
MCA(S5)20

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

 LINUX SYSTEM ADMINISTRATION

CONTENTS

UNIT- 1 : Introduction to Linux
UNIT- 2 : Linux Basics
UNIT- 3 : Linux Shell Script
UNIT- 4 : System Administration
UNIT- 5 : Linux Networking

Subject Expert
Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati

Course Coordinator
Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team

Units Contributor
1 , 2 Pritam Medhi
 Research Scholar, Deptt. of Computer Science, Gauhati University

3, 4, 5 Nanu Alan Kachari
 Scientific Officer,
 Deptt. of Computer Science and Engineering,
 Indian Institute of Technology Guwahati

July 2013
© Krishna Kanta Handiqui State Open University
No part of this publication which is material protected by this copyright notice may be produced or
transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior written permission from the KKHSOU.

Printed and published by Registrar on behalf of the Krishna Kanta Handiqui State Open University.

The university acknowledges with thanks the financial support pro-
vided by the Distance Education Council, New Delhi, for the
preparation of this study material.

Housefed Complex, Dispur, Guwahati- 781006; Web: www.kkhsou.net

COURSE INTRODUCTION

This is a course on “Linux System Administration”. This course contains five essential units.
Unit 1 is an introductory unit on Linux operating system. With this unit, the learners will be acquainted
with some important concepts like open source, free software, various Linux distribution, basic
architecture of Linux etc. This unit also discusses various installation process of Linux operating
system. Unit 2 discusses the basics of Linux. This includes the login process, process of creating
user account and group, operation with files, and some important Linux commands. The most widely
used shell script is introduced in Unit 3. Unit 4 concentrates on System Administration. Unit 5 is the
last unit and it discusses Linux Networking. The learners will learn how to install and configure a
simple LAN. This unit also discusses installation and congiguration of proxy server, web server, file
server, Samba server, SSH server etc.

While going through a unit, you will notice some boxes along-side, which have been included

to help you know some of the difficult, unseen terms. Some “ACTIVITY’ (s) have been included to help

you apply your own thoughts. Again, we have included some relevant concepts in “LET US KNOW”

along with the text. And, at the end of each section, you will get “CHECK YOUR PROGRESS” questions.

These have been designed to self-check your progress of study. It will be better if you solve the given

problems in these boxes immediately, after you finish reading the section in which these questions

occur and then match your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the

end of each unit.

MASTER OF COMPUTER APPLICATIONS

Linux System Administration

DETAILED SYLLABUS

Unit 1: Introduction to Linux
Basic idea on Proprietary, Open Source, Free Software etc., Introduction of Various Linux Distribution
(Red Hat Enterprise Linux, Cent OS, Fedora Projects, Debian Linux, Ubuntu, etc.); Basic Architecture
of Unix/Linux system, Kernel, Shell. Linux File System, Boot block, Super block, Inode table, Data
blocks, How Linux access files, storage files, Linux standard directories, LILO, GRUB Boot Loader;
Installation of Linux system- Using Live CD, Virtual Machine, Direct Installation; Partitioning the Hard
drive for Linux, init and run levels;

Unit 2: Linux Basics
Getting Started: Login process, Creating Users Account and Group, Getting Help. Services and
Process, Files and File System (File Types and Permissions, Links, Size and Space, Date and Time)
Working with Files: Reading Files, Searching for files, Copying, Moving, Renaming, Deleting, Linking,
and Editing Files; Other Commands: ls, rm, rmdir, pwd, more ,less. grep, awt, sort, cat, head, tail,
wc, tee, ps, top, tar, unzip, nice, kill, netstat, Disk related commands, checking disk free spaces.

Unit 3: Linux Shell Script
Various types of Shell available in Linux, Comparisons between various Shells, Shell programming in
bash, read command, conditional and looping statements, case statements, parameter passing and
arguments, Shell variables, system shell variables, shell keywords, creating Shell programs for
performing various tasks.

Unit 4: System Administration
System Administration Common administrative tasks, identifying administrative files – configuration
and log files, Role of system administrator, Managing user accounts-adding & deleting users, changing
permissions and ownerships, Creating and managing groups, modifying group attributes, Temporary
disable user’s accounts, creating and mounting file system, checking and monitoring system
performance file security & Permissions, becoming super user using su; Getting system information
with uname, host name, disk partitions & sizes, users, kernel. Backup and restore files, reconfiguration
hardware with kudzu, installing and removing packages in Linux. Configure X-windows starting &
using X desktop. KDE & Gnome graphical interfaces, changing X windows settings.

Unit 5: Linux Networking
Installation and configuration of a simple LAN; Installation and configuration of: Proxy server(Squid),
DNS server(BIND), Mail server, Web server(Apache), File server(Samba), DHCP server; Installation
and configuration of a SSH server and cliant; Installation and configuration of FTP server and cliant;

Introduction to Linux Unit 1

 1

UNIT - 1: INTRODUCTION TO LINUX

UNIT STRUCTURE

1.1 Learning Objectives
1.2 Introduction
1.3 Proprietary, Open Source, and Free Software
1.4 Linux distributions
1.5 Linux/Unix system architecture – Kernel, Shell
1.6 Linux file system
1.7 Linux standard directories
1.8 Installing the Linux system
1.9 Hard drive partitioning for Linux – init and run levels
1.10 Let Us Sum Up
1.11 Answers To Check Your Progress
1.12 Further Readings
1.13 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 know the basics of the linux operating system

 know the different distribution of linux

 study the architecture of the linux operating system

 know the linux file system

 learn about the linux system installation

 study partitioning for the linux system

1.2 INTRODUCTION

Linux is a Unix-like computer operating system assembled under
the model of free and open source software development and
distribution. The defining component of Linux is the Linux kernel,
an operating system kernel first released on 5 October 1991, by
Linus Torvalds. Since the C compiler that builds Linux and the
main supporting user space system tools and libraries originated in
the GNU Project, initiated in 1983 by Richard Stallman, the Free
Software Foundation prefers the name GNU/Linux.

Introduction to Linux Unit 1

 2

Linux was originally developed as a free operating system for Intel
x86-based personal computers. It has since been ported to more
computer hardware platforms than any other operating system. It is
a leading operating system on servers and other big iron systems
such as mainframe computers and supercomputers: more than
90% of today's 500 fastest supercomputers run some variant of
Linux, including the 10 fastest. Linux also runs on embedded
systems (devices where the operating system is typically built into
the firmware and highly tailored to the system) such as mobile
phones, tablet computers, network routers, building automation
controls, televisions and video game consoles; the Android system
in wide use on mobile devices is built on the Linux kernel.

This unit provides the introductory topics to the Linux operating
system, its architecture, file system, directory structure, its
installation etc.

1.3 PROPRIETARY, OPEN SOURCE, AND FREE
SOFTWARE

Proprietary software –

Proprietary software or closed source software is computer
software licensed under exclusive legal right of the copyright
holder with the intent that the licensee is given the right to use the
software only under certain conditions, and restricted from other
uses, such as modification, sharing, studying, redistribution, or
reverse engineering. The owner of proprietary software exercises
certain exclusive rights over the software. The owner can restrict
use, inspection of source code, modification of source code, and
redistribution. Vendors typically limit the number of computers on
which software can be used, and prohibit the user from installing
the software on extra computers. Restricted use is sometimes
enforced through a technical measure, such as product activation,
a product key or serial number, a hardware key, or copy protection.
Vendors may also distribute versions that remove particular
features, or versions which allow only certain fields of endeavor,
such as non-commercial, educational, or non-profit use.

Proprietary software vendors can prohibit users from sharing the
software with others. Another unique license is required for another
party to use the software. In the case of proprietary software with
source code available, the vendor may also prohibit customers
from distributing their modifications to the source code. Well known
examples of proprietary software include Microsoft Windows,
Adobe Flash Player, PS3 OS, iTunes, Adobe Photoshop, Google
Earth, Mac OS X, Skype, WinRAR, and some versions of Unix.

Open source software –

Open-source software (OSS) is computer software with its source
code made available and licensed with an open-source license in

Introduction to Linux Unit 1

 3

which the copyright holder provides the rights to study, change and
distribute the software for free to anyone and for any purpose.
Open-source software is very often developed in a public,
collaborative manner. Open-source software is the most prominent
example of open-source development and often compared to
(technically defined) user-generated content or (legally defined)
open-content movements. The Open Source Definition, notably,
presents an open-source philosophy, and further defines the terms
of usage, modification and redistribution of open-source software.
Software licenses grant rights to users which would otherwise be
reserved by copyright law to the copyright holder. Several open-
source software licenses have qualified within the boundaries of
the Open Source Definition. The most prominent and popular
example is the GNU General Public License (GPL), which "allows
free distribution under the condition that further developments and
applications are put under the same license", thus also free. While
open-source distribution presents a way to make the source code
of a product publicly accessible, the open-source licenses allow
the authors to fine tune such access.
Open source software projects are built and maintained by a
network of volunteer programmers. Prime examples of open-
source products are the Apache HTTP Server, the e-commerce
platform osCommerce and the internet browser Mozilla Firefox.
One of the most successful open-source products is the
GNU/Linux operating system, an open-source Unix-like operating
system, and its derivative Android, an operating system for mobile
devices.

Free software –

Free software is software provided under terms that guarantee the
freedoms of its users (individually and in groups) to run it, adapt it
to their needs, and redistribute it with or without changes. These
freedoms are protected by granting broad permission to make use
of the source code, either alone or in cooperation with other people
of the user's choice. Users of free software are free in these
activities, because they do not need to ask for any permission; and
they are not restricted in activities through restrictive proprietary
licenses (e.g. copy-restriction), or requirements of having to agree
to restrictive terms of others (e.g. non-disclosure agreements), and
they are not already restricted from the outset (e.g. through
deliberate non-availability of source code).
The goals of Free Software (control in one's own computing and
free cooperation) are reached by granting the following freedom-
rights: users are free to run, copy, distribute, study, change and
improve the software; these freedoms are explicitly granted and
not suppressed (as is the case with proprietary software). Thus,
free software is a matter of liberty, not price (users are free – which
includes the freedom to redistribute the software, which can be
done free or for a fee). Free software guarantees user's freedoms:
to study and modify software, by the availability of the source code;
as well as freedom to copy, and distribute.

Introduction to Linux Unit 1

 4

1.4 LINUX DISTRIBUTIONS

A Linux distribution is a collection of (usually open source)
software on top of a Linux kernel. A distribution can bundle server
software, system management tools, documentation and many
desktop applications in a central secure software repository. A
distribution aims to provide a common look and feel, secure and
easy software management and often a specific operational
purpose.

Some of the popular Linux distributions are discussed below –

Red Hat Enterprise Linux –
Assembled by the company Red Hat, Red Hat Linux was a popular
Linux based operating system until its discontinuation in 2004. Red
Hat Linux 1.0 was released on November 3, 1994. It was originally
called "Red Hat Commercial Linux". It was the first Linux
distribution to use the RPM Package Manager as its packaging
format, and over time has served as the starting point for several
other distributions, such as Mandriva Linux and Yellow Dog Linux.
Since 2003, Red Hat discontinued the Red Hat Linux line in favor
of Red Hat Enterprise Linux (RHEL) for enterprise environments.
Fedora, developed by the community-supported Fedora Project
and sponsored by Red Hat, is the free version best suited for home
use. Red Hat Enterprise Linux (RHEL) is a Linux-based
operating system developed by Red Hat and targeted toward the
commercial market. Red Hat Enterprise Linux is released in server
versions for x86, x86-64, Itanium, PowerPC and IBM System z,
and desktop versions for x86 and x86-64. All of Red Hat's official
support and training and the Red Hat Certification Program center
around the Red Hat Enterprise Linux platform. Red Hat Enterprise
Linux is often abbreviated to RHEL, although this is not an official
designation.
The first version of Red Hat Enterprise Linux to bear the name
originally came onto the market as "Red Hat Linux Advanced
Server". In 2003 Red Hat rebranded Red Hat Linux Advanced
Server to "Red Hat Enterprise Linux AS", and added two more
variants, Red Hat Enterprise Linux ES and Red Hat Enterprise
Linux WS.
While Red Hat uses strict trademark rules to restrict free re-
distribution of their officially supported versions of Red Hat
Enterprise Linux, Red Hat freely provides the source code for the
distribution's software even for software where this is not
mandatory. As a result, several distributors have created re-
branded and/or community-supported re-builds of Red Hat
Enterprise Linux that can legally be made available, without official
support from Red Hat. CentOS and Oracle Linux aim to provide
100% binary compatibility with Red Hat Enterprise Linux.

Introduction to Linux Unit 1

 5

Cent OS –
CentOS (Community ENTerprise Operating System) is a Linux
distribution which attempts to provide a free enterprise class
computing platform which has 100% binary compatibility with its
upstream source, Red Hat Enterprise Linux (RHEL). In June 2006,
David Parsley, the primary developer of Tao Linux, another Red
Hat Enterprise Linux (RHEL) clone, announced that it would be
retired and rolled into CentOS development. Tao users migrated to
the CentOS release via "yum update". In July 2010, CentOS
overtook Debian to become the most popular Linux distribution for
web servers, with almost 30% of all Linux web servers using it,
although Debian retook the lead in January 2012. CentOS version
numbers have two parts, a major version and a minor version,
which correspond to the major version and update set of Red Hat
Enterprise Linux that was used to build that version of CentOS. For
example, CentOS 4.7 is built from the source packages from RHEL
4 update 7.

Fedora Projects –

The Fedora Project was created in late 2003, when Red Hat Linux
was discontinued. Red Hat Enterprise Linux was to be Red Hat's
only officially supported Linux distribution, while Fedora was to be
a community distribution. Red Hat Enterprise Linux branches its
releases from versions of Fedora. The name of Fedora derives
from Fedora Linux, a volunteer project that provided extra software
for the Red Hat Linux distribution, and from the characteristic
fedora used in Red Hat's "Shadowman" logo. Warren Togami
began Fedora Linux in 2002 as an undergraduate project, intended
to provide a single repository for well-tested third-party software
packages so that non-Red Hat software would be easier to find,
develop, and use. The key difference between the approaches of
Fedora Linux and Red Hat Linux was that Fedora's repository
development would be collaborative with the global volunteer
community.../../KKHSOU/Introduction-to-linux/Fedora (operating
system) - Wikipedia, the free encyclopedia.htm - cite_note-12
Fedora Linux was eventually absorbed into the Fedora Project,
carrying with it this collaborative approach. Fedora is a trademark
of Red Hat, and although this had previously been disputed by the
creators of the unrelated Fedora repository management software,
the issue has now been resolved.

The Fedora Project distributes Fedora in several different ways:

 Fedora DVD/CD set – a DVD or CD set of all major Fedora
packages at time of shipping.

 Live images – CD or DVD sized images that can be used
to create a Live CD or boot from a USB flash drive and
optionally install to a hard disk

 Minimal CD – used for installing over HTTP, FTP or NFS.

The Fedora Project also distributes custom variations of Fedora
which are called Fedora spins. These are built from a specific set
of software packages and have a combination of software to meet
the requirements of a specific kind of end user. Fedora spins are

Introduction to Linux Unit 1

 6

developed by several Fedora special interest groups. It is also
possible to create Live USB versions of Fedora using Fedora Live
USB creator, UNetbootin or dd. Extra Packages for Enterprise
Linux (EPEL) is a volunteer-based community effort from the
Fedora project to create a repository of high-quality add-on
packages that complement the Fedora-based Red Hat Enterprise
Linux and its compatible spinoffs such as CentOS or Scientific
Linux. Software package management is primarily handled by the
yum utility. Graphical interfaces, such as pirut and pup are
provided, as well as puplet, which provides visual notifications in
the panel when updates are available. apt-rpm is an alternative to
yum, and may be more familiar to people used to Debian or
Debian-based distributions, where Advanced Packaging Tool is
used to manage packages. Additionally, extra repositories can be
added to the system, so that packages not available in Fedora can
be installed
Fedora comes installed with a wide range of software that includes
LibreOffice, Firefox, and Empathy. Additional software that is not
installed by default can be downloaded using the package
manager. Before Fedora 7, there were two main repositories –
Core and Extras. Fedora Core contained all the base packages
that were required by the operating system, as well as other
packages that were distributed along with the installation
CD/DVDs, and was maintained only by Red Hat developers.
Fedora Extras, the secondary repository that was included from
Fedora Core 3, was community-maintained and not distributed
along with the installation CD/DVDs. Also prior to Fedora 7 being
released, there was a third repository called Fedora Legacy. This
repository was community-maintained and was mainly concerned
with extending the life cycle of older Fedora Core distributions and
selected Red Hat Linux releases that were no longer officially
maintained. Fedora Legacy was shut down in December 2006.
The default desktop in Fedora is the GNOME desktop
environment, with Fedora offering the GNOME Shell as its default
interface since the release of Fedora 15. Other desktop
environments are available from the Fedora package repositories,
and can also be installed from the Fedora installer, including the
KDE Plasma Workspaces, Xfce, and LXDE desktop environments.
In Fedora 18 both the MATE and Cinnamon desktops were made
available in the package repositories. In addition, specialized
"spins" are available offering these alternative desktops custom
configured and offered by default.
Security is one of the most important features in Fedora. One of
the security features in Fedora is Security-Enhanced Linux, a Linux
feature that implements a variety of security policies, including
mandatory access controls, through the use of Linux Security
Modules (LSM) in the Linux kernel. Fedora is one of the
distributions leading the way with SELinux. SELinux was
introduced in Fedora Core 2. It was disabled by default, as it
radically altered how the operating system worked, but was
enabled by default in Fedora Core 3 and introduced a less strict,
targeted policy.

Introduction to Linux Unit 1

 7

Debian linux –
Debian is an operating system developed by the Debian project
which is composed of free software mostly carrying the GNU
General Public License. Debian currently uses the Linux kernel or
the kernel from FreeBSD operating system, whereas the large part
of its most basic tools is made up of free software from the GNU
project, hence the names Debian GNU/Linux and Debian
GNU/kFreeBSD. Debian includes non-free software, however it is
placed outside of its official repositories to comply with its
guidelines of providing free software. Debian GNU/Linux is one of
the most popular Linux distributions for personal and Internet
server machines. The vitality the Debian project plays in open
source is demonstrated in pursuit of advancing development and
security patches in relation to its strong participation of CVE
compatibility efforts.

Debian is one of the most influential open source projects known
as a Linux distribution, and maintains repositories with over 37,500
software packages ready for installation. Its repositories host large
numbers of software packages for multiple architectures, more in
number than any other Linux distribution project. Debian hosts
additional repositories called "non-free" but offers its distribution
setup without it. Debian includes popular programs such as
LibreOffice, Iceweasel (a rebranding of Firefox), Evolution mail,
CD/DVD writing programs, music and video players, image
viewers and editors, and PDF viewers. Debian's new form of
installation-from-USB has been supported since its sixth edition.
Debian supports this capability inside it's first iso-file of any of its
install media sets (whether CD or DVD) and does not require the
help of 'extraction tools' such as unetbootin. This new feature is
called Hybrid iso in which an .iso file is dumped to USB. Debian is
one of the few Linux distributions offering this feature with their
install iso media, and other distributions are starting to adopt this
feature.

Debian offers stable and testing CD images specifically built for
GNOME (the default), KDE Plasma Workspaces, Xfce and LXDE.
Less common window managers such as Enlightenment,
Openbox, Fluxbox, GNUstep, IceWM, Window Maker and others
can also be installed. It was previously suggested that the default
desktop environment of version 7.0 "Wheezy" may be switched to
Xfce, because GNOME 3 might not fit on the first CD of the set.
The Debian Installer team announced that the first CD includes
GNOME thanks to their efforts to minimize the amount of disc
space GNOME takes up. A Debian Live system is a version of
Debian that can be booted directly from removable media (CDs,
DVDs, USB keys) or via network booting without having to install it
on the hard drive. This allows the user to try out Debian before
installing it or use it as a boot-disk. There are prebuilt Debian Live
images for rescue, standard, GNOME, KDE Plasma Workspaces,
Xfce and LXDE for several architectures. A hard disk installation
can be achieved using the Debian Installer included in the live

Introduction to Linux Unit 1

 8

image. Most of the live ISO images for the current release no
longer fit on a 700 MB CD. Customized CD images can be built
using live-build.[30] Live-build can not only generate CD Images,
but also bootable DVDs, images for USB thumb drives, or netboot
images. Live-magic is a GUI for live-build.

Ubuntu linux –

Ubuntu is a computer operating system based on the Debian Linux
distribution and distributed as free and open source software,
using its own desktop environment. It is named after the Southern
African philosophy of ubuntu, which can be translated as
"humanity towards others" or "the belief in a universal bond of
sharing that connects all humanity". As of 2012, according to
online surveys, Ubuntu is the most popular Linux-based operating
system on desktop/laptop personal computers, and most Ubuntu
coverage focuses on its use in that market. However, it is also
popular on servers and for cloud computing.

Development of Ubuntu is led by Canonical Ltd., a UK-based
company owned by South African entrepreneur Mark Shuttleworth.
Canonical generates revenue through the sale of technical support
and services related to Ubuntu. According to Canonical, the
Ubuntu project is committed to the principles of open source
development; people are encouraged to use free software,
improve it, and distribute it. Ubuntu is composed of many software
packages, the majority of which are distributed under a free
software license. The main license used is the GNU General
Public License (GNU GPL) which, along with the GNU Lesser
General Public License (GNU LGPL), explicitly declares that users
are free to run, copy, distribute, study, change, develop and
improve the software. On the other hand, there is also proprietary
software available that can run on Ubuntu. The Ubiquity installer
allows Ubuntu to be installed to the hard disk from within the Live
CD environment, without the need for restarting the computer prior
to installation. Beginning with 5.04, UTF-8 became the default
character encoding, which allows for support of a variety of non-
Roman scripts.

The system requirements vary among Ubuntu products. For the
main Ubuntu desktop product, the official Ubuntu Documentation
recommends a 1 GHz Pentium 4 processor with 512 megabytes of
RAM and 5 gigabytes of hard drive space, or better. For less
powerful computers, there are other Ubuntu distributions such as
Lubuntu and Xubuntu. As of version 12.04, Ubuntu supports the
ARM and x86 (32 bit and 64 bit) architectures. Installation of
Ubuntu is generally performed with the Live CD or a Live USB
drive. The Ubuntu OS can run directly from the CD (although this is
usually slower than running Ubuntu from an HDD), allowing a user
to "test-drive" the OS for hardware compatibility and driver support.
The CD also contains the Ubiquity installer, which can then guide
the user through the permanent installation process. CD images of
all current and past versions are available for download at the
Ubuntu web site. Installing from the CD requires a minimum of 256
MB of RAM.

Introduction to Linux Unit 1

 9

Gentoo linux –

Gentoo Linux is a computer operating system built on top of the
Linux kernel and based on the Portage package management
system. It is distributed as free and open source software. Unlike a
conventional software distribution, the user compiles the source
code locally according to their chosen configuration. Where source
code is available, Portage normally supplies no precompiled
binaries, continuing in the tradition of the ports collection, although
for convenience, some large packages (such as Mozilla Firefox
and LibreOffice) are also available as precompiled binaries for
various architectures where compiling would otherwise be very
time consuming. The development project and its products are
named after the fastest-swimming penguin, the Gentoo, to reflect
the potential speed improvements of machine-specific
optimization. Gentoo package management is designed to be
modular, portable, easy to maintain, flexible, and optimized for the
user's machine. Gentoo describes itself as a meta-distribution,
"because of its near-unlimited adaptability", in that the majority of
users have configurations and sets of installed programs which are
unique to themselves.
Gentoo Linux was initially created by Daniel Robbins as the Enoch
Linux distribution. The goal was to create a distribution without
precompiled binaries that was tuned to the hardware and only
included required programs. Although originally built on the x86
architecture, Gentoo has been ported to many others. Currently it
is officially supported and considered stable on x86, x86-64, IA-64,
PA-RISC, PowerPC, PowerPC 970, SPARC 64-bit and DEC Alpha
architectures.
Gentoo may be installed in several ways. The most common way
is to use the Gentoo minimal CD with a stage 3 tarball. As with
many Linux distributions, Gentoo may be installed from almost any
Linux environment, such as another Linux distribution's LiveCD,
LiveUSB or Network Booting using the "Gentoo Alternate Install
Guide". A normal install requires a connection to the Internet, but
there is also a guide for a network-less install. Previously, Gentoo
supported installation from stage 1 and 2 tarballs. However, this is
no longer recommended officially by the Gentoo foundation, and is
meant only for Gentoo developers. Following the initial install
steps, the Gentoo Linux install process requires that all users
compile their own Linux kernel. This process is generally not
required by other Linux distributions. Although this is widely
regarded as a complex task, Gentoo provides documentation and
tools such as Genkernel to simplify the process and make it
straightforward for novice users. Support for installation is provided
on the Gentoo forum and on IRC. Compiling packages from source
takes considerably more time than installing pre-built binaries. In
some cases (depending on the size of the source code to be
compiled and hardware), compilation of large programs can take
hours and may also require a few gigabytes of temporary disk
space in which to build. Generally, Gentoo users accept long
compile times as the cost of being able to apply their own compile-
time options and enjoy the flexibility of Portage, but Gentoo

Introduction to Linux Unit 1

 10

developers have created a number of work-arounds to avoid slow
package installation. Pre-compiled binaries are provided for some
applications with long build times, such as OpenOffice.org and
Mozilla Firefox, provided by upstream maintainers. By using these
binaries, installation time is equivalent to other Linux distributions,
but users lose the ability to customize optional features. The
standard installation process gives users configuration options to
reduce compilation times, such as enabling parallel compilation
and using pipes instead of temporary files. Other optional features
of the Portage system include distributed compiling and using a
compiler cache. In addition, the user may be able to mount a large
filesystem in RAM to greatly speed up the process of building
packages. Some of these approaches have drawbacks, and so are
not enabled by default. When installing the same package on
multiple computers, the package may be compiled once and a
binary package created for quick installation on the other
computers, assuming sufficiently similar hardware.

1.5 LINUX/UNIX SYSTEM ARCHITECTURE

Linux is one of popular version of UNIX operating System. It is
open source as its source code is freely available. It is free to use.
Linux was designed considering UNIX compatibility. It's
functionality list is quite similar to that of UNIX.

Basic Features
Following are some of the important features of Linux Operating
System.

 Portable – Portability means software can work on different
type of hardware in same way. Linux kernel and application
programs support their installation on any kind of hardware
platform.

 Open Source – Linux source code is freely available and it
is community based development project. Multiple teams
work in collaboration to enhance the capability of Linux
operating system and it is continuously evolving.

 Multi-User – Linux is a multiuser system means multiple
users can access system resources like memory/
ram/application programs at the same time.

 Multiprogramming – Linux is a multiprogramming system
meaning multiple applications can run at same time.

 Hierarchical File System – Linux provides a standard file
structure in which system files/user files are arranged.

 Shell – Linux provides a special interpreter program which
can be used to execute commands of the operating
system. It can be used to do various types of operations,
call application programs etc.

 Security – Linux provides user security using
authentication features like password protection/controlled
access to specific files/encryption of data.

Introduction to Linux Unit 1

 11

Components of Linux System

The Linux Operating System has primarily three components:

Kernel – Kernel is the core part of Linux. It is responsible for all
major activities of the operating system. It consists of various
modules and it interacts directly with the underlying hardware.
Kernel provides the required abstraction to hide low level hardware
details to system or application programs.

System Library – System libraries are special functions or
programs using which application programs or system utilities
accesses Kernel’s features. These libraries implements most of the
functionalities of the operating system and do not require kernel
module's code access rights.

System Utility – System Utility programs are responsible to do
specialized, individual level tasks.

Fig 1.1: Components of Linux

Kernel Mode vs User Mode
Kernel component code executes in a special privileged mode
called kernel mode with full access to all resources of the
computer. This code represents a single process, executes in
single address space and do not require any context switch and
hence is very efficient and fast. Kernel runs each processes and
provides system services to processes, provides protected access
to hardware to processes. Support code which is not required to
run in kernel mode is in System Library. User programs and other
system programs works in User Mode which has no access to
system hardware and kernel code. User programs/utilities use

Introduction to Linux Unit 1

 12

System libraries to access Kernel functions to get system's low
level tasks.

The Architecture of Linux consist of five parts –

1. Kernel
2. Shell
3. System Utilities
4. User Applications
5. Hardware Platform

Fig 1.2: Linux System architecture

1. The KERNEL –

On a purely technical level, the kernel is an intermediary layer
between the hardware and the software. Its purpose is to pass
application requests to the hardware and to act as a low-level
driver to address the devices and components of the system.
Nevertheless, there are other interesting ways of viewing the
kernel. The kernel is the core of the Linux operating system: it
manages communication between devices and software, manages
the system resources (like CPU time, memory, network, ...) and
shields off the complexity of device programming from the
developer as it provides an interface for the programmer to
manipulate hardware.

 The kernel can be regarded as an enhanced machine that,
in the view of the application, abstracts the computer on a

Introduction to Linux Unit 1

 13

high level. For example, when the kernel addresses a hard
disk, it must decide which path to use to copy data from
disk to memory, where the data reside, which commands
must be sent to the disk via which path, and so on.
Applications, on the other hand, need only issue the
command that data are to be transferred. How this is done
is irrelevant to the application — the details are abstracted
by the kernel. Application programs have no contact with
the hardware itself, only with the kernel, which, for them,
represents the lowest level in the hierarchy they know —
and is therefore an enhanced machine.

 Viewing the kernel as a resource manager is justified when

several programs are run concurrently on a system. In this
case, the kernel is an instance that shares available
resources — CPU time, disk space, network connections,
and so on — between the various system processes while
at the same time ensuring system integrity.

 Another view of the kernel is as a library providing a range

of system-oriented commands. As is generally known,
system calls are used to send requests to the computer;
with the help of the C standard library, these appear to the
application programs as normal functions that are invoked
in the same way as any other function.

The Linux kernel is composed of five main subsystems:

a) The Process Scheduler (SCHED) is responsible for
controlling process access to the CPU. The scheduler
enforces a policy that ensures that processes will have fair
access to the CPU, while ensuring that necessary
hardware actions are performed by the kernel on time.

b) The Memory Manager (MM) permits multiple processes to
securely share the machine's main memory system. In
addition, the memory manager supports virtual memory
that allows Linux to support processes that use more
memory than is available in the system. Unused memory is
swapped out to persistent storage using the file system
then swapped back in when it is needed.

c) The Virtual File System (VFS) abstracts the details of the
variety of hardware devices by presenting a common file
interface to all devices. In addition, the VFS supports
several file system formats that are compatible with other
operating systems.

d) The Network Interface (NET) provides access to several
networking standards and a variety of network hardware.

e) The Inter-Process Communication (IPC) subsystem
supports several mechanisms for process-to-process
communication on a single Linux system.

Introduction to Linux Unit 1

 14

Fig 1.3: Kernel Subsystem overview

This diagram emphasizes that the most central subsystem is the
process scheduler: all other subsystems depend on the process
scheduler since all subsystems need to suspend and resume
processes. Usually a subsystem will suspend a process that is
waiting for a hardware operation to complete, and resume the
process when the operation is finished. For example, when a
process attempts to send a message across the network, the
network interface may need to suspend the process until the
hardware has completed sending the message successfully. After
the message has been sent (or the hardware returns a failure), the
network interface then resumes the process with a return code
indicating the success or failure of the operation. The other
subsystems (memory manager, virtual file system, and inter-
process communication) all depend on the process scheduler for
similar reasons.

The other dependencies are somewhat less obvious, but equally
important:

 The process-scheduler subsystem uses the memory
manager to adjust the hardware memory map for a specific
process when that process is resumed.

 The inter-process communication subsystem depends
on the memory manager to support a shared-memory
communication mechanism. This mechanism allows two
processes to access an area of common memory in
addition to their usual private memory.

 The virtual file system uses the network interface to
support a network file system (NFS), and also uses the
memory manager to provide a ramdisk device.

 The memory manager uses the virtual file system to
support swapping; this is the only reason that the memory
manager depends on the process scheduler. When a

Introduction to Linux Unit 1

 15

process accesses memory that is currently swapped out,
the memory manager makes a request to the file system to
fetch the memory from persistent storage, and suspends
the process.

In addition to the dependencies that are shown explicitly, all
subsystems in the kernel rely on some common resources that are
not shown in any subsystem. These include procedures that all
kernel subsystems use to allocate and free memory for the kernel's
use, procedures to print warning or error messages, and system
debugging routines. Each of the depicted subsystems contains
state information that is accessed using a procedural interface, and
the subsystems are each responsible for maintaining the integrity
of their managed resources.

2. The Shell –

It acts as an interface between user and the operating system. It is
the software that provides an interface for the user of an operation
system which needs services of a kernel. An operating system
shell is divided into two parts:-

 Command line
 GUI

Command line Shell

It is the part of the operating system which receives and executes
the operating system command by the user. The commands are
then sent to the kernel for execution. If the command is valid the
kernel starts the execution else an error results.

GUI (Graphical User Interface)

This provides a user-friendly environment. Users cannot remember
the syntax of all the command and thus it helps to simply point
toward the object by the mouse or some other pointing device
which a user required for its execution.

Interconnection between Kernel and Shell
When user gives any command for performing any operation the
request goes to the SHELL. The Shell then translates these
human-readable programs to machine language and then transfers
the request to the kernel. The kernel receives the request from the
shell, processes the request and then displays the result on the
screen. All these functions are performed by the kernel in a
transparent manner.

3. System Utilities –
The System Utilities consist of various system interrupts and
system calls which is to transfer the control for the user mode to
the kernel mode containing the kernel and the shell for further
execution of the commands. The control can be transfer using
System calls.

Introduction to Linux Unit 1

 16

System Call

System call is an interface between a process and the operating
system. In simple words a system call is the request for running
any program and for performing any operation on the system that
the user has requested. eg. A user has requested MS paint and
this request will be sent to the operating system, which will then
generate some activity to support MS paint and run on the system.

System calls are of different types –

a) File Management System calls – For performing open,
close, read, write etc operations.

b) Process Control System calls – For performing Load,
execute, create etc operations.

c) Device Management System calls – For performing request
device, write device, and release device etc operations.

d) Communication System calls – For performing Send
message, transfer status etc operations etc.

4. User Applications –

These are the applications which a user requires to perform some
basic tasks. Linux and other operating systems come up with
various different applications in them like g++, gcc, office suits etc.
Kernel is used to generate processes to support these
applications.

5. Hardware Platform –

The resource of the system such as keyboard, monitor, printer etc
with which the user can input/output the request.

Introduction to Linux Unit 1

 17

1. Fill in the blanks

(a) The defining component of Linux is the Linux _______.

(b) __________ software is computer software licensed under
exclusive legal right of the copyright holder.

(c) ____________ software is very often developed in a public,
collaborative manner.

(d) _____ software is software provided under terms that
guarantee the freedoms of its users to run it.

(e) ______ version numbers have two parts, a _____ version
and a _____ version.

(f) _____________ Linux branches its releases from versions
of Fedora.

(g) _______ is a computer operating system based on the
Debian Linux distribution.

(h) ________ Linux is built on top of the Linux kernel and
based on the ________________________ system.

(i) ___________ are special functions or programs using
which application programs or system utilities accesses
_______ features.

(j) The kernel is an intermediary layer between the ________
and the ________.

(k) The Process Scheduler is responsible for controlling
_____________ to the CPU.

(l) The Shell acts as an ________ between user and the
operating system.

CHECK YOUR PROGRESS

Introduction to Linux Unit 1

 18

1.6 LINUX FILE SYSTEM

On a LINUX system, everything is a file; if something is not a file, it
is a process. This statement is true because there are special files
that are more than just files (named pipes and sockets, for
instance), but to keep things simple, saying that everything is a file
is an acceptable generalization. A Linux system makes no
difference between a file and a directory, since a directory is just a
file containing names of other files. Programs, services, texts,
images, and so forth, are all files. Input and output devices, and
generally all devices, are considered to be files, according to the
system.
The filesystem includes the methods and data structures that an
operating system uses to keep track of files on a disk or partition;
that is, the way the files are organized on the disk. The word is
also used to refer to a partition or disk that is used to store the files
or the type of the filesystem. Thus, one might say “I have two
filesystems'' meaning one has two partitions on which one stores
files, or that one is using the “extended filesystem'', meaning the
type of the filesystem. The difference between a disk or partition
and the filesystem it contains is important. A few programs
(including, reasonably enough, programs that create filesystems)
operate directly on the raw sectors of a disk or partition; if there is
an existing file system there it will be destroyed or seriously
corrupted. Most programs operate on a filesystem, and therefore
will not work on a partition that does not contain one (or that
contains one of the wrong types). Before a partition or disk can be
used as a filesystem, it needs to be initialized, and the
bookkeeping data structures need to be written to the disk. This
process is called making a filesystem. Most UNIX filesystem types
have a similar general structure, although the exact details vary
quite a bit. The central concepts are superblock, inode, data block,
directory block, and indirection block. The superblock contains
information about the filesystem as a whole, such as its size (the
exact information here depends on the filesystem). An inode
contains all information about a file, except its name. The name is
stored in the directory, together with the number of the inode. A
directory entry consists of a filename and the number of the inode
which represents the file. The inode contains the numbers of
several data blocks, which are used to store the data in the file.
There is space only for a few data block numbers in the inode,
however, and if more are needed, more space for pointers to the
data blocks is allocated dynamically. These dynamically allocated
blocks are indirect blocks; the name indicates that in order to find
the data block, one has to find its number in the indirect block first.
UNIX filesystems usually allow one to create a hole in a file (this is
done with the lseek() system call), which means that the filesystem
just pretends that at a particular place in the file there is just zero
bytes, but no actual disk sectors are reserved for that place in the
file (this means that the file will use a bit less disk space). This
happens especially often for small binaries, Linux shared libraries,
some databases, and a few other special cases. (Holes are
implemented by storing a special value as the address of the data

Introduction to Linux Unit 1

 19

block in the indirect block or inode. This special address means
that no data block is allocated for that part of the file, ergo, there is
a hole in the file.)
Linux supports several types of filesystems. As of this writing the
most important ones are:
minix –
The oldest, presumed to be the most reliable, but quite limited in
features (some time stamps are missing, at most 30 character
filenames) and restricted in capabilities (at most 64 MB per
filesystem).

xia –

A modified version of the minix filesystem that lifts the limits on the
filenames and filesystem sizes, but does not otherwise introduce
new features. It is not very popular, but is reported to work very
well.

ext3 –

The ext3 filesystem has all the features of the ext2 filesystem. The
difference is, journaling has been added. This improves
performance and recovery time in case of a system crash. This
has become more popular than ext2.

ext2 –

This is the most featureful of the native Linux filesystems. It is
designed to be easily upwards compatible, so that new versions of
the filesystem code do not require re-making the existing
filesystems.

ext –

An older version of ext2 that was not upwards compatible. It is
hardly ever used in new installations any more, and most people
have converted to ext2.

reiserfs –
This is a more robust filesystem where Journaling is used which
makes data loss less likely. Journaling is a mechanism whereby a
record is kept of transaction which is to be performed, or which
have been performed. This allows the filesystem to reconstruct
itself fairly easily after damage caused by, for example, improper
shutdowns.

jfs –
JFS is a journaled filesystem designed by IBM to to work in high
performance environments>

xfs –

XFS was originally designed by Silicon Graphics to work as a 64-
bit journaled filesystem. XFS was also designed to maintain high
performance with large files and filesystems. In addition, support

Introduction to Linux Unit 1

 20

for several foreign filesystems exists, to make it easier to exchange
files with other operating systems. These foreign filesystems work
just like native ones, except that they may be lacking in some
usual UNIX features, or have curious limitations, or other oddities.

msdos –

Compatibility with MS-DOS (and OS/2 and Windows NT) FAT
filesystems.

umsdos –

Extends the msdos filesystem driver under Linux to get long
filenames, owners, permissions, links, and device files. This allows
a normal msdos filesystem to be used as if it were a Linux one,
thus removing the need for a separate partition for Linux.

vfat –
This is an extension of the FAT filesystem known as FAT32. It
supports larger disk sizes than FAT. Most MS Windows disks are
vfat.

iso9660 –

The standard CD-ROM filesystem; the popular Rock Ridge
extension to the CD-ROM standard that allows longer file names is
supported automatically.

nfs –

A networked filesystem that allows sharing a filesystem between
many computers to allow easy access to the files from all of them.

smbfs –

A networks filesystem which allows sharing of a filesystem with an
MS Windows computer. It is compatible with the Windows file
sharing protocols.

hpfs –

The OS/2 filesystem.

sysv –

SystemV/386, Coherent, and Xenix filesystems.

NTFS –

The most advanced Microsoft journaled filesystem providing faster
file access and stability over previous Microsoft filesystems.

