MCA-301
Computer Graphics

horizontal

deflection
electron "gun’ plates view-
\ (vacuum) | screen

/
P e 1
1 P

/ vertical

deflection light
plates /

[N

VARDHMAN MAHAVEER OPEN UNIVERSITY
KOTA

WwWWw.vimou.ac.in

MCA-301

= Ry

q

““2H Vardhman Mahaveer Open University, Kota
N

Computer Graphics

Course Development Committee

Chair Person

Prof. Ashok Sharma Prof. L.R. Gurjar
Vice-Chancellor Director Academic
Vardhman Mahaveer Open University, Kota Vardhman Mahaveer Open University, Kota

Convener and Members

Convener

Neeraj Arora

Assistant Professor, Computer Science
School of Science and Technology,

Vardhman Mahaveer Open University, Kota.

Members

1. Prof. (Dr.) Reena Dadich 2. Prof. (Dr.) N.K. Joshi
Professor and Head (CS) Professor (CS) and Director, MIMT, Kota
University of Kota, Kota

3. Dr. Harish Sharma 4. Mr. Abhishek Nagar,
Associate Professor, CSE Deptt. Programmer Officer, VMOU, Kota

Rajasthan Technical University, Kota

5. Dr. Anuradha Dubey
Deputy Director
School of Science &Technology
Vardhman Mahaveer Open University, Kota

Editor & Unit Writers MCA-301: Computer Graphics

Editor
Dr. Bharat Singh Deora
Assist. Prof., Dept. of CS & IT, JRN Rajasthan Vidyapeeth University, Udaipur

Unit Writers Units
Mr. Gaurav Meena 1,2
Assistant Professor, Department of CS, Central University of Rajasthan, Ajmer.

Mr. Anil Kumar Sharma 3
Assistant Professor, Department of CS, Govt.Women Engg.College, Ajmer.

Mr. Santosh Gupta 4
Assistant Professor, Department of CS, M.I.M.T., Kota.

Mr. O.P. Suthar 5,6,7,17
Asst. Prof. (SR. Scale), Department of CSE, J.I.LE.T., Jodhpur

Mr. Manish Gehlot 8,11
Assistant Professor, Computer Science and Engineering, J.I.E.T., Jodhpur

Mr. Pankaj Acharya 9,10,12,13
Associate Professor and Head, Dept. of IT, J.LLE.T., Jodhpur

Dr. Snehlata Kothari 14
Pacific University, Udaipur

Mr. Neeraj Arora 15
Assistant Professor of Computer Science, Vardhman Mahaveer Open University, Kota

Mr. Kamal Kulshreshtha 16

Associate Professor & Head. Deptt. of Computer Sc. & Applications, MIMT, Kota

Academic and Administrative Management

Prof. Ashok Sharma Prof. L.R. Gurjar

Vice-Chancellor, VMOU, Kota Director (Academic), VMOU, Kota
Dr. Shiv Kumar Mishra

Director (MP&D), VMOU, Kota

Print: 2018 ISBN: 978-81-8496-640-4

All Right reserved. No part of this Book may be reproduced in any form by mimeograph or any other means
without permission in writing from Vardhman Mahaveer Open University, Kota.

Printed and Published on behalf of the Registrar, Vardhman Mahaveer Open University, Kota.

Printed by :

MCA-301

Vardhman Mahaveer Open University, Kota

Computer Graphics

Contents

Unit No. Unit Pages

Unit-1 Introduction to Computer Graphics: 1-19
Introduction, Survey on Computer Graphics, Graphics API, Application Areas of
Computer Graphics.

Unit-2 Computer Graphics Systems: 20-50
Introduction, Display Devices, Direct View Storage Tube, Calligraphic or
Random Scan Display System, Raster Scan Display System.

Unit-3 Color CRT Monitors: 51-68
Introduction, CRT monitor, Color CRT Monitor, Various color monitors.

Unit-4 Output and Input Devices: 69-92
Introduction, Various Input devices, Various Output devices, Graphical Input
Techniques.

Unit-5 Output Primitives: 93-127
Introduction, Scan Converting Lines, Scan Converting Circle, Scan Converting
Ellipse.

Unit-6 Color Filling Algorithm: 128-147
Introduction, Filled-Area Primitives, Scan Line Polygon fill Algorithm Inside-

Outside Tests, Seed Fill Algorithm.

Unit-7 Attributes of Output Primitives: 148-169
Introduction, Line Attributes, Curve Attributes, Character Attributes, Antialiasing.

Unit-8 Curves and Surfaces: 170-184
Introduction, Spline Representation, Cubic Spline, Beizer Curves, B-Spline
Curves, Quadric Surfaces, Beizer Surfaces.

Unit-9 Geometric 2D Transformation: 185-204

Introduction, Basic 2-D transformation, Homogeneous coordinate system, Other

Transformation, Composite transformation, Commutivity of Transformation.

Unit-10

Unit-11

Unit-12

Unit-13

Unit-14

Unit-15

Unit-16

Unit-17

Geometric 3D Transformation:
Introduction, Basic 3-D transformation, Other Transformation, Composite
transformation, Commutivity of Transformation.
Viewing Transformation:
Introduction, Coordinate systems, Window to Viewport Transformation, Viewing
in 3D, Perspective Projection, Parallel Projection,View Volumes.
Clipping:
Introduction, Point Clipping, Line Clipping, Polygon Clipping.
Visible Surface Detection:
Introduction, Visible Surface Detection Methods, Backface Culling(Removal),
Depth-Buffer(Z-Buffer) Algorithm, Scanline Algorithm, Depth Soring
Algorithm(Painter's Algorithm), Area Subdivision Algorithm. BSP(Binary Space
Partition) Trees Algorithm, Ray Casting.
Hllumination model and Shading:
Introduction, Ambient Reflection, Diffuse Reflection, Specular Reflection and
Phong Model, Gouraud Shading, Phong Shading, Ray Tracing.

Color Models and Applications:
Introduction, Color Models, RGB Color Model, CMY Color Model, YIQ Color
Model, HSV Color Model, Color Section and applications.
Computer Animation:

Introduction, Design of Animation Sequences, General Computer-Animation
Functions, Raster Animations, Computer-Animation Languages, Various
Animation Tools.
Graphical User Interfaces and Input Methods :
Introduction, The User Dialogue Windows and Icons, Input of Graphical Data
Logical Classification of Input Devices, Input Functions and Input Modes, Initial

Values Parameters.

205-224

225-240

241-258

259-278

279-297

298-308

309-334

335-354

Preface

The present book entitled “Computer Graphics” has been designed so as to cover the unit-wise
syllabus of MCA-301 course for MCA 3™ Year students of Vardhman Mahaveer Open
University, Kota.

The book is begin with some preliminaries of computer graphics and fundamentals necessary to
understand computer graphics, and covers the topics like Color Filling Algorithm, Attributes of
Output Primitives, Curves and Surfaces, Geometric 2D Transformation, Geometric 3D
Transformation, Viewing Transformation, Clipping, Visible Surface Detection, Illumination
model and Shading, Color Models and applications, Computer Animation, Graphical User
Interfaces and Input Methods.

Each unit begins with objectives, introduction and principles together with illustrative and other
descriptive material .The illustrative examples serve to illustrate and amplify the theory of
computation. The units have been written by various experts in the field. We believe that this
book is well suited to self-learning. The text is written in a logical sequence and is beneficial for
students. The concise and sequential nature of the book makes it easier to learn. Although we
have made all efforts to make the text error free, yet errors may remain in the text. We shall be
thankful to the students and teachers alike if they point these out to us. Any further comments and

suggestions for future improvement are welcome and will be most gratefully acknowledged.

UNIT-1

Introduction to Computer Graphics

Structure of the Unit
1.0 Objectives

1.1 Introduction

1.2 Basic Concepts

1.3 Origm of Computer Graphics

1.4 Types of Computer Graphics

1.5 Graphics APIs

1.6 Application of Computer Graphics
1.7 Summary

1.8 Self Learning Exercise

1.9 Review Questions

1.10 Answers to Self-Learning Exercise

1.0 Objective

In this chapter we shall focus on the following topics:
e Computer Graphics
® Types of CG
® Types of Images
® Origin of Graphic System

® Applications

1.1 Introduction

A Computer is a machine that processes an input data into output information. It
can store, process, manipulate or correlate data. Computer graphics is one of the
most effective and widely used ways to communicate the process information to
the user. It displays the information in the form of graphics objects such as
pictures, images, graphics, charts, etc. The picture or graphics objects may be
anything like architectural structure. Engineering Drawing or models, frame from

an animated movie. Therefore, it is important to understand some point:

a) How are the images presented in computer graphics?
b) How are graphics objects prepared for presentations?
¢) How a user interact with graphic objects?

d) What is the origin of the computer graphics?

In Computer graphics, pictures or images are presented as a collection of discrete
picture elements called pixels. A pixel is the smallest unit of any image. Each pixel
on the graphics display does not represent a mathematical point. Rather, it can
contain a region which has infinite no. of points. The process of determining the
appropriate pixels for representing pictures or graphic objects i1s known as
rasterization. The process of representing continuous pictures as a collection of
discrete pixels is called scan conversion. Computer graphics provide some features
like rotation, translation, scaling & performing various projections. Users can

apply these projections on the pictures before displaying it.

In the following chapter, we will study about the origin of computer graphics, tools

for computer graphics and various applications of computer graphics.

2

1.1.1 Introduction to computer graphics

To display a picture of any size on a computer screen is a difficult process.
Computer graphics are used to simplify this process. Computer graphics are visual
representation of data (or info.) displayed on a monitor. Graphics can be a single
image or series of images (i.e. Video). This computer graphics term first
discovered by researchers Verne Hudson and William fetter m 1960. It is a vast
area in computer science. Sometimes it is abbreviated as CG or CGI (computer-
generated imagery). Development of computer graphics has a significant impact on
many areas like media, animation, games, designs, etc. [t also can be used in many
disciplines like Presentation, Drawing, Painting, Design, Image Processing and

Scientific Visualization.

1.2 Basic Concepts

I hope all of you are fond of video games and may be good at playing them. Have

you seen the game of Mario?

It’s a game played by one person with the keyboard, or sometimes we can use the
game controller. In this game a small tiny animated person moves in a left or right

direction.

So, when you start the game, you have to jump and hit some question marks and
after hitting vou’ll get some power or coins that are a surprise. Different Kind of
powers you can earn by hitting question marks like size changing, protected mode,

can get bullets and jumping power, etc.

Now, how did you invent this video game? This has been done with the aid of
computer graphics. To represent a series of pictures in a particular time or game
graphics use the major use of CG. It helps to create and manipulate pictures with
the computer, it concerns with the pictorial (pixel) representation of real &

imaginary objects.

1.3 Origin of Computer Graphics

Many years of research and development were made to achieve the goals in
computer graphics field. During the first half of the twentieth century, the
developments were made the advances in electronics, electrical engineering, and
Television. Screens could display art to create effects for the earliest films from

1895, but such displays were limited and not interactive.

The first cathode ray tube, the Braun Tube, was invented in 1897. In 1950, the first
computer-driven display was used to generate only simple pictures. The display
made use of a cathode-ray tube similar to the used in Television Sets. During
1950°s, interactive computer graphics made little progress because computers of
that period were unsuitable to for interactive use. These types of computers were

used to perform lengthy calculations.

The phrase “Computer Graphics” itself was introduced m 1960 by William Fetter,
a graphic designer from Boeing. In 1961, Steve Russell (MIT Student) created a
video game named Space War. The single event that did the most to promote
interactive CG as an important field was the publication in 1962 of thesis entitled
“Sketchpad: A Man-machine Graphical Communication system™ by Ivan E.
Sutherland. It provides that interactive computer graphics was a feasible, useful

and exciting field of research.

Sometimes in early 1960’s, automobiles would provide a boost through the work
of Pierre Bezier at Renault, who used Paul de castellan’s curves (called Bezier
Curves) to develop 3D modeling techniques for Renault car bodies. By the mid-
1960’s, large computer graphics research projects were undertaken at MIT and Bell
Telephone labs. In 1966, Tvan E. Sutherland invented the first computer controlled
Head Mounted Display (HMD). It displays two separate wireframe images, one for
each eye. In 1968’s, Arthur Apple described the first algorithm of ray casting,
which is a basis point for almost all of modern 3D graphics or Photorealism in

graphics. Thus the golden age of computer graphics began.

In 1970, Edwin Catmull (Founder of Pixar) worked on graphics animation.
Catmull loved animation, but he did not have the talent of drawing. So, He saw
computers as the natural progression of animation. The first animation that Catmull
saw was his own. He created an animation of his hand opening and closing. With
Catmull, Fred Parke created an animation of his wife’s face. Martin Newell in the
University of Utah with Ivan Sutherland made a picture of Utah teapot and its
static renders. This has become representative of CGI development during 1970’s.
Jim Binn innovated in 1978 by introducing Bump Mapping, which is a technique
for simulating uneven surfaces. Lots of games were developed in the 1970°s like
modern video game arcade with the first arcade games using real-time 2D sprite
graphics. In 1972, Pong was one of the first hit arcade cabinet games. In 1974,
speed race featured sprites moving along a vertically scrolling road. In 1975, gun
fight featured human-looking sprite character graphics. In 1978, space invaders

featured large numbers of sprites on screen.

In 1980’s, it was an era of modernization and commercialization of computer
graphics. In this age home computers were increasing day by day and adopted by a

much larger audience, with this no. of graphics developers were increasing

significantly In the early 1980°s, the availability of bit-slice and 16-bit
microprocessor started to revolutionize computer graphics terminals. Modern
computers often use graphical user interface (GUI) to present data & information
with symbols, icons and pictures rather than text. Graphics are one of the five key
elements of multimedia technology. In 1982, Japan’s Osaka University developed
LINKS-1 computer graphic system (a super computer) to render realistic 3D
computer graphics. Links-1 was able to render highly realistic images rapidly. It
was used to create the world’s first 3D planetarium- like videos of entire heavens
that was made completely with CG. Links-1 was the world’s most powerful
computer as of 1984. In 1986, David Immel and James Kariya developed an
important step towards implementing global illumination, which is necessary to
continue Photorealism in computer graphics. In 1988, the first Shaders - a small
program, designed specifically to do shading as a separate algorithm was
developed by Pixar (A computer animation film studio). In late 1980, SGI (Silicon
Graphics Inc.) were used to create some of the first fully computer generated short
films at Pixar. Silicon graphics machine were considered a high watermark for the

field. The 1980’s 1s also called the golden era of video games.

In 1990’s, the emergence of 2D modeling on a mass scale. 3D graphics become
more popular in gaming and animation. At the end of the 1980s and beginning of
the 1990s, in France Quarxs- the first HDTV computer graphics series by Maurice
Benayoun and Francois Schuiten were created. In films, Pixar began its
commercial rise in this era under Edwin Catmull, with its first major film release in
1995:” Toy Story”. In video games (1992), “Virtual racing” running on the Sega
Model-1 arcade system Board. [t was a fully 3D racing game and popularized real-
time 3 D polygonal graphics in the video-game industry. In 1993, Sega Model-2

and, in 1996, Sega Model-3 pushed the boundaries of commercial real-time 3D

graphics. Technology and algorithm for rendering & shadowing continued to

improve greatly.

In 2000, CGI became ubiquitous in intense during this era. Video games and CGI
cinema had spread all over the graphics in the late 1990’s and continued fo do so in
2000 also. Computer graphics used 1n films and video games gradually began to be
realistic. With traditionally animated cartoon films like Tce Age and Madagascar as
well as numerous Pixar offering like Finding Nemo dominating the box office in
this field. In 2001, “’final fantasy: the spirits within” movie released was the first
fully computer-generated feature film to use photorealistic CGI characters and be
fully made with motion capture. In video games, the Sony playstation?, the
Microsoft Xbox lines of consoles etc. Marquee CGl-heavy titles like the series of
grand theft auto, Assassin’s Creed, Final Fantasy, Bio shock, Kingdom Hearts,
Mirror’s Edge and other approaches to photorealism. Microsoft decided to expose
to the independent developer with the XNA program. DirectX itself s a
commercial success. OpenGL 1is also a tool for computer graphics. The second
generation shader languages HLSL & GLSL began to be popular in this decade. In
the scientific computing, GPGPU technique is used to pass large amount of data to

and from the GPU.

In 2010s, pre-rendering graphics are nearly scientifically photorealistic and CGI is
used in videos. Texture mapping has many stages with multiple layers, but it is
common to implement texture mapping, bump mapping normal mapping, lighting
maps including specular highlights and reflection techniques and shadow columns
into one rendering engine using shaders. Shaders become a necessity for advanced
work in the field. In cinemas, most animated movies are CGI now, a great many

animated CGI films are made per year and most are 3D animated cartoons.

In video games, the Xbox One by Microsoft Sony PlayStation-4 & Nintendo Wii U
currently dominate the home space and are all capable of highly advanced 3D

graphics; the windows PC is still one of the most active gaming platforms as well.

1.4 Types of Computer Graphics

According to the type of Interaction, we can divide computer graphics into two

parts:

A. Non-interactive Computer Graphics: It is also known as passive
computer graphics. In this, the observer has no control over the image. For
e.g.: this type of CG includes the title shown on TV and other forms of
computer art.

B. Interactive computer graphics: It is also known as active computer

graphics, it has two-way communications between the computer and the
user. In this, the observer has some control over the images with some input
devices. For e.g. video game controller etc. These input devices help to

send a request to the computer.

The computer on receiving signals from the input device can modify the
displayed picture appropriately. It shows to the user that picture is changing
instantly in response to their commands. The user can give series of commands
and each one generates a graphical response from the computer. So, in this,
user maintains a conversation with the computer. Another example of
interactive CG is flight simulator. It helps to train the pilots of our airplanes.
Flight simulator creates containing all the usual controls and surrounded by
screens on which we have the projected computer generated views. Advantages
of simulator over real aircrafts are fuel savings, safety and can get better

training.

1.4.1 Types of Images or Subsets of CG

In computer graphics, images can be divided into two dimensions, i.e. 2D & 3D.
They are made differently and used differently. Let’s explore the difference and

similarities between them.

Two-Dimensional (2D): It is a computer-based generation of digital images;
mostly from the 2D geometric models or texts. 2D images have two dimensions
either x or y in a plane. 2D graphics started in the 1950s based on vector graphic
devices or raster based devices. 2D computer graphics are mainly used in
applications that were originally developed upon traditional printing and drawing
technologies such as cartography, typography, advertising, technical drawing etc.

2D graphics can be split into two categories:

A. Vector graphics: It uses lines, shapes and text to create more complex

images. If any vector graphic image is shown on a very big screen, then it
will look fine or as good as the regular size. For e.g. a car, or a light bulb
cte.

B. Raster Graphics: It uses pixels to make up a larger image. Raster

programs often have tools like paint brush, paint buckets or eraser to make
a picture. This is often used as a part of what the user sees when they use
computer program (like Adobe Photoshop or paint). Sometimes people do
use only pixels to make an image. This is called pixel art and 1t has a unique

style. For e.g. Photographic of any object, pixel art of “’Rose™.

Three-Dimensional (3D): This type of images or graphics exactly looks

like real objects because they are 3-Dimensional. It has three things — height,

length, depth. 3D graphics are used in movies and video games and many ammated

shows etc. For e.g.: modeling of any device (car) in 3D studio max.

Computer Graphics

]
| | | l

Types of Kind of Type of Pictorial
Objects Picture Irteraction representation
2D 3D Symbolic Realistic
¥
: '
Controllable Non-
controllable

| l l l l

Line Color Gray Scale Black & Etc.
Drawing Image Image White Image

Figure 1.1 : Computer Graphics Hierarchy.
1.5 Graphics APIs

API (Application Program Interface) 1s a set of routines, protocols and tools for
building software applications. An API specifies how software components should
interact. APIs are used when programmung graphical user interface (GUI)

components.

The Graphics API is the software that renders the video or image you see on the
screen. By leaming Graphics APIs users can build their own 2D or 3D graphics.
Given that learming a special API 1s a very large undertaking, it goes without

saying that the learner or user would like to make the best choice possible so that

10

they aren’t wasting their time. I’'m writing small guidelines about all recent and
previous graphics APIs so that you can make the best informed decision on what

you might prefer to learn. Graphics APIs are following:

DirectX 9 or Below: DirectX is a collection of APIs for handling tasks related

to multimedia, especially game programming and videos on Microsoft platform.
The name DirectX was coined as a shorthand term for all of these APIs (X stands
for the particular API name i.e. Direct 3D, DirectDraw, DirectMusic, DirectSound
& so on). Version 9 of DirectX was first released for windows in 2002 and its
subsequent updates in 2003 & 2004. DirectX 9 (Direct 3D 9) is a primary graphics
interface on windows vista. It remains the ideal API to use for writing 3D games &
applications that need to run on the broad range of existing hardware and windows
release. However, it wasn’t well organized and has some limitation in taking

advantage of modern hardware.

DirectX 10 and DirectX 11: DirectX 10 (Direct 3D 10) was previously the

best modern graphic API to learn 3D graphics programming. Its only disadvantage
is that it doesn’t support hardware fessellation (However, it is a minor problem).
This APl was designed from the ground up with a primary focus on taking
advantage of new hardware with a strong secondary focus on organization within
the APIs. Because of this focus on making the API well organized. This same

organization was carried forward into DirectX 11 as well.

DirectX 11 is the leading industry standard graphics API. Even alongside DirectX
12 Microsoft released DirectX 11.3 at the scene time knowing that the vast
majority of people writing graphics engines would not need such low-level control
that DirectX 12 provides. DirectX11 has the same features list as the DirectX 12.
Regarding support for coding from other programmers, the majority of websites

and forums will concentrate on DirectX 11.
11

OpenGL 3 & OpenGL 4: OpenGL 3.3 was the DirectX 10 equivalent that

could handle cross-platform. Although this is the widely used API (with lots of

web resources)

OpenGL 4 is the equivalent to DirectX 11 regarding features and modern hardware
utilization. The main advantage of this is being cross-platform. The changes in
OpenGL 4 from its previous version didn’t make it any more complicated to use or
learn. Comparing the two APIs, the differences are minimal between them. So, if
you are a primary developer and wants to develop any OS like Linux then OpenGL
4 would be your only choice for a high-level graphics API that utilized hardware

acceleration.

Vulcan: Vulcan is the newest low overheated cross platform 3D graphics and

computes API first Announced at GDC (Game Developers Conference) 2015 by
the Kharnos group. The Vulcan API was initially referred to as the “next
generation OpenGL initiative” or “OpenGL Next”. Just like the DirectX 12 this is
an expert’s APL It Parallels the features offered by DirectX12 and is equally
complicated in ferms of programming. This is not an appropriate API for the
beginner. OpenGL 4 1s the best option for beginners. It is the low-overhead

successor to OpenGLL.

Mantle: Mantle is a low-overhead rendering APT targeted at 3D video games. It

is also an expert’s API that was created by AMD (Advanced micro devices).
Mantle was designed as an alternative to Direct3D and OpenGL. It was the first 3D
graphics API released to give low-level control over the GPU and was the driving
catalyst pushing both Microsoft and the Khronos group to develop their low level
APIs. However, it only supports AMD graphics hardware which is incredibly
limiting in a market that is dominated by NVIDIA.

12

GNM: Low-level API of the PlayStation 4.
GNMX: high-level API of the PlayStation 4.

Metal: low-level API for Apple 10S.

1.6 Applications of Computer Graphics

Computer Graphics is a study of technique to improve communication between
human and machine through pictures, charts and Diagrams. Computer graphics
used in diverse areas like advertising, Healthcare, Education, Engineering, Science,

Entertainment, multimedia etc. Let’s discuss the representative uses of computer

graphics:

Plotting of Graphics and charts: To produce illustrations those summarize

various kinds of Data; summarize financial, statistical, mathematical, economic
data for research reports, scientific and other reports. It increases the understanding
using visual tools like line graphs pie charts, bar charts, surface graphs etc. Except

2D, 3D graphics are good tools for reporting more complex data.

Entertainment: Computer graphics methods are commonly used in making

motion pictures, music videos; television shows, video games and animated films.
Graphic objects can be combined with live actions or can be used with image

processing techniques to transform one object to another.

Computer Aided Design: Computer Graphic is a useful tool for generating or

designing the architecture, drawing and structures. In engineering and architectural
systems, the products are modeled using computer graphics tool such as CAD
(Computer Aided Design). CAD applications are also used in computer

animations. The motion of an object can be simulated using CAD.
13

Art and commerce: There is a lot of development in the tools provided by

computer graphics. CG 1s used in both fine arts and commercial application. Fine
artist uses other computer technologies to produce images. They use a combination
of 3D modeling packages, texture mapping, drawing program and CAD Design
software. In commercial art, uses for logos and other designs page layouts
combining texts, graphics and advertising etc. This allows users to create artistic

pictures which express messages.

Education & Training: Computer graphics can make us understand the

functioning of a system in a better way. Computer-generated models like physical
systems, financial system, physiological sysiem, economic systems used as
educational aids. Various educational pictures with animations are used to present

better understanding for learning.

Visualization: For analyzing scientific, Engineering, Medical business data or
behavior where we have to deal with large amount of information. It is a very
ineffective process to determine trends. But if it is converted into a visual form, it

becomes easier to understand. This process is called visualization.

Graphical User Interface: It is used to make a software package more

interactive. A major component of a graphical interface is a window manager that
allows a user to display multiple window area. Interfaces also display menus and

icons for selection of processing options or parameter values.

® The icon is a graphical symbol ie. designed to look like the processing

option it represents.

® Menu contains lists of textual descriptions and icon

14

Image Processing: It provides techniques to modify or interpret existing images

such as photographs etc. One can improve picture quality through image
processing techniques. To digitize the shading and color, sharper, improve the
contrast of the scanned image and to transfer them to monitor uses image
processing techniques. In medical applications, image processing techniques can
be applied for image enhancements and widely used for CT scan (Computer X-ray
Tomography) and PET (Position Emission Tomography) images. In space
applications, this technology can be used to analyze satellite photos of the earth

and photos of galaxies.

Simulation and Animation: Uses of graphics in simulation makes mathematic

models and mechanical systems more realistic and easy to study. The interactive
graphics supported by animation software proved their use in the production of

animated movies and cartoon films.

Process Control: With Computer Graphics it is possible to control various

processes from a remote control room. In these cases, process systems and
processing parameters are shown on the computer with graphic symbols. It makes
easy for the operator to monitor and control various processing parameters at a

{ime.

Cartography: CG is also used to represent geographic maps, weather maps,

cantor maps, oceanographic charts, population density maps and so on.

1.7 Summary

The term computer graphics refers to something involved in the creation or

manipulation of images on the computer, including animated images. It is a very

15

broad field and one in which changes and advances appear to come at a dizzying
pace. It can be difficult for a beginner to know where to start. However, there 1s a
core of fundamental ideas that are part of the foundation of most applications of
computer graphics. This chapter attempts to cover those foundational ideas. While
it is not possible to cover the entire field in a first chapter or even a large part of it

so here we are considering basic knowledge of computer graphics.

This short chapter provides an overview and mtroduction to the Graphics and
Images and tools used for creating games and series of images. Some points you

have learned that are:

® Computer-Graphics 1s a new, rapidly evolving field of CS
® Hardware progress makes new techniques feasible
® [nput/inferaction, processing, and output technologies

® [rame buffer contains rasterized representation of the scene.

1.8 Self Learning Exercise

Q.1 which device(s) provide positional information to the graphics system?

a) Input Devices

b) Output Devices
¢) Pointing Devices
d) Bothaandc

Q.2 The primary output device in a graphics system 1s

a) Scanner
b) Video Monitor
¢) Neitheranorb

d) Printer

16

Q3 allows screen positions to be selected with the touch of a finger.

a) Touch Panels
b) Image Scanner
¢) Light Pen

d) Mouse

Q.4 Which of the following device is not the input device?

a) 'Trackball and space ball
b) Data glove

¢) Impact printer

d) Light pen

Q.5 The quality of a picture obtained from a device depends on

a) Dot size

b) Number of dots per inch
¢) Number of lines per inch
d) All of the above

Q.6 Aspect Ratio means

a) Number of pixels

b) Ratio of vertical points to horizontal points
¢) Ratio of horizontal points to vertical points
d) Bothbandc

Q.7 Random-scan system mainly designed for

a) Realistic shaded screen
b) Fog effect
¢) Line-drawing applications

d) Only b
17

Q.8

which displays devices allows us to walk around an object and view it from a

different side.

Q.9

Q.1

a) Direct view storage tube
b) Three-dimensional devices
¢) Flat panel display devices

d) Plasma panel display devices

In which system, the Shadow mask methods are commonly used

a) Raster-scan system
b) Random-scan system
¢) Neitheraandb

d) Bothaandb

0 Virtual reality, CAD, and animations are the application of

a) Z mouse
b) Digitizer
¢) Data tablets

d) Image scanners

1.9 Review Questions

Q.1 Define Computer Graphics.

Q.2
Q.3
Q.4
Q.5
Q.6
Q.7

What are the applications of Computer Graphics?

What is the hardware devices used for computer graphics?

What do you mean by interactive computer graphics?

What is pixel?

List the advantages of interactive and non-interactive computer graphics.

Explains the representative uses of Computer graphics.

18

Q.8 What do you mean by GUI?

Q.9 Write short notes on:
a) Trackball b) Joystick ¢) Touch Panel d) Scanner
e) Light pen f) Digitizer

Q.10 Write short note on Graphical APIs.

1.10 Answers to Self-Learning Exercise

Q.1(d) Q2(b) Q3(a) Q4(c) Q5(d) Q6(d) Q7(c) Q8(b) QI (a) Q.10
(a)

References and Suggest Reading

1. “Computer Graphics C version”, Donald Hearn and M. Pauline Baker, Pearson

Education.

2. “Computer Graphics Principles & Practice”, second edition in C, Foley, VanDam,

Feiner and Hughes, Pearson Education.

19

UNIT-2

Computer Graphic Systems

Structure of the Unit

2.0 Objectives

2.1 Introduction

2.2 Graphics Devices

3 Cathode Ray Tube

4 Direct View Storage Tube

5 Calligraphic or Random Scan Display System
2.6 Raster Scan Display System

2.7 Summary

2.8 Self Learning Exercise

2.9 Exercise

2,10 Answers to Self-Learning Exercise

2.0 Objectives

In this chapter we shall focus on the following:
e Understands which are the important display devices and input devices.

® Understands how the display devices are important for computer graphics

work.
® [earning various advantages and disadvantages of various devices.

® Understands the working of different display systems in computer graphics.

20

2.1 Introduction

As we know that, computer graphic i1s used to represent images and series of
images (1.e. Video). So, there are several display devices those are used for
displaying results on screen. It displays images when processing gets completed.
The image can be in different terms; first, a combination of objects, lights and a
camera; second, in the form of pixels. The image has lots of pixels or we can say
many tiny dots that make up the representation of an image. Display devices are
output devices for presentation of information in the visual form. When the input
information is given that has an electrical signals then the display is called an
electronic display. Electronic visual displays are Television and Computer
monitors.

In the rest of the chapter, you will learn about many graphical input and output

devices.

2.2 Graphic Devices

The Graphical System includes Processor, Memory, Frame buffer, Output devices,
Input devices etc. In the graphical system, we will talk about graphical devices that

are mput and output devices. There are lots of computer graphical devices:

CRT (Cathode Ray Tube), EGA (Enhanced Graphic Adapter)/CGA/VGA/SVGA
monitors, plotters, keyboard, joystick, mouse, data matrix, laser printers, films, flat

panel devices, video digitizers, scanners, LCD Panels, touch screen, trackball etc.

2.2.1 Input Devices

21

There are lots of devices available for data input in the computer graphical system.
These include: Digitizer/ Graphical tablets, keyboard, mouse, joystick, scanner,

space ball, trackball and so on. We will discuss most of the input devices here.

a) Digitizer/ Graphical Tablet: A graphical tablet is known as a digitizer. It is

a computer input device that enables a user to draw images, animation and
graphics with a special pen (named styius). It 1s somewhat similar to draw
an image with a pencil and paper. It can also use to frace an image from a
piece of paper which is secured to the tablet surface. This way of capturing
by tracing or entering the lines or shapes is called Digitizing.
These devices contain a flat surface and stylus is pen-like drawing
apparatus, Different graphic tablets use different techniques for measuring
position, Most graphic tablets use an electrical sensing mechanism to
determine the position of the stylus, Electromagnetic signals generated by
clectrical pulses applied in sequence to the wires, The strength of the signal
induced by each pulse is used to determine the position of the stylus. The
signal strength is also used to determine roughly how far the stylus or
cursor is from the graphical tablet. Sometimes, the user may not want to
enter stylus position into the computer, In this case, the user can take out
the stylus or off the tablet by pressing button provided on the stylus. Figure
I shows the graphic tablet and stylus.

Figure 2.1: Digitizer or Stylus

22

b) Keyboard: Computer keyboard is typewriter- type device which is primary

input device of any computer system. It is used for entering alphabets and

numbers. In graphics, it is used to enter data related to any picture such as

labels x-y coordinates etc. The layout of the keyboard is like the traditional

typewriter, although there are some additional keys provided for performing

additional functional. Keyboards are available in various sizes and shapes.

Figure 2 shows the standard keyboard.

Figure 2.2 : Keyboard

The keys on the keyboard are as follows:

Sr. Keys Description

No.

1 Typing Keys These keys include the letter keys (A-Z) and digit keys
(0-9) which give the same layout as that of typewriters.

2 Numeric Keypad | It is used to enter numeric data or cursor movement. It
consists of a set of 17 keys that are laid out in the same
configuration used by most adding machines and
calculators.

3 Function Keys The twelve function keys are present on the keyboard
which are arranged in a row at the top of the keyboard.

23

Each function key has a unique meaning and is used

for some specific purpose.

Control keys

These keys provide cursor and screen control. It
includes four directional arrow keys. Control keys also
include Home, End, Insert, Delete, Page Up, Page
Down, Control(Ctrl), Alternate(Alt), Escape(Esc).

Special Purpose
Keys

Keyboard also contains some special purpose keys
such as Enter, Shift, Caps Lock, Num Lock, Spacebar,

Tab, and Print Screen.

When we press a key on the keyboard, keyboard controller sends

information to the keyboard buffer. This information is called scan code.

The keyboard controller informs CPU about the pressed key with the help

of an interrupt signal, and then CPU reads scan code from the keyboard

buffer, shown in figure 3.

Keyboard ;
Keyboard —)_ | — | Keyboard
controller buter
Interrupt signal Scan Code

v \d
CPU

Figure 2. 3: Getting the information (scan code) from the keyboard.

24

)

d)

Mouse: Mouse i1s a most popular pointing device. It 1s a very famous
cursor-control device having a small palm size box with around ball at its
base which senses the movement of the mouse and sends corresponding
signals to CPU when the mouse buttons are pressed. It has two buttons
called left and right button and a wheel is present between the buttons. The
mouse can be used to control the position of the cursor on the screen, but it

cannot be used to enter text into the computer. Figure 4 shows the mouse.

Figure 2. 4: Mouse with scrolling wheel.

Joystick: Joystick is also a pointing device which is used to move cursor
position on a monitor screen. It 1s a stick having a spherical ball at its both
lower and upper ends. The lower spherical ball moves in a socket. The
joystick can be moved m all four directions. The left or right movement is
indicated by one potentiometer and forward or backward movement is
indicated by another potentiometer shown m figure 5. Thus with a joystick,
both x & y-coordinate position can be simultaneously altered by the motion
of a single stick. The function of the joystick 1s similar to that of a mouse. It
is mainly used in Computer Aided Designing (CAD) and playing computer

games.

25

Figure 2.5: Joystick

e) Scanner: Scanner is an input device which works more like a photocopy
machine, It is used when some information is available on a paper and it is
to be transferred to the hard disc of the computer for further manipulation.
The scanner captures images from the source which are then converted into
the digital form that can be stored on the disc. The scanner uses the optical
scanning mechanism to scan the pictures. The scanner records the gradation
of gray or color and stores them in the array. Finally, it stores the image
information n a specific file format such as JPEG, GIF, TIFF, BMP etc.
Image of scanner is shown in figure 6. These images can be edited when
they are stored such as rotate, resize, crop, scale using image processing

software like Photo-Shop, paint.

Figure 2.6 : Scanner

26

Scanners are available i a variety of capabilities: Flatbed scanrer, Sheet-
fed ecanner, handheld ecanner, Drurn scanner ete.

Trackhall: Trackball 1z an input device that 1= roostly uszed in notebook or
laptop cormputer, instead of a2 roouse. This iz 2 ball which 1z half inzerted
and by moving fingers on ball, pointer can be mowved Since the whole
device 1z not rmmoved, a trackball requires les: zpace than a mouse A

trackhball cornes in varicus shapes like a ball, a button and a :quare.

Figure 2.7 : Trackball

Light Per: Light pen 1& a poinhng device which iz sirnilar to a pen. It i1
uzed to select a displayed merm item or draw pichures on the monitor
screen It consizt of 2 photocell and an ophical syefEm placed in a2 soall
tube. When the tip of 2 light pen 1z moved over the montor screen and pen

button is pressed, it plotocell sersing elernent detects the zcreen locabon

and sends the carresponding signal to the CPU. Imnape: of ight-pens are

shown in fipure &

27

Figure 2.8 : Light Pen

2.2.2 Qutput Devices

The output devices can be classified as display devices and hardeopy devices.
Display dewvices arc monitors and hardcopy devices are graphic plotters and
printers. Fellowing are few of the important output devices which are used in a

computer.

a) Monitors
Monitors, commonly called as Visual Display Unit (VDLU), are the main output

device of a computer. [t forms images from tiny dots, called pixels that arc

28

arranged in a rectangular form. The sharpness of the image depends upon the

nuimber of pixels. There are two kinds of viewing screen used for monitors.

Cathode-Ray Tube (CRT) Monitor

The CRT display 1s made up of small picture elements called pixels. The smaller
the pixels, the better the mmage clarity, or resolution. [t takes more than one

illuminated pixel to form whole character, such as the letter “e” in the word help.

A finite number of characters can be displayed on a screen at once. The screen can
be divided into a series of character boxes - fixed location on the screen where a
standard character can be placed. Most screens are capable of displaying 80
characters of data horizontally and 25 lines vertically. There are some

disadvantages of CRT:

+ Large in Size

¢ High power consumption

< -~

™,

Figure 2.9 : Cathode Ray Tube Monitor

29

Flat-Pancl Display Monitor

The flat-pancl display refers to a class of vidco devices that have reduced volume,
weight and power requircement in comparison to the CRT. You can hang them on
walls or wear them on your wrists. Currcnt uscs of flat-pancl displays include

calculators, video games, monitors, laptop computer, graphics display.
The flat-pancl display is divided into two catcgorics:

o Emissive Displays - The cmissive displays arc devices that convert
clectrical cnergy into light. Example arc plasma pancl and LED (Light-
Emitting Diodcs).

e Non-Emissive Displays - The Non-cmissive displays use optical cffects to
convert sunlight or light from some other source into graphics patterns.

Example is LCD(Liquid-Crystal Deviee)

Figure 2.10 : Flat-panel displays monitor (LCD)

30

b) Printers

Printer is an output device, which is used to print information on paper. There are

two types of printers:

¢ Impact Printers

+ Non-Impact Printers

Impact Printers

The impact printers print the characters by striking them on the ribbon which is

then pressed on the paper. Characteristics of Impact Printers are the following:

Very low consumable costs
Very noisy
Usetul for bulk printing due to low cost

There is physical contact with the paper to produce an image

These printers are of two types

1. Character printers: Character printers are the printers which print one

character at a time.

These are further divided into two types:

» Dot Matrix Printer (DMP): In the market one of the most popular printers

18 Dot Matrix Printer. These printers are popular because of their ease of

printing and economical price. Each character printed is in the form of

pattern of dots and head consists of a Matrix of Pins of size (5%7, 7*9, 9%7

or 9*%9) which comes out to form a character that is why it is called Dot

Matrix Printer.

31

Advantages

o Inexpensive
o Widely Used
o Other language characters can be printed

Disadvantages

e Slow Speed
e Poor Quality

Figure 2.11a : Dot Matrix Printer

7 Pin 9 Pin 12 Pin 74 Pin

Figure 2.11b: Pins on head of a Dot Matrix Printer

32

» Daisy Wheel: Head is lying on a wheel and pins corresponding to

characters are like petals of Daisy (flower name) that 1s why 1t 1s called
Daisy Wheel Printer. These printers are used for word-processing in offices

which require a few letters to be sent here and there with very nice quality.

Advantages

o More reliable than DMP
o Better quality

o The fonts of character can be easily changed

Disadvantages

o Slower than DMP
o Noisy
o More expensive than DMP

Figure 2.12a: Daisy Wheel Printer

33

Figore 2.12b: Daisy Wheel

2. Line printers
Line printers are the prainters whach print one hne at a tme. These are of further
two types

Dyum Printer: This printer 13 bike a drum in shape 30 it B called dnom
pranter. The surface of drum 13 divided into number of tacks. Total tracks
are equal to size of paper 1e. for a paper width of 132 characters, drum will
have 132 traclks. A character set 13 embossed on track. The different
character sets availlable i the market are 48 character set, A4 and 96

characters set. One rotabion of dnum pnnts one line. Thum printers are fast
in speed and can print 30 to 2000 hnes per minute. Advantages

o Very lngh speed

Disadvantages

54

o Very expensive

o Characters fonts cannot be changed
»

Hammers (one for each band)

\\\\\\\\\\\\\L Ribbon

Q
characters r
o

Q
4

o

NANNAINNNN

g —
Total number of bands is eqgual to the maximum
number of characters (print positions) on a line

Figure 2.13: Drum Printer

» Chain Printer

In this printer, chains of character sets are used so it is called Chain Printer.

A standard character set may have 48, 64, or 96 characters.

Advantages

o Character fonts can easily be changed.

» Different languages can be used with the same printer.

Disadvantages

35

0 Noisy

Figure 2.14: Chain Printer

Non-impact Printers

Non-impact printers print the characters without using ribbon. These printers print
a complete page at a time so they are also called as Page Printers. These printers

are of two types:

1. Laser Printers: These are non-impact page printers. They use laser lights to

produc e the dots needed to form the characters to be printed on a page.

Advantages

o Very high speed
o Very high quality output

36

o Give good graphics quality

o Support many fonts and different character size

Disadvantages

o Expensive.
o Cannot be used to produce multiple copies of a document in a single

printing.

