reduced to any other problem in NP in polynomial time

(D)  some problem in NP can be reduced to it in polynomial time
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Q.6  Forproblems X and Y, Y is NP-complete and X reduces to Y in polynomial
time. Which of the following is TRUE?

(A) If X can be solved in polynomial time, then so can Y
(B) X is NP-complete
(C) X is NP-hard

(D) X isin NP, but not necessarily NP-complete

13.10 Answers to Exercise

Ans.1: B

Explanation: The answer is B (no NP-Complete problem can be solved in

polynomial time). Because, if one NP-Complete problem can be solved in
polynomial time, then all NP problems can solved in polynomial time. If that is the

case, then NP and P set become same which contradicts the given condition.
Ans.2: B

Explanation:

(A) Incorrect because R is not in NP. A NP Complete problem has to be in both
NP and NP-hard.

(B)  Correct because a NP Complete problem S is polynomial time educable to
R. (C) Incorrect because Q 1s not in NP.

(D) Incorrect because there 1s no NP-complete problem that is polynomial time
Turing-reducible to Q.

Ans.3: C

Explanation:

{A)  1s incorrect because set NP includes both P(Polynomial time solvable) and
NP-Complete .

(B)  isincorrect because X may belong to P (same reason as (A))
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(©)
(D)

13 correct because NP-Complete set is intersection of NP and NP-Hard sets.

1s incorrect because all NP problems are decidable in finite set of

operations.

Ans.4:D

Ans.5: B

Explanation: A problem in NP becomes NPC if all NP problems can be reduced

to it in polynomial time. This 1s same as reducing any of the NPC problem to it. 3-
SAT being an NPC problem, reducing it to a NP problem would mean that NP

problem is NPC.

Ans.6: D
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UNIT-14
Application Area

Structure of the Unit

14.0 Objective

14.1 Introduction

14.2 Applications of Automata in A L. (Artificial Intelligence).

14.3 Applications of Automata in N.L.P. (Natural Language Processing).
14.4 Various other applications of formal languages and their automata
14.5 Self Learning Exercise

14.6 Summary

14.7 Answers to Self Learning Exercise

14.8 Exercise

14.0 Objective

In this unit we discuss about the application areas of where formal languages and
automata are used. The objective i1s to understand the application areas of formal
language and automata in A.l. (Artificial Intelligence), in N.L.P. (Natural
Language Processing), and various other applications like String Matching
Algorithms, Compiler Construction (Lexical Analyzers), Complexity Theory,
Network Protocols.

14.1 Introduction

Theory of computation 1s a part of theoretical Computer Science. Theory of
computation is mainly concerned with the study of how problems can be solved

using algorithms. The Theory of Computation aims at understanding the nature of
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computation, and specifically the inherent possibilities and limitations of efficient
computations.

A model of computation is the definition of the operations used in computation. It
is used to measure the complexity of an algorithm in execution time and memory
space. Examples of models of computation other than Turing machines are: finite
state machines, recursive functions, lambda calculus, combinatory logic, and
abstract rewriting systems. The Theory of Programming is concerned with the
actual task of implementing computations (i.¢., writing computer programs).

There are broad application areas of theory of computation like Artificial
Intelligence, Natural Language Processing, Cryptography, and Distributed
Computing etc. Finite automata are used in text processing, compilers, and
hardware design. Context-free grammar (CFGs) are used in programming
languages and artificial intelligence. Originally, CFGs were used in the study of

the human languages.

14.2 Application of Automata in A.L

The formality of automata theory can be applied to the analysis and manipulation
of actual human language as well as the development of human-computer
interaction (HCI) and artificial intelligence (Al).

Automata theory is the basis for the theory of formal languages. A proper

treatment of formal language theory begins with some basic definitions:
® A symbol is simply a character, an abstraction that is meaningless by itself.
® An alphabet is a finite set of symbols.
® A word is a finite string of symbols from a given alphabet.

® Finally, a language is a set of words formed from a given alphabet.

The set of words that form a language is usually infinite, although 1t may be finite
or empty as well. Formal languages are treated like mathematical sets, so they can
undergo standard set theory operations such as union and intersection.
Additionally, operating on languages always produces a language. As sets, they are

defined and classified using techniques of automata theory.
268



Formal languages are normally defined in one of three ways, all of which can be
described by automata theory:
® regular expressions
® standard automata
® 3 formal grammar system
Regular Expressions Example
alphabet A1 = {a, b}
alphabet A2 = {1, 2}
language L1 = the set of all words over Al = {a, aab, ...}

language L2 = the set of all words over A2 = {2, 11221, ...}

language L3 =L1 U L2

language L4 = {a" | nis even} = {aa, aaaa, ...}

language L5 = {a'b"| n is natural} = {ab, aabb, ...}

[Languages can also be defined by any kind of automaton, like a Turing Machine.
In general, any automata or machine M operating on an alphabet A can produce a
perfectly valid language L. The system could be represented by a bounded Turing
Machine tape, for example, with each cell representing a word. After the
instructions halt, any word with value 1 (or ON) is accepted and becomes part of
the generated language. From this idea, one can define the complexity of a

language, which can be classified as P or NP, exponential, or probabilistic, for

example.