The choice of filesystem to use depends on the situation. If
compatibility or other reasons make one of the non-native
filesystems necessary, then that one must be used. If one can
choose freely, then it is probably wisest to use ext3, since it has all
the features of ext2, and is a journaled filesystem. There is also the
There is also the proc filesystem, usually accessible as the /proc

Introduction to Linux Unit 1

 21

proc filesystem, usually accessible as the /proc directory, which is
not really a filesystem at all, even though it looks like one. The proc
filesystem makes it easy to access certain kernel data structures,
such as the process list (hence the name). It makes these data
structures look like a filesystem, and that filesystem can be
manipulated with all the usual file tools. For example, to get a
listing of all processes one might use the command:

(There will be a few extra files that do not correspond to
processes, though. The above example has been shortened.)
Note that even though it is called a filesystem, no part of the proc
filesystem touches any disk. It exists only in the kernel's
imagination. Whenever anyone tries to look at any part of the proc
filesystem, the kernel makes it look as if the part existed
somewhere, even though it does not. So, even though there is a
multi-megabyte/proc/kcore file, it does not take any disk space.

Bootblock –
A program at some fixed location on a hard disk, floppy disk or
other media, which is loaded when the computer is turned on or
rebooted and which controls the next phase of loading the actual
operating system. The loading and execution of the boot block is
usually controlled by firmware in ROM or PROM. It is a dedicated
block usually at the beginning (first block on first track) of a storage
medium that holds special data used to start a system. Some
systems use a boot block of several physical sectors, while some
use only one boot sector. Other manufacturers use the terms boot
block and boot sector interchangeably.

Superblock –

Introduction to Linux Unit 1

 22

A superblock is a record of the characteristics of a filesystem,
including its size, the block size, the empty and the filled blocks
and their respective counts, the size and location of the inode
tables, the disk block map and usage information, and the size of
the block groups. A request to access any file requires access to
the filesystem's superblock. If its superblock cannot be accessed,
a filesystem cannot be mounted (i.e., logically attached to the main
filesystem) and thus files cannot be accessed. Any attempt to
mount a filesystem with a corrupted or otherwise damaged
superblock will likely fail (and usually generate an error message
such as cannot read superblock).
Because of the importance of the superblock and because damage
to it (for example, from physical damage to the magnetic recording
medium on the disk) could erase crucial data, backup copies are
created automatically at intervals on the filesystem (e.g., at the
beginning of each block group). For each mounted filesystem,
Linux also maintains a copy of its superblock in memory. Thus
there are backup copies of the superblock at block offsets 8193,
16385, 24577, etc. If the ext2 filesystem is used, then the
filesystem has block groups each comprised of 8192 blocks can be
confirmed with the dumpe2fs command as follows:

dumpe2fs device_name | less
device_name is the name of the partition on which the filesystem
resides. The output of dumpe2fs is piped (i.e., sent) to the less
command because it can be long and thus in order to read it one
screenful at a time. It can be seen that dumpe2fs also provides a
great deal of additional information about the filesystem, including
the block size.
For example, the following will provide the location of the primary
and backup superblocks on the first partition of the first HDD:

/dumpe2fs /dev/hda1 | less
If a filesystem cannot be mounted because of superblock
problems, it is likely that e2fsck, and the related fsck command,
which are used to check and repair the filesystem, will fail as well,
at least initially. Fortunately, however, e2fsck can be instructed to
use one of the superblock copies instead by issuing a command
similar to the following:

e2fsck -f -b block_offset device
block_offset is the offset to a superblock copy, and it is usually
8193. The -f option is used to force e2fsck to check the filesystem.
When using superblock backup copies, the filesystem may appear
to be clean, in which case no check is needed, but -f overrides this.
For example, to check and repair the filesystem on /dev/hda2 (i.e.,
the second partition of the first HDD) if it has a defective
superblock, the following can be used:

e2fsck -f -b 8193 /dev/hda2
This command can be executed from an appropriate emergency
floppy disk, and it is possible that it will allow the designated
filesystem to be mounted again.

Introduction to Linux Unit 1

 23

The equivalent to the superblock on Microsoft Windows filesystem
is the file allocation table (FAT), which records which disk blocks
hold the topmost directory. On Unix-like operating systems the
superblock is virtually always held in memory, whereas it is not for
older operating systems such as MS-DOS. The superblock
acquired its name from the fact that the first data block of a disk or
of a partition was used to hold the meta-data (i.e., data about data)
about the partition itself. Superblock are now independent of the
concept of the data block, but it remains the data structure that
holds information about each mounted filesystem.
Inodes & Inode table –

For most users and for most common system administration tasks,
it is enough to accept that files and directories are ordered in a
tree-like structure. The computer, however, does not understand a
thing about trees or tree-structures.
Every partition has its own file system. By imagining all those file
systems together, we can form an idea of the tree-structure of the
entire system, but it is not as simple as that. In a file system, a file
is represented by an inode, a kind of serial number containing
information about the actual data that makes up the file: to whom
this file belongs, and where is it located on the hard disk. Every
partition has its own set of inodes; throughout a system with
multiple partitions, files with the same inode number can exist.
Each inode describes a data structure on the hard disk, storing the
properties of a file, including the physical location of the file data.
When a hard disk is initialized to accept data storage, usually
during the initial system installation process or when adding extra
disks to an existing system, a fixed number of inodes per partition
is created. This number will be the maximum amount of files, of all
types (including directories, special files, links etc.) that can exist at
the same time on the partition. We typically count on having 1
inode per 2 to 8 kilobytes of storage.
At the time a new file is created, it gets a free inode. In that inode
is the following information:

 Owner and group owner of the file.

 File type (regular, directory, ...)

 Permissions on the file

 Date and time of creation, last read and change.

 Date and time this information has been changed in the
inode.

 Number of links to this file

 File size

 An address defining the actual location of the file data.

The only information not included in an inode, is the file name and
directory. These are stored in the special directory files. By
comparing file names and inode numbers, the system can make
up a tree-structure that the user understands. Users can display

Introduction to Linux Unit 1

 24

inode numbers using the -i option to ls. The inodes have their own
separate space on the disk.
Inode table –
Each time we create a file in a directory, the system simply
allocates a free I-number from the file system and uses an empty
slot in the correspondent directory to record this I-number and the
name of the file we created. When we issue a command to delete
a file, the system simply replaces the file's I-number by 0, and the
slot is still occupied by its file name, although we are no longer
able to access that file anymore. Therefore, if we frequently create
and delete files within a directory, the (file) size of the directory
becomes bigger and bigger and the I-numbers are no longer
consecutive, this will slow down the file searching operation (and
hence, the system performance, too) considerably. This is one of
the main reasons why the system performance is gradually
deteriorating. We can prevent this from happening by grouping the
files which are changing constantly in a fixed file system, say /tmp,
and periodically repairing the file system. The following diagram
depicts the directory contents of some ext2 directory.

/* include/linux/dirent.h */
struct dirent {
 long d_ino;
 __kernel_off_t d_off;
 unsigned short d_reclen;
 char d_name[256]; /* We must not include
limits.h! */
};

An ordinary file is just a sequence of data bytes stored in some
physical device without any name attached to it. The administrative
information of this file, such as owner, permissions, size, times,
etc., is stored in the inode structure of the file. All of the file
system's inodes are collected together to form an inode table.
Each file system occupies a logical disk. Starting from the 2nd block
of a logical disk, the kernel stores the inode table of the file system
in a consecutive disk blocks. Each inode, an entry in the inode
table, is a data structure which the system uses to store the
following information about a file:

Introduction to Linux Unit 1

 25

1. Type of file (ordinary, directory or special file).
2. Access permissions for the file owner, the owner's group

members and others (i.e. the general public).
3. Number of links.
4. File owner's user and group IDs
5. File size in bytes.
6. The disk addresses of the data blocks where the contents

of the file are actually stored.
7. Time of last access (read or executed), time of last

modification (i.e. written) and time which the inode itself
was last changed.

How linux accesses files –

With all these locations, it might be difficult to locate a particular
file. Most of the time, the file we want to locate is inside the home
directory. However, in some cases we want to locate a particular
file somewhere on our entire system.
locate –
locate, a Unix utility first created in 1983, serves to find files on
filesystems. It searches through a prebuilt database of files
generated by updatedb or by a daemon and compressed using
incremental encoding. It operates significantly faster than find, but
requires regular updating of the database. This sacrifices overall
efficiency (because of the regular interrogation of filesystems even
when no user needs information) and absolute accuracy (since the
database does not update in real time) for significant speed
improvements (particularly on very large filesystems). On fast
systems with small drives, locate is neither necessary nor
desirable.
find –
The find command is a very important and powerful command.
Unlike locate, it only returns live information (so it does not use a
database). This makes searches with find somewhat slow, but
find's power is not speed, but the options one can give to find a
particular file.

Regular find patterns
The most simple find construct is to locate a particular file inside
one or more directories. For instance, to find files or directories
inside /etc whose name is dhcpd.conf (exact matches):

$ find /etc -name dhcpd.conf
/etc/dhcp/dhcpd.conf

To find files (not directories) where dhcpd is in the filename, also
inside /etc directory:

$ find /etc -type f -name '*dhcpd*'
/etc/conf.d/dhcpd
/etc/init.d/dhcpd
/etc/udhcpd.conf

Introduction to Linux Unit 1

 26

/etc/dhcp/dhcpd.conf

To find files in the /etc directory who have been modified within the
last 7 days (read: "less than 7 days ago"):

$ find /etc -type f -mtime -7
/etc/mtab
/etc/adjtime
/etc/wifi-radar.conf
/etc/genkernel.conf

We can even find files based on their ownership. For instance, to
find the files in /etc that do not belong to the root user:

$ find /etc -type f -not -user root

Combining find patterns
We can also combine find patterns. For instance, to find files
modified within the last 7 days but whose name does not contain
.conf:

$ find /etc -type f -mtime -7 -not -name '*.conf'
/etc/mtab
/etc/adjtime

Or, to find the same files, but the name should also not be mtab:
$ find /etc -type f -mtime -7 -not \(-name '*.conf' -
or -name mtab)
/etc/adjtime

1.7 LINUX STANDARD DIRECTORIES

In order to manage all those files in an orderly fashion, we think of
them in an ordered tree-like structure on the hard disk, as we know
from MS-DOS (Disk Operating System) for instance. The large
branches contain more branches, and the branches at the end
contain the tree's leaves or normal files.
Types of Files –

Most files are just files, called regular files; they contain normal
data, for example text files, executable files or programs, input for
or output from a program and so on. While it is reasonably safe to
suppose that everything we encounter on a Linux system is a file,
there are some exceptions.

 Directories: files that are lists of other files.

 Special files: the mechanism used for input and output.
Most special files are in /dev.

 Links: a system to make a file or directory visible in multiple
parts of the system's file tree.

 (Domain) sockets: a special file type, similar to TCP/IP
sockets, providing inter-process networking protected by
the file system's access control.

Introduction to Linux Unit 1

 27

 Named pipes: act more or less like sockets and form a way
for processes to communicate with each other, without
using network socket semantics.

The -l option to ls displays the file type, using the first character of
each input line:

This table gives an overview of the characters determining the file
type:

Symbol Meaning

- Regular file

d Directory

l Link

c Special file

s Socket

p Named pipe

b Block device

In order not to always have to perform a long listing for seeing the
file type, a lot of systems by default do not issue just ls, but ls -F,
which suffixes file names with one of the characters "/=*|@" to
indicate the file type. To make it extra easy on the beginning user,
both the -F and --color options are usually combined. For
convenience, the Linux directory system is usually thought of in a
tree structure. On a standard Linux system we will find the layout
generally follows the scheme presented below.

Introduction to Linux Unit 1

 28

Fig 1.4: Linux directory system layout

This is a layout from a RedHat system. Depending on the system
admin, the operating system and the mission of the UNIX machine,
the structure may vary, and directories may be left out or added at
will. The names are not even required; they are only a convention.
The tree of the file system starts at the trunk or slash, indicated by
a forward slash (/). This directory, containing all underlying
directories and files, is also called the root directory or "the root" of
the file system. Directories that are only one level below the root
directory are often preceded by a slash, to indicate their position
and prevent confusion with other directories that could have the
same name. When starting with a new system, it is always a good
idea to take a look in the root directory.

Directory Content

/bin Common programs, shared by the system, the system
administrator and the users.

/boot

The startup files and the kernel, vmlinuz. In some
recent distributions also grub data. Grub is the Grand
Unified Boot loader and is an attempt to get rid of the
many different boot-loaders we know today.

/dev Contains references to all the CPU peripheral
hardware, which are represented as files with special

Introduction to Linux Unit 1

 29

properties.

/etc
Most important system configuration files are in /etc,
this directory contains data similar to those in the
Control Panel in Windows

/home Home directories of the common users.

/initrd (on some distributions) Information for booting.

/lib Library files, includes files for all kinds of programs
needed by the system and the users.

/lost+found Every partition has a lost+found in its upper directory.
Files that were saved during failures are here.

/misc For miscellaneous purposes

/mnt Standard mount point for external file systems, e.g. a
CD-ROM or a digital camera.

/net Standard mount point for entire remote file systems.

/opt Typically contains extra and third party software.

/proc

A virtual file system containing information about
system resources. More information about the meaning
of the files in proc is obtained by entering the command
man proc in a terminal window. The file proc.txt
discusses the virtual file system in detail.

/root
The administrative user’s home directory. Mind the
difference between /, the root directory and /root, the
home directory of the root user.

/sbin Programs for use by the system and the system
administrator

/tmp Temporary space for use by the system, cleaned upon
reboot, so don’t use this for saving any work

/usr Programs, libraries, documentation etc. for all user-
related programs.

/var

Storage for all variable files created by users, such as
log files, the mail queue, the print spooler area, space
for temporary storage of files downloaded from the
Internet, or to keep an image of a CD before burning it.

LILO bootloader –

LILO (LInux LOader) is a boot loader for Linux and was the default
boot loader for most Linux distributions in the years after the
popularity of loadlin. Today, most distributions use GRUB as the

Introduction to Linux Unit 1

 30

default boot loader. LILO does not depend on a specific file
system, and can boot an operating system (e.g., Linux kernel
images) from floppy disks and hard disks. One of up to sixteen
different images can be selected at boot time. Various parameters,
such as the root device, can be set independently for each kernel.
LILO can be placed in the master boot record (MBR) or the boot
sector of a partition. In the latter case, the MBR must contain code
to load LILO. At system start, only the BIOS drivers are available
for LILO to access hard disks. For this reason, a very old BIOS
access area is limited to cylinders 0 to 1023 of the first two hard
disks. For later BIOS, LILO can use 32-bit "logical block
addressing" (LBA) to access the entire capacity of the hard disks
the BIOS has access to.

GRUB bootloader –
GNU GRUB is a bootloader capable of loading a variety of free
and proprietary operating systems. GRUB will work well with Linux,
DOS, Windows, or BSD. GRUB stands for GRand Unified
Bootloader. GRUB is dynamically configurable. This means that
the user can make changes during the boot time, which include
altering existing boot entries, adding new, custom entries, selecting
different kernels, or modifying initrd. GRUB also supports Logical
Block Address mode. This means that for a computer having a
fairly modern BIOS that can access more than 8GB (first 1024
cylinders) of hard disk space, GRUB will automatically be able to
access all of it. GRUB can be run from or be installed to any device
(floppy disk, hard disk, CD-ROM, USB drive, network drive) and
can load operating systems from just as many locations, including
network drives. It can also decompress operating system images
before booting them.
Working –
When a computer boots, the BIOS transfers control to the first boot
device, which can be a hard disk, a floppy disk, a CD-ROM, or any
other BIOS-recognized device. The first sector on a hard is called
the Master Boot Record (MBR). This sector is only 512 bytes long
and contains a small piece of code (446 bytes) called the primary
boot loader and the partition table (64 bytes) describing the
primary and extended partitions. By default, MBR code looks for
the partition marked as active and once such a partition is found, it
loads its boot sector into memory and passes control to it. GRUB
replaces the default MBR with its own code.

Furthermore, GRUB works in stages –
Stage 1 is located in the MBR and mainly points to Stage 2, since
the MBR is too small to contain all of the needed data.
Stage 2 points to its configuration file, which contains the entire
complex user interface and options we are normally familiar with
when talking about GRUB. Stage 2 can be located anywhere on
the disk. If Stage 2 cannot find its configuration table, GRUB will
cease the boot sequence and present the user with a command
line for manual configuration.

Introduction to Linux Unit 1

 31

Stage 1.5 also exists and might be used if the boot information is
small enough to fit in the area immediately after MBR. The Stage
architecture allows GRUB to be large (~20-30K) and therefore
fairly complex and highly configurable, compared to most
bootloaders, which are sparse and simple to fit within the
limitations of the Partition Table.

1.8 INSTALLING THE LINUX SYSTEM

One of the things that makes Linux special is that it can play nice
with other operating systems. We can run Linux alongside of other
operating systems quite easily. The most popular installation
process for installing Linux is to install a Fresh Installation of Linux
with no other operating system in place. This allows the computer
to dedicated 100% of its resources to running Linux. However, it is
quite easy to install Linux as a one of a series of operating systems
that a computer has available to it.
Live CD/DVD Booting Linux – If one is just looking to try Linux
out to see if one likes it, but does not want to commit to wiping out
the main operating system, one may want to consider trying Linux
from a Live CD/DVD. Many Linux installations provide the option
of downloading and running Linux as a Live CD, which means that
Linux runs as a completely bootable operating system from the
CD/DVD. The files are loaded into the computer’s memory, rather
than being run for a hard disk drive. In layman's terms, this means
that one can run Linux from a CD/DVD, and then when the PC is
rebooted, and the CD/DVD is removed, it will boot back into its old
operating system without any creating any difference. This gives
us an easy way to try out several distributions of Linux until we find
the one that we like. Using a Live CD/DVD is also a popular
method of rescuing files from a corrupted operating system.
Linux as a VM inside another Operating System – If one likes a
(non-linux) desktop operating system, but would like an easy way
to access a Linux desktop or run ones favorite open source
software, one may want to consider running Linux as a VM inside
another operating system. There are a number of ways to do this,
but one simple one would be to download and install a Virtual
Server application, and then install the Linux distribution under that
host software. Everything that one can do with our other operating
system can be done with Linux. That means word processing,
databases, spreadsheets, Internet browsers, e-mail, photo touch-
ups, MP3, CD Players, cameras and then there are a lot of things
that Linux has to offer on top of all that that other operating
systems do not.
Fresh Install of Linux – This method is by far the most popular
installation method available. In this approach, one has to format
the computer’s hard drive and install Linux from a CD/DVD. Linux
then runs as the only operating system on the computer.

Introduction to Linux Unit 1

 32

1.9 HARD DISK PARTITIONING FOR LINUX

Most people have a vague knowledge of what partitions are, since
every operating system has the ability to create or remove them. It
may seem strange that Linux uses more than one partition on the
same disk, even when using the standard installation procedure,
so some explanation is called for. One of the goals of having
different partitions is to achieve higher data security in case of
disaster. By dividing the hard disk in partitions, data can be
grouped and separated. When an accident occurs, only the data in
the partition that got the hit will be damaged, while the data on the
other partitions will most likely survive. This principle dates from
the days when Linux did not have journaled file systems and power
failures might have lead to disaster. The use of partitions remains
for security and robustness reasons, so a breach on one part of
the system does not automatically mean that the whole computer
is in danger. This is currently the most important reason for
partitioning. A simple example: a user creates a script, a program
or a web application that starts filling up the disk. If the disk
contains only one big partition, the entire system will stop
functioning if the disk is full. If the user stores the data on a
separate partition, then only that (data) partition will be affected,
while the system partitions and possible other data partitions keep
functioning. Mind that having a journaled file system only provides
data security in case of power failure and sudden disconnection of
storage devices. This does not protect the data against bad blocks
and logical errors in the file system. In those cases, we should use
a RAID (Redundant Array of Inexpensive Disks) solution.
There are two kinds of major partitions on a Linux system:

 data partition: normal Linux system data, including the
root partition containing all the data to start up and run the
system; and

 swap partition: expansion of the computer's physical
memory, extra memory on hard disk.

Most systems contain a root partition, one or more data partitions
and one or more swap partitions. Systems in mixed environments
may contain partitions for other system data, such as a partition
with a FAT or VFAT file system for MS Windows data. Most Linux
systems use fdisk at installation time to set the partition type. The
standard Linux partitions have number 82 for swap and 83 for
data, which can be journaled (ext3) or normal (ext2, on older
systems). The fdisk utility has built-in help, should one forget these
values. Apart from these two, Linux supports a variety of other file
system types, such as the relatively new Reiser file system, JFS,
NFS, FATxx and many other file systems natively available on
other (proprietary) operating systems. The standard root partition
(indicated with a single forward slash, /) is about 100-500 MB, and
contains the system configuration files, most basic commands and
server programs, system libraries, some temporary space and the
home directory of the administrative user. A standard installation
requires about 250 MB for the root partition.

Introduction to Linux Unit 1

 33

Swap space (indicated with swap) is only accessible for the system
itself, and is hidden from view during normal operation. Swap is the
system that ensures, like on normal UNIX systems, that we can
keep on working, whatever happens. On Linux, we will virtually
never see irritating messages like “Out of memory, please close
some applications first and try again”, because of this extra
memory. The swap or virtual memory procedure has long been
adopted by operating systems outside the UNIX world by now.
Using memory on a hard disk is naturally slower than using the
real memory chips of a computer, but having this little extra is a
great comfort.
Linux generally counts on having twice the amount of physical
memory in the form of swap space on the hard disk. An example
on a system with 512 MB of RAM:

 1st possibility: one swap partition of 1 GB

 2nd possibility: two swap partitions of 512 MB

 3rd possibility: with two hard disks: 1 partition of 512 MB on
each disk.

The last option will give the best results when a lot of I/O is to be
expected. Some applications, such as databases, might require
more swap space. Others, such as some handheld systems, might
not have any swap at all by lack of a hard disk. Swap space may
also depend on the kernel version. The kernel is on a separate
partition as well in many distributions, because it is the most
important file of the system. If such cases, there shall also be a
/boot partition, holding the kernel(s) and accompanying data files.
The rest of the hard disk(s) is generally divided in data partitions,
although it may be that all of the non-system critical data resides
on one partition, for example when we perform a standard
workstation installation. When non-critical data is separated on
different partitions, it usually happens following a set pattern:

 a partition for user programs (/usr)

 a partition containing the users' personal data (/home)

 a partition to store temporary data like print- and mail-
queues (/var)

 a partition for third party and extra software (/opt)

Once the partitions are made, we can only add more. Changing
sizes or properties of existing partitions is possible but not
advisable. The division of hard disks into partitions is determined
by the system administrator. On larger systems, he/she may even
spread one partition over several hard disks, using the appropriate
software. Most distributions allow for standard setups optimized for
workstations (average users) and for general server purposes, but
also accept customized partitions. During the installation process
we can define our own partition layout using either the distribution
specific tool, which is usually a straight forward graphical interface,
or fdisk, a text-based tool for creating partitions and setting their
properties.

Introduction to Linux Unit 1

 34

A workstation or client installation is for use by mainly one and the
same person. The selected software for installation reflects this
and the stress is on common user packages, such as nice desktop
themes, development tools, client programs for E-mail, multimedia
software, web and other services. Everything is put together on
one large partition, swap space twice the amount of RAM is added
and the generic workstation is complete, providing the largest
amount of disk space possible for personal use, but with the
disadvantage of possible data integrity loss during problem
situations. On a server, system data tends to be separate from
user data. Programs that offer services are kept in a different place
than the data handled by this service. Different partitions will be
created on such systems:

 a partition with all data necessary to boot the machine

 a partition with configuration data and server programs

 one or more partitions containing the server data such as
database tables, user mails, an ftp archive etc.

 a partition with user programs and applications

 one or more partitions for the user specific files (home
directories)

 one or more swap partitions (virtual memory)
Servers usually have more memory and thus more swap space.
Certain server processes, such as databases, may require more
swap space than usual, For better performance, swap is often
divided into different swap partitions.
Creating a New Partition in Linux:
In most Linux systems, we can use the fdisk utility to create a new
partition and to do other disk management operations. As a tool
with a text interface, fdisk requires typing the commands on the
fdisk command line. The following fdisk commands may be
helpful:

Options Description

m Displays the available commands.

p
Displays the list of existing partitions on
your hda drive. Unpartitioned space is
not listed.

n Creates a new partition.

q Exits fdisk without saving the changes.

l Lists partition types.

w Writes changes to the partition table.

Introduction to Linux Unit 1

 35

To create a new partition on Linux:
1. We first start a terminal.
2. Then start fdisk using the following command:

/sbin/fdisk /dev/hda
where /dev/hda stands for the hard drive that we want to
partition.

3. In fdisk, to create a new partition, we type the following
command:

n

 When prompted to specify the Partition type, we
type p to create a primary partition or e to create an
extended one. There may be up to four primary
partitions. In case we want to create more than four
partitions, we make the last partition extended, and
it will be a container for other logical partitions.

 When prompted for the Number, in most cases, we
type 3 because a typical Linux virtual machine has
two partitions by default.

 When prompted for the Start cylinder, we type a
starting cylinder number or press Return to use the
first cylinder available.

 When prompted for the Last cylinder, we press
Return to allocate all the available space or specify
the size of a new partition in cylinders if we do not
want to use all the available space.

By default, fdisk creates a partition with a System ID of 83.
If we are unsure of the partition's System ID, we use the

l
command to check it.

4. Then use the
w

command to write the changes to the partition table.
5. Then we restart the virtual machine by entering the reboot

command.
6. When restarted, we create a file system on the new

partition. In most cases it will be either the ext3 or reiserFS
file system. For example, to create the Ext3 file system, we
enter the following command:

/sbin/mkfs -t ext3 /dev/hda3
7. We then create a directory that will be a mount point for the

new partition. For example, to name it data, we enter:
mkdir /data

8. Then we mount the new partition to the directory we just
created by using the following command:

Introduction to Linux Unit 1

 36

mount /dev/hda3 /data
9. We then make changes in our static file system information

by editing the /etc/fstab file in any of the available text
editors. For example, we add the following string to this file:

/dev/hda3 /data ext3 defaults 0 0
In this string /dev/hda3 is the partition we just created, /data is
a mount point for the new partition, ext3 is the file type of the
new partition.
10. Finally we save the /etc/fstab file.

init –
The init process is the first user level process started by the
kernel. init has many important duties, such as starting getty (so
that users can log in), implementing run levels, and taking care of
orphaned processes. init is one of those programs that are
absolutely essential to the operation of a Linux system, but that we
still can mostly ignore. A good Linux distribution will come with a
configuration for init that will work for most systems, and on these
systems there is nothing we need to do about init. Usually, we only
need to worry about init if we hook up serial terminals, dial-in (not
dial-out) modems, or if we want to change the default run level.
When the kernel has started itself (has been loaded into memory,
has started running, and has initialized all device drivers and data
structures and such), it finishes its own part of the boot process by
starting a user level program, init. Thus, init is always the first
process (its process number is always 1). The kernel looks for init
in a few locations that have been historically used for it, but the
proper location for it (on a Linux system) is /sbin/init. If the kernel
cannot find init, it tries to run /bin/sh, and if that also fails, the
startup of the system fails.
When init starts, it finishes the boot process by doing a number of
administrative tasks, such as checking filesystems, cleaning up
/tmp, starting various services, and starting a getty for each
terminal and virtual console where users should be able to log in.
After the system is properly up, init restarts getty for each terminal
after a user has logged out (so that the next user can log in). init
also adopts orphan processes: when a process starts a child
process and dies before its child, the child immediately becomes a
child of init. This is important for various technical reasons, but it is
good to know it, since it makes it easier to understand process lists
and process tree graphs. There are a few variants of init available.

Run levels –

A run level is a state of init and the whole system that defines what
system services are operating. Run levels are identified by
numbers. Some system administrators use run levels to define
which subsystems are working, e.g., whether X is running, whether
the network is operational, and so on. Others have all subsystems
always running or start and stop them individually, without

Introduction to Linux Unit 1

 37

changing run levels, since run levels are too coarse for controlling
their systems.
The following table defines how most Linux Distributions define the
different run levels. However, run-levels 2 through 5 can be
modified to suit ones tastes.

0 Halt the system

1 Single-user mode (for special administration)

2 Local Multiuser with Networking but without network
service (like NFS)

3 Full Multiuser with Networking

4 Not Used

5 Full Multiuser with Networking and X Windows (GUI)

6 Reboot

Services that get started at a certain runtime are determined by the
contents of the various rcN.d directories. Most distributions locate
these directories either at /etc/init.d/rcN.d or /etc/rcN.d. (Replace
the N with the run-level number.) In each run-level we find a series
of if links pointing to start-up scripts located in /etc/init.d. The
names of these links all start as either K or S, followed by a
number. If the name of the link starts with an S, then that indicates
the service will be started when we go into that run level. If the
name of the link starts with a K, the service will be killed (if
running). The number following the K or S indicates the order the
scripts will be run.
How run levels start are configured in /etc/inittab by lines like the
following:

12:2:wait:/etc/init.d/rc 2

The first field is an arbitrary label, the second one means that this
applies for run level 2. The third field means that init should run the
command in the fourth field once, when the run level is entered,
and that init should wait for it to complete. The /etc/init.d/rc
command runs whatever commands are necessary to start and
stop services to enter run level 2. The command in the fourth field
does all the hard work of setting up a run level. It starts services
that are not already running, and stops services that should not be
running in the new run level any more. Exactly what the command
is, and how run levels are configured, depends on the Linux
distribution. When init starts, it looks for a line in /etc/inittab that
specifies the default run level:

Introduction to Linux Unit 1

 38

id:2:initdefault:

We can ask init to go to a non-default run level at startup by giving
the kernel a command line argument of single or emergency.
Kernel command line arguments can be given via LILO, for
example. This allows us to choose the single user mode (run level
1). While the system is running, the telinit command can change
the run level. When the run level is changed, init runs the relevant
command from /etc/inittab.

2. Fill in the blanks

(a) The __________ contains information about the filesystem
as a whole.

(b) ___ was originally designed by Silicon Graphics to work as
a 64-bit journaled filesystem.

(c) ____ is an extension of the FAT filesystem known as
FAT32.

(d) The loading and execution of the boot block is usually
controlled by ________ in ROM or PROM.

(e) A request to access any file requires access to the
filesystem's _________.

(f) The only information not included in an inode, is the file
____ and _________.

(g) ____ returns live information so it does not use a database.

(h) LILO does not depend on a specific _________, and can
boot an operating system from floppy disks and hard disks.

(i) By dividing the hard disk in _________, data can be
grouped and separated.

(j) The ____ process is the first user level process started by
the kernel.

CHECK YOUR PROGRESS

Introduction to Linux Unit 1

 39

1.10 LET US SUM UP

 Linux is a fast, secure, stable and open source operation

system which is based on Unix.
 The owner of proprietary software exercises certain

exclusive rights over the software.
 Open-source software (OSS) is computer software with its

source code made available and licensed with an open-
source license.

 The goals of Free Software are reached by granting the
freedom to users to run, copy, distribute, study, change and
improve the software.

 A Linux distribution is a collection of software on top of a
Linux kernel.

 Red Hat discontinued the Red Hat Linux line in favor of
Red Hat Enterprise Linux (RHEL) for enterprise
environments.

 The Linux kernel consists of various modules and it
interacts directly with the underlying hardware.

 The Linux shell is the software that provides an interface for
the user of an operation system which needs services of a
kernel.

 The Linux filesystem includes the methods and data
structures that an operating system uses to keep track of
files on a disk or partition.

 The bootblock is a program at some fixed location on a
hard disk, floppy disk or other media, which is loaded when
the computer is turned on.

 LILO is a boot loader for Linux and was the default boot
loader for most Linux distributions.

 GRUB is a bootloader capable of loading a variety of free
and proprietary operating systems.

 A run level is a state of init and the whole system that
defines what system services are operating.

Introduction to Linux Unit 1

 40

1.

(a) kernel
(b) Proprietary
(c) Open-source
(d) Free
(e) CentOS, major, minor
(f) Red Hat Enterprise
(g) Ubuntu
(h) Gentoo, Portage package management.
(i) System libraries, Kernel.
(j) hardware, software
(k) process access
(l) interface

2.

(a) Superblock
(b) XFS
(c) vfat
(d) firmware
(e) superblock
(f) name, directory
(g) Find
(h) file system
(i) partitions
(j) init

 1.12 FURTHER READINGS

 Linux Documentation Project [http://www.tldp.org/]

 Documentation for Linux enthusiasts

[http://www.linuxdocs.org/]

 Linux Man pages installed on local system.

1.11 ANSWERS TO CHECK YOUR
 PROGRESS

Introduction to Linux Unit 1

 41

1. Write a short note on the Linux operating system.

2. Differentiate between Proprietary, Open Source and Free

software.

3. Describe any one Linux distribution.

4. Explain the architecture of the Linux operating system with

diagram.

5. Describe the functioning of the Linux kernel subsystem.

6. What is the Linux file system? Explain any five types of file

systems available.

7. Write short notes on Bootblock, Superblock, Inode and

Itable.

8. List some standard directories available in the Linux

operating system.

9. What are the LILO and GRUB bootloadrs of the Linux

operating system?

10. Briefly describe the methods involved in installing the Linux

operating system.

11. What is Hard Disk partitioning for Linux? Explain how to

create new partitions in the Linux Operating system.

12. What are Linux Init and Runlevels?

1.13 MODEL QUESTIONS

Linux Basics Unit 2

 1

UNIT - 2: LINUX BASICS

UNIT STRUCTURE

2.1 Learning Objectives
2.2 Introduction
2.3 Getting started

2.3.1 Logging in
2.3.2 Creating Accounts and Groups
2.3.3 Getting Help
2.3.4 Processes

2.4 Files and File System
2.5 Searching, Copying, Moving and Renaming Files
2.6 Deleting, Linking and Editing files
2.7 Linux commands
2.8 Let Us Sum Up
2.9 Answers To Check Your Progress
2.10 Further Readings
2.11 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 login to a Linux system

 create user accounts and groups

 learn about Linux processes

 know the file system

 learn all the manipulation features of files

 read, search and edit files

2.2 INTRODUCTION

In the previous unit we were introduced to the Linux operating
system and the introductory linux operating system concepts that
provided the basic grounding for a novice Linux user. We also
were introduced to some new concepts related to the different
software types like proprietary, open source and free software. The
various Linux distributions available were also dealt with at length.
The minimum requirement necessary to get introduced to the basic

Linux Basics Unit 2

 2

functioning and operating of a Linux system starting from installing
the system were thoroughly dealt with in the previous unit.
In this unit we will deal further into more in-depth topics that will
deal with some similar but advanced operations of the Linux
system. These include first logging into the Linux system, creating
user accounts, handling and performing numerous file oriented
operations using commands etc. Also in this unit we shall discuss
the concept of processes and the file system in Linux. Finally we
will provide a list of the different commands available in the Linux
operating system that are used to perform several tasks related to
files, directories etc in Linux.

2.3 GETTING STARTED

In order to work on a Linux system directly, we will need to provide
a user name and password. We always need to authenticate to the
system. Most PC-based Linux systems have two basic modes for a
system to run in: either quick and sober in text console mode,
which looks like DOS with mouse, multitasking and multi-user
features, or in graphical mode, which looks better but consumes
more system resources.

2.3.1 LOGGING IN

Graphical mode –
This is the default on most desktop computers. We connect to the
system using graphical mode when we are first asked for a user
name, and then, in a new window, to type the password. It is
generally considered a bad idea to connect (graphically) using the
root user name, the system adminstrator's account, since the use
of graphics includes running a lot of extra programs, in root's case
with a lot of extra permissions. To keep all risks as low as possible,
we should use a normal user account to connect graphically. But
there are enough risks to keep this in mind as a general advice, for
all use of the root account. After entering the username/password
combination, it can take a little while before the graphical
environment is started, depending on the CPU speed, personal
settings, etc.
Another common form for a prompt is this one:

[user@host dir]

In the above example, user will be the login name, host is the
name of the machine we are working on, and dir an indication of
the current location in the file system. To disconnect from the
system in graphical mode, we need to close all terminal windows
and other applications, and then hit the logout icon or find Log
Out in the menu. Closing everything is not really necessary, and
the system can do this for us, but session management might put
all currently open applications back on the screen when we
reconnect again, which takes longer and is not always the desired
effect. However, this behavior is configurable. The login screen

Linux Basics Unit 2

 3

appearing again, asking to enter user name and password,
indicates a successful logout.

Text mode –
We are in the text mode when the whole screen is black, showing
(in most cases white) characters. A text mode login screen
typically shows some information about the machine we are
working on, the name of the machine and a prompt for log in:

RedHat Linux Release 8.0 (Psyche)
blast login:_

The login is different from a graphical login where we have to hit
the Enter key after providing the user name, because there are no
buttons on the screen to click. Then we should type the password,
followed by another Enter. As we enter the password, we do not
see any indication of the entered text, not even an asterisk or the
cursor. But this is normal on Linux and is done for security
reasons. When the system has accepted a valid user, we get to
see the home screen. In text mode we should log in as root only to
do setup and configuration that absolutely requires administrator
privileges, such as adding users, installing software packages, and
performing network and other system configuration. Once finished,
we should immediately leave the special account and resume work
as a non-privileged user. Alternatively, some systems, like Ubuntu,
force to use sudo, so that we do not need direct access to the
administrative account. Logging out is done by entering the logout
command, followed by Enter.
The power button
While Linux was not meant to be shut off without application of the
proper procedures for halting the system, hitting the power button
is equivalent to starting those procedures on newer systems.
However, powering off an old system without going through the
halting process might cause severe damage. We should always
use the Shutdown option when logging out from the graphical
interface or, when on the login screen look around for a shutdown
button.

2.3.2 CREATING ACCOUNTS AND GROUPS
Users and groups are used on Linux for access control — that is,
to control access to the system's files, directories, and peripherals.
Linux offers relatively simple/coarse access control mechanisms
by default. On Linux systems, as on all Unix like operating
systems, all files, executables, and directories belong to a user and
a group. Users all have a default group, but typically also belong to
multiple additional groups. Permissions are built on top of this
system. While files and directories all have an owner and a group,
permissions can be set granularly so that files can be read, written,
or executed by their owners, groups, or the "world" (i.e. all users
on the system.) The permission system allows for any combination
of read/write/execute permission for owner/group/world users.
While we often think of "users" as correlating directly to the human
beings who use the machine, many of the "users" on a Linux

Linux Basics Unit 2

 4

system are special users created for specific applications, so that
executables – particularly ones which are accessible over the
network – have a very limited ability to affect the system. For
example, the Apache web server runs as www-data on
Debian/Ubuntu systems, to limit web users from gaining
unnecessary access to the system.
All Linux systems have a superuser or "root" user account, which
is the first user created on a system. The root user has special
access to administer the system; root has the ability to read, write,
and execute any file on the system and has the ultimate authority
over the administration of the system. For this reason, we
recommend limiting the use of the root user account as much as
possible. Furthermore, it is generally a best practice to isolate
users and applications to their own user accounts to limit the
potential security risk that any application or user can pose to the
system as a whole.

We create normal users using the adduser command in the
following form:

adduser [username]

With the adduser command we can also be more specific with
regards to what the user's home directory and default shell will be.
The following command creates the user "squire" in the groups
"morris" and "leader".

This example specifies that the user's default shell will be bash,
and that the location of the user's home directory will be
/home/squire. Typically, on Linux systems home directories for
users are created by default in the form of /home/[username]/.

By default, the primary or default user group is the same as the
user's username. Additional useful options include:

 -no-create-home Disables the home directory for this
user. Useful for system accounts.

 --disabled-login Prevents user-from logging in. Useful
for system accounts and administrative accounts.

If we need to modify a user account after the fact, the usermod
command may be helpful. The syntax for this command is
usermod [options] [username] where [username] is the
user's specified login name. Useful options include:

 –L or –lock: Locks the user account and prevents it from
executing programs or logging in to the system.

 –U or –unlock: Unlocks a previously locked group and re-
enables its access to the system.

Linux Basics Unit 2

 5

 –g or –gid: Changes the default group for the user in
question.

 –G or "–groups [groupname-1] [groupname-2]": Replaces
the existing supplementary groups that the user account is
associated with, but does not change the default group.

 –a or –append: Alters the function of -G so that the existing
list of supplementary groups is maintained while adding all
groups specified by -G.

Creating Groups
Users may be grouped together into a "group," and users may
choose to join an existing group to utilize the privileged access it
grants. The command for adding groups is groupadd or
groupdel.