Figure 2.15: Laser Printer

2. Inkjet Printers: Inkjct printers are non-impact character printers based on a
relatively new technology. They print characiers by spraying small drops of
ink onto paper. Inkjet printers produce high quality output with presentable
features. They make less noise because no hammering is done and these
have many styles of printing modes available. Color printing is also
possible. Some models of Inkjet printers can produce multiple copies of

printing also.
Advantages
o High quality printing

37

o More reliable
Disadvantages

o Expensive as cost per page is high

o Slow as compared to laser printer

Figure 2.16: Inkjet Printer

3. Thermal Printers: A printer that uses heat to transfer an impression onto
paper. It uses continues sheet of paper. Commercial applications of thermal
printers include filling station pumps, point of sale systems, voucher
printers in slot machines, printing labels for products, and for printing

reading of ECG machine in hospitals.

Figure 2.17 (a): Thermal Printer

38

Flgure 2.17 (b): Thermal Printer

T heemmaal Eoeki
Elgment REBBON

Labed Mot Transierad
Sheet frake Ik

Flgure 2.17¢: Thermal Transfer Printing

Characteristics of Moo-lmpact Printers

o Faster than impact printers.

o They are not noisy.

o High quality.
o Support many fonts and different character size.

3G

2.3 Cathode Ray Tube

The primary ocutput device in a graphical system is the video monitor. The main

element of a video monitor is the Cathode Ray Tube (CRT), shown in the figure
18.

The operation of CRT is very simple —

o The electron gun emits a beam of electrons (cathode rays).

o The electron beam passes through focusing and deflection systems that
direct it towards specified positions on the phosphor-coated screen.

o When the beam hits the screen, the phosphor emits a small spot of light at
each position contacted by the electron beam.

o It redraws the picture by directing the electron beam back over the same

screen points quickly.

Focusing
System

|
==
el |

Y deflect

N\
Connector N & deflect
Pins L
Elect Y
éu;m Control
rid
voltage

Figure 2.18: Cathode Ray Tube

40

The deflection system of the cathode-ray-tube consists of two pairs of parallel
plates known as vertical and horizontal or ¥ and x deflection plates respectively.
The voltage applied to vertical plates controls the vertical deflection of the electron
beam and voltage applied to horizontal plates controls the horizontal deflection of
the electron beam. There are two techniques used for producing an image on the

CRT screen: vectorf random scan and raster scan.

2.4 Direct View Storage Tube

An alternative method for maintaining a screen image is to store the picture
mformation inside the CRT instead of refreshing the screen. A direct-view storage
tube (DVST) stores the picture information as a charge distribution just behind the
phosphor-coated screen. Two electron guns are used in a DVST. One, the primary
gun, is used to store the picture pattern; the second, the flood gun, maintains the

picture display as shown in the fgure below.

Focussing and
deflection system

Storage grid
L Collector

Figure 2.19: Working of Direct Yiew Storage Tube

When high speed electrons hit the storage grid, it displaces the electrons creating a

positive charge. The purpose of storage grid is to store image info in the form of

41

charge distribution. The displaced electrons are attracted towards the collector. A
flood gun is used for picture display. Now, the continuous flowing slow speed
electrons from flood electron gun are attracted to the positively charged regions of
the storage grid. They penetrate the storage grid and hit the phosphor coating in
CRT generating the output. Here, the collector is used to control the flow of flood
electrons.

A DVST monitor has both disadvantages and advantages compared to the refresh
CRT. Because no refreshing is needed, very complex pictures can be displayed at
very high resolutions without flicker. Disadvantages of DVST systems are that
they ordinarily do not display color and that selected parts of a picture cannot be
erased. To eliminate a picture section, the entire screen must be erased and the
modified picture is redrawn. The erasing and redrawing process can take several,
seconds for a complex picture. For these reasons, storage displays have been

largely replaced by raster systems.

2.5 Calligraphic or Random Scan Display System

[n this technique, the electron beam is directed only to the part of the screen where
the picture 1s to be drawn rather than scanning from left to right and top to bottom
as In raster scan. It is also called vector display, stroke-writing display, or

calligraphic display.

Picture definition is stored as a set of line-drawing commands in an area of

memory referred to as the refresh display file. To display a specified picture, the

system cycles through the set of commands in the display file, drawing each
component line in turn. After all the line-drawing commands are processed, the

system cycles back to the first line command in the list.

42

Random-scan displays are designed to draw all the component lines of a picture 30

to 60 times each second. Random scan displays are designed for line-drawing

applications and cannot display realistic shaded scenes

Figure 2. 20: Random Scan

Advantages
¢ Random scan displays have higher resolution than raster systems.

o Vector displays produce smooth line drawing.

¢ This minimal amount of information translates to a much smaller file size.

(file size compared to large raster images)

e [t remains smooth on zooming.

2.6 Raster Scan Display System

In a raster scan system, the electron beam is swept across the screen, one row at a
time from top to bottom. As the electron beam moves across each row, the beam

intensity is turned on and off to create a pattern of illuminated spots.

43

Picture definition is stored in memory area called the Refresh Buffer or Frame
Buffer. This memory area holds the set of intensity values for all the screen points.

Stored intensity values are then retrieved from the refresh buffer and “painted” on

the screen one row (scan line) at a time as shown in the following illustration.

Each screen point is referred to as a pixel (picture element). At the end of each
scan line, the electron beam returns to the left side of the screen to begin displaying

the next scan line.

The quality of a raster image 1s determined by the total number pixels (resolution),
and the amount of information in each pixel (color depth). A black-and-white

system: each screen point is either on or off, so only one bit per pixel i1s needed to

control the intensity of screen positions. Such type of frame buffer is called

Bitmap. High quality raster graphics system has 24 bits per pixel in the frame
buffer (a full color system or a true color system). Refreshing on raster scan

displays is carried out at the rate 60 to 80 frame per second.

Electron gun
l - Connectors
P 5
g
Electron beam
5 \ ‘)'/
Scan lines ~
\ ~ Control electrode
P
st " Focusing electrode

Horizontal retrace__

\ ‘ertical deflection plates

Horizontal deflection plates
- /

Vertical retrace " Phosphor-coated screen

Figure 2. 21: Raster Scan Graphics System

44

Disadvantages

®* To increase size of a raster image the pixels defining the image are be

increased in either number or size Spreading the pixels over a larger arca

causes the 1tmage to lose detail and clarity.

* Produces jagged lines that are plotted as discrete points

Difference between Raster Scan System and Random Scan System

Base of
Difference

Raster Scan System

Random Scan System

Electron Beam

The electron beam is swept
across the screen, one row at

a time, from top to bottom.

The electron beam is directed
only to the parts of screen

where a picture is to be drawn.

Resolution

Its resolution is poor because

raster scan in contrast
produces zig-zag lines that
are plotted as discrete point

sefts.

Its resolution is good because
this system produces smooth
limes drawings because CRT
beams directly follows the line

paths.

Picture
Definition

Picture definition is stored as
a set of intensity values for
all screen points, called pixels

in a refresh buffer area.

Picture definition is stored as a
set of line drawing instructions

in a display file.

Realistic Display

The capability of this system
fo store intensity values for
pixels makes it well suited for
the realistic display of scenes
contain shadow and color

pattern.

These systems are designed
for line-drawing and can’t

display realistic shaded

SCENCS.

Draw an Image

Screen pixels are used to

draw an image.

functions
used to draw an image.

Mathematical are

45

Cost Cost is low. Cost is more.

2.7 Summary

In this chapter, we have studied the major hardware and software features of
computer graphics systems. Hardware components include video monitors, hard-

copy devices, keyboards, and other devices for graphics input or output.

Raster: A rectangular array of points or dot. A raster image is a collection of dots

called pixels. An image 18 subdivided into a sequence of (usually horizontal) strips
known as “scan lines” which can be further divided into discrete pixels for

processing in a computer system.

Random: Random scan display is the use of geometrical primitives such as points,

lines, curves, and polygons.

Many other video display devices are available. In particular, flat-panel display
technology is developing at a rapid rate, and these devices may largely replace
raster displays in the near future. Other display technologies include three-
dimensional and stereoscopic viewing systems. Virtual reality systems can include

either a stereoscopic headset or a standard video monitor.

The most popular "pointing" device is the mouse, but trackballs, space-balls,
joysticks, cursor-control keys, and thumbwheels are also used to position the
screen cursor. Other input devices include immage scanners, digitizers, touch panels,
light pens, and voice systems. Hard-copy devices for graphics workstations include
standard printers and plotters, in addition to devices for producing slides,

transparencies, and film output. Printing methods include dot matrix, laser, ink jet,

46

electrostatic, and electro-thermal. Plotter methods include pen plotting and

combination printer-plotter devices.

2.8 Self Learning Exercise

Q.1 The quality of an image depends on

a) No. of pixel used by image
b) No. of line used by image
¢) No. of resolution used by image

d) None

Q.2 Graphics and image processing technique used to produce a transformation

of one object into another is called

a) Animation
b) Morphing
¢) Half-toning
d) None of the above
Q.3 The amount of light emitted by the phosphor coating depends on the?

a) Speed of electrons siriking the screen
b) Number of electrons striking the screen
¢) Distance from the cathode to the screen

d) None of above

Q.4 Vector graphics is composed of

47

Q.5

Q.8

Pixels
Palette’
Paths

None of these

Raster graphics are composed of

Pixels
Paths
Palette

None of these

Random scan systems are designed for

Pixel drawing application
Color drawing application
Line drawing application

None of these

A major disadvantage of DVST in interactive computer graphics is

Ability to selectively erase part of an image
Inability to selectively erase part of image from screen
Inability to produce bright picture

None

The basic transformations include

Translation

48

b) Rotation
¢) Scaling
d) All of the above

Q.9 Match the following

Part A Part B

A. Plasma panel 1) Polarizer

B. DVST 11) Zinc sulfide

(. LR 1i1) Dielectric mesh
D. Thin film electroluminescent iv) Neon gas

a) A-ii, B-iv, C-i, D-iii
b) A-ii, B-iii, C-iv, D-i
¢) A-iv, B-ii, C-i, D-ii
d) A-i ,B-iv, C-ii, D-iii

Q.10 The purpose of flood gun in DVSTis.......................

a) To store the picture pattern
b) To slow down the flood electrons
¢) To enable color pixels

d) To focus the electron beam

2.9 Excercise

Q.1 What is refresh buffer?

Q.2 Write short notes on graphical input and Ooutput devices.
49

Q.3
Q.4
Q.5
Q.6

Explain Direct view storage tube with its advantages.
Write differences between Raster scan system and Random scan system.
Give the classification of printers and explain various types of printers.

Write a short note on Cathode ray tube.

2.10 Answers to Self-Learning Exercise

1- (@) 2-(a) 3(b) 4-(c) 5-(a) 6-(c) 7-(b) 8(d) 9-(c) 10-(b)

50

UNIT-3
Color CRT Monitor

Structure of the Unit
3.0 Objective

3.1 Introduction

3.2 CRT monitor

3.3 Color CRT Monitor

3.4 Various CRT monitor

3.5 Differences between color monitors
3.6 Summary

3.7Glossary

3.8 Exercise

3.0 Objective

In this chapter, we shall focus on the following topics

® (CRT monitor
® (Color CRT Monitor
® Beam Penetration Method

® Shadow Mask Method

3.1 Introduction

Monitor 1s known as computer screen. "monitor” having the whole piece of
equipment’s, not just the screen part. Sometimes a monitor is called display.

51

Figure 3.1: Computer ¥oniter

Since the mid-1900s, the Cathode-Ray Tube on the other hand CRT {in some cases
called the Braun Tube) has had wvital irnpact in showing pictures, films, and data. A
patent was documented in 1938 for the CRT; be that as it may, this was an
exceptionally straightforward usage. After some time, CRTs have progressed
utilizing a wide range of systerns to expand picture accuracy furthermore, quality.
While the innovation has been around for a very long while and is entirely

experienced, despite everything it has much opportunity to get better.

Advantage and Drawback of the CRT

Advarrage

* High resolution technology
* Longlife and reliability
Brightdisplay

* Excellent contrast/gray scale

o2

® |nexpensive

® Broad application range
Drawback

® Consume large power
® weights

® Size of footpnnt

3.2 CRT monitors

The cathode ray tube (CRT) is a vacuum tube 1n which picture 1s delivered when
an electron shaft strikes phosphorescent surface. Maximur desktop computers use

of CRTs. A CRT in a PC presentation is like the “picture tube" 1n a TV input.

horizontal
deflection
electron "gun’ plates view-
/ (vacuum) | screen
i ’U “f‘ =) 1
\ I ﬂ 4l glectrons
/ vertical ;
deflection ~ light
plates “

Figure 3.2: CRT Monitor

A cathode beam tube compnses of a few basic components, as outhned beneath.

The electron firearm creates an arrow light emission. The anodes quicken the
53

electrons. Deflecting curle create a to a great degree low recurrence
electromagnetic field that allows for and only arrangement of curls is indicated for

sunplicity.) The power of the pillar can be swing. Electron shaft delivers a modest,

Upper vertical

deflection plate Horisontal deflection plates

Electron gun
(cathode)

deflection plate

Eleciron
beam

Fluorescent layer
flining inside of screen

T T

Figure 3.3: Cross sectional representation of cathode ray tube

brilliant obzervable spot when it strike phosphor-secured screen. The keeping away
from loops, moreover to the contraption that controls the force of the electron
pillar. Due to thiz the spot to race over the screen from right to left, and all the way,
in a course of action of level lines called raster. As seen from front of CRT, spot
move in pattern similar the way our eyes move when we read single-section page

of content. In any case, the examining happens at such quick rate that our eyes sees

a consistent picture over the full screen.

54

The representation indicates one and only electron gun. It is ordinary of a
monochrome, or single-shading, CRT. However, virtually all CRTs today render
shading pictures. These gadgets have three electron weapons, one for the essential
shading red, one for the primary shading green, and one for the essential shading
blue. The CRT thus produces three covering pictures: one in red (R), one in green

(G), and one 1n blue (B). This is the purporied RGB color model.

In PC frameworks, there are a few presentation modes, or sets of determinations as
per which the CRT works. The most common particular for CRT showcases is
known as SVGA (Super Video Graphics Array). Journal PCs regularly utilize fluid
precious stone display. The innovation for these showcases is vastly different than

that for CRTs.

Advantages:

a) They work at any determination, geometry and angle proportion without the

requirement for rescaling the picture.

b) CRTs keep running at the most elevated pixel resolutions for the most part

accessible.

¢) Produce an exceptionally dull dark and the most astounding complexity levels

ordinarily accessible. Appropriate for use even in faintly lit or dim situations.

d) CRTs create the absolute best shading and dim scale and are the reference
standard for every single proficient alignment. They have a superbly smooth dark
scale with a vast number of force levels. Other presentation advances are relied
upon to replicate the characteristic force law Gamma bend of a CRT, yet can just

do as such roughly.

55

e) CRTs have quick reaction times and no movement ancient rarities. Best for

quickly moving or evolving pictures.

f) CRTs are less costly than practically identical showcases utilizing other

presentation advances.

Drawbacks:

a) The CRT's Gaussian shaft profile produces pictures with gentler edges that are
not as sharp as a LCD at its local determination. Defective center and shading
enrolment additionally diminish sharpness. For the most part more keen than LCDs

at other than local resolutions.

b) All shading CRTs produce irritating Moir¢ designs. Numerous screens
incorporate Moiré decrease, which typically doesn't kill the Moiré obstruction

designs altogether.

¢) Subject to geometric bending and screen control issues. Likewise influenced by

attractive fields from other hardware including different CRTs.

d) Relatively splendid yet not as brilliant as LCDs. Not reasonable for splendidly

I1t situations.

¢) Some CRTs have an adjusted circular or round and hollow shape screen. More

current CRTs are level.

f) CRTs radiate electric, attractive and electromagnetic fields. There is significant
debate in the matter of whether any of these represent a wellbeing risk, especially
attractive fields. The most definitive logical studies presume that they are not

unsafe but rather a few people stay unconvinced.

56

g) They are extensive, overwhelming, and cumbersome. They devour a great deal

of power and create a ton of warmth.

3.3 Color CRT Monitors

Color Monitor was one the earliest CRTs to generate color display. Coated

phosphors of various compounds can generafe various colored picture. But main
problem of graphics is not to generate a picture of a predetermined colors, but to

generate color pictures, with the color characteristics opt at run time.

The main principle of colored displays is that combination of the three basic colors
—Red, Blue and Green, can generate each and every color. By opt different ratio of
three colors you can generate different colors. The basic phosphors can produce
these three colors. So, one should have a technique to merge them in various

combinations.

® Color CRT’s are designed as RGB monitors also called full color system or

true color system.

® Frame buffer contains 24 bits per pixel, for 256 voltage seftings to adjust
the mtensity of each electron beam, thus producing a choice of up to 17

million colors for each pixel.

3.4 Various CRT Monitors

A color CRT screen shows shading picture by utilizing a mix of phosphors that
emanate diverse hued light. By consolidating the radiated light a scope of hues can

be produced. Two essential strategies for delivering shading showcases are:

® Beam Penetration

® Shadow Mask

57

l. Beam Penetration: This CRT is like the straightforward CRT, however it

makes utilization of multi shaded phosphorus of number of layers. Every
phosphorus layer 1s in charge of one shading. Every other game plan are like
straightforward CRT. It can create a most extreme of 4 to 5 hues. The
association i1s something like this - The red, green and blue phosphorus are
covered in layers - one behind the other. On the off chance that a low speed
shaft strikes the CRT, just the red hued phosphorus is initiated, a marginally
quickened bar would actuate both red and green (since it can infiltrate further)
and a significantly more enacted one would include the blue part too. Yet, the
essential 1ssue 1s a dependable innovation to quicken the electronic shaft to
exact levels to get the definite hues - it is simpler said than done. In any case, a

restricted scope of hues can be advantageously created utilizing the idea.

GREEN

N\ fast Electron
"~ \\ beam

Slow Electron
beam

Figure 3.4: Beam Penetration

58

® [rregular output screens utilize the pillar infiltration strategy for showing

shading picture.

® In this, within CRT screen is covered two layers of phosphor to be specific red
and green.
® A light emission electrons energizes just the external red layer, while a light

emission electrons enters red layer and energizes the internal green layer.

® At middle of the road shaft speeds, mixes of red and green light are discharged

to show two extra hues orange and yellow.

Advantages

® [ess expensive

Disadvantages

® Quality of images are not good as compared with other methods

® Four colors are allowed only

2. Shadow Mask Method: In 1938 German creator Wemer Flechsig initially

licensed (got 1941, France) the apparently basic idea of setting a sheet of metal
simply behind the front of the tube, and punching little openings in it. The
openings would be utilized to center the pillar just before it hit the screen.
Autonomously, Al Schroeder at RCA chipped away at a comparable game

plan, yet utilizing three electron firearms too.

59

g Red |
L Phasphor

Bl
H.-..',é.;:r‘,

Flgure. 3.5: Shadow Mask
At the point when the lab pioneer clarified the potential outcomes of the
configuration to his bosses, he was guaranteed boundless labor and subsidizes
to get it working. Over a time of just a couple of months, a few model shading

TVs utilizing the framework was delivered.

RGE Triad

Flgure 3.6: Phosphorus dot pattern for a shadow mask CRT

80

In Shadow Mask CRT modest openings in a metal plate isolate the hued
phosphors in the layer behind the front glass of the screen. The openings are
set in a way guaranteeing that electrons from each of the tube's three cathode
firearms achieve just the suitably hued phosphors on the showcase.

Every one of the three bars go through the same openings in the cover, vet the
point of methodology is distinctive for every weapon. The separating of the
gaps, the dispersing of the phosphors, and the position of the weapons is
masterminded so that for instance the blue firearm just has an unhampered way
to blue phosphors. The red. green, and blue phosphors for every pixel are for

the most part masterminded fit as a fiddle (in some cases called a "ternion).

Blue Gun
' RedGun| =
=~ ,. | - , < Phosphor Dots
N,
| | ’ r Red
« | Phosphor Green
* { Phosphor

o
L

Shadow Mask
Figure. 3.7

All early shading TVs and the larger part of PC screens, over a wide span of

time, use shadow cover innovation. Customarily, shadow covers have been

61

made of materials which temperahure varieties cause to grow and contract to
the point of influencing execution

b2

A long these lines it extends and contracts considerably less than different
materials in light of temperature changes. This property permits shows made with

this innovation to give a clearer, more

The witality the shadow wveil assimilates from the electron weapon in ordinary
operation causes 1t to warm up and grow, which prompts obscured or stained (see
doming) pictures. The i var shadow wveil 1= made out of the mckel-uron

combination 1 var.

precise picture. It additionally duminishes the measure of long haul stretch and
harm to the shadow vell that can come about because of rehashed extend/contract
cycles, in this mamner expanding the showcase's future. At the end of the day, In
sShadow Mask CRT, before the surge of electrons created by the CRT's cathode
achieve the phosphor covered faceplate, it experiences the shadow wveil, a sheet of
metal scratched with an example of openings.

Figure 3.10: Indine Electron Gun Arrangement
a3

Veil situated in glass pipe of CRT amid production and phosphor is cover onto the
screen 50 electron originating from blue red and green firearm position just arrive
on the suitable phosphor. Strayed electron strike shadow mask and is absorb by it,

producing great deal of heat, which causes metal to expand.

Veil situated in glass pipe of CRT amid production and phosphor is cover onto the
screen s0 electron originating from blue red and green firearm position just arrive
on the suitable phosphor. Straved electron strike shadow mask and is absorb by it,

producing great deal of heat, which causes metal to expand.

Phosphor Pattern
of Striped Picture Tube

Phosphor
Green
Beam Red Beam [
l 1
L o
: = Blue Slotted
Beam Shadow Mask

Figure. 3.11: Phosphor Pattern for Stripped Pattern Tube

To allow flat CRT to be made, metals commonly used now for shadow mask is In-

var, an alloy of iron and nickel. The metal has a very low coefficient of expansion

64

and its name derive from the supposed invariability of it dimensions when the heat

is applied.

Advantages

® Produce realistic images

® Also produced different colors and shadows scenes.

Disadvantages

® Jow resolution

® cxpensive

® clectron beam directed to whole screen

3.5 Difference Between Color Monitors

Which place
Used
Color Display

Dependency

Costing

Quality
Picture

Beam Penetration

It use with Random Scan to show

color.

It displays four colors i.e. Red,

Yellow, Orange and Green.

Few color are available because

the colors in Beam
Penetration Strategy depend on

speed of electron beam.

It few Expensive as compare to

Shadow Mask strategy

of [mage quality is not good.

65

Shadow Mask

It Use With Raster Scan to

show color.

It display Million of colors.

Many colors available due
to the colors in Shadow

Mask strategy depends on
type of ray.

It much expensive than

many other methods.
This

realism with shadow effect.

strategy provide

Resolution It Provide High Resolution. It Provide Low Resolution.

Of Image
Constraint In this strategy, Color in display There are no such
depend on distance of electron constraint in this strategy
excites outer Red layer and then for producing colors. This
Green layer. strategy use In computer
and color TV etc.
3.6 Summary

CRTs can be helpful for showing photographs with high pixels per unit and adjust
color balance. LCDs, as of now the most widely recognized level screen
innovation, have for the most part second rate shading version (notwithstanding
having more noteworthy general brilliance) because of the bright lights normally

utilized as a backdrop illumination.

CRTs are still prominent in the printing and broadcasting enterprises and in
addition in the expert video, photography, and illustrations fields because of their
more prominent shading constancy, difference and better survey from off-pivot
(more extensive review edge). CRTs likewise still discover followers in video
gaming due to their higher determination per beginning cost, quick reaction time,

and various local resolutions.

3.7 Self Learning Exercise

Q.1 Which of the following type of monitor is common on desktop computers. It

looks much like a standard television.

e) Cathode Ray Tube

66

f) Flat Panel
g) Monochrome
h) Projector
Q.2 The helps to align the electron guns.

a) pixel
b) shadow mask
¢) resolution
d) refresh
Q.3 LCD monitors often have a smaller than CRT monitors.

¢) Refresh Rate
f) Viewing Rate
g) Color Depth
h) Price

Q.4 This specification of a monitor describes the usable portion of the screen.

a) refresh rate
b) resolution
¢) dot pitch
d) viewable area
Q5A 1igsimilar to the LCD monitor, but has a phosphorescent film

between the layers.

¢) Electro luminescent displays (ELD)
f) Plasma displays

g) Paper-white displays

h) thin-film transistor

3.8 Review Questions

67

Q.1
Q.2
Q3
Q.4
Q.5
Q.6
Q.7

Explain refresh cathode ray tube?

Define persistence in terms of CRT Phosphorous.
What are the different properties of phosphorus?
What 1s a Beam penetration method?

Define shadow masking.

Explain color CRT monitors?

Give the difference in Beam Penetration and Shadow Mask.

Answers to Self-Learning Exercise

Q.1(a) Q.2(b) Q.3 (b) Q.4(d) Q.5(a)

References and Suggest Reading

. “Computer Graphics C version”, Donald Hearn and M. Pauline Baker,

Pearson Education.
“Computer Graphics Principles & Practice”, second edition in C, Foley,

VanDam, Feiner and Hughes, Pearson Education.

68

UNIT-4
Output and Input Devices

Structure of the Unit
4.0 Objective

4.1 Introduction

4.2 Input Devices: An Overview

4.3 Various Input Devices

4.4 Output Devices

4.5 Graphical Input Technique

4.6 Self Learning Exercise

4.7 Summary

4.8 Glossary

4.9 Answers to Self Learning Exercise
4.10 Exercise

4.11 Answers to Exercise

4.0 Objective

In this chapter, we shall focus on the following topics

® [ntroduction of input and output devices
® [nput Devices

® Qutput Devices

® Graphical Input Technique

69

4.1 Introduction

Graphics hardware can be divided mto two major categories of devices:

(1) Input Devices: By using these devices the user mteracts to generate necessary
instruction or data for creating graphics.

(2) Output Devices: By using these devices the graphics are rendered on the

monitor screen or printers through which the tangible graphics output 1s produced.

4.2 Input Device: An Overview

Input devices are things we use to put information into a computer. An input

device is any hardware device that sends data to the computer.

Various hardware devices have been developed to enable the user to interact more

naturally. These devices can be separated into two classes.
1. Locators

2. Selectors

1. Locators: Locators are the devices which give position information. The
computer receives from a locator the co-ordinates for a point. Using a locator, we

can indicate a position on the screen.
The different locator’s devices are as follows
1. Mouse

1. Joystick

70

2. Selectors: These devices are used to select the particular graphical object. A
selector may pick a particular item, but no information about that item is located on

the screen. The different selectors devices are as follows.

i. Light Pen
ii. Keyboard
ii1. Trackball
iv. Digitizers
v. Scanner
vi. Touch Panels

vil. Data Globe

Input Device

’l
, |
Locators Selectors
\
\ 4
Mouse Joystick
h 4
v v WV ‘l’ ‘lf l
A Touch Data
Light Keyboard Trackball Digitizer Scanner b
pen panel globe
Figure. 4.1

71

4.3 Various Input Devices

1. Mouse:- A mouse is a pointing device that detects two-dimensional motion
relative to a surface. The mouse controls the movement of the pointer, also
called the mouse pointer, on the screen. Drawing shapes or designing figures

using graphic application packages (like AutoCAD, Photoshop, CorelDraw,

and Paint) is almost impossible without a mouse.

Figure.42: Mouse

2. Joystick: - A joystick is an input device consisting of a stick that pivots on
a base and reports its angle or direction to the device it is controlling. A
joystick is configured so that moving the stick left or right signals movement
along the X-axis, and moving it forward {up) or back (down) signals
movement along the Y -axis. Joysticks are used mostly for computer games,

but they are also used occasionally for CAD/CAM systems and other
applications.

72

Figure. 4.3: Joystick

3. Light Pen: - A light pen is a computer input device in the form of a light
sensitive wand used in conjunction with a computer's CRT display. The light pen
contains a light-sensitive element (photoelectric cell) which, when placed against
the screen, detects the light from the screen enabling the computer to identify the
location of the pen on the screen. A light pen can work with any CRT-based

monitor, but not with LCD screens.

Figure. 4.4: Light Pen

4. Keyboard: One of the primary input devices used with a computer. Keyboards
allow a computer user to input letters, numbers, and other symbols into a
computer. Most keyboards have between 80 and 110 keys, including:

» Alphanumeric keys —all letters and numbers on the keyboard. A-Z and 0-9.
73

» Punctuation keys — All of the keys associated with punctuation such as the
comma, period, semicolon, brackets, and parenthesis and so on. Also, all of the
mathematical operators such as the plus sign, minus sign, and equal sign.

* Special keys — All of the other keys on the computer keyboard such as the

function keys, control keys, arrow keys, caps lock key, delete key, etc.

Figure.4.5: Keyboard
5. Trackball: - A trackball is a pointing input device consisting of a ball held by a
socket containing sensors to detect a rotation of the ball about two axes—Ilike an
upside-down mouse with an exposed protruding ball. The user rolls the ball with
the thumb, fingers, or the palm of the hand to move a cursor. Military mobile anti-

aircraft radars and submarine sonar tend to continue using trackballs.

Figure.4.6: Trackball

6. Digitizer:-It is a common device for drawing, painting, or interactively selecting
coordinate positions on an object. Typically, it is used to scan an Object and to

input discrete coordinate positions.

74

A graphics tablet is one such digitizer that consists of a flat surface upon which the
user may draw an image using an attached stylus, a pen-like drawing apparatus.

Three dimension (3D) Digitizers use sonic or electromagnetic transmissions to

record positions.

Figure. 4.7: Digitizer
7. Scanner: - A scanner is a device that captures images from photographic prints,
posters, magazine pages, and similar sources for computer editing and display.
Scanners come in hand-held, feed-in, and flatbed types and for scanning black-and-

white only, or color. Very high resolution scanners are used for scanning of high-

resolution printing.

Figure. 4.8: Scanner

75

8. Touch Panel: - A touch panel is an electronic visual display that can detect the
presence and location of a touch within the display area. Touch screens can sense

Finger and other passive objects, such as a stylus. However, if the object sensed is
active, as with a light pen.

Touch panels have gained wide acceptance in bank ATMs, video games, and kiosk

at railway stations & tourist information centers.

Figure. 4.9: Touch Panel

9. Data Globe: - A data glove 1s an interactive device, resembling a glove worn on

the hand, which facilitates tactile sensing and fine-motion control in robotics and
virtual reality. Fine-motion control mvolves the use of sensors to detect the

movements of the user's hand and fingers, and the translation of these motions into
signals that can be used by a virtual hand (for example, in gaming) or a robotic
hand (for example, in remote-control surgery). It uses in 3D animation movies and

visual effects.

Fiber guide

__ Optical fiber

- Polhemus sensor

— Lycra glove

Control interface

— cable

Figure.4.10: Data Globe

76

4.4 Output Devices

The display devices are known as output devices. The display system may be
attached to a PC to display character, picture and video outputs.

The most common output device for interactive computer graphics is the display.
Displays consist of different technologies with different characteristics such as size
, resolution, color depth, refresh rate, and brightness. Some of the common types of
display systems are following.

1. Raster scan display

2. Random scan display

3. Direct view storage tube

4. Flat panel display

Before we discuss the major display systems let us first know about basic terms.

Pixel:- A pixel (short for picture element, using the common abbreviation "pix" for

"picture") 18 one of the many tiny dots that make up the representation of a picture
in a computer's memory. Pixels are normally arranged in a regular 2D grid, and
are often represented using dots or squares. Each pixel has a particular colour and
brightness value. The intensity of each pixel is variable; in color systems, each
pixel has typically three or four components such as red, green, and blue, or cyan,

magenta, yellow, and black.

Resolution: - Resolution is the term used to describe the number of dots, or pixels,

used to display an image. The display, or resolution on a monitor, is composed of
thousands of pixels or dots. This display is indicated by a number combination,
such as 800 x 600. This indicates that there are 800 dots horizontally across the
monitor, by 600 lines of dots vertically, equalling 480,000 dots that make up the

77

image you see on the screen. Higher resolutions mean that more pixels are used to

create the image, resulting in a cleaner image.

Frame Buffer: - A region of memory where the picture definition for the entire
screen 18 stored. A frame buffer is a large, contiguous piece of computer memory.
Each screen pixel corresponds to a particular entry in a 2D array residing in

memory. This memory is called a frame buffer or a bitmap.

1. Raster scan display: - In a raster-scan system the electron beam is swept across
the screen one row at a time from top to bottom.

As the electron beam moves across each row, the beam intensity is turned on and
off to create a pattern of illuminated spots. Picture definition is stored in a memory

area called the refresh buffer or frame buffer. This memory area holds the set of

intensity values for all the screen points.

These stored intensity values are then retrieved from the refresh buffer and used to
control the intensity of the electron beam as it moves from spot to spot across the
screen. Stored intensity values then retrieved from refresh buffer and “painted” on

the screen one row (scan line) at a time.

Sometimes, refresh rates are described in the unit of cycles per second, or Hertz

(Hz). Refreshing on a raster scan displays is carried out at the rate 60 to 80

frames per second. At the end of each scan line, the electron beam returns to the

left side of the screen to begin displaying the next scan line.

Horizontal retrace:- The return to the left of the screen, after refreshing each
scan line.

Vertical retrace:- At the end of each frame, the electron beam returns to the top

left corner of the screen to begin the next frame.

78

On some raster-scan systems (and in TV sets), each frame is displayed in two
passes using an interlaced refresh procedure. In the first pass, the beam sweeps
across every other scan line from top to bottom. Then after the vertical retrace, the
beam sweeps out the remaining scan lines. The interlacing of the scan lines in this
way allows us to see the entire screen displayed in one-half the time it would have

taken to sweep across all the lines at once from top to bottom.

Figure.4.11: Raster scan display

2. Random scan display:- Random scan display is the use of geometrical

primitives such as points, lines, curves, and polygons, which are all based upon

mathematical equation.

In random scan technique, the electron beam is directed straight away to the
particular point(s) of the screen where the image is to be produced. It generates the
image by drawing a set of random straight lines much in the same way one might
move a pencil over a piece of paper to draw an image — drawing strokes from one
point to another, one line at a time. Random scan monitors draw a picture one line
at a time (Vector display, Stroke —wnting or calligraphic displays). The
component lines of a picture can be drawn and refreshed.

79

Random scan displays have higher resolution than raster systems.

=<0 =5) =5) =3

Figure.4.12: Random scan display
3. Direct view storage tube: - An alternative method for maintaining a screen
image 1s to store the picture information inside the CRT instead of refreshing the

screen. A direct-view storage tube (DVST) stores the picture information as a

charge distribution just behind the phosphor-coated screen.

In DVST there is no refresh buffer; the images are created by drawing vectors or
line segments with a relatively slow-moving electron beam. The beam is designed
not to draw directly on phosphor but on a fine wire mesh (called storage mesh)
coated with dielectric and mounted just behind the screen. A pattern of positive
charge is deposited on the grid, and this pattern is transferred to the phosphor-

coated screen by a continuous flood of electrons emanating from a separate flood

gun.

Flood Electrons
Forcusion and
Deflection System

ity s \
£ - «— Screen
ao--
Prin{ary N
Stroge Grid
Gun Writing
Beam Collector

Figure.4.13: Direct view storage tube

80

Just behind the storage mesh is a second grid, the collector, whose main purpose is
to smooth out the flow of flood electrons. These electrons pass through the
collector at low velocity and are attracted to the positively charged portions of the
storage mesh but repelled by the rest. Electrons not repelled by the storage mesh

pass right through it and strike the phosphor.

To increase the energy of these slow-moving electrons and thus create a bright
picture, the screen is maintained at a high positive potential. The storage tube
retains the image generated until it is erased. Thus, no refreshing is necessary, and
the image is absolutely flickers free.

A major disadvantage of DVST in interactive computer graphics is its mability to
selectively erase parts of an image from the screen. To erase a line segment of the
displayed image, one has to first erase the complete image and then redraw it by
omitting that line segment. However, the DVST supports a very high resolution
which is good for displaying complex images.

4. Flat panel display:-The term flat—panel displays refers to a class of video
devices that have reduced volume, weight, and power requirements compared to a
CRT. A significant feature of flat-panel displayed 1s that they are thinner than
CRTs.

Two categories of Flat-panel displays are:

1. Emissive Displays

2. Nonemissive Displays

1. Emissive display:-are devices that convert electrical energy into light.

Examples are Plasma panels, thin-film electroluminescent displays and Light-

emitting diodes (LED).

81

Plasma panel:- A layer of gas (usually neon) is sandwiched between two glass

plates. By applying a high voltage to a pair of horizontal and vertical conductors, a
small section of the gas (tiny neon bulb) at the intersection of the conductors break

down into the glowing plasma of electrons and ions.

Thin-film electroluminescent:- The region between the glass plates is filled with

a phosphor, such as zinc sulfide doped with manganese.

Light-emitting diode:- A matrix of diodes is arranged to form the pixel positions
in the display, and picture definition is stored m a refresh buffer. Information is
read from the refreshed buffer and converted to voltage levels that are applied to

the diodes to produce the light patterns in the display.

2.Nonemissive display:-In this display, it uses the optical effect to convert sunlight

or light from some other sources into a graphic pattern.

Example 1s LCD(liquid crystal display).

Liquid crystal display:- used in small systems, such as calculators, laptop
computers. Produce a picture by passing polarized light (from the surrounding or
from an internal light source) through a liquid-crystal material that can be aligned

to either block or transmit the light.

Two glass plates, each containing a light polarizer at right angles to the other plate,
sandwich the liquid crystal materials. Polarized light passing through the material
is twisted so that it will pass through the opposite polarizer. The light is then

reflected back t the viewer.

82

Phosphaor coated
screen

Electric or magnetic
deflectors

Shadow mask or
aperture grill

Figure. 4.14: Liquid crystal display

4.5 Graphical Input Technique

Scvceral techniques arc incorporated into graphics packages to aid the intcractive
construction of picturcs.

An Interaction technique is a way of using a physical input/output device to
pertorm a generic interaction task in a human-computer dialogue. It represents an
abstraction of somc common class of intcractive task, tfor cxample, choosing onc of
scveral objects shown on a display sercen, so it 18 not bound to a single application.
The basic intcraction tasks for interactive graphics arc positioning, sclecting,
cntering text and cntering numeric quantitics.

Various input techniques arc following

Basic Positioning Methods:- This can be considered the most basic of graphical
input operations. In its simplest torm, it involves choosing a symbol/character on
the screen and moving it to another location. Onc way of using it is to choosc the
symbol or picturc involved, moving the cursor to the position required and pressing
a (predetermined) key to place in that position.

With a text string, for example, the screen point could be taken as the center string

position, or the start or cnd position of the string, or any of the other string-

83

positioning options. For lines, straight line segments can be displayed between two
selected screen positions.

As an aid in positioning objects, numeric values for selected positions can be
echoed on the screen. Using the echoed coordinate values as a guide, we can make

adjustments in the selected location to obtain accurate positioning.

Positional constraint:-

One of the problems faced by inexperienced users while drawing figures is the
concept of positioning. For example, we may want to put an object exactly at the
end of a straight-line or across at the center of the circle etc. Because of lack of

coordination between the eyes and the hand movements.

[n some applications, certain types of prescribed orientations or object alignments
are useful. A constraint is a rule for altering input-coordinate values to produce a
specified orientation or alignment of the displayed coordinates. There are many
kinds of constraint functions that can be specified, but the most common constraint
is a horizontal and vertical alignment of straight lines. This type of constraint,
shown in following figures, is useful in forming network layouts. With this
constraint, we can create horizontal and vertical lines without worrying about

precise specification of endpoint coordinates.

S— —_—

Press Buticn Press Button
to Sslact 1o Select
First Endpoint Second Endpoint

Horizontal line constraints

24

Py SR e Y r"___—-_h__-_‘_“_-""t
\ A
| | |
| | i
+ ‘ %]
\ | !
\\ . __,,)' _ . g,
Press Sutton Press Button
to Select Frrst 1o Select
Endpoint Seconc Endooint

Vertical line constraints

Figure. 4.15: Positional constraint

A horizontal or vertical constraint is implemented by determining whether any two
input coordinate endpoints are more nearly horizontal or more near vertical. [f the
difference in the y values of the two endpoints is smaller than the difference in x
values, a horizontal line is displayed. Otherwise, a vertical line is drawn. Other
kinds of constraints can be applied to input coordinates to produce a variety of
alignments. Lines could be constrained to have a particular slant, such as 45°, and
input coordinates could be constrained to lie along predefined paths, such as

circular arcs.

3. Grid:- The Another technique for constraining vertex positions is to
superimpose an “invisible™ grid (with user specified spacing) over the drawing
area. Now object vertices can be constrained to be at the intersection of a
horizontal and vertical grid line. This makes it easier, for example, to gnarantee

two line segments share a common endpoint vertex.

DR ([
E - I /_Ij S~ i }

B 2o R =

Press Button to Press Button
Select First Endpoint to Select
Second Endpoint

Figure. 4.16: Grid

85

Grids [acilitate object constructions, because a new line can be joined easily toa
previously drawn line by selecting any position near the endpoint grid intersection

ol one end of the displayed line.

3. Gravity Field:-To identily {or select) positions on objects that might not match
well-delined positions (like grid poinls), we might enable an invisible “gravily
field” around the objects.

A gravily lield is just the region containing all coordinate positions within a
specilied maximum distance ol an objecl.

Then we want to connect a line ({or example) with an object, we only have lo
select an endpoint that is within the gravitational [ield of the object; the sofiware

automatically connects the line to the object.

Figure. 4.17: Gravity Field

4. Rubber band technique:- [t is used lor mteraclive adjusting object sizes. For

example, one end-point ol a line can be selected.

Then as the cursor moves, the “drall line” 1s displayed between the start position
and the cursor position. Finally, the end positlion is selected (e.g. a mouse bullon is

released)

36

- —

Press Bution A3 the Cursar
o Start Moves A Lane
Fuober-Hand SArerches gl
Line Drawing From Initial
Print
-
Line i At Siop Butron is
Pasmonsd and & Fremes Curser Can
Button Presead to b Mowsdd Without
Emtt Procoss Rubder-Bangd
Elfects

Figure .4.18: Rubber band technique

Rubber-band methods are used to construct and position other objecets besides
straight lincs. The following figure demonstrates the rubber-band construction of a

rectangle and rubber-band circle construction.