Noam Chomsky extended the automata theory idea of complexity hierarchy to a
formal language hierarchy, which led to the concept of formal grammar. A formal
grammar system is a kind of automata specifically defined for linguistic purposes.
The parameters of formal grammar are generally defined as:

® a set of non-terminal symbols N

® asetof terminal symbols 2
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® a sct of production rules P
® 3 start symbol S
Grammar Example
start symbol = S
non-terminals = {S}
terminals = {a, b}
production rules: S — aSb, S — ba

S — aSb — abab

S — aSbh — aaSbb — aababb
L = {abab, aababb,}

As in purely mathematical automata, grammar automata can produce a wide
variety of complex languages from only a few symbols and a few production rules.
Chomsky's hierarchy defines four nested classes of languages, where the more

precise a classes have stricter limitations on their grammatical production rules.

These rules and

14.3 Applications of Automata in N.L.P. (Natural Language

Processing).

The goal of natural language processing (NLP) is to build computational models of
natural language for its analysis and generation. Formal-state automata can be
viewed as a recognizing devices i.e. for some automaton A and a word w apply
some rule to produce the result for example Is w a member of L(A), the language
accepted by automaton A. This property of automata can be viewed as a necessary

application of natural language processing.

We can better understand by taking an example of Dictionary lookup, which is
frequently used in NLP:
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As we kmow the dictionary has thousands of words of entnes in it, Finite state
automata provides an efficient means for stonng dictionaries, accessing them and
modifying their contents.

Suppose a finite state machine has alphabet 'a’ to ‘z° and consider how a single

word ‘go’ can be represented:

4 ()

O QO > ©

go:
To represent more than one word, we sumply add paths to our “lexicon”, one path
for each additional word as:-

_—~0—>0
/H—‘ 0 n &

O ::O :O :O = @
&
0
Q——©

The above automaton can be minimized as:

O
@)
(©

go, gone, goLng:

go, gone, going:

As you see that after minimization the lookup operation amount to checlang the
word 1s in dictionary or not 1s also less. This 15 efficient operation that the time
required to search a word 15 linear in the length of w.

For real application one 15 usually interested in associating certain information with
every word mn the lexicon. For simplicity, assume that we do not have to list a full
dictionary entry with each word; rather, we only need tc store some morpho-
phonological nformation, such as the part-of-speech of the word, or it's tense {(in
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the case of verbs) or number {in the case of nouns). One way to achieve this goal 15

by extending the alphabet 2: in addition to “ordinary™ letters, 2 can include also
special symbols, such as part-of-speech tags, moipho-phonological information,
etc. An “analysis” of a {natural language} word will n this case amount to
recognition by the automaton of an extended word, w, followed by some special
tags.

Example:

Suppose we want to add to the lexicon imformation about part-of-speech, and we
use two tags: -N for nouns, -V for verbs. Additionally, we encode the number of
nouns as -sg or -pl, and the tense of verbs as -inf, -prp or -psp (for nfinitive,
present participle and past participle, respectively). It is very umportant to note that
the additional symbols are multi-character symbols: there 15 nothing in comnon to
the alphabet symbol -sg and the sequence of two alphabet letters <5,g>! In other
words, the extended alphabet 1s;

Z={abc,..... , Z, =N, -V, -Inf, -prp, -psp, -sg, -pl}
With the extended alphabet, we mught construct the following automaton:

) 0 i 11 { -V -pip
©—0—0—0—>0—>0—>0—>0
-V -psp
= O e @
-inf
-0 - ©

The language generated by the above automaton is no longer a set of words in
English. Rather, 1t 15 a set of {sumplisticly} “analyzed” strings, namely {go-V-inf,
gone-V-psp, going-V-prp;.

Regular languages are particularly appealing for natural language processing for

WO maln reasons.

Furst, 1t turns out that most phonological and morphological processes can be
straight-forwardly described using the operations that regular languages are closed
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under, and in particular concatenation. With very few exceptions (such as the
interdigitation word-formation processes of Semitic languages or the duplication
phenomena of some Asian languages), the morphology of most natural languages
is limited to simple concatenation of affixes, with some morpho-phonological
alternations, usually on a morpheme boundary. Such phenomena are easy to model
with regular languages, and hence are easy to implement with finite state automata.
The other advantage of using regular languages is the inherent efficiency of
processing with finite-state automata. Most of the algorithms one would want to
apply to finite-state automata take time proportional to the length of the word being
processed, independently of the size of the automaton. In computational

terminology, this is called linear time complexity, and is as good as things can get.