To list all groups on the system:
$ cat /etc/group

We create new groups with the groupadd command. The
groupadd command creates a new group account using the
values specified on the command line plus the default values from
the system. The new group will be entered into the system files as
needed.

groupadd [-g gid [-o]] [-r] [-f] group

The groupadd command creates a new group account using the
values specified on the command line and the default values from
the system. The new group will be entered into the system files as
needed. The options which apply to the groupadd command are
–

-g gid

The numerical value of the group's ID. This value must be
unique, unless the -o option is used. The value must be
non-negative. The default is to use the smallest ID value
greater than 500 and greater than every other group.
Values between 0 and 499 are typically reserved for
system accounts.

-r
This flag instructs groupadd to add a system account. The
first available gid lower than 499 will be automatically
selected unless the -g option is also given on the
command line.

-f
This is the force flag. This will cause groupadd to exit with
an error when the group about to be added already exists
on the system. If that is the case, the group will not be
altered (or added again).
This option also modifies the way -g option works. When
we request a gid that it is not unique and we do not specify
the -o option too, the group creation will fall back to the
standard behavior (adding a group as if neither -g or -o
options were specified).

Linux Basics Unit 2

 6

We add users to a group with the gpasswd command:
gpasswd -a [user] [group]

To delete existing groups:

groupdel [group]

To remove users from a group:

gpasswd -d [user] [group]

If the user is currently logged in, he/she must log out and in again
for the change to have effect.

2.3.3 GETTING HELP

Getting help from Linux involves using one of the different ways to
get any help or assistance when operating the Linux system. Help
can be found for every functionality of the Linux operating system.
The manual pages of Linux are an overwhelming source of
documentation. They are, however, very structured. Reading man
pages is usually done in a terminal window when in graphical
mode, or just in text mode if preferable. To open the man pages
we type the following at the prompt, followed by Enter:

yourname@yourcomp ~> man man

The documentation for man will be displayed on the screen after
pressing Enter:

man(1)
man(1)

NAME
man - format and display the on-line manual pages
manpath - determine user's search path for man
pages

SYNOPSIS
man [-acdfFhkKtwW] [--path] [-m system] [-p
string] [-C config_file] [-M pathlist] [-P pager]
[-S section_list] [section] name ...

DESCRIPTION
man formats and displays the on-line manual
pages. If you specify section, man only looks in
that section of the manual. name is normally the
name of the manual page, which is typically the
name of a command, function, or file. However,
if name contains a slash (/) then man interprets
it as a file specification, so that you can do
man ./foo.5 or even man /cd/foo/bar.1.gz. See
below for a description of where man looks
for the manual page files.

Linux Basics Unit 2

 7

OPTIONS
-C config_file
lines 1-27

We use the space bar to browse to the next page, and the back
key to go back to the previous page. When we reach the end, man
will usually quit and we get the prompt back. Typing q leaves the
man page before reaching the end, or if the viewer does not quit
automatically at the end of the page.
Each man page usually contains a couple of standard sections, as
we can see from the man man example:

 The first line contains the name of the command we are
reading about, and the id of the section in which this man
page is located. The man pages are ordered in chapters.
Commands are likely to have multiple man pages, for
example the man page from the user section, the man
page from the system admin section, and the man page
from the programmer section.

 The name of the command and a short description are
given, which is used for building an index of the man
pages. We can look for any given search string in this index
using the apropos command.

 The synopsis of the command provides a technical notation
of all the options and/or arguments this command can take.
An option can be considered as a way of executing the
command. The argument is what we execute it on. Some
commands have no options or no arguments. Optional
options and arguments are put in between "[" and "]" to
indicate that they can be left out.

 A longer description of the command is given.
 Options with their descriptions are listed. Options can

usually be combined. If not so, this section will tell us about
it.

 Environment describes the shell variables that influence the
behavior of this command.

 Sometimes sections specific to this command are provided.
 A reference to other man pages is given in the "SEE ALSO"

section. In between parentheses is the number of the man
page section in which to find this command. Experienced
users often switch to the "SEE ALSO" part using the /
command followed by the search string SEE and press
Enter.

 Usually there is also information about known bugs
(anomalies) and where to report new bugs.

 There might also be author and copyright information.

The Info pages
In addition to the man pages, we can read the Info pages about a
command, using the info command. These usually contain more
recent information and are somewhat easier to use. The man
pages for some commands refer to the Info pages.

Linux Basics Unit 2

 8

We start by typing info info in a terminal window:
File: info.info, Node: Top, Next: Getting
Started, Up: (dir)

Info: An Introduction

 Info is a program, which you are using now,
for reading
documentation of computer programs. The GNU
Project distributes most
of its on-line manuals in the Info format, so you
need a program called
"Info reader" to read the manuals. One of such
programs you are using
now.

 If you are new to Info and want to learn how
to use it, type the
command `h' now. It brings you to a programmed
instruction sequence.

 To learn advanced Info commands, type `n'
twice. This brings you to
`Info for Experts, skipping over the `Getting
Started' chapter.

* Menu:
* Getting Started::Getting started using an Info
reader.
* Advanced Info::Advanced commands within Info.
* Creating an Info File::How to make your own
Info file.
--zz-Info: (info.info.gz) Top, 24 lines --Top----

Welcome to Info version 4.2. Type C-h for help, m
for menu item.

Using the arrow keys we browse through the text and move the
cursor on a line starting with an asterisk, containing the keyword
about which we want info, and then hit Enter. We use the P and N
keys to go to the previous or next subject. The space bar will move
us one page further, no matter whether this starts a new subject or
an Info page for another command. We use Q to quit. The info
program has more information.
The –help option
Most GNU commands support the –help, which gives a short
explanation about how to use the command and a list of available
options. Below is the output of this option with the cat command:
userprompt@host: cat --help
Usage: cat [OPTION] [FILE]...
Concatenate FILE(s), or standard input, to
standard output.

Linux Basics Unit 2

 9

-A, --show-all equivalent to -vET
-b, --number-nonblank number nonblank output
lines
-e equivalent to -vE
-E, --show-ends display $ at end of each line
-n, --number number all output lines
-s, --squeeze-blank never more than one single
blank line
-t equivalent to -vT
-T, --show-tabs display TAB characters as ^I
-u (ignored)
-v, --show-nonprinting use ^ and M- notation,
 except for LFD and TAB
--help display this help and exit
--version output version information and exit

With no FILE, or when FILE is -, read standard
input.

Report bugs to <bug-textutils@gnu.org>.

2.3.4 PROCESSES

Processes –
Generally, on any operating system, we say we have so many
programs running. These running programs introduce the concept
of processes. A process is a program in execution. It is one of the
fundamental abstractions in Unix Operating Systems, the other
fundamental abstraction being files. Linux is a multi-user and multi-
tasking operating system. A Linux process is a program in
execution on a Linux system. Therefore, whenever a program is
executed, a new process is created. A process also consumes
resources like the file system, memory or other CPU resources.
This gives rise to the need of process management in Linux.
Identifier for Linux Processes
In Linux, every process has a unique process Identifier (ID)
associated to it. A process ID (i.e. PID) is a number which is
uniquely assigned as soon as the process is created. The PID’s
are allocated sequentially as the processes are being created.
However, it generally starts from 2, as PID=1 is reserved for ‘init
process. As we always expect, there is a maximum limit to the PID
value. Hence, whenever the sequentially allocated PID reaches the
maximum value, it wraps to the lower limit (generally 300) and the
next PID’s allocated are the available ones starting from the lower
limit. The PID of the process, as the name suggests is its identifier.
Hence, most of the operations being done on a process need the
PID to be mentioned.
We shall see in the following sections, how do we see display all
the processes with their PID’s and various operations that can be
performed on a process.

Listing Processes

Linux Basics Unit 2

 10

At any moment, the Linux user can view the list of all the
processes which have been created and not terminated. The Linux
command used to view list of processes is ps which means
‘process status’ (Some authors also interpret it as ‘process
snapshot’). To see what all this Linux command has to offer in
detail, the best source is the man-page.
Try out running the command –
$ ps

PID TTY TIME CMD
1779 pts/0 00:00:00 bash
2176 pts/0 00:00:00 ps

We see two processes although we are sure there are other
processes running as well. The ps command without any options
just lists the processes which are created by the current terminal.
The first one is the ‘bash’ which is the running linux shell by the
terminal and other is the process created by ps command itself.

 PID – The process Identifier which is ‘1779’ for ‘bash’ and
‘2176’ for ‘ps’.

 TTY – Stands for terminal-type and is the name of the
console/terminal, the process is associated to.

 TIME – The CPU time since the process has started. It is
confusing that why the CPU time for ‘bash’ process is
‘00:00:00’? This is because, CPU time is the time for which
the process is being executed by the processor. However,
when bash runs commands, say ls command , a child
process ls is spawned and whatever execution and cpu
utilization takes place, goes under the ls process and not
bash. Bash process is just the parent process.

 CMD – Command run to create the process.

There are many more options offered by the Linux command ps to
explore the various processes being launched in a system.
List all processes
$ps -e

If we look at the ps man page, -e option means “Select all
processes”, which implies now our list of displayed processes is
not limited to the ones by the current terminal. Instead, we will be
able to see all the currently running processes.
Running the above command, we see a huge list of processes.
Hence, to read them through reasonably, we pipe the output to
more.
$ ps -e | more

PID TTY TIME CMD
1 ? 00:00:00 init
2 ? 00:00:00 kthreadd

Linux Basics Unit 2

 11

Types of Processes
Although there is no standard classification of types of processes
in Linux, the segregation could be in interactive and non-interactive
processes, foreground and background processes or daemon or
batch processes. It can also be classified based on the status of
the processes such as zombie processes. It is good enough if we
comprehend all these various terminologies in the linux system.

Interactive processes
An interactive process is one which needs user’s interaction while
it is active. For example, when we launch a vi-editor, it is an
interactive process. Another example could be the telnet
command. Hence, the interactive processes have to be associated
to a terminal.
Under the umbrella of interactive processes, we have Foreground
and Background processes.

Foreground Process
A process is a foreground process if it is in focus and can be given
input from the standard input. It blocks the shell until the
foreground process is complete. When we run our commands on
the terminal, they generally run as foreground processes. They
block the terminal until it is complete. Although most of our linux
commands are quick enough for us to even realize that.
Let us create our own program which sleeps for 10 seconds and
then ourselves experience what waiting for the foreground process
feels like.
The C source looks like:
#include <stdio.h>
#include <unistd.h>
int main()
{
 int time = 10;
 sleep(time);
 printf("Slept for 10 secs\n");
 return 0;
}

Now we compile and run the program,
$ gcc wait_process.c -Wall -o wait_process
$./wait_process

The terminal is blocked by the running process, and not letting the
user to do anything until the program is complete.

Background Process
Background processes are ones that are running, but in the
background, not taking any user input from the terminal. It does not
block the terminal, and allows us to use the terminal irrespective of
the background process is complete or not. The key-character to
make any new process to be run in background is ‘&’. How we use
this character, is by suffixing it with the command, as in,

Linux Basics Unit 2

 12

&

It is time, to run our ‘wait_process’ program to run as a
background, so that we can avoid the terminal to get blocked while
the process is sleeping.
$./wait_process &
[1] 2534
$

To get these background and foreground handy, linux provides
certain commands to view what is running and also switch any
foreground process to background and vice versa. One can use
command ‘jobs’ to see what all is running associated with the
terminal.
$gedit wait_process.c&
[1] 2538
$./wait_process&
[2] 2546
$jobs
[1]- Running gedit
wait_process.c &
[2]+ Running ./wait_process &
$

1. Fill in the blanks

(a) All Linux systems have a ________ or root user account,

which is the first user created on a system.

(b) We create normal users using the ________ command.

(c) The _______ command creates a new group account.

(d) We can read the Info pages about a command, using the
____ command.

(e) A process is a ________ in execution.

(f) In Linux, every process has a unique ________________
associated to it.

(g) The ___ command is used to view list of processes.

(h) When we run our commands on the terminal, they
generally run as ________ processes.

CHECK YOUR PROGRESS

Linux Basics Unit 2

 13

2.4 FILES AND FILE SYSTEM

For most users and for most common system administration tasks,
it is enough to accept that files and directories are ordered in a
tree-like structure. The computer, however, does not understand a
thing about trees or tree-structures. Every partition has its own file
system. By imagining all those file systems together, we can form
an idea of the tree-structure of the entire system, but it is not as
simple as that. In a file system, a file is represented by an inode, a
kind of serial number containing information about the actual data
that makes up the file: to whom this file belongs, and where is it
located on the hard disk. Every partition has its own set of inodes;
throughout a system with multiple partitions, files with the same
inode number can exist. Each inode describes a data structure on
the hard disk, storing the properties of a file, including the physical
location of the file data. When a hard disk is initialized to accept
data storage, usually during the initial system installation process
or when adding extra disks to an existing system, a fixed number
of inodes per partition is created. This number will be the maximum
amount of files, of all types (including directories, special files, links
etc.) that can exist at the same time on the partition. We typically
count on having 1 inode per 2 to 8 kilobytes of storage.
At the time a new file is created, it gets a free inode. In that inode
is the following information:

 File type (regular, directory, ...)
 Permissions on the file.
 Number of links to this file.
 File size.
 Date and time of creation, last read and change.

The only information not included in an inode, is the file name and
directory. These are stored in the special directory files. By
comparing file names and inode numbers, the system can make
up a tree-structure that the user understands. Users can display
inode numbers using the -i option to ls. The inodes have their own
separate space on the disk.
File type –

1. Regular file(-)
2. Directory files(d) Special files
3. Block file(b)
4. Character device file(c)
5. Named pipe file or just a pipe file(p)
6. Symbolic link file(l)
7. Socket file(s)

1. Regular file type – These are the files which are indicated

with “-” in ls -l output at the starting of the line. And these
files are.

a) Readable files or
b) A binary files or
c) Image files or

Linux Basics Unit 2

 14

d) Compressed files etc.
2. Directory file type – These type of files contains regular

files/folders/special files stored on a physical device. And
this type of files will be in blue in color with link greater than
or equal 2.

3. Block file type – These files are hardware files most of
which are present in /dev.

4. Character device files – Provides a serial stream of input
or output. Our terminals are example for this type of files.

5. Pipe files – The other name of pipe is a “named” pipe,
which is sometimes called a FIFO. FIFO stands for “First In,
First Out” and refers to the property that the order of bytes
going in is the same coming out. The “name” of a named
pipe is actually a file name within the file system.

6. Symbolic link files – These are linked files to other files.
They are either Directory/Regular File. The inode number
for this file and its parent files are same. There are two
types of links ie soft and hard link.

7. Socket files – A socket file is used to pass information
between applications for communication purpose

Permissions on the file – The Linux security model is based on
the one used on UNIX systems, and is as rigid as the UNIX
security model (and sometimes even more), which is already quite
robust. On a Linux system, every file is owned by a user and a
group user. There is also a third category of users, those that are
not the user owner and do not belong to the group owning the file.
For each category of users, read, write and execute permissions
can be granted or denied.
The ls -l command also displays file permissions for these three
user categories; they are indicated by the nine characters that
follow the first character, which is the file type indicator at the
beginning of the file properties line. As seen in the examples
below, the first three characters in this series of nine display
access rights for the actual user that owns the file. The next three
are for the group owner of the file, the last three for other users.
The permissions are always in the same order: read, write,
execute for the user, the group and the others. Some examples:
marise:~> ls -l To_Do
-rw-rw-r-- 1 marise users 5 Jan 15 12:39
To_Do
marise:~> ls -l /bin/ls
-rwxr-xr-x 1 root root 45948 Aug 9 15:01
/bin/ls*

The first file is a regular file (first dash). Users with user name
marise or users belonging to the group users can read and write
(change/move/delete) the file, but they cannot execute it (second
and third dash). All other users are only allowed to read this file,
but they cannot write or execute it (fourth and fifth dash).

Linux Basics Unit 2

 15

For easy use with commands, both access rights or modes and
user groups have a code as shown below.

Code Meaning

0 or - The access right that is supposed to be on this place is not granted.

4 or r Read access is granted to the user category defined in this place.
2 or w Write permission is granted to the user defined in this place.

1 or x Execute permission is granted to the user category defined in this
place

Access mode codes

Code Meaning
u user permissions
g group permissions
o permissions for others

User group codes

This straight forward scheme is applied very strictly, which allows a
high level of security even without network security. Among other
functions, the security scheme takes care of user access to
programs, it can serve files on a need-to-know basis and protect
sensitive data such as home directories and system configuration
files.

2.5 SEARCHING, COPYING, MOVING AND
RENAMING FILES

Searching files –
The find command allows us to search for files for which we
know the approximate filenames. The simplest form of the
command searches for files in the current directory and recursively
through its subdirectories that match the supplied search criteria.
We can search for files by name, owner, group, type, permissions,
date, and other criteria.
Typing the following command at the prompt lists all files found in
the current directory.

find .

To find files that match a specific pattern, we use the “-name”
argument. We can use filename metacharacters (such as “*”), but
should either put an escape character (“\”) in front of each of them
or enclose them in quotes. For example, if we want to find all the
files that start with “pro” in the Documents directory, we would use
the “cd Documents/” (without the quotes) command to change to
the Documents directory, and then type the following command.

Linux Basics Unit 2

 16

find . -name pro*

All files in the current directory starting with “pro” are listed.
The find command defaults to being case sensitive. If we want the
search for a word or phrase to be case insensitive, we should use
the –iname option with the find command. It is the case
insensitive version of the –name command.

If find does not locate any files matching the criteria, it produces
no output.

Using the Locate Command
The locate command is faster than the find command because
it uses a previously built database, whereas the find command
searches in the real system, through all the actual directories and
files. The locate command returns a list of all path names
containing the specified group of characters. The basic form of the
locate command finds all the files on the file system, starting at
the root, that contain all or any part of the search criteria.
The -b option can be used with the locate command to find all
files or directories that contain exactly and only the search criteria,
as follows.

locate -b ‘\mydata’

The backslash (‘\’) in the above command is a globbing character,
which provides a way of expanding wildcard characters in a non-
specific file name into a set of specific filenames. A wildcard is a
symbol that can be replaced by one or more characters when the
expression is evaluated. The most common wildcard symbols are
the question mark (?) which stands for a single character and the
asterisk (*) which stands for a contiguous string of characters. In
the above example, the backslash disables the implicit
replacement of “mydata” by “*mydata*” end up with only results
containing “mydata.”
The mlocate command is a new implementation of locate. It
indexes the entire file system, but the search results only include
files to which the current user has access. When we update the
mlocate database, it keeps timestamp information in the
database. This allows mlocate to know if the contents of a
directory changed without reading the contents again and makes
updates to the database faster and less demanding on the hard
drive.
Copying files –
Like so many Linux features, we have a variety of options from
which to choose when manipulating files and directories. We can
also use wildcards when copying, moving, or deleting files and
directories.
The following command copies a file:

cp <source> <destination>
So, to copy the file sneakers.txt to the directory tigger in the login
directory, we move to the login directory and type:

Linux Basics Unit 2

 17

cp sneakers.txt tigger
We can also use relative pathnames to copy the file, and can use
both relative and absolute pathnames with cp. Our login directory
is the parent of the directory tigger; tigger is one directory down
from our login directory.

The options we can use with cp are the following:

 -i — interactive. Prompts to confirm if the file is going to
overwrite a file in the destination. This is a handy option
because it can help prevent making mistakes.

 -r — recursive. Rather than just copying all the files and
directories, this will copy the whole directory tree,
subdirectories and all.

 -v — verbose. shows the progress of the files being
copied.

If we use cp with no options, we will not see much when the
command is executed. Using an option, such as -i, can make the
process a little more useful. Copying a file to a location that already
has a file with the same name, brings about the question if we
really want to overwrite (or replace) the file that is already present.
We now have the file sneakers.txt in the tigger directory, and will
use cp -i to copy the file again to the same location.
[newuser@localhost newuser]$
cp -i sneakers.txt tigger
cp: overwrite 'tigger/sneakers.txt'?
To overwrite the file that is already present, we press Y and then
[Enter]. In case we do not want to overwrite the file, we press N
and [Enter].
Moving files –
 To move files, we use the mv command. It is similar to the
cp command, except that with mv the file is physically moved from
one place to another, instead of being duplicated, as with cp.

Common options for mv include the following:

 - I — interactive. This prompts us if the selected file
will overwrite an existing file in the destination directory.

 - f — force. Overrides the interactive mode and moves
without prompting.

 - v — verbose. Shows a list of the files being moved.

Renaming files –
When we copy or move files, we can also rename them. To copy
the file sneakers.txt from the login directory to the tigger
subdirectory, we type the following:

cp sneakers.txt tigger

To copy and rename that file from sneakers.txt to piglet.txt, we
type:

cp sneakers.txt tigger/piglet.txt

Linux Basics Unit 2

 18

To move and rename the file, we substitute mv for cp in the above
example. If we cd to tigger and then type ls, we see the file
piglet.txt. If we just want to rename the file and keep its location,
we just mv in our current directory:

mv sneakers.txt piglet.txt

2.6 DELETING, LINKING AND EDITING FILES

Deleting files –
Deleting files and directories in Linux is a straightforward process
with the rm command. Options for removing files and directories
include:

 - i — interactive. Prompts to confirm the deletion. This
option can stop from deleting a file by mistake.

 - f — force. Overrides interactive mode and removes the
file(s) without prompting.

 - v — verbose. Shows a list of files as they are being
removed.

 - r — recursive. Will delete a directory and all (if any) files
and the subdirectories it contains.

To delete the file piglet.txt from the tigger directory with the rm
command:

rm piglet.txt

The -i (interactive) option is helpful, because it gives a second
chance to think about whether or not we really want to delete the
file.

[newuser@localhost newuser]$
rm -i piglet.txt
rm: remove 'piglet.txt'?

We can also delete files using the wildcard *,
rm pig*

The above command will remove all files in the directory which
start with the letters "pig."

We can also remove more than one file using one command:
rm piglet.txt sneakers.txt

Options for removing files and directories include the following:

 - i — interactive. Prompts to confirm the deletion, thus
stopping us from deleting a file by mistake.

 - f — force. Overrides interactive mode and removes
the file(s) without prompting.

 - v — verbose. Shows a list of files as they are being
removed.

Linux Basics Unit 2

 19

 - r — recursive. Will delete a directory and all (if any)
files and the subdirectories it contains.

We can use rmdir to remove a directory (rmdir foo, for
example), but only if the directory is empty. To remove directories
with rm, we must specify the -r option.

For example, to recursively remove the directory tigger we would
type:

rm -r tigger

To combine options, such as forcing a recursive deletion, we type:
rm -rf tigger

Linking files –
A link is nothing more than a way of matching two or more file
names to the same set of file data. There are two ways to achieve
this:

 Hard link: Associate two or more file names with the same
inode. Hard links share the same data blocks on the hard
disk, while they continue to behave as independent files.
There is an immediate disadvantage: hard links cannot
span partitions, because inode numbers are only unique
within a given partition.

 Soft link: Soft link or symbolic link (or for short: symlink): a
small file that is a pointer to another file. A symbolic link
contains the path to the target file instead of a physical
location on the hard disk. Since inodes are not used in this
system, soft links can span across partitions.

Removing the target file for a symbolic link makes the link useless.
Each regular file is in principle a hardlink. Hardlinks cannot span
across partitions, since they refer to inodes, and inode numbers
are only unique within a given partition. It may be argued that there
is a third kind of link, the user-space link, which is similar to a
shortcut in MS Windows. These are files containing meta-data
which can only be interpreted by the graphical file manager. To the
kernel and the shell these are just normal files. They may end in a
.desktop or .lnk suffix.

Editing files –
Editing files in Linux can be performed by using different
commands available. These are discussed below.
Vi editor: The vi editor (short for visual editor) is a screen editor
which is available on almost all Unix systems. VI is a fast and
powerful editor. VI has no menus but instead uses combinations of
keystrokes in order to accomplish commands.
We start using vi, at the Unix prompt by typing vi followed by a file
name. To edit an existing file we type in its name, and to create a
new file we type in the name we wish to give to the new file.

%vi filename

Linux Basics Unit 2

 20

vi has two modes – the command mode and the insert mode. It is
essential to know which mode we are in at any given point in time.
When in the command mode, letters of the keyboard will be
interpreted as commands. When in the insert mode the same
letters of the keyboard will type or edit text. vi always starts out in
command mode. To move between the two modes we- type i to
enter the insert mode, and hit ESC to leave insert mode and return
to the command mode. In case we are not sure where we are,
hitting ESC a couple of times puts us back in command mode.
Pico: pico (Pine composer) is a text editor for Linux. PICO is a
very simple and easy-to-use text editor offering paragraph
justification, cut/paste, and a spelling checker. Pico does not
support working with several files simultaneously and cannot
perform a find and replace across multiple files. It also cannot copy
text from one file to another (though it is possible to read text into
the editor from a file in its working directory). Pico does support
search and replace operations. Pico's interface is in many ways
very similar to that found in Windows editors, such as Notepad.
Ed: ed is a line editor for the Unix operating system. It was one of
the first end-user programs hosted on the system and has been
standard in Unix-based systems ever since.

Syntax: ed [-C] [-p string] [-s] [-] [-x] filename

-C
Encryption option; the same as the -x option, except
that ed simulates a C command. The C command is

like the X command, except that all text read in is
assumed to have been encrypted.

-p string Allows the user to specify a prompt string. By default,
there is no prompt string.

-s or -
Suppresses the writing of character counts by e, r, and
w commands, of diagnostics from e and q commands,

and of the ! prompt after a !shell command.

-x

Encryption option; when used, ed simulates an X
command and prompts the user for a key. The X

command makes an educated guess to determine
whether text read in is encrypted or not. The temporary

buffer file is encrypted also, using a transformed
version of the key typed in for the -x option.

filename The name of the file to edit.

Assuming the file myfile.txt has the following lines in it:

Linux Basics Unit 2

 21

Hello world
this is a test
of the ed editor

ed myfile.txt - Would open the file myfile.txt in the ed
editor.

$ Reads the last line in this case "of the ed editor"

-

Moves back one line. For example, if $ was typed, if - was
entered would move up to "this is a test". A number can be
added to move more than one line at a time. For example,
if at the last line typing -2 would move back to the first line

in this example.

+
The + moves one line forward instead of back like the -.

Like the - the + can have a number added after it, for
example, +2 to move two lines instead of one line.

/. Reads the first line in this case "Hello world" additional dots
can be added to read other lines.

/text/
Searches for the text typed in-between the forward slashes
and displays the next line that has this text. For example, if
we were at the first line "Hello world" and typed /test/ the

line displayed would be "this is a test"

I Inserts text above the current line. Once finished we press
CTRL + C to exit out of the insert option.

J Joins lines of text.

T Copies the line.

C
Used to change text. For example, if the current line was

"this is a test". Typing c would allow us to enter a new line.
Typing "this is a tester" and then pressing CTRL + C would

replace the previous line with this new line.

R Removes the specific line we are currently on.

X
Allows to skip to a line. For example, typing X and when
asked to enter a key we enter 3 would display the line "of

the ed editor"

2.7 LINUX COMMANDS

Linux Basics Unit 2

 22

Linux has a variety of commands that can be used to create,
manipulate, edit and perform several other functions related to the
individual files and directories present in the system. Below are
some of those commands that are used for performing different
tasks related to files or directories in the linux system.

ls -

When invoked without any arguments, ls lists the files in the
current working directory. A directory that is not the current working
directory can be specified and ls will list the files there. The user
also may specify any list of files and directories. In this case, all
files and all contents of specified directories will be listed.

Files whose names start with "." are not listed, unless the -a flag is
specified, the -a flag is specified, or the files are specified
explicitly.

Without options, ls displays files in a bare format. This bare
format however makes it difficult to establish the type, permissions,
and size of the files. The most common options to reveal this
information or change the list of files are:

 - l long format, displaying Unix file types, permissions,
number of hard links, owner, group, size, last-modified
date and filename

 - f do not sort. Useful for directories containing large
numbers of files.

 - F appends a character revealing the nature of a file, for
example, * for an executable, or / for a directory. Regular
files have no suffix.

 - a lists all files in the given directory, including those
whose names start with "." (which are hidden files in
Unix). By default, these files are excluded from the list.

 - R recursively lists subdirectories. The command ls -R /
would therefore list all files.

 - d shows information about a symbolic link or directory,
rather than about the link's target or listing the contents
of a directory.

 - t sort the list of files by modification time.

 - h print sizes in human readable format. (e.g., 1K,
234M, 2G, etc.)

The following example demonstrates the output of the ls
command given two different arguments (pwd is a command that
shows the present working directory, or in other words, the folder
we are currently in):

Linux Basics Unit 2

 23

$ pwd
/home/fred
$ ls -l
drwxr--r-- 1 fred editors 4096 drafts
-rw-r--r-- 1 fred editors 30405 edition-32
-r-xr-xr-x 1 fred fred 8460 edit
$ ls -F
drafts/
edition-32
edit*

In this example, the user fred has a directory named drafts, a
regular file called edition-32, and an executable named edit in his
home directory.

rm –
rm (short for remove) is a basic UNIX command used to remove
objects such as files, directories, device nodes, symbolic links, and
so on from the filesystem. To be more precise, rm removes
references to objects from the filesystem, where those objects
might have had multiple references (for example, a file with two
different names), and the objects themselves are discarded only
when all references have been removed and no programs still
have open handles to the objects. This allows for scenarios where
a program can open a file, immediately remove it from the
filesystem, and then use it for temporary space, knowing that the
file's space will be reclaimed after the program exits, even if it exits
by crashing. rm generally does not destroy file data, since its
purpose is really merely to unlink references, and the filesystem
space freed may still contain leftover data from the removed file.
To remove a file named "foo" from a directory we type:

% rm foo

Normally, no output is produced by rm, since it typically only
generates messages in the event of an error. The -v option can be
used to get rm to detail successful removal actions.

rmdir –
rmdir (or rd) is a command which will remove an empty directory
on a Unix, DOS, OS/2 or Microsoft Windows operating system. In
Unix, Linux, and OS X, it is case sensitive, whereas DOS, OS/2
and Windows (95, 98, ME), we can type the characters in any
combination of upper case and lower case letters, and rd/rmdir will
recognize and remove that directory. Normal usage is
straightforward where one types:

rmdir name_of_directory

where name_of_directory corresponds with the name of the
directory one wishes to delete. There are options to this command
such as -p in Unix which removes parent directories if they are
also empty.
For example:

Linux Basics Unit 2

 24

rmdir -p foo/bar/baz

will first remove baz/, then bar/ and finally foo/ thus removing
the entire directory tree specified in the command argument.

rmdir will not remove a directory if it is not empty in UNIX. The
correct way to remove a directory and all its contents recursively is
with the rm command. For example:

rm -r foo/bar/baz
rm -rf foo/bar/baz

pwd –
The pwd command reports the full path to the current directory.
The current directory is the directory in which a user is currently
operating while using a command line interface. A command line
interface is an all-text display mode and it is provided via a console
(i.e., a display mode in which the entire screen is text only) or via a
terminal window (i.e., a text-only window in a GUI). The full path,
also called an absolute path, to a directory or file is the complete
hierarchy of directories from the root directory to and including that
directory or file. The root directory, which is designated by a
forward slash (/), is the base directory on the filesystem (i.e.,
hierarchy of directories), and it contains all other directories,
subdirectories and files on the system. Thus, the full path for any
directory or file always begins with a forward slash.

pwd is one of the most basic commands in Linux and other Unix-
like operating systems, along with ls, which is used to list the
contents of the current directory, and cd, which is used to change
the current directory.
Syntax:

pwd [option]

Unlike most commands, pwd is almost always used just by itself,
i.e.,

pwd
That is, it is rarely used with its options and never used with
arguments (i.e., file names or other information provided as
inputs). Anything that is typed on the same line after pwd, with the
exception of an option, is ignored, and no error messages are
returned.
As an example, if a user with the username janis is in its home
directory, then the above command would typically return
/home/janis/ (because, by default, all home directories are located
in the directory /home). Likewise, if a user were currently working
in directory /usr/share/config (which contains a number of program
configuration files), then the same command would return
/usr/share/config. pwd is useful for confirming that the current
directory has actually been changed to what the user intended
after using cd. For example, after issuing the cd command to
change the current directory from /home/janis to /usr/share/config,

Linux Basics Unit 2

 25

pwd could be used for confirmation; that is, the following sequence
of commands would be issued:

cd /usr/share/config/
pwd

The standard version of pwd has a mere two options, both of which
are employed only infrequently. The -help option is used as
follows:

pwd -help
This option displays information about pwd, of which there is very
little because it is such a simple command (i.e., it only has two
options and accepts no arguments).

The other option is – version, which displays the version
number, i.e.,

pwd -version
Although it is often thought of as standing for present working
directory, pwd is actually an acronym for print working directory.
The word print is traditional UNIX terminology for write or display,
and it originated when computer output was typically printed on
paper by default because CRT (cathode ray tube) display monitors
were not yet widely available. Despite its extreme simplicity, pwd
remains one of the most useful and popular of the commands for
Unix-like operating systems. Actually, this simplicity is completely
consistent with the Unix philosophy, which emphasizes small,
specialized and modular programs rather than the large and
complex programs that are favored by some other operating
systems.

more –
more is a command to view (but not modify) the contents of a text
file one screen at a time. The command-syntax is:

more [options] [file_name]

If no file name is provided, more looks for input from stdin.

Once more has obtained input, it displays as much as can fit on
the current screen and waits for user input to advance, with the
exception that a form feed (^L) will also cause more to wait at that
line, regardless of the amount of text on the screen. In the lower-
left corner of the screen is displayed the text "-More-" and a
percentage, representing the percent of the file that more has
paged through. (This percentage includes the text displayed on the
current screen.) When more reaches the end of a file (100%) it
exits. The most common methods of navigating through a file are
Enter, which advances the output by one line, and Space, which
advances the output by one screen.
Options: Options are typically entered before the file name, but
can also be entered in the environment variable $MORE. Options
entered in the actual command line will override those entered in
the $MORE environment variable. Available options may vary
between Unix systems, but a typical set of options is as follows:

Linux Basics Unit 2

 26

 -num: This option specifies an integer which is the screen
size (in lines).

 -d: more will prompt the user with the message "[Press
space to continue, 'q' to quit.]" and will display "[Press 'h' for
instructions.]" instead of ringing the bell when an illegal key
is pressed.

 -l: more usually treats ^L (form feed) as a special
character, and will pause after any line that contains a form
feed. The -l option will prevent this behavior.

 -f: Causes more to count logical, rather than screen lines
(i.e., long lines are not folded).

 -p: Do not scroll. Instead, clear the whole screen and then
display the text.

 -c: Do not scroll. Instead, paint each screen from the top,
clearing the remainder of each line as it is displayed.

 -s: Squeeze multiple blank lines into one.
 -u: Backspaces and carriage returns to be treated as

printable characters;
 +/: The +/ option specifies a string that will be searched for

before each file is displayed. (Ex.: more +/Preamble gpl.txt)
 +num: Start at line number num.

less –
less is a program similar to more, but which allows backward
movement in the file as well as forward movement. Also, less
does not have to read the entire input file before starting, so with
large input files it starts up faster than text editors like vi. Less
uses termcap (or terminfo on some systems), so it can run on a
variety of terminals. There is even limited support for hardcopy
terminals. (On a hardcopy terminal, lines which should be printed
at the top of the screen are prefixed with a caret.) less can be
invoked with options to change its behaviour, for example, the
number of lines to display on the screen. A few options vary
depending on the operating system. While less is displaying the
file, various commands can be used to navigate through the file.
These commands are based on those used by both more and vi. It
is also possible to search for character patterns in the file. By
default, less displays the contents of the file to the standard
output (one screen at a time). If the file name argument is omitted,
it displays the contents from standard input (usually the output of
another command through a pipe). If the output is redirected to
anything other than a terminal, for example a pipe to another
command, less behaves like cat.

Syntax:
less [options] [file_name]

Options:

 - g: Highlights just the current match of any searched
string.

 - I: Case-insensitive searches.
 - M: Shows more detailed prompt, including file position.
 - N: Shows line numbers (useful for source code viewing).

Linux Basics Unit 2

 27

 - S: Disables line wrap ("chop long lines"). Long lines can
be seen by side scrolling.

 - ?: Shows help.

Example –
less -M readme.txt # Read "readme.txt."

grep –
grep is a command-line utility for searching plain-text data sets for
lines matching a regular expression. Grep was originally
developed for the Unix operating system, but is available today for
all Unix-like systems. Its name comes from the ed command g/re/p
(globally search a regular expression and print), which has the
same effect: doing a global search with the regular expression and
printing all matching lines. Grep searches files specified as
arguments, or, if missing, the program's standard input. By default,
it reports matching lines on standard output, but specific modes of
operation may be chosen with command line options. A simple
example of a common usage of grep is the following, which
searches the file fruitlist.txt for lines containing the text string apple:
$ grep apple fruitlist.txt

sort –
The sort command is used to sort the lines in a text file.
Syntax:

sort [options]... [file]

Options:

-b Ignores spaces at beginning of the line.
-c Check whether input is sorted, does not sort
-d Uses dictionary sort order and ignores the

punctuation.
-f Ignores caps
-g Compare according to general numerical value
-i Ignores nonprinting control characters.
-k Start a key at POS1, end it at POS2 (origin 1)
-m Merges two or more input files into one sorted

output.
-M Treats the first three letters in the line as a month

(such as may.)
-n Sorts by the beginning of the number at the

beginning of the line.
-o Write result to FILE instead of standard output
-r Sorts in reverse order
-s Stabilize sort by disabling last-resort comparison
-t Use SEP instead of non-blank to blank transition
-T Uuse DIR for temporaries, not $TMPDIR or /tmp;

multiple options specify multiple directories
-u If line is duplicated only display once

Linux Basics Unit 2

 28

-z End lines with 0 byte, not newline
+fields Sorts by fields , usually by tabs
filename The name of the file that needs to be sorted.