\ /1'{ e _'__,_.J" e _/;

i, TSN B e S B
Select Reclangle Sebect Final
Posilion Sarscdes Out Pos han lor
tar Ung Comnar A Croas Moves Cpposie Cornar
ol tha Ractanglas of (he Rectengla

Figure.4.19: Rubber band method for constructing rectangle

e e Ve B \
| R

I
— \
| ' i
[} I [e |
| I | \ ! m r
L l\ .l & L1
I"“—-—n__ —— I— \-..___ _a N _,-“
Presy Eyttom A Rupbes-Band Pras Sarcond A Saie s
T Brgat Lre Sheetches Desrran Ta Cime i Mo
Gl A5 Lesaot fadgane L upiawec
Aoy Eridira=st By Tt
Momes dgaa

87

s PERe— DT A,) =Y

Arc Stretehes

B e Qut From Stant
Position as

Cursor Movas

Figure.4.20: Rubber band method for constructing circle

5. Dragging:- A technique that is often used in interactive picture construction is
to move objects into position by dragging them with the screen cursor. We first
select an object, then move the cursor in the direction we want the object to
move, and the selected object follows the cursor path. Dragging objects to
various positions in the scene is useful in applications, where we might want to
explore difterent possibilities before selecting a tinal location.

6. Sketching:-Options for sketching, drawing, and painting come in a variety of
forms. Straight lines, polygons, and circles can be generated with the methods
discussed in the previous sections. Curve-drawing options can be provided
using standard curve shapes, such as circular arcs and splines, or with freehand
sketching procedures. Splines are interactively constructed by specifying a set
of discrete screen points that give the general shape of the curve. Then the
system fits the set of points with a polynomial curve. In freehand drawing,
curves are generated by following the path of a stylus on a graphics tablet or the
path of the screen cursor on a video monitor. Once a curve is displayed, the
designer can alter the curve shape by adjusting the positions of selected points

along the curve path.

4.6 Self Learning Exercise

Q.1 Which devices provides positional information to the graphics system?
a) Input devices

b) Output devices

88

¢) Pointing devices
d) Bothaand ¢
Q. 2 Which stores the picture information as a charge distribution behind the
phosphor-coated screen?
a) Cathode ray tube
b) Direct-view storage tube
c¢) Flat panel displays
d) 3D viewing devices
Q.3 The maximum number of points that can be displayed without overlap on a
CRT is referred as?
a) Picture
b) Resolution

c) Persistence
d) Frame buffer

4.7 Summary

The term “computer graphics” refers to anything involved in the creation or
manipulation of images on the computer, including animated images. In computer

graphics, various input and output devices are used to perform many operations.

4.8 Glossary

Pixel-- The smallest indivisible unit of a digital image. A pixel is always the same
color throughout. An image is a two-dimensional array of pixels.
Refresh rate--- The rate at which parts of the image on a CRT are re-painted, or

refreshed. The horizontal refresh rate is the rate at which individual scan lines are
drawn. The vertical refresh rate is the rate at which fields are drawn in interlaced

mode, or whole frames are drawn in non-interlaced mode.

89

4.9 Answers to Self-Learning Exercise

Q.1 (d)
Q.2 (b)
Q3 (b)

4,10 Exercise

Q. 1 In the raster scan method for transformation, a 90° rotation can be performed
by ?
a) reversing the order of bits within each row in the frame buffer
b) by performing XOR on the frame buffer location
¢) by coping each row of the block into a column in the new frame buffer
location

d) None of above

Q. 2 Beam penetration method is usvally used incoceeveeevrerennnne. ?
a) LCD
b) Raster Scan display
¢) Random scan display
d) DVST

Q. 3 Video devices with reduced volume, weight and power consumption are
collectively known as7
a) Light weight monitors
b) Flat-panel displays
¢) CRT
d) Portable display

90

Q. 4 Which technique 1s employed for drawing entities using mouse only.?
a) Gravity
b) Rubber band

¢) Constraint
d) Painting

1 . - is used to connect a new line to a previously drawn line?
a) Gravity field
b) Rubber band method

¢) Painting
d) None of the above

Q. 6 Which method are used to get and set the position of a pixel, object or text in

active area of a desktop?
a) Drugging method
b) Basic positioning method
¢) Sketching method
d) Gravity field method
Q. 7 The division displayed on screen into row and columns is known as ?
a) Rubber band method
b) Gravity field
¢) Dragging
d) Grid

4.11 Answers of Exercise

Q. 1(c) Q.7(d)
Q.2 (b)
Q.3 (b)

91

Q.4(b)
Q.5 (a)
Q. 6(b)

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M.Pauline Baker, 2™ edition,
Prentice Hall,1994.

2. Procedural Element for Computer Graphics by David F.Rogers, Tata McGraw
Hill, 2001.

3. Computer Graphics by Dr.Prabhakar Gupta,Vineet Agarwal Manish Varshnay,
Laxmi Publications, 2011.

92

UNIT-5

Output Primitives

Structure of the Unit

5.0 Objective

5.1 Introduction

5.2 Scan Converting Lines

5.3 Scan Converting Circle

5.4 Scan Converting Ellipse

5.5 Self Learning Exercise

5.6 Summary

5.7 Glossary

5.8 Answers to Self-Learning Exercise
5.9 Exercise

5.10 Answers to Exercise

5.0 Objective

In this chapter, we shall focus on the following topics

® Scan Converting Lines
® Scan Converting Circle

® Scan Converting Ellipse

5.1 Introduction

A picture 1s completely specified by the set of intensities for the pixel
positions in the display. Shapes and colors of the objects can be described

93

internally with pixel arrays into the frame buffer or with the set of the basic
geometric structure such as straight line segments and polygon color areas. To
describe structure of basic object is referred to as output primitives.

Each output primitive is specified with mput co-ordinate data and other
information about the way that objects is to be displayed. Additional output
primitives that can be used to constant a picture include circles and other conic
sections, quadric surfaces, Spline curves and surfaces, polygon floor areas and

character string.

Graphic SW and HW provide subroutines fo describe a scene in terms of basic
geometric structures called output primitives. Output primitives are combined to
form complex structures. Simplest output primitives are as follows:

Point (pixel)
Line segment

Points and Lines

Point plotting is accomplished by converting a single coordinate position into
appropriate operations for the output device. With a CRT monitor, for example, the
electron beam is turned on to illuminate the screen phosphor at the selected
location.

Line drawing is accomplished by calculating intermediate positions along the line
path between two specified end points positions. An output device 1s then directed
to fill in these positions between the end points of the object.

Digital devices display a straight line segment by plotting discrete points
between the two end points. Discrete coordinate positions along the line path are
calculated from the equation of the line. For a raster video display, the line color
(intensity) 1s then loaded into the frame buffer at the corresponding pixel
coordinates. Reading from the frame buffer, the video controller then plots “the

screen pixels™.

Pixel positions are referenced according to scan-line number and column

number (pixel position across a scan line). Scan lines are numbered consecutively

94

from 0, starting at the bottom of the screen; and pixel columns are numbered from

0, left to right across each scan line.

5.2 Scan Converting Lines

The basic meaning of scan converting is to convert output primitives into frame
buffer updates. In conversion process, we have to choose which pixels contain
which intensity value. In the scan conversion process, there are many constraints.
First straight line should appear as a straight line. Second constraint states that
primitives should start and end accurately. Next constraint shows that primitives
should have a consistent brightness along with their length. And they should draw

rapidly.

Line Equation

We determine pixel positions along a straight-line path from the geometric

properties of the line. The Cartesian slope-intercept equation for a straight line is
y=m-x+t+b (5-1)

With m as the slope of the line and # as the y intercept.

Yend —

| |
Xy -Tc nd

Figure .5.1 : Line path between end points position

Given that the two end points of a line segment are specified at positions (xo, yo)

and (Xend, yend), as shown in Figure 5-1.

95

We can determine values for the slope m and y intercept b with the following

calculations:

= (yend = yﬂ)/ (Xerld = XD) (5-2)

b=Yo-m- Xo (5-3)
Algorithms for displaying straight lines are based on the line equation 3-1 and the
calculations given in equations 5-2 and 5-3.
For any given X interval §x along a line, we can compute the corresponding y

interval &y from equation 5-2 as
Sy =m- 6x (5-4)

Similarly, we can obtain the x interval §x corresponding to a specified 8y as
dx = 8y/m (5-3)

These equations define the basis for determining deflection voltages in
analog displays, such as a vector-scan system, where arbitrarily small changes in
deflection voltage are possible. For lines with slope magnitudes |m| < 1, éx can be
set proportional to a small horizontal deflection voltage, and the corresponding
vertical deflection is set to proportional to §y as calculated from equation 5-4.

For lines whose slopes have magnitudes |m| > 1, §y can be set proportional
to a small vertical deflection voltage with the corresponding horizontal deflection
voltage set proportional to 8x, calculated from Equation 5-5. And finally for lines
with m = 1, x = §y and the horizontal and vertical deflections voltages are equal.
In each case, a smooth line with slope m 1s generated between the specified

endpoints.

‘l

96

Figure. 5.2: Straight line segments with five sampling position along the x axis

On Raster systems, lines are plotted with pixels, and step sizes in the
horizontal and vertical directions are constrained by pixel separations. We must
“sample™ a line at discrete positions and determine the nearest pixel to the line at
each sampled position. This scan-conversion process for straight lines 1s mentioned

in Fig. 5-2 with discrete sample positions along the x axis.

Line Drawing Algorithms
® Digital Differential Analyzer (DDA) Algorithm

® Bresenham’s Line Algorithm

® Parallel Line Algorithm

Digital Differential Analyzer (DDA) Algorithm

The digital differential analyzer (DDA) is a scan-conversion line algorithm based

on calculation either Ay or Ax.
The line at unit intervals in one coordinate and determine other coordinate by

corresponding integer values nearest the line path.

A line with positive slope, if the slope 1s less than or equal to 1, at unit X intervals

(Ax=1) and compute each successive y values as:
Ye+1 = Yt (1)

Subscript k takes integer values starting from 1 for the first point and increases by
1 until the final endpoint is reached. m can be any real number between 0 and 1,
the calculated y values must be rounded to the nearest integer

For lines with a positive slope greater than 1 we reverse the roles of X and y, while

(Ay=1) and calculate each succeeding x value as

97

Xpe1 = X +1/m 2)

Equation (1) and (2) are based on the assumption that lines are to be processed

from the left endpoint to the right endpoint. If we make this processing reversed,
Ax=-1 that the starting endpoint is at the right position

Ye+1 = Y — M (3)

When the slope is greater than 1 and Ay = -1 with
X1 = X — 1(1/m) (4)

If the absolute value of the slope is less than 1 and the start endpoint is at the left,

we set Ax =1 and calculate y values with equation (1).

When the start endpoint is at the right (for the same slope), we set Ax = -1 and

obtain y positions from equation (3). Similarly, when the absolute value of a

negative slope is greater than 1, we use Ay=-1 and equation (4) or we use Ay = 1

and equation (2).

DDA Algorithm
#define ROUND (a) ((int) (a+0.5))
Void lineDDA (int xa, int ya, int xb, int yb)
{
int dx = xb - xa, dy = yb - ya, steps, k;
float xIncrement, yIncrement, X = xa, y = ya;
if (abs (dx) > abs (dy)
steps = abs (dx) ;
clse
steps = abs dy);
xIncrement = dx / (float) steps;
yIncrement = dy / (float) steps

98

setpixel (ROUND(x), ROUND(y)) :
for (k=0; k<steps; k++)
{
X = X + xIncrement;
y =y + ylncrement;
setpixel (ROUND(x), ROUND(y));

Algorithm Description:
Step 1: Accept Input as two endpoint pixel positions
Step 2: Horizontal and vertical differences between the endpoint positions are
assigned to parameters dx and dy (Calculate dx=xb-xa and dy=yb-ya).
Step 3: The difference with the greater magnitude determines the wvalue of
parameter steps.
Step 4: Starting with pixel position (xa, ya), determine the offset needed at each
step to generate the next pixel position along the line path.
Step 5: loop the following process for steps number of times
a. Use a unit of increment or decrement in the x and y direction.
b. if xa is less than xb the values of increment in the x and y directions are 1
and m.

c. if xa is greater than xb then the decrements -1 and — m are used.

Example: Consider the line from (0, 0) to (4, 6)
1. xa=0, ya =0 and xb=4, yb=6
2.dx=xb-xa=4-0=4anddy=yb—-ya=6-0=6
3.x=0and y=0
4. 4 > 6 (false) so, steps=6
5. Calculate xIncrement = dx/steps = 4 / 6 = 0.66 and yIncrement = dy/steps
=6/6=1
6. Setpixel(x, y) = Setpixel (0, 0) (Starting Pixel Position).
99

7. Iterate the calculation for xIncrement and yIncrement for steps (6) number of

times.

8. Tabulation of the each iteration.

Plotting Points
K X b § (Rounded to integer)
0 0+0.66=0.66 0+1=1 (1,1)
1 0.66+0.66=1.32 1+1=2 (1,2)
2 1.32+0.66=1.98 2+1=3 (2.3)
3 1.98+0.66=2.64 3+1=4 (3.4)
4 2.64+0.66-3.3 4+1=5 (3.5)
5 3.3+0.66=3.96 5+1=6 (4.,6)
Result :

(¥}] -

0 1 2 3 B

Figure .5.3:

Advantages of DDA Algorithm
1. It is the simplest algorithm.

2. It is a faster method for calculating pixel positions than the direct use of line

equations.

100

Disadvantages of DDA Algorithm

1. Floating point arithmetic in DDA algorithm is still time-consuming

2. End point accuracy is poor

3. Because of rounding operation the some calculated pixels positions away from

through line.

Bresenham’s Line Algorithm

An accurate and efficient raster line generating algorithm developed by Bresenham

that uses only incremental integer calculations.

Also, Bresenham’s line algorithm can be designed to display circles and other
curves. To 1llustrate Bresenham's approach, we- first consider the scan-conversion

process for lines with a positive slope less than 1.

Pixel positions along a line path are then determined by sampling at unit x
intervals. Starting from the left endpoint (X, Vo) of a given line, we step to each
successive column (X position) and plot the pixel whose scan-line y value is closest
to the line path.

To determine the pixel (X, V) is to be displayed, next to decide which
pixel to plot the column Xp, 1 = Xpo1 (X1, Yi) and(Xpy1, Vier1). At
sampling position X, 1, we mark vertical pixel separations from the mathematical
line path as d1 and d2. The y coordinate on the mathematical line at pixel column

position X, 1 1s calculated as follows:

y= m(Xgiq1) +b (1)
Then
dl=y — yg
=m(Xge1) + b — Vi
d2=Yi41 — Y

=YVi+1 — M(Xpq1) — b

101

To determine which of two pixels are closest to the line path. Efficient test that is

based on difference between two pixels separations.

dl —d2 = 2m(xp.q) — 2y, +2b—1 (2)

A decision parameter Py, for the Kk - step in the line algorithm can be obtained by

rearranging equation (2). By substituting m=Ay/Ax where Ax and Ay are the
vertical and horizontal separations of the endpoint positions and defining the
decision parameter as follows:
P, = Ax (d1 — d2)
= 20y x), — 2Ax.y, + ¢
3)
The sign of P}, is same as the sign of d1-d2, since Ax>0.

Parameter C is constant and having the value 2Ay + Ax(2b-1) which is
independent of the pixel position and will be eliminated in the recursive
calculations for Pj,.

If the pixel at yy, 1s “closer” to the Ime path than the pixel at ¥y, ¢ (d1< d2) than
decision parameter P}, is negative. In this case, plot the lower pixel, otherwise plot
the upper pixel.

Coordinate changes along the line occur in unit steps in either the x or y directions.
To obtain the values of successive decision parameters using incremental integer
calculations. At steps k+1, the decision parameter is evaluated from equation (3) as

follows:

Piyr = 28y X1 — 28x.)41 + €

Subtracting the equation (3) from the preceding equation

Piy1 — P = 28y(Xp41 — %) — 28x(Yies1 — Vi)

But X, .1 = X3, + 1 so that

102

Piy1 = Py + 28y — 2A%(Vies1 — Vi)
(4

Where the term yj, .1 — Yy is either O or 1 depending on the sign of parameter P,,.
This recursive calculation of decision parameter 1s performed at each integer x

position, starting at the left coordinate endpoint of the line.

The first parameter Py is evaluated from equation at the starting pixel position

(Xg,Yo) and with m evaluated as Ay/Ax.
Py =20y — AX
()
Bresenham’s line drawing for a line with a positive slope (m) less than 1 in the

following outline of the algorithm.

The constants 2Ay and 2Ay-2Ax are calculated once for each line to be scan

converted.

Bresenham’s Line Drawing Algorithm for jm| <1
1. Input the two line endpoints and store the left end point in (Xq,Yq)
2. Load (Xq,Yp) into frame buffer, i.e. Plot the first point.

3. Calculate the constants Ax, Ay, 2Ay and obtain the starting value for the

decision parameter as

P, = 2Ay — AX
4. At each Xx;, along the line, starting at k=0 perform the following test
If P.‘C <0,

The next point to plot is (Xj1,Yy) and
Pry1 = Py + 24y

Otherwise,

The next point to plot is (Xy1.Y+1) and
Ppiq1 = P+ 2Ay — 2Ax

5. Perform step4 Ax times

103

Implementation of Bresenham Line drawing Algorithm
Void lineBres (int xa, int ya, int xb, int yb)
{
int dx = abs(xa — xb) , dy = abs (ya - yb);
intp=2*dy—dx;
mt twoDy = 2 * dy, twoDyDx = 2 *(dy - dx);
intx ,y, xEnd;

/* Determine which point to use as start, which as end * /

if(xa>xb)
{
X =xb;
y=yb;
xEnd = xa;
}
clse
¢
X =Xa;
y=Yya
XxEnd = xb;
H
setPixel(x, y);
while(x<xEnd)
{
X
if (p<0)
pt=twoDy;
else
{
yt+;
p+=twoDyDx;

104

}
setPixel(x,y);

Example: Consider the line with endpoints (20, 10) to (30, 18)
The line has the slope m= (18-10) / (30-20) =&8/10 =0.8
Ax =10, Ay =3
The initial decision parameter has the value
Py =2Ay —Ax =06
And the increments for calculating successive decision parameters are
20y =16 20y -2 QDx=-4
We plot the initial point (xy.Yg) = (20, 10) and determine successive pixel

positions along the line path from the decision parameter as follows:
Tabulation

K Py, (X + 1L,y + 1)
0 6 (21, 11)
I (22,12)
2 2 (23, 12)
3 14 (24, 13)
4 10 (25,14)
5 6 (26, 15)
6 (27. 16)
7 2 (28, 16)
8 14 (29, 17)
9 10 (30, 18)

Result

Figure. 54:

Advantages Bresenham’s Line Algorithm

1. This Algorithm is fast as compared to other line algorithms.

2. Uses only integer calculations

Disadvantages Bresenham’s Line Algorithm

1. It is meant only for basic line drawing.

Parallel Line Algorithm

This algorithm allows us to calculate multiple pixel positions along a line
path simultaneously by partitioning the computations among the various processors

available. There are two methods for implement multiple pixel positions.

First method: To the partitioning problem 1s to adapt an existing sequential

algorithm to take advantage of multiple processors.

Alternatively method: we can look for other ways to set up the processing so that

pixel positions can be calculated efficiently in parallel. An important consideration
in devising a parallel algorithm is to balance the processing load among the
available processors.

Given Ny, processors, we can set up a parallel Bresenham line algorithm by
subdividing the line path into N, partitions and simultancously generating line
segments in each of the subintervals. For a line with slope 0 < m < 1.0 and left
endpoint coordinate position is (Xq.Yg), we partition the line along the positive x
direction. The distance between beginning X positions of adjacent partitions can be

calculated as follows:
106

Ax, = (A X + Ny~ 130y
(1)
Where Ax is the width of the line, and the value for partition width ﬂxp 18

computed using integer division. Numbering the partitions, and the processors, as
0,1,2,upto ny — 1, we calculate the starting x coordinate for the k th partition as
follows:

X = xo + klAx, (2)

For an example, if we have n,= 4 processors, with Ax=15, the width of the
partitions is 4 and the starting x values for the partitions are Xy, Xo+4, Xo+8 and

Xg+12.

With above partitioning scheme, the width of the last (rightmost) subinterval will
be smaller than the others in some cases. In addition, if the line endpoints are not
infegers, truncation errors can result in variable width partitions along the length of

the line.

® A decision parameter also Py, found from these values.

® Fach processor then calculates pixel positions over its assigned sub mterval

using the decision parameter value and the starting coordinates.

® Another way to set up parallel algorithm is to assign each processor to a

particular group of screen pixels with a sufficient number of processor.
® We can assign each processor to one pixel with in some screen pixel.

® These approaches can be adopted to line display by assigning one processor o
each of the pixels within the limits of the line coordinate bounding rectangle

and calculating pixel distance from the line path.

5.3 Scan Converting Circle

107

Properties of a circle

A circle 1s defined as a set of points that are all the given distance (X, V.).

Figure. 5.5: Circle with center coordinates and radius

This distance relationship 1s expressed by the Pythagorean Theorem in Cartesian
coordinates as

(- X+ Yoy - r (1)
Use above equation to calculate the position of points on a circle circumference by
stepping along the x axis in unit steps from X, — 7 to X, + 7 and calculating the
corresponding y values at each position as

Y=Y+ () (€ - %)))
This is not the best method for generating a circle for the following reason:
- Considerable amount of computation

- Spacing between plotted pixels is not uniform

To eliminate the unequal spacing calculate points along the circle boundary using
polar coordinates r and 8. Show the circle equation in parametric polar form as:
X=2x, 4 0sh y = Y, T 1sinb
When a display 1s generated with these equations using a fixed angular step
size, a circle is plotted with equally spaced points along the circumference. To

reduce calculations use a large angular separation between points along the

108

circumference and connect the points with straight line segments to approximate
the circular path.

Set the angular step size at 1/r. This plots pixel positions that are
approximately one unit apart. The shape of the circle is similar in each quadrant.
To determine the curve positions in the first quadrant, to generate the circle section
in the second quadrant of the xy plane by noting that the two circle sections are
symmetric with respect to the y axis and circle section in the third and fourth
quadrants can be obtained from sections in the first and second quadrants by

considering symmetry between octants.

Circle sections in adjacent octants within one quadrant are symmeftric with
respect to the 45° line dividing the two octants. Where a point at position (X, v) on
a one-eight circle sector is mapped into the seven circle points in the other octants
of the xy plane. To generate all pixel positions around a circle by calculating only
the points within the sector from x=0 to y=0. The slope of the curve in this octant
has an magnitude less than or equal to 1.0. At x=0, the circle slope 1s 0 and at x=y,
the slope is -1.0.

(—¥.x)| v.X)

(—x.y)

=% —~y) (x, —y)

—9=x) | =%

Figure. 5.6: Symmetry of a Circle

Bresenham’s line algorithm for raster displays is adapted to circle generation by
finding the closest pixel to the circumference at each sampling step. Square root

evaluations would be required to computer pixel distances from a circular path.

109

Bresenham’s circle algorithm avoids these square root calculations by
comparing the squares of the pixel separation distances. It 1s possible to perform a
direct distance comparison without a squaring operation. In this approach is to test
the halfway position between two pixels to determine if this midpoint is inside or
outside the circle boundary. This method is more easily applied to other conics and
for an integer circle radius the midpoint approach gencrates the same pixel

positions as the Bresenham circle algorithm.

Midpoint Circle Algorithm
In the raster line algorithm at unit intervals and determine the closest pixel
position to the specified circle path at each step for a given radius r and screen
center position (X, ¥Y,) set up our algorithm to calculate pixel positions around a
circle path centered at the coordinate position by adding X, tox and Y. to y.
To apply the midpoint method, we define a circle function as:
S 3 3
[eircle(X,Y) =X +y -1
Any point (x, y) on the boundary of the circle with radius r satisfies the equation
feircie(X. v) = 0. If the point is in the interior of the circle, the circle function is

negative. And if the point is outside the circle the, circle function is positive.

Foivcictt ¥)1 <0, if (x, y) is inside the circle boundary
=0, if (X, y) 1s on the circle boundary
>0, if (x, y) is outside the circle boundary
The tests in the above equations are performed for the mid-positions between
pixels near the circular path at each sampling step. The circle function is the

decision parameter in the midpoint algorithm.

— ‘

Y ‘;\11— Y —r=0
¥—1 Midr:oin\

N\

N Npt1xpt2

"

Figure.5.7: Midpoint between candidate pixels at sampling position

along with a circular path

Midpoint between candidate pixels at sampling position X1 along a circular
path. Fig 5-5 shows the midpoint between the two candidate pixels at sampling
position X, 1. To plot the pixel at (X, Vi) next need to determine whether the
pixel at position (X, 1,Yy) or the one at position (X4 1,Vr_1) 18 circular to the
circle.

Our decision parameter is the circle function evaluated at the midpoint
between these two pixels

Pr= feircie(Xk+1-Yi-1/2)
= (Xga1) + Q1) -1

If P, <0, this midpoint is inside the circle and the pixel on scan line Yy, is
closer fo the circle boundary. Otherwise the mid position is outside or on the circle
boundary and select the pixel on scan line V-1.

Successive decision parameters are obtained using incremental calculations.

To obtain a recursive expression for the next decision parameter by evaluating the
circle function at sampling position Xp 4141~ Xg+2
Pr= feircteXp+1+1 Yier1-1/2)
- 2 N2 2
= [(Xpa) P17 (Vpeq —12) =1
or
1 2
Pri1 Pt 2(Xpeq1) + (Vs — Vi)) - Va1 - Vi) + 1
Where V)44 is either ¥, or ¥),_q depending on the sign of Pj,.
Increments for obtaining P, . are either 2x,,{ +1 (if P, is negative) or
2X 4171 -2V k41
Evaluation of the terms 2X, .1 and 2V, ¢ can also be done incrementally as
2Xp41 = 2X et
111

2Yk+1 = 2Vk—2
At the Start position (0, r) these two terms have the values 0 and 2r

respectively. Each successive value for the 2x),, ¢ term is obtained by adding 2 to
the previous value and each successive value for the 2y, { term is obtained by

subtracting 2 from the previous value.

The mitial decision parameter 1s obtained by evaluating the circle function
at the start position (Xg, Vo) = (0, 1)
Fp= fcircle(lsﬂf_lfz}
=1Hr=172)y —1"
Or
Py =(5/4) —r

If the radius r is specified as an integer. Py=1-r (for r an integer)

Algorithm

1. Input radius r and circle center (X., Y.) and obtain the first point on the
circumference of the circle centered on the origin as
(X Vo)~ (0.1)

2. Calculate the initial value of the decision parameter as Py = (5/4) —r
3. At each Xy, position, starting at k=0, perform the following test. It P}, < 0 the
next point along the circle centered on (0, 0) 1s (Xp4q .Y,) and
Py 1=Py+t2Xp 4111
Otherwise the next point along the circle is (Xpy1 ., Vr—1) and
Pie1=Pr2Xp 41112V p 41
Where 2X), .1 =2Xp 40 and 2V, .1 =2V 5.
4. Determine symmetry points in the other seven octants.
5. Move each calculated pixel position (X, y) onto the circular path centered at
(X, V) and plot the coordinate values.

X=x+X; y=y+)
6. Repeat step 3 through 5 until x >=y.

112

Example: Midpoint Circle Drawing
Given a circle radius r = 10
The circle octant in the first quadrant from x = 0 to x = y. The initial value of the
decision parameter is Py=1-r=-9
For the circle centered on the coordinate origin, the initial point is (Xg, Vo) = (0,
10) and 1nitial increment terms for calculating the decision parameters are:
2xy=0, 2Y=20
Successive midpoint decision parameter values and the corresponding coordinate

positions along the circle path are listed in the following table.

K Py (Xk+1: Yi—1) | 2Xic+1 2Yk+1
0 -9 (1,10) z 20
1 6 (2, 10) 4 20
2 -1 (3,10) 6 20
3 6 (4,9) 8 18
4 -3 (5,9) 10 18
5 8 (6, 8) 12 16
6 5 (1,7 14 14

V y “—‘ X

| p

10 47

9 W

8 r

=y
K

b
-

_— D) e -l
k.
hY
Jek)

N
"

Figure.5.8: Implementation of Midpoint Circle Algorithm

Void circleMidpoint (int xCenter, int yCenter, int radius)

{

H

mntx =0;

ity = radius;

int p =1 - radius;

void circlePlotPoints (int, int, int, int);
/* Plot first set of points */
circlePlotPoints (xCenter, yCenter, X, y);
while (x <y)

§
1

Xt}
if (p <0)
p +=2%x +1;
else
{
Nty
p+=2*(x-Y)+ 1
5

circlePlotPoints(xCenter, yCenter, X, y)

Void circlePlotPolnts (int xCenter, int yCenter, int X, int y)

{

setpixel (xCenter + x, yCenter +y) ;
setpixel (xCenter - x. yCenter + y);
setpixel (xCenter + x, yCenter - y);
setpixel (xCenter - x, yCenter-vy) ;

setpixel (xCenter + y, yCenter + x);

114

setpixel (xCenter - y , yCenter + X);
setpixel (xCenter ty , yCenter - X);
setpixel (xCenter - vy, yCenter - x);

5.4 Scan Converting Ellipse

An ellipse 1s an elongated circle. So, elliptical curves can be generated by
altering circle-drawing procedures to take into account the different dimensions of

an ellipse along the major and minor axes.

Properties of Ellipse
An ellipse can be given in terms of the distances from any point on the
ellipse to two fixed positions called the foci of the ellipse. The sum of these two

distances is the same values for all points on the ellipse. If the distances to the two
focus positions from any point p = (X, y) on the ¢llipse are labeled d1 and d2, then
the general equation of an ellipse can be stated as

d1 +d2=constant

¥i

P=(xy)

=

Figure. 5.9: Ellipse generated about foci F1 and F2

115

Expressing distances d1 and d2 in terms of the focal coordinates F; = (x4, ¥;) and

Fy = (X3, ¥2)

Sqrt ((x—x1)"+ (y=¥1)) + sari{(x—x3)" + (y—Y»)") = constant
By squaring this equation isolating the remaining radical and squaring again. The
general ellipse equation in the form

AX’+ By’ + Cxy + Dx + By + F=0

The coefficients A, B, C, D, E and F are evaluated in terms of the focal coordinates
and the dimensions of the major and minor axes of the ellipse.
The major axis is the straight line segment extending from one side of the ellipse to
another through the foci. The minor axis spans the shorter dimension of the ellipse,
perpendicularly bisecting the major axis at the halfway position (ellipse center)
between the two foci.
An mteractive method for specifying an ellipse in an arbitrary orientation is to
input the two foci and a point on the ellipse boundary.

Ellipse equations are simplified if the major and minor axes are oriented to
align with the coordinate axes. The major and minor axes oriented parallel to the x
and y axes parameter r, for this example labels the semi major axis and parameter

r, labels the semi minor axis.
((xxc) / e+ (ly-ye) /) =1

Using polar coordinates r and 8, to describe the ellipse in Standard position with
the parametric equations

X = Xc + I'x cosO

Y = Ye + I'x sinB
Angle 6 called the eccentric angle of the ellipse is measured around the perimeter

of a bounding circle.

Midpoint ellipse Algorithm
The midpomt ellipse method is applied throughout the first quadrant in two parts.
The below figure show the division of the first quadrant according to the slope of

an ellipse withr, <.

116

~
¥

Figure. 5.10: Ellipse processing Regions shows the value of magnitude

In the x direction where the slope of the curve has a magnitude less than 1 and unit
steps in the y direction where the slope has a magnitude greater than 1.
Region 1 and 2 can be processed in various ways which are as follow:
1. Start at position (0, 77,) and step clockwise along the elliptical path in the first
quadrant shifting from unit steps in x to unit steps in y when the slope becomes
less than -1.
2. Start at (73, 0) and select points in a counter clockwise order.
2.1 Shifting from unit steps in v to unit steps in X when the slope becomes
greater than -1.0
2.2 Using parallel processors calculate pixel positions in the two regions
simultaneously.
3. Start at (0, 73,) step along the ellipse path in clockwise order throughout the first
quadrant ellipse function (X, ¥.) =(0, 0)
fenipse®y) "y X +1xXy — X 1y’
Which has the following properties:
fempse(& y) <0, if (X, y) is inside the ellipse boundary
=0, if(x, y) is on ellipse boundary
>0, 1f(X, y) 18 outside the ellipse boundary
Thus, the ellipse function fempse(x, y) serves as the decision parameter in the

midpoint algorithm.

117

Starting at (0, 73,):
Unit steps in the x direction until to reach the boundary between region 1 and
region 2. Then switch to unit steps in the y direction over the remainder of the

curve in the first quadrant.
At each step to test the value of the slope of the curve. The ellipse slope is

calculated
dy / dx= -2ry’x / 21X’y)
At the boundary between region 1 and region 2,
dy / dx =-1.0 and 2ry’x = 21K’y
fo more out of region 1 whenever
2ry2X = 2rx2y
The following figure denotes the midpoint between two candidate pixels at
sampling position X, in the first region.

s B, o I e M |
rX"+ny —nr= 0
i
|
]

"*‘-L__

&
midpoint

N,

N

Figure. 5.11: Mid-Point between candidate pixels at sampling position
along with elliptical path

To determine the next position along the ellipse path by evaluating the
decision parameter at this mid-point
P1y = fenipse(Xr+1. Yie — 1/2)
—1y (Xpen) +1X (Ve — 1/2) - ry’
If P1, < 0, the midpoint is inside the ellipse and the pixel on scan line Y,
is closer to the ellipse boundary. Otherwise the midpoint 1s outside or on the ellipse

boundary and select the pixel on scan line V4.
118

At the next sampling position (Xj, 1 +1=X;,+2) the decision parameter for
region 1 is calculated as:
Plyiq = fentipsek+1tLs Vw1 — 1/2)
=1y’ (41 +1) + X Ppyr — 1/2) - iy’
Or
Ply=Plp 20" @p + 1) +19° +1° [Vpsr — L/2Y — (. — 1/
2y
Where Vg1 18 [(Vg or Yj—1 depending on the sign of P1,,.
Decision parameters are incremented by the following amounts:
increment = { 273,° (X + 1) + 1,7 if P1, <0}
{207 G+ D)8, s 208, Vyq IBPL 2 0}
Increments for the decision parameters can be calculated using only addition and
subtraction as in the circle algorithm.
The terms 2?"},2){ and 27’y can be obtained incrementally. At the initial position
(0, 73) these two terms evaluate to:
-
21y x=0
.y =Nt
The updated mcrement values are compared at each step and more from region 1 to
region 2. In region 1 the initial value of the decision parameter is obtained by
evaluating the ellipse function at the start position:
(xﬁs yﬂ) = (09 ry)
Region 2 at unit intervals in the negative y direction and the midpoint is now taken
between horizontal pixels at each step for this region the decision parameter is
evaluated as:
Ply= fellipse(ls Ty — 1/2)
2 2 V2 2 2
=Tyt (I, — 1/2) -1 1,
Over region 2, we sample at unit steps in the negative y direction and the midpoint
is now taken between horizontal pixels at each step. For this region, the decision

parameter is evaluated as:

119

P2y = fentipse(Xx + 1/2, ¥ — 1)
“h+ 2P+ (e —)

L. If P2;, > 0, the mid-point position is outside the ellipse boundary, and select the
pixel at x,.
2. If P2, <= 0, the mid-point is inside the ellipse boundary and select pixel
position X4 q-
To determine the relationship between successive decision parameters in region 2
evaluate the ellipse function at the sampling step: Vi 41 - 1= Vi —3-

P2 = fenipseXi4+1 + 1/2, Yk11 — 1)

:Tyz(xk+1 +1/2) +1’ ((yk+1 - -1 -5
1y
Or

P21 =P2 27 (¥ — D+ 5" + 5 [2peqq + 1/2)° - (g +14)°]

With X, ¢ set either to X}, or X}, 1, depending on the sign of P2;,.. when we enter
region 2, the initial position (X, Vg) is taken as the last position. Selected in region
1 and the initial decision parameter in region 2 is then equation would be as

follows:
P2y :fellipse(xo + 1/233’0 — 1)
=5 ryz(xo +1/2) + "'ﬂ:!c2 ((yo - 1)2 - rxz ry2
To simplify the P2, select pixel positions in counter clock wise order

starting at (7, 0). Unit steps would then be taken in the positive y direction up to

the last position selected in region 1.

Mid-point Ellipse Algorithm

1. Input (75, ?'y) and ellipse center (X, ¥.) and obtain the first point on an ellipse

centered on the origin as

(g, Yo) = (0, 73)

120

2. Calculate the initial value of the decision parameter in region 1 as
Ply=r, -1y + (a)r,
3. At each Xj, position in regionl starting at k=0 perform the following test. If
P1,,<0, the next point along the ellipse centered on (0,0) is (X4 1. ¥g) and
Otherwise the next point along the ellipse is (X +1, V,-1) and
Plyy1 =Pl +2ry2xk+1 =20 Vir1 + 73,2
with
2 = 2 I i
rimet 1 =0 %, w2
2 Ve + 1 =21 Y 21
And continue until 273,°% >= 27,y.

4. Calculate the initial value of the decision parameter in region 2 using the last

point (Xq, Vo) is the last position calculated in region 1.

P2¢= ryz(xo +1/2) +1, ((yo o i ry2

5. At each position Y, in region 2, starting at k=0 perform the following test, If
P2,,>0 the next point along the ellipse centered on (0, 0) is (X}, ¥}—1)) and
P2ipq = P2y - 20 Ypyr + 1y
Otherwise the next point along the ellipse 1s (xk+1,yk-1) and
P24pq =P2y + 20 %04y - 2T Yiyr + 75
Using the same incremental calculations for x any y as in region 1.
6. Determine symmetry points in the other three quadrants.
7. Move each calculate pixel position (X, y) onto the elliptical path centered on
(X, V) and plot the coordinate values
X = X"X¢, =70
8. Repeat the steps for region] unit 2Tyzx >=217y.

Example: Mid-point ellipse drawing
121

Input ellipse parameters 7, =8 and 73, =6 the mid-point ellipse algorithm by

determining raster position along the ellipse path is the first quadrant. Initial values

and increments for the decision parameter calculations are

27y,"x =0 (with increment 273,° = 72)

21"y = 21Ty, (with increment -27,°= -128)

For region 1 the initial point for the ellipse centered on origin is (X, ¥) = (0, 6)

and the mitial decision parameter value is

Ply=r1,"-1,Ty + (1/4)7 "= -332

Successive midpoint decision parameter values and the pixel positions along the

ellipse are listed in the following table.

K Py, (Xpes1s Yier1) | 21y Xpaa 215 Vier1
0 -332 (1,6) 72 768
1 -224 (2,6) 144 768
2 .44 (3, 6) 216 768
3 208 (4, 5) 288 640
4 -108 (%.5) 360 640
5 288 (6, 4) 432 512
6 244 (7:3) 504 384

Move the region 1, 273,°x > 27%%y.

For a region 2 the initial point is (Xxq, ¥g) — (7, 3) and the initial decision

parameter is

The remaining positions along the ellipse path in the first quadrant are then

calculated as

P2, = fellipse(7+l/25 2)=-151

K P2y (Xi+10 Yi+1) 2ry2xk+1 21 Vie+1

0 -151 (8,2 376 256
233 (8, 1) 576 128

2 745 (8, 0) - :

122

e = bh N

(=Y I

Figure.5.12:

Implementation of Midpoint Ellipse drawing
#define Round (a) ((int) (a+0.5))
Voud ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry)
i
int Rx2=Rx*Rx;
int Ry2=Ry*Ry:
int twoRx2 = 2*Rx2;
int twoRy2 = 2*Ry2;
int p;
mtx=0;
int y = Ry;
int px = 0;
int py = twoRx2* y;
Void ellipsePlotPoints (int , int , int , int) ;
/* Plot the first set of points */
ellipsePlotPoints (xcenter, yCenter, X, y) ;
/ * Region 1 */
p = ROUND (Ry2 - (Rx2* Ry) + (0.25*Rx2));
While (px < py)
{
X+t
px += twoRy2;
i (p<0)
123

p = RyZ +px;
else

{

y--:

py -= twoRx2;
pt=Ry2 + px - py;
§

ellipsePlotPoints(xCenter, yCenter, X, v);
h

/* Region 2 */

p = ROUND (Ry2*(x+0.5)* (x+0.5)+ Rx2*(y- 1)* (y- 1) - Rx2*Ry2);
while (y >0)

{

¥

py -— twoRx2;

it (p> 0)

p = Rx2-py

Else

{

) o

px+=twoRy2;

p=Rx2-py+px;

h

ellipsePlotPoints(xCenter, yCenter, X, v);
H

i

void ellipsePlotPoints(int xCenter, int yCenter, int X, int y);
{

setpixel (xCenter + x, yCenter + y);
setpixel (xCenter - x, yCenter + y);
setpixel (xCenter + x, yCenter - y);
setpixel (xCenter- x, yCenter - v);

}

5.5 Self Learning Exercise

Q.1. Distinguish between lines, curve and ellipse drawing algorithms.

124

Q.2. Extend Bresenham’s line algorithm to generate lines with any slope, taking
symmetry between quadrants into account.
Q.3. Set up a parallel version of Bresenham’s line algorithm for slopes in the range

O0<m<l.

5.6 Summary

We have discussed various scan conversion algorithms of output primitives.
These output primitives provide the basic tools for constructing pictures with
individual points, straight line and curves. Three methods that can be used to locate
pixel positions along a straight-line path are the DDA algorithm, Bresenham’s
algorithm, and the midpoint method.

Bresenham’s line algorithm and the midpoint line method are equivalent,
and they are the most efficient. Color values for the pixel positions along the line
path are efficiently stored in the frame buffer by incrementally calculating the
memory addresses. Any of the line-generating algorithms can be adapted to a
parallel implementation by partitioning the line segments and distributing the
partitions among the available processors. Circles and ellipses can be efficiently
and accurately scan converted using midpoint methods and taking curve symmetry
into account.

These algorithms are also explained with suitable examples.

5.7 Glossary

DDA: Digital Differential Analyzer.

Ellipse: An ellipse is an elongated circle along with major and minor axis.