14.4 Various other applications of formal languages and

their automata

The various other applications of formal languages and automata are:-

® String Matching Algorithms.
® Compiler Construction (Lexical Analyzers).
® (Complexity Theory.

® Network Protocols

Let us discuss one by one in detail.

(a) String Matching Algorithms: Our first application involves finding all
occurrences of a short string (pattern string) within a long string (text
string). This can be done by processing the text through a DFA: the DFA
for all strings that end with the pattern string. Each time the accept state is

reached, the current position in the text is output.
Example: Finding 1001
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To find all occumences of pattern 1001, construct the DFA for all strings
ending in 1001.

1
0 1 D e
.-'-'_‘-"I|I # = \ T - '-__\___-H-
Y| , = = == ke

N i B ) i) ff '“-‘l_\
— @ ——{ @ | 0 | 92— 43 ——»| Q4 ]}
L. N AW e, e o e i

s 1 Pt o E—

(b} Compiler Construction (Lexical Analyzers): A lexical analyzer 1s the part

of a compiler that groups the characters of a program into lexical items or
tokens. The modern approach to specifying a lexical analyzer for a
programming language uses regular expressions. E.g., this 15 the approach
taleen by the lexical analyser generator Lex.

In compiling a program, the first step 15 lexical analyms. This isolates
keywords, 1dentifiers etc., while elimnating irrelevant symbols. A token 13
a category, for example “identifier”, “relation operator” or specific
keyword. The lexical analyzer gets the mput character by character. Then
by using pattern-matching technique, it identifies the symbol Syimbol table
manager and error handler also associated with the s1x phases of a compiler.
The methods used to implement lexical analyzers can also be applied to

other areas such as query languages and information retrieval systems.

SUM = NUMBERI1
OPERATOR IDENTIFIER2
IDENTIFIERI
NUMBER2 :
+
IDENTIFIER3 SEPERATOR
OPERATOR

LEXEME  Token category
SUM “Identifier”
= “Assignment operator”
NUMBER1 “Identifier”
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4 “Addition opeartor”
NUMBER2 "Identifier"
£ "End of statement."

A lexeme is the unit derived from the source program with each group 1s
related to anyone symbolic category. The given sowce code
"SUM=NUMBERI+NUMBEERZ; " 15 having six lexeme, as given n the
table 1. The lexical analyzer read the input character by character until
finding the lexeme. Fust character ‘5’ 15 obtamed. Then character ‘U’
followed by ‘M’ and ‘=". The last character =" omitted The first three
characters combined to form the lexeme “SUM?”. Then the character ‘=" and
‘N* scanned by the lexical analyzer. The last character ‘N’ omutted to form
the lexeme “=". Then the remaming lexemes “NUMBERI”,
“HLUUNUMBERZY, 7" identified by the lexical analyzer. The pattem

matching technique is used to match the lexeme with the token type.
{c} Complexity Theory: As discussed in Unit 13.
{d} Network Protocols: A finite-state machine 15 an FA together with actions

on the arcs. A trivial example for a commumnication link:

send packet

@r if NAK then resend

receive ack

14.5 Self Learning Exercise

(J.1 Which of the following 1s the part of a compiler
a} Regular files
b} Device files
¢} Compiler
d} Directory files
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Q. 2 Which of the following is an example of natural language processing (NLP):

a) Dictionary lookup.
b) Noam Chomsky.
c) TOC.

d) None of the above.

14.6 Summary

The Theory of Computation aims at understanding the nature of
computation, and specifically the inherent possibilities and limitations of

efficient computations.

The application areas of formal language and automata includes A.L
(Artificial Intelligence), in N.L.P. (Natural Language Processing), and
various other applications like String Matching Algorithms, Compiler

Construction (Lexical Analyzers), Complexity Theory, Network Protocols.

The formality of automata theory can be applied to the analysis and
manipulation of actual human language as well as the development of

human-computer interaction (HCI) and artificial intelligence (Al).

The goal of natural language processing (NLP) is to build computational

models of natural language for its analysis and generation.

A lexical analyzer is the part of a compiler that groups the characters of a
program into lexical items or tokens.

The modern approach to specifying a lexical analyzer for a programming

language uses regular expressions.
The pattern matching technique is used to match the lexeme with the token
type.

A finite-state machine is an FA is used to simulate Network Protocols.

14.7 Answers to Scelf-Learning Exercise
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Q.1 ()
Q.2 (a)
Q.3 (a)

14.8 Exercise

Q. 1 How Turing Machine is used in computing complexity of an algorithm?

Explain with example.

Q. 2 What is the significance of Automaton? Discuss various applications of

formal language and automata.

Q. 3 What do you mean by Natural Language processing? How NLP is related to

Formal language and automaton? Discuss in detail.

Q. 4 Construct the DFA to find all occurrences of pattern 1001. Also explain it.
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