-o
outputfile Sends the sorted output to a file.

cat –
The cat program is a standard Unix utility that concatenates and
lists files. The name is an abbreviation of catenate, a synonym of
concatenate. When the "cat" program is given files in a sequence
as arguments, it will output their contents to the standard output in
the same sequence. It mandates the support of one option flag, u
(unbuffered), by which each byte is written to standard output
without buffering as it is read. Many operating systems do this by
default and ignore the flag. If one of the input filenames is specified
as a single hyphen (-), then cat reads from standard input at that
point in the sequence. If no files are specified, cat reads from
standard input only.
Syntax:

cat [options] [file_names]
cat will concatenate (put together) the input files in the order
given, and if no other commands are given, will print them on the
screen as standard output. It can also be used to print the files into
a new file as follows:

cat [options] [file_names] > newfile.txt

head –
The head command reads the first few lines of any text given to it
as an input and writes them to standard output (which, by default,
is the display screen).
Syntax:

head [options] [file(s)]
The square brackets indicate that the enclosed items are optional.
By default, head returns the first ten lines of each file name that is
provided to it. For example, the following will display the first ten
lines of the file named aardvark in the current directory (i.e., the
directory in which the user is currently working):

head aardvark
If more than one input file is provided, head will return the first ten
lines from each file, precede each set of lines by the name of the
file and separate each set of lines by one vertical space. The
following is an example of using head with two input files:

head aardvark armadillo
If it is desired to obtain some number of lines other than the default
ten, the -n option can be used followed by an integer indicating
the number of lines desired. For example, the above example
could be modified to display the first 15 lines from each file:

head -n15 aardvark armadillo

Linux Basics Unit 2

 29

-n is a very tolerant option. For example, it is not necessary for the
integer to directly follow it without a space in between. Thus, the
following command would produce the same result:

head -n 15 aardvark armadillo
In fact, the letter n does not even need to be used at all. Just the
hyphen and the integer (with no intervening space) are sufficient to
tell head how many lines to return. Thus, the following would
produce the same result as the above commands:

head -15 aardvark armadillo
head can also return any desired number of bytes (i.e., a
sequence of eight bits and usually long enough to represent a
single character) from the start of each file rather than a desired
number of lines. This is accomplished using the -c option followed
by the number of bytes desired. For example, the following would
display the first five bytes of each of the two files provided:

head -c 5 aardvark anteater
When head counts by bytes, it also includes the newline character,
which is a non-printing (i.e, invisible) character that is designated
by a backslash and the letter n (i.e., \n). Thus, for example, if there
are three new, blank lines at the start of a file, they will be counted
as three characters, along with the printing characters (i.e.,
characters that are visible on the monitor screen or on paper). The
number of bytes or lines can be followed by a multiplier suffix. That
is, adding the letter b directly after the number of bytes multiplies it
by 512, k multiplies it by 1024 and m multiplies it by 1048576.
Thus, the following command would display the first five kilobytes
of the file aardvark:

head -c5k aardvark
The -c option is less tolerant than the -n option. That is, there is no
default number of bytes, and thus some integer must be supplied.
Also, the letter c cannot be omitted as can the letter n, because in
such case head would interpret the hyphen and integer
combination as the -n option. Thus, for example, the following
would produce an error message something like head: aardvark:
invalid number of bytes:

head -c aardvark
If head is used without any options or arguments (i.e., file names),
it will await input from the keyboard and will successively repeat
(i.e., each line will appear twice) on the monitor screen each of the
first ten lines typed on the keyboard. If it were desired to repeat
some number of lines other than the default ten, then the -n option
would be used followed by the integer representing that number of
lines (although, again, it is not necessary to include the letter n),
e.g.,

head -n3
As is the case with other command line (i.e., all-text mode)
programs in Linux and other Unix-like operating systems, the
output from head can redirected from the display monitor to a file
or printer using the output redirection operator (which is

Linux Basics Unit 2

 30

represented by a rightward-pointing angular bracket). For example,
the following would copy the first 12 lines of the file Yuriko to the
file December:

head -n 12 Yuriko > December
If the file named December did not yet exist, the redirection
operator would create it; if it already existed, the redirection
operator would overwrite it. To avoid erasing data on an existing
file, the append operator (which is represented by two consecutive
rightward pointing angle brackets) could be used to add the output
from head to the end of a file with that name if it already existed (or
otherwise create a new file with that name), i.e.,

head -n 12 Yuriko >> December
The output from other commands can be sent via a pipe
(represented by the vertical bar character) to head to use as its
input. For example, the following sends the output from the ls
command (which by default lists the names of the files and
directories in the current directory) to head, which, in turn, displays
the first ten lines of the output that it receives from ls:

ls | head
This output could easily be redirected, for example to the end of a
file named file1 as follows:

ls | head >> file1
It could also be piped to one or more filters for additional
processing. For example, the sort filter could be used with its -r
option to sort the output in reverse alphabetic order prior to
appending file1:

ls | head | sort -r >> file1
The -q (i.e., quiet) option causes head to not show the file name
before each set of lines in its output and to eliminate the vertical
space between each set of lines when there are multiple input
sources. Its opposite, the -v (i.e., verbose) option, causes head to
provide the file name even if there is just a single input file.

tail –
The tail command reads the final few lines of any text given to it
as an input and writes them to standard output (which, by default,
is the monitor screen).
Syntax:

tail [options] [filenames]
The square brackets indicate that the enclosed items are optional.
By default, tail returns the final ten lines of each file name that is
provided to it. For example, the following command will print
(traditional Unix terminology for write) the last ten lines of the file
named aardvark in the current directory (i.e., the director in which
the user is currently working) to the display screen:

tail aardvark

Linux Basics Unit 2

 31

If more than one input file is provided, tail will print the last ten
lines from each file to the monitor screen. Each set of lines will be
preceded by the name of the file and separated by one vertical
space from other sets of lines. The following is an example of
using tail with multiple input files:

tail aardvark anteater armadillo
If it is desired to print some number of lines other than the default
ten, the -n option can be used followed by an integer indicating the
number of lines desired. For example, to print the final 15 lines
from each file in the above example, the command would be
modified as follows:

tail -n15 aardvark anteater armadillo
-n is a very tolerant option. For example, it is not necessary for the
integer to directly follow it without a space in between. Thus, the
following command would produce the same result:

tail -n 15 aardvark anteater armadillo
In fact, the letter n does not even need to be used at all. Just the
hyphen and the integer (with no intervening space) are sufficient to
tell tail how many lines to print. Thus, the following would produce
the same result as the above commands:

tail -15 aardvark anteater armadillo
tail can also print any desired number of bytes (i.e., a sequence of
eight bits and usually long enough to represent a single character)
from the end of each file rather than a desired number of lines.
This is accomplished using the -c option followed by the number of
bytes desired. For example, to view the final five bytes of each of
the two files aardvark and anteater, the following command would
be used:

tail -c 5 aardvark anteater
When tail counts by bytes, it also includes the newline character,
which is a non-printing (i.e, invisible) character that is designated
by a backward slash and the letter n (i.e., \n). Thus, for example, if
there are three new, blank lines at the end of a file, they will be
counted as three characters, along with the printing characters
(i.e., characters that are visible on the monitor screen or paper).
The number of bytes or lines can be followed by a multiplier suffix.
That is, adding the letter b directly after the number of bytes
multiplies it by 512, k multiplies it by 1024 and m multiplies it by
1048576. Thus, the following command would print the last five
kilobytes of the file aardvark:

tail -c5k aardvark
The -c option is less tolerant than the -n option. That is, there is
no default number of bytes, and thus some integer must be
supplied. Also, the letter c cannot be omitted as can the letter n,
because in such case tail would interpret the hyphen and integer
combination as the -n option. Thus, for example, the following
would produce an error message something like tail: aardvark:
invalid number of bytes:

tail -c aardvark

Linux Basics Unit 2

 32

If tail is used without any options or arguments (i.e., inputs), it
will await input from the keyboard and will successively repeat (i.e.,
each line will appear twice) on the monitor screen each of the final
ten lines typed on the keyboard. If it were desired to repeat some
number of lines other than the default ten, then the -n option would
be used followed by the integer representing that number of lines
(although, again, it is not necessary to include the letter n), e.g.,

tail -n3
As is the case with other command line (i.e., all-text mode)
programs in Unix-like operating systems, the output of tail can be
redirected from the monitor to a file or printer using the redirection
operator (which is represented by a rightward pointing angular
bracket). For example, the following would write the final 12 lines
of the file Yuriko to the file December:

tail -n 12 Yuriko > December
If the file named December did not yet exist, the redirection
operator would create it; if it already existed, the redirection
operator would overwrite it. To avoid erasing data on an existing
file, the append operator (which is represented by two rightward
pointing angular brackets) could be used to add the output from tail
to the end of a file with that name if it already existed (or otherwise
create a new file with that name), i.e.,

tail -n 12 Yuriko >> December
The output from other commands can be piped (i.e., sent) to tail to
use as its input. For example, the following sends the output from
the ls command (which by default lists the names of the files and
directories in the current directory) to tail, which, in turn, prints the
final ten lines of the output that it receives from ls to the monitor
screen:

ls | tail
This output could easily be redirected, for example to a file named
last_filenames as follows:

ls | tail >> last_filenames
It could also be piped to one or more filters for additional
processing. For example, the sort filter could be used with its -r
option to sort the output in reverse alphabetic order prior to writing
to a file:

ls | tail | sort -r >> last_filenames
The -q (i.e., quiet) option causes tail to not print the file name
before each set of lines and to eliminate the vertical space
between each set of lines when there are multiple input sources.
The -v (i.e., verbose) option causes tail to print the file name even
if there is just a single input file. Tail could be viewed as a
counterpart of the head command, which always starts reading
from the beginning of files and which can continue until any
specified distance from the beginning. However, there are a few
differences. Perhaps the most useful of these is that tail is
somewhat more flexible in that, in addition to being able to start
reading any specified distance from the end of a file, it can also

Linux Basics Unit 2

 33

start at any specified distance from the beginning of a file. Tail can
be instructed to begin printing from some number of lines or bytes
from the start of a file by preceding the number with a plus sign
instead of a minus sign. For example, the following would print
each of the designated files to the display monitor beginning with
the seventh line and until the end:

tail +7 aardvark anteater armadillo
The c option could be used to tell tail to print each of the
designated files beginning with the seventh byte instead of the
seventh line:

tail +7c aardvark anteater armadillo
A particularly common application for tail is examining the most
recent entries in log files. This is because the newest entries are
appended to the ends of such files, which tail excels in showing.
As log files can be a rather long, this can eliminate a lot of scrolling
that would be necessary if some other command were used to
read them. For example, the most recent entries to the log
/var/log/messages can easily be viewed by using the following:

tail /var/log/messages
As is the case with other programs on Unix-like operating systems,
additional information, including variations on specific versions,
can be obtained about the tail and head commands by consulting
the built-in manual and information pages using commands such
as:

man tail
or

info head

wc –
The program reads either standard input or a list of files and
generates one or more of the following statistics: newline count,
word count, and byte count. If a list of files is provided, both
individual file and total statistics follow.
Example:
$ wc foo bar

 40 149 947 foo
 2294 16638 97724 bar
 2334 16787 98671 total

The first column is the count of newlines, meaning that the text file
foo has 40 newlines while bar has 2294 newlines- resulting in a
total of 2334 newlines. The second column indicates the number of
words in each text file showing that there are 149 words in foo and
16638 words in bar- giving a total of 16787 words. The last column
indicates the number of characters in each text file, meaning that
the file foo has 947 characters while bar has 97724 characters-
98671 characters all in all.
Usage:

Linux Basics Unit 2

 34

 wc -l <filename> print the line count
 wc -c <filename> print the byte count
 wc -m <filename> print the character count
 wc -L <filename> print the length of longest line
 wc -w <filename> print the word count

tee –
tee is normally used to split the output of a program so that it can
be displayed and saved in a file. The command can be used to
capture intermediate output before the data is altered by another
command or program. The tee command reads standard input,
then writes its content to standard output. It simultaneously copies
the result into the specified file(s) or variables. The syntax differs
depending on the command's implementation:
Syntax:

tee [-a][-i] [File...]

Arguments:
 File One or more files that will receive the "tee-d" output.

Flags:
 - a: Appends the output to the end of File instead of writing

over it.
 - i: Ignores interrupts.

The command returns the following exit values (exit status):
 0: The standard input was successfully copied to all output

files.
 >0: An error occurred.

ps –
The ps command (short for "process status") displays the
currently-running processes.
For example,
ps

 PID TTY TIME CMD
 7431 pts/0 00:00:00 su
 7434 pts/0 00:00:00 bash
18585 pts/0 00:00:00 ps

top –
The top command is useful for monitoring systems continuously
for processes that take more system resources like the CPU time
and the memory. top periodically updates the display showing the
high resource consuming processes at the top. top is an excellent
aid in checking a system. If the system is giving a slow response
time, we just run top and look for statistics like - load average,
CPU utilization, memory and swap usage and the top CPU and

Linux Basics Unit 2

 35

memory intensive processes, which would give us a fair idea of
what is happening in the system.

Command Line Options
Option Description

-h, -v print program version, usage prompt and quit

-b work in "batch" mode. No inputs are accepted and
top quits after -n number iterations

-n work for the given number of iterations and quit.

-d delay time interval between iterations in in the
format ss[.tt] seconds

-H Show threads. By default, processes are
displayed. LWP ids are displayed under PID.

-i do not display "idle" processes

-u Report only processes with the given effective user
id or user name

-U Report only processes with the given real,
effective, saved or filesystem user id or user name

-p Monitor the processes identified by the given list of
process ids.

-s work in secure mode

-S
Display cumulative CPU time for each process and
its children which have died and have been waited

for by it

tar –
The tar (i.e., tape archive) command is used to convert a group of
files into an archive. An archive is a single file that contains any
number of individual files plus information to allow them to be
restored to their original form by one or more extraction programs.
Archives are convenient for storing files as well as for transmitting
data and distributing programs. Moreover, they are very easy to
work with, often much more so than dealing with large numbers of
individual files. Although tar was originally designed for backups on
magnetic tape, it can now be used to create archive files anywhere
on a filesystem. Archives that have been created with tar are

Linux Basics Unit 2

 36

commonly referred to as tarballs. Unlike some other archiving
programs, and consistent with the Unix philosophy that each
individual program should be designed to do only one thing but do
it well, tar does not perform compression. However, it is very
easy to compress archives created with tar by using specialized
compression utilities.
Syntax:

tar option(s) archive_name file_name(s)

tar has numerous options, many of which are not frequently used.
Unlike many commands, tar requires the use of at least one
option, and usually two or more are necessary. tar files are
created by using both the -c and -f options. The former instructs
tar to create an archive and the latter indicates that the next
argument (i.e., piece of input data in a command) will be the name
of the new archive file. Thus, for example, the following would
create an archive file called file.tar from the three files named file1,
file2 and file3 that are located in the current directory (i.e., the
directory in which the user is currently working):

tar -cf file.tar file1 file2 file3

It is not absolutely necessary that the new file have the .tar
extension; however, the use of this extension can be very
convenient because it allows the type of file to be visually
identified. It is necessary, however, that the -f option be the final
option in a sequence of contiguous, single-letter options;
otherwise, the system will become confused as to the desired
name for the new file and will use the next option in the sequence
as the name. The -v (i.e., verbose) option is commonly used
together with the -c and -f options in order to display a list of the
files that are included in the archive. In such case, the above
example would become

tar -cvf file.tar file1 file2 file3

tar can also be used to make archives from the contents of one
or more directories. The result is recursive; that is, it includes all
objects (e.g., directories and files) within each level of directories.
For example, the contents of two directories named dir1 and dir2
could be archived into a file named dir.tar with the following:

tar -cvf dir.tar dir1 dir2

It is often convenient to use tar with a wildcard (i.e., a character
which can represent some specific class of characters or sequence
of characters). The following example uses the star wildcard (i.e.,
an asterisk), which represents any character or sequence of
characters, to create an archive of every object in the current
directory:

tar -cf *

By default, tar creates an archive of copies of the original files
and/or directories, and the originals are retained. However, they
can be removed when using tar by adding the -remove-files
option. As it has no compression and decompression capabilities
of its own, tar is commonly used in combination with an external

Linux Basics Unit 2

 37

compression utility. A very handy feature of the GNU version
(which is standard on Linux) is the availability of options that will
cause standard compression programs to compress a new archive
file as soon as it has been created. They are -j (for bzip2), -z (for
gzip) and -Z (for compress). Thus, for example, the following would
create an archive named files.tar.bz2 of the files file4, file5 and
file6 that is compressed using bzip2:

tar -cvjf files.tar.bz2 file4 file5 file6

tar can also be used for unpacking tar files. However, before
doing this, there are several steps that should be taken. One is to
confirm that sufficient space is available on the hard disk drive
(HDD). Another is to move to an empty directory (which usually
involves creating one with an appropriate name) to prevent the
reconstituted files from cluttering up the current directory and
overwriting any files or directories with same names that are in it.
In addition, if the archive has been compressed, it must first be
decompressed using the appropriate decompression program
(which can usually be determined by the filename extension). In
order to unpack a tar file, the -x (for extract) and -f options are
required. It is also common to add the -v option to provide a
running listing of the files being unpacked. Thus, for example, to
unpack the archive file.tar created in a previous example the
following would be used:

tar -xvf file.tar

Just as options are available to allow three compression programs
to automatically compress newly created tar files, the same options
can be used to have the compression programs automatically
decompress tar files prior to extraction. Thus, for instance, the
following would decompress and extract the contents of the
compressed archive files.tar.bz2 that was created in an above
example:

tar -xjvf files.tar.bz2

Files can be added to an existing archive using the -r option. As is
always the case with tar, it is also necessary to use the -f option to
indicate that the following string (i.e., sequence of characters) is
the name of the archive. For example, the following would append
a file named file7 to file.tar:

tar -rf file.tar file7

The –delete option allows specified files to be completely removed
from a tar file (except when the tar file is on magnetic tape).
However, this is different from an extraction, as copies of the
removed files are not made and placed in the current directory.
Thus, for example, the files file1 and file2 can be removed from
file.tar with the following:

tar -f file.tar -delete file1 file2

The -t option tells tar to list the contents of an uncompressed
archive without performing an extraction. Thus, the following would
list the contents of file.tar:

tar -tf file.tar

Linux Basics Unit 2

 38

One of the very few options that can be used alone with tar is –
help, which provides a relatively compact listing of the numerous
options that are available. Another is –version, which shows the
version number for the installed tar program as well as its copyright
information.

unzip –
unzip will list, test, or extract files from a ZIP archive, commonly
found on MS-DOS systems. The default behavior (with no options)
is to extract into the current directory (and subdirectories below it)
all files from the specified ZIP archive. A companion program,
zip(1L), creates ZIP archives; both programs are compatible with
archives created by PKWARE's PKZIP and PKUNZIP for MS-DOS,
but in many cases the program options or default behaviors differ.

nice –
nice is used to invoke a utility or shell script with a particular
priority, thus giving the process more or less CPU time than other
processes. A niceness of −20 is the highest priority and 19 or 20 is
the lowest priority. The default niceness for processes is inherited
from its parent process, usually 0. nice becomes useful when
several processes are demanding more resources than the CPU
can provide. In this state, a higher priority process will get a larger
chunk of the CPU time than a lower priority process. If the CPU
can deliver more resources than the processes are requesting,
then even the lowest priority process can get up to 99% of the
CPU. Only the superuser (root) may set the niceness to a smaller
(higher priority) value. On Linux it is possible to change
/etc/security/limits.conf to allow other users or groups to set low
nice values. If a user wanted to compress a large file, but not slow
down other processes, they might run the following:

$ nice -n 19 tar cvzf archive.tgz largefile

netstat –
The netstat command in Linux is a very useful tool when dealing
with networking issues. This command is capable of producing
information related to network connections, routing tables,
interface statistics etc. This utility also helps the network
administrators to keep an eye on the invalid or suspicious network
connections.
Syntax:

netstat [options]...

Disk related commands
It is very common to have to examine disk use to determine where
there is free space, where the disk may be nearing full and where
we may need to add disk or move files. One of the most essential
commands used to examine disks is the df command. The df
command is used to display information about mounted file
systems. By default the df command will typically return disk
information in kilobytes. Since there can be variation on this

Linux Basics Unit 2

 39

default behavior it is often nice to use the –k option which will force
df to displays disk space usage in kilobytes as seen in this
example:
$ df –k

Filesystem 1K-
blocks

Used Available Use% Mounted
on

/dev/hdf1 18727836 2595832 15180656 15% /

/dev/hda1 101086 5945 89922 7% /boot

None 128560 0 128560 0% /dev/shm

These results show that two file systems are mounted. The
Filesystem column of the output shows the path to the disk device
which is currently mounted at the Mounted on location. The 1K-
blocks column displays the size of the entire partition while the
Used and Available columns indicate the number of 1K blocks on
that device used and available. The Use% column will show what
percentage of the disk is currently used and is the quickest way to
identify disks which are getting full.
To get the display in a friendlier format, the –h option can be used:
$ df -h

Filesystem Size Used Avail Use% Mounted
on

/dev/hdf1 18G 2.5G 15G 15% /
/dev/hda1 99M 5.9M 88M 7% /boot

None 126M 0 126M 0% /dev/shm

The -h option will show output in the familiar gigabyte, megabyte
or kilobyte (G, M or K respectively) scales. This makes things
more human readable, hence the h. It is easy to see that the first
file system is 18GB in size, with 2.5GB used and 15GB of available
free space. It is mounted on the root (/) mount point. The second
file system is 99MB in size, with 5.9MB used and 88MB of
available free space. It is mounted on the /boot mount point. This
output also shows a shared memory space of 126MB currently
available (/dev/shm).

Creating a File System
Some file systems are created automatically during the Linux
installation process. There are many different types of file systems.
Microsoft Windows administrators are familiar with filesystems like
FAT16, FAT32, and NTFS. The comparable options on Linux are
ext2, ext3, and Linux-swap. The differences between these
filesystem types are beyond the scope of this book. During the
lifetime of a Linux system it is not uncommon to want to add
additional disk space to a system by adding disks or replace a
current drive with a larger capacity. Here are some of the most
useful commands for setting up disks:
Note: One needs root privileges to perform most of these tasks.

Linux Basics Unit 2

 40

Command Function
fdisk Partition a hard disk
fsck Check and optionally repair one or more Linux file

systems
mkdir Make a new file directory
mkfs Make a file system

mkswap Make a swap area on a device or in a file
mount Mount a file system (umount to unmount)

parted

Disk partitioning and partition resizing program. It
allows the user to create, destroy, resize, move and

copy ext2, ext3, Linux-swap, FAT and FAT32
partitions.

sfdisk
List the size of a partition, the partitions on a device,

check the partitions on a device, and repartition a
device.

Commands for file system creation

2. Fill in the blanks

(a) Each inode describes a ___________ on the hard disk.

(b) The only information not included in an inode, is the
_________ and _________.

(c) A ________ file is used to pass information between
applications for communication purpose.

(d) On a Linux system, every file is owned by a ____ and a
_____ user.

(e) The ____ command allows us to search for files for which
we know the approximate _________.

(f) The _______ command is faster than the ____ command
because it uses a previously built database.

(g) We use the ____ command to move files.

(h) ________ cannot span partitions, because inode numbers
are only unique within a given _________.

(i) ____ does not support working with several files
simultaneously and cannot perform a ____________
across multiple files.

(j) __ is used to remove objects such as files, directories,
device nodes, symbolic links, and so on from the _______.

CHECK YOUR PROGRESS

Linux Basics Unit 2

 41

2.8 LET US SUM UP

 Users and groups are used on Linux for access control.

 The Linux access-control system allows for any

combination of read/write/execute permission for
owner/group/world users.

 A Linux process is a program in execution on a Linux

system.

 An interactive process is one which needs user’s

interaction while it is active.

 A process is a foreground process if it is in focus and can

be given input from the standard input.

 Background processes are ones that are running in the

background, not taking any user input from the terminal.

 In a Linux file system, a file is represented by an inode.

 Hard links share the same data blocks on the hard disk,

while they continue to behave as independent files.

 A Soft link contains the path to the target file instead of a

physical location on the hard disk..

2.9 ANSWERS TO CHECK YOUR
 PROGRESS

Linux Basics Unit 2

 42

1.
(a) superuser.
(b) adduser.
(c) groupadd.
(d) info.
(e) program.
(f) process Identifier.
(g) ps.
(h) foreground.

2.

(a) data structure.
(b) file name, directory.
(c) socket.
(d) user, group.
(e) find, approximate filenames.
(f) locate, find.
(g) mv.
(h) hard links, partition.
(i) pico, find and replace.
(j) rm, filesystem.

 2.10 FURTHER READINGS

 Linux Documentation Project [http://www.tldp.org/]

 Documentation for Linux enthusiasts

[http://www.linuxdocs.org/]

 Linux Man pages installed on local system.

1. What are accounts and groups in Linux? How do you use

them?

2. What are Linux processes? Describe their types.

3. Write a note on Linux file system.

2.11 MODEL QUESTIONS

Linux Basics Unit 2

 43

4. What are the different options for searching files in Linux?

5. How do you copy, move and rename files in Linux?

6. What is linking in Linux? Describe its use.

7. Differentiate between the more and less commands in

Linux.

8. Illustrate the use of the head and the tail commands.

UNIT- 3 LINUX SHELL SCRIPT

UNIT STRUCTURE
3.1 Learning Objectives

3.2 Introduction

3.3 Various Types of Shell available in Linux

3.4 Comparisons between various Shells

3.5 Shell Programming in bash

 3.5.1 Read Command

 3.5.2 Conditional and Looping Statements
 3.5.3 Parameter Passing and Arguments

 3.5.4 Bourne Shell Variables

 3.5.5 Bash Variables

 3.5.6 Shell Reserved Words

3.6 Let Us Sum Up

3.7 Answers to Check Your Progress

3.8 Further Readings

3.9 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn what a Linux Shell is

 learn about the various shells available in Linux

 compare the various shells available in Linux

 learn the basics of shell programming

 write shell programs

3.2 INTRODUCTION

 To interact with the Linux Operating System there is a special program called the

"Shell". The Linux Shell accepts instructions and passes it to the Linux Kernel. The Linux

Shell is a user mode program and is more commonly seen as a command language

interpreter that executes commands which is read either from the standard input device
(keyboard) or from a file. The Linux Shell is not part of the system kernel, but uses the

system kernel to execute programs, create files etc. The shell is the traditional user

interface for the Linux Operating System.

 Several shells are available with Linux depending on your distribution. You can
view the currently installed shells on your system by typing "cat /etc/shells" in the
terminal. To view the current shell you are using type "echo $SHELL" in the terminal.

 Linux shells are interactive and you can either type in

single commands or sequences of commands. It is possible

to also store sequences of commands to a text file and call

the Linux Shell to execute this text file instead of entering

the commands individually. This text file containing the

sequence of commands is known as a shell script.

 In this unit, we will be specifically looking at the Linux Shell Scrips. This unit

assumes that you have already installed a Linux distribution on a computer and ready to

try out all the examples stated in the unit as we progress. This unit also assumes that

you are aware of the basics of using Linux. If you need to brush up on that topic, you are
highly encouraged to refer to the numerous ebooks and tutorials available online on the

Internet.

3.3 VARIOUS TYPES OF SHELL AVAILABLE IN LINUX

Bourne Shell (/bin/sh):
The Bourne Shell or just sh was named after its developer Steve Bourne at Bell Labs in

1977. It introduced the basic features common to all the shells, including piping,

command substitution, variables, control structures for condition-testing and looping,

filename wildcarding.

C Shell (/bin/csh):
The C Shell or just csh, was written by Bill Joy, while a graduate student at the

University of California, Berkeley in 1978. Designed to allow users to write shell script

programs using a syntax very similar to that of the C programming language. The C
Shell also introduced a large number of features for interactive work, including the

history and editing mechanisms, aliases, directory stacks, tilde notation, cd path, job

control and path hashing.

TC Shell (/bin/tcsh):
The TC shell or just tcsh was developed by Ken Greer (Carnegie Mellon University),

Mike Ellis (Fairchild A.I. Labs), Paul Placeway (Ohio State University), Christos Zoulas,

et al between 1975 to 1983. It is an expansion upon the C Shell (csh). This shell adds

the ability to use keystrokes from the Emacs word processor program to edit text on the
command line.

Korn Shell (/bin/ksh):
The Korn Shell or just ksh was developed by David Korn (Bell Labs) in 1983. This shell

merges the features of the C Shell (csh) and the TC Shell (tcsh) together with a shell

programming language similar to that of the original Bourne shell.

Bourne Again Shell (/bin/bash):
The Bourne Again Shell or just bash was written by Brian Fox for the GNU Project as a

free software replacement for the Bourne Shell (sh) in 1989. Ultimately it is intended to

be a full implementation of the IEEE Posix Shell and Tools specification. This shell is the

most widely used in the Linux community and the default is most Linux distributions. The

bash shell provides all the interactive features of the C Shell (csh) and the Korn Shell

(ksh). Its programming language is compatible with the Bourne Shell (sh).

There are numerous shells available other than the ones mentioned above. However, for

our example purposes we will be using the bash shell (bash) as this is the shell you will

have by default in most of the Linux distributions.

3.4 COMPARISONS BETWEEN VARIOUS SHELLS

 In this section we will briefly compare the Linux Shells discussed in the previous

section based on certain features that are commonly expected these days.

command-line completion:

Command-line completion allows a user to type the first few characters of a command,
program, or filename, and press the completion key (normally the Tab) to fill in the rest

of the item.
The csh, tcsh, ksh, bash shells support command-line completion.

command history:

Command history is a feature in a operating system shell that allows a user to recall, edit
and rerun previous commands without having to retype the entire thing. The general

invocation could be the following:
Typing “history” at the shell prompt would list all the commands typed in previously.

Typing “!10” at the shell prompt would mean the command listed at no. 10 in history.

Typing “!!” at the shell prompt would mean the entire previous command.

Typing “!$” at the shell prompt would mean just the last word of the previous command.

Typing “!ls” at the shell prompt would mean the command that started with “ls”.

The csh, tcsh, ksh, bash shells support command history.

value prompt :

A shell script can prompt the interactive user for a value.

The sh, csh, tcsh, ksh, bash shells support value prompt.

menu/options selector:

A shell script can present the interactive user with a list of choices.

The ksh, bash shells support menu/options selector.

The comparisons between the various Linux Shells briefly discussed here does in no

means cover the full features of any of these shells. These shells have their own

purpose and if you want to know more about them you are encouraged to refer to the

numerous resources available online on the Internet.

3.5 SHELL PROGRAMMING IN BASH

 Let us briefly go through some basics of bash shell scripting before diving into

the outlined topics. As we have already covered in the introduction that a shell script is a

plain-text file that contains commands. It can be executed by typing its name into a shell,

or by placing its name in another shell script. However, for a shell script file to be

executable, the file must meet a couple of basic conditions as stated below.

 A bash shell script file must start with a special first line "#!/bin/bash" also called

the “hashbang”. What this line does is names the command processor, which in

our case is "/bin/bash" and executes the file using “bash”, the Bourne Again

Shell.

 A bash shell script file must be made executable by changing its permission bits
using "chmod +x". So, if “myscriptfile.sh” is the bash script file, you need to run

“chmod +x myscriptfile.sh” before being able to run the shell script.

Additionally, for easy identification of shell script files you may suffix your shell scripts

with the ".sh" extension though the command processor would check only for the

executable bit and the “#!/bin/bash” line to decide how to handle the shell script file.

For running your shell scripts use the "./myscriptfile.sh" method.

 To demonstrate what we have learn till now let us write and run a simple bash

script file. We will use the bash terminal and the “vim” editor to write our bash script file.

At the bash prompt ($) type the following, assuming that you have the vim editor already

installed.
vim myscriptfile.sh

Press the “i” key to go into -- INSERT -- mode of the vim editor, and add the following

lines to the “myscriptfile.sh” file.
#!/bin/bash
echo "Hello KKHSOU"

After you are done entering the above text, press the “Esc” key and then the sequence

of keys “:wq” to write and quit the vim editor. On successful write and exit from the vim

editor you should be back at the bash prompt ($). Next, we will need to make our script

“myscriptfile.sh” executable by setting its executable bit as shown below.
chmod +x myscriptfile.sh

Finally, we will run our script file “myscriptfile.sh” by typing the following at the bash
prompt ($).
./myscriptfile.sh

Hello KKHSOU

If you get an output “Hello KKHSOU” on your terminal as well, you have successfully

written and executed your bash shell script.

3.5.1 READ COMMAND

The read command is one of the shell built-in commands. The syntax of the read

command is as follows.

General Syntax:
read [options] NAME1 NAME2 ... NAMEn

Full options:
read [-ers] [-a aname] [-d delim] [-i text] [-n nchars] [-N nchars] [-p prompt] [-t
timeout] [-u fd] [name ...]

read reads one line from the standard input, or from the file descriptor (fd) supplied as

an argument to the -u option, and the first word is assigned to the first name, the second

word to the second name, and so on, with leftover words and their intervening

separators assigned to the last name. If there are fewer words read from the input
stream than names, the remaining names are assigned empty values. The characters in

internal field separator (IFS) are used to split the line into words. The backspace

character (\) may be used to remove any special meaning for the next character read

and for line continuation.

Options, if supplied, have the following meanings.
-e : If the standard input is coming from a terminal, readline is used to obtain the line.

readline uses the current (or default, if line editing was not previously active) editing

settings.

-r : Backslash does not act as an escape character. The backslash is considered to be

part of the line. In particular, a backslash-newline pair may not be used as a line

continuation.

-s : Silent mode. If input is coming from a terminal, characters are not echoed.

-a aname : The words are assigned to sequential indices of the array variable aname,

starting at 0. aname is unset before any new values are assigned. Other name

arguments are ignored.

-d delim : The first character of delim is used to terminate the input line, rather than

newline.

-i text : If readline is being used to read the line, text is placed into the editing buffer

before editing begins.

-n nchars : read returns after reading nchars characters rather than waiting for a

complete line of input, but honor a delimiter if fewer than nchars characters are read

before the delimiter.

-N nchars : read returns after reading exactly nchars characters rather than waiting for

a complete line of input, unless end-of-file (EOF) is encountered or read times out.

Delimiter characters encountered in the input are not treated specially and do not cause
read to return until nchars characters are read.

-p prompt : Display prompt on standard error, without a trailing newline, before

attempting to read any input. The prompt is displayed only if input is coming from a

terminal.

-t timeout : Cause read to time out and return failure if a complete line of input is not

read within timeout seconds. timeout may be a decimal number with a fractional

portion following the decimal point. This option is only effective if read is reading input

from a terminal, pipe, or other special file; it has no effect when reading from regular
files. If timeout is 0, read returns success if input is available on the specified file

descriptor fd, failure otherwise. The exit status is greater than 128 if the timeout is

exceeded.

-u fd : Read input from file descriptor fd. If no names are supplied, the line read is
assigned to the variable REPLY. The return code is zero, unless end-of-file (EOF) is

encountered, read times out (in which case the return code is greater than 128), or an

invalid file descriptor is supplied as the argument to -u.

The above read syntax and options are found in the BASH version 4.2.45(1)-release,

which was used while writing this unit. You can check the BASH version installed on
your system by typing “echo $BASH_VERSION” at the bash prompt.

3.5.2 CONDITIONAL AND LOOPING STATEMENTS

 An important aspect of programming is being able to perform some specific

actions depending upon the outcome of a test condition being true or false. This can be

especially useful when used with the exit status of a previous command in bash. Bash

Shell scripting supplies us with several ways for testing conditions and then performing

specific actions based upon the result of the test condition. Some examples of conditions
or conditional statements are the if condition and the case statement. Conditions are

also tested in the while loop and the for loop where specific actions are repeated.

Conditional Statements
if
The syntax of the if command is:
if [test-condition]
 then
 consequent-actions
elif [more-test-condition]
 then
 more-consequent-actions
else
 alternate-consequent-actions

fi
 The test-condition list is executed, and if its return status is zero (true), the

consequent-actions list is executed. If the test-condition returns a non-zero status

(false), each elif list is executed in turn, and if its exit status is zero (false), the
corresponding more-consequent-actions is executed and the if command completes.

If the else alternate-consequent-actions is present, and the final command in the final

if or elif clause has a non-zero (false) exit status, then the alternate-consequent-
actions is executed. The return status is the exit status of the last command executed,

or zero if no condition tested true.

Example:

#!/bin/bash

echo "* * * This Bash Script will compare two INTEGERS X and Y given as input * * *"
read -p "Type the value for X and press [ENTER]: " x

read -p "Type the value for Y and press [ENTER]: " y

if [$x -eq $y]

 then

 echo "X is equal to Y"

elif [$x -ge $y]

 then

 echo "X is greater than Y"

else

 echo "X is less than Y"
fi

case

The syntax of the case command is:
case word in
 pattern1a | pattern1b | pattern1c) command-list ;;
 pattern2a | pattern2b) command-list ;;
esac
 The case will selectively execute the command-list corresponding to the first
pattern that matches word. If the shell option nocasematch is enabled, the match is

performed without regard to the case of alphabetic characters. The "|" operator is used

to separate multiple patterns, and the ")" operator terminates a pattern list. A list of

patterns and an associated command-list is known as a clause. Each clause must be
terminated with ";;", ";&", or ";;&". The word undergoes tilde expansion, parameter

expansion, command substitution, arithmetic expansion, and quote removal before
matching is attempted. Each pattern undergoes tilde expansion, parameter expansion,

command substitution, and arithmetic expansion. There may be an arbitrary number of

case clauses, each terminated by a ";;", ";&", or ";;&". The first pattern that matches

determines the command-list that is executed. If the ";;" operator is used, no

subsequent matches are attempted after the first pattern match. Using ";&" in place of

";;" causes execution to continue with the command-list associated with the next

clause, if any. Using ";;&" in place of ";;" causes the shell to test the patterns in the next

clause, if any, and execute any associated command-list on a successful match. The

return status is zero if no pattern is matched. Otherwise, the return status is the exit
status of the command-list executed.

Example:

#!/bin/bash

read -p "Type in a vegetable name and press [ENTER]: " vegetable

case $vegetable in

 "onion") echo "For $vegetable Rs. 100.00 per Kilogram." ;;

 "potato") echo "For $vegetable Rs. 20.00 per Kilogram." ;;

 "tomato") echo "For $vegetable Rs. 40.00 per Kilogram." ;;

 "cabbage") echo "For $vegetable Rs. 30.00 per Kilogram." ;;
 *) echo "No $vegetable in stock." ;;

esac

Looping Statements
while
The syntax of the while command is:
while test-commands
 do consequent-commands
done

 Execute consequent-commands as long as the test-commands has an exit

status of zero (true). The return status is the exit status of the last command executed in
consequent-commands, or zero if none was executed.

Example:

#!/bin/bash

read -p "Which multiplication table you want to view [enter number]: " number

i=1

while [$i -le 10]

 do

 echo "$number x $i = `expr $i * $number`"

 i=`expr $i + 1`

done

for
The syntax of the for command is:
for name [in words]
 do commands
done
 Expand words, and execute commands once for each member in the resultant

list, with name bound to the current member. If “in words” is not present, the for
command executes the commands once for each positional parameter that is set, as if

“in "$@"” had been specified. The return status is the exit status of the last command
that executes. If there are no items in the expansion of words, no commands are

executed, and the return status is zero.

Example:

#!/bin/bash

 for i in {0..10}

 do echo "$i"
done

The break and continue builtins may be also used to control loop execution, as shown

in the examples below.
#!/bin/bash

for i in {1..5}

do

 if [$i -gt 3]

 then

 break

 fi

 echo "$i"

done

The example shown above will print the numbers from 1 to 3 as the condition for break is
for $i > 3. break is used to exit the loop. In the example shown below we use the
continue builtin to print all the even numbers between 1 and 10.

#!/bin/bash

for i in {1..10}

do

 if [$(($i % 2)) -eq 0]

 then

 echo "$i"

 else

 continue

 fi

done

3.5.3 PARAMETER PASSING AND ARGUMENTS

 The variables within a Bash Script that represent the values that will be passed to
it for processing are called parameters and the values you pass to the script are called

arguments. Both parameters and arguments can be used interchangeably however for

a clear understanding we will use the simple example shown below.

#!/bin/bash
number=$1

echo "[Multiplication Table of $number]"
i=1
while [$i -le 10]

 do
 echo "$number x $i = `expr $i * $number`"
 i=`expr $i + 1`

done

The variable number within the bash script shown above, is a parameter.
 $1 is the first argument passed to the bash script.

We run this script with an argument 2, as shown below.

./myscriptfile.sh 2

[Multiplication Table of 2]

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

2 x 5 = 10

2 x 6 = 12

2 x 7 = 14

2 x 8 = 16

2 x 9 = 18

2 x 10 = 20

Therefore, like any other command line program, we can pass arguments to a Bash

script. Bash has special variables set aside for this, the arguments are stored in

variables with a number in the order of the argument starting at 0 as shown below.

$0 - the bash script's name.

$1 - first argument

$2 - second argument

$3 - third argument

$# - total number of argument

$@ or $* - all the arguments

3.5.4 BOURNE SHELL VARIABLES

 Bash uses certain shell variables in the same way as the Bourne shell. In some

cases, Bash assigns a default value to the variable.

 CDPATH : A colon-separated list of directories used as a search path for the cd

builtin command.

 HOME : The current user’s home directory; the default for the cd builtin

command. The value of this variable is also used by tilde expansion (see Tilde

Expansion).

 IFS : A list of characters that separate fields; used when the shell splits words as

part of expansion.

 MAIL : If this parameter is set to a filename or directory name and the

MAILPATH variable is not set, Bash informs the user of the arrival of mail in the

specified file or Maildir-format directory.

 MAILPATH : A colon-separated list of filenames which the shell periodically

checks for new mail. Each list entry can specify the message that is printed when

new mail arrives in the mail file by separating the file name from the message

with a ‘?’. When used in the text of the message, $_ expands to the name of the
current mail file.

 OPTARG : The value of the last option argument processed by the getopts

builtin.
 OPTIND : The index of the last option argument processed by the getopts builtin.
 PATH : A colon-separated list of directories in which the shell looks for

commands. A zero-length (null) directory name in the value of PATH indicates

the current directory. A null directory name may appear as two adjacent colons,

or as an initial or trailing colon.
 PS1 : The primary prompt string. The default value is ‘\s-\v\$ ’. See Printing a

Prompt, for the complete list of escape sequences that are expanded before PS1

is displayed.
 PS2 : The secondary prompt string. The default value is ‘> ’.

You can view the current values of these variables by typing “echo $variable-name” at
the terminal. Replace the variable-name with any of the above mentioned bash shell

variables.

3.5.5 BASH VARIABLES

 These variables are set or used by Bash, but other shells do not normally treat

them specially. This is not an exhaustive list and we will list out only a few of them.

 Please read the “man bash” man pages for more information.

 BASH : The full pathname used to execute the current instance of Bash.
 BASHOPTS : A colon-separated list of enabled shell options. If this variable is in

the environment when Bash starts up, each shell option in the list will be enabled

before reading any startup files. This variable is read only.
 BASHPID : Expands to the process ID of the current Bash process. This differs

from $$ under certain circumstances, such as subshells that do not require Bash

to be re-initialized.
 BASH_COMMAND : The command currently being executed or about to be

executed, unless the shell is executing a command as the result of a trap, in
which case it is the command executing at the time of the trap.