5.8 Answers to Self-Learning Exercise

Ans.1, Ans.2 and Ans.3 were discussed in chapter in details. See respective

contents.
125

5.9 Exercise

Q.1. The syntax of Line color 1s:

(A) Persistence, resolution and aspect ratio
(B) Persistence, resolution and pixel ratio
(C) Perseverance, resolution and pixel ratio

(D) Perseverance, resolution and aspect ratio

Q.2. DDA and Bresenham algorithm are drawing algorithms.
(A) Circle (B) Ellipse
(C) Line (D) None of these

Q.3. The equation of circle 1s (_X-:v;c)2 Jr(y-yc)2 =g
(A) True
(B) False
Q4. A spline is a:
(A) Straight curve through a designed set of points
(B) Smooth curve through a designed set of points
(C) Straight curve through a designed set of pixels
(D) Smooth curve through a set of points
Q.5. Explain the Bresenham’s line drawing algorithm with suitable example.

Q.6. Explain the mid-point circle drawing algorithm with suitable example. Write

its implementation process in C language.

5.10 Answers to Exercise

Ans.1: A Ans.2: C Ans3: A

Ans4d: B

126

References and Suggested Readings

1. J. Foley, A. Van Dam, S. Feiner, J. Hughes: Computer Graphics- Principles and

Practice, Pearson.
2. Hearn and Baker: Computer Graphics, PHL

3. R. K. Chauhan and Abhishek Taneja “Computer Graphics and Multimedia”
Galgotia, 2009.

127

UNIT-6
Color Filling Algorithm

Structure of the Unit

6.0 Objective

6.1 Introduction

6.2 Filled-Area Primitives

6.3 Scan Line Polygon fill Algorithm Inside-Outside Tests
6.4 Seed Fill Algorithm

6.5 Self Learning Exercise

6.6 Summary

6.7 Glossary

6.8 Answers to Self-Learning Exercise

6.9 Exercise

6.10 Answers to Exercise

6.0 Objective

In this chapter, we shall focus on the following topics

® FHilled-Area Primitives
® Scan Line Polygon fill Algorithm Inside-Outside Tests
® Seed Fill Algorithm

6.1 Introduction

Before using filled area primitive we should able to draw certain shapes

with combinations of lines like a triangle, rectangle, square and other polygons.
For fill area, we use polygon as a shape. For area filling, we follow various

approaches:

128

ie. Flood fill algorithm, Boundary fill algorithm and scan line polygon fill

algorithm.

6.2 Filled Area Primitives

In general graphics packages, a standard output primitive 1s a solid color or
patterned polygon area. Polygons are easier to process as compare to other area
primitives. So polygon consists linear boundaries. There are two ways for filling an
area on raster system. First is to start from a given interior position and fill color
corresponding to this position until we get the specified boundary conditions. To
fill polygons, ellipse, circle and other curves we use scan line approach as general
graphics packages. Fill process starting from an interior point with more complex
boundaries. While the Second method is to fill area by determining the overlap

intervals for scan lines that cross the area.

6.3 Scan Line Polygon fill Algorithm

Before start discussion about the algorithm, one should know about what is
polygon? Besides polygon definition we will know about following topics one by
one, which are as follows:
® Polygon Definition
® Filled v/s Unfilled Polygon
® Parity Definition
® Scan-Line Polygon Fill Algorithm
® Special Cases

® Polygon Fill Example
Polygon

129

A Polygon is formed by line segments that are placed end to end, making a

continuous closed path. Polygon is classified into three basic types:

Convex, Concave and Complex.

L.

II.

Convex polygons are the simplest type of polygon fo fill. A polygon is
said to be convex if it fulfills following aspects:

— All interior angles < 180 graden, and

— All line segments between 2 interior points in polygon, and

— All points on the same side of line through edge, and

— From each interior point complete boundary visible

Figure.6.1:convex polygon

Concave Polygons are a superset of convex polygons, with certain
restrictions than convex polygons. The line connecting any two points
that lie inside the polygon may intersect more than two edges of the
polygon. Thus, more than two edges may intersect any scan line that
passes through the polygon. The polygon edges may also touch each

other, but they may not cross one another.

Figure. 6.2: concave polygon

130

I1I. Complex Polygons are concave polygpons that may have self-
intersecting edpes. The complexity arises from distinguishing which

side is inside the polygon when filling it

Figure. 63: complex polygon

Filled v/s Unfilled Polygon

If an untilled polygon is rendered, only the points on the perimeter of the polygon
are drawn. However, if a polygon is filled, the polygon’s interior is considered.

All the pixels within the boundaries of the polygon must be set to the specified
color or pattem. The following figure shows the difference between filled and

unfilled polygons.

Figure.6.4: Filled and Unfilled Polygon

To check which pixels are inside the polypon, the add-parity rule is used within

the scan-line polygon fill algorithm.
Parity

Parity is a concept used to determine which pixels lie within a polygon, i.e.

which pixels should be filled fora given polygon.

131

Principle: Concepmally, the odd parity test means drawing a line segment from

any point that lies outside the polygon to a point P thar we wish o0 determine

whether it is inside or outside of the polvgon. Count the number of edges that the

24

line crosses.
Figure.6.5: Parity for pixels

If the mumber of polvgon edges crossed is odd, then P lies within the polvgon.
Similarly, if the number of edges is even, then P lies ourside of the polygon. There
are special methods for counting the edges when the line crosses a vertex. This will

be discussed in the algorithm section.

Scan-Line Polygon Fill Algorithm
In scan line polvgon fill algorithm:

® We check each scan-line which crosses the polygon boundary.

® |oreach scan line do-

- (et intersection points of scan-line with polygon edges.

- Sort these intersection points from left to right with increasing value of x.

- From these intersection pairs, No. of INErsections points are even, so we

can easily form pairs.
® Berween each pair, fill the pixels with the desired color using the draw-
pixel function.

® Update the list of intersection points for each scan line.

® The above process would be completed when scan-line has reached vua

value for a polygon.
132

Before filling pixels, we should check whether pixels are within polygon or
not. So we look from left to right of pixels that are to be plotted. If the count of
pixels from left to right and vice versa is odd, then the pixel is inside the polygon.
If the count is even on both sides, the pixel is at the background or outside the
polygon. In the example of fig 6-6, the four pixel intersection positions with
polygon boundaries define two stretches of interior pixels from x=10 to x=14 and

from x=18 to x=24.

y

—+—— X

10 14 18 24
Figure.6.6: Interior pixel along a scan-line passing through a polygon area

Some scan line intersection at polygon vertices requires special handling
procedure. Fig 6-7 denotes two scan lines at y and y* positions that intersect edge
end points. Scan-line y intersects 5 polygon edges. Scan line y’ intersects an even
no. of edges although it also passes through a vertex. Intersection point along scan-
line y* correctly identify the interior pixel spans. For scan-line y, two intersecting
edges sharing a vertex are on opposite sides of the scan-line. But for scan-line y’,
two intersecting edges are both above the scan-line.

Thus, the vertices that require additional processing are those that have
connecting edges on opposite sides of the scan line. For find out such type of

vertices:
® We trace polygon boundary either in clockwise or anticlockwise.
® Observe relative changes in vertex y coordinates as we move from one edge to

another.

133

® [f the end point y value of two consecutive edges increase or decrease
monotonically, we count the middle vertex as single intersection point for scan-
line passing through it.

® [f the end point y value does not increase or decrease monofonically, it

represents local extremum on polygon boundary.
Two edge intersections with the scan-line passing through that vertex can be added

to intersection list.

Scan line y’

/ 1 2 1
1 2z J/ 1 Scan liney

:)

Figure. 6.7: intersection of scan-line y (odd intersections) and v’ (even

intersections)

A way to solve the problem of whether the vertex point should be counted
as one or two is to shorten polygon edges in the case when vertex can be counted

as one infersection.

When the endpoint v of two edges are increasing, the y values of the upper-end
point for the current edge is decreased by 1. Fig 6-8 (a).

And if the y value i1s monotonically decreasing, we decrease y coordinate of
upper end point of the edge following the current edge. Fig 6-8 (b).

4 .
I ; 134 \

Scan line y+1

Scan line y /

Scan line y-1 J /
e e
(

a) (b)
Figure. 6.8: Adjusting endpoint y values for a polygon. Edge

currently being processed is indicated by a solid line.

Now we are going to handle some special cases to make it sure it works fast
and correct. There are two important features of scan-line based polygon fill
algorithm.

1. Scan-line coherence: shows that value does not change much from one scan-
line to next. Example, Coverage (visibility) of a face on one scan-line typically
differs little from the previous.

2. Edge coherence: shows that slope of the edge intersected by the scan-line '1" is
almost same as intersected by scan-line "1+1°.1t will change only if you pass

through a vertex.

(Xk+1, yrt1) Scan line yi+i
(Xk, Vi) \\ Scan line vk

Figure. 6.9: Two successive scan lines intersecting a polygon boundary

The slope of polygon boundary line in the form of scan line intersection

coordinates:
_ yk'l'l - yk

Xit+1— xk

135

Since change in y coordinates between two scan line is

Viepi— ¥=1 s (2)

Along an edge with slope m, the intersection X, value for scan line k above the

initial scan line can be calculated as:

k
= — R . .
X = Xo+ —)
Slope of line can be recalled using two integer values i.¢.
_ Ax
=

So, incremental calculation of X intercepts along an edge for successive scan line

can be termed as:

X = X + X (4
bl = T A e)
_ Ax 7 , :
Example 1. Given Th = E = 3 Counter C 1s set to C=0 and C increment

AC=AXx=3,

So next 3 scan-lines successive values of C are 3, 6, 9. At 3 scan line C >Ay.

Whenever counter value equal or greater than Ay, increment X by 1 and decrease

counter by value Ay. at 3" scan line X k 1s incremented by 1 and counter C is:
C=C-Ay=9-7=2

the process would be continued until we reach V45 -

For calculating next intersection point for next scan-line, we define
SET (sorted edge table) and AEL (Active edge list). SET contains all information
necessary to process the scan lines effectively. SET 1s built using bucket sort. All

edges are sorted by their ¥, coordinates with a separate y bucket for each scan

line. Within each bucket, edges are sorted by increasing value of x of the V,,in

point. The edges are stored in the SET at scan-line position. Each entry in edge

table contains Yy, g Xmin, AX/Ay and pointer to next edge.
AEL contains all edges crossed by a scan-line at the current stage of
iteration. It is a list of edges that are active for a current scan lines, sorted by

increasing x intersections. AES is also called as AET(Active Edge Table).

136

2 4 8 10 12 14
Figure.6.10: SET data structure solve using scan fill algorithm

To start with data structures, SET 1s built using bucket sort with sorted V,,in
coordinates. for every edge find out V,,,;,, and put it in the corresponding scan-line
bucket number. In Fig 6-9, for scan-line 1, it passes through vertex B, AB and BC
edges values stored for scan-line 1 in the corresponding bucket has values for
Vmax: Xmin, A%/ Ay and next edge pointer.

For edge AB, Vimax— 3, Xmin— 7, Ax/Ay=-5/2 and i shows null pointer.
EF

9 |7 |[-572
DE

117 |6/4|
CD
1111310

FA
9 |2 1|0
AB

3 |7 |-52
BC

137

5|7 |6/4

Now active edge list for fig 6-9 for each scan-line and edge sorted with increasing
of x values in each scan-line can be made now.

AEL for scan-line 8 is:

AET pointer ™ FA=—® EF = DE—" (D

Scan-line 8 crosses the edges FA, EF, DE, and CD. So, they are sorted with
increasing value of x in AEL. Making pairs first then filling pixels between those
pairs in the next step. FA and EF forms pairs and their X, ;,, value 2 and 4 are x-
values between which we have to fill the pixels. Similarly between 9 and 13 we fill
pixels.

AEL for scan-line 9 is:

Here y=9 which is ¥,,,4 for FA and EF. So we remove edges FA and EF from
AEL.

Now we fill pixels between x=10 to 13. So this process is repeated filling other

scan-lines. During each iteration with scan-line AET is updated.

Scan-line Algorithm (scan — fill polygon)
Construct SET
Vmin— min of all y in SET
AET=NULL
For y= Ymin 10 Ymax
Merge sort ET|y| into AET by x values
Fill between pairs of x in AET
For each edge in AET
If edge. Ymax =¥
Remove edge from AET
Else
edge. x=edge. x + dx/dy
End if
Sort AET by x values
138

And loop.

Inside and outside tests:

All area filling algorithm need to the interior region of objects. Identifying the
interior region of the standard polygon is a straightforward process. Graphic
packages normally use either odd-even rule or nonzero winding numbers rule to
identify the interior region of an object.

Odd even rule, draw a line from any position P to a distant point outside
the coordinates of a polygon and count number of edges crossing the line. If the no.
of edges crossed by this line is odd, then P is an interior point. Otherwise, it is an
exterior point. We should also keep in mind that the line path we choose does not
intersect any polygon vertices.

Non-zero winding number rule counts the number of times polygon edges
wind around a particular point in counter clockwise direction. Such count is
winding number. And interior points of a 2D object are defined to be those that
have a non- zero value for winding number.

Processing NZWN rule:

- We apply this rule for a polygon by set window number to O and again
assuming a line drawn from any position P to a distant point i.e. beyond to
the coordinate extent of the object.

- The line 1.e. chosen must not pass through any vertices. We move along the
line from position P to distant point, and count number of edges that cross
the line each direction.

- Add 1 to winding number when polygon edge intersects and crosses line
from right to left.

- We subtract 1 whenever intersects edge that crosses the line from left to
right.

- The final value of window number is considered afier all edges crossing
have been counted, determine the relative position of P.

- If the winding number i1s non-zero P is defined to the interior point,

otherwise P is taken as exterior point.

139

This method 1s applicable for std. polygon or simple shapes and produces

the same result as odd even rule.

For complex shapes, the way is to determine directional edge crossing is to take

the vector cross product of a vector u along with the line from P to the distant

point with edge vector E for each edge that crosses the line.

If the z component of cross product uxE for a particular edge is positive,
that edge crosses from right to left we add 1 to window number.
Otherwise, the edge crosses from left to right then we subtract 1 from

window number.

Now edge vector is calculated by subtracting starting vertex position for
that edge from the ending vertex position.
Exg = V=V,
Where V,; and Vg denotes point vectors for vertices A and B.

6.4 Seed fill Algorithm

The second approach to filling area is to start a point inside a region. It is

assumed that at least one pixel is interior to a polygon or region. The region may

be either interior defined or boundary defined. In interior defined region, all the

pixels in interior region have one color and pixels in the exterior region have

another color. For boundary filling region, all pixels on the boundary have a unique

color and pixels exterior to boundary may also have boundary color. The algorithm

that fills interior region is called flood fill algorithms and algorithm for fill

boundary defined region is called boundary fill algorithms.

140

Boundary fill algorithm

This algorithm takes as an input an interior point say (X, y) fill color and a
boundary color. The process starts with point (X, y), we test for each neighboring
pixel point of (X, y) to determine whether they are of boundary color. If not, they
are filled with fill color. And their neighbors are tested. This will remain continue
until all the pixels up to the boundary color for the area have been tested. Testing
of the neighboring pixels can be done using two methods: 4-connected method and
8-connected method. The first method tests the pixels on left, right, top and bottom
of the current pixel. The second method tests the pixels on the four diagonal
position with the left, right, top and bottom positions. These methods are shown
below in fig 6-10.

O

Figure.6.11: Filled method applied to 4-connected and 8-connected area

Boundary fill algorithm

Boundary fill
Begin
Initialize fill color and boundary color,
Get current pixel value at position (X, y),
If (current value # fill color and current value # boundary color)
Begin
Set current with pixel fill color;
141

Recursively fill neighboring pixels;
End if
End boundary fill.

Stack based Boundary fill algorithm
A simple scheme for a boundary defined region can be developed using a stack.
That 1s referred to as FILO (First In Last Out) algorithm.

® Push the seed pixel, chosen from the interior of the region on to the stack.

® While the stack is not empty,
- Pop a pixel from the stack.

- Set the pixel to the required value (color).

® For cach of 4-connected pixels adjacent to the current pixel, check whether it is
boundary pixel or if it has been already filled. If it is so, ignore, else push the
pixel on to the stack.

There is a drawback in above method. We can fill the region partially starting with
the initial position. This 1s because we cannot fill region pixels diagonally.

The better way of filling polygon is to fill each line horizontally. It limits
tack size by using only one seed pixel in scan line span. This horizontal span is a
group of contiguous pixels covered by pixels in border color area.
- Seed pixel 18 popped from the stack and placed on the span.
- Bxtreme pixels i.e. left and right in the span are designed as X; and X,..

- This span is filled on both sides using X; and X,..

- Scan line above and below the current line are examined with fill and boundary
color. It they are not filled with any color, extreme left pixel in each span is
marked as seed pixel and pushed on to the stack.

- Method is better to other because we push on the stack only beginning position

for each scan line, instead of pushing all unprocessed neighbor pixels.

142

Al

3

[

i

— ok ot

143

(d)

(d)

(d)

(d)
Flood fill Algorithm

Flood fill
Begin

Initialize fill color,

144

Get color value at current pixel position;
If (current value = = old color)
Begin
Set current pixel with fill color
Recursively fill the neighboring pixels;
End if.
End flood fill.

6.5 Self Learning Exercise

Q.1. Write a short note on:
(a) Boundary fill algorithm
(b) Flood fill algorithm
Q.2. Write boundary fill algorithm to fill an 8-connected region.

6.6 Summary

We have discussed filled area primitives to fill polygon. A common method for
polygon fill on raster system is scan-line fill algorithm that determines interior
pixel span across scan-line that intersect the polygon. This algorithm is also used to
fill the interior of objects with curved boundaries. Two other methods for interior
region filling are boundary fill and flood fill algorithm. These algorithm paint the
interior, one pixel at a time. The scan-line fill algorithm is an example of filling

object interiors using odd even rule to locate the interior region.

6.7 Glossary

Nonzero winding number rule: It counts the number of times polygon edges
wind around a particular point in counter clockwise direction.

Parity: Parity is a concept used to determine which pixels lie within a polygon,

6.8 Answers to Self-Learning Exercise

Ans.1 and Ans.2 discussed in chapter in details. See respective contents.

6.9 Exercise

Q.1. The process of coloring the area of a polygon is called
(A) Polygon filling (B) Polygon flow
(C) Aliasing (D) None of these
Q.2. The algorithm used for filling the interior of a polygon is called
(A) Flood fill algorithm {B) Boundary fill algorithm
(C) Scan-line Polygon fill algorithm
(D) None of these

Q.3. Ifthe pixel is already filled with desired color then leaves it otherwise fills it

this 1s called

(A) Flood fill algorithm (B) Boundary fill algorithm

(C) Scan-line Polygon fill algorithm

(D) None of these
Q.4. A vector can be defined as

(A) Intersection b/w two point position

(B) Difference b/w two point position

(C) Comparison b/w two point position

(D) None of these
Q.5. Write boundary fill algorithm to fill a 4-connected region.
Q.6. Explain the algorithm for scan line polygon filling.

Q.7. Explain odd even parity rule in detail.

6.10 Answers to Exercise

146

Ans.1: A Ans.2: A
Ans.3: B Ans.4: B

References and Suggested Readings

1. J. Foley, A. Van Dam, S. Feiner, J. Hughes: Computer Graphics- Principles and

Practice, Pearson.
2. Hearn and Baker: Computer Graphics, PHL

3. Additional programming examples and information on PHIGS primitive can be
found in Howard, et al. 1991

4. Filled-Area Primitives [-Computer Graphics-Lecture Notes.pdf

147

UNIT-7
Attributes of Output Primitives

Structure of the Unit

7.0 Objective

7.1 Introduction

7.2 Line Attributes

7.3 Curve Attributes

7.4 Character Attributes
7.5 Antialiasing

7.6 Self Learning Exercise
7.7 Summary

7.8 Glossary

7.9 Answers to Self-Learning Exercise
7.10 Exercise

7.11 Answers to Exercise

7.0 Objective

In this chapter, we shall focus on the following topics

@ [ine Attributes
® (Curve Attributes
® Character Attributes

® Antialiasing

148

7.1 Introduction

Any parameter that affects primitives to be displayed is treated as an
attribute parameter. Some attributes like color and size determine fundamental
characteristics of a primitive. Other show how primitives work under special
conditions. In this unit, we include those attributes that control the basic display
properties of primitives. For example, line can be dotted or dashed, fat or thin and
blue or orange. The area can be filled with single or multiple colors. Text may
display reading from left to right, slanted diagonally across the screen or vertical

columns. Text character can be displayed in different colors, fonts and sizes.

To get appropriate attributes, we extend the parameter list of each output
primitives in graphics package. For example, a line drawing function could contain
parameters to set the color, width and other parameters, in addition to end point
coordinates. Another way is to maintain the system list of current attribute values.
To generate an output primitive, system checks the relevant attributes and invoke
the display routine for that primitive using the current attribute setting. Some
graphics packages provide attribute function and attribute parameters in the output

primitives.

7.2 Line Attributes

Basic attributes of a line segment are its width and color. Some graphic
packages denote line can be drawn using a selected pen or brush option.
Fundamental line attributes are Line Type, Line Width, Pen and Brush Options,
Line Color efc.

Line type

149

Possible selection of line type attribute includes solid lines, dashed lines and dotted
lines. To set line type attributes in a PHIGS application program, a user invokes the
function

setLinetype (1t)
Where parameter 1t is assigned a positive integer value of 1, 2, 3 or 4 to generate
lines that are solid, dashed, dash dotted respectively. Other values for line type
parameter it could be used to display variations in dot-dash patterns.
Raster line algorithms denote line-type attributes by plotting pixel spans. For
dashed, dotted, and dot-dashed patterns, the line-drawing procedure outputs
sections of contiguous pixels along the line path, skipping over a number of
intervening pixels between the solid spans. Where pixel counts for the span length
and inter-span spacing can be specified in a pixel mask, 1.e. a pattern of binary
digits indicating which positions to plot along the line path. The linear mask
11111100, for instance, could be used to display a dashed line with a dash length
of six pixels and an inter-dash spacing of two pixels. Pixel positions corresponding
to the 1 bits are assigned the current color, and pixel positions corresponding to the
0 bits are displayed in the background color.

(a)
Figure 7-1 Unequal length dashes

displayed with the same number of pixels.

(b)

Figure.7.1: Unequal length dashes displayed with the same number of pixels.

150

Drawing dashes with a fixed number of pixels results in unequal length dashes for

different line orientations, as shown m Fig. 7-1. Both dashes shown are plotted

with four pixels, but the diagonal dash is longer by a factor of V2 . We can display

approximately equal length dashes by reducing the diagonal dash to three pixels.

Line Width

Implementation of line width option depends on the capabilities of the output

device to set the line width attributes.

setLinewidthScaleFactor (Iw)

Line width parameter Iw is assigned a positive number to indicate the relative

width of line to be displayed. A value of 1 specifies a standard width line. A user

could set Iw to a value of 0.5 to plot a line whose width is half that of the standard

lime. Values greater than 1 produce lines thicker than the standard. In the Brenham

algorithm a standard width line is generated with single pixel at each sample

position.

- Other width lines can be plotted with additional pixels as positive integer
multiples of the standard line.

- Line with slope magnitude less than 1, we modify thick line by plotting a
vertical span of pixel at each x position along the line.

- The number of pixels in each span 1s equal to integer magnitude of parameter
lw.

- We plot a double width line by generating a parallel line above the original line
path as shown in Fig 7-2.

- At each sample position of x we calculate corresponding v value and plot pixel
with screen coordinates (X, y) and (x, y+1).

- We display line having 1w = 3 by alterately plotting pixels above and below
single width line path.

Figure .7.2: Double width line with slope m| < 1 generated with

vertical pixel span

- Now for line with slope magnitude greater than 1, we plot thick line with
horizontal spans, by picking up pixels to right and left of line path i.e. shown in
Fig 7-3.

- We can implement by comparing the magnitudes of the horizontal and vertical

separations (Ax and Ay) of the line endpoints.

- If|AX| " |Ay], pixels are replicated along columns. Otherwise, multiple pixels
are plotted across rows.

I

Figure.7.3: Line with slope |/m| > 1 and line width parameter 1 w=4

horizontal pixel span.

Line Caps
We adjust the shape of line ends to give them a better display by adding line caps.

There are three types of line caps which are as follows:

152

1. Buttcap

2. Round cap

3. Projecting square cap

Butt cap obtained by adjusting the end positions of the component parallel lines so
that the thick line is displayed with square ends that are perpendicular to the line

path.
Round cap obtained by adding a filled semicircle to each butt cap. The circular

arcs are centered on the line endpoints and have a diameter equal to the line

thickness.
Projecting square cap extend the line and add butt caps that are positioned one-

half of the line width beyond the specified endpoints.

,/’j

// / ’/// /
/ < gt o

(a) (b) (ch

Figure. 7.4: Tick line (a) butt cap, (b) round cap, (¢) projecting square cap

There are three possible methods for smoothly joining two line segments which are
1. Miter Join
2. Round Join

3. Bevel Join
A miter join designed by extending the outer boundaries of each of the two lines

until they meet.
A round join is produced by capping the connection between the two segments

with a circular boundary whose diameter is equal to the width.
A bevel join is generated by displaying the line segment with butt caps and filling

in the triangular gap where the segments meet.

153

2

(a) (b} (ch
Figure.7.5: Thick line connected via (3a) miter join, (b) round join, (¢) bevel

join

Pen and Brush Options

In painting and drawing systems, we directly select different pen and brush
styles. In this category we include options shape, size and pattern for the pen or
brush. Some example pen and brush shapes are shown in Fig. 7-6. These shapes
can be stored in a pixel mask that identifies the array of pixel positions that are to
be set along the line path.

For example, a rectangular pen can be implemented with the mask shown in
Fig. 7-7 by moving the center {or one corner) of the mask along the line path, as in
Fig. 7-8. To avoid setting pixels more than once in the frame buffer, we simply
accumulate the horizontal spans generated at each position of the mask and keep
track of the beginning and ending x positions for the spans across each scan line.

Lines generated by pen or brush shapes can be displayed in various widths
by changing the size of the mask. Rectangular pen line can be narrowed with a 2
by 2 rectangular mask or widened with a 4 bydmask. Or line can be displayed with

desired patterns by superimposing the pattern values onto the pen or brush mask.

154

Custom Document Brushes

®

=
K

.

NN
I

L

® - == b | - SR
. =

X

=nm [Fiaprmrt
= R
=-

)
[cancel |

Figure.7.6: for display lines various pen and brush shapes

[i ! }} . Figure.7.7: (a) Pixel mask
1 \ for a rectangular pen, (b)
T \ Line associated array of pixels

" Path
\ displayed by centering

mask over a specified pixel

(a) (b)

position

S FgEp—— 1)

|
|
|
|
)
|
)
|

g e s g ol
|
Il
I Al
l |

5

|
|
|
|
|
|

Figure.7.8: Generation of a line with the pen shapes

Line Color
A poly line routine displays a line in the current color by setting this color
value in the frame buffer at pixel locations along the line path using the set pixel
mechanism. We set the line color value in PHIGS with the function
setPolylineColourIndex (lc)
Nonnegative integer values, corresponding to allowed color choices, are assigned

to the line color parameter Ic

7.3 Curve Attributes

Parameters for curve attribute are same as those for line segments. Curves

are displayed with varying colors, widths, dot — dash patterns and available pen or

brush options.
First method for displaying curve with various width is horizontal or

vertical pixel spans. Where the magnitude of the curve slope is less than or equal
fo 1.0, we plot vertical spans, where the slope magnitude is greater than 1.0, we

plot horizontal spans. Figure 7-9 explain this method for displaying a circular arc
of width 4 in the first quadrant.

aee

6

Figure.7.9: A circular arc of width 4 plotted with either vertical or horizontal

pixel spans, depending on the slope.

Using circle symmetry, we generate the circular path with vertical spans in the
octant from x = 0 to x = y and then reflect pixel positions about the line y =x to
obtain the remainder of the curve shown.

Circle sections in the other quadrants are obtained by reflecting pixel positions
in the first quadrant about the coordinate axes.

The thickness of curves displayed with this method is again a function of curve
slope. Circles, ellipses, and other curves will appear thinnest where the slope
has a magnitude of 1.

Another method for displaying thick curves is to fill area between two

parallel curved paths, whose separation distance is equal to the desired width.

We specify curve path as one boundary and setting up the second boundary
either inside or outside the original curve path.

We maintain the original curve position by setting the two boundary curves at a
distance of one-half the width on either side of the specified curve path.

Figure 7-10 shown for a circle segment with radius 16 and a specified width of
4. The boundary arcs are then set at a separation distance of 2 on cither side of
the radius of 16.

To mamtain the proper dimensions of the circular arc, we set the radn for the
concentric boundary arcs at r = 14 and r = 17. Although this method is accurate

for generating thick circles.

Figure.7.10: A circular are of width 4 and radius 16 displayed by filling the
Region between two concentric arcs.

We can generate dashes in the various octants using circle symmetry, but we must
shift the pixel positions as we move from one octant to another with the correct
sequence of dashes and spaces. If we want to display constant length dashes, we
have to adjust the number of pixels plotted in each dash with equal angular arc as

we move around the circle circumference. As shown in Fig 7-11.

o

|

Figure.7.11: A dashed circular arc displayed with a dash span of 3 pixels and
an inter-dash spacing of 2 pixels.

A circular arc can be displayed using a rectangular pen. The center of the
rectangular pen is moved with successive curve positions to produce curve shape
shown in Fig 7-12. Curves displayed with a rectangular pen would be thicker
where the magnitude of the curve slope is 1. A uniform curve thickness can be
achieved by rotating the rectangular pen to align it with the slope direction as we

move around the curve.

158

o
L ® %

Figure.7.12: A circular arc drawn using a rectangular pen.

7.4 Character Attributes

Display of character is controlled by attributes such as font, size, color and
orientation. Attributes can be set for entire character strings (text) and ndividual
characters as well i.e. defined as marker symbols. Character attributes are classified
info two categories: one is text attributes and another is marker attributes.

Text Attributes

The choice of font or type face 1s set of characters with a particular design
style as Courier, Helvetica, Times Roman, and other symbol groups. The selected
font character can be displayed with styles (solid, dotted, double) in bold face, in
italics, and in outline or shadow styles.

In a PHIGS program by setting an integer code for the text font parameter tf
in the function

SetTextFont (tf)
Control of text color (or intensity) 1s managed from an application program with
SetTextColourIndex (tc)
Where text color parameter tc specifies an allowable color code. Text size can be
adjusted without changing the width to height ratio of characters with
SetCharacterHeight (ch)

159

Parameter ch s assigned a real value greater than 0 to set the coordmate height of
capital letters. We can adjust overall dimensions of character. Character size 1s
denoted as prmter and compositors in points 1e. 1 point 0.013837” (inch).
Character Height 1s defined as the distance between baseline and capline of the

characters as shown in Fig 7-12.

Character
body
\ Kemn
gy / Character
. SR e GO s 2

T

Character
height

S | We— | e

___ Bottom //

Figure 7-13 Character body

To mamtain same text proportion, width and spacing of character 1s adjusted. The
width of text can be set with function:

SetCharacterE xpansionFactor (cw)
Where the character width parameter ¢w 1s set to a positive real value that scales
the
Body width of character. Spacing between characters is controlled separately with
function:

S etCharacterSpacmg {cs)

Where the character-spac ng parameter ¢s can he assigned any real value. Value of
¢s 0 denote no spacing between two characters. The amount for spacmg 1s
determined by multiplying the value of ¢s by character height.

160

Height 1

Helght 2 b Spacing 0.0

H . ht 3 width 1.0 Spacing 0.5

width 2.0 Spacing 1.0
(a) (b) (c)
Figure.7.14: (a) Text strings displayed with different ch settings and a
constant width-to-height ratio. (b) Text strings displayed with varying size for
cw and constant height. (¢) Text strings displayed with different cs values.

The orientation for a displaved character string is set according to the direction of
the character up vector
SetCharacterUpVector (upvect)
Parameter upvect n this function is assigned two values that specify the (x, v)
vector components. For example, with upvect = (1, 1), the direction of the up
vector 18 45° and text would be displayed as shown in Figure 7-15.
To arrange character strings vertically or horizontally
SetTextPath (tp)

Where tp can be assigned the value: right, left, up, or down
Another attribute for character strings is alignment. That specifies how text 1s set
with respect to start coordinates. Alignment attributes are set with function:

SetTextAlignment (h, v)
Where parameters h and v control horizontal and vertical alignment. The value of h
may be left, center, or right. And v 1s set by the value of top, cap, half, base or

bottom.

161

g = - _ - T
\"..I |,<'/ E \.\'.
[| / R \
| .f__f II I| 4 lI
| W ‘ l J }-{'_JRIZD_\-"I}\L"I'E.\"I"!
~Z) '
| ’, A
=N ‘ L i
% /;"II I|. l| l |I
Up Vector - USRS \
() (b) \]\ i
Figure.7.15: (a) direction of up vector Figure.7.16: Text path is set
(b) Orientation of text with horizontal and vertical
n '//-’.

gnirts string / \
: &)
)
Jf[l /f"'/

7 B e T

-

o

A,
Zn

Figure.7.17: Text with four path Figure.7.18: Associated direction with up

Vector

Marker Attributes

A marker symbol is a single character that can he displayed in different
colors and sizes. Marker attributes are implemented by selected character into the
raster at the defined positions with the specified color and size.
We choose a particular character to be the marker symbol with function:

SetMarkerType (mt)

Where marker type (mt) is set to an integer code ie. 1 through 5, specifying,
respectively, a dot (.) a vertical cross (1), an asterisk (*), a circle (0), and a

diagonal cross (X).

162

We set the marker size with function:
SetMarkerSizeScaleFactor (ms)
Parameter marker size (ms) assigned a positive number.
This scaling parameter is applied to the nominal size for the particular marker
symbol chosen. Values greater than 1 produce character enlargement. Values less
than 1 reduce the marker size.
Marker color 1s specified with function:
SetPolymarkerColourIndex (mc)
A selected color code parameter mc is stored in the current attribute list and used to

display subsequently specified marker primitives.

PR, Tnp
--Top -~ Cap
STRING it
-—Base S
. ; '— Bottom i
L = | F —————————— Half

Left Center Right N
&

---Base

|

: i——- Bottom
Left ;1 Right

Center

Figure.7.19: Character alignment for horizontal and vertical string.

7.5 Antialiasing

The sampling process digitizes coordinate points on an object to discrete
integer pixel positions. This distortion of information due to low-frequency
sampling (undersampling) is called aliasing. We can improve the appearance of
displayed raster lines by applying anti-aliasing methods that compensate for the

undersampling process.

163

To avoid losing information from periodic objects, we need to set the

sampling frequency to at least twice that of the highest frequency occurring in the

object, referred as the Nyquist sampling frequency fg
fS =2 f max e el

In other words, sampling interval should be no larger than one-half the cycle

interval (called the Nyquist sampling interval). For x-interval sampling, the
Nyquist sampling interval AX is
AX, =

Where AXcycle = 1/ fnax-

WA

AXcycle
2

¢ == Sampling / | |
Positions
(b)

(a

Figure.7.20: sampling (a) periodic shape (b) Aliased lower frequency display

In raster system, one way to increase sampling rate is display object at high
resolution. To achieve this, we have to limit frame buffer and maintain refresh rate
at 30 to 60 frames per second. But screen resolution is not a complete solution to
aliasing problem. We use anti-aliasing method to modify pixel intensities. There
are three methods for anti-aliasing for pixel intensities. Supersampling, area

sampling and pixel phasing.

Supersampling: A straight forward antialiasing method is to increase sampling
rate by treating the screen covered with a finer grid. We can then use multiple
sample points across this finer grid to determine an appropriate intensity level for
each screen pixel. This technique of sampling object characteristics at a high
resolution and displaying the results at a lower resolution 1s called supersampling

(or postfiltering).

164

Area sampling: fo determine pixel intensity by calculating the areas of overlap of

each pixel with the objects to be displayed. Antialiasing by overlap areas is

referred to as area sampling (prefiltering).

Pixel phasing: in pixel phasing method antialiasing is done by shifting the display

location of pixel area.

Supersampling straight line segment

For a straight-line segment in supersampling, we divide each pixel into a
number of subpixels and count the number of subpixels that overlap the line
path.

The intensity level for each pixel is set to a value that i3 proportional to this
subpixel count.

In fig 7-21 each square pixel area is divided into nine equal-sized square
subpixels, and the shaded subpixels would be selected by Bresenham’s
algorithm. It show three intensity settings above zero, since the maximum
number of subpixels that can be selected within any pixel is three.

For this example, the pixel at position (10, 20) is sef to the maximum intensity
(level 3), pixelsat (11, 21) and (12, 21) are each set to the next highest intensity
(level 2), and pixels at (11, 20) and (12, 22) are each set to the lowest intensity
above zero (level 1). It display blurred line.

1 1 =
| I | | | |
B e RS

R e AR PO e] R it U /’f
EREREEY
I
2 1 1 |
| | | | |
e T S
OS5 AR W BT _ Te S| SN
L v i
21 T T T T | T
i i i
B 2
o= T TR0 O, T [I R [
I | | |]
20 | I | | | I

10 11 12

Figure.7.21: Supersampling of a straight line whose left end point is at screen
coordinates (10, 20).

165

20

For finite size of pixel area, advantage of this supersampling procedure is that
the number of possible intensity levels for each pixel is equal to the total
number of subpixels within the pixel area as shown in Fig 7-22.

If we have a color display, we extend the method to take background colors
into account. If five subpixels within a particular pixel area are determined to
be inside the boundaries for a red line and the remaining four subpixels fall

within a blue background area, we can calculate the color for this pixel as:

_ (5-red +4 - blue)

pi,\:el

color 5
| | | | 1 |
TR T T
{) T |
T T 2 R
I
L e T Jus el
| | | |
.3 I [
))] T
g I I
B TR S R
| 5 I
__+_d____L_+______f__
1 (- [

10 11 12

Figure.7.22: Supersampling subpixel positions in relation to the interior of a
line of finite width.
Area sampling straight line segment

We denote area sampling for a straight line by setting pixel intensity
proportional to the area of overlap of the pixel with the finite-width line.

The line 18 treated as a rectangle, and the section of the line area between two
adjacent vertical (or two adjacent horizontal) screen grid lines is then a
trapezoid.

Overlap areas for pixels are calculated by determining how much of the
trapezoid overlaps each pixel in that column or row. As shown in Fig. 7-22, the
pixel with screen grid coordinates (10, 20) is about 90 percent covered by the

line area, so its intensity is set to 90% of the maximum intensity.

Filtering

It is a more accurate method for antialiasing of a line. The method shows

imagine a continuous weighting surface (or filter function) covering the pixel.

Examples of rectangular, conical, and Gaussian filter functions.

166

Box Flter Cone Filter Graussian Filter
(a) (b (c)

Figure.723: filter functions used for anti-aliasing line paths

Pixel phasing

Pixel phasing can be used to antialias objects. A line display is smoothed
with this technique by moving {micro positioning) pixel positions closer to the line
path. In the system for pixel phasing the electron beam is shifted by a fraction of a

pixel diameter ie. typically shifted by 14, 12 or 34 of a pixel diameter to plot
points closer to the true path of a line or object edge.

7.6 Self Learning Exercise

Q. 1. What do you mean by line cap in line attributes? Explain its types.
Q.2. What are the possible methods for smoothly joining two line segments?
Q.3. Explain supersampling, area sampling and pixel phasing in antialiasing.

7.7 Summary

We have discussed various attributes of output primitives. Line attributes
are color, width, and style. Specifications for line width are given in terms of

multiples of a standard, one-pixel-wide line. The line-style attributes include solid,

167

dashed, and dotted lines, as well as various brush or pen styles. These attributes are
common for line and curve as well. Character attributes are text and marker. That
shows different types of functions like spacing, width, height, color, position of
text etc. Antialiasing for a straight line can be achieved using supersampling, area

sampling and pixel phasing.

7.8 Glossary

PHIGS: It's Programmer Hierarchical Interactive Graphics System, that allow the

user to display and interact with 2-D and 3-D graphics. It is an international
standard.

7.9 Answers to Self-Learning Exercise

Ans.1, Ans.2 and Ans.3 were discussed in chapter in details. See respective

contents.

7.10 Exercise

Q.1. Polyline is assigned a table index as 3 would be displayed using

(A) Dotted line (B) Dashed line
{C) Same index (D) All of these
Q.2. A dashed line could be displayed by generating
(A) Inter dash spacing (B) Very short dashes
(C) Both A and B (D) None of these
Q.3. Pixel mask means
(A) A string containing only 1°s (B) A string containing only 0’s
(C) A string containing 1 and 0 (D) A string containing 0 and O

Q.4. The algorithm which displays line type attributes by plotting pixel span is

(A) Raster line algorithm
168

(B) Raster scan algorithm
(C) Random line algorithm
(D) Random scan algorithm

Q.5. If the angle between 2 connected line segments is very small then which join

generate a long spike that distorts the appearance of the polyline.
(A) Miter join

(C) Bevel join

(B) Round join

(D) None of these
Q.6. Explain the curve attributes as output primitives.

Q.7. Explain text attributes of character in detail.

7.11 Answers to Exercise

Ans.1: B Ans.2: A Ans.3: C

References and Suggested Readings

1. J. Foley, A. Van Dam, S. Feiner, J. Hughes: Computer Graphics- Principles and
Practice, Pearson.

2. Hearn and Baker: Computer Graphics, PHL

3. Additional programming examples and information on PHIGS primitive can be
found in Howard, et al. 1991.

169

UNIT-08

Curves and Surfaces

Structure of the Unit

8.0 Objective

8.1 Introduction

8.2 Curves

8.3 Spline Representation
8.4 Cubic Spline

8.5 Beizer Curves

8.6 B-Spline Curves

8.7 Surfaces

8.8 Self-Learning Exercise
8.9 Summary

8.10 Glossary

8.11 Answers to Self-Learning Exercise
8.12 Exercise

8.13 Answers to Exercise

170

8.0 Objective

In this chapter, we shall focus on the following topics

® Spline Representation
® Cubic Spline

® Beizer Curves

® B-Spline Curves

® (Quadric Surfaces

® Beizer Surfaces

8.1 Introduction

There is verity of techniques are available for drawing and designing curves
manually, like pencils, pens, brushes, etc. each tool has its function and use. No
single tool is sufficient for all tasks. Similarly, a verity of techniques and tools are
useful for curve design and generation in computer science. A curve is 2-

Dimensional if it lies in its entirety in a single plane.