 BASH_VERSINFO : A readonly array variable whose members hold version

information for this instance of Bash.
 BASH_VERSION : The version number of the current instance of Bash.
 EUID : The numeric effective user id of the current user. This variable is

readonly.
 GROUPS : An array variable containing the list of groups of which the current

user is a member. Assignments to GROUPS have no effect and return an error

status. If GROUPS is unset, it loses its special properties, even if it is

subsequently reset.
 HOSTNAME : The name of the current host.
 HOSTTYPE : A string describing the machine Bash is running on.
 LANG : Used to determine the locale category for any category not specifically

selected with a variable starting with LC_.
 LINENO : The line number in the script or shell function currently executing.
 MACHTYPE : A string that fully describes the system type on which Bash is

executing, in the standard GNU cpu-company-system format.
 OLDPWD : The previous working directory as set by the cd builtin.
 OSTYPE : A string describing the operating system Bash is running on.

You can also view the current values of these Bash variables by typing “echo $variable-

name” at the terminal. Replace the variable-name with any of the above mentioned bash

variables.

3.5.6 SHELL RESERVED WORDS

 In Bash, shell reserved words are words that have a special meaning to the

shell and therefore should not be used for anything else. Below is a list of a few of these

reserved words. Please read the “man bash” man pages for more information.

! : A pipeline is a sequence of simple commands separated by one of the control

operators ‘|’ or ‘|&’.

[or] : Conditional constructs.

{ or } : Command Grouping.

case : Conditional constructs.

esac : Conditional constructs.

if : Conditional constructs.

elif : Conditional constructs.

else : Conditional constructs.

fi : Conditional constructs.

in : Conditional constructs.

select : Conditional Constructs

do : Looping Constructs.

done : Looping Constructs.

for : Looping Constructs.

then : Conditional Constructs.

time : Pipelines.

until : Looping Constructs.

while : Looping Constructs.

CHECK YOUR PROGRESS

Q1. Write the name of few commonly used Shells.

Q2. How do you terminate a shell script if statement?

Q3. Within a UNIX shell scripting loop construct, what is the difference between the

break and continue?

3.6 LET US SUM UP

 In this unit we have tried to get acquainted briefly with bash scripting in Linux.

Though we have covered only a few of the topics, these topics are intended to inspire

and point you in the direction to further explore. This unit was not intended to provide

you with an exhaustive in-depth on Bash Scripting but merely to introduce you to get

started on bash scripting.

What we have learned in this unit.

 What a Linux Shell is.

 The various shells available in Linux.

 Comparison between the various shells available in Linux.

 The basics of shell programming.

 The read command and its use.

 The conditional statements if and case and their use.

 The looping statements while and for and their use.

 Using the break and continue builtins within the looping statements.

 Using parameters and arguments in bash scripts.

 About the Bourne Shell Variables, Bash Variables and Shell Reserved Words in

Bash.

3.7 ANSWERS TO CHECK YOUR PROGRESS

1. List of commonly used UNIX shells:

 · The Bourne Shell (sh)

 · The C Shell (csh or tsch)

 · The Bourne Again Shell (bash)
 · The Korn Shell (ksh)

 2. With fi, which is "if" spelled backwards.

 3. Using break within a shell scripting loop construct will cause the entire loop to

terminate. A continue will cause the current iteration to terminate, but the loop will

continue on the next iteration.

3.8 FURTHER READINGS

 Bourne-Again SHell manual at “http://www.gnu.org/software/bash/manual/”

 The “man bash” manual page.

3.9 MODEL QUESTIONS

Q1. Which bash command displays the current shell?

Q2. Which Linux shell is the default and common in most distributions of Linux

today?

Q3. Which Linux shells support command history?

Q4. Which hashbang is used in bash scripting?

Q5. What is the general convention for naming bash script file extension?

Q6. Which option can you use with read to display a prompt for input?

Q7. What does “-eq” mean in condition-testing?

Q8. What does “$0” contain when working with bash arguments?

Q9. What do you get when you type “echo $PS1” at the bash prompt?

Q10. Which command at the bash prompt will display your current bash version?

UNIT- 4 SYSTEM ADMINISTRATION

UNIT STRUCTURE
4.1 Learning Objectives

4.2 Introduction

4.3 Common Administrative Tasks

 4.3.1 Identifying administrative files

 4.3.2 Configuration and log files

 4.3.3 Managing user accounts

 4.3.4 Changing permissions and ownerships
 4.3.5 Temporarily disable user accounts

 4.3.6 Creating and mounting file systems

 4.3.7 Checking and monitoring a Linux system

 4.3.8 Backup and restore files

 4.3.9 Installing and removing packages in Linux

 4.3.10 Graphical interfaces in Linux

4.4 Let Us Sum Up

4.5 Answers to Check Your Progress

4.6 Further Readings
4.7 Model Questions

4.1 LEARNING OBJECTIVE

After going through this unit, you will be able to:

 define System Administration

 describe the common System Administrative tasks

 describe the various roles of a System Administrator

 manage users and groups on a Linux System

 change file ownerships and permissions on Linux

 create and mount file systems on Linux

 check and monitor system performance on Linux

 use the “su” command to become a super user

 use commands to get system information

 backup and restore file in Linux

 install and remove software in Linux

 discuss the graphical user interfaces in Linux

4.2 INTRODUCTION

 System administration is concerned mainly with the design, construction, and
maintenance of computer systems and networks. The duties of a system administrator

are diverse and are not limited to installing, supporting and maintaining servers or other

computer systems, or planning for and responding to service outages and other

infrastructure problems. A system administrator may also perform scripting or

programming, project management for systems-related projects, supervising or training

computer operators, and may also be the consultant for computer problems beyond the

knowledge of technical support staff. To perform his or her job well, a system

administrator must demonstrate a blend of both technical skills and responsibility. That

said, a system administrator is expected to know about both the hardware and software
he or she is dealing with.

In this unit, we will be specifically looking at System Administration on Linux Operating

System. This unit assumes that you have already installed a Linux distribution on a

computer and ready to try out all the examples stated in the unit as we progress. This

unit also assumes that you are aware of the hardware configuration of your computer,

details about what happens when a computer boots; starting from turning on the

Computer by pressing the power button till the Operating System completes booting to a

login prompt. If you need to brush up on that topic, you are highly encouraged to refer to
the numerous ebooks and tutorials available online on the Internet.

4.3 COMMON ADMINISTRATIVE TASKS

 Some of the tasks a System Administrator performs on a day-to-day basis, but

not limited to, may include performing routine system audits; performing backups of

critical data; ensuring that the network infrastructure is up and running; taking

responsibility for security; system performance tuning, answering technical queries and

assisting users; troubleshooting any reported problems; introducing and integrating new

technologies into existing infrastructure; analyzing system logs and identifying potential

issues; applying operating system updates, patches, and configuration changes; adding,

removing, or updating user account information, resetting passwords, etc.; installing and

configuring new hardware and software; responsibility for documenting the configuration

of the system.

4.3.1 IDENTIFYING ADMINISTRATIVE FILES

 On a Linux system, everything is a file; if something is not a file, it is a process.
The Filesystem Hierarchy Standard (FHS) defines the directory structure and directory

contents in Unix/Unix-like operating systems. The FHS is maintained by the Linux

Foundation. The current version is 2.3, announced on 29 January 2004. [Note: you are

encouraged to read about development of the FHS 3.0 standard online at

http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs]

.

As per the current FHS specifications, following directories, or symbolic links to
directories, are required in "/" or the root directory.

Aside: To view files on a Linux system, we use the "ls" command which is used to simply

list the current directory contents onto the screen [Note: you are encouraged to use the

"man ls" or the "info ls" command to know more about this command or how to use it on

your Linux system].

Example#1:
When we use the command "ls -l" inside a directory, the "-l" option with the "ls" displays

the file type, using the first character of each input line. Don't worry if you did not

understand what you just read in the previous sentence. We will try to understand it in

this example.

INPUT
Line1: [nanu.kachari@beefy-miracle KKHSOU]$ ls -l

Directory Description
/bin

/boot

/dev The /dev directory is the location of special or device files.
/etc

/home User home directories.
/lib

/media

/mnt

/opt

/root Home directory for the root user.
/sbin

/srv Data for services provided by this system.
/tmp Temporary files
/usr

/var

Essential command binaries. Contains commands that may be used by both the system administrator and
by users, but which are required when no other filesystems are mounted (e.g. in single user mode). It may
also contain commands which are used indirectly by scripts. There must be no subdirectories in /bin.

Static files of the boot loader. This directory contains everything required for the boot process except
configuration files not needed at boot time and the map installer. Thus /boot stores data that is used before
the kernel begins executing user-mode programs. This may include saved master boot sectors and sector
map files.

Host-specific system configuration. The /etc hierarchy contains configuration files. A "configuration file" is a
local file used to control the operation of a program; it must be static and cannot be an executable binary.

Essential shared libraries and kernel modules. The /lib directory contains those shared library images
needed to boot the system and run the commands in the root filesystem, ie. by binaries in /bin and /sbin.
Mount point for removeable media. This directory contains subdirectories which are used as mount points
for removeable media such as floppy disks, cdroms and zip disks.
Mount point for mounting a filesystem temporarily. This directory is provided so that the system
administrator may temporarily mount a filesystem as needed. The content of this directory is a local issue
and should not affect the manner in which any program is run.
Add-on application software packages. /opt is reserved for the installation of add-on application software
packages.

Essential system binaries. Utilities used for system administration (and other root-only commands) are
stored in /sbin, /usr/sbin, and /usr/local/sbin. /sbin contains binaries essential for booting, restoring,
recovering, and/or repairing the system in addition to the binaries in /bin. Programs executed after /usr is
known to be mounted (when there are no problems) are generally placed into /usr/sbin. Locally-installed
system administration programs should be placed into /usr/local/sbin.

Secondary hierarchy. /usr is the second major section of the filesystem. /usr is shareable, read-only data.
That means that /usr should be shareable between various FHS-compliant hosts and must not be written to.
Any information that is host-specific or varies with time is stored elsewhere.
Variable data. /var contains variable data files. This includes spool directories and files, administrative and
logging data, and transient and temporary files.

The input Line1 contains the bash command prompt with some values between “[“ and

“]$”. The value “nanu.kachari” is the username of the logged in user followed by the

“@beefy-miracle” which indicates the hostname of the host. “KKHSOU” is the current

directory the user is in. “ls -l” is the command entered by the user. Every command has
to be followed by a carriage return or the enter key in order to be executed.

OUTPUT

Line1: total 596
Line2: -rw-rw-r--. 1 nanu.kachari nanu.kachari 18242 Jul 1 15:45 MCA Linux Syllabus.docx
Line3: drwxrwxr-x. 2 nanu.kachari nanu.kachari 4096 Jul 9 15:00 Unit4
Line4: -rw-------. 1 nanu.kachari nanu.kachari 577536 Jul 1 16:19 Unit 4 - System Administration.doc
Line5: -rw-rw-r--. 1 nanu.kachari nanu.kachari 4857 Jul 9 14:56 unit4.txt

The output LINE1 “total 596” is the Total no. of blocks in the directory. The LINE2 to

LINE5 first column (example: -rw-rw-r--.) first character (example: -) starting from the left

denotes the type of file. The rest nine characters deals with permissions and will be

explained later in this unit.

A “-” indicates a regular file

A “d” indicates a directory (files that are lists of other files)

A “l” indicates a link (link to a file or directory)

A “c” indicates a special file (the mechanism used for input and output. Most special files

are located in "/dev")
A “s” indicates a socket (a special file type, similar to TCP/IP sockets, providing inter-

process networking protected by the file system's access control)
A “p” indicates a named pipe (act more or less like sockets and form a way for

processes to communicate with each other, without using network socket semantics)
A “b” indicates a block device

The output LINE2 to LINE5 second column (example: 1) which is numeric, is the no. of

links pointing to the file. This will always be "1" for a regular file and "2" for directories.
LINE2 to LINE5 third column (example: nanu.kachari) and fourth column (example:

nanu.kachari) deals with ownerships and will be explained later in this unit. LINE2 to
LINE5 fifth column (example: 18242) is the file size in bytes. LINE2 to LINE5 sixth,

seven and eight columns are the files' last modification or creation data and time

(example: Jul 1 15:45). LINE2 to LINE5 ninth column (example: MCA Linux

Syllabus.docx) is the name of the file.

In order to perform any administrative task on a Linux System you need to have root or
super user privileges. On Linux we use the "su" or the "sudo" commands to switch user

privileges to achieve this. [Note: you are encouraged to use the "man su", "info su" or

"man sudo", "man sudo" commands to known more about this command or how to use it

on your Linux system]

Example#2:
[nanu.kachari@beefy-miracle ~]$ whoami
nanu.kachari
[nanu.kachari@beefy-miracle ~]$ su -
Password:

[root@beefy-miracle ~]#
[root@beefy-miracle ~]# whoami
root

4.3.2 CONFIGURATION AND LOG FILES

 Configuration files can be global config files or local config files. Global config

files apply to all users and are usually located in the "/etc" folder. Local config files

applies to a specific user and are stored in the users' home directory, for example as

"~/.example" or "~/.config/example" files with the "." suffixed generally.

The location of config files may differ with different Linux Distributions. Therefore, the

files listed below may not match the Linux installation you may be using, however they

are generally similar.

Some common configuration files:

File Information/service
/etc/aliases

/etc/apache Config files for the Apache web server.
/etc/bashrc

/etc/crontab and /etc/cron.*

/etc/default Default options for certain commands, such as useradd.
/etc/filesystems Known file systems: ext3, vfat, iso9660 etc.
/etc/fstab Lists partitions and their mount points.
/etc/group

/etc/hosts

/etc/inittab Information for booting: mode, number of text consoles etc.
/etc/issue Information about the distribution (release version and/or kernel info).
/etc/ld.so.conf Locations of library files.
/etc/logrotate.* Rotation of the logs, a system preventing the collection of huge amounts of log files.
/etc/mail Directory containing instructions for the behavior of the mail server.
/etc/motd

/etc/mtab Currently mounted file systems. It is advised to never edit this file.
/etc/nsswitch.conf Order in which to contact the name resolvers when a process demands resolving of a host name.

/etc/pam.d Configuration of authentication modules.
/etc/passwd

/etc/printcap

/etc/profile

/etc/rc* Directories defining active services for each run level.
/etc/resolv.conf Order in which to contact DNS servers (Domain Name Servers only).
/etc/sendmail.cf Main config file for the Sendmail server.
/etc/services Connections accepted by this machine (open ports).
/etc/sound or sndconfig Configuration of the sound card and sound events.
/etc/ssh Directory containing the config files for secure shell client and server.
/etc/sysconfig

/etc/X11

/etc/xinetd.* or inetd.conf

Mail aliases file for use with the Sendmail and Postfix mail server. Running a mail server on each and
every system has long been common use in the UNIX world, and almost every Linux distribution still
comes with a Sendmail package. In this file local user names are matched with real names as they
occur in E-mail addresses, or with other local addresses.

The system-wide configuration file for the Bourne Again SHell. Defines functions and aliases for all
users. Other shells may have their own system-wide config files, like cshrc.
Configuration of tasks that need to be executed periodically - backups, updates of the system
databases, cleaning of the system, rotating logs etc.

Configuration file for user groups. Use the shadow utilities groupadd, groupmod and groupdel to edit
this file. Edit manually only if you really know what you are doing.
A list of machines that can be contacted using the network, but without the need for a domain name
service. This has nothing to do with the system's network configuration, which is done in
/etc/sysconfig.

Message Of The Day: Shown to everyone who connects to the system (in text mode), may be used by
the system admin to announce system services/maintenance etc.

Lists local users. Use the shadow utilities useradd, usermod and userdel to edit this file. Edit
manually only when you really know what you are doing.
Outdated but still frequently used printer configuration file. Don't edit this manually unless you really
know what you are doing.
System wide configuration of the shell environment: variables, default properties of new files,
limitation of resources etc.

Directory containing the system configuration files: mouse, keyboard, network, desktop, system clock,
power management etc. (specific to RedHat)
Settings for the graphical server, X. RedHat uses XFree, which is reflected in the name of the main
configuration file, XFree86Config. Also contains the general directions for the window managers
available on the system, for example gdm, fvwm, twm, etc.
Configuration files for Internet services that are run from the system's (extended) Internet services
daemon (servers that don't run an independent daemon).

Some common log files:

/var/log/messages System messages

/var/log/secure Logging by PAM of network access attempts

/var/log/dmesg Log of system boot. Also see command dmesg
/var/log/boot.log Log of system init process

/var/log/lastlog Requires the use of the lastlog command to examine contents

/var/log/maillog log from the sendmail daemon

You can use the "tail" command to view the log files. [Note: you are encouraged to use

the "man tail" or "info tail" commands to know more about the "tail" command on your

Linux installation].

Example#3:
[root@beefy-miracle ~]# tail -f /var/log/messages

Jul 11 11:46:04 beefy-miracle kernel: [60730.950120] device p5p1 left promiscuous mode

Jul 11 11:46:08 beefy-miracle kernel: [60735.260284] vboxnetflt: dropped 0 out of 89521 packets
Jul 11 11:56:15 beefy-miracle dbus-daemon[703]: dbus[703]: [system] Activating service name='net.reactivated.Fprint' (using

servicehelper)

Jul 11 11:56:15 beefy-miracle dbus[703]: [system] Activating service name='net.reactivated.Fprint' (using servicehelper)
Jul 11 11:56:15 beefy-miracle dbus-daemon[703]: dbus[703]: [system] Successfully activated service 'net.reactivated.Fprint'

Jul 11 11:56:15 beefy-miracle dbus[703]: [system] Successfully activated service 'net.reactivated.Fprint'

Jul 11 11:56:15 beefy-miracle dbus-daemon[703]: Launching FprintObject
Jul 11 11:56:15 beefy-miracle dbus-daemon[703]: ** Message: D-Bus service launched with name: net.reactivated.Fprint

Jul 11 11:56:15 beefy-miracle dbus-daemon[703]: ** Message: entering main loop

Jul 11 11:56:45 beefy-miracle dbus-daemon[703]: ** Message: No devices in use, exit

4.3.3 MANAGING USER ACCOUNTS

 For performing the task of managing user accounts in Linux you are required to

have super user privileges. Depending on the distribution of Linux you have installed you

should be able to achieve this by either using the command "su -" or "sudo -i" and

entering the root user password. The command prompt should change from "$" to "#" on

a successful super user login.

Example#4:
[nanu.kachari@beefy-miracle ~]$ su -

Password:

[root@beefy-miracle ~]#

Adding users:

When it comes to adding users in Linux there are several methods you could use. We

will be discussing only the command line interface methods. The fundamental low level

tool for adding users in Linux is "useradd". [Note: you are encouraged to use the "man

useradd" or "info useradd" on your Linux installation for further reference]

View the system default configuration for adding user using "useradd".

Example#5:
[root@beefy-miracle ~]# useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

GROUP: This is the only option which will not be taken as default. Because if you don’t

specify -n option a group with same name as the user will be created and the user will
be added to that group. To avoid that and to make the user as the member of the default

group you need to give the option -n.

HOME: This is the default path prefix for the home directory. Now the home directory will

be created as /home/USERNAME.

INACTIVE: -1 by default disables the feature of disabling the account once the user

password has expired. To change this behavior you need to give a positive number

which means if the password gets expired after the given number of days the user
account will be disabled.

EXPIRE: The date on which the user account will be disabled.

SHELL: Users login shell.

SKEL: Contents of the skel directory will be copied to the users home directory.

CREATE_MAIL_SPOOL: According to the value creates or does not create the mail

spool.

Create users with the default configurations using "useradd".

Example#6: You will notice in this example that the default "useradd" command creates

"rahuli" as both a username and a group.
[root@beefy-miracle root]# useradd rahul
[root@beefy-miracle root]# passwd rahul
Changing password for user rahul.

New password:

BAD PASSWORD: The password fails the dictionary check - it is too

simplistic/systematic

Retype new password:

passwd: all authentication tokens updated successfully.

[root@beefy-miracle root]# grep rahul /etc/passwd

rahul:x:1005:1005::/home/rahul:/bin/bash
[root@beefy-miracle root]# grep rahul /etc/group

rahul:x:1005:

Instead of using the default "useradd" values (group, shell etc. located at

/etc/default/useradd) as shown in the above method, you could specify custom values in

the command line as parameters to the useradd command to add new users.

Syntax:

useradd -s SHELL -m -d HOME -c "COMMENT" -g GROUP USERNAME

-s SHELL The login shell for the user.

-m Create user’s home directory if it does not exist.

-d HOME Home directory of the user.

-c COMMENT Comment.

-g GROUP Group name or number of the user.
USERNAME Login id of the user.

Example#7:
[root@beefy-miracle root]# useradd -s /bin/bash -m -d /home/rahul -c "Rahul Sarma"
-g rahul rahul

Using the above method for creating multiple users can be very tedious and time

consuming. Thankfully, the "newusers" command available in Linux provides us the
option to create users in bulk.

Syntax: newusers FILENAME

The FILENAME is in the same format as the "/etc/password" file.

loginname:password:uid:gid:comment:homedir:loginshell

Example#8:
Let us suppose that we have a "newusers.txt" text file containing the following lines. We
will use this file to add new users in bulk.

The contents of the a "newusers.txt" text file.

binod.deka:abcd1234:1006:1006:Binod Deka:/home/binod.deka:/bin/bash

smiritisikha:a1b2c3d4:1007:1007:Smiritisikha Choudhury:/home/smiritisikha:/bin/bash

Lets use the "newusers.txt" text file to add users in bulk.
[root@beefy-miracle root]# newusers newusers.txt

Now, let us check to see the users we added using the cat command.

[root@beefy-miracle root]# cat /etc/passwd

.

..

...

rahul:x:1005:1005::/home/rahul:/bin/bash
binod.deka:x:1006:1006:Binod Deka:/home/binod.deka:/bin/bash

smiritisikha:x:1007:1007:Smiritisikha Choudhury:/home/smiritisikha:/bin/bash

Also, let us check to see if the respective groups were added as well.
[root@beefy-miracle root]# cat /etc/group

.

..

...

rahul:x:1005:
binod.deka:x:1006:

smiritisikha:x:1007:

Deleting users:

We use the "userdel" command to delete a user account and related files in Linux. The

userdel command must be run as root user. [Note: you are encouraged to use the "man

userdel" or "info userdel" on your Linux installation for further reference. Please use

caution while using this command.]

Syntax: userdel USERNAME

Example#9:
In this example we will use the "userdel" command to remove the user but not the user

home directory.

Let us view the contents of the "/home" folder before deleting the user "rahul".
[root@beefy-miracle root]# ls -l /home/
drwx------. 4 binod.deka binod.deka 4096 Jul 10 16:20 binod.deka

drwx------. 2 root root 16384 Aug 2 2012 lost+found

drwx------. 2 smiritisikha smiritisikha 4096 Jul 10 17:12 smiritisikha

drwx------. 4 rahul rahul 4096 Jul 10 15:53 rahul

Now we use the "userdel" command to delete the user "rahul".
[root@beefy-miracle root]# userdel rahul

Let us have a look at the contents of the "/home" folder after deleting the user "rahul".
[root@beefy-miracle root]# ls -l /home/
total 40

drwx------. 4 binod.deka binod.deka 4096 Jul 10 16:20 binod.deka

drwx------. 2 root root 16384 Aug 2 2012 lost+found

drwx------. 2 smiritisikha smiritisikha 4096 Jul 10 17:12 smiritisikha

drwx------. 4 1005 1005 4096 Jul 10 15:53 rahul

You can see that the folder "rahul" still exists even though the user "rahul" has been

deleted.

Example#10:
In this example we will use the "userdel" command to remove all user files along with the

user home directory itself and the user's mail spool. Please note that files located in

other file systems will have to be searched for and deleted manually.

We list the contents of the "/home" folder before deleting the user "binod.deka".
[root@beefy-miracle root]# ls -l /home

total 40

drwx------. 4 binod.deka binod.deka 4096 Jul 10 16:20 binod.deka

drwx------. 2 root root 16384 Aug 2 2012 lost+found

drwx------. 2 smiritisikha smiritisikha 4096 Jul 10 17:12 smiritisikha

drwx------. 4 1005 1005 4096 Jul 10 15:53 rahul

We now use the "userdel" with the "-r" option to delete the user "binod.deka".
[root@beefy-miracle root]# userdel -r binod.deka

List the "/home" folder after deleting the user "binod.deka".

[root@beefy-miracle root]# ls -l /home

total 36

drwx------. 2 root root 16384 Aug 2 2012 lost+found

drwx------. 2 smiritisikha smiritisikha 4096 Jul 10 17:12 smiritisikha
drwx------. 4 1005 1005 4096 Jul 10 15:53 rahul

You can see that the folder "binod.deka" no longer exists.

4.3.4 CHANGING PERMISSIONS AND OWNERSHIPS

 The file permissions available on a Linux system are read (r), write (w) and

execute (x). Read file permissions will allow the user to view the contents of the file.

Write file permissions will allow the user to change the contents of the file or delete the

file. Execute file permissions will allow the user to run the file as a program.

The directory permissions available on a Linux system are same as the file permissions

however they do mean different things. Read directory permissions will allow the user to

list the contents of the directory. Write directory permissions will allow the user to add or

delete files in the directory. Execute directory permissions will allow the user to list

information about the files in the directory.

Directory or file permissions are assigned to three entities, the user, group and others.

On a Linux system, every file and directory, is owned by a specific user and group. File

permissions are defined separately for users, groups, and others. Please refer to
Example#1 where the "ls" command is used with the "-l" option to list the contents of a

directory as show below.
LINE1: [nanu.kachari@beefy-miracle KKHSOU]$ ls -l
LINE2: total 596
LINE3: -rw-rw-r--. 1 nanu.kachari nanu.kachari 18242 Jul 1 15:45 MCA Linux

Syllabus.docx

LINE4: drwxrwxr-x. 2 nanu.kachari nanu.kachari 4096 Jul 9 15:00 Unit4
LINE5: -rw-------. 1 nanu.kachari nanu.kachari 577536 Jul 1 16:19 Unit 4 - System

Administration.doc
LINE6: -rw-rw-r--. 1 nanu.kachari nanu.kachari 4857 Jul 9 14:56 unit4.txt

LINE3 to LINE6 first column (example: -rw-rw-r--.), second to fourth character (example:

rw-) represents the owner permissions. "r" is read, "w" is write and "x" is execute

permission. "-" indicates no permission. The order is "rwx".

LINE3 to LINE6 first column (example: drwxrwxr-x.), fifth to seventh character (example:

rwx) represents the group permissions. "r" is read, "w" is write and "x" is execute

permission. "-" indicates no permission. The order is "rwx".

LINE3 to LINE6 first column (example: -rw-------.), eight to tenth character (example: ---)

represents the other (or everyone) permissions. "r" is read, "w" is write and "x" is execute

permission. "-" indicates no permission. The order is "rwx".

LINE3 to LINE6 The third and fourth column (example: nanu.kachari nanu.kachari) of

the above output shows the owner and group information respectively.

We use the "chmod" command in Linux to change file mode bits. [Note: you are

encouraged to use the "man chmod" or "info chmod" commands to known more about

the "chmod" command and the available options].

Example#11:
Syntax (Alphabetical Mode): chmod [ugoa][+-=][rwx] file

The "owner" or "u" is the username of the person who owns the file. In Linux by default,

the user who creates a file or directory becomes the owner of that file.

The "group" or "g" is the group that owns the file. All users who belong to a group that

owns a file will have the same access permissions to that file.

The "other" or "o" is a user who is not the owner of the file and also does not belong to

the usergroup of the file. In other words, if you set a permission for "other", it will affect

"everyone" by default.

Let us see an example, where we list the contents of a folder "KKHSOU" as given below.

The "ll" command shown in this example is an alias of the "ls -l", we use it as a

shorthand.
[nanu.kachari@beefy-miracle KKHSOU]$ ll
total 596

-rw-rw-r--. 1 nanu.kachari nanu.kachari 18242 Jul 1 15:45 MCA Linux

Syllabus.docx

drwxrwxr-x. 2 nanu.kachari nanu.kachari 4096 Jul 9 15:00 Unit4

-rw-------. 1 nanu.kachari nanu.kachari 577536 Jul 1 16:19 Unit 4 - System
Administration.doc

-rw-rw-r--. 1 nanu.kachari nanu.kachari 4857 Jul 9 14:56 unit4.txt

Now, let us change the "owner" or owners' permissions for the "MCA Linux

Syllabus.docx" file. The "u" option is used to indicate that we are changing the users' or

"owner" permissions. The "+" option indicates that we are adding these permissions (you

could use "-" to indicate removing permissions and "=" to indicate exact permissions).

The "rwx" indicates the "read", "write' and "execute" permissions. If the filename consists

of "spaces" we will need to escape these with "\". Otherwise, the command line interface

will interpret whatever follows after the spaces as parameters to the command.

You should know here, that we are allowed to use the "chmod" command on this file

because we happen to be the owner of this file. Otherwise, only a root user will be

allowed to "chmod" file permissions other than the owner.

[nanu.kachari@beefy-miracle KKHSOU]$ chmod u+rwx MCA\ Linux\ Syllabus.docx

If we use the "ll" command now, we can see that the permissions have been added to

the "MCA Linux Syllabus.docx" file.
[nanu.kachari@beefy-miracle KKHSOU]$ ll
total 596

-rwxrw-r--. 1 nanu.kachari nanu.kachari 18242 Jul 1 15:45 MCA Linux Syllabus.docx

drwxrwxr-x. 2 nanu.kachari nanu.kachari 4096 Jul 9 15:00 Unit4

-rw-------. 1 nanu.kachari nanu.kachari 577536 Jul 1 16:19 Unit 4 - System

Administration.doc

-rw-rw-r--. 1 nanu.kachari nanu.kachari 4857 Jul 9 14:56 unit4.txt

You will notice that the "MCA Linux Syllabus.docx" file permissions of the "owner" was

"rw-" prior to chmod and we set it to "rwx".

Similarly, we can change the file permissions of the "group" and "others" using the "g"

and "o" respectively in place of the "u" option. You can also use the "a" option with

chmod to indicate "all" meaning "user", "group" and "others". You are encouraged to

experiment with these options.

Here is an example how to reset the file permission for all to "r".
[nanu.kachari@beefy-miracle KKHSOU]$ chmod a=r MCA\ Linux\ Syllabus.docx
[nanu.kachari@beefy-miracle KKHSOU]$ ll
total 596

-r--r--r--. 1 nanu.kachari nanu.kachari 18242 Jul 1 15:45 MCA Linux Syllabus.docx

drwxrwxr-x. 2 nanu.kachari nanu.kachari 4096 Jul 9 15:00 Unit4

-rw-------. 1 nanu.kachari nanu.kachari 577536 Jul 1 16:19 Unit 4 - System Administration.doc

-rw-rw-r--. 1 nanu.kachari nanu.kachari 4857 Jul 9 14:56 unit4.txt

You could also use the octal or numeric mode to set file and directory

permissions with the "chmod" command.

Numeric Symbolic

0 ---

1 --x

2 -w-

3 -wx

4 r--

5 r-x

6 rw-

7 rwx

Read (r) 4

Write (w) 2

Execute (x) 1
No Permission (-) 0

Example#12:
Syntax (Octal or Numeric Mode):
chmod [owner permissions: 0-7][group permissions: 0-7][others permissions: 0-7] file

Let us set file permissions using this mode on the file "MCA Linux Syllabus.docx" located

within the "KKHSOU" folder. We will set the owner permission to "rwx", the group

permission to "r-x" and the others permission to "r-x". Hence, in the octal or numeric

mode these permissions will translate to "755".
[nanu.kachari@beefy-miracle KKHSOU]$ chmod 755 MCA\ Linux\ Syllabus.docx
[nanu.kachari@beefy-miracle KKHSOU]$ ll
total 596

-rwxr-xr-x. 1 nanu.kachari nanu.kachari 18242 Jul 1 15:45 MCA Linux Syllabus.docx

drwxrwxr-x. 2 nanu.kachari nanu.kachari 4096 Jul 9 15:00 Unit4

-rw-------. 1 nanu.kachari nanu.kachari 577536 Jul 1 16:19 Unit 4 - System Administration.doc

-rw-rw-r--. 1 nanu.kachari nanu.kachari 4857 Jul 9 14:56 unit4.txt

Therefore, you can see that we could use either of the two modes to set file or directory
permissions.

There is a special permission called the sticky bit that can be added to world writable

directories to prevent users from deleting other users' files. The sticky bit is added to the

front of the permissions.

Example#13:
Let us suppose that we have a folder "tmp" which we want to assign permissions for

everyone to be able to read, write or execute. Using the "ll" command you can view the

current permissions assigned to the "tmp" folder.
nanu@nanu-Vostro1510:~/Desktop/KKHSOU/temp$ ll
total 12

drwxrwxr-x 3 nanu nanu 4096 Jul 12 20:48 ./

drwx------ 3 nanu nanu 4096 Jul 12 20:47 ../

drwxrwxr-x 2 nanu nanu 4096 Jul 12 20:48 tmp/

Now, we assign the sticky bit using the "1777" assignment to the "tmp" folder.
nanu@nanu-Vostro1510:~/Desktop/KKHSOU/temp$ chmod 1777 tmp

You can now see using the "ll" command that our permissions have been set. The letter

"t" at the end of the permissions column indicates that the sticky bit set.
nanu@nanu-Vostro1510:~/Desktop/KKHSOU/temp$ ll
total 12

drwxrwxr-x 3 nanu nanu 4096 Jul 12 20:48 ./

drwx------ 3 nanu nanu 4096 Jul 12 20:47 ../
drwxrwxrwt 2 nanu nanu 4096 Jul 12 20:48 tmp/

4.3.5 TEMPORARILY DISABLE USER ACCOUNTS

 In certain situations a System Administrator may need to temporarily disable
system accounts. This situation could arise because of administrator policy, security

threat or system maintenance.

The command "passwd" available on Linux systems has the option "-l" to lock a user

account and the option "-u" to unlock. We could use this to temporarily disable a user

account which we will see in our next example.

Example#14:
Let us disable a user that we had created previously in Example#8. And to understand

what is happening in the background of this all we will also observe where exactly the

change is happenning. We know that the files "/etc/passwd" and "/etc/shadow" contains

the user account related information. Therefore, we will observe these files.

The "/etc/passwd" file contains an entry for the user "smiritisikha" as shown below.

smiritisikha:x:1007:1007:Smiritisikha Choudhury:/home/smiritisikha:/bin/bash

Also, the "/etc/shadow" file contains the following entry for the user "smiritisikha" as
shown below.

smiritisikha:$6$76m6owD....45hBre.:15896:0:99999:7:::

As root or superuser we will lock the user account "smiritisikha" using the "passwd"

command.
[root@beefy-miracle ~]# passwd smiritisikha -l
Locking password for user smiritisikha.

passwd: Success

[root@beefy-miracle ~]#

Now, we check and see "/etc/passwd" file and find that there is no change.

smiritisikha:x:1007:1007:Smiritisikha Choudhury:/home/smiritisikha:/bin/bash

However, in the "/etc/shadow" file you can see that the encrypted password field has

been appended with a "!" character.

smiritisikha:!!$6$76m6owD...45hBre.:15896:0:99999:7:::

We could simply undo the operation performed above by using the "-u" option with the

"passwd" command.
[root@beefy-miracle ~]# passwd smiritisikha -u

Unlocking password for user smiritisikha.

passwd: Success

[root@beefy-miracle ~]#

And see that the encrypted password field has been restored in the "/etc/shadow" file for

the user.

smiritisikha:$6$76m6owD...45hBre.:15896:0:99999:7:::

Though editing the "/etc/shadow" file manually as root or superuser will result in the

same effect. However, it is not recommended. [Note: you are encouraged to use the

"man passwd" or the "info passwd" command to known more about this command or

how to use it on your Linux system].

 There are other methods to lock and unlock a user account, the "usermod"

command with the "-L" option for locking and the "-U" option for unlocking could also be

used for this purpose. [Note: you are encouraged to use the "man usermod" or the "info
usermod" command to known more about this command or how to use it on your Linux

system].

4.3.6 CREATING AND MOUNTING FILE SYSTEMS

 A filesystem is comprised of the methods and data structures that an operating

system uses to keep track of files on a disk or partition. Before a partition or disk can be

used as a filesystem, it needs to be initialized, and the bookkeeping data structures need

to be written to the disk. This process is called making a filesystem.

Filesystems are created or initialized with the “mkfs” command. “mkfs” is a front end that
runs the appropriate program depending on the desired filesystem type. The type is

selected with the “-t fstype” option. [Note: you are encouraged to use the "man mkfs" or

the "info mkfs" command to known more about this command or how to use it on your

Linux system].

Example#15:
Since, we do not want to temper with the filesystem of the existing system we are trying

out our examples on. We will use a USB pendrive to try out this example. We will also

monitor the system messages in a separate terminal windows by using the “tail -f

/var/log/messages” command as root or superuser.

Now, as we plug in this USB device we should get something similar to the
“/var/log/messages” as show below.
Aug 8 17:21:09 beefy-miracle kernel: [200363.028636] usb 2-1.2: new high-speed USB device number 8 using ehci-pci

Aug 8 17:21:10 beefy-miracle kernel: [200363.116485] usb 2-1.2: New USB device found, idVendor=0951, idProduct=1623

Aug 8 17:21:10 beefy-miracle kernel: [200363.116491] usb 2-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3

Aug 8 17:21:10 beefy-miracle kernel: [200363.116494] usb 2-1.2: Product: DataTraveler 120

Aug 8 17:21:10 beefy-miracle kernel: [200363.116496] usb 2-1.2: Manufacturer: Kingston

Aug 8 17:21:10 beefy-miracle kernel: [200363.116499] usb 2-1.2: SerialNumber: XXXXXXXXXXXXXXXXXXXXXXXX

Aug 8 17:21:10 beefy-miracle kernel: [200363.117181] scsi13 : usb-storage 2-1.2:1.0
Aug 8 17:21:10 beefy-miracle mtp-probe: checking bus 2, device 8: "/sys/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2"

Aug 8 17:21:10 beefy-miracle mtp-probe: bus: 2, device: 8 was not an MTP device

Aug 8 17:21:11 beefy-miracle kernel: [200364.120024] scsi 13:0:0:0: Direct-Access Kingston DataTraveler 120 1.00 PQ: 0 ANSI: 2
Aug 8 17:21:11 beefy-miracle kernel: [200364.120475] sd 13:0:0:0: Attached scsi generic sg3 type 0

Aug 8 17:21:11 beefy-miracle kernel: [200364.122229] sd 13:0:0:0: [sdc] 7827392 512-byte logical blocks: (4.00 GB/3.73 GiB)

Aug 8 17:21:11 beefy-miracle kernel: [200364.124850] sd 13:0:0:0: [sdc] Write Protect is off
Aug 8 17:21:11 beefy-miracle kernel: [200364.125483] sd 13:0:0:0: [sdc] Incomplete mode parameter data

Aug 8 17:21:11 beefy-miracle kernel: [200364.125487] sd 13:0:0:0: [sdc] Assuming drive cache: write through

Aug 8 17:21:11 beefy-miracle kernel: [200364.128715] sd 13:0:0:0: [sdc] Incomplete mode parameter data
Aug 8 17:21:11 beefy-miracle kernel: [200364.128718] sd 13:0:0:0: [sdc] Assuming drive cache: write through

Aug 8 17:21:11 beefy-miracle kernel: [200364.129370] sdc:

Aug 8 17:21:11 beefy-miracle kernel: [200364.131838] sd 13:0:0:0: [sdc] Incomplete mode parameter data
Aug 8 17:21:11 beefy-miracle kernel: [200364.131843] sd 13:0:0:0: [sdc] Assuming drive cache: write through

Aug 8 17:21:11 beefy-miracle kernel: [200364.131847] sd 13:0:0:0: [sdc] Attached SCSI removable disk

We observe that the USB pen drive has been detected and assigned the “/dev/sdc”

device string. We could find this out similarly using the “dmesg” command which is also

show below.
[200363.028636] usb 2-1.2: new high-speed USB device number 8 using ehci-pci

[200363.116485] usb 2-1.2: New USB device found, idVendor=0951, idProduct=1623

[200363.116491] usb 2-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[200363.116494] usb 2-1.2: Product: DataTraveler 120

[200363.116496] usb 2-1.2: Manufacturer: Kingston

[200363.116499] usb 2-1.2: SerialNumber: XXXXXXXXXXXXXXXXXXXXXXXX

[200363.117181] scsi13 : usb-storage 2-1.2:1.0

[200364.120024] scsi 13:0:0:0: Direct-Access Kingston DataTraveler 120 1.00 PQ: 0 ANSI: 2

[200364.120475] sd 13:0:0:0: Attached scsi generic sg3 type 0

[200364.122229] sd 13:0:0:0: [sdc] 7827392 512-byte logical blocks: (4.00 GB/3.73 GiB)

[200364.124850] sd 13:0:0:0: [sdc] Write Protect is off

[200364.124856] sd 13:0:0:0: [sdc] Mode Sense: 16 23 09 51

[200364.125483] sd 13:0:0:0: [sdc] Incomplete mode parameter data

[200364.125487] sd 13:0:0:0: [sdc] Assuming drive cache: write through
[200364.128715] sd 13:0:0:0: [sdc] Incomplete mode parameter data

[200364.128718] sd 13:0:0:0: [sdc] Assuming drive cache: write through

[200364.129370] sdc:
[200364.131838] sd 13:0:0:0: [sdc] Incomplete mode parameter data

[200364.131843] sd 13:0:0:0: [sdc] Assuming drive cache: write through

[200364.131847] sd 13:0:0:0: [sdc] Attached SCSI removable disk

[200364.353949] SELinux: initialized (dev sdc, type vfat), uses genfs_contexts

Now, we will use the “fdisk” command with the “-l” option on “/dev/sdc” to list the
partitions on this disk.
[root@beefy-miracle ~]# fdisk -l /dev/sdc
Disk /dev/sdc: 4007 MB, 4007624704 bytes, 7827392 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000
 Device Boot Start End Blocks Id System

[root@beefy-miracle ~]#

We can see that this disk does not contain any partitions. Let us go ahead and create a

single primary partition on this disk for our example sake. We will do that by using the
“fdisk” command on “/dev/sdc”.

[root@beefy-miracle ~]# fdisk /dev/sdc
Welcome to fdisk (util-linux 2.22.2).

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

Now, press “p” to view the partition information of “/dev/sdc”.
Command (m for help): p
Disk /dev/sdc: 4007 MB, 4007624704 bytes, 7827392 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System

Command (m for help):

Press “n” to create a new partition. Then press “p” to select primary partition and

thereafter just enter the default values for the partition number, first sector, last sector.

Command (m for help): n
Partition type:

 p primary (0 primary, 0 extended, 4 free)

 e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-7827391, default 2048): 2048
Last sector, +sectors or +size{K,M,G} (2048-7827391, default 7827391): 7827391

Partition 1 of type Linux and of size 3.7 GiB is set

Command (m for help):

Now, we can view the primary partition we just created by pressing “p”.
Command (m for help): p
Disk /dev/sdc: 4007 MB, 4007624704 bytes, 7827392 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System

/dev/sdc1 2048 7827391 3912672 83 Linux

Do note that here that we need to save the changes and we do that by pressing “w” to

write out the changes to “/dev/sda”.
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

[root@beefy-miracle ~]#

You can type “fdisk -l /dev/sdc” to check what you we just did.
[root@beefy-miracle ~]# fdisk -l /dev/sdc
Disk /dev/sdc: 4007 MB, 4007624704 bytes, 7827392 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System

/dev/sdc1 2048 7827391 3912672 83 Linux

So, now we have a successfully created a primary partition on “/dev/sdc” which is

identified as “/dev/sdc1”. However, we are not done yet, as we need to create a

filesystem on the partition to be able to mount and use it. We will use the “mkfs”
command with the option “-t ext4” (-t is used to specify the type of filesystem) to create

an “ext4” filesystem on “/dev/sdc1”.
[root@beefy-miracle ~]# mkfs -t ext4 /dev/sdc1
mke2fs 1.42.5 (29-Jul-2012)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks

244800 inodes, 978168 blocks

48908 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=1002438656

30 block groups

32768 blocks per group, 32768 fragments per group

8160 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

[root@beefy-miracle ~]#

Finally, we now have to mount this filesystem to a local mount point to be able to read or

write to this newly created filesystem. Though most of the modern Linux distributions
would probably auto mount for you, we will go ahead and discuss the manual mounting

process.

Generally, the “/mnt” folder is used for mounting purposes on Linux and we will use this

folder to mount our newly created filesystem. But, first just to keep things organized let

us create a folder named “usb-disk” under “/mnt” which will be our mount point.
[root@beefy-miracle mnt]# mkdir /mnt/usb-disk
[root@beefy-miracle mnt]# ls -l /mnt
total 4

drwxr-xr-x. 2 root root 4096 Aug 8 18:21 usb-disk

[root@beefy-miracle mnt]#

Now, we use the “mount” command to mount our newly created filesystem on “/mnt/usb-

disk”.
[root@beefy-miracle mnt]# mount -t ext4 /dev/sdb1 /mnt/usb-disk/
[root@beefy-miracle mnt]# ll /mnt/usb-disk/
total 24
drwxr-xr-x 3 root root 4096 Aug 8 18:08 ./

drwxr-xr-x 3 root root 4096 Aug 8 20:55 ../

drwx------ 2 root root 16384 Aug 8 18:08 lost+found/

[root@beefy-miracle mnt]#

To unmount we use the "umount" command with the specific mount point as a

parameter.
[root@beefy-miracle mnt]# umount /mnt/usb-disk
[root@beefy-miracle mnt]# ls -l /mnt/usb-disk/
total 0

[root@beefy-miracle mnt]#

Do note here that the above example was performed using a USB pendrive which was
only to demonstrate the creation and mounting or unmounting of a filesystem. In actual

practice you would follow the same process however in all probability it would be on

either IDE, SCSI, or SATA disks.

4.3.7 CHECKING AND MONITORING A LINUX SYSTEM

 Probably the first duty of a System Administrator is to be aware of the hardware

or software being used on a System. Linux has plenty of tools for checking and

monitoring a Linux system. In this section, we will look at some of the tools used by

System Administrators worldwide.

 uname or Unix Name prints the system information about the current machine

and the operating system running on it. [Note: you are encouraged to use the "man

uname" or the "info uname" command to known more about this command or how to use

it on your Linux system. Additionally, you can find the current Linux distribution you are

running by typing "cat /etc/redhat-release" or "cat /etc/lsb-release" in the terminal]
[nanu.kachari@beefy-miracle ~]$ uname -a
Linux beefy-miracle.iitg.ernet.in 3.9.11-200.fc18.x86_64 #1 SMP Mon Jul 22 21:04:50 UTC 2013

x86_64 x86_64 x86_64 GNU/Linux

[nanu.kachari@beefy-miracle ~]$

 dmidecode is a tool for dumping a computer's DMI (Desktop Management

Interface) table which contains a description of the system's hardware components, as

well as other useful information such as serial numbers and BIOS revision etc. You will
need root or superuser privileges run this command. [Note: you are encouraged to use

the "man dmidecode" or the "info dmidecode" command to known more about this

command or how to use it on your Linux system.]
[root@beefy-miracle ~]# dmidecode --type bios
dmidecode 2.12

SMBIOS 2.6 present.

Handle 0x0000, DMI type 0, 24 bytes

BIOS Information

 Vendor: American Megatrends Inc.

 Version: 0211G

 Release Date: 11/21/2011
 Address: 0xF0000

 Runtime Size: 64 kB

 ROM Size: 1024 kB

 Characteristics:

 ISA is supported

 PCI is supported
 PNP is supported

 BIOS is upgradeable

 BIOS shadowing is allowed

 ESCD support is available

 Boot from CD is supported

 Selectable boot is supported

 BIOS ROM is socketed

 EDD is supported
 5.25"/1.2 MB floppy services are supported (int 13h)

 3.5"/720 kB floppy services are supported (int 13h)

 3.5"/2.88 MB floppy services are supported (int 13h)

 Print screen service is supported (int 5h)

 8042 keyboard services are supported (int 9h)

 Serial services are supported (int 14h)

 Printer services are supported (int 17h)

 CGA/mono video services are supported (int 10h)
 ACPI is supported

 USB legacy is supported

 AGP is supported

 BIOS boot specification is supported

 Targeted content distribution is supported

 BIOS Revision: 2.11

Handle 0x003D, DMI type 13, 22 bytes
BIOS Language Information

 Language Description Format: Abbreviated

 Installable Languages: 1

 eng

 Currently Installed Language: eng

[root@beefy-miracle ~]#

Valid dmidecode type keywords are bios, system , baseboard, chassis,
processor, memory , cache, connector, slot . Run the dmidecode with all these

options on your system.

 lscpu displays information about the CPU architecture. Similarly, there are

also the lspci, lsusb, lshw, etc. for displaying information about hardware. Some
of these tools maynot be installed by default on your Linux system. Therefore,

you may have to install them. We will cover all about installing packages on Linux

in another section later in this unit. [Note: you are encouraged to use the man
pages or the info pages of these commands to known more about them or how to

use them on your Linux system.]
[nanu.kachari@beefy-miracle ~]$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 42
Stepping: 7
CPU MHz: 1600.000
BogoMIPS: 6185.94
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 6144K
NUMA node0 CPU(s): 0-3
[nanu.kachari@beefy-miracle ~]$

 The top program provides a dynamic real-time view of a running system.

It displays the system summary information as well as a list of processes or
threads currently being managed by the Linux kernel. Though top is available by

default on most distributions of Linux, you may use the htop interactive process

viewer. It is similar to top, but allows you to scroll vertically and horizontally, so

you can see all the processes running on the system, along with their full
command lines. Tasks related to processes (killing, renicing) can be done without

entering their PIDs. [Note: you are encouraged to use the man pages or the info

pages of these commands to known more about them or how to use them on
your Linux system.]

 free displays the total amount of free and used physical and swap
memory in the system, as well as the buffers used by the kernel.
[root@beefy-miracle ~]# free -h

 total used free shared buffers cached
Mem: 3.7G 2.7G 989M 0B 178M 1.8G

-/+ buffers/cache: 741M 3.0G

Swap: 4.0G 218M 3.8G

[root@beefy-miracle ~]#

 df displays the amount of disk space available on the file system

containing each file name argument. If no file name is given, the space available

on all currently mounted file systems is shown.
[root@beefy-miracle ~]# df -h
Filesystem Size Used Avail Use% Mounted on

devtmpfs 1.9G 0 1.9G 0% /dev

tmpfs 1.9G 216K 1.9G 1% /dev/shm
tmpfs 1.9G 5.2M 1.9G 1% /run

tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup

/dev/sda3 61G 23G 38G 38% /

tmpfs 1.9G 56K 1.9G 1% /tmp

/dev/sda1 477M 45M 407M 10% /boot

/dev/sda2 394G 294G 81G 79% /home

[root@beefy-miracle ~]#

 du estimates the file space usage. For example lets say, we want to know

how much space in total a folder name KKHSOU is using we could use the "du"
command with the "-sh" options (s indicates summary, h indicates human

readable) as shown below.
[nanu.kachari@beefy-miracle Desktop]$ du -sh KKHSOU

2.0M KKHSOU/
[nanu.kachari@beefy-miracle Desktop]$

 netstat prints information about the Linux networking subsystem. For example,

say you want to know what tcp connections are active currently on your system. You can

use the "-t" option along with "netstat" as shown below.
[root@beefy-miracle ~]# netstat -t
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 208 beefy-miracle:ssh 172.xxx.xxx.xxx:10194 ESTABLISHED

[root@beefy-miracle ~]#

4.3.8 BACKUP AND RESTORE FILES

 One of the top priorities of a System Administrator is a regular backup of critical

data which can be restored in an advent of system crash or failure. That being said you
should backup all critical data on separate media such as tape, writeable CD/DVD,

removable USB disks, Network Storage etc., and then store your backup sets in a

location separate from your Linux system. There are a variety of methods of performing
backups with Linux. Example: dump which is a ext2/3/4 filesystem backup tool; dd is a

tool to convert and copy a file; cpio is a tool for copying files to and from archives; tar
saves many files together into a single tape or disk archive, and can restore individual
files from the archive; rsync is a fast, versatile, remote (and local) file-copying tool. We

will discuss only tar here. However, you are highly encouraged to check out the other

tools mentioned earlier.

 tar (originally for tape archive) is useful for archiving files. You can see more

information by reading the man page (type "man tar" in your Linux terminal).

The tar program takes one operation mode argument. The most common ones are listed

below.

 c - Create a tar file from files

 t - List all files in a tar file verbosely

 x - Extract all files from a tar file

In addition to a function command line arguments the following arguments mentioned

below are also used.
 f - use archive file

 z - filter the archive through gzip
 v - verbosely list files processed

Now, let us try out an example where we create a tar archive with the options we just

went through. I have a folder with the following files.
[nanu.kachari@beefy-miracle filestotar]$ ll -h

total 436K

-rw-rw-r--. 1 nanu.kachari nanu.kachari 77K Sep 5 23:36 a.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 166K Sep 5 23:37 b.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 169K Sep 5 23:37 c.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 16K Sep 5 23:35 README.txt

[nanu.kachari@beefy-miracle filestotar]$

Creating a tar archive file:

First we will create a tar archive without using any compression.
[nanu.kachari@beefy-miracle filestotar]$ tar -cvf archive.tar a.txt b.txt c.txt README.txt
a.txt

b.txt
c.txt

README.txt

[nanu.kachari@beefy-miracle filestotar]$ ll -h

total 868K

-rw-rw-r--. 1 nanu.kachari nanu.kachari 430K Sep 5 23:49 archive.tar

-rw-rw-r--. 1 nanu.kachari nanu.kachari 77K Sep 5 23:36 a.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 166K Sep 5 23:37 b.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 169K Sep 5 23:37 c.txt
-rw-rw-r--. 1 nanu.kachari nanu.kachari 16K Sep 5 23:35 README.txt

[nanu.kachari@beefy-miracle filestotar]$
Now, let us create a tar archive with compression and compare the sizes of both these

archives.
[nanu.kachari@beefy-miracle filestotar]$ tar -zcvf archive.tar.gz a.txt b.txt c.txt README.txt
a.txt

b.txt

c.txt

README.txt

[nanu.kachari@beefy-miracle filestotar]$ ll -h
total 996K
-rw-rw-r--. 1 nanu.kachari nanu.kachari 430K Sep 5 23:49 archive.tar

-rw-rw-r--. 1 nanu.kachari nanu.kachari 127K Sep 5 23:50 archive.tar.gz

-rw-rw-r--. 1 nanu.kachari nanu.kachari 77K Sep 5 23:36 a.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 166K Sep 5 23:37 b.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 169K Sep 5 23:37 c.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 16K Sep 5 23:35 README.txt

[nanu.kachari@beefy-miracle filestotar]$
You can see that the compressed file obviously takes up less disk space. Alternatively,

we can create a tar archive of the folder containing these files.
[nanu.kachari@beefy-miracle KKHSOU]$ tar -zcvf archive-folder.tar filestotar
filestotar/

filestotar/c.txt
filestotar/archive.tar

filestotar/b.txt

filestotar/a.txt

filestotar/archive.tar.gz

filestotar/README.txt

[nanu.kachari@beefy-miracle KKHSOU]$ ll -h

total 388K

-rw-rw-r--. 1 nanu.kachari nanu.kachari 383K Sep 5 23:54 archive-folder.tar
drwxrwxr-x. 2 nanu.kachari nanu.kachari 4.0K Sep 5 23:50 filestotar

[nanu.kachari@beefy-miracle KKHSOU]$

Testing a tar archive file:

[nanu.kachari@beefy-miracle filestotar]$ tar -tvf archive.tar
-rw-rw-r-- nanu.kachari/nanu.kachari 78561 2013-09-05 23:36 a.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 169306 2013-09-05 23:37 b.txt
-rw-rw-r-- nanu.kachari/nanu.kachari 172462 2013-09-05 23:37 c.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 16232 2013-09-05 23:35 README.txt

[nanu.kachari@beefy-miracle filestotar]$ tar -tvf archive.tar.gz

-rw-rw-r-- nanu.kachari/nanu.kachari 78561 2013-09-05 23:36 a.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 169306 2013-09-05 23:37 b.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 172462 2013-09-05 23:37 c.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 16232 2013-09-05 23:35 README.txt

[nanu.kachari@beefy-miracle KKHSOU]$ tar -tvf archive-folder.tar
drwxrwxr-x nanu.kachari/nanu.kachari 0 2013-09-05 23:50 filestotar/
-rw-rw-r-- nanu.kachari/nanu.kachari 172462 2013-09-05 23:37 filestotar/c.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 440320 2013-09-05 23:49 filestotar/archive.tar

-rw-rw-r-- nanu.kachari/nanu.kachari 169306 2013-09-05 23:37 filestotar/b.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 78561 2013-09-05 23:36 filestotar/a.txt

-rw-rw-r-- nanu.kachari/nanu.kachari 129877 2013-09-05 23:50 filestotar/archive.tar.gz

-rw-rw-r-- nanu.kachari/nanu.kachari 16232 2013-09-05 23:35 filestotar/README.txt

Extracting a tar archive file:

Let us now create a folder named "temp" in our current working directory. We will use

this folder to extract our tar archives into.
[nanu.kachari@beefy-miracle filestotar]$ mkdir temp
[nanu.kachari@beefy-miracle filestotar]$ cd temp/
[nanu.kachari@beefy-miracle temp]$ ll
total 0

Now, copy the tar archive file into this folder as shown.
[nanu.kachari@beefy-miracle temp]$ cp ../archive.tar .
[nanu.kachari@beefy-miracle temp]$ ll
total 432
-rw-rw-r--. 1 nanu.kachari nanu.kachari 440320 Sep 6 00:15 archive.tar

[nanu.kachari@beefy-miracle temp]$
Extract the tar archive file.
[nanu.kachari@beefy-miracle temp]$ tar -xvf archive.tar
a.txt

b.txt

c.txt

README.txt

[nanu.kachari@beefy-miracle temp]$ ll
total 436

-rw-rw-r--. 1 nanu.kachari nanu.kachari 78561 Sep 5 23:36 a.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 169306 Sep 5 23:37 b.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 172462 Sep 5 23:37 c.txt

-rw-rw-r--. 1 nanu.kachari nanu.kachari 16232 Sep 5 23:35 README.txt
[nanu.kachari@beefy-miracle temp]$

Similarly, copy the other tar archives created in the previous steps to the "temp" folder

and try extracting them one by one. Needless to say however, that you may delete the

contents of the "temp" folder before trying out the other files.
[nanu.kachari@beefy-miracle temp]$ rm *
[nanu.kachari@beefy-miracle temp]$ ll
total 0

[nanu.kachari@beefy-miracle temp]$

4.3.9 INSTALLING AND REMOVING PACKAGES IN LINUX

 One of the most common system administration task is maintaining software on a

system. Maintaining software includes installaling and removing softwares and

performing regular updates of already installed software. On a Linux system the package

management utility used depends on the distribution of Linux. For RPM (Redhat
Package Manager) based systems like the RedHat Enterprise Linux (RHEL), CentOS,

Fedora, etc. the package management is usually done using the YUM (Yellowdog

Updater, Modified) package manager. For Debian GNU/Linux distribution and its

variants like Debian, Ubuntu, etc. the package management is usually done using the
APT (Advanced Packaging Tool) package manager. Both the yum and apt package

management utilities have their individual GUIs (graphical user interfaces) in addition to

command line interfaces. We will be discussing the command line interface in this

section only.

Generally, the repositories for both yum and apt are located accross the Internet though

you can configure local repositories. However, in most cases your repositories will be

located accross the Internet. We will use the repositories that are located accross the

Internet in our examples. Therefore, you will need to ensure that you have a working

Internet connection. Also, you could be either directly connected to the Internet or

connected via a proxy server. We will discuss both these configurations in our examples.

Using YUM:

To view the repositories currently configured on your Linux system you can use the

command "yum repolist". We are using Fedora 18 Linux in our examples below.
[root@beefy-miracle ~]# yum repolist
Loaded plugins: langpacks, presto, refresh-packagekit

repo id repo name status

fedora/18/x86_64 Fedora 18 – x86_64 33,868

updates/18/x86_64 Fedora 18 - x86_64 – Updates 17,769
The yum repository configuration files are located in the "/etc/yum.repos.d/" folder. As
we can see in the above example we have two repositories configured the fedora

repository and the fedora updates repository in our Linux system. Do note that you can

install and/or enable as many repositories that is needed. You are encouraged to lookup

the "man yum.conf" command for more information.
 Let us look at the fedora repository configuration which is specified by the

"fedora.repo" file located in the "/etc/yum.repos.d/" folder. The yum repository
configuration files have the ".repo" extension. Similarly, the fedora updates repository

configuration is specified in the "fedora-updates.repo" file.
[root@beefy-miracle ~]# vim /etc/yum.repos.d/fedora.repo

[fedora]

name=Fedora $releasever - $basearch

failovermethod=priority

#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/$releasever/Everything/$basearch/os/

mirrorlist=https://mirrors.fedoraproject.org/metalink?repo=fedora-$releasever&arch=$basearch
enabled=1
#metadata_expire=7d

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

[fedora-debuginfo]

name=Fedora $releasever - $basearch - Debug

failovermethod=priority

#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/$releasever/Everything/$basearch/debug/

mirrorlist=https://mirrors.fedoraproject.org/metalink?repo=fedora-debug-$releasever&arch=$basearch
enabled=0
metadata_expire=7d

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

[fedora-source]

name=Fedora $releasever - Source

failovermethod=priority

#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/$releasever/Everything/source/SRPMS/

mirrorlist=https://mirrors.fedoraproject.org/metalink?repo=fedora-source-$releasever&arch=$basearch
enabled=0
metadata_expire=7d

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch
You can see that we have enabled the fedora repository and disabled the fedora-

debuginfo and fedora-source repositories in our example.

 Let us now run "yum update" to update all the currently installed packages on our

system.
[root@beefy-miracle ~]# yum update
Loaded plugins: langpacks, presto, refresh-packagekit

fedora/18/x86_64/metalink | 9.4 kB 00:00:00

fedora | 4.2 kB 00:00:00

updates/18/x86_64/metalink | 7.4 kB 00:00:00

updates | 4.7 kB 00:00:00

Trying other mirror.

(1/2): updates/primary_db | 11 MB 00:00:12

(2/2): fedora/primary_db | 17 MB 00:00:12

Resolving Dependencies

--> Running transaction check

---> Package graphviz.x86_64 0:2.28.0-26.fc18 will be updated

---> Package graphviz.x86_64 0:2.28.0-27.fc18 will be an update

---> Package graphviz-gd.x86_64 0:2.28.0-26.fc18 will be updated

---> Package graphviz-gd.x86_64 0:2.28.0-27.fc18 will be an update

---> Package libfm.x86_64 0:1.1.2.2-1.fc18 will be updated

---> Package libfm.x86_64 0:1.1.2.2-2.fc18 will be an update

---> Package libfm-devel.x86_64 0:1.1.2.2-1.fc18 will be updated

---> Package libfm-devel.x86_64 0:1.1.2.2-2.fc18 will be an update

--> Finished Dependency Resolution

Dependencies Resolved

==

 Package Arch Version Repository Size

===

Updating:

 graphviz x86_64 2.28.0-27.fc18 updates 1.2 M

 graphviz-gd x86_64 2.28.0-27.fc18 updates 30 k

 libfm x86_64 1.1.2.2-2.fc18 updates 255 k

 libfm-devel x86_64 1.1.2.2-2.fc18 updates 33 k

Transaction Summary

===

Upgrade 4 Packages

Total download size: 1.5 M

Is this ok [y/N]: y

Downloading Packages:

Setting up and reading Presto delta metadata

(1/4): graphviz-2.28.0-27.fc18.x86_64.rpm | 1.2 MB 00:00:05

(2/4): graphviz-gd-2.28.0-27.fc18.x86_64.rpm | 30 kB 00:00:00

(3/4): libfm-1.1.2.2-2.fc18.x86_64.rpm | 255 kB 00:00:01

(4/4): libfm-devel-1.1.2.2-2.fc18.x86_64.rpm | 33 kB 00:00:00

--

Total 194 kB/s | 1.5 MB 00:07

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Updating : libfm-1.1.2.2-2.fc18.x86_64 1/8

 Updating : graphviz-2.28.0-27.fc18.x86_64 2/8

 Updating : graphviz-gd-2.28.0-27.fc18.x86_64 3/8

 Updating : libfm-devel-1.1.2.2-2.fc18.x86_64 4/8

 Cleanup : graphviz-gd-2.28.0-26.fc18.x86_64 5/8

 Cleanup : libfm-devel-1.1.2.2-1.fc18.x86_64 6/8

 Cleanup : graphviz-2.28.0-26.fc18.x86_64 7/8

 Cleanup : libfm-1.1.2.2-1.fc18.x86_64 8/8

 Verifying : graphviz-2.28.0-27.fc18.x86_64 1/8

 Verifying : libfm-1.1.2.2-2.fc18.x86_64 2/8

 Verifying : libfm-devel-1.1.2.2-2.fc18.x86_64 3/8

 Verifying : graphviz-gd-2.28.0-27.fc18.x86_64 4/8

 Verifying : libfm-1.1.2.2-1.fc18.x86_64 5/8

 Verifying : graphviz-gd-2.28.0-26.fc18.x86_64 6/8

 Verifying : graphviz-2.28.0-26.fc18.x86_64 7/8

 Verifying : libfm-devel-1.1.2.2-1.fc18.x86_64 8/8

Updated:

 graphviz.x86_64 0:2.28.0-27.fc18 graphviz-gd.x86_64 0:2.28.0-27.fc18 libfm.x86_64 0:1.1.2.2-2.fc18

 libfm-devel.x86_64 0:1.1.2.2-2.fc18

Complete!

[root@beefy-miracle ~]#
Alternatively, we could have also used the "yum update -y" command to answer yes to

all the updates found by yum. Do remember that the output on your system will differ

from this example mentioned above as the update state of your system will differ from

the system where this example was performed.

In case you connect to the Internet using a http proxy server you will need the following

lines added to the "~/.bashrc" file. Generally, we use the root user to perform updates
using yum and therfore we need to add these lines to the "/root/.bashrc" file.
[root@beefy-miracle ~]# vim /root/.bashrc

export http_proxy="http://username:password@proxyserver:port"
export https_proxy="http://username:password@proxyserver:port"
export ftp_proxy="http://username:password@proxyserver:port"
You have to replace username with your proxy username, password with your proxy

password, proxyserver and port with your proxy server IP address or hostname and port.

Once this is in place we use the "source ~/.bashrc" command to refresh the environment

changes we just made.

To install packages we use the command "yum install package-name". For example let

us try installing vim.
[root@beefy-miracle ~]# yum install vim
Loaded plugins: langpacks, presto, refresh-packagekit

Package 2:vim-enhanced-7.4.016-1.fc18.x86_64 already installed and latest version

Nothing to do
[root@beefy-miracle ~]#
You can see that vim was already installed therefore yum reports that indeed we already

have vim installed on our system. This gives us an opportunity to remove this package
as well as install this package to complete our example. Let us remove the package vim

using "yum erase vim".
[root@beefy-miracle ~]# yum erase vim
Loaded plugins: langpacks, presto, refresh-packagekit

Resolving Dependencies

--> Running transaction check

---> Package vim-enhanced.x86_64 2:7.4.016-1.fc18 will be erased

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size
===

Removing:

 vim-enhanced x86_64 2:7.4.016-1.fc18 @updates 2.1 M

Transaction Summary

===

Remove 1 Package

Installed size: 2.1 M
Is this ok [y/N]: y

Downloading Packages:

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded
Running Transaction

 Erasing : 2:vim-enhanced-7.4.016-1.fc18.x86_64 1/1

 Verifying : 2:vim-enhanced-7.4.016-1.fc18.x86_64 1/1

Removed:

 vim-enhanced.x86_64 2:7.4.016-1.fc18

Complete!

[root@beefy-miracle ~]#

Now, we install the package vim using the command "yum install vim".
[root@beefy-miracle ~]# yum install vim

Loaded plugins: langpacks, presto, refresh-packagekit
Resolving Dependencies

--> Running transaction check

---> Package vim-enhanced.x86_64 2:7.4.016-1.fc18 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size
===

Installing:

 vim-enhanced x86_64 2:7.4.016-1.fc18 updates 1.0 M

Transaction Summary

===

Install 1 Package

Total download size: 1.0 M

Installed size: 2.1 M
Is this ok [y/N]: y
Downloading Packages:

vim-enhanced-7.4.016-1.fc18.x86_64.rpm | 1.0 MB 00:00:04

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : 2:vim-enhanced-7.4.016-1.fc18.x86_64 1/1

 Verifying : 2:vim-enhanced-7.4.016-1.fc18.x86_64 1/1

Installed:

 vim-enhanced.x86_64 2:7.4.016-1.fc18
Complete!

[root@beefy-miracle ~]#
Though we have seen only a few examples of using yum, you should be able to install

and remove packages now. However, you are encouraged to look up the "man yum" on

your system and read about the various options to use. Alternatively, you can visit the

official page located at "http://yum.baseurl.org/wiki/YumCommands" and read more

about it.

Using APT:

Apt stores a list of repositories or software channels in the file "/etc/apt/sources.list"

 and will look similar to the one shown. We will be using Ubuntu 12.04 LTS for our
examples below.
root@lano:~#

vim /etc/apt/sources.list

deb cdrom:[Ubuntu-Server 11.04 _Natty Narwhal_ - Release amd64 (20110426)]/ natty main restricted

deb cdrom:[Ubuntu-Server 11.04 _Natty Narwhal_ - Release amd64 (20110426)]/ natty main restricted

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to

newer versions of the distribution.

deb http://in.archive.ubuntu.com/ubuntu/ precise main restricted

deb-src http://in.archive.ubuntu.com/ubuntu/ precise main restricted

Major bug fix updates produced after the final release of the

distribution.

deb http://in.archive.ubuntu.com/ubuntu/ precise-updates main restricted

deb-src http://in.archive.ubuntu.com/ubuntu/ precise-updates main restricted

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu

team. Also, please note that software in universe WILL NOT receive any

review or updates from the Ubuntu security team.

deb http://in.archive.ubuntu.com/ubuntu/ precise universe

deb-src http://in.archive.ubuntu.com/ubuntu/ precise universe

deb http://in.archive.ubuntu.com/ubuntu/ precise-updates universe

deb-src http://in.archive.ubuntu.com/ubuntu/ precise-updates universe

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu

team, and may not be under a free licence. Please satisfy yourself as to

your rights to use the software. Also, please note that software in

multiverse WILL NOT receive any review or updates from the Ubuntu

security team.

deb http://in.archive.ubuntu.com/ubuntu/ precise multiverse

deb-src http://in.archive.ubuntu.com/ubuntu/ precise multiverse

deb http://in.archive.ubuntu.com/ubuntu/ precise-updates multiverse

deb-src http://in.archive.ubuntu.com/ubuntu/ precise-updates multiverse

Uncomment the following two lines to add software from the 'backports'

repository.

N.B. software from this repository may not have been tested as

extensively as that contained in the main release, although it includes

newer versions of some applications which may provide useful features.

Also, please note that software in backports WILL NOT receive any review

or updates from the Ubuntu security team.

deb http://in.archive.ubuntu.com/ubuntu/ natty-backports main restricted universe multiverse

deb-src http://in.archive.ubuntu.com/ubuntu/ natty-backports main restricted universe multiverse
The default repositories that come alongwith the Ubuntu distribution used in the example

above suffices our current needs. However, you could enable/disable the existing

repositories by uncommenting/commenting the corresponding apt line (i.e. delete the '#'

at the beginning of the line) or even add new repositories as well. You are encouraged to

lookup "man sources.list" as well as "man apt-get" for more information. You need to run
the apt-get command with supervisor previlages therefore you can use either "sudo apt-

get install" or first "sudo -i" then enter your password, to get to a root prompt and then

use "apt-get install". We will use the later of the two options.

 Let us run the "apt-get update" command to update or resynchronize the

package index files from their sources.
nanu@lano:~$ sudo -i

[sudo] password for nanu:

root@lano:~# apt-get update

Hit http://dl.google.com stable Release.gpg

Hit http://dl.google.com stable Release

Hit http://dl.google.com stable/main i386 Packages

Ign http://dl.google.com stable/main TranslationIndex

Hit http://archive.ubuntu.com precise Release.gpg

Hit http://archive.canonical.com precise Release.gpg

Hit http://extras.ubuntu.com precise Release.gpg

Get:1 http://archive.ubuntu.com precise-updates Release.gpg [198 B]

Hit http://archive.canonical.com precise Release

Hit http://extras.ubuntu.com precise Release

Get:2 http://archive.ubuntu.com precise-security Release.gpg [198 B]

Hit http://archive.canonical.com precise/partner i386 Packages

Hit http://extras.ubuntu.com precise/main Sources

Hit http://archive.ubuntu.com precise Release

Ign http://dl.google.com stable/main Translation-en_IN

Ign http://archive.canonical.com precise/partner TranslationIndex

Get:3 http://archive.ubuntu.com precise-updates Release [49.6 kB]

Hit http://extras.ubuntu.com precise/main i386 Packages

Ign http://dl.google.com stable/main Translation-en

Ign http://extras.ubuntu.com precise/main TranslationIndex

Get:4 http://archive.ubuntu.com precise-security Release [49.6 kB]

Hit http://archive.ubuntu.com precise/main Sources

Hit http://archive.ubuntu.com precise/restricted Sources

Hit http://archive.ubuntu.com precise/universe Sources

Hit http://archive.ubuntu.com precise/multiverse Sources

Hit http://archive.ubuntu.com precise/main i386 Packages

Hit http://archive.ubuntu.com precise/restricted i386 Packages

Ign http://archive.canonical.com precise/partner Translation-en_IN

Hit http://archive.ubuntu.com precise/universe i386 Packages

Ign http://archive.canonical.com precise/partner Translation-en

Hit http://archive.ubuntu.com precise/multiverse i386 Packages

Ign http://extras.ubuntu.com precise/main Translation-en_IN

Hit http://archive.ubuntu.com precise/main TranslationIndex

Ign http://extras.ubuntu.com precise/main Translation-en

Hit http://archive.ubuntu.com precise/multiverse TranslationIndex

Hit http://archive.ubuntu.com precise/restricted TranslationIndex

Hit http://archive.ubuntu.com precise/universe TranslationIndex

Get:5 http://archive.ubuntu.com precise-updates/main Sources [416 kB]

Get:6 http://archive.ubuntu.com precise-updates/restricted Sources [7,031 B]

Get:7 http://archive.ubuntu.com precise-updates/universe Sources [95.7 kB]

Get:8 http://archive.ubuntu.com precise-updates/multiverse Sources [8,343 B]

Get:9 http://archive.ubuntu.com precise-updates/main i386 Packages [707 kB]

Get:10 http://archive.ubuntu.com precise-updates/restricted i386 Packages [11.4 kB]

Get:11 http://archive.ubuntu.com precise-updates/universe i386 Packages [219 kB]

Get:12 http://archive.ubuntu.com precise-updates/multiverse i386 Packages [14.0 kB]

Hit http://archive.ubuntu.com precise-updates/main TranslationIndex

Hit http://archive.ubuntu.com precise-updates/multiverse TranslationIndex

Hit http://archive.ubuntu.com precise-updates/restricted TranslationIndex

Hit http://archive.ubuntu.com precise-updates/universe TranslationIndex

Get:13 http://archive.ubuntu.com precise-security/main Sources [85.2 kB]

Get:14 http://archive.ubuntu.com precise-security/restricted Sources [2,494 B]

Get:15 http://archive.ubuntu.com precise-security/universe Sources [28.0 kB]

Get:16 http://archive.ubuntu.com precise-security/multiverse Sources [1,804 B]

Get:17 http://archive.ubuntu.com precise-security/main i386 Packages [331 kB]

Get:18 http://archive.ubuntu.com precise-security/restricted i386 Packages [4,620 B]

Get:19 http://archive.ubuntu.com precise-security/universe i386 Packages [84.5 kB]

Get:20 http://archive.ubuntu.com precise-security/multiverse i386 Packages [2,640 B]

Hit http://archive.ubuntu.com precise-security/main TranslationIndex

Hit http://archive.ubuntu.com precise-security/multiverse TranslationIndex

Hit http://archive.ubuntu.com precise-security/restricted TranslationIndex

Hit http://archive.ubuntu.com precise-security/universe TranslationIndex

Hit http://archive.ubuntu.com precise/main Translation-en

Hit http://archive.ubuntu.com precise/multiverse Translation-en

Hit http://archive.ubuntu.com precise/restricted Translation-en

Hit http://archive.ubuntu.com precise/universe Translation-en

Hit http://archive.ubuntu.com precise-updates/main Translation-en

Hit http://archive.ubuntu.com precise-updates/multiverse Translation-en

Hit http://archive.ubuntu.com precise-updates/restricted Translation-en

Hit http://archive.ubuntu.com precise-updates/universe Translation-en

Hit http://archive.ubuntu.com precise-security/main Translation-en

Hit http://archive.ubuntu.com precise-security/multiverse Translation-en

Hit http://archive.ubuntu.com precise-security/restricted Translation-en

Hit http://archive.ubuntu.com precise-security/universe Translation-en

Fetched 2,119 kB in 43s (48.7 kB/s)

Reading package lists... Done

root@lano:~#
Now, we will use "apt-get upgrade" to install the newest versions of all packages

currently installed on the system from the sources enumerated in /etc/apt/sources.list.
root@lano:~# apt-get upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages will be upgraded:

 dhcp3-client dhcp3-common firefox firefox-branding firefox-globalmenu

 isc-dhcp-client isc-dhcp-common

7 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Need to get 28.8 MB of archives.

After this operation, 1,630 kB of additional disk space will be used.

Do you want to continue [Y/n]? Y

Get:1 http://archive.ubuntu.com/ubuntu/ precise-updates/main isc-dhcp-client i386 4.1.ESV-R4-

0ubuntu5.9 [288 kB]

Get:2 http://archive.ubuntu.com/ubuntu/ precise-updates/main isc-dhcp-common i386 4.1.ESV-

R4-0ubuntu5.9 [346 kB]

Get:3 http://archive.ubuntu.com/ubuntu/ precise-updates/universe dhcp3-client all 4.1.ESV-R4-

0ubuntu5.9 [2,196 B]

Get:4 http://archive.ubuntu.com/ubuntu/ precise-updates/universe dhcp3-common all 4.1.ESV-

R4-0ubuntu5.9 [1,750 B]

Get:5 http://archive.ubuntu.com/ubuntu/ precise-updates/main firefox i386 24.0+build1-

0ubuntu0.12.04.1 [28.1 MB]

Get:6 http://archive.ubuntu.com/ubuntu/ precise-updates/main firefox-branding i386 24.0+build1-

0ubuntu0.12.04.1 [8,956 B]

Get:7 http://archive.ubuntu.com/ubuntu/ precise-updates/main firefox-globalmenu i386

24.0+build1-0ubuntu0.12.04.1 [8,958 B]

Fetched 28.8 MB in 1min 2s (459 kB/s)

(Reading database ... 940092 files and directories currently installed.)

Preparing to replace isc-dhcp-client 4.1.ESV-R4-0ubuntu5.8 (using .../isc-dhcp-client_4.1.ESV-

R4-0ubuntu5.9_i386.deb) ...

Unpacking replacement isc-dhcp-client ...

Preparing to replace isc-dhcp-common 4.1.ESV-R4-0ubuntu5.8 (using .../isc-dhcp-

common_4.1.ESV-R4-0ubuntu5.9_i386.deb) ...

Unpacking replacement isc-dhcp-common ...

Preparing to replace dhcp3-client 4.1.ESV-R4-0ubuntu5.8 (using .../dhcp3-client_4.1.ESV-R4-

0ubuntu5.9_all.deb) ...

Unpacking replacement dhcp3-client ...

Preparing to replace dhcp3-common 4.1.ESV-R4-0ubuntu5.8 (using .../dhcp3-common_4.1.ESV-

R4-0ubuntu5.9_all.deb) ...

Unpacking replacement dhcp3-common ...

Preparing to replace firefox 23.0+build2-0ubuntu0.12.04.1 (using .../firefox_24.0+build1-

0ubuntu0.12.04.1_i386.deb) ...

Unpacking replacement firefox ...

Preparing to replace firefox-branding 23.0+build2-0ubuntu0.12.04.1 (using .../firefox-

branding_24.0+build1-0ubuntu0.12.04.1_i386.deb) ...

Unpacking replacement firefox-branding ...

Preparing to replace firefox-globalmenu 23.0+build2-0ubuntu0.12.04.1 (using .../firefox-

globalmenu_24.0+build1-0ubuntu0.12.04.1_i386.deb) ...

Unpacking replacement firefox-globalmenu ...

Processing triggers for man-db ...

Processing triggers for bamfdaemon ...

Rebuilding /usr/share/applications/bamf.index...

Processing triggers for desktop-file-utils ...

Processing triggers for gnome-menus ...

Setting up isc-dhcp-common (4.1.ESV-R4-0ubuntu5.9) ...

Setting up isc-dhcp-client (4.1.ESV-R4-0ubuntu5.9) ...

Setting up dhcp3-client (4.1.ESV-R4-0ubuntu5.9) ...