A graphics system typically uses a set of primitives or geometric forms that
arc simple enough to be efficiently, implemented on the computer but flexible
enough to be easily manipulated to represent or model a variety of objects. Curve

and surfaces equations can be expressed in either a parametric or non-parametric

8.2 Curves

The intersection of 2 surfaces in 3D gives a curve. A curve may be

represented as a collection of points. Provided the points are properly spaced,
connection of points by short straight line segment yields an adequate visual

representation of the curve. Spline representations are examples of this class of

171

curve and surfaces. These methods are used to design new objects shapes, to
digitize drawing and to describe animation paths. Curve and surfaces equations can

be expressed in entire a parametric or a non-parametric equation.
Representation of space curves

3-D space curve are represented in explicit non parametric form as
x=x; y=f(x); 2=g(x)

Non-parametric implicit representation of the curve as the intersection of 2

surfaces is given by:

Sx,py,x)=0

8(x,y,2)=0

A parametric space curve 1s expressed as

X=X(1) 2 y=y(1); 1=2(1)

IA

Where parameter t varies over the range ¢/ S:tSe2

8.3 Spline Representation

In computer graphics, a spline is a curve that connects two or more specific
points, or that is defined by two or more points. A physical spline is a long, narrow
strip of wood or plastic used to fit curves through specified data points. The splines

are shaped by lead weights called ducks.

172

Figure. 8.1: Spline Representations

We specify spline curve by set of coordinate positions called control points.
These control points are fitted in two ways. When polynomial sections are fitted so

that curve passes through each control point, curve is said to interpolate the set of

control points and method is called curve fitting method whereas, if polynomials

are fitted to control point path without necessarily passing through each control

point, then curve is said to approximate the set of control points and technique 1s

called as curve fairing technique.

CURVE FAIRING CURVE FITTING

Figure.8.2: Curve fairing and Curve fitting

173

In computer graphics, the term spline curve refers to any composite curve formed
with polynomial sections satisfying specified continuity conditions (parametric
continuity and geometric continuity conditions) at the boundary of the pieces,

without fulfilling these conditions no two curves can be joined smoothly.

Each sections of spline can be described with parametric coordinate functions of

the form
x=x(t) : y=y(9); z=2(t)
Where parameter t varies over the range & ¢ S £2

There can be zero order parametric continuity, first-order parametric continuity,
seccond order parametric continuity and so on. Parametric derivatives of the
adjoining sections of the curve are matched at their boundary to find out parametric

continuity.

Zero order parametric continuity (C°) simply means that x, y, z values at the

boundary of the two adjoining sections are same.

First-order parametric continuity (C') means the first derivatives of parametric
coordinated functions is same at the boundary of two adjoining sections of the

curve. It cannot be used for animation applications.

2 : 2. .
Second order parameter continuity (C°) ensures that both first and second
derivatives of the two adjoining curve sections are same. Second order parameter

continuity is useful for animation applications.

174

8.4 Cubic Spline

Cubic spline interpolation is a special case for Spline interpolation. It is an
interpolating piecewise cubic polynomial. This class of spline i1s most often used to
set up paths for objects motions or to provides a representation for existing object
or drawing, but interpolation spline are sometimes used to design objects shapes.
Cubic polynomial offers a reasonable compromise between flexibility and speed of
computation. Compared to higher order polynomials, cubic splines require less
calculations and memory and they are more stable. Compared to lower order

polynomials, cubic splines are more flexible for modeling arbitrary curve shapes.

Mathematically, spline 1s a piecewise polynomial of degree K with
continuity of derivatives of order K-1 at the common joints between segments.
Accordingly, cubic spline has a second order or C continuity at the joints.

The equation for a single parametric cubic spline segment is given by:-
4
Pli)=) B;t"1 12t
i=1
Where B,is the polynomial blending function. Blending function are called so
because they blend the boundary constraint values to obtain each coordinate
position along curve t and t, are the parameter values at the beginning and end of

the segment. P(?) is the position vector of any point on the cubic spline segment.

8.5 Beizer Curves

A Bezier curve is a mathematically defined curve used in two-dimensional
graphic applications. The curve is defined by four points: the initial position and
the terminating position (which are called "anchors") and two separate middle
points (which are called "handles"). The shape of a Bezier curve can be altered by
moving the handles. Bezier curve was discovered by the French engineer Pierre
Bezier. These curves can be generated under the control of other points. Cubic
splines curves pass through existing data points, they are curve fitting techniques.

Examples for which are aircraft wings, mechanical and structural parts. Other

175

techniques in which curves do not necessarily pass through each data or control
points called curve fairing techniques can be used for other class of problems. It
helps in the manufacture of skin of car bodies, aircraft fuselages, ship hulls,

furniture and glassware.

As it 18 considered for cubic spline fitting method, obvious relationship between

number of control points and the curve shape does not always exist.

B,
.I o _'_'--_______Pz
P

Figure. 8.3: Beizer Curve

Beizer curve is determined by defining a polygon.

Beizer curves have following characteristics:

® The basic functions or Beizer or blending functions are real.

® Degree of polynomial defining the curve segment is one less than the

number of control points.
® Curve generally follows the shapes of the defining polygon.

® First and last points on the curve coincide with the and last points of the

defining polygon.

176

® Tangent vectors at the ends of the curve have the same directions as the first

and last polygon spans
® (urve is contained within the convex hull of the defining polygon.

® (Curve is invariant under an affine transformation.

Mathematically, parametric Beizer curve 1s defined by:-

n
P(t)ZZBi]n,i Ogtil
i=0
Where blending or basis function is given by

n!
]n,i(t) =

it(n—i)!
In this equation j_(2) is the i* 1u"- order blending function and n 1s the degree of the

t(1—)yt

blending function. The value of ‘n’ is one less than the number of control points in

the defining Beizer polygon.

1
08
06

04

0 0.2 0.4 0.6 0.8 5 |

n=3
Figure. 8.4: Beizer blending function for n=3

177

Four blending functions are shown in FIGURE 8.4 for n=3. All the four are cubic
blending functions. Maximum value of blending functions is at r=i/n

8.6 B-Spline Curves

These are the most used class of approximating splines. This method is
better than Beizer spline curves method because of two characteristics of Beizer
method which limits the flexibility of the resulting curves. First 1s, number of
polygon vertices fixes the order of the resulting polynomial which defines the
curve. Example cubic curve is defined by four vertices of the polygon. To reduce
the degree of the curve, we have to reduce the number of vertices. Second limiting
characteristic says that Beizer curve is the result of blending the values of all
defining vertices. A change in one vertex is felt in the entire curve. This global
nature of Beizer curves eliminating the ability to produces local change within the

curve.

B-Spline basis is generally non-global. This behavior of B-Spline curve is
because each vertex Bi is associated with a unique basis function. Each vertex
affects the shape of the curve locally i.e. over a range of parameter values where
it’s associated basis without changing the number of defining polygon vertices.

A B-Spline curve is given by:-
n+1

P(t) = ZBi Nigk(@®) thin<t<tpam2<K<n+1
i=1

P(t) is the position vector along the curve, B, are the position vectors of n+1

defining polygon vertices and N, are normalized B-Spline basis functions.

178

SO to define B-spline curve, it is defined as a polynomial spline function of order

K (degree K-1) and it should satisfy two conditions:-

® Function P(t) is a polynomial of degree K-1 on each interval x.<t=<x._,

® P(t) and its derivatives of order 1,2,...... K-2 are all continuous over the

entire curve.

Properties of B-Spline curves:-

® Sum of B-spline basis functions for any parameter value t can be shown as:

n+1
Z Nig (1) =1
i=1

Each basis function or positive or zero for all parameter values i.e. N, = 0

® Maximum order of curve of the curve is equal to the number of defining

polygon vertices.
® Curve generally follows the shape of the defining polygon.

® Any transformations can be applied to the curve by transformations the

defining polygon vertices.

® Curve lies within the convex hull of its defining polygon

8.7 Surfaces

Surfaces and their description play a critical role in design and manufacturing,
examples include automobiles bodies, ships hulls, tribunes, compressor, glassware,
bottles, furniture etc. A surface can be represented using multiple orthogonal

1/9

projections. The surface is defined by a net or mesh of orthogonal plane curve
lying in plane sections plus multiple orthogonal projections of certain 3-

Dimensional feature lines.

In computer graphics, it is advantages to develop a true three dimensional model of
surface. Surface characteristics can be easily analyzed like curvature, volume,
surface area etc. visual rendering of the surface is simplified. Generation of
necessary information required to fabricate the surface e.g. numerical control codes

is simplified as compared to a traditional net of lines approach.

Schematic

Result

Figure, 85: Cylindrical surface of revolution

Quadric Surfaces:-

Quadric surfaces are described with second-degree equations. It includes spheres,
ellipsoids etc. A spherical surface with radius r centered in the coordinate origin is

defined as the set of points (x.v.2) represented by the equation
xﬂ +y.2 _'_32 s F.E

180

Sweep Surfaces:-

A 3-D surface is also obtained by traversing an entity e.g. a line, polygon or curve,
along a path in space. The resulting surfaces are called sweep surfaces. The
simplest sweep entity is a point. Though, sweeping a point-along its path gives

curve and not surface.

Sweep representations are useful for constructing three-dimensional objects that

process translational, rotational or other symmetries.

Beizer Surfaces:-

Two sets of Beizer curve can be used to design an object surface specified by an
input mesh of control points. The Beizer surface is formed as the Cartesian product

of the blending functions of two Beizer curves.

8.8 Self Learning Exercise

Q.1 curve is one of the sp line approximation methods

(A) Bezier

(B) Ellipsoid

(C) Shearing

(D) None of these

Q.2 A Bezier curve is a polynomial of degree the no of control points

used

{A)One more than
(B) One less than
(C) Two less than
(D)None of these

Q.3What is the difference between interpolation splines and approximation splines.
181

8.9 Summary

In this unit, we have seen a spline that is a flexible strip used to produce a smooth
curve through a designed set of points. Beizer spline curve are widely used CAD
systems, in graphics packages, drawing, etc. Beizer curve ensures that the
polynomial smoothly follows the control points without erratic oscillations. Spline
is used graphics applications to design curve and surfaces shapes to digitize
drawings for computer storage, and to specify animation paths for the objects or

the camera 1n a scene.

8.10 Glossary

Control Points: A Bezier curve is defined in terms of a number of control points.

8.11 Answers to Self-Learning Exercise

Ans.l: A Ans.2: B

8.12 Exercise

Q.1 Bezier spline always passes through

(A) First and second control point
(B) Does not pass from First and second control point
(C) Botha&b

(D) None of these
Q.2 The object refers to the 3D representation through linear, circular or some

other representation are called
(A) Quadric surface

182

(B) Sweep representation
(C) Torus

(D) None of these
Q3. The Bezier curve obtained from the four control points is called a

(A) Square Bezier curve
(B) Cubic Bezier curve
(C) Hectare Bezier curve

(D) Rectangle Bezier curve

Q4. The shape of a Bezier curve primarily depends upon the

(A) Position of control points
(B) Distance of control points

(C) Position of control panel
(D) None of these

Q5. Given B[1,1], B,[2,3], B,[4,3] and B,[3,1] and the vertices of Beizer polygon,

determine seven points on the Beizer curve.

8.13 Answers to Exercise

Ans.1: A Ans.2: B
Ans.3: B Ans.4: A

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M. Pauline Baker; Pearson
Education, Seventh Edition 2005

2. Computer Graphics by Apurva A. Desai;PHI Learning, Third Edition 2012

183

3. Computer Graphics Principles & practice in C by James D. Foley, Steven K.

Feiner, Andries van Dam and F. Hughes John; Pearson Education, Second
Edition 2003

4. Computer Graphics A Programming Approach by Harrington and Steven;

McGraw Hill.

184

UNIT-9
Geometric 2D Transformation

Structure of the Unit

9.0 Objective

9.1 Introduction

9.2 Basic 2-D transformation

9.3 Homogeneous coordinate system
9.4 Other Transformation

9.5 Composite transformation

9.6 Self Learning Exercise

9.7 Summary

9.8 Glossary

9.9 Answers to Self-Learning Exercise
9.10 Exercise

9.11 Answers to Exercise

185

9.0 Objective

In this chapter, we shall focus on the following topics

® Basic Transformation
O Scaling
O Translation

O Rotation
® Homogenecous Coordinates

® Other Transformation
C Reflection
O Shearing

® Composite Transformation
0.1 Introduction

We can create many two dimensional objects and images using lines,
curves, polygons, etc. In most applications, there is also a need for altering or
manipulating displays or images. In animations, pictures are produced by moving
the camera or the objects in a scene along animation paths. To add reality or feel
like reality, many times these objects are needed to be moved, rotated or even in
some applications, enlarged or reduced. This change in accomplished by geometric
fransformation or object transformations. Here we will discuss the basic
transformations such as translation, rotation, scaling and other transformations

which uses the concept of this basic transformations.

0.2 Basic 2-D Transformation

Transformation means changing some graphics into something else by
applying rules. There are three basic general procedures for applying movements,
moving, scaling and rotating any object on a plane. When a transformation takes

place on a 2D plane, it is called 2D transformation. These movements are

186

performed through some basic geometry. So, there are three basic transformations,

translation, scaling, and rotation.

Let us discuss all these transformations one by one in detail.

Translation
A common requirement is to relocate a picture or an object to a new
position along a sfraight line path from one coordinate location to another.
Translation of an object is possible in any one of the following three directions;
1. Translation of an object parallel to X-axis, i.e. horizontal
direction.
Translation of an object parallel to Y-axis, 1.€. vertical direction.
Translation of an object in any direction either vertical or
horizontal.
We translate a 2D point by adding translation distances, t, and t, to the original
coordinate position (X, y) to get new position(x', y') as shown in Figure 09.1,
W=t ¥ Wyl (9.1)
The translation distance pair (t,, t) used in equation 9.lis called a translation

vector or shift vector.

P X

-
L

Figure.9.1: Translating a point from position P to new position P' with

translation vector T.

The translation equation 9.1 can be expressed as a single matrix equation by

using column vectors to represent coordinate positions and the translation vector.

187

SIS b IS b

Now we can write the two-dimensional translation equations in the matrix form;

PP=T+P (9.3)
The translation is a rigid body transformation. A transformation is called
rigid body transformation if the Euclidean distance between any two coordinates
remains unchanged by the transformation. That is, every point on the object is
moved by the same amount. Figure 9.2 illustrates the generalized translation of an

object.

&
O x x

(a) (b)
Figure.9.2: Translation a polygon from position (a) to position (b) in both X

L 4
v

and Y direction.
Scaling
Scaling transformation is used to alter the size of an object. The alteration
of size of the object i1s defined by the scaling factor. This operation can be carried
out for polygons by multiplying he coordinate values (x, y) of each vertex by

scaling factor S_and S, to produce the transformed coordinates (x', y') as shown in

Figure 9.3.

X=X.8, Y=V.§ (9.4)

X

Scaling factor S_scales objects in the x direction, where S_scales in the y

direction. The matrix representation of equation 9.4 is as follow:

188

X Sx 0 X
vl Lo s)] o3
Which 1s equivalent to,

P-S.P (9.6)

A v Tv

S x A

> >

Figure.9.3: Scaling Transformation

S, and S are scaling factor they are always positive. Any positive number
can be assigned to the scaling factors. A value greater than 1 will enlarge the object
in horizontal or vertical directions respectively whereas their values between 0 and
1 will reduce the object in the respective directions. When both the scaling factors
have the same value, a uniform scaling transformation is performed otherwise it is

called differential scaling transformations as shown in Figure 9.4.

oL . 0y,

> >

(a) (b)

Figure.9.4: (a) Uniform Scaling (b) Differential scaling

189

Object transformed by equation 9.5 are both scaled and repositioned. When
the scaling factor is greater than one, then the object will move away from the
origin, but when the scaling factor is less than one, then the object will move near
to the origin. That is, the object changes its position when we apply scaling
transformation. Almost all the graphical application need to keep the object at its
original position or at some fixed position this is known as fixed point scaling.

We achieve fixed point scaling at a fixed point (X, Y,) by the following set

of equations.

X =x.8,+(X- X S)

V=2, B (Ye- Yy S_Y) (9.7)
Or

X=x.5+X(1-8)

y=y.8+Y;(1~-8) (9.8)
Rotation

Another common type of transformation is rofation. This 18 used fo

orientate objects. This transformation moves an object on a circular path about an
origin. This transformation requires rotation angle O and the position (X, Y,) of
the rotation point or known as pivet peint about which the object is to be rotated.
Any object can be rotated either in a clockwise direction or anti-clockwise
direction by a given value of angle Q. A positive value of angle define

counterclockwise rotation, and negative value rotates the object in clockwise.

A Y
O «,y)

R //

/

/N o Ky
// L X
Fd -

P T 8 N

Figure.9.5: Rotating a point about the origin

190

The rotation of one point in the object is illustrated in Figure 9.5. A line
joining the point with the origin makes an angle b with the x-axis and has length R,

hence.
x = R. cosf3
y = R. sinf3 (9.9)

After rotation, the point has coordinates x' and y' with values
x'=R.cos(a+f3)
y=R. sin(a+f}) (9.10)

Expanding these formulae for cos(a+f3) and sin(a+[3) and rearranging gives

x'=R. cosat -cosP} - R. sinat -sinf3

y'=R. sin -cosf3 + R. sinf} -cosa (9.11)
Finally, substituting for R. cosp and R. sinf} gives

X' =X.cost —y. sink

y' =X.sine +y.cost (9.12)

With the column vector representation for coordinate position, we can write the

rotation equation in the matrix form:
PP=R.P
Where the rotation matrix is

R = [COS(X. —Sina]

, (9.13)
SIng cosda

R is a rotation transformation matrix to rotate a point in clockwise direction by (L

angle relative to the origin.

191

9.3 Homogeneous coordinate system

In animation some time it might require an object to be translated and
rotated at each increment of motion. To achieve this we perform translations,
rotations, and scaling’s to fit the picture components into their proper positions.
Here we consider how the matrix representations discussed in the previous section

can be reformulated so that such transformations can be processed.

We can combine the multiplicative and translations terms for two-
dimensional geometric transformations into a single matrix representation by
changing 2 by 2 matrix into 3 by 3 matrices. To obtain square matrices, an
additional row was added to the matrix and an additional coordinate, the w-
coordinate, was added to the vector for a point. In this way a point in 2D space is
expressed in three-dimensional homogeneous coordinates. This techmique of
representing a point in a space whose dimension is one greater than that of the
point is called homogeneous representation. It provides a consistent, uniform way
of handling affine transformations. So, we represent each Cartesian coordinate

position (x, y) with the homogeneous coordinate triple (x, y,. W)

Here

The newly generated homogeneous coordinates can be represented as (w.x,
w.y, w) where w can assume any non-negative value. A convenient choice is
simply to set w =1. On converting a 2D point (X, y) to homogeneous coordinates
the w-coordinate 1S set to 1, giving the corresponding homogencous coordinate
point (x, vy, 1).

Now rewrite all the matrices derived in the previous sections again with

homogeneous rows and columns.

192

Scaling transformation matrix

S, 0 0
s=10 S, 0‘ (9.14)
0 0 1

For example, to scale a triangle with respect to the origin, with vertices at original
coordinates (10, 20), (10, 10), (20, 10) by §,=2, S =1.5, we compute as followings:

Scaling of vertex (10, 20):

!

X 2 0 077110 2+x*10+0+x20+0=1 20
y'[=]0 1.5 0”20]—[0*10+1.5*20+0*1]—[30]
1 0 0 1IL1 0x10+0*x20+1=1 1

Scaling of vertex (10, 10):

x' 2 0 077110 2x10+0%10+0=1 20
y'|=(0 1.5 0”10]=[0*10+1.5*10+0*1]=[15]
1 0 0 1iL1 0x10+0+x10+1=1 1.

Scaling of vertex (20, 10):

X' 2 0 0120 2x204+0+x10+0=1 40
[y’ 0 15 0“10‘—[0*20+1.5*10+0*1‘—[1S]
1

0 0 1111 0+x204+0x10+1%1 1
The resultant coordinates of the triangle vertices are (20, 30), (20, 15), and (40, 15)

respectively.

Rotation transformation matrix

sine cosa O
0 0 I

cosa —sina O
R = (9.15)

193

For example, to rotate a triangle about the origin with vertices at original
coordinates (10, 20), (10, 10), (20, 10) by 30 degrees, we compute as follow:

sine@ cosa sin30 cos30 0866 0O

[cosa’ —sina 0] [60330 —sin30 0] [0866 —0.5 0]
0 1

Rotation of vertex (10, 20)‘
x'l [O. 866 —05 0
ol = 0. 866 0
1

Rotation of vertex (10, 10)‘

0 866 —0.5
0. 866 0
Rotation of vertex (20, 10)'

0866 —0.5 0 0.866+x20—-05x10+0=1] [12.32
= 0866 0 0.5x20+0.866+x10+0=1 |-|18.66

0%x20+0*x10+1x%1 1

0510+ 0.866*20+0=1 |=|22.32

\0.866*10—0.5 >|cZO-I-O*l] [—1.34]
0+10+0*x20+1x%1 1

0.5x10+0.866x10+0=1|7|13.66

[0.866*10—0.5*104-0*1] [3.66]
0#*10+0+10+1%*1 L

The resultant coordinates of the triangle vertices are (-1.324, 22.32), (2.6, 13.66),
and (12.32, 18.66) respectively.

Translation transformation matrix

1 0 ¢,
T-10 1 ¢ (9.16)
0 0 1

For example, to translate a triangle with vertices at original coordinates (10, 20),
(10, 10), (20, 10) by t,=5, t =10, we compute as followings:

Translation of vertex (10, 20):

194

x' 1 0 57[10 1*10+0%20+5=#1 15
y'[=[0 1 10[(20|=(0*10+1+20+10=*1 30
| 0 0 11lL1 0x104+0+20+1%1 1

Translation of vertex (10, 10):

x' 1 0 51710 1x10+0+10+5=1 15
y'|=10 1 10[[10|=]0+10+1+10+10=1 |=(20
1 0 0 1111 0x10+0x10+1=1 1

Translation of vertex (20, 10):

v o 1 0 5177120 1x*204+0x10+5=1 25
y'[=[0 1 10[[10|=|0%*20+1x10+10*1 =20
1 0 0 11L1 0+x204+0*x10+1=x1 1

The resultant coordinates of the triangle vertices are (15, 30), (15, 20), and (25, 20)

respectively.

9.4 Other Transformation

The transformation we studied till is included in most graphics packages.
Other than these transformations there are some more exciting transformations are
also in the market which i1s used in graphics applications. These two

transformations are reflection and shearing.

Reflection

Reflection is nothing more than a rotation of the object by 180o0. In case of
reflection, the image formed 1s on the opposite side of the reflective medium with
the same size. The axis around which reflection takes place is called axis of
reflection. We use the identity matrix with positive and negative signs according to

the situation respectively. Let see few very common reflections.

195

Reflection about the line y=0, (i.e. about x axis). The transformation matrix

as follows:
1 0 0
0 -1 0 (9.17)
0O 0 1

This transformation keeps x value same but changes the y values of coordinates
positions. The resulting orientation of an object after reflection about the x axis

shown in Figure 09.6.

Y Original

U Position

Position

g

Figure. 9.6: Reflection about x-axis.

Similarly, reflection about the line x=0, (1.e. about y axis). The transformation

matrix as follows:

-1 0 0
0 1 0 (9.18)
0 0 1

This transformation keeps y value same but changes the x values of coordinates
positions. The resulting orientation of an object after reflection about the y axis

shown in Figure 09.7.

196

Reflected Original

Dhimm i m Dmedrimm

-X X

Figure.9.7: Reflection about y-axis.

When both the x and y coordinates are flipped then the reflection produced is
relative to an axis that is perpendicular to x-y plane and that passes through the
coordinate origin. This transformation is referred as a reflection relative to

coordinate origin and can be represented using the matrix below.

-1 0 0
0O -1 0 (9.19)
0 0 1
\\\ v

~ QOriginal
\ Maaikia
\\
e "
~
\\
Reflectad O ~
e “~
\\ Axis of rotation

~
~
&

Figure.9.8: Reflection of an object relative to an axis

perpendicular to the x-y plane.

197

Reflection about an arbitrary line y= mx + b can be accomplished with a
combination of translate-rotate-reflect transformations.

Steps are as follows

1. Translate the working coordinate system (WCS) so that the line passes through
the origin.

2. Rotate the WCS such that one of the coordinate axis lies onto the line.

3. Reflect about the aligned axis

4. Restore the WCS back by using the inverse rotation and translation

transformation.

Shear

A shear 1s a transformation that distorts the shape of an object along either
or both of the axis. Like scale and translate, a shear can be done along just one or
along both of the coordinate axes. A shear along one axis (say, the x-axis) is
performed in terms of the point's coordinate in the other axis (the y-axis). Thus a

shear of 1 in the x-axis will cause the x-coordinate of the point to distort by 1*(y-

coordinate).
1 a 0
The generalized shearing matrix is: b 1 0 (9.20)
0 0 1
To shear in the x direction the equation 1s:
X'=x+ay
Vv =y Where b=0

Where x' and y' are the new values, x and y is the original values, and a 1s the

shearing factor in the x direction. The matrix is as follows.

1 a O
0 1 0 (9.21)
0 0 1

198

An example of this shearing transformation is given in Figure 9.9 for a shear

parameter value of a = 2.

A A

|

(a) (b)

Figure.9.9: A unit square (a) is converted into a parallelogram (b) using the x-

direction shear.

Shearing in the y direction is similar except the roles are reversed.

X'=x
y'=y+bx Where, a=0.
Where, x' and y' are the new values, x and y are the original values, and b is the
1 0 0
scaling factor in the y direction. The matrixis. |b 1 0O (9.22)
0_0_1
¥ 3 4
- >
(a) (b)

199

Figure.9.9: A unit square (a) is converted into a parallelogram (b) using the y-

direction shear.

9.5 Composite transformation

We saw that the basic scaling and rotating transformations are always with
respect to the origin. To scale or rotate about a particular point (the fixed point) we
must first translate the object so that the fixed point is at the origin. We then
perform the scaling or rotation and then the inverse of the original translation to
move the fixed point back to its original position. Forming products of
transformation matrices is often referred to as a concatenation, or composition of
matrices. We form composite transformations by multiplying matrices in order
from right to left.

Translations

By common sense, if we translate an object with 2 successive translation
vectors: (t;, t,,) and (t,,, t,), it is equal to a single translation of (t ,+ t,, £+ t,).

The final transformed location P' is calculated as

P=T{(k, tya)- {T (4. t}-|)- P}

={T s tyZ)' T (L, tyl)} P
This additive property can be demonstrated by composite transformation

matrix:
1 6 #e71d 0 g7 71 & & + &s
0 1 &[]0 1 &1]=|0 1 ¢ty + ty (9.23)
0 0 1 0 0 1 0 O 1
or
T (s) T (s £) = T (b + Ly £, + 1) (9.24)

200

This demonstrates that 2 successive translations are additive.
Rotations

By common sense, if we rofate a shape with 2 successive rotation angles: Q0

and B, about the origin, it is equal to rotating the shape once by an angle O + B

about the origin

The final transformed location P' is calculated as

=R (o). {R(B). P}
~{R(a).R(P)}.P

By multiplying the two rotation matrices, we can verify that two successive

rotations are additive:

R (o). R () =R(a+)
P=R(at+ P).P

Similarly, this additive property can be demonstrated by composite transformation

matrix:

sina cosa 0].|sinf cosﬁ sinfa+p) cos(a+p) O

rosa —sina 0‘ rosﬁ —sinf 0‘ [LOS(CZ+£) —sin(e +p) O
0 0 1 0 0 1

This demonstrates that 2 successive rotations are additive.

Scaling

Concatenating transformation matrices for two successive scaling factor: (sx1, syl)
and (sx2, sy2), with respect to the origin, it is equal fo a single scaling of (sx1* sx2,
sy1* sy2) with respect to the origin.

P'=5(8,;, Syg)- {8 (5, Syl)‘ P}

201

- S (le' le! Syl' Syl)‘ P
Composite transformation matrix for 2 successive scaling:

Ser 0 077Sez O 07 [Se1.Ses 0 0
0 Syl 0 4 0 Syz O = 0 Syl . Syz 0
0 0 11L0 0 1 0 0 1

This demonstrates that 2 successive scaling with respect to the origin are

multiplicative.

9.6 Self Learning Exercise

Q.1 In which transformation, the mirror image of an object can be seen with respect

to x-axis, y-axis and z-axis as well as with respect to an arbitrary line?

(A) Translation (B) Rotation
(C) Reflection (D) Scaling

Q.2 The transformation in which the dimension of an object are changed relative to

a specified fixed point is called

(A) Rotation (B)Reflection
(C) Translation (D) Scaling

Q.3 Write down Reflection matrix about x-axis (2 Dimensional).

9.7 Summary

202

Here we have seen that the polygons, line segments, circles, arcs etc. will
create image or pictures. On these images, we can do some manipulations or
restructurings for many reasons. These manipulations are performed on basic
geometry of these shapes. The basic geomefric transformations are translation,
rotation, and scaling. When we move an object from one position in a straight line
path it 1s known as translation, when an object moves from one point to another
point in a circular path around a specitied pivot point, then it is known as rotation,

when dimensions of an object changes than it is known as scaling.

Here we study who we can express two-dimensional geometric
transformation as 3 by 2 matrix, use of Homogeneous Coordinator, composite
transformations of any combinations of translations, rotations and scaling matrices.
Other transformations include reflections and shears. Transformations between
Cartesian coordinate system are accomplished with a sequence of translate-rotate
transformation. After studying this unit in detail, the reader will be able to

manipulate or restructure any images.

9.8 Glossary

2-D: computer graphics is the computer-based generation of digital images—

mostly from two-dimensional models and by techniques specific to them.

9.9 Answers to Self-Learning Exercise

Ans.1: C Ans.2: D

9.10 Exercise

Q.1 What will be Homogeneous form of point (9, 6, 3, 3)?
(A)(1,2,3) (B)(3,2,1)
(©3,2,1,1) (D) (9, 6, 3)

203

Q.2

Q3

Q4

QS5

If you rotate the point (20, 30) by 90 degrees anticlockwise and then translate
it by (-20, 0) and then scale 1t by (2, 1), where will the point be?

(A) (100, -20) (B) (100, 20)

(C) (100, 10) (D) (-100, 20)

Find out the final co-ordinates of a figure bounded by the co-ordinates (1, 1),
(3,4).(5,7), (10, 3) when rotated about a point (4, 8) by 60° in clockwise
direction.

Find out the final co-ordinates of a figure bounded by the co-ordinates (1, 1),
(3,4), (5,7, (10, 3) when rotated about a point (8, 8) by 30° in anticlockwise

direction & scaled by 2 units in x-direction & 2 units in y-direction.

Find the transformation matrix that transforms the square ABCD to half its

size with center still remaining in the same position. The coordinates of
square are A(1, 1), B(3, 1), C(3, 3) and D(1, 2) and center at (2, 2).

0.11 Answers to Exercise

Ans.1: C Ans.2: D

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M. Pauline Baker; Pearson
Education, Seventh Edition 2005

2. Computer Graphics by Apurva A. Desai; PHI Learning, Third Edition 2009

3. Computer Graphics Principles & practice in C by James D. Foley, Steven K.

Feiner, Andries van Dam and F. Hughes John; Pearson Education, Second
Edition 2003

4. Computer Graphics A Programming Approach by Harrington and Steven;
McGraw Hill.

204

UNIT-10
Geometric 3D Transformation

Structure of the Unit

10.0 Objective

10.1 Introduction

10.2 Basic Transformations in 3D

10.3 Other Transformations

10.4 Composite Transformations

10.5 Concatenation Properties of composite Matrix
10.6 Self Learning Exercise

10.7 Summary

10.8 Glossary

10.9 Answers to Self-Learning Exercise
10.10 Exercise

10.11 Answers to Exercise

205

10.0 Objective

In this chapter, we shall focus on the following topics

® PBasic Transformations in 3D
O Scaling
C Translation

O Rotation
® Other Transformations
® (Composite Transformations

® (oncatenation Properties of composite Matrix

10.1 Introduction

In the previous unit, we discussed about the computer graphics concepts in
2D only. But real world objects have a third dimension which is depth. To simulate
any real world scene it needed objects with the third dimension. Unlike 2D
graphics, 3D scenes are more complex. Methods for geometric transformation and
object modelling in three dimensions are extended from 2D methods by including
consideration for the z coordinate. Now translate on an object by specifying a 3D
translation vector that determines how much the object is to be moved in each of
the three coordinate directions. Similar, we scale an object with three coordinate
scaling factors. The extension for three-dimensional rotation is less straight

forward.

In this unit, we will discuss the issues associated with the 3D computer
graphics.
10.2 Basic Transformation in 3D

206

Once the 3D objects are created, then like the 2D images, they are required
to be processed or manipulated. Like 2D images, these 3D objects can also be

translated, scaled and rotated.

TRANSLATION

In a three-dimensional homogeneous coordinate representation, a point is

translated form position P = (X, y, z) to P’= (X', y', Z') with the matrix operation.

1 B oo

X 1 0 0 t,] rx
y :0 1 0 ty y (10.1)
2 1o 0o 1]|z
L 11 10 0 O i 1
Or
P="1.F

Parameters t, t, and t, specitying translation distances for the coordinate directions

X, ¥, and z, are assigned any real values.
The Matrix representation in equation 10.1 is equivalent to the three equations

X =x+1 y =y+t, Z=g+f (10.2)

(xl, y" ZIJ

X axis

Figure.10.1: Translating an object with translation vector T =(t, t, t,)

207

An object is translated in three dimensions by transforming each of the defining
points of the object. For an object represented as a set of polygon surfaces,
translate each vertex of each surface Figure 10.1 and redraw the polygon facets in

the new position.

We obtain the inverse of the translation matrix in equation 10.1 by negating
the translation distance t,, t,and t,. This produces a translation in the opposite
direction, and the product of a translation matrix and its inverse produces the

identity matrix.
SCALING

Matrix expression for the scaling transformation of a position P = (x, y, z) relative

to the coordinate origin can be written as,

X1 [Se 0 0 0] rx
e A (10.3)
Zl o o s, o]z
11 lo o o 1111
Or
P'=S.P

Where, scaling parameters S, S and S, are assigned any positive values. Explicit

expressions for the coordinate transformations for scaling relative to the origin are

E=%.8y ¥=¥-8y £=Z.8, (10.4)

5.—*6

Figure.10.2: Scaling of the object.

208

Scaling an object with transformation 10.3 changes the size of the object
and repositions the object relative to the coordinate origin. Also, if the
transformation changed parameters are not all equal, relative dimensions of the
object are changed. We preserve the original shape of an object with a uniform
scaling (S, =S, = S,). The result of scaling an object uniformly with each scaling

parameter set to 2 1s shown in Figure 10.2.

Scaling with respect to a selected fixed position (X, v, z;) can be represented with

the following transformation sequence:

1. Translate the fixed point to the origin.
2. Scale the object relative to the coordinate origin using Eq. 10.3.

3. Translate the fixed point back to its original position.

The matrix representation for an arbitrary fixed-point scaling can then be expressed

as the concatenation of these translate-scale-translate transformations as

Se 0 0 (1-Spx
0 S, 0 (1-S5))y
0 0 S, (1-5)z
0 0 0 1

Ty ¥p 79 - 5(8,, 8, 8) T(X, ¥, -2) = (10.5)

We form the inverse scaling matrix for either equation 10.3 or equation 10.5 by
replacing the scaling parameters S, S, and S, with their reciprocals. The inverse
mairix generates an opposite scaling transformation, the concatenation of any

scaling matrix and its inverse produces the identity matrix.
ROTATION

To generate a rotation transformation for an object, we must designate an axis of
rotation (about which the object i1s to be rotated) and the amount of angular
rotation. Unlike a two-dimensional application, where all transformations are
carried out in the xy plane, a three-dimensional rotation can be specified around

any line i space. The easiest rotation axes to handle are those that are parallel fo

209

the coordinate axes. Also, we can use a combination of coordinate-axis rotation

(along with appropriate translations) to specify any general rotation.

By convention, positive rotation angles produce counter clockwise rotation
about a coordinate axis, if we are looking along the positive half of the axis toward
the coordinate origin Figure 10.3 this agrees with our earlier discussion of rotation
in two dimensions, where positive rotations in the Xy plane are counter clockwise

about axes parallel to the z axis.

Coordinate-Axes Rotations

The two-dimensional z-Axis rotation equations are easily extended to three

dimensions:

>
. /ff
A

Figure.10.3: Positive rotation directions about the coordinate axes.

x = xcos 8 ysinf
y' = xcos 8 +ysin @ (10.6)
7 =z

Parameter 8 specifies the rotation angle. In homogeneous coordinate form, the

three-dimensional z-axis rotation equations are expressed as

X' 1 [cos® —sinBf 0 0 X
y'|_|sin@ cos6@ 0 0 |V¥
g 0 0 1 ollz (10.7)
11 L O 0 0 11 t1

210

This can be written more compactly as

P =R(0) .p (10.8)

Transformation equations for rotations about the other two coordinate axes can be
obtained with a cyclic permutation of the coordinate parameters X, y, and z m

equation 10.6. That is, we use the replacements as illustrated in Figure. 10.4.

X —»y—>Z —>X (10.9)

Substituting permutations 10.9 i equation 10.6, we get the equations for an x-axis

rotation:

y'=ycos @ —zsin 0
7Z=ysin8 +zcos O (10.10)
X' =x

This can be written in the homogeneous coordinate for

X1 1 0 0 0] rx
v | |0 cos®@ —sind O0Of |y o
2| |0 sin@ cos8 0| |z LR
L1 4 1@ 0 0 11 L1
P —- >
z Y x ¥ v z

Figure.10.4: cyclic permutations of the Cartesian-coordinate axes to produce

the three sets of coordinate-axis rotation equations.

211

Or

P=R(A).P (10.12)

Cyclically permuting coordinates in equation 10.10 give us the transformation

equations for a y-axis rotation:

7 = zcos B —xsinf
X = zcos@+xsinf (10.13)
Yy =%

The matrix representation for y-axis rotation is

= ! -

X [cosf@ 0 sinf 0] rX
y' - 0 1 0 0 y
2| |—sin@ 0 cos@ 0| |z (10.14)
111 L 0 0 0 11 t1
Or
P=R(0).P (10.15)

An inverse rotation matrix is formed by replacing the rotation angle 8
by—8. Negative values for rotation angles generate rotations in a clockwise
direction, the identity matrix is produced when any rotation matrix is multiplied by
tis inverse, since only the sine function is affected by the change in sign of the
rotation angle, the mverse matrix can also be obtained by interchanging rows and
columns. That is, we can circulate the inverse of any rotation matrix R by
evaluating its transpose (R’ = R"). This method for obtaining an inverse matrix

holds also for any composite rotation matrix.

General Three-Dimensional Rotation

212

A rotation matrix for any axis that does not coincide with a coordinate axis can
be set up as composite transformation involving combination of translations and
the coordinate-axes rotations. Obtain the required composite matrix by first setting
up the transformation sequence that moves the selected rotation axis onto one of
the coordinate axes. Then set up the rotation matrix about that coordinate axis for
the specified rotation angle. The last step is to obtain the inverse transformation

sequence that returns the rotation axis to its original position.

In the special case where an object is to be rotated about an axis that is parallel
to one of the coordinate axes, we can attain the desired rotation with the following

transformation sequence.

1. Translate the object so that the rofation axis coincides with the parallel
coordinate axis.
Perform the specified rotation about that axis.

Translate the object so that the rotation axis in moved back to its original

position.

The steps in this sequence are illustrated in Figure 10.5. Any coordinate position P

on the object in this figure is transformed with the sequence shown as
P=T.R(H).T. P (10.16)
Where the composite matrix for the transformation is

R(BA) =T .R(B). T (10.17)

This has same form, as the two-dimensional transformation sequence for rotation

about an arbitrary pivot point.

When an object is to be rotated about an axis that is not parallel to one of the
coordinate axes, we need to perform some additional transformations. In this case,
we also need rotations to align the axis with a selected coordinate axis and to bring
the axis back to its original orientation. Given the specification for the rotation axis
and the rotation angle. We can accomplish the required rotation in five steps:

213

1. Translate the object so that the rotation axis passes through the coordinate
origin.

2. Rotate the object so that the axis of rotation coincides with one of the
coordinate axes.

3. Perform the specified rotation about that coordinate axis.

4, Apply inverse rotations to bring the rotation axis back to its original
orientation.

5. Apply the inverse translation to bring the rotation axis back to its original

(a) (b)

Original Position of object Translate rotation axis onto X axis

<V

(c) (d)

Rotate object through angle Translate rotation axis to original position

Figure.10.5: Transformations sequence for rotating object about

an axis that is parallel to the x axis.

214

We can transform the rotation axis onto any of the three coordinate axes.

The z axis i1s a reasonable choice, and the following discussion shows how to set

up the transformation matrices for getting the rotation axis onto the z axis and

returning the rotation axis to its original position Figure 10.6.

A rotation axis can be defined with two coordinate positions, as in Figure 10.7, or

with one coordinate point and direction angles (or direction cosines) between the

rotation axis and two of the coordinate axes. We will assume that the rotation axis

is defined by two points, as illustrated, and that the direction of rotation is to be

counter clockwise when looking along the axis from P, to P,. An axis vector is then

defined by the two points as,
A% =P,— P,
=% =X Y~ Y%~ %)

A unit vector u 1s then defined along the rofation axis as

v
u=—=(a,b,c)
[v]
4 L O
i]
?p R
! 1
! '
$ Pl '
+ >y P >
! !
! t
Zz Z
Initial Position Step 1 Translate P; to the Origin
Step 2 Rotate P’ onto the z axis Step 3 Rotate the object around the z axis

215

(10.18)

(10.19)

/
)
!
[
$ Pl
X
!
{
Fid
Step 4 Rotate the object around the z axis Step 5 Translate the rotation axis to the

original position
Figure.10.6: Five transformation steps for obtaining a composite matrix for

rotation about an arbitrary axis, which the rotation axis projected onto the z

axis.

Where the components a, b, and ¢ of unit vector u are the direction cosines for the
rotation axis;
X2 —Xq Y2—V1 __ 22724

. = 5, L = A 10.20°
V] V] V] (I

a =

If the rotation 1s to be in the opposite direction (clockwise when viewing from (P,
to P,), we would reverse axis vector V and unit vector u so that they point from P,

o P,

Figure.10.7: An axis of rotation defined with points P, and P,.