Setting up dhcp3-common (4.1.ESV-R4-0ubuntu5.9) ...

Setting up firefox (24.0+build1-0ubuntu0.12.04.1) ...

Please restart all running instances of firefox, or you will experience problems.

Setting up firefox-branding (24.0+build1-0ubuntu0.12.04.1) ...

Setting up firefox-globalmenu (24.0+build1-0ubuntu0.12.04.1) ...

root@lano:~#

In case you connect to the Internet using a http proxy server you will need the following

lines added to the "/etc/apt/apt.conf" file.
root@lano:~# vim /etc/apt/apt.conf

Acquire::http::proxy "http://username:password@proxyserver:port";

Acquire::https::proxy "http://username:password@proxyserver:port";

Acquire::ftp::proxy "http://username:password@proxyserver:port";
You have to replace username with your proxy username, password with your proxy

password, proxyserver and port with your proxy server IP address or hostname and port.

 To install packages we use the command "apt-get install package-name". For

example let us try installing vim.
root@lano:~# apt-get install vim

Reading package lists... Done

Building dependency tree

Reading state information... Done

vim is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

root@lano:~#
You can see that apt-get reports that we already have vim installed on our system. This

gives us an opportunity to remove this package as well as install this package to
complete our example. Let us remove the package vim using "apt-get remove vim".
root@lano:~# apt-get remove vim

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages will be REMOVED:

 vim

0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.

After this operation, 1,950 kB disk space will be freed.

Do you want to continue [Y/n]? Y

(Reading database ... 940091 files and directories currently installed.)

Removing vim ...

update-alternatives: using /usr/bin/vim.tiny to provide /usr/bin/vi (vi) in auto mode.

update-alternatives: using /usr/bin/vim.tiny to provide /usr/bin/view (view) in auto mode.

update-alternatives: using /usr/bin/vim.tiny to provide /usr/bin/ex (ex) in auto mode.

update-alternatives: using /usr/bin/vim.tiny to provide /usr/bin/rview (rview) in auto mode.

root@lano:~#

Now, we install the package vim using the command "apt-get install vim".
root@lano:~# apt-get install vim

Reading package lists... Done

Building dependency tree

Reading state information... Done

Suggested packages:

 ctags vim-doc vim-scripts

The following NEW packages will be installed:

 vim

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 979 kB of archives.

After this operation, 1,950 kB of additional disk space will be used.

Get:1 http://archive.ubuntu.com/ubuntu/ precise-updates/main vim i386 2:7.3.429-2ubuntu2.1

[979 kB]

Fetched 979 kB in 4s (214 kB/s)

Selecting previously unselected package vim.

(Reading database ... 940086 files and directories currently installed.)

Unpacking vim (from .../vim_2%3a7.3.429-2ubuntu2.1_i386.deb) ...

Setting up vim (2:7.3.429-2ubuntu2.1) ...

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vim (vim) in auto mode.

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vimdiff (vimdiff) in auto mode.

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/rvim (rvim) in auto mode.

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/rview (rview) in auto mode.

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vi (vi) in auto mode.

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/view (view) in auto mode.

update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/ex (ex) in auto mode.

root@lano:~#

Though we have seen only a few examples of using apt-get, you should now be able to

install and remove packages. However, you are encouraged to look up the "man apt-get"

on your system and read about the various options to use.

4.3.10 GRAPHICAL INTERFACES IN LINUX

 Throuhgout this unit in all the examples discussed we were using the command

line interface or CLI to perform all our tasks which required commands to be typed on

the keyboard. Though CLI is always the preferred way on Linux you should also be
aware of the various Graphical User Interfaces or GUIs that are available today. If you

are currently using any of the recent distribution of Linux be it Fedora, Ubuntu, etc. you

are most likely to have either GNOME or KDE as the default GUI. These GUIs are the

most widely used ones. You are encouraged to read more about these GUIs at the

website links provided below.

"http://www.gnome.org/gnome-3/"

"http://www.kde.org/workspaces/"

CHECK YOUR PROGRESS
1. Write the Command to do the following:

 a. Create a new directory "KKHSOU"

 b. Create a user "abc"

 c. Change the password of the existing user say "kkhsou")
 d. Display IP address

 c. Extract "kkhsou.tar"

2. Fill in the Blanks

 i) To clear the screen we type ______.

 ii) We can install the "vlc" player in UBUNTU OS using the command ______.

 iii) To get the date in the command line we use _______ .

 4.4 LET US SUM UP

 In this unit we have tried to get acquainted with System Administration using the

“with examples” approach on Linux. Though we have covered only a few of the topics so

far, these topics are intended to inspire are point you in the right direction to further

explore the realm of Linux System Administration.
What we learned in this unit.

 We used the "ls" command to list files/directories.

 We used "su -" (on Fedora Linux) and "sudo -i" (on Ubuntu Linux) to switch to the

root user.

 We saw that the system configuration files are generally located within the "/etc/"

folder.

 We saw that the system log files are generally located wihtin the "/var/log/" folder.

 We added users using the "useradd" and "newusers" command.

 We deleted users using the "userdel" command.

 We changed permissions of files/directories using the "chmod" command and

also applied the sticky bit permission to world writable directories to prevent

users from deleting other users' files.

 We changed ownerships of files/firectories using the "chown" command.

 We used the command "passwd" with the option "-l" to lock a user account and

the option "-u" to unlock.

 We used the "fdisk" utility to list and create partition on a disk.

 We used the "mkfs" utility to create filesystems on a disk.

 We used the "mount" utility to mount a filesystem.

 We saw that there are some useful utilities like uname, dmidecode, lscpu, free,

df, du, netstat that are bundled with Linux and can be used to monitor/check the

system.

 We performed backup and restore operation using the “tar” utility.

 We performed software update, installation, removal using the “yum” and “apt-

get” utilities.

 We very briefly discussed about the two popular GUIs on Linux namely GNOME

and KDE. Though we did not discuss in detail you are encouraged to explore

further.

4.5 ANSWERS TO CHECK YOUR PROGRESS

1. a) mkdir KKHSOU

 b) useradd abc

 c) passwd kkhsou

 d) ifconfig

 c) tar -xvf kkhsou.tar

 2. i) clear

 ii) apt-get install vlc

 iii) date

4.6 FURTHER READINGS

 Linux Documentation Project [http://www.tldp.org/]

 Documentation for Linux enthusiasts [http://www.linuxdocs.org/]

 Linux Man pages installed on local system.

4.7 MODEL QUESTIONS

Q1. List some of the common system administrative tasks.

Q2. Which command will display the file/directory ownerships.

Q3. Where are the default system configuration files located in Linux.

Q4. Where are the default system log files located in Linux.

Q5. Which command is used to add multiple users.

Q6. Which file contains the Group ID of users.

Q7. Which file contains user's Home Directory location.

Q8. Which command can be used to temporary disable a user login.

Q9. Which command is used to delete a user including the users' Home Directory.

Q10. Which command is used to make a file executable by all.

Q11. Which command can be used to create a Directory.

Q12. Which command can be used to view the current partitions on a disk.

Q13. Which command can be used to view the current RAM usage.

Q14. Which command can be used to view the currently active TCP connections.

Q15. What does "f" stand for in the command "tar -cvf archive.tar a.txt b.txt c.txt
README.txt".

UNIT- 5 LINUX NETWORKING

UNIT STRUCTURE
5.1 Learning Objectives

5.2 Introduction

5.3 Installation and Configuration of a LAN

 5.3.1 Installation

 5.3.2 Configuration

5.4 Installation and Configuration of a Proxy Server – Squid

 5.4.1 Installation
 5.4.2 Configuration

5.5 Installation and Configuration of a DNS Server – BIND

 5.5.1 Installation

 5.5.2 Configuration

5.6 Installation and Configuration of a Web Server – Apache

 5.6.1 Installation

 5.6.2 Configuration

5.7 Installation and Configuration of a File Server – Samba

 5.7.1 Installation
 5.7.2 Configuration

5.8 Installation and Configuration of a Mail Server – Postfix

 5.8.1 Installation

 5.8.2 Configuration

5.9 Installation and configuration of a DHCP Server

 5.9.1 Installation

 5.9.2 Configuration

5.10 Installation and configuration of a SSH Server and Client

 5.10.1 Installation

 5.10.2 Configuration
5.11 Installation and Configuration of a FTP Server and Client

 5.11.1 Installation

 5.11.2 Configuration

5.12 Let Us Sum Up

5.13 Answers to Check Your Progress

5.14 Further Readings

5.15 Model Questions

5.1 LEARNING OBJECTIVE

After going through this unit, you will be able to:

 install and configure a simple LAN

 install and configure a Proxy Server using Squid

 install and configure a DNS Server using BIND

 install and configure a Web Server using Apache

 install and configure a File Server using Samba

 install and configure a simple Mail Server using Postfix

 install and configure a DHCP Server

 install and configure a SSH Server and Client

 install and configure a FTP Server and Client

5.2 INTRODUCTION

 Most of the computers today are networked in some way to each other either on

the Internet or privately in universities, offices, campus wide, at home, etc. Therefore,

though any standalone Linux System can act as a fully functional server. Its true power

and usefulness can only be realized if the Linux System is networked and
interconnected with other systems.

In this unit, we will be specifically looking at networking using the Linux Operating

System. This unit assumes that you have already installed a Linux distribution on a

computer or computers and ready to try out all the examples stated in the unit as we

progress. This unit also assumes that you are aware of the basics of TCP/IP networking.

If you need to brush up on that topic, you are highly encouraged to refer to the numerous

ebooks and tutorials available online on the Internet.

5.3 INSTALLATION AND CONFIGURATION OF A LAN

 A Local Area Network or LAN is generally a small setup of interconnected

computers connected via Ethernet Switches. A LAN would consist of both passive and

active components. The passive components would include CAT6 cables, Patch Cords,

RJ45 ports, Patch Panels, etc. The active components would include the Ethernet

Switches, etc.

5.3.1 INSTALLATION

 In order to setup a simple LAN of two computers and walk through our examples

in this unit, we require the following items.

Passive Components : 2 nos. of CAT 6 patch cords.

Active Components : 1 nos. Ethernet Switch.

Computers : 2 nos. of computers running Linux. Both the computers should

 have at least one Network Interface each on them.

Operating System : Fedora 18 (64 bit) and Ubuntu 12.04.2 LTS (64 bit).

Once we have all the components we connect them as shown in the figure below.

We will need at least two IP Addresses to configure the network interfaces on these two

computers. Let us suppose that we will use the following configurations.

For Computer A (Fedora 18):

IP Address: 192.168.1.1 Subnet Mask: 255.255.255.0 Gateway: 192.168.1.1

For Computer B (Ubuntu 12.04.2 LTS):

IP Address: 192.168.1.2 Subnet Mask: 255.255.255.0 Gateway: 192.168.1.2

5.3.2 CONFIGURATION

Configuring the IP Address:

 In the examples below the bold-face font indicates the commands or text that

needs to be typed in.

On Computer A (Fedora 18)

[root@computer-a ~]# vim /etc/sysconfig/network-scripts/ifcfg-p5p1
UUID="48eed959-2611-46c0-b0b4-b90d38c05bd2"

NM_CONTROLLED="yes"

BOOTPROTO=none

DEVICE="p5p1"

ONBOOT="yes"

TYPE=Ethernet

IPV4_FAILURE_FATAL=yes
IPV6INIT=no
IPADDR0=192.168.1.1
PREFIX0=24
HWADDR=AA:BB:CC:DD:EE:FF
After making these changes to the file we need to type “:wq” and press the enter key on

the keyboard to write the changes and quit. Now, in order to apply these changes we

need to restart the network service.
[root@computer-a ~]# systemctl restart network.service

On Computer B (Ubuntu 12.04.2 LTS)

root@computer-b:~# vim /etc/network/interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eth0
iface eth1 inet static
 address 192.168.1.2
 netmask 255.255.255.0
After making these changes to the file we need to type “:wq” and press the enter key on

the keyboard to write the changes and quit. In order to apply these changes we need to

stop and start networking.
root@computer-b:~# /etc/init.d/networking stop

root@computer-b:~# /etc/init.d/networking start

Once both the computers are setup with the IP Addresses successfully, we test the
connectivity with the ping utility.

On Computer A (Fedora 18)

[root@computer-a ~]# ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.142 ms

64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.141 ms

64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.129 ms

64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.139 ms

64 bytes from 192.168.1.2: icmp_seq=5 ttl=64 time=0.143 ms

^C

--- 192.168.1.2 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3999ms

rtt min/avg/max/mdev = 0.129/0.138/0.143/0.015 ms

On Computer B (Ubuntu 12.04.2 LTS)

root@computer-b:~# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=0.447 ms

64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=0.257 ms

64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=0.182 ms

64 bytes from 192.168.1.1: icmp_req=4 ttl=64 time=0.238 ms

64 bytes from 192.168.1.1: icmp_req=5 ttl=64 time=0.416 ms

^C
--- 192.168.1.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4000ms

rtt min/avg/max/mdev = 0.182/0.308/0.447/0.104 ms

You can observe from the ping replies that we now have a basic working TCP/IP

network.

5.4 INSTALLATION AND CONFIGURATION OF A PROXY
SERVER – SQUID

 The Squid proxy server is a cache based proxy. It will fetch all web requests to

populate its cache and then allow access to its cache based on its configuration. Squid

is a widely used proxy server as it permits you to save Internet Bandwidth and is feature

rich. It runs on most available operating systems, including Windows and is licensed

under the GNU GPL.

In this section, we will install and configure a basic squid proxy server on both the

Fedora 18 and Ubuntu 12.04.2 operating systems. You need to ensure that an active

Internet connection is available on the system you are performing the installation steps
mentioned below, as the software repositories being used are located on the Internet.

5.4.1 INSTALLATION

On Computer A (Fedora 18)
[root@computer-a ~]# yum install squid
Loaded plugins: langpacks, presto, refresh-packagekit

Resolving Dependencies

--> Running transaction check

---> Package squid.x86_64 7:3.2.13-1.fc18 will be installed

--> Finished Dependency Resolution
Dependencies Resolved

===

 Package Arch Version Repository Size

===

Installing:

 squid x86_64 7:3.2.13-1.fc18 updates 2.5 M

Transaction Summary

===
Install 1 Package

Total download size: 2.5 M

Installed size: 8.5 M

Is this ok [y/N]: y
Downloading Packages:
squid-3.2.13-1.fc18.x86_64.rpm | 2.5 MB 00:00:46

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : 7:squid-3.2.13-1.fc18.x86_64 1/1

 Verifying : 7:squid-3.2.13-1.fc18.x86_64 1/1

Installed:

 squid.x86_64 7:3.2.13-1.fc18

Complete!

[root@computer-a ~]#

After the successful installation we need to perform steps to enable the squid service

and start the squid service. We will perform these steps as examples below.

Let us first check the status of the squid service on computer-a.
[root@computer-a ~]# systemctl status squid.service

squid.service - Squid caching proxy

 Loaded: loaded (/usr/lib/systemd/system/squid.service; disabled)

 Active: inactive (dead)

Sep 19 12:31:56 computer-a systemd[1]: Stopped Squid caching proxy.
[root@computer-a ~]#

You can see that the squid service is disabled and inactive. Therefore, we need to

enable the squid service prior to starting it.
[root@computer-a ~]# systemctl enable squid.service
ln -s '/usr/lib/systemd/system/squid.service' '/etc/systemd/system/multi-user.target.wants/squid.service'
[root@computer-a ~]#

Now, when we check the status of the squid service we see that its status has changed

to enabled. However, its still inactive and we need to start it.

[root@computer-a ~]# systemctl status squid.service
squid.service - Squid caching proxy

 Loaded: loaded (/usr/lib/systemd/system/squid.service; enabled)

 Active: inactive (dead)
Sep 19 12:31:56 computer-a systemd[1]: Stopped Squid caching proxy.

[root@computer-a ~]#

Let us start the squid service.
[root@computer-a ~]# systemctl start squid.service
[root@computer-a ~]#

Now, when we check the status of the squid service we can see that it is enabled and
active.
[root@computer-a ~]# systemctl status squid.service
squid.service - Squid caching proxy

 Loaded: loaded (/usr/lib/systemd/system/squid.service; enabled)
 Active: active (running) since Thu 2013-09-19 14:47:07 IST; 3s ago
 Process: 5568 ExecStart=/usr/sbin/squid $SQUID_OPTS -f $SQUID_CONF (code=exited,
status=0/SUCCESS)

 Process: 5562 ExecStartPre=/usr/libexec/squid/cache_swap.sh (code=exited, status=0/SUCCESS)
 Main PID: 5571 (squid)

 CGroup: name=systemd:/system/squid.service

 ├─5571 /usr/sbin/squid -f /etc/squid/squid.conf

 ├─5573 (squid-1) -f /etc/squid/squid.conf

 └─5574 (logfile-daemon) /var/log/squid/access.log

Sep 19 14:47:07 computer-a systemd[1]: Starting Squid caching proxy...
Sep 19 14:47:07 computer-a squid[5571]: Squid Parent: will start 1 kids

Sep 19 14:47:07 computer-a squid[5571]: Squid Parent: (squid-1) process 5573 started

Sep 19 14:47:07 computer-a systemd[1]: Started Squid caching proxy.

[root@computer-a ~]#

We can also check the system log for any issues if you want to be double sure :-).
[root@computer-a ~]# tail -f /var/log/messages

Sep 19 14:47:07 computer-a systemd[1]: Starting Squid caching proxy...

Sep 19 14:47:07 computer-a squid[5571]: Squid Parent: will start 1 kids

Sep 19 14:47:07 computer-a squid[5571]: Squid Parent: (squid-1) process 5573 started

Sep 19 14:47:07 computer-a systemd[1]: Started Squid caching proxy.

On Computer B (Ubuntu 12.04.2 LTS)
root@computer-b:~# apt-get install squid
Reading package lists... Done

Building dependency tree

Reading state information... Done
The following NEW packages will be installed:

 squid

0 upgraded, 1 newly installed, 0 to remove and 230 not upgraded.

Need to get 6,254 B of archives.

After this operation, 128 kB of additional disk space will be used.

Get:1 http://in.archive.ubuntu.com/ubuntu/ precise-updates/universe squid amd64 3.1.19-

1ubuntu3.12.04.2 [6,254 B]

Fetched 6,254 B in 1s (5,543 B/s)
Selecting previously unselected package squid.

(Reading database ... 201082 files and directories currently installed.)

Unpacking squid (from .../squid_3.1.19-1ubuntu3.12.04.2_amd64.deb) ...

Setting up squid (3.1.19-1ubuntu3.12.04.2) ...

root@computer-b:~#

After the successful installation of the squid proxy we need to check if its running.
root@computer-b:~# service squid3 status
squid3 start/running, process 1261

root@computer-b:~#
You can see that on Ubuntu 12.04.2 LTS the installation process took care of installing,

enabling and starting to squid proxy for us.

We now have Squid Version 3.2.13 installed on Fedora 18 and Squid Version 3.1.19

installed on Ubuntu 12.04.2.

5.4.2 CONFIGURATION

 For testing our Squid proxy server we do require a working Internet connection

on the computer where our Squid proxy is installed. Now, there could be several

situations but for our example, since all we need is a simple proxy server, we will

consider only two situations 1) Squid proxy server is directly connected to the Internet by

whatever means and 2) Squid proxy server connects to the Internet via another proxy

server.

The Squid configuration is located in the file “/etc/squid/squid.conf” on Fedora 18 and in

the file “/etc/squid3/squid.conf” on Ubuntu 12.04.2 LTS.

Case 1: When the Squid proxy server is directly connected to the Internet.

 It should pretty much work out of the box after a

successful squid installation if the system running the Squid proxy

is directly connected to the Internet. Nevertheless, we will look
into the squid.conf file and see some of the configuration options.

Let us open the “squid.conf” file using the a text editor and look for
the line with the entry “acl localnet src 192.168.0.0/16” and uncomment this line. The

“#” character is used to comment lines within the “squid.conf” file. Therefore, by just

deleting the “#” character in the beginning of a line you can uncomment a line. Fedora

18 has this line by default uncommented while on Ubuntu 12.04.2 LTS you need to
uncomment this line manually. This line is an access control list or acl defining localnet
as the source or src with IP Addresses in the range 192.168.0.0/16. This will allow

computers on the 192.168.0.0/16 network (our example LAN) to be able to use this
proxy server.

Next, look for the line with the entry “http_access allow localnet” and uncomment it if

commented. This line basically defines who should be allowed to use the proxy service.

In our case this configuration would allow http_access to hosts on the localnet.

The line with the entry “http_port 3128” defines the port on which the http requests will

be handled. You can change this port however we will go with the defaults in our

example.

Restart the squid service using the command “systemctl restart squid.service” on

Fedora 18 or “service squid3 status” on Ubuntu 12.04.2 LTS to apply all the changes

you made to the “squid.conf” file.

Thats it, we should now be able to use our Squid proxy server with our direct Internet

connection.

Case 2: When the Squid proxy server connects to the Internet via another proxy server.

 In cases when your Squid proxy server does not have a

direct Internet connection but uses another proxy server you

really have to just add a couple of lines to the “squid.conf” file
as shown below, in addition to the ones mentioned in Case 1

above.

[If the proxy allows anonymous access]
cache_peer parent-proxy-ip parent parent-proxy-port 0 no-query default
never_direct allow all

For example:
cache_peer 192.168.1.1 parent 3128 0 no-query default
never_direct allow all

[If the proxy requires a username and a password for access]
cache_peer parent-proxy-ip parent parent-proxy-port 0 no-query login=username:password
never_direct allow all

For example:
cache_peer 192.168.1.1 parent 3128 0 no-query login=binod.deka:abcd1234
never_direct allow all

We should now be able to use our Squid proxy server via another proxy. That is via

another Squid proxy server in our example. Of course we need to restart the squid

service using the command “systemctl restart squid.service” on Fedora 18 or

“service squid3 status” on Ubuntu 12.04.2 LTS to apply all the changes you made to

the “squid.conf” file.

To use this proxy server we just configured, specify the proxy server as either
“192.168.1.1” with port “3128” or “192.168.1.2” with port “3128” as we have installed on

both computer-a as well as on computer-b. Another thing to note if you have a firewall

running on your system is to allow the port “3128” or else other computers on the

network would not be able to connect to the Squid Proxy on that port.

Please note that the Squid proxy server is a very powerful proxy server and there are a

lot more configuration options that we have not discussed as its out of the scope of this

unit. However, our goal was to configure a simple proxy server using Squid and we have

done so.

5.5 INSTALLATION AND CONFIGURATION OF A DNS SERVER
– BIND

 Domain Name System or DNS is a service which provides resolution of fully

qualified domain names (FQDN) into IP addresses and vice-versa. What this means is

that domain names like say “www.kkhsou.in” is easier to remember than some IP

address like “182.50.130.66”. Moreover, IP addresses may change. Just think how

difficult it would be to keep remembering numerical addresses. BIND (Berkeley Internet
Name Domain) is the most widely used DNS software on the Internet and we will install

and configure it in this section. DNS servers are also known as a nameservers as they

provide a network service that associates hostnames with their respective IP addresses.

DNS is usually implemented using one or more centralized servers that are authoritative

for certain domains. When a client host requests information from a nameserver, it

usually connects to port 53. The nameserver then attempts to resolve the name

requested. If it does not have an authoritative answer, or does not already have the

answer cached from an earlier query, it queries other nameservers, called root

nameservers, to determine which nameservers are authoritative for the name in
question, and then queries them to get the requested name.

We will setup the DNS servers more-or-less as depicted in the figure above. However,

we will not be actually doing this over the Internet and neither will we be making any

modifications on the DNS server for “kkhsou.in”. The figure above is only for an

understanding of how DNS might be setup and work on the Internet. Since, in our
current setup we only have two computers, computer-a and computer-b will both act as

the DNS Server and the DNS Client for their respective domains.

5.5.1 INSTALLATION

On Computer A (Fedora 18)
[root@computer-a ~]# yum install bind
Loaded plugins: langpacks, presto, refresh-packagekit

Resolving Dependencies

--> Running transaction check

---> Package bind.x86_64 32:9.9.3-4.P2.fc18 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Installing:

 bind x86_64 32:9.9.3-4.P2.fc18 updates 2.1 M

Transaction Summary
===

Install 1 Package

Total download size: 2.1 M

Installed size: 6.2 M

Is this ok [y/N]: y
Downloading Packages:

bind-9.9.3-4.P2.fc18.x86_64.rpm | 2.1 MB 00:00:04
Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : 32:bind-9.9.3-4.P2.fc18.x86_64 1/1

 Verifying : 32:bind-9.9.3-4.P2.fc18.x86_64 1/1

Installed:
 bind.x86_64 32:9.9.3-4.P2.fc18

Complete!

[root@beefy-miracle ~]#

BIND is installed as the named service. Check the status of the named service.
[root@computer-a ~]# systemctl status named
named.service - Berkeley Internet Name Domain (DNS)

 Loaded: loaded (/usr/lib/systemd/system/named.service; disabled)

 Active: inactive (dead)

[root@computer-a ~]#

Enable the named service.
[root@computer-a ~]# systemctl enable named
ln -s '/usr/lib/systemd/system/named.service' '/etc/systemd/system/multi-user.target.wants/named.service'
[root@computer-a ~]#

Start the named service.

[root@computer-a ~]# systemctl start named

Stop the named service.
[root@computer-a ~]# systemctl stop named

On Computer B (Ubuntu 12.04.2 LTS)
root@computer-b:~# apt-get install bind9
Reading package lists... Done

Building dependency tree

Reading state information... Done
The following extra packages will be installed:

 bind9utils

Suggested packages:

 bind9-doc

The following NEW packages will be installed:

 bind9 bind9utils

0 upgraded, 2 newly installed, 0 to remove and 6 not upgraded.

Need to get 455 kB of archives.
After this operation, 1,269 kB of additional disk space will be used.

Do you want to continue [Y/n]? Y
WARNING: The following packages cannot be authenticated!

 bind9utils bind9

Install these packages without verification [y/N]? y
Get:1 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main bind9utils amd64

1:9.8.1.dfsg.P1-4ubuntu0.7 [108 kB]
Get:2 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main bind9 amd64 1:9.8.1.dfsg.P1-

4ubuntu0.7 [347 kB]

Fetched 455 kB in 7s (57.6 kB/s)

Preconfiguring packages ...

Selecting previously unselected package bind9utils.

(Reading database ... 50965 files and directories currently installed.)

Unpacking bind9utils (from .../bind9utils_1%3a9.8.1.dfsg.P1-4ubuntu0.7_amd64.deb) ...

Selecting previously unselected package bind9.
Unpacking bind9 (from .../bind9_1%3a9.8.1.dfsg.P1-4ubuntu0.7_amd64.deb) ...

Processing triggers for man-db ...

Processing triggers for ufw ...

Processing triggers for ureadahead ...

Setting up bind9utils (1:9.8.1.dfsg.P1-4ubuntu0.7) ...

Setting up bind9 (1:9.8.1.dfsg.P1-4ubuntu0.7) ...

Adding group `bind' (GID 116) ...

Done.
Adding system user `bind' (UID 108) ...

Adding new user `bind' (UID 108) with group `bind' ...

Not creating home directory `/var/cache/bind'.

wrote key file "/etc/bind/rndc.key"

 * Starting domain name service... bind9 [OK]

root@computer-b:~#

BIND is installed as bind9. Start the bind9 service.
[root@computer-b ~]# service bind9 start

Stop the bind9 service.
[root@computer-b ~]# service bind9 stop

Additionally, you should also install "bind-utils" on Fedora 18 and "dnsutils" on Ubuntu

12.04.2 LTS which includes the client tools like nslookup, dig and host, etc. We will use

these tools to test our DNS server configurations.

5.5.2 CONFIGURATION

 In a DNS server such as BIND, all information is stored in basic data elements
called resource records (RR). The resource record is usually a fully qualified domain

name (FQDN) of a host. The following are examples of resource records.

computer-a.domain-a.kkhsou.in

computer-b.domain-b.kkhsou.in

Each level of the hierarchy is divided by a period (that is, .). In the examples above, "in"

defines the top-level domain, "kkhsou" its subdomain, and "domain-a" & "domain-b"

the subdomain of "kkhsou". In our example, "computer-a" & "computer-b" identifies a

resource record that is part of the "domain-a.kkhsou.in" & "domain-b.kkhsou.in" domains

respectively. With the exception of the part furthest to the left (that is, computer-a and
computer-b), each of these sections is called a zone and defines a specific namespace.

 Zones are defined on authoritative nameservers through the use of "zone files",

which contain definitions of the resource records in each zone. Zone files are stored on

primary nameservers (also called master nameservers), where changes are made to the

files, and secondary nameservers (also called slave nameservers), which receive zone

definitions from the primary nameservers. Both primary and secondary nameservers are

authoritative for the zone and look the same to clients. Depending on the configuration,
any nameserver can also serve as a primary or secondary server for multiple zones at

the same time. In our examples, we will be setting up a single primary nameserver

(authoritative) for each individual domain.

 The main configuration file for BIND is located in "/etc/named.conf" for Fedora 18

and “/etc/bind/named.conf” for Ubuntu 12.04.2 LTS. In this section, we will configure

simple DNS servers for the example domain “domain-a.kkhsou.in” on computer-a and

example domain “domain-b.kkhsou.in” on computer-b.

On computer-a (Fedora 18):

 Our first step would be to add our example domain by adding a zone entry in the
named.conf file.

zone "domain-a.kkhsou.in" IN {

 type master;

 file "domain-a.kkhsou.in.zone";

};

Specify the IPv4 network interface on which to listen for / allow queries under the options
statement.

options {

...

listen-on port 53 { 192.168.1.1; };

allow-query { 192.168.1.0/24; };

...
};

The "/var/named/" by default will contain all the zone files stated in the "named.conf" file.

In our example, the zone file will be "domain-a.kkhsou.in.zone" and will contain the zone

data.

 A zone file consists of directives and resource records. Directives tell the

nameserver to perform tasks or apply special settings to the zone, resource records

define the parameters of the zone and assign identities to individual hosts. While the
directives are optional, the resource records are required in order to provide name

service to a zone. All directives and resource records should be entered on individual

lines. Directives begin with the dollar sign character (that is, $) followed by the name of

the directive, and usually appear at the top of the file.

Our example zone file for the "domain-a.kkhsou.in" domain will be say
“/var/named/domain-a.kkhsou.in.zone”.

In a zone file comments are identified by ";" so anything that comes after ";" will be

ignored by named.
Let us go ahead and create the zone file "/var/named/domain-a.kkhsou.in.zone" as root

and make the following entries.

$ORIGIN domain-a.kkhsou.in.
$TTL 86400 ; how long the zone record is valid in seconds. Each resource record can contain its

own TTL value, which overrides this directive.

@ IN SOA computer-a.domain-a.kkhsou.in. root.domain-a.kkhsou.in. (
 20130925 ; serial. You must increment this serial number each time you

 ; make changes to the zone file before restarting the

 ; named service.

 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour

 604800 ; expire after 1 week

 86400) ; minimum TTL of 1 day

;

;
 IN NS computer-a.domain-a.kkhsou.in.
computer-a IN A 192.168.1.1
;

;

After successfully creating the zone file for domain-a.kkhsou.in domain, we start the
"named" service by typing "systemctl start named.service" as root. Next, we will need

to configure computer-a to use this DNS server. To do this we add the following line to

the "/etc/resolve.conf" file.

nameserver 192.168.1.1

To check if our DNS setup is working, we can use the nslookup utility to query our DNS

server.
[root@computer-a ~]# nslookup computer-a.domain-a.kkhsou.in
Server: 192.168.1.1

Address: 192.168.1.1#53

Name: computer-a.domain-a.kkhsou.in

Address: 192.168.1.1

[root@computer-a ~]#

We can also use the dig command to query our DNS server as well.
[root@computer-a ~]# dig computer-a.domain-a.kkhsou.in

; <<>> DiG 9.9.3-rl.13207.22-P2-RedHat-9.9.3-4.P2.fc18 <<>> computer-a.domain-a.kkhsou.in

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10223

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;computer-a.domain-a.kkhsou.in. IN A

;; ANSWER SECTION:

computer-a.domain-a.kkhsou.in. 86400 IN A 192.168.1.1

;; AUTHORITY SECTION:

domain-a.kkhsou.in. 86400 IN NS computer-a.domain-a.kkhsou.in.

;; Query time: 0 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)

;; WHEN: Wed Sep 25 11:31:47 IST 2013

;; MSG SIZE rcvd: 117

[root@computer-a ~]#

Let us also add the following entries into our "/var/named/domain-a.kkhsou.in.zone" file.

We will be using these entries in our later sections.
@ IN MX 10 mail.domain-a.kkhsou.in.
mail IN A 192.168.1.1
;

;
ftp IN CNAME computer-a.domain-a.kkhsou.in.
www IN CNAME computer-a.domain-a.kkhsou.in.
;

;

Though, we find that we have a working DNS server setup, we are not done yet. We
have to also setup a Reverse Name Resolution Zone File that will be used to resolve

IP Addresses to Fully Qualified Domain Names (FQDN). It looks very similar to a
standard zone file, except that the PTR resource records are used to link the IP

addresses to a fully qualified domain name.

Firstly, we need to add the following zone statement to our “/etc/named.conf” file.

zone "1.168.192.in-addr.arpa" IN {

 type master;
 file "domain-a.kkhsou.in.rr.zone";

};
Note that a reverse name resolution zone requires the first three blocks of the IP

address reversed "1.168.192" followed by ".in-addr.arpa". This allows the single block of

IP numbers used in the reverse name resolution zone file to be associated with the

zone.
 Next, we create the reverse resolution zone file “/var/named/domain-
a.kkhsou.in.rr.zone” and make the following entries.
$ORIGIN 1.168.192.in-addr.arpa.
$TTL 86400

@ IN SOA computer-a.domain-a.kkhsou.in. root.domain-a.kkhsou.in. (
 2001062501 ; serial

 21600 ; refresh after 6 hours

 3600 ; retry after 1 hour

 604800 ; expire after 1 week

 86400) ; minimum TTL of 1 day

;
@ IN NS computer-a.domain-a.kkhsou.in.
;
1 IN PTR computer-a.domain-a.kkhsou.in.
;

After performing the required changed restart the named service.
[root@computer-a ~]# systemctl restart named.service

We can check to see if the reverse resolution is working using nslookup or dig.

[root@computer-a ~]# nslookup 192.168.1.1
Server: 192.168.1.1

Address: 192.168.1.1#53

1.1.168.192.in-addr.arpa name = computer-a.domain-a.kkhsou.in.

[root@computer-a ~]#

[root@computer-a ~]# dig -x 192.168.1.1

; <<>> DiG 9.9.3-rl.13207.22-P2-RedHat-9.9.3-4.P2.fc18 <<>> -x 192.168.1.1

;; global options: +cmd

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48303

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;1.1.168.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:

1.1.168.192.in-addr.arpa. 86400 IN PTR computer-a.domain-a.kkhsou.in.

;; AUTHORITY SECTION:

1.168.192.in-addr.arpa. 86400 IN NS computer-a.domain-a.kkhsou.in.

;; ADDITIONAL SECTION:

computer-a.domain-a.kkhsou.in. 86400 IN A 192.168.1.1

;; Query time: 0 msec

;; SERVER: 192.168.1.1#53(192.168.1.1)

;; WHEN: Wed Sep 25 12:53:50 IST 2013

;; MSG SIZE rcvd: 126

[root@computer-a ~]#

On computer-b (Ubuntu 12.04.2 LTS):

 Similarly, on Ubuntu 12.04.2 LTS we configure the DNS server. Once thing to

keep in mind though, is the location of the files. They differ in the location from that of

Fedora 18.

The DNS server options need to be put in the file "/etc/bind/named.conf.options" .

options {

...
listen-on { 192.168.1.2; };
allow-query { 192.168.1.0/24; };
...
};

The zone statements have to be entered in "/etc/bind/named.conf.default-zones" .

zone "domain-b.kkhsou.in" IN {

 type master;

 file "/etc/bind/db.domain-b.kkhsou.in";

};

zone "1.168.192.in-addr.arpa" {

 type master;
 file "/etc/bind/db.1.168.192";

};

Enter the resource records to the file "/etc/bind/db.domain-b.kkhsou.in" .
$ORIGIN domain-b.kkhsou.in.
$TTL 86400 ; how long the zone record is valid in seconds. Each resource record can contain its

own TTL value, which overrides this directive.

@ IN SOA computer-b.domain-a.kkhsou.in. root.domain-b.kkhsou.in. (
 20130925 ; serial. You must increment this serial number each time you

 ; make changes to the zone file before restarting the

 ; named service.

 21600 ; refresh after 6 hours

 3600 ; retry after 1 hour

 604800 ; expire after 1 week

 86400) ; minimum TTL of 1 day

;
;

 IN NS computer-b.domain-b.kkhsou.in.
computer-b IN A 192.168.1.2
;

;

@ IN MX 10 mail.domain-b.kkhsou.in.

mail IN A 192.168.1.2
;

;
ftp IN CNAME computer-b.domain-b.kkhsou.in.
www IN CNAME computer-b.domain-b.kkhsou.in.
;

;

Add the reverse resource records to the file "/etc/bind/db.1.168.192" .
$ORIGIN 1.168.192.in-addr.arpa.
$TTL 86400

@ IN SOA computer-b.domain-b.kkhsou.in. root.domain-b.kkhsou.in. (
 2001062501 ; serial

 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour

 604800 ; expire after 1 week

 86400) ; minimum TTL of 1 day

;

@ IN NS computer-b.domain-b.kkhsou.in.
;
1 IN PTR computer-b.domain-b.kkhsou.in.
;

After performing the required changed restart the bind9 service.
[root@computer-b ~]# service bind9 restart

 We should now have fully functional DNS servers for both the “domain-

a.kkhsou.in” and “domain-b.kkhsou.in” domains. Do note here that we have configured a

simple DNS server for our example purposes only. There are other advanced

configurations that we did not touch upon in this section due to the scope of this unit.

You are therefore encouraged to read about these advanced options before attempting
to configure any DNS server either for the Internet or for your live networks.

5.6 INSTALLATION AND CONFIGURATION OF A WEB SERVER
– APACHE

 The Apache HTTP Server, is a robust, full-featured open source web server

developed by the Apache Software Foundation and is one of the most widely used web

server software that is currently used on the Internet. In this section we will install and

configure a simple Web server on both the Fedora 18 and Ubuntu 12.04.2 LTS operating

systems using Apache 2 in our examples.

5.6.1 INSTALLATION

On computer-a (Fedora 18):

To install the Apache Web server (httpd), as root type in the command.
yum install httpd

To enable to httpd service type the command as root.
systemctl enable httpd.service

To disable to httpd service type the command as root.
systemctl disable httpd.service

To start the httpd service type the command as root.
systemctl start httpd.service

To stop the httpd service type the command as root.
systemctl stop httpd.service

To restart the httpd service type the command as root.
systemctl restart httpd.service

On computer-b (Ubuntu 12.04.2 LTS):

To install the Apache Web server (apache2), as root type the command.
apt-get install apache2

To start the apache2 service, as root type the command.
service apache2 start

To stop the apache2 service, as root type the command.
service apache2 stop

To restart the apache2 service, as root type the command.
service apache2 restart

5.6.2 CONFIGURATION

On computer-a (Fedora 18):

The main configuration file is located at “/etc/httpd/conf/httpd.conf”.

The line below sets the default port where httpd would listen for connections.
Listen 80

The line below sets the admin email.
ServerAdmin webmaster@domain-a.kkhsou.in

The line below sets the web server name.
ServerName www.domain-a.kkhsou.in:80

The line below sets the location of the document root of the web server.
DocumentRoot "/var/www/html"

The configuration section below sets the file that Apache will serve if a directory is

requested.
<IfModule dir_module>
 DirectoryIndex index.php index.html
</IfModule>

To check the configuration for possible errors, type the following as root.
service httpd configtest

 Once you are satisfied with your configuration you need to either restart the httpd

service or alternatively reload the configuration for the httpd service to use.

To restart the httpd service completely, type the following as root.
systemctl restart httpd.service

To only reload the configuration, type the following as root.
systemctl reload httpd.service

If there are no errors and the httpd service started properly you should be able to open

your web browser to the default webpage page as shown in the screenshot below for
localhost.

You should now also be able to open similarly the default webpage when using

www.domain-a.kkhsou.in instead of localhost from your web browser.

On computer-b (Ubuntu 12.04.2 LTS):

Ubuntu 12.04.2 LTS uses a slightly different approach for configuring the apache2

service.

The main configuration file is located at “/etc/apache2/apache2.conf”. However, we do

not require to edit this file, in our example.

The line below in the file “/etc/apache2/ports.conf” sets the default port where apache2

would listen for connections.
Listen 80

To setup our example site for “www.domain-b.kkhsou.in” we will need to edit the file

located in “/etc/apache2/sites-enabled/000-default ” and add the following entry to set

the admin email. And we will leave rest of the configurations intact for our example

purposes.

<VirtualHost *:80>
 ServerAdmin webmaster@domain-b.kkhsou.in

</VirtualHost>

The configuration section in the file “/etc/apache2/mods-enabled/dir.conf” shown

below, sets the file that Apache will serve if a directory is requested.
<IfModule mod_dir.c>
 DirectoryIndex index.html index.cgi index.pl index.php index.xhtml index.htm
</IfModule>

Once you are satisfied with your configuration you need to either restart the apache2

service before being able to use with the new configuration.

To restart the apache2 service, type the following as root.
service apache2 restart

To stop the apache2 service, type the following as root.
service apache2 stop

To start the apache2 service, type the following as root.
service apache2 start

If there are no errors and the apache2 service started properly you should be able to

open your web browser to the default webpage page as shown in the screenshot below
for localhost. You should also be able to open similarly the default webpage when using

www.domain-b.kkhsou.in instead of localhost from your web browser.

 Though we have a simple working Apache Web server, which was our goal in
this section. There are an exhaustive number of options available with the Apache Web

server that can be used with any custom configuration requirements. You should read all

about these configuration options first and ensure that you understand them, before

attempting to configure a web server on the Internet or on any live network.

5.7 INSTALLATION AND CONFIGURATION OF A FILE SERVER
– SAMBA

 Samba is an open source implementation of the Server Message Block (SMB)

protocol. It allows the networking of Microsoft Windows, Linux, UNIX, and other

operating systems together, enabling access to Windows-based file and printer shares.
Samba's use of SMB allows it to appear as a Windows server to Windows clients.

Samba is comprised of three daemons (smbd, nmbd, and winbindd). The smbd server

daemon provides file sharing and printing services to Windows clients and the default
ports on which the server listens for SMB traffic are TCP ports 139 and 445. The nmbd

server daemon understands and replies to NetBIOS name service requests and the
default port that the server listens to for NMB traffic is UDP port 137. The winbind

service resolves user and group information on a server running Windows NT, 2000,

2003 or Windows Server 2008 and makes Windows user / group information
understandable by UNIX platforms. However, winbind is beyond the scope of this

section and therefore we will not be discussing it in this section.

In this section we will install and configure a simple file server using samba on both the

Fedora 18 and Ubuntu 12.04.2 LTS operating systems in our examples.

5.7.1 INSTALLATION

On computer-a (Fedora 18):

To install samba server, type the following as root.
[root@computer-a ~]# yum install samba
Loaded plugins: langpacks, presto, refresh-packagekit

Resolving Dependencies

--> Running transaction check
---> Package samba.x86_64 2:4.0.9-1.fc18 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size
===

Installing:

 samba x86_64 2:4.0.9-1.fc18 updates 527 k

Transaction Summary

===

Install 1 Package

Total download size: 527 k

Installed size: 1.6 M

Is this ok [y/N]: y
Downloading Packages:

samba-4.0.9-1.fc18.x86_64.rpm | 527 kB 00:00:04

Running Transaction Check
Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : 2:samba-4.0.9-1.fc18.x86_64 1/1

 Verifying : 2:samba-4.0.9-1.fc18.x86_64 1/1

Installed:

 samba.x86_64 2:4.0.9-1.fc18
Complete!

[root@computer-a ~]#

To install the samba client, type the following as root.
[root@computer-a ~]# yum install samba-client
Loaded plugins: langpacks, presto, refresh-packagekit

Resolving Dependencies

--> Running transaction check

---> Package samba-client.x86_64 2:4.0.9-1.fc18 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

==

 Package Arch Version Repository Size

==

Installing:

 samba-client x86_64 2:4.0.9-1.fc18 updates 455 k

Transaction Summary

==

Install 1 Package

Total download size: 455 k

Installed size: 1.2 M

Is this ok [y/N]: y

Downloading Packages:

samba-client-4.0.9-1.fc18.x86_64.rpm | 455 kB 00:00:03

Running Transaction Check
Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : 2:samba-client-4.0.9-1.fc18.x86_64 1/1

 Verifying : 2:samba-client-4.0.9-1.fc18.x86_64 1/1

Installed:

 samba-client.x86_64 2:4.0.9-1.fc18
Complete!

[root@computer-a ~]#

To check the status of the samba services, type the following as root.
[root@computer-a ~]# systemctl status smb.service
smb.service - Samba SMB Daemon

 Loaded: loaded (/usr/lib/systemd/system/smb.service; disabled)

 Active: inactive (dead)

[root@computer-a ~]# systemctl status nmb.service
nmb.service - Samba NMB Daemon

 Loaded: loaded (/usr/lib/systemd/system/nmb.service; disabled)

 Active: inactive (dead)

To start the Samba server, type the following command as root.
systemctl start smb.service

To stop the Samba server, type the following command as root.
systemctl stop smb.service

To restart the Samba server, type the following command as root.
systemctl restart smb.service

On computer-b (Ubuntu 12.04.2 LTS):

To install samba, type the following as root.
root@computer-b:~# apt-get install samba
Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:
 libwbclient0 samba-common smbclient tdb-tools

Suggested packages:

 openbsd-inetd inet-superserver smbldap-tools ldb-tools ctdb cifs-utils

The following NEW packages will be installed:

 samba tdb-tools

The following packages will be upgraded:

 libwbclient0 samba-common smbclient
3 upgraded, 2 newly installed, 0 to remove and 237 not upgraded.

Need to get 22.5 MB of archives.

After this operation, 23.5 MB of additional disk space will be used.

Do you want to continue [Y/n]? Y
Get:1 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main libwbclient0 amd64 2:3.6.3-2ubuntu2.8 [29.9 kB]

Get:2 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main smbclient amd64 2:3.6.3-2ubuntu2.8 [14.1 MB]

Get:3 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main samba-common all 2:3.6.3-2ubuntu2.8 [326 kB]

Get:4 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main samba amd64 2:3.6.3-2ubuntu2.8 [8,049 kB]

Get:5 http://in.archive.ubuntu.com/ubuntu/ precise/main tdb-tools amd64 1.2.9-4 [23.2 kB]

Fetched 22.5 MB in 2min 24s (156 kB/s)
Preconfiguring packages ...

(Reading database ... 201772 files and directories currently installed.)
Preparing to replace libwbclient0 2:3.6.3-2ubuntu2.6 (using .../libwbclient0_2%3a3.6.3-2ubuntu2.8_amd64.deb) ...
Unpacking replacement libwbclient0 ...
Preparing to replace smbclient 2:3.6.3-2ubuntu2.6 (using .../smbclient_2%3a3.6.3-2ubuntu2.8_amd64.deb) ...
Unpacking replacement smbclient ...
Preparing to replace samba-common 2:3.6.3-2ubuntu2.6 (using .../samba-common_2%3a3.6.3-2ubuntu2.8_all.deb) ...
Unpacking replacement samba-common ...

Selecting previously unselected package samba.

Unpacking samba (from .../samba_2%3a3.6.3-2ubuntu2.8_amd64.deb) ...
Selecting previously unselected package tdb-tools.

Unpacking tdb-tools (from .../tdb-tools_1.2.9-4_amd64.deb) ...

Processing triggers for man-db ...

Processing triggers for ureadahead ...

Processing triggers for ufw ...

Rules updated for profile 'Bind9'

Setting up libwbclient0 (2:3.6.3-2ubuntu2.8) ...

Setting up samba-common (2:3.6.3-2ubuntu2.8) ...

Setting up smbclient (2:3.6.3-2ubuntu2.8) ...
Setting up samba (2:3.6.3-2ubuntu2.8) ...

Generating /etc/default/samba...

Importing account for binoddeka...ok

Importing account for tapashi.kashyap...ok

Importing account for choudhurysmriti...ok

update-alternatives: using /usr/bin/smbstatus.samba3 to provide /usr/bin/smbstatus (smbstatus) in auto mode.
smbd start/running, process 30095

nmbd start/running, process 30129

Setting up tdb-tools (1.2.9-4) ...
update-alternatives: using /usr/bin/tdbbackup.tdbtools to provide /usr/bin/tdbbackup (tdbbackup) in auto mode.
Processing triggers for libc-bin ...

ldconfig deferred processing now taking place

root@computer-b:~#

To check the status of the samba services, type the following as root.
[root@computer-b ~]# service smbd status

smbd start/running, process 30095

[root@computer-b ~]# service nmbd status

nmbd start/running, process 30129

To start the samba server, type the following as root.
service smbd start

To stop the samba server, type the following as root.
service smbd stop

To restart the samba server, type the following as root.
service smbd restart

5.7.2 CONFIGURATION

On computer-a (Fedora 18):
The default samba configuration file located in "/etc/samba/smb.conf" allows users to

view their home directories as a Samba share. It also shares all printers configured for

the system as Samba shared printers. In other words, you can attach a printer to the

system and print to it from the Windows machines on your network.

To specify the Windows workgroup and a brief description of the Samba server, we edit

the following lines in our /etc/samba/smb.conf file.
#======================= Global Settings ==============================

[global]
----------------------- Network-Related Options -------------------------

workgroup = DOMAIN-A
server string = Samba Server Version %v

--------------------------- Logging Options -----------------------------

log file = /var/log/samba/log.%m

max log size = 50

----------------------- Standalone Server Options ------------------------

security = user
passdb backend = tdbsam

--------------------------- Printing Options -----------------------------

load printers = yes

cups options = raw

To create a Samba share directory we add the following section to our
/etc/samba/smb.conf file. In our example, we will allow the users binoddeka,

tapashi.kashyap and choudhurysmriti to be able to access the share “allusers”.

#========================= Share Definitions ==========================
[allusers]
 comment = All Users

 path = /home/shares/allusers
 valid users = binoddeka, tapashi.kashyap, choudhurysmriti
 create mask = 0660
 directory mask = 0771
 writable = yes

We can use the "testparm" program which checks the syntax of the /etc/samba/smb.conf

file. The testparm program also displays a summary of your /etc/samba/smb.conf file

and the server's role (stand-alone, domain, etc.) after testing. This is convenient when

debugging as it excludes comments and concisely presents information for experienced

administrators to read.
[root@computer-a ~]# testparm
Load smb config files from /etc/samba/smb.conf
rlimit_max: increasing rlimit_max (1024) to minimum Windows limit (16384)

Processing section "[homes]"

Processing section "[printers]"

Processing section "[allusers]"

Loaded services file OK.

Server role: ROLE_STANDALONE

Press enter to see a dump of your service definitions

[global]

 workgroup = DOMAIN-A

 server string = Samba Server Version %v on computer-a

 log file = /var/log/samba/log.%m

 max log size = 50

 idmap config * : backend = tdb

 cups options = raw

[homes]
 comment = Home Directories

 valid users = MYDOMAIN\%S

 read only = No

 browseable = No

[printers]

 comment = All Printers

 path = /var/spool/samba

 printable = Yes
 print ok = Yes

 browseable = No

[allusers]

 comment = All Users

 path = /home/shares/allusers
 valid users = binoddeka, tapashi.kashyap, choudhurysmriti

 create mask = 0660

 directory mask = 0771

 writable = yes

[root@computer-a ~]#

Next we will use the "smbpasswd" program that manages encrypted passwords. This
program can be run by a superuser to change any user's password as well as by an

ordinary user to change their own Samba password.
[root@computer-a ~]# smbpasswd -a binoddeka
New SMB password:

Retype new SMB password:

Added user binoddeka.

[root@computer-a ~]#

Similarly, using the "smbpasswd" program we will need to add the other users as well.

To connect to our share we will use the “smbclient” program, as shown below.
[root@computer-a ~]# smbclient //computer-a/allusers -U binoddeka
Enter binoddeka's password:

Domain=[DOMAIN-A] OS=[Unix] Server=[Samba 4.0.9]

smb: \>

At the “smb: \>” prompt you can type “?” to view the available commands. To view the

files in the “allusers” shared folder you can either type “dir” or “ls”.
smb: \> ls
 . D 0 Tue Oct 1 15:20:19 2013

 .. D 0 Thu Sep 26 17:17:41 2013

 b.txt N 7480 Tue Oct 1 15:20:19 2013

 a.txt N 7436 Tue Oct 1 15:20:13 2013

 50380 blocks of size 8388608. 3286 blocks available

smb: \>

To exit from the “smb: \>” prompt you can type “quit” and hit the enter key on your

keyboard.

On computer-b (Ubuntu 12.04.2 LTS):

The main Samba configuration file is located in “/etc/samba/smb.conf”. All the

configurations will be similar to the Samba configuration discussed for Fedora 18.
However, we will make the modifications with respect to domain-b on computer-b. So,

that our “testparm” program out put will be as shown below.
root@computer-b:/srv/samba/allusers# testparm
Load smb config files from /etc/samba/smb.conf

rlimit_max: increasing rlimit_max (1024) to minimum Windows limit (16384)

Processing section "[printers]"

Processing section "[print$]"

Processing section "[share]"

Loaded services file OK.

Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions

[global]

 workgroup = DOMAIN-B

 server string = %h server (Samba, Ubuntu)

 map to guest = Bad User

 obey pam restrictions = Yes

 pam password change = Yes

 passwd program = /usr/bin/passwd %u
 passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n

password\supdated\ssuccessfully .

 unix password sync = Yes

 syslog = 0

 log file = /var/log/samba/log.%m

 max log size = 1000

 dns proxy = No
 usershare allow guests = Yes

 panic action = /usr/share/samba/panic-action %d

 idmap config * : backend = tdb

[printers]

 comment = All Printers

 path = /var/spool/samba

 create mask = 0700

 printable = Yes

 print ok = Yes
 browseable = No

[print$]

 comment = Printer Drivers

 path = /var/lib/samba/printers

[share]

 comment = Ubuntu File Server Share

 path = /srv/samba/allusers

 read only = No
 create mask = 0755

 guest ok = Yes

root@computer-b:/srv/samba/allusers#

Please do note that we require to restart the Samba Service on both Fedora 18 and

Ubuntu 12.04.2 LTS system before we are able to use Samba. Therefore, ensure that

after any configuration change to the “smb.conf” file you restart the samba services.

 We now are done configuring a simple Samba server and you should be able to
browse the shares created from both computers running Windows as well as from our

Linux boxes.

Some screen-shots of our Samba configuration browse-able for Domain-A, from both

Linux and Windows Clients.

5.8 INSTALLATION AND CONFIGURATION OF A MAIL SERVER
– POSTFIX

 The process of moving an email from one person to another over a network or

the Internet involves many systems working together. Email is delivered using a

client/server architecture. A typical mail system is depicted in the figure above, though

we are using fictitious domain names here for our understanding.

 A sender uses a Mail User Agent (MUA), meaning an email client like Evolution,

Thunderbird, Mutt, etc., to send the message through one or more Mail Transfer Agents

(MTA), meaning email servers like Exim, Postfix, Sendmail, etc., and ultimately will hand

it off to a Mail Delivery Agent (MDA) like Procmail, mail, etc., for delivery to the

recipient's mailbox. The recipient's email client will retrieve the email from the mailbox

usually via a POP3 or IMAP server like Dovecot. The process of sending and receiving

email between our example domains is depicted in the figure below.

 Every email domain is required to have an MTA that would by default receive

emails for it's domain. This MTA is known as the Mail Exchanger (MX) for the domain.

Typically, a domain is required to also have a DNS server which is authoritative for it's

domain. This DNS will maintain all the Domain Names for its domain including the MX

Record which is the address of the MTA for the domain. Furthermore, the email

mailboxes are generally stored on another MTA which could include an MDA as well. In

our examples, we will configure all the components of a mail system on a single system.

 We will install and configure postfix (as MTA), procmail (as MDA), mutt (as MUA)

and dovecot (as pop server) on both Fedora 18 and Ubuntu 12.04.2 LTS operating

systems. You will need to ensure that an active Internet connection is available on the

system you are performing the installation steps mentioned below, as the software

repositories being used for installation are located on the Internet.

5.8.1 INSTALLATION

MTA installation:

To install a Mail Transport Agent (MTA), we choose postfix in our examples, type the

following as root.

On computer-a (Fedora 18):
yum install postfix

You can use the following to check the status, enable, start, stop or restart the postfix

service.
systemctl status postfix.service
systemctl enable postfix.service
systemctl start postfix.service
systemctl stop postfix.service
systemctl restart postfix.service

On computer-b (Ubuntu 12.04.2 LTS):
apt-get install postfix

You can use the following to check the status, start, stop or restart the postfix service.
service postfix status
service postfix start
service postfix stop
service postfix restart

MDA installation:
To install the Mail Delivery Agent (MDA), we choose procmail in our examples, type the

following as root.

On computer-a (Fedora 18):
yum install procmail

On computer-b (Ubuntu 12.04.2 LTS):
apt-get install procmail

MUA installation:

To install the Mail User Agent (MUA), we choose mutt (which is a text based email

client) in our examples, type the following as root.

On computer-a (Fedora 18):
yum install mutt

On computer-b (Ubuntu 12.04.2 LTS):
apt-get install mutt

POP/IMAP Server installation:
This is optional and would only be required if you plan to grant access to user mailboxes
via pop/imap. To install the dovecot (imap/pop) server, type the following as root.

On computer-a (Fedora 18):
yum install dovecot

You can use the following to check the status, enable, start, stop or restart the dovecot

service.
systemctl status dovecot.service
systemctl enable dovecot.service
systemctl start dovecot.service
systemctl stop dovecot.service
systemctl restart dovecot.service

On computer-b (Ubuntu 12.04.2 LTS):
apt-get install dovecot-pop3d

You can use the following to check the status, start, stop or restart the dovecot service.
service dovecot status
service dovecot start
service dovecot stop
service dovecot restart

5.8.2 CONFIGURATION

MTA configuration:

The postfix configuration parameters are stored in "/etc/postfix/main.cf" file. Rather

than editing the configuration file directly, you can use the "postconf" command to

configure all postfix parameters. Check the man pages "man postconf" for more detailed

options. We will not be using postconf for our examples since a simple configuration is

sought.

On computer-a (Fedora 18):

For our simple example purpose, edit the “/etc/postfix/main.cf” file and make the

following changes. Leave the rest as is default.

mydomain = domain-a.kkhsou.in
myorigin = $mydomain

myhostname = computer-a.domain-a.kkhsou.in
mydestination = $myhostname, localhost.$mydomain, localhost

mynetworks = 192.168.1.0/24, 127.0.0.0/8

inet_interfaces = all

home_mailbox = Maildir/

After adding the above to the "/etc/postfix/main.cf" file, we need to restart the postfix

service for the changes to take effect. Type the following as root.

systemctl restart postfix.service

On computer-b (Ubuntu 12.04.2 LTS):

To configure postfix, run the command "dpkg-reconfigure postfix" as root or alternatively
edit the "/etc/postfix/main.cf" and make the following changes as root. Leave the rest

as default.

myhostname = computer-b.domain-b.kkhsou.in
myorigin = /etc/mailname

mydestination = computer-b.domain-b.kkhsou.in, localhost.domain-b.kkhsou.in, localhost

mynetworks = 127.0.0.0/8 192.168.1.0/24

inet_interfaces = all

home_mailbox = Maildir/

After adding the above to the "/etc/postfix/main.cf" file, we need to restart the postfix

service for the changes to take effect. Type the following as root.

service postfix restart

By default Postfix will use mbox for the mailbox format. The "home_mailbox = Maildir/"
setting will place new mails in a directory named "Maildir" of the respective users' home

directory. We will need to configure our Mail Delivery Agent (MDA) to use the same path.

MDA configuration:
A Mail Delivery Agent (MDA) is invoked by the MTA to file incoming email in the proper

user's mailbox. Any program that actually handles a message for delivery to the point

where it can be read by an email client application can be considered an MDA. For this

reason, some MTAs (such as Sendmail and Postfix) can fill the role of an MDA when

they append new email messages to a local user's mail spool file. For our example
purposes we will use the default configurations.

MUA configuration:
Since we are using mutt as our MUA, we need to add the following to the "~/.muttrc"

file, i.e. the .muttrc file within the users' home directory. You will need to create this file if

it does not already exist.
set mbox_type=Maildir
set folder="~/Maildir"
set mask="!^\\.[^.]"
set mbox="~/Maildir"
set record="+.Sent"
set postponed="+.Drafts"
set spoolfile="~/Maildir"
mailboxes `echo -n "+ "; find ~/Maildir -maxdepth 1 -type d -name ".*" -printf "+'%f' "`

POP/IMAP Server configuration:
The main configuration file for dovecot is located at "/etc/dovecot/dovecot.conf".
 Now add the following to the dovecot configuration specifying the mailbox we are using.
mail_location = maildir:~/Maildir
Finally, we need to also add our mailserver that we have just configured as an MX

Record in our DNS. If you refer to the section of this UNIT which deals with the

installation and configuration of BIND as a DNS (Section 5.5), you will notice that we had

added an MX for each of our example domains.

If you followed the examples in this section without running into an errors, you should

have a working email server. However, prior to deployment in any live environment you

should consult the documentation of each of these thoroughly and read about all the

security issues related to email. Since, our aim was to setup a simple email system we

did not cover most of the configurations.

5.9 INSTALLATION AND CONFIGURATION OF A DHCP
SERVER

 The Dynamic Host Configuration Protocol (DHCP) is a network protocol that

automatically assigns TCP/IP information to client machines. In a DHCP environment

each DHCP client connects to the centrally located DHCP server, which provides all

network related configuration including the IP address, gateway, and DNS servers. This

reduces the administrative overhead of having to assign network related configuration

manually to hosts in a network.

In this section, we will install and configure a simple DHCP server on Fedora 18 and
Ubuntu 12.04.2 LTS.

5.9.1 INSTALLATION

On computer-a (Fedora 18):

To install the dhcp server type “yum install dhcp”, as root.
[root@computer-a ~]# yum install dhcp
Loaded plugins: langpacks, presto, refresh-packagekit
updates/18/x86_64/metalink | 8.5 kB 00:00:00

updates | 4.7 kB 00:00:00
updates/primary_db | 11 MB 00:00:28
Resolving Dependencies
--> Running transaction check

---> Package dhcp.x86_64 12:4.2.5-15.fc18 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===
 Package Arch Version Repository Size
===
Installing:
 dhcp x86_64 12:4.2.5-15.fc18 updates 506 k

Transaction Summary
===
Install 1 Package

Total download size: 506 k
Installed size: 1.4 M
Is this ok [y/N]: y
Downloading Packages:
dhcp-4.2.5-15.fc18.x86_64.rpm | 506 kB 00:00:03

Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : 12:dhcp-4.2.5-15.fc18.x86_64 1/1
 Verifying : 12:dhcp-4.2.5-15.fc18.x86_64 1/1

Installed:
 dhcp.x86_64 12:4.2.5-15.fc18

Complete!
[root@computer-a ~]#

To check the status of the dhcpd service, type the following as root.
[root@computer-a ~]# systemctl status dhcpd.service

To enable the dhcpd service, type the following as root.
[root@computer-a ~]# systemctl enable dhcpd.service

To start the dhcpd service, type the following as root.
[root@computer-a ~]# systemctl start dhcpd.service

To stop the dhcpd service, type the following as root.
[root@computer-a ~]# systemctl stop dhcpd.service

To restart the dhcpd service, type the following as root.
[root@computer-a ~]# systemctl restart dhcpd.service

On computer-b (Ubuntu 12.04.2 LTS):

To install the dhcp server type “apt-get install isc-dhcp-server ”, as root.
root@computer-b:~# apt-get install isc-dhcp-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

 isc-dhcp-client isc-dhcp-common
Suggested packages:
 isc-dhcp-server-ldap

The following NEW packages will be installed:

 isc-dhcp-server
The following packages will be upgraded:
 isc-dhcp-client isc-dhcp-common
2 upgraded, 1 newly installed, 0 to remove and 253 not upgraded.
Need to get 1,066 kB of archives.
After this operation, 1,010 kB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get:1 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main isc-dhcp-client amd64 4.1.ESV-R4-
0ubuntu5.9 [290 kB]

Get:2 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main isc-dhcp-common amd64 4.1.ESV-R4-
0ubuntu5.9 [347 kB]
Get:3 http://in.archive.ubuntu.com/ubuntu/ precise-updates/main isc-dhcp-server amd64 4.1.ESV-R4-
0ubuntu5.9 [428 kB]

Fetched 1,066 kB in 4s (233 kB/s)
Preconfiguring packages ...
(Reading database ... 201832 files and directories currently installed.)

Preparing to replace isc-dhcp-client 4.1.ESV-R4-0ubuntu5.8 (using .../isc-dhcp-client_4.1.ESV-R4-
0ubuntu5.9_amd64.deb) ...
Unpacking replacement isc-dhcp-client ...
Preparing to replace isc-dhcp-common 4.1.ESV-R4-0ubuntu5.8 (using .../isc-dhcp-common_4.1.ESV-R4-

0ubuntu5.9_amd64.deb) ...
Unpacking replacement isc-dhcp-common ...
Selecting previously unselected package isc-dhcp-server.
Unpacking isc-dhcp-server (from .../isc-dhcp-server_4.1.ESV-R4-0ubuntu5.9_amd64.deb) ...
Processing triggers for man-db ...
Processing triggers for ureadahead ...
Setting up isc-dhcp-common (4.1.ESV-R4-0ubuntu5.9) ...
Setting up isc-dhcp-client (4.1.ESV-R4-0ubuntu5.9) ...
Setting up isc-dhcp-server (4.1.ESV-R4-0ubuntu5.9) ...
Generating /etc/default/isc-dhcp-server...
isc-dhcp-server start/running, process 31631

isc-dhcp-server6 stop/waiting
root@computer-b:~#

To check the status of the dhcpd service, type the following as root.
[root@computer-b ~]# service isc-dhcp-server status

To start the dhcpd service, type the following as root.
[root@computer-b ~]# service isc-dhcp-server start

To stop the dhcpd service, type the following as root.
[root@computer-b ~]# service isc-dhcp-server stop

To restart the dhcpd service, type the following as root.
[root@computer-b ~]# service isc-dhcp-server restart

5.9.2 CONFIGURATION

 On both Fedora and Ubuntu, the default location for the main DHCP
configuration file is "/etc/dhcp/dhcpd.conf". A sample configuration file can be found at

"/usr/share/doc/dhcp-version/dhcpd.conf.sample" on Fedora 18 and for Ubuntu

12.04.2 LTS at "/usr/share/doc/isc-dhcp-server/examples/dhcpd.conf". You can refer

to this file while configuring “/etc/dhcp/dhcpd.conf”.

We will configure a simple dhcp server for the example network we have setup.

#set the default and the maximum lease time in seconds

default-lease-time 600;

max-lease-time 7200;

#our example network configuration details

option subnet-mask 255.255.255.0;

option broadcast-address 192.168.1.255;

option routers 192.168.1.254;

option domain-name-servers 192.168.1.1, 192.168.1.2;

option domain-search "kkhsou.in";

subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.10 192.168.1.20;
}

You are required to restart the dhcp service after any changes to the configuration file.

 Though we have a working dhcp server using the above configuration. In practice

you may require more parameters to be included in the dhcp configuration. Therefore,

you are encouraged to read the man pages “man dhcpd.conf” before attempting to

install, configure and use on a live network.

5.10 INSTALLATION AND CONFIGURATION OF A SSH SERVER
AND CLIENT

 The SSH (Secure Shell) is a protocol which facilitates secure communications

between two systems using a client/server architecture and allows users to log into

server host systems remotely. Both Fedora 18 and Ubuntu 12.04.2 LTS includes the

general OpenSSH package (openssh) as well as the OpenSSH server (openssh-server)

and client (openssh-clients) packages. Note that the OpenSSH packages require the

OpenSSL package (openssl), which installs several important cryptographic libraries,

enabling OpenSSH to provide encrypted communications. The SSH server listens on
port 22 by default.

In this section, we will install and configure a simple SSH server "openssh" on Fedora 18

and Ubuntu 12.04.2 LTS.

5.10.1 INSTALLATION

 During the Operating System installation, be it Fedora or Ubuntu, the openssh-
client will be installed by default. Though the openssh-server may not be installed by

default. We will be assuming that the openssh is not installed on our system and perform

the installation on both Fedora and Ubuntu.

On computer-a (Fedora 18):

To install openssh type the following, as root.
[root@computer-a ~]# yum install openssh openssh-server openssh-clients openssl

To check the status of the openssh daemon, type the following as root.

[root@computer-a ~]# systemctl status sshd.service

To start the openssh daemon, type the following as root.
[root@computer-a ~]# systemctl start sshd.service

To stop the openssh daemon, type the following as root.
[root@computer-a ~]# systemctl stop sshd.service

To restart the openssh daemon, type the following as root.
[root@computer-a ~]# systemctl restart sshd.service

On computer-b (Ubuntu 12.04.2 LTS):

To install openssh type the following, as root.
root@computer-b:~# apt-get install openssh-server openssh-client openssl

To check the status of the openssh daemon, type the following as root.
root@computer-b:~# service ssh status

To start the openssh daemon, type the following as root.
root@computer-b:~# service ssh start

To stop the openssh daemon, type the following as root.
root@computer-b:~# service ssh stop

To restart the openssh daemon, type the following as root.
root@computer-b:~# service ssh restart

5.10.2 CONFIGURATION

 In most cases, the default configuration for SSH should suffice. However, it is

possible to configure the SSH server to suite your requirements.

 The default configuration file for the ssh daemon is located at
"/etc/ssh/sshd_config". Though we will not discuss it at length, you are encouraged to

use the man pages by typing “man sshd_config” at the terminal to read about it and

have a clear understanding before attempting to configure it on a live system.

You should now be able to connect using any ssh client with the ssh server we just
setup.
[binoddeka@computer-a ~]$ ssh binoddeka@computer-b
binoddeka@computer-b's password:

Last login: Fri Oct 4 21:51:18 2013 from 192.168.1.1

[binoddeka@computer-b ~]$

Another interesting option you should know about is the X11 forwarding, which can be

used to connect to remote Linux system via ssh and work with the graphical desktop

environment applications available on the remote system. To use ssh with this option
simple type in the following while initiating the ssh connection.
[binoddeka@computer-a ~]$ ssh -Y binoddeka@computer-b

Now, for example if you type “xcalc” you should get a pop-up window of the graphical

calculator.
[binoddeka@computer-b ~]$ xcalc

5.11 INSTALLATION AND CONFIGURATION OF A FTP SERVER
AND CLIENT

 The File Transfer Protocol (FTP) is one of the oldest and most commonly used

protocols found on the Internet today. Its purpose is to reliably transfer files between

computer hosts on a network without requiring the user to log directly into the remote

host or have knowledge of how to use the remote system. It allows users to access files

on remote systems using a standard set of simple commands. The ftp server listens on

port 21 by default.

In this section, we will install and configure a simple FTP server "vsftpd" on Fedora 18
and Ubuntu 12.04.2 LTS. vsftpd (Very Secure FTP Daemon) is a fast, stable and

secure FTP server.

5.11.1 INSTALLATION

On computer-a (Fedora 18):

To install vsftpd on Fedora 18, type the following as root.
[root@computer-a ~]# yum install vsftpd
Loaded plugins: langpacks, presto, refresh-packagekit

Resolving Dependencies
--> Running transaction check
---> Package vsftpd.x86_64 0:3.0.2-2.fc18 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===
 Package Arch Version Repository Size
===
Installing:
 vsftpd x86_64 3.0.2-2.fc18 updates 166 k

Transaction Summary
===
Install 1 Package

Total download size: 166 k
Installed size: 355 k
Is this ok [y/N]: y
Downloading Packages:
vsftpd-3.0.2-2.fc18.x86_64.rpm | 166 kB 00:00:02

Running Transaction Check
Running Transaction Test
Transaction Test Succeeded

Running Transaction
 Installing : vsftpd-3.0.2-2.fc18.x86_64 1/1
 Verifying : vsftpd-3.0.2-2.fc18.x86_64 1/1

Installed:
 vsftpd.x86_64 0:3.0.2-2.fc18
 Complete!
[root@computer-a ~]#

To check the status of the “vsftpd” service, type the following as root.
[root@computer-a ~]# systemctl status vsftpd.service
vsftpd.service - Vsftpd ftp daemon
 Loaded: loaded (/usr/lib/systemd/system/vsftpd.service; disabled)
 Active: inactive (dead)

To enable the “vsftpd” service, type the following as root.
[root@computer-a ~]# systemctl enable vsftpd.service
ln -s '/usr/lib/systemd/system/vsftpd.service' '/etc/systemd/system/multi-user.target.wants/vsftpd.service'

To start the “vsftpd” service, type the following as root.
[root@computer-a ~]# systemctl start vsftpd.service

To stop the “vsftpd” service, type the following as root.
[root@computer-a ~]# systemctl stop vsftpd.service
To restart the “vsftpd” service, type the following as root.

[root@computer-a ~]# systemctl restart vsftpd.service

On computer-b (Ubuntu 12.04.2 LTS):

To install vsftpd on Ubuntu, type the following as root.
root@computer-b:~# apt-get install vsftpd
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following package was automatically installed and is no longer required:
 tdb-tools

Use 'apt-get autoremove' to remove them.
The following NEW packages will be installed:
 vsftpd
0 upgraded, 1 newly installed, 0 to remove and 256 not upgraded.

Need to get 124 kB of archives.
After this operation, 342 kB of additional disk space will be used.
Get:1 http://in.archive.ubuntu.com/ubuntu/ precise/main vsftpd amd64 2.3.5-1ubuntu2 [124 kB]

Fetched 124 kB in 2s (50.7 kB/s)

Preconfiguring packages ...
Selecting previously unselected package vsftpd.
(Reading database ... 201789 files and directories currently installed.)
Unpacking vsftpd (from .../vsftpd_2.3.5-1ubuntu2_amd64.deb) ...
Processing triggers for man-db ...
Processing triggers for ureadahead ...
Setting up vsftpd (2.3.5-1ubuntu2) ...
vsftpd start/running, process 29005
root@computer-b:~#

To check the status of the “vsftpd” service, type the following as root.
root@computer-b:~# service vsftpd status

To start the “vsftpd” service, type the following as root.
root@computer-b:~# service vsftpd start

To stop the “vsftpd” service, type the following as root.
root@computer-b:~# service vsftpd stop

To restart the “vsftpd” service, type the following as root.
root@computer-b:~# service vsftpd restart

5.11.2 CONFIGURATION

 In most cases, the default configuration for vsftp should suffice. However, it is

possible to configure vsftp to suite your requirements.

On computer-a (Fedora 18):

The main configuration file for vsftpd is located at "/etc/vsftpd/vsftpd.conf".

The list of users not allowed to log into vsftpd is located at "/etc/vsftpd/ftpusers". By

default, this list includes the root, bin, and daemon users, among others.

The "/etc/vsftpd/user_list" file can be configured to either deny or allow access to the

users listed, depending on whether the userlist_deny directive is set to YES (default) or

NO in /etc/vsftpd/vsftpd.conf. If /etc/vsftpd/user_list is used to grant access to users, the

usernames listed must not appear in /etc/vsftpd/ftpusers.

The folder "/var/ftp/" contains the files served by vsftpd. It also contains the /var/ftp/pub/

directory for anonymous users. Both directories are world-readable, but writable only by

the root user.

You should now be able to connect to the ftp server we just installed. We will be loging in

as an anonymous user without a password.
[binoddeka@computer-a ~]$ ftp
ftp> open localhost
Connected to localhost (127.0.0.1).

220 (vsFTPd 3.0.2)

Name (localhost:binoddeka): anonymous
331 Please specify the password.

Password:

230 Login successful.
Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls -l
227 Entering Passive Mode (127,0,0,1,184,157).

150 Here comes the directory listing.

drwxr-xr-x 2 0 0 4096 Sep 10 07:37 pub

226 Directory send OK.

ftp>

On computer-b (Ubuntu 12.04.2 LTS):

The main configuration file for vsftpd is located at "/etc/vsftpd.conf".

The "/etc/ftpusers" file contains the list of users that are disallowed for FTP access. The

default list includes root, daemon, nobody, etc. To disable FTP access for additional

users simply add them to the list.

During installation a user “ftp” is created with a home directory “/srv/ftp”. This is the

default FTP directory.

You should now be able to connect to the ftp server we just installed. We will be loging in

as an anonymous user without a password.
[binoddeka@computer-b ~]$ ftp localhost
Connected to localhost (127.0.0.1).

220 (vsFTPd 2.3.5)

Name (localhost:binoddeka): anonymous
331 Please specify the password.

Password:
230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls -la
227 Entering Passive Mode (172,16,24,1,42,218).

150 Here comes the directory listing.

drwxr-xr-x 2 0 133 4096 Oct 07 12:58 .
drwxr-xr-x 2 0 133 4096 Oct 07 12:58 ..

-rw-r--r-- 1 0 0 0 Oct 07 12:58 test.txt

226 Directory send OK.

ftp>

Since we are setting up a simple ftp server we will go with the default configuration that

is available after installation although you should be able to perform custom

configurations based on your specific requirements.

CHECK YOUR PROGRESS
Q1. Give three examples of passive components.

Q2. What is Squid proxy server?
Q3. What do you mean by BIND?

Q4. What is a resource record?

Q5. What is Apache web server?

5.13 LET US SUM UP

 In this unit we have tried to get acquainted with few aspects of using Linux

Networking with the “with examples” approach. Though we have covered only a few of

the topics, these topics are intended to inspire and point you in the direction to further

explore the various tools available under Linux.

What we have learned in this unit:

 We installed and configured a simple LAN comprising of two computers, one

Ethernet Switch and two CAT6 Patch cords. We also learnt how to configure IP

addresses on both Fedora 18 and Ubuntu 12.04.2 LTS and to use the "ping"
utility.

 We installed and configured a simple http proxy server using Squid.

 We installed and configured a simple DNS Server using BIND. We also setup

DNS for two example domains, domain-a.kkhsou.in & domain-b.kkhsou.in; and

learnt to configure DNS on both Fedora 18 and Ubuntu 12.04.2 LTS.

 We installed and configured a simple Web Server using Apache.

 We installed and configured a simple File Server using Samba.

 We installed and configured a simple Mail Server using Postfix. We also setup

email systems for our two example domains and learnt to configure on both

Fedora 18 and Ubuntu 12.04.2 LTS.

 We installed and configured a simple DHCP Server.

 We installed and configured a simple SSH Server and Client.

 We installed and configured a simple FTP Server and Client.

5.14 ANSWERS TO CHECK YOUR PROGRESS

1Ans: the names of three passive components are: CAT6 cables, Patch Cords, RJ45

ports.

2Ans: The Squid proxy server is a cache based proxy. It will fetch all web requests to

populate its cache and then allow access to its cache based on its configuration. Squid

is a widely used proxy server as it permits you to save Internet Bandwidth and is feature

rich. It runs on most available operating systems, including Windows and is licensed

under the GNU GPL.

3Ans: BIND (Berkeley Internet Name Domain) is the most widely used DNS software on

the Internet. Domain Name System or DNS is a service which provides resolution of fully

qualified domain names (FQDN) into IP addresses and vice-versa. What this means is

that domain names like say “www.kkhsou.in” is easier to remember than some IP

address like “182.50.130.66”. Moreover, IP addresses may change. Just think how

difficult it would be to keep remembering numerical addresses.

4Ans: In a DNS server such as BIND, all information is stored in basic data elements

called resource records (RR). The resource record is usually a fully qualified domain
name (FQDN) of a host.

5Ans: The Apache HTTP Server is a robust, full-featured open source web server

developed by the Apache Software Foundation and is one of the most widely used web

server software that is currently used on the Internet.

5.15 FURTHER READINGS

 The Linux man pages of the tools used.

 The Official Fedora Documentation available at “http://docs.fedoraproject.org”.

 The Official Ubuntu Documentation available at “https://help.ubuntu.com/”.

5.16 MODEL QUESTIONS

1. Which file contains the IP Address configurations in Linux?

2. What does the ping utility do?

3. What is a Proxy Server? Which command can be used to check the status of the

Squid proxy server in Fedora 18?

4. What is BIND? Which file contains the main configuration for BIND in Ubuntu

12.04.2 LTS?
5. What does the "nslookup" utility do?

6. What does the "dig" utility do?

7. What is a FQDN?

8. What do you mean by a reverse name lookup in DNS?

9. What is Apache? Where is the main configuration file located for Apache?

10. What is Samba?

11. What is a MTA? Which network protocol is used by MTAs to communicate with

each other?

12. Mozilla Thunderbird is a MTA, MUA or MDA?
13. What is a MX record?

14. What is DHCP?

15. Which file contains the configuration for the sshd daemon?

16. Which option can be used with the "ssh" utility for X11 forwarding?

17. What is vsftp?