The first step in the transformation sequence for the desired rotation is to set up the
translation matrix that repositions the rotation axis so that it passes through the
coordinate origin. For the desired Direction of rotation Figure 10.7, we accomplish
this by moving point P, to the origin (if the rotation direction had been specified in

the opposite direction, we would move P, to the origin.) This translation matrix is

216

1 0 0 —x
|01 0 —-»n

=10 o 1 = (10.21)
0 0 0 1.

Figure.10.8: Translation of the rotation axis to the coordinate origin

10.3 Other Transformation

Apart from the basic three-dimensional transformations, we have two
additional transformations that are often used in various three-dimensional

graphics applications. These transformations are reflection and shear.

REFLECTIONS

Reflection in a three-dimensional can be performed relative to a selected
reflection axis or with respect to a selected reflection plane. 3D reflection matrices
are set up similarly to those for two dimensions. Reflections with respect to a plane
are equivalent to 180° rotations in four-dimensional space. Reflections relative to a
given axis are equivalent to 180° rotations about that axis. When we do the
conversion between left-handed and right-handed system, actually we are

reflecting the plane with the coordinate plane as xy, xz, or yz.

For example reflection that converts coordinate specifications from a left-

handed system to a right-handed system (or vice versa) is shown in Figure 10.9. In
217

this transformation the value of x and y coordinates were unchanged and there is
changes in the sign of the z coordinates. The matrix representation for this

reflection of points relative to the xy plane is.

10 0 0
o1 0 o
M=lo 0 =1 o

o0 0 1

Reflection
relative to

_ the xy
X axis . a:(is

—

Figure. 10.9: Converting coordinate from a right handed to left handed
system.

Transformation matrices for inverting x and y values are defined similarly.
Reflections relative to yz and xz plane, respectively. Reflections about other planes

can be obtained as combination of rotations and coordinate-plane reflections.

SHEARS

To modify the shape of any object in graphics we use shear transformation.
To get a general projection, we can use shearing to view a three-dimensional
object. In two dimensions, we discussed transformations relative to the x or y axes
to produce distortions in the shapes of the object. In three dimensions, we can also

generate shears relative to the z axis.

As an example of three-dimensional shearing, the following transformation

produces a z-axis shear:

218

1 0 a 0
G |0 1 b0
10 0 1 0
0 0 0 1
Aym
—

Figure.10.10: A cube is sheared by transformation matrix given above.

Here in this matrix parameters, a and b can be assigned any real values. The
effect of this transformation matrix is to alter x-and y-coordinate values by an
amount that is proportional to the z value, while leaving the z coordinate
unchanged. Boundaries of planes that are perpendicular to the z axis are thus
shifted by an amount proportional to z. An example of the effect of this shearing
matrix on a cube 1s shown in Figure 10.10, for shearing values a= b = 1, Shearing

matrices for the x axis and y axis are defined similarly.

10.4 Composite Transformation

In 2D transformation, we have seen that the composite transformation we
got i1s basically the matrix multiplication of various homogeneous matrixes of
transformations. We can form a composite three-dimensional transformations by
the same methods. For composite three dimensional transformations multiply the

matrix representations of the individual operation in the transformation sequence.

This concatenation is carried out from right to left, where the rightmost
matrix is the first transformation to be applied to an object and the left most matrix

is the last transformation. To get the final coordinates of the transformed object we

219

apply the sequence of basic three-dimensional geometric transformations which are

combination of a single composite transformation.

10.5 Concatenation Properties of composite matrix

I. Matrix multiplication is associative:

For any three matrices, A, B and C the matrix product A*B*C can be performed by
first multiplying A and B or by first multiplying B and C:

A*B*C=(A*B)*C=A*(B*()

Therefore, we can evaluate matrix products using either a left to right or a right to
left associative grouping.

For example, we have a triangle, we want to rotate it with the matrix B, and then
we translate it with matrix A.

Then, for a vertex of that triangle represented as C, we compute its transformation

as:
C=A-(B-C)

But we can also change the computation method as:
C'=(A-B)C

The advantage of computing it using C' = (A-B)-C instead of C'=A-(B-C) is that,
for computing the 3 vertices of the triangle, C1, C2, C3, the computation time is
shortened:

Using C'=A-(B-C):

.compute B - C1 and put the result into I1

.compute A - I1 and put the result into C1'

. compute B - C2 and put the result into 2

. compute A - 12 and put the result into C2'

.compute B - C3 and put the result into I3

o TS I N

. compute A - I3 and put the result into C3'

220

Using C' = (A-B)-C:
1. compute A - B and put the result into M
2. compute M - C1 and put the result into C1'
3. compute M - C2 and put the result into C2'
4. compute M - C3 and put the result into C3

I1. Matrix multiplication may not be commutative:
The matrix product A*B is not equal to B¥A.

IT we want to translate and rotate an object we must be careful about the order in
which the composite matrix is evaluated. Using the previous example, if you
compute

C'=(A-B)-C
You are rotating the triangle with B first, then translate it with A.
But if you compute

C'=+B-A)-C
You are translating it with A first, then rotate it with B. The result is different.

In special cases, as a sequence of transformation all of the same kind, the
multiplication of transformation mafrices is commutative. Two successive rotations

could be performed in either order and the final position would be same.

10.6 Self Learning Exercise

Q.1 The equation for describing surface of 3D plane is.
(A) Ax+t Byt Cz+ D=0 (B) Axt Byt Cz=0
(C) Ax+By+ D=0 (D) Ax+ By+ Cz+ D=1

Q.2 The sweep representation of an object refers to the

(A) 2D representation (B) 3D representation
(C)Botha& b (D) None of these

221

Q.3 A circle, if scaled only in one direction becomes..........
(A) Hyperbola (B) Ellipse
(C) Parabola (D) remains a circle

Q.4 What is affine transformation?

10.7 Summary

In this unit, we have seen the concepts for creating the 3D graphical objects
were discussed. Here we discussed the 3D transformation which is used in various
computer graphics applications. The basic geometric fransformations are
translation, rotation and scaling. Two additional transformations are reflections and
shears. This unit deals with the creation, representation and manipulation of 3D
objects. The operations are represented with 4 by 4 matrices. By concatenation the
matrix representations for the individual components we will get the composite

transformations which are used in animations.

The concatenation properties of various composite matrixes are explained.
Finally, the object modelling often requires a hierarchical transformation structure
that ensures that the each component of object move or modified in the proper

manner.

10.8 Glossary

3D: Three dimension.

10.9 Answers to Self-Learning Exercise

Ans.l: A Ans.2: B Ans.3: B

10.10 Exercise

227

Q.1 A composite transformation matrix can be made by determining the

of matrix of the individual transformation.

(A) Sum (B) Product
(C) Difference (D) None of the above
Q2 refers to the result obtained by multiplying the matrix of the

individual transformation representation sequences
(A) Wire frame model (B) Constructive solid geometry methods

(C) Composite transformation (D) None of these

Q.3 Forming products of transformation matrices is often referred as.
gp
(A) Concatenation (B) Composition
(C)Botha&b (D) None of these

Q.4 A translation that takes (x, y, z) to (X, y-3, 7) is given by which translation
matrix?

Q.5 What is composite transformation? Explain two successive translation and

rotations with the final composite transformation matrixes in 3D.

Q.6 Find a transformation of triangle A (1,0, 1), B(0,1,1),C (1, 1,0)
1) Rotating 45° about the origin & than translating 1 unit in X, y & 2z
direction.

11) Translating 1 unit in X, y & z direction & than rotating 45° about the

origin.

Q.7 Prove that the multiplication of 3-dimensional transformation matrices for

each of the following sequence operations is commutative:

a) Any 2 successive translations
b) Any 2 successive scaling operations

¢) Any 2 successive rotations about any of the co-ordinate axis

223

10.11 Answers to Exercise

Ans.1: B Ans.2: C
Ans.3: C

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M. Pauline Baker; Pearson
Education, Seventh Edition 2005

2. Computer Graphics by Apurva A. Desai; PHI Learning, Third Edition 2010

3. Computer Graphics principles & practice in C by James D. Foley, Steven K.

Feiner, Andries van Dam and F. Hughes John; Pearson Education, Second
Edition 2003

4. Computer Graphics A Programming Approach by Harrington and Steven;
McGraw Hill.

224

UNIT-11
Viewing Transformation

Structure of the Unit

11.0 Objective

11.1 Introduction

11.2 Coordinate Systems

11.3 Window to Viewport Transformation
11.4 Viewing in 3D

11.5 Perspective Projection

11.6 Parallel Projections

11.7 Self-Learning Exercise

11.8 Summary

11.9 Glossary

11.11 Answers to Self-Learning Exercise
11.11 Exercise

11.12 Answers to Exercise

225

11.0 Objective

In this chapter, we shall focus on the following topics

® Window to Viewport Transformation
® Viewing in 3D
® Perspective Projection

® Parallel Projections

11.1 Introduction

To display the view of a picture on to the display device, we make use of
viewing transformation. Qur picture is defined in one coordinate system which has
to be mapped on device or screen coordinates. In short, many times the user wants
to work only on a part of the image or object also he wants only a particular part of

the image.

11.2 Coordinate Systems

The coordinate system is used to address the screen are called screen
coordinates. This is also called device coordinates. Another coordinates system
called as world coordinates system are user defines application specific

coordinated system having its own units of measure, axis, origin, etc.

The rectangular region of the world that is visible is called window and the
method or selecting only that part of the image is called windowing. The

rectangular region of screen space that is used to display the window is called
viewport.

Note that when we put a window on any object or image, the part selected
in that window can be called as object space and when selected part is displayed in

a view port then 1t 1s called as 1mmage space. In general, the mapping of the world
coordinate scene on the device coordinates is called viewing transformation or

226

converting the image from object space to image space is called viewing

transformation.

s N

S 2 L TERR L]

.

Window Viewport
Figure.11.1: Window and Viewport

11.3 Window to Viewport Transformation

Window and viewport generally have standard rectangle shapes. though

they can have any orientation. The transformation has few basic steps as shown in

figure 11.2.

Figure.11.2: Process of Window to Viewport Transformation

227

Window is denoted by (x, y,,,,.) with the coordinate’s x ;. v .. X, Viewport

a2 Ymux %

u_ ., v___. The transformation

max® " omax”

with the coordinated u_. , v

.spacc) min* " min?®

is denoted by (u, v

steps for mapping from window to viewport are:-

® Translate the window to the origin
® Scale it to the size of the view port

® Translate it to the view port location.
Matrix representation for window to viewport transformation, M :-
M= T(Uins Vinind- S8y 8,)- T(Kins “Ymi)
Where,

umax - uminﬂ vmax - vmin

X

5

L 2
Xmax - xXxmin - ymax — ymin

11.4 Viewing in 3D

Viewing transformations for 3D objects are more complex and challenging
than 2D objects. The reason behind is that in 3D third dimension and requirement
for the 3D object to appear realistic in 2D display device. So the mapping from the
3D objects on 2D display device projection is performed. Projection 1s the process
of transformation of 3D coordinated system to 2D coordinates.

Projections are classified into perspective and parallel projections. This
classification is based on whether rays coming from the object converge at the
Center of projection (COP) or not. For perspective projection, rays converge at
COP and for parallel projection rays do not converge at COP. So an assumption for
parallel projection 1s that rays do converge but at infinity. Center of projection 18
also called perspective reference point (PRP).

228

Geometric

projections

Perspective Parallel

Three Orthograp

O int T int .
ne poin WO poin point hic

Oblique

Figure.11.3: Classification of Geometric Projection

11.5 Perspective Projection

In perspective projection, the distance from the center of projection to
project plane is finite and the size of the object varies inversely with distance

which looks more realistic

Figure.l11.4: Perspective Projection in real world

229

The distance and angles are not preserved and parallel lines do not remain parallel.
Instead, they all converge at a single point at center of projection or projection
reference point.

In figure 11.4 we can see that parallel roads getting narrower and narrower and

seem to be meeting at a point.

In perspective projection lines converge into a point and these lines are not parallel
fo each other. In real world the eyes of the viewer is the center of projection and
the lines of projection are the light rays that are coming into viewer’s eyes as

shown 1n below figure 11.5.

Projectors

o
Center of
projection

Projection
plane

Figure.11.5: Perspective Projection

The rate at which the parallel lines converge to the Centre of projection is called
Perspective Angle. This angle i1s determined by the distance the Centre of

projection and the object. It 1s obvious that a larger perspective angle will result

into a larger projected image.

Types of perspective projection

® One point perspective
230

® Two point perspective

® Three point perspective

11.5.10ne-point perspective

One-point perspective when it contains only one vanishing point on the
horizon line. The vanishing point is a point in the image where a parallel line
through the Centre of projection intersects the view plane or we can say that
vanishing point is a point from where the projection line intersects the view plane.
This type of perspective is typically used for images of roads, railway tracks,
hallways, or buildings viewed so that the front is directly facing the viewer. The

parallel lines converge at the vanishing point.

Horizon s 1 flﬂ!- _ Horizon
w1 il
A wI
Railway Line Poles Road

Figure.11.6: One-point perspective in real world

In one point perspective parallel lines will not intersect to the view plane only the

edges which are parallel to z-axis will only intersect the view plane and therefore

such edges will create vanishing point.

231

Figure.11.7: One-point perspective with one vanishing point

11.5.2 Two-point perspective

In two-point perspective when it contains two vanishing points on the horizon line.

Vanishing Point Vanishing Poinl

=7

Figure.11.8: two-point perspective with two vanishing point

Two-point perspective has one set of lines parallel to the picture plane and two sets
oblique to it. Parallel lines oblique to the picture plane converge to a vanishing

point, which means that this set-up will require two vanishing points.

232

11.5.3 Three-point perspective

In three point perspective none of the edges of the object is parallel to the view
plane. All the edges intersect to the view plane. This creates a three-point

perspective projection.

Vanishing point 1 Vanishing point 2

Horizon Line

Vanishing point 3

Figure.11.9: Three-point perspective with three vanishing point

233

11.6 Parallel Projections

In parallel projection, rays are coming from the object converge at infinity,
1.e. the distance from the Centre of projection to the projection plane is infinity.
Therefore, projectors are parallel lines and we need to specify a direction of
projection (DOP) or direction cosines. Parallel projection preserves the relative
proportions of objects thus the view of object obtained is accurate but not realistic

like perspective projection.

Parallel projection is classified as orthographic and oblique projection. This

classification is based on the angle between of projection and projection plane.

Top

Front
Orthographicis
Side

Parallel |
projection

Cavaller

Figure.11.10: Types of parallel projection

Oblique

234

11.6.1 Orthographic Projection

For orthographic projection, the angle is of 90" and it produces top plane view,
front elevation and side elevation. Also it includes only two dimensions: length and
width. Figure 11.11 shows the orthographic projection showing a front view, side

view and top view.

Projection
pkre

I:tc::n p o E"l,' :|
E;

Projectors for
Sick vicw -

Frojectors
tor top wener

Y
-
- —_

5 e - : Frojecticn
—~ __J_..-f' plare
-‘_A_J.-"}Fl r.::,.E‘:\:t‘:, s for |:53|m L |E‘5"<'!':|

fromt wiew

" Projection
- plare
front visw)

Figure.11.11: Orthographic projection

Another type of Orthographic projection 1s axonometric projection which is
used in projection plane that are not normal to the principal axis and they show
multiple faces of an object. Isometric projection is a special case of axonometric
projection. For this projection, projection plane intersects each coordinates axis, in

which object is defined, at the same distance from the origin.

Orthographic projections are generally used in engineering and architectural

dewing.
235

11.6.2 Oblique Projection

For orthographic projection, the angle is of 907 and for all ancther angle itis
chblique parallsl projection. Oblique projection preduces three dimensions length
width, and height Thus cblique prejecticn shows all the dimensions in a single

Vi

‘-‘H"’“ ‘\\ Dhi{:z;m:
[, _\‘\k e

\“\

""---_._\

Figure.11.11: Obligue Projecfions

There are two types of oblique projections — Cawalier and Cabinet. The
Cavalier projection makes 43° angle with the projection plane. The projection of a
line perpendicular to the view plane has the same lenpth as the line itself in
Cavalier projecticn. In a cavalier projection, the forsshortening factors for all three

principal dirsctions are equal.

236

The Cabinet projection makes 63.4° angle with the projection plane. In
Cabinet projection, lines perpendicular to the viewing surface is projected at 2

their actual length. Both the projections are shown in the below figure.

yn yl

b
b . X .
C e
1 A
a
z 2/
Cavalier Projection Cabinet Projection

11.7 Self Learning Exercise

Q.1In an oblique drawing, the projection rays are drawn ~ to each other

and fo the plane of projection.

(A) Oblique.....oblique
(B) Oblique.....parallel
(C) Parallel.....oblique
(D) Parallel....parallel
Q.2 What two types of projections give a pictorial view of the object without
convergence?
(E) Orthographic and perspective
(F) Oblique and axonometric
(G) Perspective and oblique

237

(H) Isometric and orthographic

Q.3 What is the difference between parallel and perspective projection. Explain

with suitable example.

11.8 Summary

In this unit, we have seen how we can display 3D object into a 2D object by
projecting it onto a plane. Projecting a three dimensional object onto a plane is
similar to casting.

Perspective projections are at their best when:

e Realism counts

¢ We want to move through the scene and have a view like a human viewer

would have

e We do not need to measure or align parts of the image
Orthographic projections are at their best when:

¢ [tems in the scene need to be checked to see if they line up or are the same
size

e [Lines need to be checked to see if they are parallel

¢ We do not care that distance is handled unrealistically

e We are not trying to move through the scene

11.9 Glossary

Viewport: An area on display device to which a window is mapped.

238

COP: The centre of projection is the origin or source of the stream of projecting

rays.

Window: An area of a world coordinate scene that has been selected for display.

11.10 Answers to Self-Learning Exercise

Ans.l: C Ans.2: B

11.11 Exercise

Q.1 By which, we can take a view of an object from different directions and
different distances
(A) Projection
(B) Rotation
(C) Translation
(D) Scaling

Q.2 Projection rays (projectors) emanate from a

(A) COP (Centre of projection)
(B) Intersect projection plane
(C) Botha& b

(D) None of these

Q.3 The Centre of projection for parallel projectors is at
(A) Zero
(B) Infinity
(C) One
(D) None of these

Q4. What 1s the major difference(s) between perspective and parallel projection?

239

{A) Parallel projection can only be used with objects containing parallel edges.
(B) Perspective projection gives a more realistic representation of an object.
(C) Parallel projection is equivalent to a perspective projection where the
viewer 18 standing infinitely far away.
(D) Band C
Q5. Find the principal vanishing points, when the object is first rotated with
respect to y-axis by -30° and x-axis by 45” and projected onto z=0 plane, with the
Centre of projection being (0,0,-5).

11.12 Answers to Exercise

Ans.1: A Ans.2: C
Ans.3: B Ans.d: D

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M. Pauline Baker; Pearson
Education, Seventh Edition 2005

2. Computer Graphics by Apurva A. Desai; PHI Learning, Third Edition 2012

3. Computer Graphics principles & practice in C by James D. Foley, Steven K.

Feiner, Andries van Dam and F. Hughes John; Pearson Education, Second
Edition 2003

4. Computer Graphics a Programming Approach by Harrington and Steven;
McGraw Hill.

240

UNIT-12
Clipping

Structure of the Unit
12.0 Objective

12.1 Introduction

12.2 Pomt Clipping

12.3 Line Clipping

12.4 Polygon Clipping

12.5 Text Clipping

12.6 Self Learning Exercise
12.7 Summary

12.8 Glossary

12.9 Answers to Self-Learning Exercise
12.10 Exercise

12.11 Answers to Exercise

241

12.0 Objective

In this chapter, we shall focus on the following topics

® Point Clipping
® Line Clipping
® Polygon Clipping
® Text Clipping

12.1 Introduction

Any method that identifies those parts of the image which is either inside or
outside of a specified region of space is known as a clipping algorithm or clipping.
The area against which an image is clipped is known as clip window. Here, we are
considering clipping window as a rectangular in shape. There are other clipping
window shape also. For the viewing transformation, we want to display only those
parts of the image which are within the window region. Anything which is outside
the window 1s discarded.

For any picture or image, there could be three possibilities. First, the
complete image is outside the clipping window, and therefore the complete image
will be discarded and will not be saved for display in the viewport. Second, the
complete image 1s inside the clipping window and therefore the entire image will
be displayed in the viewport. Third and Final possibility, that an image is partially
inside and partially outside the clipping window. For third case which is partially
inside and outside, we use some algorithm to clip or cut the outer part from the
image.

Different algorithms are available for different kinds of images and shapes.
In this unit, we will study the algorithms used for clipping the following
primitive’s types.

® Point Clipping
® Line Clipping (straight-line segments)
242

® Area Clipping (polygons)
® Text Clipping
12.2 Point Clipping

Suppose we are given a point A(x, y) and the standard clipping window

(rectangular in shape) see Figure 12.1.

(xw, yw,) (xw, yw,)

Window

(_.le_,a yWL,) (X“',L,a yWL.)

Figure.12.1: Window coordinates.

Now point A will be considered within the clipping area or within the

window if the point A(x, y) satisfies the following conditions.

xw, S x < xw,,

yw, Sy Syw,

Where the edges of the clip window (xw,, xw_, yw,, yw,) can be either the
world coordinates boundaries or viewport boundaries. If any one of these four
inequalities if not satisfied, the point is clipped. Point clipping algorithm is less
often used then that of line or polygon clipping. However, point clipping can be
applied to scenes involving small particles (points) in the image. This algorithm
can be used for background clipping, the background that is created by a dotted

pattern.

243

12.3 Line Clipping

In this section, we discuss Line clipping algorithms which are mostly used
to clip the straight lines or line segment. The following are the major line clipping
algorithms.

i. Cohen-Sutherland Algorithm

ii. Liang-Barsky Algorithm
ii. Nicholl-Lee Nicholl Algorithm
iv. Mid-Point Subdivision Algorithm

There are many possible relationships between lines and clipping windows. A line

clipping method involves several parts. As illustrated in Figure 12.2.

M Window

\ \

Before Clipping , After Clipping

Figure.12.2: Line clipping against a rectangular clip window coordinates.

When drawing a line, if one endpoint of the line is outside the screen, and
the other inside, you have to clip the line so that only the part of it that's inside the
screen remains. Even if both endpoints are outside the screen, it's still possible that

244

a part of the line should be visible. The clipping algorithm needs to find new
endpoints of the lines that are inside or on the edoes of the screen. Here are a few

cases, where the black rectangle represents the screen, in red are the old endpoints,

and in blue the ones after ¢ lipping:

B c‘%\ D
S

+ (Case A: both endpoints are inside the screen, no tlipping needed.

A
—

+ (Case B: one endpoint outside the screen, that one had to be clipped

» Case C: both endpoints are outside the screen, and no part of the line is
visible, don't draw it at all.

s Caze D: both endpoints are outside the screen, and part of the line is visible,
clip both endpoints and draws it

There are many different cases, each endpoint can be inside the screen, left of
it, right of it, above, below, etc. The Cohen Sutherland Clipping Algorithm can
recognize these cases quite efficiently and do the clipping.

Cohen-Sutherland Line Clipping Algorithm

This is mostly used most popular and the oldest line clipping algorithm. It
uses the concept of initial testing which speed up the procedure of clipping. The
algorithm divides the space (window) area in nine regions. The center region is the

245

screen (window), and the other eight regions are different sides outside the

window. Every line endpoint in a picture is assigned a four digit binary code,
called region code. The codes are chosen as follows:

o If the region 1s above the screen, the first bitis 1
« If the region is below the screen, the second bit is 1
o If the region 1s to the right of the screen, the third bit 1s 1

o If'the region is to the left of the screen, the fourth bit is 1

Obviously, an area can't be to the left and the right at the same time, or above
and below it at the same time, so the third and fourth bit can't be 1 together, and the

first and second bit can't be 1 together. The screen itself has all 4 bits set to 0.

porron MeRT 7
b
001 1000 1010
0001 0000 0010
— 0100 0110

Figure.12.3: Bit position according to window.

A value of 1 in any bit position indicates that the point 1s in that relative
position; otherwise, the bit position is set to 0. Bit values in the region code are
determined by comparing endpoint coordinates values (X, y) to the clip window
boundaries. Bit 1 is set to 1 if X < xw;. The other three bit values can be

determined using similar comparisons. Once we have decided region codes for all

246

line endpoints, we can quickly determine which lines are completely inside the clip

window and which are clearly outside.

If line segment is completely within the window, then both the end points
will get region code 0000 and we trivially accept these lines. The line segment that
have a 1 in the same bit position in the region codes for each endpoint are
completely outside the clipping window, and we trivially reject these lines. The
rule to test the given line is completely inside or outside, is performing logical
AND operation on region code of two endpoints of the line segment. If the result is
not 0000, the line i1s completely outside the clipping window as shown in Figure
12.3.

Algorithm

Step 1 — Assign a region code for each line endpoints.

Step 2 — If both endpoints have a region code 0000 then accept this
line.

Step 3 — Else, perform the logical AND operation for both region
codes.

Step 3.1 — If the result 1s not 0000, then reject the line.

Step 3.2 — Else we need clipping.

Step 3.2.1 — Choose an endpoint of the line that is outside the window.

Step 3.2.2 — Find the intersection point at the window boundary (base on

region code).

Step 3.2.3 — Replace endpoint with the intersection point and update the

region code.

Step 3.24 — Repeat step 2 until we find a clipped line either trivially

accepted or trivially rejected.

Step 4 — Repeat step 1 for other lines.

Liang-Barsky Line Clipping Algorithm

This line clipping algorithm was introduced in the year 1984 which is an
extension of Cyrus and Beck work. It 1s faster algorithm as compared to Cohen

Sutherland algorithm. This algorithm is based on the parametric form of a line.

The parametric line equation is as follow:

x=x1+ux2-x1)=x1+ Ax

y=yl +tu(y2-yl)=yl + Ay

Where the value of u lies between Oand 1 ie. 0Sus1

It uses the condition of point clipping algorithm. Let us assume the two
corner vertices, left lower and right upper of window: (xw,, yw,) and (xw,, yw,)
respectively. Let assume (x1, y1) and (x2, y2) be the coordinates of two end points

of lIine. The according to the condition of point clipping algorithm:
xw, S x S xw,
yw, Sy Sywy

Using parametric equation, new condition of point clipping become
xw, L xl +uAx < xwy,
yw, <yl +uly < ywy,

Inequalities of above equation can be rewritten as

—xw, +x1>-ulx

xw, —x1 > ulx

248

—yw, +yl>—-uly
yWu_yl EUAY

So, the general form of these equation is
up. <q, wherei-1, 2,3, 4.

Where i indicates sides of the window boundaries, 1 left, 2 right, 2 bottom and 4

top boundary. We use these in our algorithm which is as follow.

Algorithm

Step 1 — Read two end points of line P1 (x1, y1) and P2 (x2, y2).

Step 2 - Read two corner vertices, left lower and right upper of
window: (xwL, ywL) and {(xwU, ywU).

Step 3 — Calculate values of parameters pi and gi for | =1, 2, 3,
4 such that

pl = —Ax p2 = Ax

gl =x1-xwlL g2 =xwlU —xi

ql=-Ay g2 = Ay

g3 =yl—-ywlL g4 =ywU -yl

Step 4 — Check the value of pi.

Step 4.1 - If pi = O then, Line is parallel to ith boundary.

Step 4.2 - If gi < O then, Line is completely outside the boundary.

Therefore, discard line segment and Go to Step 10.

Step 4.3 — Else Check line is horizontal or vertical and accordingly
check line end points with corresponding boundaries. If line endpoints lie
within the bounded area then use them to draw line. Otherwise use
boundary coordinates to draw line. Go to Step 10.

Step 5 - Initialize t1 =0 and t2 = t1.

Step 6 - Calculate values for qi/pi fori= 1, 2, 3, 4.

Step 7 - Select values of qi/pi where pi<0 and assign maximum out
of them as t1.

249

Step 8- Select values of qi/pi where pi>0 and assign maximum out of them
as t2.

Step 9 - If {t1 < t2) Calculate endpoints of clipped line:
xx1=x1+11Ax

xx2 =x1+12 Ax

yyl=y1l+1tlAy

yy2 =yl+12 Ay

Draw line (xx1, yy1, xx2, yy2).

Step 10 - SO,

12.4 Polygon Clipping

A polygon is generally stored as a collection of vertices. Any clipping
algorithm takes one collection, and outputs a new collection. A clipped polygon,
after all, is also a polygon. Notice that the clipped polygon often will have more
vertices than the unclipped one, but it can also have the same number, or less. If
the unclipped polygon lies completely outside the clipping boundary, the clipped

polygon even has zero vertices.

A polygon can also be clipped by specifying the clipping window. An
algorithm that clips a polygon must deal with many different cases. The case is
particularly noteworthy in that the concave polygon is clipped into two separate
polygons. All in all, the task of clipping seems rather complex. Each edge of the
polygon must be tested against each edge of the clip rectangle; new edges must be
added, and existing edges must be discarded, retained, or divided. Multiple
polygons may result from clipping a single polygon. We need an organized way to

deal with all these cases.

The following example illustrates a simple case of polygon clipping.

250

//" Polygon

T
DN

Before Clipping After Clipping

Figure.12 4: A polygon clipping against a rectangular clip window

coo rdinates.

Sutherland-Hodgman Polygon Clipping Algorithm

There are several well-known polygon clipping algorithms, each having its
strengths and weakneszes. The oldest one iz called the Sutherland-Hodsman
aloorithm. It uses a divide-and-conquer strategy to =olve the problem. First, it clips
the polyoon against the left edoe of the polygon window to pet new vertices of the
polygon. These new vertices are used to clip the polygon against right edge, top
edge, bottom edge, of the clipping window as shown in the following figure. {Of
course, it also works in another order ako.)

While processing an edoe of a polyson with clipping window, an
intersection point is found if edge is not completely inside clipping window and the
a partial edge from the intersection point to the outside edge is clipped. The
following figures show left, right, top and bottom edge clippings —

251

/\ A
s
Figure.12.5: Clipping left edge Figure.l2.6: Clipping right edge
7 i (
Figure.12.7: Clipping top edge Figure.12.8: Clipping bottom edge
Algorithm
Step 1 — Read coordinates of all vertices of polygon.
Step 2 — Read coordinates of clipping window.
Step 3 — Consider left edpe of window.
Step 4 — Corpare vertices of each edge of polygon individually with

Step 5

clipping plane.

— Save resulting intersection and vertices in new list of vertices

according to 4 possible relationships between edpe and clipping
boundary:

252

Step 5.1

Step 5.2

Step 5.3

Step 5.4

Step 6

— If Ist vertex of edge is outside window boundary and second

vertex of edge is inside, then, intersection point of polygon edge
with window boundary and second vertex are added to output

vertex list.

— If both vertices of edge are inside window boundary, only second

vertex is added to output vertex list.

— If 1st vertex of edge 1s inside window boundary and second vertex
of edge is outside, then, only edge intersection with window
boundary is added to output vertex list.

— If both vertices of edge are outside window boundary, nothing is

added to output vertex list.

— Repeat Steps 4 to 5 for remaining edges of clipping window. Each

time successively pass the resultant list of vertices to process next

edge of clipping window.

12.5 Text Clipping

Various techniques are used to provide text clipping in a computer graphics. It

depends on the methods used to generate characters and the requirements of a

particular application. There are three methods for text clipping which are listed

below —

o All or none string clipping

+ All or none character clipping

o Text clipping

The following figures shows all or none string clipping —

253

P e s ot et e G e

Figure.12.9: Before Clipping

oo AR S R R P 1 L MR e

Figure.12.10: After Clipping

In all or none string clipping method, either we keep the entire string or
we reject entire string based on the clipping window. As shown in the above
fioures, STRING2 is entirely inside the clipping window so we keep it and
STRINGI being only partially inside the window, we reject The following figures

shows all or none character clipping —

RING 1

TRING 3

Figure.12.11: Before Clipping Figure.12.12: After Clipping

This clipping method is bazed on characters rather than entire string. In all or
none character clipping method if the string is entirely inside the clipping

window, then we keep it. If it is partially outside the window, then —

+ Wereject only the portion of the sfring being outside the window.
» Ifthe character is on the boundary ofthe clipping window, then we discard
that entire character and keep the rest string as shown in Figure 12.12.

2534

The following figures show text clipping —

Figure.12.13: Before Clipping

.

RING 1

[TRING 3

Figure.12.14: After Clipping

This clipping method is based on characters rather than the entire string. In text

clipping method if the string is entirely inside the clipping window, then we keep

it. I 1t 1s partially outside the window, then

« We reject only the portion of string being outside the window.

o If the character is on the boundary of the clipping window, then we discard

only that portion of character that is outside of the clipping window as

shown in Figure 12.14.

12.6 Self Learning Exercise

Q.1 If XL, XR, YB, YT represent the four parameters of x-lefi, x-right, y-bottom

and y-top of the clipping window and (X, y) 1s a point inside the window

(A)XLExSXRand YBSyS YT
(B)XLEx < XRand YB2y2 YT
(C)XLZ2x2 XRand YBSy S YT
(D)XL2x2XRand YB2y 2 YT

255

Q.2 If (x, y) 13 a point inside the clipping window then its code according to the
Cohen-Sutherland algorithm 1s............
(A) 0001 (B) 0000
(C) 1000 (Dy1111

Q.3 What is line clipping?

12.7 Summary

In this unit, we have seen how we can display various types of shapes on the output
devices, all parts of a picture outside the window (or viewport) are clipped off by
using various clipping algorithms. The clipping region is commonly referred to as
the clipping window or as the clipping rectangle when our output devices are
standard rectangle. Many algorithms have been developed for clipping images

against the clip window.

For Line-Clipping we have many algorithms includes the Cohen-Sutherland and
Liang-Barsky method.

Polygon clipping algorithms include the Sutherland-Hodgemen method and Liang-
Barsky method. Curve equations are used to calculate the intersection point
between curved objects boundaries and clipping window. In text clipping method
clip a string if any part of the string is outside any window boundary, it is the
fastest method to clip a text. Other than this we can use another approach of all-or-

none with the individual character in a string.

12.8 Glossary

Viewport: An area on display device to which a window is mapped.

Window: An arca of a world coordinate scene that has been selected for display.

12.9 Answers to Self-Learning Exercise

Ans.d: A Ans.2: B

256

12.10 Exercise

Q.1

Q.2

Q3

Q4
Q5

Q.7

In Cohen-Sutherland line clipping algorithm, if the bitwise logical AND of

the region codes 1s 0000, then line 18

(A) Visible (B) Not visible
(C) A candidate for clipping (D) None of these
[T two bits are zeros and two bits are ones in a code of a sub region in Cohen-

Sutherland line clipping algorithm the sub regionis

(A) Comer region (B) Middle region
(C) Central region (D) None of these

In the Cohen-Sutherland line clipping algorithm, if the codes of the two
points P and Q are 0000 and 0000 then the line segment joining the points P

gnd QO Sl bBE wessmesmmsssmsanng the clipping window
(A) Totally outside (B) Partially outside
(C) Totally inside (D) None

Compare Liang-Barsky algorithm with Cohen-Sutherland algorithm.

How can polygons be clipped. Explain Sutherland-Hodgeman polygons
clipping algorithm.

Consider a clipping window A (0, 0), B (30, 0), C (30, 20), D (0, 20). Using
the out codes of the end points of the line X (—10, 30) and Y (35, 8). Show
that the line is partially visible.

Explain Cohen-Sutherland line clipping algorithm with region code details.

12.11 Answers to Exercise

257

Ans.1: A Ans.2: A
Ans.3: C

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M. Pauline Baker; Pearson
Education, Seventh Edition 2005

2. Computer Graphics by Apurva A. Desai; PHI Learning, Third Edition 2012

3. Computer Graphics principles & practice in C by James D. Foley, Steven K.

Feiner, Andries van Dam and F. Hughes John; Pearson Education, Second
Edition 2003

4. Computer Graphics A Programming Approach by Harrington and Steven;
McGraw Hill.

258

UNIT-13

Visible surface detection

Structure of the Unit

13.0 Objective

13.1 Introduction

13.2 Visible surface detection methods
13.3 Back face culling

13.4 Depth-Buffer (Z-Buffer) algorithm
13.5 Self Learning Exercise

13.6 Scan line algorithm

13.7 Depth sorting algorithm

13.8 Area subdivision algorithm

13.9 Self Learning Exercise

13.10 Binary space partition tree algorithm
13.11 Ray casting

13.12 Summary

13.13 Glossary

13.14 Answers to Self-Learmning Exercise
13.15 Exercise

13.16 Answers to Exercise

259

13.0 Objective

In this chapter, we shall focus on the following topics

@ Various visible surface detection methods
® Object space algorithm

® [mage space algorithm

13.1 Introduction

In reality when we generate a realistic object or scene in 2-dimensional
view. The viewer can see only the front surfaces and edges. So, here our major
consideration is to identifying those parts of an image which are visible from a
chosen viewing direction. The surfaces and edges which are at the back of object
are not seen. When we view an image containing non-transparent objects and
surfaces, then we cannot see those objects or surfaces, which are behind the objects
or surfaces closer to eyes.

We must remove these hidden surfaces to get a realistic screen image. The
identification and removal of these surfaces is called Hidden-surface problem. In
this chapter, we will learn how to find out these Hidden surfaces and also

algorithms to remove or find such surface. The various algorithms are referred to
as Visible-surface detection methods and also referred to as Hidden-surface

elimination or removing algorithms

13.2 Visible surface detection methods

Algorithms used to detect visible surface are broadly categorized according
whether algorithms deals with object definitions directly or with their projected
images. Based on the methodology used in the algorithm, the algorithms are
classified into two categories:

L. Object space algorithm

il. Image space algorithm

260

An object space method, use comparison technique, it compare object and
parts of objects to each other within the image definition to find which surface in
the image is visible. In an image space method, the visibility of an object is
determined as point by point at each pixel position on the projection plane. Most of

the algorithms use image space method.
The following is the list of some algorithms, which are used in graphics for
the finding of hidden surfaces.
® Back Face Removal Algorithm
® Depth Buffer Algorithm
® Scan-Line Algorithm
® Depth Sorting Algorithm
® Area Subdivision Algorithm
® Binary Space Partition Tree Algorithm

® Ray Casting Algorithm

We will discuss these algorithms in the following sections.

13.3 Back face culling (removal)

In a solid object, there are surfaces which are facing the viewer (front faces)
and there are surfaces which are opposite to the viewer (back faces).

These back faces contribute to approximately half of the total number of
surfaces. Since we cannot see these surfaces anyway, to save processing time, we
can remove them before the clipping process with a simple test.

A fast and simple object space method for identifying the back faces of a
polygon is based on the test known as “inside-outside™ test. A point (X, y, z) is

inside a polygon surface with the plane parameters A, B, C and D it

Ax+ By +Cz+D <0

261

There i1s a normal vector N to a polygon surface. If this vector is pointing in

the direction of the center of projection, it i1s a front face and can be seen by the
viewer. If it is pointing away from the center of projection, it is a back face and
cannot be seen by the viewer. In general if V is a vector in the viewing direction
then this polygon is back face if
V.N>0
The test 1s very simple, if the z component of the normal vector is positive,

then, it is a back face. If the z component of the vector is negative, it is a front face.

13.4 Depth buffer algorithm

The Depth buffer or Z-buffer algorithm, developed by Catmull (1975). It is
an algorithm that operates in image or screen space. This is known as Z-buffer
because the depth of object is usually measured from the view plane along the z-
axis of viewing system. The basic idea is to test the Z-depth of each surface fo
determine the closest (visible) surface. Each surface of an image is processed
separately, one point at a time across the surface. The depth values for a pixel are
compared and the closest (smallest z) surface determines the color to be displayed

in the frame bufter.

It is applied very efficiently on surfaces of polygon. Surfaces can be
processed in any order. The method 1s usually applied to scene containing only
polygon surface. It is easy and quick to find depth of polygon surface.

Here in this algorithm, two buffer areas are used. The two buffers are
named as Frame buffer (Refresh buffer) and Depth buffer.

The Depth buffer is used to store depth values for (X, y) position, as surfaces are

processed (0 = depth < 1).

The Frame buffer is used to store the intensity value of color value at each
position (x, y). Each surface listed in the polygon tables 1s then processed, one scan
line at a time calculating the depth at each pixel position (x, y). The steps of
algorithm to find the visible surface is as follows.

262

S3

\ S2

S1

(K, Y] X

Figure. 13.1: Position (X, y) has three surface and surface S1 has the smallest

depth from the view plane. So, S1 is visible.
Algorithm
Step-1 — Set the buffer values — Depthbufter (x, y) =0

Framebufter (x, y) = background color

Step-2 — Process each polygon (One at a time) for each pixel position.
For each projected (X, y) pixel position of a polygon, calculate depth z.

If Z > depthbuffer (x, v)

263

Compute surface color,
set depthbuffer (x, y) =z,
framebuffer (x, y) = surfacecolor (X, y)

Depth of the surfaces are calculated from the equation of each surface. Remember

the equation of a plane, is
Ax+By+Cz+D=0

Therefore,

z=—(Ax+By+D)/C

There are few advantages of using this algorithm are, it is simple to process,
and it reduces the speed problem if implemented in hardware. The limitation of the
algorithm 1s that, it requires large memory to store values of two buffers. As it
process all the pixels in the image, it is time consuming process also. The next
problem with this algorithm is that it can work only with the opaque surfaces not

with the transparent surface.

A-BUFFER ALGORITHM

The A-buffer method is an extension of the depth-buffer method. The A-
buffer method is a visibility detection method developed at Lucas film Studios for
the rendering system Renders Everything You Ever Saw (REYES).

This is an algorithm, which takes care of not only the opaque surfaces but
also considers transparent surfaces. Thus, this algorithm shows the true distance of
each and every pixel. This is an algorithm which falls under the image space
method. The A-buffer expands on the depth buffer method to allow transparencies.
The key data structure in the A-bufter 1s the accumulation buffer.

264

In A-buffer algorithm, a link list is attached with each pixel position and
this link list carries the intensity information of each surface associated with that

position as show in Figure 13.2.

BEach position in the A-buffer has two fields —

o Depth field — It stores a positive or negative real number

» Intensity field — It stores surface-intensity information or a pointer value

d>0 .
Depth intensity
field field
(a)
d<0 ——»| Surf1l —+—» Surf —>

Depth intensity
field field
(b)

Figure. 13.2: Organization of an A buffer pixel position: (a) single surface (b)

multiple surface overlap.

If depth >= 0, the number stored at that position is the depth of a single
surface overlapping the corresponding pixel area. The intensity field then stores the
RGB components of the surface color at that point and the percent of pixel

coverage.

If depth < 0, it indicates multiple-surface contributions to the pixel
intensity. The intensity field then stores a pointer to a linked list of surface data.
The surface buffer in the A-buffer includes —

o RGB intensity components

265

« Opacity Parameter

e Depth

« Percent of area coverage
o Surface identifier

+ Pointer to next surface

The algorithm proceeds just like the depth buffer algorithm. The depth and opacity

values are used to determine the final color of a pixel.

13.5 Self Learning Exercise

Q.1 The surfaces that is blocked or hidden from view in a 3D scene are known as

(A) Hidden surface (B) Frame buffer
(C) Quad tree (D) Area buffer
Q.2 The name of a visible surface detection algorithm is
(A) Back face detection (B) Back face removal
(C) Ray tracing (D) Area tracing

Q.3 What 1s Hidden Surface Problem?

13.6 Scan line algorithm

It 1s an image-space method to identify visible surface. It i1s an extension of the
scan-line algorithm for filling polygon. In this method, as each scan line is
processed, all polygon surfaces intersecting that line are examined fo determine
which are visible.
In order to require one scan-line of depth values, we must group and process all
polygons infersecting a given scan-line at the same time before processing the next
scan-line. Two important tables, edge table and polygon table, are maintained for
this.
Edge Table — It contains coordinate endpoints of each line in the scene, the
iverse slope of each line, and pointers into the polygon table to connect edges to
surfaces.

266

Polygon Table — It contains the plane coefficients, surface material properties,

other surface data, and may be pointers to the edge table.

Figure 13.3 illustrate the scan line algorithm for locating visible portion of
surfaces for pixel positions along the line. Here we define a flag for each surface
that is set on or off to indicate whether a position along a scan line is inside or

outside of the surface.

Any number of overlapping polygon surfaces can be processed with this
scan line algorithm. Flags for the surfaces are set to indicate whether a position is

inside or outside and depth calculation are performed when surfaces overlap.

Scan line 1

/' \ Scan line 2
l! _/ \
/

Figure.13.3: Scan lines on two surfaces. Dashed line indicate the boundaries of
hidden surface.

Algorithm

Step-1 — For each scan line do
Begin
For each pixel (x, v) along the scan line do
Begin
z buffer(x, y)=10
Image buffer(x, y) = background color
End

267

Step-2 — For each polygon in the scene do
Begin
For each pixel (x, y) along the scan line that is covered by the
polygon do
Begin
2a. Compute the depth or z of the polygon at pixel location (x,
y)-
2b. If z < z buffer(x, y) then
Set z buffer(x, y) =z
Set Image buffer(x, y) = polygon's colour
End
End
End

The basic idea of this method is simple. When there are only few objects in the
scene, this method can be very fast. However, as the number of objects increases,

the sorting process can become very complex and time consuming.

Depth sorting method uses both image space and object-space operations.

The depth-sorting method performs two basic functions —

» First, the surfaces are sorted in order of decreasing depth.
e Second, the surfaces are scan-converted in order, starting with the surface
of greatest depth.

13.7 Depth sorting algorithm

The scan conversion of the polygon surfaces 13 performed in image space. This
method for solving the hidden-surface problem is often referred to as the Painter's

algorithm. Hewells introduced the Painter’s algorithm in the year 1972. Tt is

268

known as Painter’s algorithm as it work like a painter creating an oil painting.
YW hen an artist paints, he starts with an empty canvas, and first he would create the
background layer or the painting. Then after that background layer, he starts
creating another layer of objects one-by-one by this way he would be completing
this painting. In Figure 13.4 see the step by step process.

(a) (b)

() (d)
Figure. 13.4: Step by step series of process for Painter®s algorithm.

The algorithm begins by sorting by depth. For example, the initial *depth”
estimate of a polygon may be taken to be the closest z value of any vertex of the
polygon. The frame buffer is first painted with the background color. Then the
farthest polypon is entered in the frame buffer. The pixel information of the

background associated with the farthest polygon will be replaced with that of the
269

farthest polygon. This process will be repeated for all the surfaces one by one until

the nearest surface is painted in the frame buffer.

Algorithm

Step-1 — Sort all the objects in the order of their depth coordinate from the

largest to the smallest. Smallest means the surface nearest to the view
plan.

Step-2 — Resolve where z overlaps with the other objects. That is, who’s the
comparison of polygons takes place here.

Step-3 — Scan convert the surfaces from the largest z to the smallest z. That is,
the innermost surface is placed first and on the surfaces which are

nearer to the viewer will be placed one by one.

13.8 Area Subdivision algorithm

Warnock introduced this algorithm in the year 1969. This is a very
primitive and basic algorithm and it is also a very length algorithm. In this

technique to find hidden surface we use image space method, but object space
operations can be used to accomplish depth ordering of surfaces. The area

subdivision algorithm takes advantages of area coherence in an image by locating
those view areas that represent part of a single surface. Divide the total viewing
area into smaller and smaller rectangles until each small area is the projection of

part of a single visible surface or no surface at all.

This algorithm divides the image into some viewports, and then each of the
viewport is checked for the surfaces falling in the viewport. If the number of
surface is O or 1 the visibility of the surface for that viewport is trivial. This means

for the considered viewport, there is only one surface which is visible.

270

Continue this process until the subdivisions are easily analyzed as
belonging to a single surface or until they are reduced to the size of a single pixel.
An easy way to do this is to successively divide the area into four equal parts at

each step as shown in Figure 13.5.

Figure. 13.5: Dividing a square are into equal sized quadrants at each step.

There are four possible relationships that a surface can have with a

specified area boundary.

a) Surrounding surface — One that completely encloses the area.
b) Overlapping surface — One that is partly inside and partly outside the area.
c) Inside surface — One that is completely inside the area.

d) Outside surface — One that is completely outside the area.

The tests for determining surface visibility within an area can be stated in terms of
these four classifications. No further subdivisions of a specified area are needed if

one of the following conditions is true —

« All surfaces are outside surfaces with respect to the area.

271

¢ Only one inside, overlapping or surrounding surface 1s in the area.
e A surrounding surface obscures all other surfaces within the area

boundaries.

/\

|

(2) (b) (c) (D

Figure. 13.6: Possible relationship between polygon and rectangular area.

13.9 Self Learning Exercise

Q.4 All the hidden surface algorithms employee image space approach except .

(A) Back face removal (B) Depth buffer method
(C) Scan line method (D) Depth sort method

Q.5 Consider the following statements about Hidden Surface removal algorithms.
(1) A Depth Buffer algorithm is not an object-space hidden surface removal
algorithm.
(i) Partially hidden surfaces cannot be determined by the Back-Face Culling
algorithm.
(ii1) In the Painter's Algorithm, objects are ordered back-to-front and then
rendered in that order.
Which of the above statement(s) is/are true?
(A) All (B) Only (i) and (i)

272

(C) Only (ii) and (iii) (D) Only (i) and (iii)

Q.6 surface algorithm 1s based on perspective depth.
(A) Depth comparison (B) Z-buffer or depth-buffer algorithm
(C) Subdivision method (D) back-face removal

13.10 Binary space partition tree algorithm

A binary space partitioning (BSP) tree is an efficient method for
determining object visibility by painting surfaces onto the screen from back to
front, Kadem and Fuchs introduced this algorithm, which is based on the
construction of binary tree. The BSP tree is particularly useful when the view

reference point changes, but the object in a scene are at fixed position.

This algorithm 1s based on the principle of sorting of objects as in quick sort
algorithm. Using this algorithm, the surfaces are sorted from back to front.
Applying a BSP tree to visibility testing involves identifying surfaces that are
inside and outside the partitioning plane at each step of the space subdivision,

relative to the viewing direction.

In this algorithm, first an object is considered and then a partition plane is
considered in relation to the object. Now the objects in scene will be divided into
two parts. Part one contains the objects that are in front of the given object and the
second part contain the objects which are in the back of the given object. This will

be done recursively. This process will create a binary tree representation.

In this tree, the objects are represented as terminal nodes, with front objects
as left branches and back objects as right branches. Figure 13.7 show the process

of deriving binary tree from given scene.

273

VIEWPORT BINARY TREE

Front)
==

; ; Ve
U/ >
]

Back

(al) (b1)

Back

; : U0 N

F / \ B F \B Front<1 F©t
YV S = 5

Back

(a2) (b2)

Figure.13.7: A region of space is partitioned in (al and a2); BSP tree
representation in (b1l and b2). [F = Front and B = Back]

Here, we use concept of painter’s algorithm. Now the sorted surfaces will
be painted one by one from back to front. The surface that is nearest and visible

will be painted last.

Algorithm

274

Step-1 — Spit the scene along the selected plane with reference to a surface of

the scene.
Step-2 — Classify all the surfaces into front and back half space.
Step-3 — [terate the front half with same steps.
Step-4 — lierate the back half with same steps.

The biggest advantage of using this algorithim is that, even if we change the
view reference points, this algorithm will work efficiently. [f any splitting plane
intersects any surface, then that surface 1s divided into two parts and will be
classified into the respective halves. Fast hardware implementation for construction

and processing BSP trees are used in soime systems.

13.11 Ray casting

The intensity of a pixel in an image is due to a ray of light, having been
reflected from some objects in the scene, pierced through the center of the pixel.
So, visibility of surfaces can be determined by tracing a ray of light from the center

of projection (viewer's eye) to objects in the scene.

[f we consider the line of sight from a pixel position on the view plane through a
scene as shown in Figure 3.8, we can determine which object in the scene
intersect this line. In this method, a pixel 1s taken and from that pixel, the distances

of surfaces that are associated with the pixel are calculated.

REG

Figure. 13.8: A ray along the line of sight passing through surfaces.

For calculating depth a ray of light or line of sight is taken that is
originating from the pixel and passes through all the objects that come in the way
of the ray before reaching the viewing plane. Since there are an infinite number of
light rays in a scene and we are interested only 1n those rays that pass through pixel

275

position, we can trace the light ray paths backward from the pixels through the

scene.

We can think of ray casting as a variation of the depth buffer method. In the z-
buffer algorithm one surface at a time is taken and its depth calculated from the
pixel. When the intersection points between the ray of light and the surfaces are
sorted in the increasing order of z values, they are place from the back to front in
order. Since, we have assumed that the ray 1s originating from the pixel. We do the

same for each and every pixel in the scene.

The ray casting approach is an effective visibility detection method for
scenes with curved surfaces, particularly spheres. For Speeding up the intersection

calculation in ray casting following methods can be used.
® Bounding Volume Approach
® Using Hierarchies

® Space Partitioning Approach

13.12 Summary

Here in this unit, we discussed various methodologies of the visibility-
detection to locate the surface or a part of surface which is not visible to the viewer
in the image. Various methods are discussed at length, which work efficiently in
different situations. For a single convex polyhedron, back-face detection eliminates
all hidden surfaces, but in general, back-face detection cannot completely identify
all hidden surfaces.

Depth buffer method is fast and simple for identifying visible surface in an
image. We can also use these methods for displaying line drawings in three
dimension. The effectiveness of a visible surface detection method depends on the
characteristics of a particular application. We can combine and implement various
visible surface detection methods that we study in this unit to identify hidden
surface or a part of hidden surface in various ways.

276

13.13 Glossary

Projection Plane: s a type of view in which graphical projections from an object

intersect.

Area Coherence: A group of adjacent pixels tend to be covered by the same face.

13.14 Answers to Self-Learning Exercises

Ans.1: A Ans.2: B
Ans.4d: A Ans.S: A
Ans.6: B

13.15 Exercise

Q.1 Z -buftfer algorithm are
(A) Simplest algorithm (B) Complex algorithm

(C) Largest algorithm (D) Poor algorithm.
Q.2 The method which is based on the principle of checking the visibility point at

each pixel position on the projection plane are called

Q.3 Explain depth buffer algorithm for visible surface detection.

Q4 What is Ray Casting algorithm for hidden surface removal? Explain
mathematically how do we find which planes is visible using Ray Casting
algorithm.

Q.5 What are the two spaces in which hidden surface algorithm works? How does

sorting and coherence speed up calculation in such algorithm?
Q.6 Explain depth buffer algorithm to display visible surfaces of a given

polyhedron. Also explain the any relation in object and storage requirement
of the depth buffer?

13.16 Answers to Exercise

Ans.1: A Amns.2: Image Space method

277

References and Suggested Readings

1. Computer Graphics by Donald Hearn and M. Pauline Baker; Pearson
Education, Seventh Edition 2005.

2. Computer Graphics by Apurva A. Desai; PHI Learning, Third Edition 2012.

3. Computer Graphics principles & practice in C by James D. Foley, Steven K.
Feiner, Andries van Dam and F. Hughes John; Pearson Education, Second
Edition 2003.

4. Computer Graphics A Programming Approach by Harrington and Steven;

MeGraw Hill,

278

UNIT-14
Illumination Model and Shading

14.0 Objective

14.1 Introduction

14.2 lllumination and Shading
14.3 A simple illumination model
14.4 Ambient Reflection

14.5 Diffuse Reflection

14.6 Light Source Attenuation
14.7 Specular Reflection

14.8 Gouraud Shading

14.9 Phong shading

14.10 Ray Tracking

14.11 Summary

14.12 questions

14.13 References

14.0 Objective

In this chapter, we shall focus on the following topics

® Ambient Reflection

® Diffuse Reflection

279

® Specular Reflection and Phong Model
® (ouraud Shading

® Phong Shading

® Ray Tracing

14.1 Introduction

From Physics we can derive models, called "illumination models," of how light
reflects from surfaces and produces what we perceive as color. An illumination
model also called a lighting model, is used to calculate the intensity of light that we

should see at a given point on the surface of an object.

INIumination - the luminous flux per unit area on an intercepting surface at any

given point.

Lighting - the process of computing the luminous intensity reflected from a

specified 3-D points.

Shading - the process of assigning colours to pixels.

Realistic images are important for several reasons, but the most important is that
people generally find them easier to understand. Hidden surface removal,
illumination (lighting) and shading, texture mapping, shadows, transparency,
improved synthetic cameras and better models all contribute to increasing visual
realism. A long standing goal of computer graphics has been photorealism — the

production of synthetic images indistinguishable from photographs of real scenes.

280

14.2 MMumination and Shading

lllumination Models
and Shading

Figure 14.1: lllumination Models and shading

To produce images which look,at least to some objects must be lit and shaded. An
illumination or lighting model is a model or technique for determining the color of
a surface of an object at a given point. A shading model 1s a broader framework
which determines how an illumination model 1s used and what parameters 1t
receives. For instance, the illumination model may be used for every pixel covered
by an object or just for its vertices. The basis of the calculations for shading

objects 1s the interaction of light and the objects in an environment.

[llummation models in computer graphics are often loosely derived from the
physical laws that describe surface light intensities. To minimize intensity
calculation, most packages use empirical models based on simplified photometric

calculations

281

14.3 A Simple Illumination Model

A simple illumination model (called a lighting model in OpenGL) can be based on
three components: ambient reflection, diffuse reflection and specular reflection.
The model we look at is known as the Phong model. The OpenGL lighting model

has the components of the Phong model.

14.4 Ambient Reflection

Imagine a uniform intensity background light which illuminates all objects in the

scene equally from all directions. This is known as ambient light.

Ignore colour for a while and assume monochrome (grey) ambient light. The

ambient reflection can be expressed as —

I=Lk

Where L, is the intensity of the ambient light and k, is the coefficient of ambient

reflection of the object’s material and ranges between [0, 1].

The object’s coefficient of ambient reflection 1s a material property. The ambient
light model attempts to capture the effect of light which results from many object -
object reflections without detailed calculations, that is, achieve computational
efficiency. Those detailed calculations are performed in some rendering techniques

such as radiosity which attempt to achieve higher quality images, but not real-time.

14.5 Diffuse Reflection

282

Ambient — light reflection is an approximation of global diffuse lighting effects.
Objects illuminated by only ambient light have equal intensity everywhere.

If there are light sources in a scene then different objects should have different
intensities based on distance and orientation with respect to the light source and the
viewer.

A point on a diffuse surface appears equally bright from all viewing positions
because it reflects light equally in all directions. That is, its intensity is independent
of the position of the viewer.

L ' N
%
\
\
\
w
LY
b Y
.\?}q{-- "tf__ o —?— s S
\ .'._ I| . >
/’< oA [\} ~
R, N / N
/-/ .\\ \ '-I /’ "'-._
I . T T [S —
/ s TS T L O | e
i e, PO V0 T |
pe— '*1‘\?::“ ,'/ =
Surface
Figure 14.2(a)

Whilst independent of the viewer, the intensity of a point on a diffuse surface does
depend on the orientation of the surface with respect to the light source and the
distance to the light source.

A simple model for diffuse reflection is Lambertian reflection. Assuming the

following geometry

283

Surface

Figure 14.2(b)
Then the mtensity of the diffuse reflection from a point hight source 13

I=1k,cosf

Where L, 1s the mtensity of the (pomt) light source, k, 15 the diffuse reflection
coefficient of the object’s material, and 8 is the angle between the normal to the

surface and the hght source direction vector. If the normal vector to the surface N
and the light source direction vector L are both normalised then the above equation

can be simplified to

I-Lk,NL)

If a light source 1s an mfinite distance from the object then L. will be the same for
all points on the object — the light source becomes a directional light source. In
this case less computation can be performed. Adding the ambient reflection and
diffuse reflection contributions together we get

I=Lk +Lk(NL)

284

14.6 Light Source Attenuation

The brightness of an object should depend not just on orientation but also on
distance. This is called light source attenuation. From physics we know that the
intensity of a light source follows an inverse square law. If we introduce a light

source attenuation factor
L.=1d

att

then the illumination model becomes

[=Taka + fattIlpkd(N.L)

However, this attenuation factor gives results which are too severe in practice.
Instead, an

attenuation factor of the form is typically used. —

fatt = min(1/cl +c2dL +c3d2 L, 1)

where ¢3 is often 0.0 (meaning it is not an inverse square relationship but a linear
or constant one). Colour So far our illumination equation has not included any
mention of colour. We introduce colour by giving each object (or its material) an
ambient and diffuse colour and each light source a colour. There are many different
ways of specifying colour, or colour models. The most common is the RGB colour

model where a colour is specified in terms of red, green and blue colour
components.

If we use the RGB colour model then the ambient colour (reflectivity) of an object
is (kaR, kaG, kaB), the diffuse colour (reflectivity) of an object kd is (kdR, kdG,
kdB) and the colour of the light emitted from the point light source as (LdR, LdG,
LdB).

Then the lighting equation becomes for say the red component

IR = LaRkaR + fattLdRkdR(N.L)

285

More generally, using wavelength A for colour component gives —

A = Laakan + fattlaakada({N.L)

14.7 Specular Reflection

Specular reflection occurs on hard, shiny surfaces and is seen as highlights.
Specular highlights are strongly directional

L N
R
N A
4
_ 4
% Py
\ /
\'x L i
LY R |
- i
\\ s i /
* / y | o
\-. Xr i 5 -': -~ 7 T"
5\ / / / =
M Fi i
N T AT
" : [J{(/.- .-..--._‘__.
v / i
M/ /
L~

Surface

Figure 143(a): Specular — reflection

The approach to specular reflection in the Phong model is that the specular
reflection intensity drops off as the cosine of the angle between the normal and the

specular reflection direction raised to some power n which indicates the shininess
of the surface.

286

The higher the power of n the smaller and brnghter the highlight.

The specular component of the 1llumination model may thus be given as
| = fattLsaksacosna
[f the dircetion of (specular) reflection R and the viewpoint direction 'V oarc

normahiscd then the equation becomes

| = fatt Lshks]‘-.(R.V)n

The full lighting cquation becomes

|y = LarKah + fatt[LdakdA(N.L) + Lsaksa(R.V)n]

Ambient + Diffuse + Specular = Phong Refleclion

When we look at an illurminated shiny surface, such as a polvgon.

o

Swrtice

Figure 14.3(h)

287

Figure 14.3(b) shows the specular reflection direction at a point on the illuminated
surface. The specular — reflection angle equals the angle of the incident light, with
the two angles measured on opposite sides of the unit normal surface vector N. In
this figure, we use R to represent the unit vector in the direction of ideal specular

reflection; L to represent the unit vector directed toward the point lisht source; and

V as the unit vector pointing to the viewer forms the surface position. Angle @ is

the viewing angle relative to the specular reflection direction R. In this case, we

would only see reflected light when vectors V and R coincide {Ct = 0)

Objects other than ideal reflectors exhibit specular reflections over a finite range of
viewing positions around vector R. Shiny surfaces have a namow specular-
reflection range, and dull surfaces have a wider reflection range. An empirical
model for calculating the specular — reflection range, developed by Phong Bui

Tuong and called the Phong specular — reflection model, or simply the Phong
model, sets the intensity of specular reflection proportional fo cos” ¢ Angle O can

be assigned the value in the range of 0 to 900, so that cosCt varies from 0 to 1.

Figure shows the effect of ns on the angular range for which we can expect to see

specular reflections.

E
nzF
= i i 1 1 | &

0 10° 20° 30° 40°45° 90¢

288

£ 0.8
08
:
06F
= 0.4
u.a;_
O'ZE 0.2
- [L 1 | (. P — — A &
| 1 p_2k i/ m - — . A
0 10° 20' 30° 40°45 90 0 10° 20° 30" 40°45 30
cos'™ ¢
cos™ ¢
1
3
0B
£ 08
o.s'L: o6k
= E
4=
3)
OZE 02:._
L 1 1 Ll P L g 1 Ao = - L &
0 10° 20* 30° 40° 45° 90° 0 10* 20° 30° 40 45° 80"

Figure 14.3(c): plots of cos 0L for several values of specular parameters ns.

As seen in 14.3(c) transparent material such as glass, only exhibit appreciable

specular reflections as 8 approaches 900. At 8 = 0°, about 4 percent of the incident
light on glass surface is reflected.

Since V and R are unit vectors in the viewing and specular — reflection directions,

we can calculate the value of cosQ with the dot product V. R. Assuming the
specular reflection cocfficient 1s a constant, we can determine the intensity of the

specular reflection at a surface point with the calculation.

lspec = KSII(V R)ns

289

W ie)

dielectric (glass)

0

Figure 14.4: Approximation variation of the specular — reflection coefficient

as a function of angle ofincidence for different materials.

Vector R in this expression can be calculated in temms of vectors L and N. As seen
in fig 5, the projection of L onto the direction of the normal vector is obtained with
the dot product N.L. Therefore, from the diagram, we have

R+L=(N.L)N
And the specular — reflection vector is obtained as

R={(2N.L)N-L

A simplified Phong model is obtained by using the halfivay vector H between L
and V to calculate the range of specular reflections. If we replace V.R in the Phong

model with the dot product N.H, this simply replaces the empirical cosQ

230

calculation with the empirical cos@ calculating. The halfway vector is obtained as

L4V
L4V

14.8 Gouraud Shading

[llumination or lighting models determine the colour of a point on the surface of an
object.
A shading model determines where the lighting model is applied. Most common

3D graphics libraries are polygon based.

Gouraud shading the lighting model is applied at each vertex of the polygon. The
polygon is filled by bi-linear interpolation of the resulting values. This is known as
smooth shading in OpenGL.

Each polygon surface is rendered with Gouraud shading by performing the

following calculations:
® Determine the average unit normal vector at each polygon vertex.
® Apply an illumination model to each vertex to calculate the vertex intensity.

® Linearly interpolate the vertex intensities over the surface of the polygon.
At each polygon vertex, we obtain a normal vector by averaging the surface normal

of all polygons sharing that vertex, as illustrated in fig — 14.5. Thus, for any vertex

position V, we obtain the unit vertex normal with the calculation.

291

Ny,

Figure 14.5(a)
p_, Nk

Nv =
|S%_, Nk|

Figure 14.5 (b) demonstrate the next step: interpolation intensities along the
polygon edge with endpoint vertices at position 1 and 2 is intersected by the scan
line at point 4. A fast method for obtaining the intensity at point4 is to interpolate

between intensities I1 and I2 using only the vertical displacement of the scan line.

Figure 14.5(b):

Fig —14.5 (b) For Gouraud shading the intensity at point 4 is linearly interpolated
from the intensities at vertices 1and 2. The intensity at point 5 is linearly
interpolated from
292

intensities at vertices 2 and 3. Is An interior point P is then assigned an intensity
value that is linearly interpolated frorm intensities at positions 4 and 5.

Fytida YV
1r - F IE
R e L e
Similarly, intensity at the right intersection ofthis scan line {point 5) is interpolated

from intensity values at vertices 2 and 3.

Incremental calculations are used to obtain successive edge intensity values
between scan lines and to obtain successive intensities along a scan line. As
showing in fig -, if the intensity at edse position (x, y) is inferpolated as —

¥ =¥ b S
] gt g
¥i—¥z ¥i—3¥z

Then we can obtain the intensity along this edge for the next scan line, y-1, as—

L -4
1 M

Similar calculations are used to obtain intensities at successive horizontal pixel

=1+

positions along each scan line.

" :" -"‘-u.,h__ ‘? s kirupe

Figure — 14.5 (c)

293

Incremental interpolation of intensity values along a polygon edge lor successive

scan lines.

14.9 Phong Shading

Phong Shading The lighting model is applied at every pixel covered by the

polygon. The normal vector at each pixel i1s compuied by bi-linear interpolation.

A polygon surface is rendered using Phong shading by carrying out the [ollowing

sleps —
® Delermine the average unit normal veclor at each polygon vertex.
® Linearly interpolate the vertex normal over the surlace of the polygon.

® Apply an illumination model along each scan line to calculate projected

pixel intensities for the surlace points.

Ng N, Ny N,

M1/

Pp Bs Py Pe Py

Ny

Figure 14.6:
N :y — ¥z N1+y1_y NZ
V=Y Y1~ Yz

Gouraud and Phong shading are used to make polygonal objects — which are

inherently laceted — appear smooth.

254

14.10 Ray Tracking

Ray tracing was first developed in the 1960s by scientists at an organization known
as Mathematical Applications Group. Ray tracing is used extensively in computer
gaming and animation, television and DVD prograraming and movie production.

In computer graphics, ray tracing is a technique for generating an image
by tracing the path of light through pixels in an image plane and simulating the
effects of its encounters with virtual objects.

Ray Tracking is an extension of this bazic idea Instead of merely looking for the
visible surface for each pixel, we continue to bounce the ray around the scene in

fioure — 14.7

Pl posfueng
G progection
plane

projectian
refarence
posnt

Figure 14.7

295

Tracking a ray from the projection reference point through a pixel position with
multiple reflections and transmissions.

Ray tracing is one of the numerous techniques that exist to render images with
computers. The idea behind ray tracing is that physically correct images are
composed by light and that light will usually come from a light source and bounce
around as light rays (following a broken line path) in a scene before hitting our

€yes Oor a camera.

14.11 Summary

In general, an object is illuminated with radiant energy from light emitting sources
and from the reflective surfaces of other objects in the scene. Light sources can be
modeled as point sources or as distributed sources. Lighting effects can be
described in terms of diffuse and specular components for both reflections and
refractions.

[llumination model can be used to describe diffuse reflections with Lambert’s
cosine and to describe specular reflections with the Phong model.

Gouraud shading approximates light reflections from curved surfaces by
calculating intensity values at polygon vertices and interpolating these intensity
values across the polygon facets. A more accurate, but slower surface rendering
procedure 1s Phong shading, which interpolates the average normal vectors for
polygon vertices over the polygon facets. Ray tracking provides an accurate

method for obtaining global, specular reflection and transmission effects.

14.12 Exercise

296

Q.1 Differentiate between Gouraud Shading and Phong Shading?

Q2 Explam All illumination Model?

14.13 References

1. Computer Graphics (C Version) Second Edition “Donald Hearn M. Pauline

Baker.”

2. Additional sources of information on visibility algorithm include Elber and
Cohen (1990), Franklin and Kankanhalli (1990), Glassner (1990), Naylor
Amantides, and Thibault (1990), and Segal (1990).

297

UNIT-15
Color Model and Applications

Structure of the Unit

15.0 Objective

15.1 Introduction

15.2 Color Model

15.3 RGB Color Model
15.4 CMY Color Model
15.5 YIQ Color Model
15.6 HSV Color Model
15.7 Color Selection and Applications
15.8 Summary

15.9 Glossary

15.10 Exercise

15.11 Answers to Exercise

15.0 Objective

In this unit we shall be focused on the following topics:

® (olor Models

® RGB Color Model
® CMY Color Model
® YIQ Color Model
e HSV Color Model

298

15.1 Introduction

The light or colors are the narrow frequency band with the electromagnetic
spectrum, called visible band. Each frequency value within the visible band

corresponds to a distinct color.

Since the light is an electromagnetic spectrum, it also has a wavelength. So the
light can be described either in terms of frequency or wavelength. The relationship

between the wavelength and frequency can be represented as
c— Al

where ¢=Speed of light A =Wavelength and f=frequency. In Vacuum the velocity
of light is 3X10" cm/sec.

The table below shows the color and associated wavelength which further could be

converted into frequency as per the formula given.

soler Wavelength Frequency
interval interval

Red ~ 700635 nm ~ 430-480 THz
Orange ~ 635-590 nm ~480-510 THz
Yellow ~ 590-560 nm ~ 510-540 THz
Green ~ 560-520 nm ~ 540-580 THz
Cyan ~ 520-490 nm ~ 580610 THz
Blue ~ 490-450 nm ~610-670 THz
Violet ~ 450-400 nm ~ 670-750 THz

In this unit, we shall be concentrating on the mechanism used for generating color

into the display.

299

15.2 Color Model

A color model is a method for explaining the properties or behavior of color
within some particular context. The color model uses various color components

{usually three or four) for describing different colors.

A Color model usually uses three dimensional (3D) coordinate system to
specify a particular color. Any color that can be specified in color model will
correspond to a single point within the subspaces it defines.

The range of colors that can be described by the color model called color
gaunt. The two or three colors used to describing other colors are referred to as
Primary Color.

There are several color model used in computer graphics but the two most

commonly used models are RGB and CMYK model for printing.
Some of the color models we will discuss in this section are:

(1) RGB Color Model
(i) CMY Color Model
(i) YIQ Color Model

(iv) HSV Color Model

Since no finite set of color light source can be combined to display all possible
colors. So, three standard primaries were defined in 1931 by International
Commission on [llumination CIE (Commission International delEclarage) by using
XYZ model.

XYZ model:- The set of CIE primaries (X, Y, 7Z) is commonly referred to as XYZ
color model.

Where X, Y, Z represent the vectors in 3D, additive color spaces.

Any color in XYZ model is expressed as

CA=Xx+Yy+Zz

300

Where X, Y, Z are the amount of standard pnmaries needed to match C A

153 RGB Color Model

RGB stands for Red, Green and, Blue. This medel was imspired by the cones of the
retina As the retina’s visual pigments have a peak sensitivity at a wavelength of
Red, Green and Blue colors. In this model, the primary colors are Red, Green and
Blue. It 15 an additive moedel, i wiach colors are preduced by adding compenents
with white having all colors and black, when no color added.

This moedel 15 widely used for display units like Television and computer screens.

The RGB maodel 18 usudlly represented by a unit cube with one color located at the
origm of 3D color coordinate system. Each celor pomt within the bounds of the
cube can be represented as (R, (5, B) where values of R, G, B are assigned in the

rarige from O to 1. Thus the color C), 15 expressed as

C =Re+ Gg+ Bb

Grayscale | Lreen

\ 0.1 0 Y ellow
"\:"F‘ -_-—___.--;‘ (1.1, 0
AN e
Cyan -~ k. i
0 1.1 _T While
i A% T
Biack | ¢ |
’
0 0 l]j-._ | *;;H i
- ’ d
- €
e = 1,0 0
e —— 4
,f"'; Sl Magenia
~ i .-
H.f_.-- i, & 1l (1.0
g

Figurel5.1: RGB Color Model
301

Main diagonal m 3D cube represents grayscdle. The value of triple for black color
15 (0,000 whit white color 1s (1,1, 1) For more colors we need to add the two or

maore colors, for example, yellow color can be obtained by addmg red with preen.

As discussed, RGB 1s used m computer monitors /Thsplays variations for each of
the additive color of red, green and blue. Therefore, there are 16,77216 possible
colors (256Rx256Gx256H) can be represented by varying the infensities of R, G,
and B. The intensity of each of the red, green, blue components are represented on
the scale of I to 255,

154 CMY color Model

The CMY color model stands for Cwyan, Magenta and Yellow, which are the
components of red, green and blue respectively. The colors i CMY are called
“Subtractive Primaries”, which means colors are produced by removing primaries
not adding 1t This model 15 generally used in printing systems.

M

Grayscale
!r’\ Magenta

/,P Blue
f; /
Red ¢ e
g ’

+»" |Black
Cyan

: White C

Yallow Green

Figure 15.2: CMY Color Model

302

The CMY model is subtractive model appropriate to absorption of color, for
example due to pigments in paints, whereas RGB model ask what is added to black
to get a particular color, the CMY model ask what is subtracted from white. In this
model, the primaries are Cyan, Magenta and Yellow, with Red, Green and Blue as
secondary colors.

In CMY model points (1, 1, 1) represent black and (0, 0, 0) as white, which is just
opposite 10 RGB model. The relation between RGB color model and CMY color
model is given as

(N Y

MRS

1 % F0* 7™

Y | |1 || B |

R R
15.5 YIQ Color Model

This is the most common system used by the US commercial color television (PAL
1s the most common system used in other countries). The YIQ model is based on
the concept of CIE XYZ model.

In YIQ model, Y is same as in XYZ model. Luminescence (Brightness)
information is contained in the Y parameter while the chromaticity information
(hue and purity) i1s contained in [and Q parameters. Since Y is luminescence thus
black and white TV has only Y signals.

The conversion from RGB to YIQ is given by

(Y f Y o)
Y |] 0299 0587 0114 || R |
} I H 0.596 -0.275 -0.321 H G }
| Q | | 0212 -0523 0311 || B |
\ X 4 L)

303

We can also convert RGB to YIQ by using

(Y (YO)
| R | | 1.000 0956 0620 || Y |
} Y H 1.000 0272 -0.64 H I }
| B | | 1000 -1.108 1705 || Q |
)\ JLU)

15.6 HSV Color Model

HSV stands for Hue, Saturation and Value. This color model describes color (hue
or tint) in terms of their shade (saturation or amount of grey) and brightness value.
The HSV color wheel is depicted as a cone or cylinder which is derived from RGB

cube.
V(Value)

‘\ Vai
{White)
\

Cyan

\ \ H{Hue Angle)
V0 L g
{Black) S {Saturation)

Figure 15.3: HSV Hexagon

® [ue is the name or pure value of the color such as red, green, yellow ete. It
is expressed as a number from 0 to 360 degrees representing hues of red

304

(which start at), yellow (starting at 60)), green (starting at 120), cyan
{starting at 1800, blue (starting at 2407 and magenta (starting at 300].

® Saswragion is the purity of the color and the amount of pure coler. It varies

from white to pure color. It 1s measured in percent from 0 to LO0D.

® JValee (or bnghtness) works i conjunction with saturation and describes

the brightness or mtensity of the color from zero percent to LO0 percent.

G

Cyan

White

./\/x
8 R

Figure 15.4{a): RGB Color Cube

Grean

Magenta

Yatlow

Red

Figure15.4ib): Color Hexagon

All color models treated so far are hardware oriented. The Hue-Saturation-Value
model 15 eriented towards the user‘artist The allowed coordinates fill a six-sided
pyramid the 3 top faces of the color cube as base. Note that at the same height
colors of different perceived brightness are postbioned. Value 15 given by the

height; saturation 15 coded in the distance from the axes and hue by the position cn

the boundary.

Comparison among RGBHSV,CMY and YI() Color Model:

Acronym Intended use Axis

Axizs2

Axis 3

RGB Device Intensity of

Intensity

of

Intensity of

305

specific color | red gun green gun blue gun
specification

HSV Color Mixing | Hue Saturation Value

CMY Color Printing | Cyan Magenta Yellow

YIQ North Luminance Blue- Yellow-
American green/orange | green/magenta
Broadcast TV

15.7 Color Selection and Applications

As general rules, the use of smaller number of colors produces a more pleasing

display than a large number of colors.

Tints and Shades blend better than pure hues.

For background gray or the complement of one of the background color are best.

15.8 Summary

Visible light is narrow frequency distributions within the electromagnetic

spectrum.
Light can be described either with wavelength or frequency

Color model uses an abstract mathematical model to describe the color by

using two to four primary colors.

There are several color models in computer graphics i.e. RGB, CMY, YIQ,
HSV

RGB uses red, green, blue colors as primary colors and generally used in

Video Monitor Display

CMY uses cyan, magenta and yellow colors as primary colors and are

generally used in printers.

CMY is subtractive model whereas RGB 1s additive model.

306

® Other models like YIQ, HSV are based on specification of luminance and
purity values.

® Since no model specified with finite set of color parameters which is
capable of describing all possible colors .Hence a hypothetical color has
been adopted as standard for defining all colors combination is called as
XYZ color model.

e We should avoid displaying adjacent color that differs widely of

harmonious color combination.

® We should limit display to a small number of color combination s formed

with tints and shades rather than pure hues.

15.9 Glossary

Color Gaunt: The range of colors that can be described by the color model called
color gaunt.
Primary Color: The two or three colors used to describing other colors are

referred to as Primary Color

15.10 Exercise

Q.1. uses an abstract mathematical model to describe the color

by using two to four primary colors.
{A) Polygon filling (B) Color Model
{C) Aliasing (D) None of these
Q.2. HSV stands for
(A) Hue, Saturation and Value (B) Red, Green and Blue
(C) Cyan, Magenta and Yellow (D) None of these
Q.3. Which color is best suited for Video Monitor Display?

(A) RGB color model
307

(B) YIQ color model
(C) HSV color model
(D) None of these
Q.4. Which color model is best suited for printing system?
(A) RGB color model
(B) YIQ color model
(C) HSV color model

(D) None of these
Q.5. What is Color Model? Explain various types of Color Model

Q.6. Explain RGB Color Model.
Q.7. How to convert RGB to CMY model? Explain.

15.11 Answers to Exercise

Ans.1: B Ans.2: A
Ans.3: A Ans.4: B

References and Suggested Readings

1. J. Foley, A. Van Dam, S. Feiner, J. Hughes: Computer Graphics- Principles and

Practice, Pearson.
2. Hearn and Baker: Computer Graphics, PHI.

3. Additional programming examples and information on PHIGS primitive can be
found in Howard, et al. 1991
4. Filled-Area Primitives [-Computer Graphics-Lecture Notes.pdf

308

UNIT-16
Computer Animation

AFERE HA% Ll % U LIS LS RNRN

16.0 Objective

16.1 Introduction

16.2 Design of Animation Sequences
16.3 General Computer-Animation Functions
16.4 Raster Animations

16.5 Computer-Animation Languages
16.6 Various Animation Tools

16.7 Self Learning Exercise

16.8 Summary

16.9 Glossary

16.10 Answers to Self Learning Exercise
16.11 Exercise

16.12 Answers to Exercise

16.0 Objective

In this chapter, we shall focus on the following topics

® Design of Animation Sequences
® General Computer Animation Functions

® Raster Animations

309

® Computer Animation Languages

® Various Animation Tools

16.1 Introduction

Just what is computer animation? For decades, animation has been a trade that
rested exclusively within the hands of the entertainment industry; the course of
action needed an excellent deal of time, manpower, and complex equipment to

achieve.

Animation means giving life to any object in computer graphics. It has the power
of adding power and feelings mto the most seemingly non-living objects.
Computer-assisted animation and computer-generated animation are two categories

of computer animation. It can be presented via film or video.

An object seen by human eye remains chemically mapped on the eye’s retina for a
brief time after viewing. This makes it possible for a series of images that are

changed very rapidly to blend together into illusion of movement.

Animation is used in Visualization to show the time-dependent behavior of
complex systems. A major part of animation is motion control. Early systems did
not have the computational power to allow for animation preview and interactive
control. Also, many early animators were computer scientists rather than artists.
Thus, scripting systems were developed. These systems were used as a computer
high-level language where the animator wrote a script (program) to control the

animation.

Later systems have allowed for different types of motion control. One way to
classify animation techniques is by the level of abstraction in the motion control
techniques. A low-level system requires the animator to precisely specify each
detail of motion, whereas a high-level system would allow them to use more
general or abstract methods. For example, to move a simple rigid object such as a

cube, requires six degrees of freedom (numbers) per frame.

Types of Animation
310

The two main categories are:

1. Computer- Assisted Animation

2. Computer generated Animation

Computer Assisted Animation: It is basically to 2D and 2 % D systems that
computerize the traditional animation process. Interpolation between key shapes 1s
the only use of computer in this type of animation.

Computer Generated Animation: It is basically concerned with motion control
of the objects. The motion specification for computer generated animation is

divided into two categories:

® Low-Level Techniques

® High-Level Techniques
Low-Level Techniques: Low-Level Techniques aid the animator in precisely

specifying motion. These techniques consist of techniques, such as shape
interpolation algorithms (in-betweening), which help the animator fill in the details
of the motion once enough information about the motion has been specified by the
animator. When using low-level techniques, the animator usually has a fairly
specific idea of the exact motion that he or she wants.

High-Level Techniques: High-level techniques are typically algorithms or models
used to generate a motion using a set of rules or constraints. The animator sets up
the rules of the model, or chooses an appropriate algorithm, and selects initial
values or boundary values. The system is then set into motion, so to speak, and the
motion of the objects 13 controlled by the algorithm or model. The model-
based/algorithmic approaches often rely on fairly sophisticated computation, such

as physically based motion control.

16.2 Design of Animation Sequences

Animation sequences are designed with the following Steps:

311

Storyboard layout

It 1s the outline of the action. It defines the motion sequence as a set of basic events
that are to take place in specific order. Such an ordered set of event gives the
motion sequences. Depending on the type of animation to be produced, the
storyboard could consist of a set of rough sketches or it could be a list of the basic

1deas for the motion.

Figure 16.1

312

Figure 16.2

313

Object definitions

An object definition is given for each participant in the action. Objects can be
defined in terms of basic shapes such as polygons or splines. The associated

movements of each object are specified along with the shape.

Keytrame specifications

A keyframe is detailed drawing of the scene at a certain time in the animation
sequence. Within cach keyframe, e¢ach object is positioned according to the time
for that frame. Some keyframes are chosen at extreme positions in the action;

others are spaced so that the time interval between keyframes is not too much.

Figure 16.3

Generation of in-between frames

In-betweens are the intermediate frames between the keyframes. The number of in-
between frames needed is determined by the media to be used to display the
animation. Film requires 24 frames per second and graphics terminals are refreshed

at the rate of 30 to 60 frames per seconds.

314

Time mtervals for the mobon are set up so there are from 3 to 5 m-between for
each pair of keyirmames. Depending on the speed of the motion, some keyimmes
can be duplicated. Fora | mm film sequence with no duplicatton, 1440 fiames are
needed Other requured taskes are:

1__ 2@ 3 o
o8| T

Figure 16.4
1 1
2
2
In-between
Key frame Key frame
Figmnre 16.5

315

® Motion verification
® Editing

® Production and synchronization of a soundtrack.

16.3 General Computer-Animation Functions

Computer animation can be created with computer and animation software. Some
of animation software are: WaveFront, Amorphium, Art of illusion, 3D studio
max, Adobe Flash and many more. These software provide basic functions to

create animation and to process the individual object. The functions are:

® Object manipulation and rendering — To store and manage the object database
(object shapes and associated parameters are stored and updated in the
database), Object motion generation (2-D or 2-D transformations) and Object

rendering.

® (Camera motions generation — Zooming, Panning (rotating horizontally or

vertically), Tilting.

® Another function to identify visible surfaces.

16.4 Raster Animations

Raster animation is the most basic type of computer animation. It involves creating
an image, and then using a computer to put that image in motion. To generate real-
time animation we have execute sequence of raster operations. For example we can
rotate an object like square box, as shown in the Figure 16.6. In each iteration the
box 1is rotated by some angle. The resulted position of the box afier rotation

316

generates new frame. By continuing such we can generate number of frames and

the effect is rotation of box.

(A) (B) (C) (D) (E) (F)
Figure 16.6

On raster systems, real-time animation in lumited applications can be generated
using raster operations. Sequence of raster operations can also be executed to
produce real-time animation of either 2D or 3D objects.

In coler displays, 24-bits per pixel are commonly used, where 8-bits represent
256 levels for each color. Here, 1t 1s necessary to read 24-bits for each pixel from
frame buffer. This 15 very time-consuming. To avoid this video controller uses
look-up-table (LUT) to store many entries of pixel values 1s RGB format. This
look-up-table s commonly known as color-table. With this facility, now it 1s
necessary to read index to the color-table from the frame bulfer for each pixel.
This index specifies one of the entries in the color-table. The specified entry in

the color-table is then used to control the wntensity or color of the CRT.

——

N

Figure 16.7

317

Usually, color —table has 256 entries. Therefore, the index to the color-table has
8-bits, and hence for each pixel frame buffer has to store 8-bits per pixel mstead
of 24-bits.

ORGANISATION OF A VIDEO COLOUR TABLE

o[1/olo[ololo[1] #*H—65 233 [

-

(=]
Q
o

value |

L .65 |0jojoji|ojo|ojo|1 olojo|o|1|o|o|o|o|ojo]0 24-b:t —
1 : Pixe
|

a Red Green Blue

Figure 16.8

It 1s possible to animate object along two-dimensional motion paths using the
color-table. It can be achieved by predefining the object at successive positions
along the motion path, and setting the successive blocks of pixel values to color
table entries. Initially, the pixels at the first position of the object are made ON,
and the pixels at the other positions of the object are set to the background color.
The animation is then accomplished by changing the color-table values so that
the object is ON at successively position along the animation path. Each time the

preceding pixels at the preceding position are set to the background color.

318

Example:

Ship is redrawn in background color
Step 1 (erase) Step 2 (move) Step 3 (draw)

(x Y) (X y) (X+ Dx y+Dy} (X‘,y,)

-- 1

x' = x +Dx
y' =y +Dy

Move ship

318

16.5 Computer-Animation Languages

Design and control of animation sequences are handled with a set of animation
routines. A general-purpose language, such as C, C++, LISP, Pascal, or
FORTRAN, iz often used to program the animation functions, but several
specialized animation languages have been developed. Animation functions
include a graphics editor, a keyframe generator, an in-between generator, and
standard graphics routines. The graphics editor allows uz to design and modify
object shapes, using spline surfaces, constructive solid-geometry methods, or other
representation schemes.

Elbow
Extension

Shoulder
Swivel

Arm ‘,, ;'J;.,___ B ______»1|
Swee;ﬁk""“-——___—"*-)

|

Figure 16.9

A typical task in an animation specification is scene description. This includes the
positioning of objects and light sources, defining the photoretric parameters
(light-source intensities and surface-illumination properties), and setting the
camera parameters (position, orientation and lens characteristics). Another standard
function is action specification. This involves the layout of motion paths for the
objects and camera And we need the usual graphics routines: viewing and
perspective transformation, geometric transformations to generate object

320

movements a3 3 iimehon of acceleration or lanematic path specafications, vimble-
aurface identfication, and the surface rendenng operabions.

Keyframe systemns are specisbhzed smimation languages desigmed samply to
generate the m-betweens from the user specified keyframes. Usually, each object
in the scene 1 defmed as a aet of ngd bodies connected at the joints and wath a
lirmited number of degrees of freedom.

In the above figure, the mingle-arm robot has sx degree of feedom, which are
called arm sweep, shoulder swivel. Elbow extension, pitch, yaw and mwoll. We can
extend the number of degree of freedom for this robot am 0 mine by allowang
three-cimensionsl translations for the base (in the below fgure). If we allow base
rotations, the robot arm can have a total of 12 degree of freedom. The human body,

1n companson, has over 200 degree of freedom.

rlul_\ ———a

S ~
Fignre 16.14

Parametermed systems allow object mobon charactenistics to be specified as part of
the object defimtions. The adjustable parameters control such object charactenstics
as degrees of freedom motion irmtations and allowable shape changes.

Scnphng systems allow object specifications and ammation sequences to be

defined with a user mput script. From the scnpt, a hbrary of various objects and

motions can be constructed.

F21

Keyframe Systems

We generate each set of in-betweens from the specification of two (or more)
keyframes. Motion paths can be given with a kinematic description as a set spline
curves, or the motions can be physically based by specifying the forces acting on

the objects to be animated.

For complex scenes, we can separate the frames into individual components or
objects called cels (celluloid transparencies), an acronym from cartoon animation.
Given the animation paths, we can interpolate the positions of individual objects

between any two times.

With complex object transformations, the shapes of objects may change over time.
Examples are clothes, facial features, magnified detail, evolving shapes, exploding
or disintegrating objects, and transforming one object into another object. If all
surfaces are described with polygon meshes, then the number of edges per polygon
can change from one to the next. Thus, the total number of line segments can be

different frames.

Morphing

Transformation of object shapes from one form to another is called morphing,
which is a shortened form of metamorphosis. Morphing methods can be applied to

any motion or fransition involving a change in shape.

Given two keyframes for an object transformation, we first adjust the object
specification in one of the frames so that the number of polygon edges (or the
number of vertices) is the same for the two frames. This pre-processing step
illustrated in Figure 16.11 a straight-line in keyframe k is transformed into two line
segments in keyframe k + 1. Since keyframe k + 1 has an extra vertex, we add a
vertex between vertices 1 and 2 in keyframe k to balance the number of vertices
(and edges) in the two keyframes. Using linear interpolation to generate the m-
betweens, we transition the added vertex in keyframe k into vertex 3’ along the

straight-line path shown in figure 16.12. An example of a triangle linearly

322

expanding mto a quadnlateral i1s given m figure 16.13. Figure 16.14 and figure
16.15 show examples of morphing in television advertising.

Key Key
Frame &k Frame k +1

An edge with vertex positions 1 and 2 in key frame k
evolves into two connected edges in key frame k + 1.

Figure 16.11

1P

a % 3_

added
point 2
| Key
2 Frame
Key Halfway i
Frame Frame 2
k

Linear interpolation for transforming a line segment in
key frame k into two connected line segments in key
frame k + 1.

Figure 16.12

323

Frame
K Frame

A1 7/

k+1

Linear interpolation for transforming a triangle into a quadrilateral.
Figure16.13

ich

ik

Figure 16.14: Transformation of an STP oil can into an engine block.

324

(bi

{1}

Figure 16.15: Transformation of an moving automaobile inte a running tiger.

The preprocessing is accomplished by

1. Dividing N, edges of keyframe_. into N_+ 1 section.
2. Dividing the remaining lines of keyframe . into N_ sections.

For example, if L, = 15 and L,,, = 11, we divide 4 lines of keyframe,, into 2

sections each. The remaining lines of keyframe,,, are left intact.

If the vector counts in equalized parameters V, and V,,, are used to denote the

nurnber of vertices in the two consecutive frames.
In this case we define

Ve, = AKXV, V), Vi = min{ V3. Vy)
and

N]EZ (-V'IIIE:—|) mod {Vm'iu—J)

325

N =int (V. — DAV —1))

Preprocessing using vertex count is performed by

1. Adding N, points to Ny, line section of keyframe,,.

2. Adding N_-1 points fo the remaining edges of keyframe,

Slmulating Accelerations

Curve-fifting techniques are often used to specify the animation paths between
keyframes. Given the vertex positions at the keyframes, we can fit the positions
with linear or nonlinear paths. Figure illustrates a nonlinear fit of keyframe

positions. This determines the trajectories for the in-betweens. To simulate

accelerations, we can adjust the time spacing for the in-betweens.

\ ')

..-F'

Key
! Frame
Key { Key k+2
| Frame
Frame
In- k+1
k
Between
Flgure 16.16

326

For constant speed (zero acceleration), we use equal-interval time spacing for the

in-betweens. Suppose we want n in-betweens for keyframes at times t, and t,.

The time interval between keyframes is then divided into n + 1 subintervals,

yielding an in-between spacing of
A= @)/ (nt1)
We can calculate the time for any in-between as
= A J=L8 0 o s n

and determine the values for coordinate positions, colour, and other physical

parameters.

16.6 Various Animation Tools

Animations are graphic scenes played back sequentially and rapidly. These tools
adopt an object-oriented approach to animation. For the implementation of

animation we need two types of tools:
Hardware Tools

Software Tools

Hardware Tools

Hardware comes in many shapes, size and capabilities. Some hardware's are
specialized to do only certain tasks. Other kind of hardware does a variety of

things. The most common hardware used for computer animation are as follows:-
SGI (Silicon Graphics Inc.)

SGI platforms are one of the most widely used hardware platform in professional
or broadcast quality computer animation production. SGI computer are very fast,
give excellent results and operate using UNIX OS. For Example: Indy, Indigo 2
Extreme, Onyx machines. These machines produce animations and Onyx can even
do complex calculations.

327

PC (Personal Computers) and Laptops

PC’s and Laptops are very versatile and mobile. They are favourite of various users
because of the following features it has: Combination of flexibility and power, less

expensive, Provide good quality for their price. They can be used to do animations.

Mac (Macintosh)

Mac’s were originally designed to be graphic and desktop publishing machines.
Mac’s did not become widely known. Many people consider Mac’s slow and
inefficient but that is not true. Mac 1s pretty useful for small scale companies
wishing to do nice looking applications. Many software companies are using Mac

for producing graphic application software.
Amiga
Originally owned by Commodore. Amiga Computes hold a good position in

animation field.

Software Tools

Our hardware is dead-piece of machine without good software. The some of the
most popular sofiware's packages used by the companies, schools and individuals

all round the globe are:
FlipBook (DigiCel)

For creating 2D animation of any kind, Flash and FlipBook should be the very first
two programs. DigiCel’s FlipBook animation software does it all, from scanning to
digital painting to mattes to lighting and any other novice or veteran trick that we
might required. For 2D animator who wants minimal computer involvement, then

FlipBook must be great tool for computer animation.
Flash (Adobe)

Flash (Adobe) 1s used to make web animations. Flash is the Web standard for
vector graphics and animation. With Flash, we can quickly liven up our Web pages
with interesting animated graphics and text effects. Flash also allows us to add
sophisticated inferactivity to our site without complicated scripting.

328

Flash is designed to make our Web animations download and begin playing
quickly. Because it creates vector-based graphics, Flash can generate files which
download in much less time than bitmapped image formats such as GIFs and
JPEGs. In addition, Flash’s streaming format means that Web movies can begin to
play while they are still downloading.
Blender (The Blender Foundation)

We need an “‘easy to learn and use” equivalent for 3D animation software? If so,
then we should start here. Not only is it small and not processor demanding, but
it’s also free and comes with a Web community that offers hundreds of free classes
and tutorials on its site. It’s also been used to make award winning short films and

has plenty of advanced features that are worth checking out.

It works as an open-sourced, community development program where people from
around the world contribute to its success. Blender is a
rendering\animation\game development open-sourced freeware program
maintained by the Blender Foundation. The Blender Foundation is an independent
organization (a Dutch “stichting”), acting as a non-profit public benefit corporation
Poser (Smith Micro Software).

3ds Max (Autodesk)

Modelling in 2D 1s similar to sculpting. Many different techniques can be used to
create the objects in our scene. Autodesk 3ds Max is the premier software package
for 3D modelling, texturing, and animation, and 1t has many features specifically
designed to assist artists, architects, engineers, and designers in various disciplines
in the realization of their projects.

Autodesk 3ds Max 2013 provides users with cutting-edge rendering technology,
easy-to-use materials, improved interoperability with other related design and CAD
software, enhancements to modelling and animation fools, and better viewport

interactivity.

329

It includes a Software Development Kit (SDK), which is used to develop plug-ins
that give the program additional functionality. The Lighting Analysis tool is used
to help meet the Leadership in Energy and Environmental Design (LEED) 8.1
certification standards.

Autodesk 3ds Max 2013 provides users with cutting-edge rendering technology,
casy-to-use materials, improved interoperability with other related design and CAD
software, enhancements to modelling and animation tools, and better viewport
interactivity.

Maya (Autodesk)

Maya, is a 3D computer graphics software that runs on Windows, macOS and
Linux, originally developed by Alas Systems Corporation (formerly
Alias|Wavefront) and currently owned and developed by Autodesk, Inc. It is used
to create interactive 3D applications, including video games, animated film, TV
series, or visual effects. Originally a next-generation animation product based on
code from The Advanced Visualizer by Wavefront Technologies, PowerAnimator
by Alias Research, Inc., and Alas Sketch!. The code was ported to IRIX and

animation features were added; the porting project codename was Maya.

Autodesk Maya is an industry leading 3D animation software application that
enables video professionals who work with animated film, television programs,
visual effects, and video games to create highly professional three-dimensional
(3D) cinematic animations. Prior to two-dimensional (2D) and 2D animation
software, manual hand animation tools such as drawing paper and pencils, erasers,
paints and brushes, light tables, and transparencies only offered a subset of what
can now be done with programs such as Maya.

Cinema 4D (Maxon)

There are plenty of other animation software packages out there that compete with
one another, but the one that stands out e as gaining the most momentum in the
past five years is Maxon’s Cinema 4D. CINEMA 4D is a 3D modelling, animation,
motion graphic and rendering application developed by MAXON Computer GmbH

in Germany. It is capable of procedural and polygonal modelling, animating,

330

lighting, texturing, rendering, and common features found in 3D modelling
applications. It may not be as rampant in the 3D gaming industry, but it’s seen an
abundance of use in the film industry for dozens of high budget box office hits, and

because its popularity is newer by comparison.

16.7 Self Learning Exercise

Q. 1 An illusion of motion that is created by displaying a series of images over a
period of time is known as-
a) Graphics
b) Animation
¢) Multimedia

d) Frames
Q. 2 The technique of transition of one shape into other shape is known as-
a) Multimedia
b) Animation
¢) Morphing
d) Raster Image

Q. 3 Frame 1s -
a) A part of a view window
b) A Cell

¢) A complete screen full image of animation sequence
d) Tweening
Q. 4 Which of the following SGI Machines can be used to produce animation -
a) Indy
b) Indies
¢) India
d) Amiga

331

16.8 Summary

Animation means giving life to any object in computer graphics. A computer
animation sequence can be set up by specifying the storyboard, the object
definitions, and the keyframes. The storyboard is an outline of the action, and the
keyframes define the details of the object motions for selected position in the
animation. Once the keyframes have been established, a sequence of in-betweens
can be generated to construct a smooth motion from one keyframe to the next. A
computer animation can involve motions specifications for the objects in a scene as
well as motion paths for a camera that moves through the scene. In Raster System,
we can generate real time animation. For the implementation of animation we need

two types of tools like Hardware Tools & Software Tools.

16.9 Glossary

Frame- An animation frame is a single photographic image in a movie.
Frame rate- The frame rate is the speed at which the frames are played.
Scene- A shot in a movie or show. A sequence i1s composed of several scenes

in-between- The drawings that exist between the key poses. These are drawn to

create fluid transitions between poses.

Keyframe- A keyframe is a computer-generated position at a specific moment
{(frame) on a given trajectory.

Morphing-A feature for creating computer-generated drawings between a source
drawing and a destination drawing.

Storyboard- A visual plan of all the scenes and shots in an animation.

16.10 Answers to Self-Learning Exercise

Q.1 (b)
332

Q2()
Q.3 (¢)
Q.4 (a)

16.11 Exercise

Q. 1 The layout of complete animation theme is given by- a) Object definition
b) Storyboard
¢) Fast motion
d) Multimedia

Q. 2 The distance from one pixel to the next pixel is-
a) Resolution
b) Dot Pitch
¢) Pixmap
d) ppi
Q. 3 Raster graphics are composed of-
a) Pixels
b) Paths
c¢) Palette
d) None of these
Q. 4 The transformation that produces a parallel mirror image of an object are
called
a) Rotation
b) Reflection
¢) Translation
d) Scaling

333

Q. 5 The rectangle portion of the interface window that defines where the image
will actually appear are-
a) Clipping window
b) Screen coordinate system
¢) View port
d) Scaling
Q. 6 Give an example for absolute locator device
a) Mouse
b) Keyboard
c¢) Light pen
d) Touch panel
Q. 7 Identify an relative locator device from the following
a) Light pen
b) Touch panel
¢) Mouse
d) Keyboard

16.12 Answers of Exercise

Q. 1(b) Q.2(a)
Q.3 () Q. 4(b)
Q.5 (c) Q.6(d)
Q.7(0)

References and Suggested Readings

Computer Graphics, C Version, D. Hearn & M.P. Baker, Pearson Education
Computer Graphics, A.P.Godse & D.A.Godse, Technical Publications
Computer Graphics, Rajiv Chopra, S Chand

ol -l o

Computer Graphics & Animation, M.C. Trivedi, Jaico Publications

334

UNIT-17
Graphical User Interfaces and Input
Methods

Structure of the Unit
17.0 Objective

17.1 Introduction

17.2 The User Dialogue Windows and Icons

17.3 Input of Graphical Data Logical Classification of Input Devices
17.4 Input Functions and Input Modes

17.5 Initial Values Parameters

17.6 Self Learning Exercise

17.7 Summary

17.8 Glossary

17.9 Answers to Self-Learning Exercise

17.10 Exercise

17.11 Answers to Exercise

17.0 Objective

In this chapter, we shall focus on the following topics
® The User Dialogue Windows and Icons
® Input of Graphical Data Logical Classification of Input Devices
® [nput Functions and Input Modes

® [nitial Values Parameters

335

17.1 Introduction

Mostly systems involve extensive graphics for human-computer interface
regardless of the application. General systems consist of windows, pull-down and
pop-up menus, icons, and pointing devices, such as a mouse or space ball for
positioning the screen cursor. Recently graphical user interfaces involve X-
Windows, Macintosh, Open-Look, and Motif. These interfaces are used in a
variety of applications, like word processing, spreadsheets, databases and file-
management systems, presentation systems, and page-layout systems. In graphics
packages, specialized interactive dialogues are designed for individual
applications, such as engineering design, business graphs, architectural design,
drafting and artist's paintbrush programs. An example is the X Window System
interface with PHIGS.

In this chapter, we discuss the basic elements of graphical user interfaces.
We also consider how dialogues in graphics packages can allow us to construct and
manipulate picture components, select menu options, and assign parameter values,

select and position text strings.

17.2 The User Dialogue Windows and Icons

In an application, the user's model serves the basis for the design of the
dialogue. The user's model describes what the system is designed to accomplish
and what graphics operations are available. It states the type of objects that can be
displayed and how the objects can be manipulated.

For example, if the graphics system is to be used as a tool for architectural
design, the model describes how the package can be used to construct and display
views of buildings by positioning walls, doors, windows etc.

Similarly for a facility-layout system, objects could be defined as a set of
furniture items like tables, Cham and the available operations would include those
for positioning and removing different pieces of furniture within the facility layout.
And a circuit-design program may include electrical or logic elements for objects,
with positioning operations available for adding or deleting elements over the all
circuit design.

336

All information in the user dialogue is then presented in the language of the
application. In an architectural design package, all interactions The User Dialogue
are described only in architectural terms, without reference to particular data
structures or other concepts that may be unfamiliar to an architect. In the following
sections, we include some of the general considerations in structuring a user

dialogue.

Windows and Icons

Visual representations are used both for objects and actions. Objects can be
manipulated in an application and actions that are to be performed on the
application objects. A window system provides a window-manager interface for
the user and functions for handling the display and manipulation of the windows.
Some common functions for the window system are opening and closing windows,
resizing windows, repositioning windows and display routines that provide interior
and exterior clipping and other graphics functions. Generally, windows are
displayed with sliders, buttons, and menu icons for selecting various window
options.

Some general system, such as X Windows is capable of supporting multiple
window managers so that different window styles can be accommodated, each with
its own window manager. Then window managers can be designed for specific
applications.

Icons representing objects such as furniture 1tems and circuit elements are
often referred to as application icons. The icons representing actions, such as

rotate, magnify, scale, clip, and paste are called control icons, or command icons.

Interface Design Aspects
1. Accommodating multiple Skill Levels

Interactive graphical interfaces provide several methods for selecting

actions.

337

For example, options could be selected by pointing at an icon and clicking different
mouse buttons, or by accessing pull-down or pop-up menus, or by typing keyboard
commands. This allows a package to accommodate users that have different skill
levels.

For a less experienced user, simple point and click operations are easiest operations
of an application packages. The inexperienced user only focus on application work
rather than remembering details of interface. While an experienced user typically
wants speed that means less prompts and more inputs from keyboard or with
multiple mouse button click. Actions are selected using function keys or always

used by a set of shortcut keys.

2. Consistency
An important design consideration in an Interface i1s consistency. For
example, a particular icon shape should always have a single meaning rather than
serving to represent different actions or objects depending on the context. Another
examples of consistency are always placing menus 1n the same positions so that a
user does not require to a particular option. Similarly a particular combination of
keyboard keys for the same action with color coding so that the same color does

not have different meaning in different situations.

3. Minimization memorization

Operations in an interface should also be structured so that they are easy to
understand and remember. Complicated, inconsistent and abbreviated command
format create confusion and reduce the effectiveness of the use of packages. One
key or button used for all delete operations 1s easier to remember than a number of
different keys for different types of delete operations.

Icons and window systems also follow minimizing memorization. Different
kinds of information can he separated into different windows, so that we do not
have to focus on memorization when different information displays overlap. We

can simply refain the multiple imformation on the screen in different windows.

338

Icons are used to reduce memorizing by displaying easily recognizable shapes for

various objects and actions.

4. Back up and Error Handling

Back up or aborting is another feature of interfacing. Backup can be
provided in many forms. A standard undo key or command is used to cancel a
single operation. Sometimes a system can be backed up through several operations,
allow to reset the system to some specified point. Using extensive backup
capabilities, all inputs could be saved so that we can back up and "replay" any part
of a session. Once we have deleted the trash in the desktop, we cannot recover the
deleted files. In this case, the interface would ask to verify the delete operation
before proceeding. Good diagnostics and error messages are designed fo help
determine the cause of an error. Additionally, interfaces attempt to minimize error

possibilities by anficipating certain actions that could lead to an error.

5. Feedback

Without feedback, we might begin to wonder what the system is doing and
whether the input should be given again. When cach input is received, the system
normally provides some response. An object is highlighted, an icon appears, or a
message 18 displayed. If processing of any operation cannot be completed within a
few seconds, several feedback messages might be displayed to keep us informed of
the progress of the system.

With function keys, feedback can be given as an audible click or by lighting
up the key that has been pressed. Audio feedback has the advantage that it does not
use up screen space, when messages are displayed on the screen, a fixed message
area can be used so that we always know where to look for messages.

A typical raster feedback technique is to invert pixel intensities, particularly when
making menu selections. Other feedback methods include highlighting, blinking,

and color changes.

339

17.3 Input of Graphical Data Logical Classification of Input

Graphics programs support several kinds of input data. Any picture
specifications need values for coordinate positions, values for the character-string
parameters, scalar values for the transformation parameters, values specifying
menu options, and values for identification of picture parts. To make graphics
packages independent of the particular hardware devices used, input functions can
be structured according to the data description to be handled by each Function.

The various kinds of input data are discussed in the following six logical
device classifications used by PHIGS and GKS:

® [LOCATOR - a device for specifying a coordinate position (X, y)
® STROKE - a device for specifying a series of coordinate positions
® STRING - a device for specifying text input

® VALUATOR - a device for specifying scalar value

® CHOICE - a device for selecting menu options

® PICK-a device for selecting picture components

Each of the six logical input device classification can be implemented with any
hardware devices. But some hardware devices are more convenient for certain
kinds of data than others. Like a device is pointed at a screen position is more

convenient for entering coordinate data than keyboard.

1. Locator Devices
A standard method for interactive selection of a coordinate point is by
positioning the screen cursor. We can do this with a mouse, joystick, trackball,
space ball, thumbwheels, dials, a digitizer stylus or hand cursor device. When the
screen cursor is at the desired location, a button is activated to store the coordinates

of that screen point.

340

Keyboards can be used for locator input in several ways. The keyboard
usually has four cursor-control keys that move the screen cursor up, down, left, and
right. With an additional four keys, we can move the cursor diagonally as well.
Rapid cursor movement is accomplished by holding down the selected cursor key.
Alternatively, a joystick, joydisk, trackball, or thumbwheels can be mounted on the
keyboard for relative cursor movement. Light pens have also been used to input
coordinate positions, light pens operate by detecting light emitted from the screen
phosphors, some nonzero intensity level must be present at the coordinate position
fo be selected. A light pen can be used as a locator by creating a small Light pattern
for the pen to detect. The pattern is moved around the screen until it finds the light

pen.

2. Stroke Devices

This class of logical devices 1s used fo input a sequence of coordinate
positions. The set of input points is often used to display line sections. Many
physical devices used for generating locator input that can be used as stroke
devices. The continuous movement of a mouse, trackball, joystick, or tablet hand
cursor 1s translated into a series of input coordinate values. The graphics tablet 1s
one of the more common stroke devices.

Button activation can be used to place the tablet into "continuous" mode. As
the cursor 1s moved across the tablet surface screen, a stream of coordinate values
is generated. This process is used in paintbrush systems that allow artists to draw
scenes on the screen. While in engineering systems layouts can be traced and

digitized for storage.

3. String Devices
Keyboard is the primary physical device used for string input. Input
character strings are used for picture or graph labels. Other physical devices can be
used for generating character patterns in a "text-writing" mode. For this input,

individual characters are drawn on the screen with a stroke or locator-type device.

341

A pattern-recognition program then interprets the characters using a stored

dictionary of predefined patterns.

4. Valuator Devices

This logical class of devices is used in graphic systems to input scalar
values.

Valuators are used for setting various graphics parameter, such as rotation angle
and scale factors, and for setting physical parameters associated with a particular
application (temperature settings, voltage levels, stress factors, etc.).

A typical physical device used to provide valuator input is a set of control
dials. Floating-point numbers within any predefined range are input by rotating the
dials. Dial rotations in one direction increase the numeric input value, and opposite
rotations decrease the numeric value. Rotary potentiometers convert dial rotation
info a corresponding voltage. This voltage is then translated into a real number
within a defined scalar range, such as -10.5 to 25.5.

Any keyboard with a set of numeric keys can be used as a valuator device.
A user simply types the numbers directly in floating-point format, although this is a
slower method than using dials or slide potentiometers. Joystick, trackball, tablets,
and other interactive devices can be freated as valuator input by interpreting
pressure or movement of the device relative to a scalar range. For example, one
direction of movement i.e. left to right, increasing scalar values can be mput.
Movement in the opposite direction decreases the scalar input value.

Another technique for valuator input is to display sliders, buttons, rotating
scales, and menus on the video monitor. Locator input from a mouse, joystick, and
space ball device 1s used to select a coordinate position on the display, and the
screen coordinate position is then converted to a numeric input value. Then the

selected position on a scale can be marked with some symbol.

5. Choice Devices

A choice device 1s defined as one that enters a selection from a list (menu)

of alternatives. Commonly used choice devices are a set of buttons, a cursor

342

positioning device, such as a mouse, trackball, or keyboard cursor keys. A function
keyboard, or "button box", 1s often used to enter menu selections. Usually, each
button is programmable, so that its function can be altered according to
applications. Single-purpose buttons have fixed, predefined functions.
Programmable function keys and fixed function buttons are often included with
other standard keys on a keyboard.

Cursor control devices are used for screen selection of listed menu options.
When a coordinate position (%, y) is selected, it is compared to the coordinate
extents of each listed menu item. A menu item with vertical and horizontal
boundaries at the coordinate values 1.€. X;in> Xmax, Ymin a0d YVmax 15 selected 1f

the input coordinates (X, y) satisfy the inequalities

Xmin < X Sxmax Ymin S}’ Symax

A touch panel is used for larger menus with a few options displayed at a
time. With a cursor-control device, such as a mouse, a selected screen position is
compared to the area occupied by each menu choice.

Alternate methods for choice mnput is keyboard and voice entry. A standard
keyboard can be used to type in commands or menu options. For method of choice
input, some abbreviated format is useful. Menu listings can be numbered or given
short identifying names. Similar codings can be used with voice-input systems, and

implemented when the number of options is small (20 or less).

6. Pick Devices

Pick devices are used to select parts of a scene that are to be transformed or
edited in later on. For example with a mouse or joystick, we can position the cursor
over the primitives in a displayed structure and press the selection button. The
position of the cursor is then recorded. First, the cursor position is compared to the
coordinate extents of the various structures in the scene. If the bounding rectangle
of a structure contains the cursor coordinates, the picked structure has been
identified. But if two or more structure arcas contain the cursor coordinates, further

checks are necessary. If the cursor coordinates are determined to be inside the

343

coordinate extents of only one line, we have identified the picked object.
Otherwise, we require additional checks to find out the closest line to the cursor
position.

First method 1s to determine the closest line to the cursor position is fo
calculate the distance squared from the cursor coordinates (x, y) to each line
segment whose bounding rectangle contains the cursor position. For a line with
endpoints

(x1, y1) and (x2, y2), distance squared from (%, y) to the line is calculated as

Axty=y,) = Ay(x = x,)]?
Axi+Ay?

d..’

Figure 17.1: Distance to line segment from pick position.

Where Ax =x2-x1and Ay =y2-y1.

Another method for the closest line to the cursor position is to specify the
size of a pick window. The cursor coordinates are centered on this window and the
candidate lines are clipped to the window, by making the pick window small
enough, we can ensure that a single line will cross the window. To avoid for
calculation we highlight the candidate structures and allow the user to resolve the
pick ambiguity. One way for this is to highlight the structures that overlap the
cursor position one by one. The user then signals when the desired structure is
highlighted.

344

A second button is used to stop the process when the desired structure is
highlighted. An additional button 1s used to help identify the structure. The first
button can initiate a rapid successive highlighting of structures. A second button
call again be used to stop the process, and a third button can be used to back up.
Finally, we use a keyboard to type in structure names i.e. straightforward, but less
interactive, pick-selection method. Descriptive name is used to help the user in the

pick process.

Figure 17.2: A pick window centered on pick coordinates, for resolving

object overlapping.

17.4 Input Functions and Input Modes

INPUT FUNCTIONS
Graphical input functions allow users to specily the following options:

- Which physical devices are to provide input within a particular logical
classification (for example, a tablet used as a stroke device)

- How the graphics program and devices are to interact (input mode). Either
the program or the devices can initiate data entry, or both can operate
simultancously.

- When the data are to be input and which device is to be used at that time to

deliver a particular input type to the specified data variables.

345

Input Modes

Input to functions can be structured to operate in various input modes which
specify how the program and input devices interact. Program and input devices
both could be operating simultancously, or data input are initiated by the devices.

There are three input modes that are request mode, sample mode, and event mode.

Request mode, the application program initiates data entry. Input values are
requested and processing is suspended until the required values are received. The
program and the input devices operate alternately. Devices are put into a wait state

until an input request 1s made, then the program waits until the data are delivered.

Sample mode, the application program and input devices operate independently.
Input devices may be operating at the same time when the program is processing
other data. New input values from devices are stored, replacing older mput data

values.

Event mode, devices initiate data input to the application program. The program
and the input devices again operate concurrently, but now the input devices deliver
data to an input queue, all input data are saved. When the program requires new
data, it goes to the data queue. Any number of devices can be operated at the same
time in sample and event modes. But only one device at a time can be providing

input in request mode.

An mput mode within a logical class for a particular physical device operating on a

specified workstation i1s declared with one of six input-class functions of the form:

Set . .. Mode (ws, deviceCode, inputMode. echoFlag)

346

Where ws denote workstation, deviceCode is a positive integer, inputMode may be
request, sample, or event. And echoFlag is assigned either the value echo or the
value noecho.

TABLE 8-1
ASSIGNMENT O F INPUT-DEVICE CODES
Device Code Physical Device Type

1 Keyboard

2 Graphics Tablet

3 Mouse

4 Joystick

5 Trackball

6 Button

Using the assignments in this table, we could make the following declarations:
SetLocatorMode (1, 2, sample, noecho)
SetTextMode (2, 1, request. echo)
SetPickMode (4, 3, event, echo)
Thus, the graphics tablet is declared as a locator device in sample mode on
workstation 1 with no input data feedback echo, the keyboard is denoted as a text
device in request mode on workstation 2 with input echo, and the mouse is
declared to be a pick device in event mode on workstation 1 with input echo.
1. Request Mode
When we ask for an input in request mode, other processing is suspended
until the mput 1s received. After a device has been assigned to request mode, mput
requests can be made to that device using one of the six logical-class functions
represented by the following:
Request . . . (ws, deviceCode, status . . .)
A value of ok or none (the input device was activated so as to produce invalid data)

is returned in parameter status, according to the validity of the input data.

347

l‘or locator input, nonc means the coordinates were out of range. For pick input,
the deviee could have been activated while not pointing at a structure.
Loecator and Struke Input in Request Mode:
The request functions for these two logical input classes arc.

ReguestLocator {ws, devCode, status, viewlndex, pt)

ReguestStroke (ws, devCode, nMax, status, viewlndex, n, pts)
l‘'or locator input, ptis the world-coordinate position sclected.
l'or stroke input, pts 1s a list of n coordinate positions, where nMax gives
maximum number of points that can go in the input hist. And viewIndex is assigned
the two-dimensional view index number.

Determination of a world-coordinate position is a two-step process: (1) the
phvsical device scleets a point in deviee coordinates and the inverse of the
workstation transformation is performed to obtain the comresponding point in
normalized device coordinates. (2) Then, the inverse ef the window-to-vicewport
mapping is carricd out to get to viewing coordinates, then to world coordinates.

View index 0 has the hghest priorty. Viewindex identifies the reference
viewing transformation, and parameter priority is assigned cither the valae lower or
the value higher. For example, we may change the priority of the first four viewing
transformations on workstation 1, as shown in g 17-3, with the scquence of
functions:

SetViewtransformationlnput Priority {ws, viewlndex, refViewindex, Priority)

Criginal Final
Priority Ordering Pricrity Ordering

Figure 17.3: Rearranging Viewing Priorities

348

SetViewTransformationlnputPriority (1, 3, I, Higher)
SetViewTransformationlnputPriority (1, 0, 2, Lower)
String Input in Request Mode
The request input function is:
RequestString (ws, devCode, status, nChars, str)
Parameter sfr is assigned an input string. nChars shows the number of characters in

the string.

Valuator Input in Request Mode
A numerical value is input in request mode with function:

RequestValuator (ws, devCode, status, value)

Choice Input in Request Mode

We do a menu selection with the following request function:
RequestChoice (ws, devCode, status, itemNum)

itemNum is assigned a positive integer corresponding to the menu item selected.

Pick Input in Request Mode
We obtain a structure identifier number with the function

RequestPick (ws, devCode, maxPathDepth, status. pathDepth, pickpath)
Parameter pickpath is a list of information identifying the primitive selected. List
contains the structure name, pick identifier for the primitive, and the element
sequence number. Parameter pathDepth is the number of levels returned in
pickpath, and maxPathDepth 1s the specified maximum path depth that can be
included in pickpath.

2. Sample Mode

Once sample mode has been set for one or more physical devices, data
input begins without waiting for program direction. If a joystick has been

designated as a

349

Locator device in sample mode, coordinate values for the current position of the
activated joystick are immediately stored.

Sampling of the current values from a physical device in this mode begins
when a sample command is encountered in the application program. A locator
device is sampled with following function:

Sample . . . (ws, deviceCode . . .)
Other 1nput parameters are the same as in request mode. For example, suppose we
want to translate and rotate a selected object. A final translation position for the
object can be obtained with a locator, and the rotation angle can be supplied by a
valuator device, as denoted by following:

Samplelocacor (wsl, devl, viewlndex, pt)

SampleValuator (ws2. dev2, angle)

3. Event Mode

All mput devices active in event mode can enter data (referred to as
"events") into this single-event queue, with each device entering data values as
they are generated. Data entered into the queue are identified according to logical
class, workstation number, and physical-device code. An application program can

be use following function for event queue:

AwaitEvent (time, ws, deviceClass, deviceCode)

Parameter time is for maximum waiting time for the application program in the
queue ie. number of seconds spent after arrival. The parameter deviceClass is
assigned the value none. When time is given the value 0, the program checks the
queue and immediately returns to other processing if the queue is empty.
DeviceClass Codes, identifying the particular workstation and physical device that
made the input.

For example, a set of points from a tablet (device code 2) on workstation 1
is input to plot a series of straight-line segments connecting the input coordinates

denoted by:

350

GetLocator (viewlndex, pt)
SetStrokeMode (1, 2, event, noecha)

17.5 Initial Values Parameters

Quite a number of parameters can be set for input devices using the initialize
function for each logical class:
Initialize . . . (ws, deviceCode, ..., pe, coordExt, dataRec)

Parameter pe is the prompt and echo type, parameter coordExt is assigned a
set of four coordinate values, and parameter dataRec is a record of various control
parameters.

For locator input, some values that can be assigned to the prompt and echo
parameter are:

pe = 1: installation defined

pe = 2: crosshair cursor centered at current position

pe = 3: line from initial position to current position

pe = 4: rectangle defined by current and initial points

For structure picking, we have the following options:

pe = 1: highlight picked primitives

pe = 2: highlight all primitives with value of pick id

pe = 3: highlight entire structure

When an echo of the input data 1s requested, it is displayed within bounding
rectangle specified by the four coordinates in parameter coordExt. Additional
options can also be set in parameter dataRec. For example, we can set any of the

following:
® size of the pick window
® minimum pick distance

® type and size of cursor display

351

® type of structure highlighting during pick operations

® range (min and max) for valuator input

® resolution (scale) for valuator input

17.6 Self Learning Exercise

Q.1. User can make any change on image with the use of
{A) Non interactive graphics (B) Interactive graphics
{(C)Bothaandb (D) None of these

Q.2. The device which allows screen positions to be selected with the touch of a
finger.
(A) Touch Panel (B) Image Scanner
(C) Light Pen (D) Mouse

Q.3. A particular text index value is chosen with function
(A) setTextIndex() (B) setTextindex(ti)
{(C) SetTextIndex(ti) (D) setTextIndex(ti)

Q.4. Which mode allows the input devices and program to operate concurrently?
(A) Event mode (B) Request mode
(C) Sample mode (D) none of these

17.7 Summary

We have discussed window manager interface scheme with menus and

icons that allows users to open, close, reposition, and resize windows. [cons are

graphical symbols that are designed for quick identification of application

Processes.

Graphical interfaces are designed to manage consistency in user

interaction with different user skill levels. In addition, interfaces are designed to

minimize user memorization, to provide sufficient feedback, and to provide

352

adequate backup and error-handling capabilities. Then discussed six logical
devices commonly use are locator, stroke, string, valuator, choice, and pick. Input
functions are available in a graphics package can be defined in three input modes.
Request mode places input under the control of the program. Sample mode allows
the input devices and program to operate concurrently. And event mode allows

input devices to initiate data entry and control processing of data.

17.8 Glossary

PHIGS: Programmer’s Hierarchical Interactive Graphics System.

Open Look: It is a window manager for open windows developed by Sun

Microsystem. Original window manager is X11 desktop environment.

17.9 Answers to Self-Learning Exercise

Ans.1: B Ans.2: A
Ans.3: D Ans.4: C
17.10 Exercise

Q.1. Explain design of the input function for the request mode.
Q.2. Explain design of the input function for the event mode.
Q.3. Explain design of the sample mode input function.

Q.4. Write short note on following input devices:
® Pick devices
® [ocator devices
® Valuator Devices
® Choice Devices

® String Devices
Q.5. Write a short note on initial values parameters for various input devices.

353

Q.6. Explain the request mode with various mput format with their function.

Q.7. What are different types of input modes? Explain in brief.

17.11 Answers to Exercise

All answers are discussed in chapter in details. See respective contents.

References and Suggested Readings

1. J. Foley, A. Van Dam, S. Feiner, J. Hughes: Computer Graphics- Principles and

Practice, Pearson.
2. Hearn and Baker: Computer Graphics, PHL

3. The evolution of the concept of logical for virtual input device is discussed in

Wallace (1476). Input-device classifications is to be found in Newman (1068).
4. Input operations in PHIGS can be found in Hopgood and Dooe (1991), Howard

etal (1491). For information on GKS input functions, see Hopgood etal. (1983).

354

